How-To Library {® nnformatica

Using the PowerExchange

CallProg Function to Call a User
Exit Program

© Copyright Informatica LLC 2010, 2021. Informatica

This article describes how to use the PowerExchange CallProg function in an expression in a data map record to call a
user exit program that returns the class type of a specified field in the data map record.

PowerExchange 10.0 or later

OVEIVIEW. . . L 2
Step 1. AddaDataMap. e 3
Step 2. Create and Compile the User Exit Program. i 5
Step 3. Add User-Defined Fields. 15
Step 4. Refresh Columns inthe MASTER_REC Table 19
Step 5. Test the Results of the User Exit Program. 19
Reference Information. L 20

CallProg. . . . e 20

Table Properties - Definition. 21

In this example, you add user-defined fields to a data map record to invoke the PowerExchange CallProg function to
call a user exit program.

The user exit program returns the class type for the data in a specified field. The user exit program tests any field with a
maximum length of 15 bytes.

The user exit program returns one of the following class types:

Class Type Description

A Alphabetic

H High values

L Low values

N Numeric zoned decimal
S Spaces

This example shows how to complete the following tasks:

1.
2.

Add a data map by using a sample data file and copybook that ship with PowerExchange on z/0S.

Create and compile a user exit program. Save the DLL in the PowerExchange Listener LOADLIB library on
z/0S.

3. Add the following user-defined fields to the MASTER_REC data map record:
e The classtype_bin_no, classtype_dec_no, and classtype_rec_type fields.

Defined as a one-byte CHAR fields. The user exit program that is called by the CallProg function returns
the class type of a specified field in these fields. You must define a separate classtype field for each field
for which you want to check the class type.

e The rc_bin_no, rc_decimal_no, and rc_rec_type fields.

Defined as NUM32 fields. Use these fields to call the CallProg function and to contain the return code
from the user exit program call.

Before PowerExchange completes data checking for a data map record, it runs any expressions and program
calls defined in user-defined fields in the data map record.

4. Refresh the columns in the MASTER_REC table to pick up the user-defined fields that you added to the
MASTER_REC record.

5. Run a database row test on the data map record to test the results of the user exit program and to verify that
the user exit program runs correctly.

For more information about using PowerExchange functions in user-defined fields to process data in data map records,
see the PowerExchange Navigator User Guide.

In this step, you add a data map for a sequential flat file and import a COBOL copybook.

To add the data map, use the following data set members that ship with PowerExchange on the z/0S system:

Data Set Member Description
KSDSDAT Data file that contains source data.
KSDSCOB COBOL copybook that you import to define the layout of the data.

1. Onthe Resources tab in the Resource Explorer, click Add > Data Map.

2. Inthe Name dialog box, define the following properties for the data map:

Property Value
Schema Name demo
Data Map Name userexit
Access Method SEQ

Also, select the Import Record Definitions option.
3. Click Next.

In the SEQ Access Method dialog box, define the following properties for the data map:

Property Value Notes

File Name PWX installation dataset.DTLDEMO (KSDSDAT | Where PWX_installation_dataset is the
) PowerExchange installation data set.

For example, you might enter the following
value for the file name:
P1iX.V901.DTLDEMO (KSDSDAT)

Record Format Default

Skip First 0

Also, verify that the File List Processing option is disabled. By default, this option is disabled.
Click Finish.

In the Import Copybook - Source Details dialog box, define the following properties for the copybook:

Property Value

Source Remote

Type COBOL

Column Range Start 7

Column Range End 72
Click Next.

In the Import Copybook - Remote Cobol Details dialog box, define the following properties for the copybook:

Property Value Notes

File Name PWX_installation dataset.DTLDEMO (KSDSCOB | Where PWX_installation_dataset is the
) PowerExchange installation data set.

For example, you might enter the following
value for the file name:
PWX.V901.DTLDEMO (KSDSCOB)

Location Node for the z/0S system

UserID The user ID for the z/0S system

Password The password for the user ID on the z/0S system
Save File A name for the copybook file on the local Windows
Locally As system

Note: If you want to preview the copybook, click Preview. After you preview the copybook, close the preview
window.

Click Next.

10.

11.
12.

13.

14.
15.

16.

17.

18.

In the Import Copybook - Configuration Details dialog box, review the selected actions for imported records,
fields, and tables, and click Finish.

In the Import Copybook Information window, review the information for the import and click OK.
In the Record Definition dialog box for the MASTER_REC record, click OK.

The Copybook Redefines message box appears indicating that two definitions for the BIN_NO field exist in
the copybook. For this example, the first definition is the correct one.

To accept the first definition for the BIN_NO field, click Import > Goto Current Line. Then, click Import >
Resume to resume the import.

The Cobol Import window displays the imported copybook and the Copybook Message Log window displays
the results of the import operation.

Close the Cobol Import window.

To verify that the data map was added correctly, on the Resources tab in the Resource Explorer, select the
MASTER_REC table and click File > Database Row Test.

When you are prompted to send the data map to a remote location, click Yes.

The Data Map Remote Node dialog box appears.

In the Data Map Remote Node dialog box, enter the user ID, password, and the node for the z/0S system.
The Database Row Test dialog box appears.

In the Database Row Test dialog box, accept the default values and click Go.

The Database Row Test Output window displays the the following results for the database row test:

Database Row Test Dutput 3]

Row Number ACCOUNT AMOUNT ACCT_CODES_1 ACCT_CODES 2 ACCT_CODES_3
Automahile
Automobile Automobile Life
Automohile Lite Boat
Automobile Autornabile Life
Automobile Lite Boat
House Life Motorcyble
House Boat Autornobile
Automobile Lite House
House Lite Life
Automohile House Life

Charles
Cindy
Esther
James
Jason
John
Larry
Luke

o Maggie

-112.34 B5535 -119 a9 12
12.34 -1 -1 ag 12
11234 -1 =111 ag 12
-1012.34 B5535 -119 a9 12
1312.34 15 m a9 12
1234 18 m ag 12
1234 16 11 ag 12
-112.34 B5535 -119 a9 12
1012.34 -1 -1 a9 12

e] —
DE TR R @D e
T] —

< >

Row Test Results

In this step, you copy the UCPEP user exit program and modify it. Then, compile the user exit program and save the DLL
in the PowerExchange Listener LOADLIB library.

PowerExchange ships sample user exit programs, including the UCPEP program, in the SRCLIB library in the installation
data set on z/0S.

1.

2.

In the SRCLIB library in the PowerExchange installation data set on z/0S, copy the UCPEP user exit program
and name it UCPGCLSC.

Edit the UCPGCLSC program and make the changes marked in bold, as shown in the following code:

IDENTIFICATION DIVISION.
PROGRAM-ID. UCPGCLSC.
hhkkkkkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkkkkkk
* GLOBAL CUSTOMER SUPPORT SAMPLE CLASS TEST

* EXAMPLE COBOL PROGRAM CALLED VIA CALLPROG.

*

* % % k% % % % % %

* USER EXITS ARE NOT SUPPORTED BY INFORMATICA
* USER EXITS ARE USED AT THE CUSTOMERS OWN RISK

*

USING SYNTAX :-
CALLPROG ('UCPGCLSC' , 'UCPGCLSC', 'COBOL', 'VOID',
TEXT_FIELD,NUMBER1 FIELD)

RECEIVES THE FOLLOWING ARGUMENTS :-
1. NUMBER-ARGUMENTS - REQUIRED
THE NUMBER OF ARGUMENTS WHICH FOLLOW.
THE PROGRAM WILL EXIT SETTING A BAD RETURN CODE
IF THE NUMBER IS NOT WHAT IT EXPECTS.

2. FAILURE-CODE. - REQUIRED
AN INTEGER PASSED BACK TO THE CALLER TO INDICATE IF
PROCESSING WAS WAS NOT SUCCESSFUL.
THE FAILURE-CODE IS MONITORED
SO THAT ACTION CAN BE TAKEN TO HANDLE ERRORS.

BECAUSE THE MVS COBOL LINKAGE TYPE ONLY SUPPORTS A
RETURN TYPE OF 'VOID', IT IS NECESSARY TO PASS IT
BACK AS A NORMAL FIELD WITH ITS ACCOMPANYING LENGTH.
(SEE CLLPRGL2 FOR HOW THE RETURN CODE CAN BE PASSED
USING A LINKAGE TYPE OF 'OS' RETURNING 'INT')

3. MESSAGE-BUFFER. - REQUIRED
AN ERROR INTO WHICH THE PROGRAM CAN PUT A MESSAGE
TO ACCOMPANY A NON-ZERO FAILURE CODE, INDICATING
THE REASON.

4. MESSAGE-BUFFER-LENGTH. - REQUIRED
THE LENGTH OF MESSAGE-BUFFER

5. TEXT-AREA.
THIS IS THE 5TH ARGUMENT TO CALLPROG DEFINED IN THE
NAVIGATOR EXPRESSIONS SCREEN.
IN THIS EXAMPLE, IT IS A FIELD CONTAINING A MAX OF 15 BYTES

6. TEXT-AREA-LENGTH.
THE LENGTH OF TEXT-AREA WHICH VARIES ACCORDING
TO THE ACTUAL FIELD LENGTH ON THE FILE.

7. CLASS-TYPE.
THIS IS THE 6TH ARGUMENT TO CALLPROG DEFINED IN THE
NAVIGATOR EXPRESSIONS SCREEN.
IN THIS EXAMPLE, IT IS A 1 BYTE CHARACTER FIELD WITH VALUES
S=SPACES, L=LOW-VALUES, H=HIGH-VALUES, A=ALPHABETIC, N=NUMERIC

8. CLASS-TYPE-LENGTH.
THE LENGTH OF FIELD CLASS-TYPE WHICH WILL ALWAYS
BE 1.

Ak Kk rkhkhkhkhkhhkk ko hhkkrhkhkhkhhkhkhkhhkhkkkrhkdkrkhkrhkkxkhkhkdkxkkk k%

%k ok K Kk ok ok %k %k ok ok ok b ok ok k% ok sk sk sk ok ok ok ok ok ok Rk k k k sk sk ok ok ok ok ok ok R % %k sk sk ok % ok ok ok

ENVIRONMENT DIVISION.
*
DATA DIVISION.

WORKING-STORAGE SECTION.
*

01 WS-DATE PIC X(6).
01 WS-TIME PIC X (8).
01 WS-DATA.

05 WS-DATAL5 PIC X(15).

01 WS-DATAL14 REDEFINES WS-DATA.
05 WS-DATA14 PIC X(14).
05 FILLER PIC X(01).

01 WS-DATAL13 REDEFINES WS-DATA.
05 WS-DATA13 PIC X(13).
05 FILLER PIC X(02).

01 WS-DATAL12 REDEFINES WS-DATA.
05 WS-DATA12 PIC X(12).
05 FILLER PIC X(03).

01 WS-DATAL1l REDEFINES WS-DATA.
05 WS-DATALlL PIC X(11).

05 FILLER PIC X(04).

01 WS-DATAL10 REDEFINES WS-DATA.
05 WS-DATA10 PIC X(10).
05 FILLER PIC X(05).

01 WS-DATALO9 REDEFINES WS-DATA.
05 WS-DATA09 PIC X(09).
05 FILLER PIC X(06).

01 WS-DATALOS REDEFINES WS-DATA.
05 WS-DATA08 PIC X(08).
05 FILLER PIC X(07).

01 WS-DATALO7 REDEFINES WS-DATA.
05 WS-DATAQ7 PIC X(07).
05 FILLER PIC X(08).

01 WS-DATALO6 REDEFINES WS-DATA.
05 WS-DATA06 PIC X(06).
05 FILLER PIC X(09).

01 WS-DATALO5 REDEFINES WS-DATA.
05 WS-DATAO5 PIC X(05).
05 FILLER PIC X(10).

01 WS-DATALO4 REDEFINES WS-DATA.
05 WS-DATAO4 PIC X(04).
05 FILLER PIC X(11).

01 WS-DATALO3 REDEFINES WS-DATA.
05 WS-DATA03 PIC X(03).
05 FILLER PIC X(12).

01 WS-DATALO2 REDEFINES WS-DATA.
05 WS-DATA02 PIC X(02).
05 FILLER PIC X(13).

01 WS-DATALO1l REDEFINES WS-DATA.
05 WS-DATAOL PIC X(01).
05 FILLER PIC X(14).

*
LINKAGE SECTION.

01 LK-NUMBER-ARGUMENTS PIC S9(9) COMP.

01 LK-FAILURE-CODE PIC S9(9) coMmP.

01 LK-MESSAGE-BUFFER.
05 LK-MESSAGE-BUFFER-BYTE PIC X(1)
OCCURS 1 TO 255
DEPENDING ON LK-MESSAGE-BUFFER-LENGTH.

01 LK-MESSAGE-BUFFER-LENGTH

01 LK-TEXT-AREA.

05 LK-TEXT-AREA-BYTE
01 LK-TEXT-AREA-LENGTH
01
01

LK-CLASS
LK-CLASS-LENGTH

PROCEDURE DIVISION USING
LK-NUMBER-ARGUMENTS
LK-FAILURE-CODE
LK-MESSAGE-BUFFER
LK-MESSAGE-BUFFER-LENGTH
LK-TEXT-AREA
LK-TEXT-AREA-LENGTH
LK-CLASS
LK-CLASS-LENGTH

MAIN SECTION.
0100-MAIN.

PIC S9(9) coMP.
PIC X (1) OCCURS 15.
PIC S9(9) coMP.

PIC X.
PIC S9(9) comP.

MOVE ZERO TO LK-FAILURE-CODE.
MOVE ZERO TO LK-MESSAGE-BUFFER-LENGTH.

hhkkkkkkkkkkhkkhkhkhkhhhhhhkhkhkhkhkkkkhkhkkhkhkhkhhhhhhhhhkhkkkkkkkkhkkhkhkkhkhkkk

* EXIT FLAGGING AN ERROR IF THE WRONG NUMBER OF ARGUMENT PAIRS
khkkkkkkkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkkkhkkhkkkhkhkkhkkkkkkkkkkkkkkk
IF LK-NUMBER-ARGUMENTS NOT = 2
DISPLAY 'UCPGCLSC:NUMBER-ARGUMENTS=' LK-NUMBER-ARGUMENTS
' (REQUIRED 2)'
' EXITTING WITH RC=401"
MOVE 401 TO LK-FAILURE-CODE
MOVE 'UCPGCLSC:NOT ENOUGH ARGUMENTS '
TO LK-MESSAGE-BUFFER
GO TO 0900-MAIN-EXIT
END-IF.

hhkkkkkkkhkkhkkhkkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkkkkkhkkkhkhkkhkkkkkkkkkkkkkkk
* IF DATA PRESENT FIND LENGTH AND TEST CLASS
khkkkkkhkhkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkkhkkkkkhkkkkkkkk
*

IF LK-TEXT-AREA-LENGTH = ZERO
MOVE 'FIELD EMPTY' TO LK-MESSAGE-BUFFER
MOVE 11 TO LK-MESSAGE-BUFFER-LENGTH
MOVE 402 TO LK-FAILURE-CODE
GO TO 0900-MAIN-EXIT
ELSE
IF LK-TEXT-AREA-LENGTH > +15
MOVE 'LENGTH > 15' TO LK-MESSAGE-BUFFER
MOVE 11 TO LK-MESSAGE-BUFFER-LENGTH
MOVE 403 TO LK-FAILURE-CODE
GO TO 0900-MAIN-EXIT
ELSE
MOVE LK-TEXT-AREA TO WS-DATA
END-IF.

MOVE SPACES TO LK-CLASS.
MOVE +1 TO LK-CLASS-LENGTH.
*

0100-CLASS15.
*
IF LK-TEXT-AREA-LENGTH < +15
GO TO 0100-CLASS14
END-IF.

IF WS-DATA ALPHABETIC
MOVE 'A' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA NUMERIC
MOVE 'N' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA = LOW-VALUES
MOVE 'L' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA = HIGH-VALUES
MOVE 'H' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA = SPACES
MOVE 'S' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.
GO TO 0900-MAIN-EXIT.
*

0100-CLASS14.

IF LK-TEXT-AREA-LENGTH < +14
GO TO 0100-CLASS13
END-IF.

IF WS-DATAl4 ALPHABETIC
MOVE 'A' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAl4 NUMERIC
MOVE 'N' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAl4 = LOW-VALUES
MOVE 'L' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAl4 = HIGH-VALUES
MOVE 'H' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAl4 = SPACES
MOVE 'S' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.
GO TO 0900-MAIN-EXIT.
*

0100-CLASS13.
*
IF LK-TEXT-AREA-LENGTH < +13
GO TO 0100-CLASS12
END-IF.

IF WS-DATAl3 ALPHABETIC
MOVE 'A' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAl3 NUMERIC
MOVE 'N' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAl1l3 = LOW-VALUES
MOVE 'L' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAl3 = HIGH-VALUES
MOVE 'H' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAl3 = SPACES
MOVE 'S' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.
GO TO 0900-MAIN-EXIT.
*

0100-CLASS12.
*
IF LK-TEXT-AREA-LENGTH < +12
GO TO 0100-CLASS1l
END-IF.

IF WS-DATAl2 ALPHABETIC
MOVE 'A' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAl2 NUMERIC
MOVE 'N' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAl2 = LOW-VALUES
MOVE 'L' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAl2 = HIGH-VALUES
MOVE 'H' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAl2 = SPACES
MOVE 'S' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.
GO TO 0900-MAIN-EXIT.
*

0100-CLASS11.
*
IF LK-TEXT-AREA-LENGTH < +11
GO TO 0100-CLASS10
END-IF.

IF WS-DATAll ALPHABETIC
MOVE 'A' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAll NUMERIC
MOVE 'N' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAll = LOW-VALUES
MOVE 'L' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAll = HIGH-VALUES
MOVE 'H' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAll = SPACES
MOVE 'S' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.
GO TO 0900-MAIN-EXIT.
*

0100-CLASS10.
*
IF LK-TEXT-AREA-LENGTH < +10
GO TO 0100-CLASS09
END-IF.

IF WS-DATA1l0 ALPHABETIC
MOVE 'A' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAl0 NUMERIC
MOVE 'N' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA1l0 = LOW-VALUES
MOVE 'L' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA1l0 = HIGH-VALUES
MOVE 'H' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA1l0 = SPACES
MOVE 'S' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.
GO TO 0900-MAIN-EXIT.
*

0100-CLASS09.
*
IF LK-TEXT-AREA-LENGTH < +9
GO TO 0100-CLASS08
END-IF.

IF WS-DATAO9 ALPHABETIC
MOVE 'A' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(Q9 NUMERIC
MOVE 'N' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(O9 = LOW-VALUES
MOVE 'L' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(Q9 = HIGH-VALUES
MOVE 'H' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(Q9 = SPACES
MOVE 'S' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.
GO TO 0900-MAIN-EXIT.
*

0100-CLASS08.
*
IF LK-TEXT-AREA-LENGTH < +8
GO TO 0100-CLASSO07
END-IF.

IF WS-DATA(O8 ALPHABETIC
MOVE 'A' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(O8 NUMERIC
MOVE 'N' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(O8 = LOW-VALUES
MOVE 'L' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(O8 = HIGH-VALUES
MOVE 'H' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(O8 = SPACES
MOVE 'S' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.
GO TO 0900-MAIN-EXIT.
*

0100-CLASSO07.
*
IF LK-TEXT-AREA-LENGTH < +7
GO TO 0100-CLASS06
END-IF.

IF WS-DATA(O7 ALPHABETIC
MOVE 'A' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(Q7 NUMERIC
MOVE 'N' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(Q7 = LOW-VALUES
MOVE 'L' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAQ7 = HIGH-VALUES
MOVE 'H' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAQ7 = SPACES
MOVE 'S' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.
GO TO 0900-MAIN-EXIT.
*

0100-CLASS06.
*
IF LK-TEXT-AREA-LENGTH < +6
GO TO 0100-CLASS05
END-IF.

IF WS-DATAO6 ALPHABETIC
MOVE 'A' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAO06 NUMERIC
MOVE 'N' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAO6 = LOW-VALUES
MOVE 'L' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAO6 = HIGH-VALUES
MOVE 'H' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAO6 = SPACES
MOVE 'S' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.
GO TO 0900-MAIN-EXIT.
*

0100-CLASS05.
*
IF LK-TEXT-AREA-LENGTH < +5
GO TO 0100-CLASS04
END-IF.

IF WS-DATA(O5 ALPHABETIC
MOVE 'A' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(Q5 NUMERIC
MOVE 'N' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAO5 = LOW-VALUES
MOVE 'L' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(O5 = HIGH-VALUES
MOVE 'H' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAQ5 = SPACES
MOVE 'S' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.
GO TO 0900-MAIN-EXIT.
*

0100-CLASS04.
*
IF LK-TEXT-AREA-LENGTH < +4
GO TO 0100-CLASS03
END-IF.

IF WS-DATAO4 ALPHABETIC
MOVE 'A' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(Q4 NUMERIC
MOVE 'N' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(O4 = LOW-VALUES
MOVE 'L' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(O4 = HIGH-VALUES
MOVE 'H' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(O4 = SPACES
MOVE 'S' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.
GO TO 0900-MAIN-EXIT.
*

0100-CLASS03.
*
IF LK-TEXT-AREA-LENGTH < +3
GO TO 0100-CLASS02
END-IF.

IF WS-DATAO3 ALPHABETIC
MOVE 'A' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(Q3 NUMERIC
MOVE 'N' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(O3 = LOW-VALUES
MOVE 'L' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(O3 = HIGH-VALUES
MOVE 'H' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(O3 = SPACES
MOVE 'S' TO LK-CLASS
GO TO 0900-MAIN-EXIT

END-IF.

GO TO 0900-MAIN-EXIT.

*

0100-CLASS02.
*
IF LK-TEXT-AREA-LENGTH < +2
GO TO 0100-CLASSO1
END-IF.

IF WS-DATA(O2 ALPHABETIC
MOVE 'A' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(02 NUMERIC
MOVE 'N' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(O2 = LOW-VALUES
MOVE 'L' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAO2 = HIGH-VALUES
MOVE 'H' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(Q2 = SPACES
MOVE 'S' TO LK-CLASS
GO TO 0900-MAIN-EXIT

END-IF.

GO TO 0900-MAIN-EXIT.

*

0100-CLASSO1.
*
IF LK-TEXT-AREA-LENGTH < +1
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAOl1 ALPHABETIC
MOVE 'A' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAO1 NUMERIC
MOVE 'N' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(Ol1l = LOW-VALUES
MOVE 'L' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATA(O1l = HIGH-VALUES
MOVE 'H' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

IF WS-DATAQl = SPACES
MOVE 'S' TO LK-CLASS
GO TO 0900-MAIN-EXIT
END-IF.

GO TO 0900-MAIN-EXIT.
*

*

0900-MAIN-EXIT.
GOBACK.

3. Compile the UCPGCLSC program and save the DLL in the PowerExchange Listener LOADLIB library.

In this step, you add user-defined fields.

The user-defined fields invoke the PowerExchange CallProg function, which calls the user exit program. For more
information about the CallProg function, see “CallProg” on page 20.

The user exit program processes data in and returns the class types of the REC_TYPE, BIN_NO, and DECIMAL_NO
fields.

1. Open the demo.userexit data map and the MASTER_REC record.

2. Inthe Record window, click the Expr(0) tab.

3. Right-click anywhere on the Expr(0) tab and click Add Field at End.
4

Add the classtype_rec_type field, which is an output field that contains the result from the user exit program
when it is invoked for the REC_TYPE field. Define the following properties for the field:

Property Value
Name classtype_rec_type
Type CHAR

15

16

Property Value
Precision 0
Scale 0
Length 1

Right-click anywhere on the Expr(0) tab and click Add Field at End.

Add the rc_rec_type field, which calls the user exit program to process the REC_TYPE field. Define the
following properties for the field:

'UCPGCLSC', '"COBOL',
REC_TYPE,classtype rec type)

Property Value Notes

Name rc_rec_type

Type NUM32

Precision 0

Scale 0

Length 0

Phase RW Indicates that the operation is read or
write.

Expression CallProg ('UCPGCLSC', To enter the expression for the field,

complete the following steps:

1. Click in the cell in the Expression
column and click the Browse button.
The Expression Editor dialog box
appears.

2. In the Function List list in the
Expression Editor dialog box, double-
click the CallProg function.

3. In the Expression List list, enter
('"UCPGCLSC', "UCPGCLSC', 'COBOL"'
,REC_TYPE, classtype_rec_type)
at the end of the CallProg function
name.

4. Click Validate. In the Validate box, the
No Errors message appears.

5. Click OK.

In the Record window, click the Expr(0) tab.

Right-click anywhere on the Expr(0) tab and click Add Field at End.

9. Add the classtype_bin_no field, which is an output field that contains the result from the user exit program
when it is invoked for the BIN_NO field. Define the following properties for the field:

Property Value

Name classtype_bin_no
Type CHAR

Precision 0

Scale 0

Length 1

10. Right-click anywhere on the Expr(0) tab and click Add Field at End.

11. Add the rc_bin_no field, which calls the user exit program to process the BIN_NO field. Define the following
properties for the field:

Property Value Notes

Name rc_bin_no

Type NUM32

Precision 0

Scale 0

Length 0

Phase RW Indicates that the operation is read or

write.

Expression CallProg ('UCPGCLSC', To enter the expression for the field,
'UCPGCLSC', 'COBOL', complete the following steps:
BIN_NO,classtype_bin_no) 1. Click in the cell in the Expression

column and click the Browse button.
The Expression Editor dialog box
appears.

2. In the Function List list in the
Expression Editor dialog box, double-
click the CallProg function.

3. In the Expression List list, enter
('"UCPGCLSC', 'UCPGCLSC', 'COBOL'
,BIN NO,classtype bin no) atthe
end of the CallProg function name.

4. Click Validate. In the Validate box, the
No Errors message appears.

5. Click OK.

12. Right-click anywhere on the Expr(0) tab and click Add Field at End.

17

13. Add the classtype_dec_no field, which is an output field that contains the result from the user exit program
when it is invoked for the DECIMAL_NO field. Define the following properties for the field:

Property Value

Name classtype_dec_no
Type CHAR

Precision 0

Scale 0

Length 1

14. Right-click anywhere on the Expr(0) tab and click Add Field at End.

15. Add the rc_decimal_no field, which calls the user exit program to process a copy of the DECIMAL_NO field.
Define the following properties for the field:

'UCPGCLSC', "COBOL',
DECIMAL NO,classtype dec no)

Property Value Notes

Name rc_decimal_no

Type NUM32

Precision 0

Scale 0

Length 0

Phase RW Indicates that the operation is read or
write.

Expression CallProg ('UCPGCLSC', To enter the expression for the field,

complete the following steps:

1. Click in the cell in the Expression
column and click the Browse button.
The Expression Editor dialog box
appears.

2. In the Function List list in the
Expression Editor dialog box, double-
click the CallProg function.

3. In the Expression List list, enter
('"UCPGCLSC', 'UCPGCLSC', 'COBOL'
,DECIMAL NO,classtype dec no)
at the end of the CallProg function
name.

4. Click Validate. In the Validate box, the
No Errors message appears.

5. Click OK.

18

In this step, you refresh the columns in the MASTER_REC table to pick up the user-defined fields that you added to the
MASTER_REC record.

1. Open the demo.userexit data map.

2. Onthe Data Map tab in the Resource Explorer, right-click the MASTER_REC table and click Properties.
The Table Properties - Definition dialog box appears.

3. Inthe Column Generation list, select Refresh with missing columns.

Because the record on which the table is based contains new fields, this action adds the corresponding
columns to the table.

4. Click OK.

For more information about the Table Properties - Definition dialog box, see “Table Properties - Definition” on page
21.

In this step, you run a database row test to test the results of the user exit program in the data map record.

1. Open the demo.userexit data map.

2. On the Data Map tab in the Resource Explorer, select the MASTER_REC table and click File > Database Row
Test.

3. When prompted to send the data map to a remote location, click Yes.
The Data Map Remote Node dialog box appears.

4. Inthe Data Map Remote Node dialog box, enter the user ID, password, and the node for the z/0S system.
The Database Row Test dialog box appears.

5. Inthe Database Row Test dialog box, accept the default values and click Go.

The Database Row Test Output window displays the results for the database row test, including the following
user-defined fields:

Database Row Test Dutput [=]
[aceT_copes_2 | ACCT_cODES 3 | classtype_bin_no | classtype_dec_no | classtype_rec_type | re_bin_no | re_stecimal_no | o_rec_type |
Automohile Life H A 0 0 0
Autarmobile Life A o
Lite Boat H A i} 1} 1}
Autarmohbile Life H A o a a
Life Boat A o o o
Lite hiotareyble] A i} 1} 1}
Boat Autamobile M A o a a
Life House i A 1} a a
Life Life A i} 1} 1}
House Life H A o o o

< ¥

19

The user-defined fields display the following information:

User-defined Field Value Description
classtype_bin_no H Indicates that the BIN_NO field for that row contains a high value.
classtype_dec_no N Indicates that the DECIMAL_NO field for that row contains a numeric

zoned decimal value.

classtype_rec_type A Indicates that the REC_TYPE field for all rows contains an alphabetic
value.

rc_bin_no 0 Indicates that the UCPGCLSC user exit program ran successfully for
all rows.

rc_decimal_no

rc_rec_type

Use the following information to invoke the CallProg function in a user-defined field in a data map record, and to refresh
columns in a table to pick up changes to the data map record.

Calls a user-defined program or subroutine to process the source data in a record.

Syntax:
[result=]CallProg('program','subroutine','linkage'[,argl][,arg2][,...])
The parameters are:

o result. Optional. NUM32. This argument contains the return value from program called by the CallProg
function, which is one of the following values:

- 0. Success.
- Non-zero. Failure.

If you do not specify a result argument and a non-zero return code is returned from the external program,
CallProg executes the following default map-level error responses:

- Ends the extract.
- Skips this subroutine.

e program. The name of the program that contains the subroutine. Depending on the operating system, the
program is one of the following:

- i5/0S. A service program.

- Linux or UNIX. A shared object.
- Windows. A DLL.

- z/0S. A load module.

Enclose the program name in single quotes.

20

e subroutine. The name of the entry point in the program. Depending on the operating system, the subroutine is
one of the following:

- i5/0S. The subroutine name.
- Linux, UNIX, or Windows. The subroutine name.

- z/0S for Assembler, C, or COBOL programs. You must provide a value, but the value is ignored and the
default entry point for the load module is used. Specify the same name as the program.

- z/0S for PL/I programs. If multiple fetchable subroutines reside in the same load module, specify the
subroutine name.

Enclose the subroutine name in single quotes.

o linkage. The type of linkage, which determines the way that arguments are passed to and return codes are
returned from the program or subroutine. The linkage type is one of the following values:

Linkage Type Supported Operating Arguments Returns
Systems
C - i5/0S Passed through the stack Program return code
- Linux, UNIX, and Windows
- z/08
COBOL z/0S Passed as a list of addresses Address of failure code
integer
oS z/0S Program return code
0S400 i5/0S Address of failure code
integer
PLI z/0S Address of failure code
integer

Enclose the linkage type in single quotes.

e [argT][,arg2][...]. One or more optional arguments passed to the program or subroutine.

View or edit table definition properties.
Available Records
A list of the records in the data map that are not in the complex table.

To add a record to the Record Dependencies list, in the Available Records list, right-click a record and click
Add Record.

To add a child record to a parent record:

¢ |n the Record Dependencies list, select a record to identify it as the parent record.

¢ In the Available Records list, right-click a record and click Add Record as Child. This action moves the
record to the Record Dependencies list as a child record of the parent record.

For IDMS: To select the system index to use for record retrieval, right-click a record and click Use System
Index. Then, select the index.

21

Record Dependencies
A list of the records that are in the complex table, with any defined hierarchical dependencies.
To remove a record dependency, right-click a record and click Delete.

For IDMS, to reverse the direction of the area read, right-click a record and click Reverse Area Read. To
reverse the direction of the set read, right-click the record and click Reverse Set Read.

How do you want to handle multiple instances of selected records?
Select one of the following options:

* New Row. A new row appears or is written to the target for every instance of the record or segment.
* Ignore. Second and subsequent instances of a record or segment appear or are written to the target.

e Array. The number of records or segments specified in the Array list appear or are written to the target in
a single row of output.

PowerExchange populates the output row until it is full, and then completes one of the following actions:

¢ If you clear the New Row on Overflow option, PowerExchange ignores subsequent records or segments.

o |f you select the New Row on Overflow option, PowerExchange displays a new row with the overflow
records or segments.

For example, for a record with five instances, if you enter 3 in the Array list, PowerExchange builds two output
rows. The first row contains an array of three instances, and the second row contains an array of two
instances.

Note: If you set a parent record or segment to Array, you must set all child records or segments to Ignore.
Column Generation

When you first define a table, PowerExchange derives column names from the field names in the record on
which the table is based. However, PowerExchange uses a special naming convention for records that
contain fields defined as arrays.

Select one of the following options to indicate how to refresh columns in a table after you change field
definitions in the record on which the table is based:

o Apply array format changes. If the record on which the table is based contains changed fields that
defined as arrays, those changes are reflected in the corresponding columns in the table.

¢ Refresh with missing columns. If the record on which the table is based contains new fields,
corresponding columns are added to the table.

¢ Reset to defaults. PowerExchange resets column names to the corresponding fields names in the record
on which the table is based. PowerExchange discards any changes that you made to column names in the
table.

¢ Remove Hidden Columns. For DB2UNLD. PowerExchange generates a with the default values of Hide
from Table for each field.

Fields
Select or clear a field to control how elements in an array or group field appear:
e To display each element in an array or group field in a single row, select the field.
e To display each element in an array or group field in a separate row, clear the field.

Note: To display fields defined as a group field or as an array in the Fields list, select the Groups and
Arrays only option. To display all fields in the record in the Fields list, clear this option. This option
controls the fields that appear in the Fields list and in the Table Properties dialog box, but not the fields
that appear in the Database Row Test Output window.

22

How do you want to handle multiple instances of selected records?

¢ New Row. A new row appears or is written to the target for every element in the array.

* Ignore. PowerExchange does not display, or write to the target, second and subsequent elements in the
array.

o Array. PowerExchange displays, or writes to the target, the number of elements specified in the Array list
in a single row of output.

PowerExchange populates the output row until it is full, and then completes one of the following actions:

¢ If you clear the New Row on Overflow option, PowerExchange ignores subsequent records or segments.

o |f you select the New Row on Overflow option, PowerExchange displays a new row with the overflow
records or segments.

Multiple Arrays in a Single Input Row

Generates multiple output rows from a single record that contains multiple arrays, or OCCURS clauses.
PowerExchange sets the output fields to NULL when the data in the record is exhausted.

Enabled for a table with an imported COPYLIB with multiple OCCURS clauses.

Diane Fleming

23

	Abstract
	Supported Versions
	Table of Contents
	Overview
	Step 1. Add a Data Map
	Step 2. Create and Compile the User Exit Program
	Step 3. Add User-Defined Fields
	Step 4. Refresh Columns in the MASTER_REC Table
	Step 5. Test the Results of the User Exit Program
	Reference Information
	CallProg
	Table Properties - Definition

	Author

