
Informatica® Address Verification (On-
Premises)
6.4.0

Installation and Getting
Started Guide

Informatica Address Verification (On-Premises) Installation and Getting Started Guide
6.4.0
August 2023

© Copyright Informatica LLC 1993, 2023

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica, the Informatica logo, and any other Informatica-owned trademarks that appear in the document are trademarks or registered trademarks of Informatica
LLC in the United States and many jurisdictions throughout the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/
trademarks.html. Other company and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © OSS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright © University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright© MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/

Consortium/Legal/2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http://forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/faq.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/
EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://
jdbc.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/lz4/; https://github.com/jedisct1/libsodium/blob/master/
LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe WaInes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2023-08-29

https://www.informatica.com/legal/patents.html

Table of Contents

Preface . 5
Informatica Resources. 5

Informatica Network. 5

Informatica Knowledge Base. 5

Informatica Documentation. 5

Informatica Product Availability Matrices. 6

Informatica Velocity. 6

Informatica Marketplace. 6

Informatica Global Customer Support. 6

Chapter 1: Installation and Configuration. 7
Supported Platforms. 7

System Requirements. 8

Memory Requirements. 9

Installing Address Verification. 10

Installing the Informatica Address Verification C/C++-based Package. 11

Installing the Informatica Address Verification Java-based Package. 11

Installing the Informatica Address Verification Microsoft .NET-based Package. 12

Configuring the Engine. 12

Core Elements in IDVEConfig.json. 12

Functions Elements in IDVEConfig.json. 18

FunctionServers Elements in IDVEConfig.json. 18

Retrieving the State of the Engine. 19

DateTime Element in the IDVEState.schema.json file. 20

SystemInformation Elements in the IDVEState.schema.json file. 20

IDVEInformation Elements in the IDVEState.schema.json file. 20

Config Elements in the IDVEState.schema.json file. 21

Licenses Elements in the IDVEState.schema.json file. 22

Functions Elements in the IDVEState.schema.json file. 24

FileSets Elements in the IDVEState.schema.json file. 24

Formatting the JSON Response. 26

Initializing the Intelligent Data Verification Engine (IDVE) Framework . 27

Generating a JSON Schema Document. 27

Reference Databases and Packages. 28

Installing the Reference Databases. 29

Retrieving the Software Version Number. 30

4 Table of Contents

Preface
Read the Informatica Address Verification (On-Premises) Installation and Getting Started Guide to learn how
to install and initialize Informatica Address Verification (On-Premises).

Informatica Resources
Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Network
The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:

• Search the Knowledge Base for product resources.

• View product availability information.

• Create and review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

5

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://docs.informatica.com
mailto:infa_documentation@informatica.com

Informatica Product Availability Matrices
Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and
select the eSupport option.

6 Preface

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com

C h a p t e r 1

Installation and Configuration
This chapter includes the following topics:

• Supported Platforms, 7

• System Requirements, 8

• Memory Requirements, 9

• Installing Address Verification, 10

• Configuring the Engine, 12

• Retrieving the State of the Engine, 19

• Formatting the JSON Response, 26

• Initializing the Intelligent Data Verification Engine (IDVE) Framework , 27

• Generating a JSON Schema Document, 27

• Reference Databases and Packages, 28

• Retrieving the Software Version Number, 30

Supported Platforms
Informatica Address Verification is supported on a number of hardware and software platforms.

Address Verification is developed using the C/C++ programming language. Address Verification provides
different software packages to suit the hardware and software environment in which you install Address
Verification. The Address Verification software packages contain C/C++, Java, and Microsoft .NET-based
APIs.

Note: You can model Address Verification implementations for other languages, such as C#, PHP, Perl, Ruby,
and Python. Informatica provides technical support for the C/C++, Java, and .NET APIs. Informatica does not
provide implementation-specific support.

Address Verification defines address requests and responses in JSON and defines the engine configuration
in JSON.

If you call the Address Verification engine through Java, install a Java Development Kit on the machine that
hosts the Address Verification engine.

7

You can install Address Verification on machines with the following configurations:

Operating System Processor Architecture

Windows Server 2019 x64 (64-bit)

Windows Server 2016 x64 (64-bit)

SUSE Linux Enterprise Server 15 x64 (64-bit)

RedHat Enterprise Linux 8 x64 (64-bit)

RedHat Enterprise Linux 7 x64 (64-bit)

System Requirements
The system resources that Informatica Address Verification requires can vary according to your installation
and your data requirements.

The machine on which you install Address Verification must have a minimum of 1 GB RAM for a C++
installation. Java and Microsoft .NET installations require additional memory.

Note: Address Verification acquires memory from the operating system and does not use Java heap memory
in engine memory management.

The main address verification functionality is encapsulated in one or more function servers. A function server
is a running instance of the Informatica data verification engine. Each function server runs as a separate
process, isolating the main process from any issues related to address processing. If a function server fails,
the event is reported back to the caller as an error, the function server process is terminated, and a new
function server is started.

Each function server, including standby function servers, require 455 MB of RAM for processing and data
structure operations. If you enable hot swapping, the total memory usage doubles for Address Verification.
For each job, you need a variable amount of memory based on your configuration settings. For more
information on memory configuration for function servers, see “IDVEInformation Elements in the
IDVEState.schema.json file” on page 20.

The IDVE.h header file contains the functions that you use to define and run the address jobs.

Before you finalize the memory requirements, consider the size of the reference address databases that you
require. The complete set of worldwide postal reference databases, including supplementary databases for
address enrichments, consumes approximately 55 GB of storage space.

Preloading databases into memory significantly improves the performance of Address Verification. The
machine on which you install Address Verification must have sufficient RAM to preload the databases that
you require.

As the total size of the worldwide databases is approximately 55 GB, the RAM required to preload all
databases and perform address processing is approximately 60 GB. For smaller file sizes, less RAM is
required. For example, the worldwide batch and interactive databases consume approximately 8 GB of space,
and the geocoding databases consume an additional 4.5 GB. To preload and run the worldwide batch,
interactive, and geocoding databases, the maximum amount of RAM that you require is 12 GB. The
enrichment databases require 2.3 GB RAM and the quick capture databases require 33.1 GB RAM.

8 Chapter 1: Installation and Configuration

Tip: If fully preloading databases is not an option, use solid-state drives to store the reference address
databases. Solid-state drives are faster than hard-disk drives and can significantly improve performance,
especially when multithreading is used.

You set the database preloading method in the IDVEConfig.json file. For information about the database
preloading, see “FunctionServers Elements in IDVEConfig.json” on page 18.

Memory Requirements
Informatica Address Verification stores different types of objects, such as address objects, pre-loaded
reference address databases, and caches, in memory. When you define memory allocations for Address
Verification, consider the different objects and their combined memory requirements.

The IDVEConfig.json file stores the properties that define the memory requirements. Update the property
values if necessary to suit your installation.

Consider the following values when you review the memory requirements:

• MaxMemoryMegabytes. The total amount of memory that the data verification engine may allocate for
data preloading and processing.

• NumFunctionServers. The number of function servers available for processing. Also, determines the
number of inputs that the engine can process in parallel.

• NumHotStandbyFunctionServers. The number of standby function servers.

• FileSetsHotSwappingEnabled. Enables or disables dynamic switches between two file sets.

• MaxNumJobs. The maximum number of jobs that can exist concurrently.

• MaxNumInputs. The maximum number of addresses that you can submit for verification in a single job.

• MaxNumResults. The maximum number of address results that the function can return after execution.

• MaxNumVariants. The maximum number of output variants that the function can return after execution.

• NumLargeInternalOutputBuffers. The number of large output buffers that the engine creates during
initialization. The buffers contribute to the required memory when you use the Java or Microsoft .NET
wrapper that Informatica provides for the engine.

Note: The default value on the MaxMemoryMegabytes property is 1024 MB. The default configuration values
are sufficient to initialize the engine, but they are not likely to be adequate for data preloading.

The Java and .NET APIs are wrappers for the C API.

Engine execution takes place outside Java in unmanaged code.

Calculating Memory Requirements

You can use the following formula to calculate the amount of shared memory that the engine will try to
allocate during initialization:

34 MB + (MaxNumJobs * Job Size in MB) + (Total Function Server Count * 35 MB)

The formula contains the following elements:

• 34 MB and 35 MB. Constant values that represent internal engine activity.

• MaxNumJobs. The maximum number of jobs that can exist concurrently, as represented by the
MaxNumJobs property.

Memory Requirements 9

• Total Function Server Count. The sum of the NumFunctionServers and NumHotStandbyFunctionServers
property values. If you enable file set hot-swapping, double the values.

• Job Size. The job size recorded in the initialization log. The following string shows a sample log entry:

[IDVE] STATUS: Creating AV jobs in shared memory (16 jobs at 54608085 B each)
In this string, 54608085 bytes represents the job size.

Sample Scenarios

The following table describes a range of installation scenarios and the approximate quantities of memory
that each may require:

Batch,
single input,
medium
volumes
(10M+)

Batch,
single input,
large
volumes
(100M+)

Batch, bulk
input, large
volumes
(100M+)

QuickCapture /
Interactive, large
volumes (100M+)

Enterprise
service
provider, extra
large volumes
(500M+)

NumFunctionServers 4 8 8 8 16

NumHotStandby
FunctionServers

1 1 1 1 4

FileSetsHotSwapping
Enabled

false false false false true

MaxNumJobs 4 8 8 8 16

MaxNumInputs 1 1 1000 1 100

MaxNumResults 1 1 1 100 100

MaxNumVariants 1 3 3 3 3

Minimum required
memory (approximate)

2,592 MB 4,612 MB 8,772 MB 4,967 MB 20,975 MB

Shared memory portion
(approximate)

211 MB 355 MB 4,503 MB 708 MB 2,268 MB

Note: The minimum required memory value in each scenarios does not include memory for data preloading.

Installing Address Verification
You download the installation package from Informatica and extract the package contents to the machine on
which you'll run Informatica Address Verification.

Package Contents

When you extract the Informatica Address Verification software package, you create the following
directories:

• bin. Contains the executable file for function servers and the sample application binaries.

10 Chapter 1: Installation and Configuration

The folder contains the following sample applications:

- IDVEConsoleSample. The native C/C++ sample application.

- IDVEConsoleSampleJava. The Java sample application.

- IDVEConsoleSampleNET. The .NET sample application.

• etc. Contains the JSON configuration file.

• include. Contains the C/C++ library header file.

• lib. Contains C/C++, Java, and .NET library files.

• src. Contains the sample application source code.

• doc. Contains the JSON schema files.

Note: All parameters, elements, and values in the Address Verification schemas are case-sensitive.

Before You Install

Consider the following rules and guidelines before you install Address Verification:

• Do not alter the directory structure of the installation package that you extract.

• If you plan to retain an older version of Address Verification on the same machine, ensure that you extract
and install the current version of Address Verification in a different location.

Installing the Informatica Address Verification C/C++-based
Package

To install the C/C++-based package, complete the following steps:

1. Extract the installation directories and files from the Informatica Address Verification software package.

2. Based on the platform on which you install Address Verification, copy the .dll or .so file to a shared
library path on your machine.

To find a shared library path on a Windows machine, run the echo %path% command from the command
prompt.

To find a shared library path on a UNIX machine, run the echo $LD_LIBRARY_PATH command from the
command prompt.

Installing the Informatica Address Verification Java-based
Package

To use the Java-based version of Informatica Address Verification, you must install a Java Development Kit
on the machine that hosts the Address Verification engine. If you want to develop your own applications, you
must install a Java platform on the machine.

Windows Installation

To install the Java-based package on a Windows machine, complete the following steps:

1. Extract the installation directories and files from the Informatica Address Verification software package.

2. Copy IDVE.dll and IDVE.jar to the JRE class path.

Typically, C:\Program Files\Java\jre\lib\ext is saved to the system-wide class path.

You can explicitly set application-specific class paths with the -cp switch.

Installing Address Verification 11

UNIX Installation

To install the Java-based package on a UNIX machine, complete the following steps:

1. Extract the installation directories and files from the Informatica Address Verification software package.

2. Copy IDVE.jar and IDVE.so to the JRE class path.

Typically, /usr/j2se/jre/lib/ext is saved to the system-wide class path.

You can explicitly set application-specific class paths with the -cp switch.

Installing the Informatica Address Verification Microsoft .NET-
based Package

The Windows package for .NET contains lib/IDVE_NET.dll, which is the .NET binding for IDVE, and doc/
IDVE_NET.xml, which is the API documentation for the .NET DLL.

To install the .NET-based-package on a Windows machine, complete the following tasks:

1. Extract the installation directories and files from the Informatica Address Verification software package.

2. Add a reference to the IDVE_NET.dll assembly to your .NET project

Note: The IDVE_NET.dll file requires that the native IDVE.dll file is present in the regular .NET DllImport
search paths.

Configuring the Engine
Informatica Address Verification uses the Intelligent Data Verification Engine (IDVE) to process the
verification jobs that you define.

The IDVEConfig.json file provides configuration information for Address Verification engine operations.
Before initializing the engine, verify or configure the elements and properties in the file.

The elements and properties in the IDVEConfig.json file are organized in the following groups:

• Core. For information on elements and properties in the Core group, see “Core Elements in
IDVEConfig.json” on page 12.

• Functions. For information on elements and properties in the Functions group, see “Functions Elements in
IDVEConfig.json” on page 18.

• FunctionServers. For information on elements and properties in the FunctionServers group, see
“FunctionServers Elements in IDVEConfig.json” on page 18.

Note: The elements and properties in the IDVEConfig.json file also appear in the Config group in the
IDVEState.json file.

The IDVE_GetJSON file provides

Core Elements in IDVEConfig.json
The Core elements in the IDVEConfig.json file are organized under System elements, InitializationLog
elements, and ErrorLog elements.

System Elements

Find the following elements under Core/System:

12 Chapter 1: Installation and Configuration

NumFunctionServers

Specifies the number of function servers available for processing. Also, determines the number of inputs
that the engine can process in parallel.

NumHotStandbyFunctionServers

Specifies the number of standby function servers.

FileSetsHotSwappingEnabled

Enables or disables dynamic switches between two filesets. Supported values are true and false. Default
is true.

Note: When enabled, hot swapping increases the maximum memory requirements.

MaxMemoryMegabytes

Specifies the maximum amount of memory available for all processes, including file preloading. The
default value is 1024 MB.

Note: 1024 MB is a minimum value. Depending on your workload, you might need to set a higher value.

FunctionServerInitTimeoutSeconds

Specifies the timeout period to successful initialize all function servers. Default is 600 seconds.

FunctionServerCallTimeoutSeconds

Specifies the timeout period to successfully submit a job call to a function server. Default is 60 seconds.

LicenseFilesDirectoryPath

Specifies the directory path to the license files.

Note: Do not rename any license key file.

FileSetsDirectoryPath

Specifies the directory path to the reference data filesets and to the FileSetsInfo.json file.

The FileSetsInfo.json file describes the current status of the filesets. Address Verification creates the
FileSetsInfo.json file in the directory.

Address Verification reads the FileSetsInfo.json file each time you initialize the engine and saves the
file at each initialization. Address Verification also reads and updates the file during hot-swap
operations.

Note: If the directory that the element specifies does not permit updates to the FileSetsInfo.json file,
copy the file to a writable location. Use the OverrideFileSetsInfoFilePath element to identify the
location of the writable file. Do not delete the original file.

OverrideFileSetsInfoFilePath

Specifies the directory path to an alternative version of the FileSetsInfo.json file. Create an alternative
version of the file when the FileSetsInfo.json file that Address Verification creates by default resides
in a read-only directory. When you add a path to the OverrideFileSetsInfoFilePath element, Address
Verification reads and updates the alternative version of the file.

ExecutablesDirectoryPath

Specifies the directory path to the FunctionServer executable application.

Do not include the function server executable file name in the path.

Configuring the Engine 13

DeleteOutdatedDataFilesAtInit

Deletes any reference data file from the FileSetsDirectoryPath directory that meets the following
criteria:

• A newer version of the file is present in the FileSetsDirectoryPath directory.

• The newer file version is compatible with the current engine.

Default value is false. To activate the property, set the value to true.

The engine reviews the directory contents and deletes outdated files during initialization.

The engine uses the minimum engine version number in the file name to determine the age and
compatibility of each file. For example, the file US_ADV_VRF_QCP_001_6_2_0.MD6 is compatible with
version 6.2.0 and later engine versions. A reference data file will be incompatible with the engine if the
engine version that the file name specifies is newer than the installed engine.

Do not enable DeleteOutdatedDataFilesAtInit if different engine versions read the
FileSetsDirectoryPath directory. A given file may be compatible with one engine version but not with
another.

Note: In cases where the engine deletes an outdated file, it will not return an 11000 warning to indicate
that the file was skipped in preference for a newer file. Instead, the engine logs an INFO-level message to
indicate that it deleted the file.

Bindings

Specifies how the data verification engine uses memory when you use the Java or Microsoft. NET
wrapper that Informatica provides for the engine. Use the NumLargeInternalOutputBuffers property to
define the memory policy.

The NumLargeInternalOutputBuffers property specifies the number of large output buffers that the
engine creates during initialization. Each output buffer is large enough for a full AVJob JSON document.
The memory used by large output buffers is deducted from the total amount that the
MaxMemoryMegabytes property defines. Without a large output buffer, function calls run on a relatively
small amount of stack memory. If the available memory is insufficient to return all job data, the engine
returns an IDVE_SC_ERR_OUTPUT_BUFFER_TOO_SMALL error code.

By default, the engine creates a single large output buffer. If you prefer to save memory, for example, if
you can perform small portions of a job at a time, you can set the NumLargeInternalOutputBuffers value
to zero.

The number of large output buffers can limit the number of concurrent function calls that the engine can
run if the calls require a large amount of data, as each buffer is locked for the duration of the call. If all
buffers are in use, any additional calls are queued. Specify multiple buffers if you intend to run multiple
large jobs in separate threads.

InitializationLog Elements

Find the following elements under Core/InitializationLog:

FilePath

Specifies the path to the initialization log file and the log file name.

LogLevel

Specifies the minimum severity that will be logged to the initialization log file. Any event with a lower
severity does not appear in the log file. The default value is Warning.

14 Chapter 1: Installation and Configuration

The following list identifies the values that you can set in descending order from the most severe to the
least severe.

• VeryCriticalError

• CriticalError

• Error

• Warning

• Info

• Status

ClearAtInit

Specifies whether to clear all initialization log file contents during initialization. Supported values are
true and false. The log file contents are cleared during initialization when the element is set to true.
Default is true.

History

Defines the policy that the engine uses to create and manage initialization log files. The engine reads the
following properties to define the log file policy:

• FileSizeSoftLimitMegabytes. Specifies an optional maximum size for an initialization log file. The
default value is 0, which indicates that there is no limit to the file size. If you specify a maximum file
size, the verification engine reads the FileCount value and performs one of the following actions:

- The engine creates a new file and stores the previous file as history on the local disk.

- The engine clears the earlier contents of the current file and reuses the current file.

If the addition of a log entry breaches the file size limit, the verification engine saves the complete log
entry to the current file. The engine then creates a new file or erases the earlier file contents as
indicted by the FileCount value.

If you accept the default FileSizeSoftLimitMegabytes value, the engine ignores the FileCount value.

• FileCount. Specifies the maximum number of log files that the verification engine stores on the local
disk in addition to the current log file. The default number is 0, which indicates that the engine does
not store any log files on the local disk other than the current file. The range is from 0 through 999.

Note: You can use the FileSizeSoftLimitMegabytes value and the FileCount value to define a policy for
log file creation. For example, if you set the FileSizeSoftLimitMegabytes value to 10 and accept the
default FileCount value, the engine writes log information to a single file and erases all older log
information when the file size reaches 10 MB.

• FileNameNumberPosition. Specifies the position of the log file number in the log file name. You can
set the following values:

- InsertBeforeExtension. Adds the file number before the file extension, for example,
IDVE_ErrorLog.001.txt.

- AppendAtEnd. Adds the file number after the file extension, for example, IDVE_ErrorLog.txt.001.
Append at End is the default value.

Note: If you change the FileNameNumberPosition property from one value to another when the
ClearAtInit property is set to true, the engine does not delete any log file named in the old format
when it reinitializes.

ErrorLog Elements

Find the following elements under Core/ErrorLog:

Configuring the Engine 15

FilePath

Specifies the path to the error log file and the log file name.

ClearAtInit

Specifies whether to clear all error log file contents during initialization. Supported values are true and
false. The log file contents are cleared during initialization when the element is set to true. Default is
true.

History

Defines the policy that the engine uses to create and manage error log files. The engine reads the
following properties to define the log file policy:

• FileSizeSoftLimitMegabytes. Specifies an optional maximum size for an error log file. The default
value is 0, which indicates that there is no limit to the file size. If you specify a maximum file size, the
verification engine reads the FileCount value and performs one of the following actions:

- The engine creates a new file and stores the previous file as history on the local disk.

- The engine clears the earlier contents of the current file and reuses the current file.

If the addition of a log entry breaches the file size limit, the verification engine saves the complete log
entry to the current file. The engine then creates a new file or erases the earlier file contents as
indicted by the FileCount value.

If you accept the default FileSizeSoftLimitMegabytes value, the engine ignores the FileCount value.

• FileCount. Specifies the maximum number of log files that the verification engine stores on the local
disk in addition to the current log file. The default number is 0, which indicates that the engine does
not store any log files on the local disk other than the current file. The range is from 0 through 999.

Note: You can use the FileSizeSoftLimitMegabytes value and the FileCount value to define a policy for
log file creation. For example, if you set the FileSizeSoftLimitMegabytes value to 10 and accept the
default FileCount value, the engine writes log information to a single file and erases all older log
information when the file size reaches 10 MB.

• FileNameNumberPosition. Specifies the position of the log file number in the log file name. You can
set the following values:

- InsertBeforeExtension. Adds the file number before the file extension, for example,
IDVE_ErrorLog.001.txt.

- AppendAtEnd. Adds the file number after the file extension, for example, IDVE_ErrorLog.txt.001.
Append at End is the default value.

Note: If you change the FileNameNumberPosition property from one value to another when the
ClearAtInit property is set to true, the engine does not delete any log file named in the old format
when it reinitializes.

LogInput

Specifies the quantity of input data that the error log file stores for each log entry.

You can set the following values:

• CompleteInput. The error log contains complete data for the input that caused the issue.

• OnlySourceID. The error log contains the source ID value of the input that caused the issue. No
further data is stored.

• Disabled. The error log contains an entry to state that the function server encountered an issue. No
further data is stored. Default is Disabled.

InputJSONFormat

Defines the format of the data that the engine writes to the error log.

16 Chapter 1: Installation and Configuration

The engine uses a common set of options to configure the error log format and to configure the format
of the response that it returns when you submit a function call. For more information about formatting
options for the response, see “Formatting the JSON Response” on page 26

The following table defines the options that you can set:

Option Values Description

Format Condensed Removes all white space, such as character spaces, tabs, and line
breaks.

Structured Formats objects and arrays with line breaks and indentations.

Smart Organizes smaller objects and arrays on a single line if the
MaxLineLength value permits. Otherwise, organizes smaller objects
and arrays with fewer line breaks. Default is Smart.

BOM true/false Prepends the output string with UTF-8/UTF-16 BOM, depending on
the API call. Default is false.

HideDefault true/false Omits properties whose values are equal to their schema defaults.
Default is false in the data response and true in the error log output.

OpenBraceOnSameLine true/false Places opening braces and brackets on the same line as the object
or array name instead of the line below. Applies when the Format
value is Structured or Smart. Default is true.

Indent Tab Specifies that each indentation level will consist of a single tab
character ("\t").

Spaces Specifies that each indentation level will consist of a number of
space characters (" "). See also IndentWidth. Default is Spaces.

IndentWidth <integer> Specifies the number of character spaces to use at each indentation
level. Applies when the Indent value is Spaces. Default is 2.

MaxLineLength <integer> Line length value to use in calculation of dynamic line breaks.
Applies when the Format value is Smart. Not a hard limit. Lines may
be longer in deeply nested documents. Default is 80.

NewLine Lf/CrLf
(default Lf)

Specifies the character sequence for new lines. The NewLine option
can either be carriage-return and line-feed (CrLf), or only line-feed
(Lf).
Note: The NewLine option is not present in the IDVEConfig.json file.
You can add a NewLine value as an option in a URI query string.

CompactEscape true/false
(default true)

Specifies the use of compact escape sequences such as "\t" instead
of "\u0009" where possible. Default is true.

EscapeSolidus true/false
(default false)

Specifies the use of escaped forward slashes. For example, "/"
becomes "\/" or "\u002F" based on the CompactEscape option.

Configuring the Engine 17

Functions Elements in IDVEConfig.json
The Functions elements in the IDVEConfig.json file are organized under AddressVerification elements.

AddressVerification Elements

Find the following elements under Functions/AddressVerification :

MaxNumJobs

Specifies the maximum number of jobs that can exist concurrently. Default is 1.

MaxNumInputs

Specifies the maximum number of addresses that you can submit for verification. The range is from 1
through 1000. Default is 100.

DefaultMaxNumResults

Defines a standard value for the maximum number of address suggestions that a job that can return. If
you do not set a value on the MaxResultCount property when you define a job request, the job reads the
DefaultMaxNumResults property.

By default, the DefaultMaxNumResults property uses the value on the MaxNumResults property. Do not
set a DefaultMaxNumResults property value that exceeds the MaxNumResults value.

MaxNumVariants

Specifies the maximum number of output variants that the function server can return for an address job.
The range is from 1 through 10. Default is 1.

MaxNumResults

Defines an upper limit for the number of address suggestions that the engine can process. The default
value is 20.

The engine reads the MaxNumResults property during initialization. To change the MaxNumResults
property value, first deinitialize the engine.

The maximum value that you can set on the MaxNumResults property is 100. Therefore, the maximum
value that you can set on the DefaultMaxNumResults property or on the MaxResultCount property in an
address job is also 100.

FunctionServers Elements in IDVEConfig.json
The FunctionServers elements in the IDVEConfig.json file are organized under FileSets elements.

FileSets Elements

Find the following elements under FunctionServers/FileSets:

PreloadingMethod

Specifies how Address Verification preloads the reference address databases to memory. To optimize
performance, you can preload reference address databases.

Set the following value:

• Map. Address Verification uses the file mapping mechanism of the operating system.
Map is the default and recommended option.

PreloadingPriorityList

Specifies the order in which Address Verification loads data files into memory. Address Verification
loads the database files in the order in which they appear in the list. Each preloaded file consumes a

18 Chapter 1: Installation and Configuration

quantity of the available memory. If the maximum memory threshold is reached, further file data will not
be preloaded to memory but will remain available for processing.

Includes the following elements:

• Selector. Identifies the types of file data to prioritize during the preload operation.

The Selector is a string that specifies a Function, Country, Process Type, Process Sub Type, and
DataSet ID. For example, the following values for Selector instruct Address Verification to load all
data files for batch and interactive verification for Germany in the 000 data set:

AddressVerification/DEU/Verify/BatchInteractive/000
Note: Replace any value between a [/] separator with an asterisk to select all options at that position.
For example, the following parameters specify batch and interactive data files for all countries in the
000 data set:

AddressVerification/*/Verify/BatchInteractive/000
If you use multiple trailing asterisks in the Selector parameter, you can replace them with a single
asterisk. For example, AddressVerification/*/*/*/* and AddressVerification/* have the same
meaning.

• PreloadingExtent. Specifies the preloading type for each of the reference address databases.

Set one of the following values:

- Full. Address Verification copies the entire reference address database to memory.

- Partial. Address Verification loads fragments of each data file, starting with the most important
data.

- None. Address Verification does not preload any data.

Address Verification can stop preloading data at any time if the maximum memory threshold is reached.
The unloaded reference data remain in the system storage.

Retrieving the State of the Engine
To retrieve the current state of the data verification engine, use an IDVE_GetJSON() or IDVE_GetJSONW()
function call and pass the URI value in the function call as State. The IDVE_GetJSON() function returns the
data in a UTF-8-encoded string, while the IDVE_GetJSONW() function returns the data in a UTF-16-encoded
string.

The following sample code shows an IDVE_GetJSON() call that can retrieve the engine state:

 char sJSON[50*1024];
 char sExtStatusMsg[IDVE_EXT_STATUS_MSG_BUFFER_SIZE];
 IDVE_StatusCode i32StatusCode= IDVE_GetJSON("", "State", sJSON, sizeo
 f(sJSON), NULL, NULL, sExtStatusMsg);

The IDVEState.schema.json file lists the elements and properties that each function call returns.

The elements and properties in the file are organized in the following groups:

• DateTime. For information on elements and properties in the DateTime group, see “DateTime Element in
the IDVEState.schema.json file” on page 20

• SystemInformation

• IDVEInformation

• Config

Retrieving the State of the Engine 19

• Licenses

• Functions

• FileSets

DateTime Element in the IDVEState.schema.json file
The DateTime element is a string that contains the date and time at which you called the IDVE_GetJSON() or
IDVE_GetJSONW() functions to retrieve the engine state.

SystemInformation Elements in the IDVEState.schema.json file
The SystemInformation elements provide general information about the environment in which the data
verification engine is installed.

Find the following elements in the SystemInformation group:

Platform

Identifies the name and version number of the operating system on which the engine is installed.

JavaVersion

Identifies the version of Java that the engine can access.

JavaVMArguments

Identifies any Java argument applicable to the Java virtual machine.

DotNetInfo

Identifies the version of Microsoft .NET that the engine can access.

SystemMemoryMegabytes

Identifies the amount of installed physical memory on the host system.

IDVEInformation Elements in the IDVEState.schema.json file
The IDVEInformation elements describe the startup configuration of the engine.

Find the following elements in the IDVEInformation group:

Version

Identifies the data verification engine framework version.

TargetPlatform

Identifies the name of the operating system for which Informatica built the engine.

TotalMemoryUsageMegabytes

Identifies the maximum amount of memory available for all processes, including shared memory and
memory allocated to data preloading.

Note: This value differs from the MaxMemoryMegabytes property in the Config group. The
MaxMemoryMegabytes property defines the memory limit at which the engine does not initialize.

FunctionServerMaxMemoryMegabytes

Identifies the maximum amount of memory available to each function server for all processes, including
job processing and data preloading.

20 Chapter 1: Installation and Configuration

PerFunctionServerPreloadingCapacityMegabytes

Identifies the amount of memory available to each function server to preload data.

Subtract this value from the FunctionServerMaxMemoryMegabytes value to find the amount of memory
dedicated to each function server for processing and data structure operations.

TotalPreloadingCapacityMegabytes

Identifies the total amount of memory available for preloading data. If hot-swapping is disabled, this
value is identical to the PerFunctionServerPreloadingCapacityMegabytes value.

TotalPreloadingUsageMegabytes

Identifies the total amount of memory that is currently used for data preloading.

InitializationLog

Identifies the status of the initialization log.

The log can have one of the following status values:

• Enabled. The engine configuration enabled the initialization log and the log is operational.

• DisabledInConfig. The initialization log is disabled in the engine configuration.

• DisabledBecauseOfError. The engine configuration enabled the initialization log, but the log is
disabled due an error during runtime.

A status value of DisabledBecauseOfError triggers the population of two additional properties,
ErrorCode and ErrorMessage, that describe the error that disabled the log.

ErrorLog

Identifies the status of the error log.

The log can have one of the following status values:

• Enabled. The engine configuration enabled the error log and the log is operational.

• DisabledInConfig. The error log is disabled in the engine configuration.

• DisabledBecauseOfError. The engine configuration enabled the error log, but the log is disabled due
an error during runtime.

A status value of DisabledBecauseOfError triggers the population of two additional properties,
ErrorCode and ErrorMessage, that describe the error that disabled the log.

Config Elements in the IDVEState.schema.json file
The elements and properties in the Config group provide configuration information for engine operations.
They replicate the elements and properties in the IDVEConfig.json file.

The elements and properties in the group are further organized in the following groups:

• Core. For information on elements and properties in the Core group, see “Core Elements in
IDVEConfig.json” on page 12.

• Functions. For information on elements and properties in the Functions group, see “Functions Elements in
IDVEConfig.json” on page 18.

• FunctionServers. For information on elements and properties in the FunctionServers group, see
“FunctionServers Elements in IDVEConfig.json” on page 18.

Retrieving the State of the Engine 21

Licenses Elements in the IDVEState.schema.json file
The Licenses elements and properties in IDVEState.schema.json specify an array of licenses that IDVE
loads. Each license file has a .LIC extension.

SchemaVersion

Contains a set of properties that identify the version of the schema in which the license files are written.

Find the following elements under Licenses/SchemaVersion:

• Major

• Minor

• Descriptive

• Revision

The property values collectively constitute a single string that identifies the version of the schema. For
example, the version number 1.0.0.0 includes individual values from the Major, Minor, Descriptive, and
Revision properties.

General

Find the following elements under Licenses/General:
CustomerID

Identifies the Customer ID for the user who has the license.

LicenseID

Identifies the identity of the license.

IssueDate

Identifies the date of issue of the license.

StartDate

Identifies the beginning of the validity period of the license.

Note: The license does not activate any functionality before the start date.

ExpirationDate

Identifies the end of the validity period of the license.

Note: The license does not activate any functionality after the end date.

ExecutionContexts

Contains properties that indicate the run-time environments in which the engine can operate.

ExecutionContexts contains the following properties:

OS_Architectures

Identifies the operating systems on which the engine can run.

Environment

Identifies any additional restrictions on the run-time environments in which the engine can operate.

MaxNumCores

Identifies and limits the maximum number of active function servers.

Note: If the number of function servers in the configuration exceeds limit, then the other function servers
get into hot-standby mode and are can no longer process resources.

22 Chapter 1: Installation and Configuration

DeploymentType

Identifies whether the issued license is for development and testing or for production.

AddressVerification

Find the following elements under Licenses/AddressVerification:
MinVersion

Identifies the minimum required version of Address Verification for valid license.

Note: The AddressVerification part of the license does not have any effect without the Address
Verification version.

GeneralFeatures

Contains properties that indicate the depth of information that the engine can return in an address
verification job.

GeneralFeatures contains the following properties:

VerificationLevel

Identifies the verification level that currently limits any address verification job that you run in the
engine.

DetailedStatus

Indicates whether you can request element status values in an address verification job.

MultipleVariants

Indicates whether you can request more than one result variant in an address verification job.

SubItems

Indicates whether you can request sub-items in an address verification job.

CountrySpecificFeatures

Identifies the reference database files that current licenses permit the engine to read.

CountrySpecificFeatures contains the following properties:
ProcessType

Identifies the types of data processing operation for which the engine is eligible to read reference
database files, based on the current licenses. ProcessType is a string property. For example, a value
of Verify indicates that the engine can verify addresses.

ProcessSubTypes

Identifies the process modes in which the engine is eligible to read reference database files, based
on the current licenses. For example, a value of Batch indicates that the engine can run in batch
mode. The ProcessSubTypes property can return multiple process modes in an array.

Countries

Identifies the countries for which the engine is eligible to read reference database files, based on
the current licenses. The file identifies the countries by ISO code. For example, a value of DEU
indicates that the engine can process data from Germany. The Countries property can return
multiple ISO codes in an array.

DataSets

Contains the three-digit IDs of the types of reference data set that the engine can read, based on the
current licenses. The DataSets property can return multiple IDs in an array.

Retrieving the State of the Engine 23

The properties under CountrySpecificFeatures apply collectively to define the reference database files
that the engine can read. For example, a ProcessSubTypes value of Batch does not indicate that the
engine can read any file of batch data, and a Countries value of DEU does not indicate that the engine
can read any file of German data.

Functions Elements in the IDVEState.schema.json file
The Functions elements in the IDVEState.schema.json file are organized under AddressVerification
elements.

AddressVerification

Find the following elements under Functions/AddressVerification:
Version

Identifies the version number of the engine that the IDVEState or schema or json file applies to.

AMASVersion

Identifies the most recent release of Address Verification to receive AMAS certification at the time that
your engine was released.

CASSVersion

Identifies the most recent release of Address Verification to receive CASS certification at the time that
your engine was released.

SERPVersion

Identifies the most recent release of Address Verification to receive SERP certification at the time that
your engine was released.

SendRightVersion

Identifies the most recent release of Address Verification to receive SendRight certification at the time
that your engine was released.

SNAVersion

Identifies the most recent release of Address Verification to receive SNA certification at the time that
your engine was released.

FileSets Elements in the IDVEState.schema.json file
The FileSets elements provide information about the reference datasets that the engine opens. The
IDVEConfig.json file helps you determine the datasets that the engine can open.

Find the following elements in the FileSets group:
FileSetsInfo

Identifies the current status of the file sets. The status is the same as that in the FileSetsInfo.json on
disk.

FileSetsInfo contains the following properties:
FileSetAState

Identifies the state of FileSetA. The property can have one of the following values:

• InUse. Indicates that FileSetA is currently loaded by the engine.

• Unused. Indicates that no files from FileSetA are loaded.

24 Chapter 1: Installation and Configuration

• ReadyToUse: Indicates that a user has triggered a hot-swap operation through a manual update
to the FileSetsInfo.json file and that the engine is about to load FileSetA. To trigger the hot-
swap operation, update the FileSetA property in the FileSetsInfo.json file from Unused to
ReadyToUse. Alternatively, you can trigger a hot-swap through an API call.

Note: If you use an API call to trigger the hot swap, the state value changes from Unused to
PreparingForUse and does not record a value of ReadyToUse.

• PreparingForUse: Indicates that the engine is loading the files in FileSetA. Once the files are
loaded, the property is set to InUse.

• StillInUse: Indicates that the engine has switched from FileSetA to FileSetB in a hot-swap
operation, but one or more address jobs that began on FileSetA have yet to complete.

FileSetBState

Identifies the state of FileSetB. The property can have one of the following values:

• InUse. Indicates that FileSetB is currently loaded by the engine.

• Unused. Indicates that no files from FileSetB are loaded.

• ReadyToUse: Indicates that a user has triggered a hot-swap operation through a manual update
to the FileSetsInfo.json file and that the engine is about to load FileSetB. To trigger the hot-
swap operation, update the FileSetB property in the FileSetsInfo.json file from Unused to
ReadyToUse. Alternatively, you can trigger a hot-swap through an API call.

Note: If you use an API call to trigger the hot swap, the state value changes from Unused to
PreparingForUse and does not record a value of ReadyToUse.

• PreparingForUse: Indicates that the engine is loading the files in FileSetB. Once the files are
loaded, the property is set to InUse.

• StillInUse: Indicates that the engine has switched from FileSetB to FileSetA in a hot-swap
operation, but one or more address jobs that began on FileSetB have yet to complete.

FileSetA

Identifies the data files in the FileSetA folder. Each file has a .MD6 extension, and provides the following
information:

• FilePath. Identifies the path to the data file on the disk.

• Status. Identifies the status of the file. The status can be Active or NotLicensed.

• UpdateVersion. Identifies the internal version number of the file.

• UUID. Uniquely identifies the file. Each file has its own UUID.

• Created. Identifies the date and time of file creation.

• CountryISO3. Identifies the country for which the file contains data.

• Type. Contains additional information about the data file type.

• Description. Contains additional information about the data file type.

• DataSetID. Denotes the data set ID value.

• FunctionMinVersion. Denotes the oldest version of Address Verification with which you can use the
file.

• PreloadExtent. Identifies the amount of the data that is preloaded into memory. The value can be Full,
Partial, or None.

• PreloadSizeBytes. Identifies the amount of data that is preloaded into memory.

Retrieving the State of the Engine 25

FileSetB

Identifies the data files in the FileSetB folder. Each file has a .MD6 extension, and provides the following
information:

• FilePath. Identifies the path to the data file on the disk.

• Status. Identifies the status of the file. The status can be Active or NotLicensed.

• UpdateVersion. Identifies the internal version number of the file.

• UUID. Uniquely identifies the file. Each file has its own UUID.

• Created. Identifies the date and time of file creation.

• CountryISO3. Identifies the country for which the file contains data.

• Type. Contains additional information about the data file type.

• Description. Contains additional information about the data file type.

• DataSetID. Denotes the data set ID value.

• FunctionMinVersion. Denotes the oldest version of Address Verification with which you can use the
file.

• PreloadExtent. Identifies the amount of the data that is preloaded into memory. The value can be Full,
Partial, or None.

• PreloadSizeBytes. Identifies the amount of data that is preloaded into memory.

Formatting the JSON Response
When you configure a function call to the engine, you can include one or more options in the call to determine
the format of engine response.

Append the options as a query string segment at the end of the URI. If you do not append an option to the
URI, the engine uses the default value for the option.

The following URI includes a range of formatting options:

AV/v1/Jobs/.../Value/IO/Outputs?
HideDefault=true&Format=Smart&MaxLineLength=120&Indent=Spaces&IndentWidth=4&OpenBraceOnSameLi
ne=true&EscapeSolidus=false&CompactEscape=true&Newline=CrLf&BOM=false

The URI options that you can add closely match the options in the InputJSONFormat group that you can set
in the IDVEConfig.json file. The InputJSONFormat options determine the format of the JSON that the engine
can write to the error logs.

To read a description of the formatting options, see the InputJSONFormat group table under “Core Elements
in IDVEConfig.json” on page 12

26 Chapter 1: Installation and Configuration

Initializing the Intelligent Data Verification Engine
(IDVE) Framework

Before you can start processing data, you must initialize IDVE. After you process the data, you can call
IDVE_Deinitialize() to deinitialize IDVE. You can use the Address Verification function of the IDVE framework
to verify the addresses.

Calling Initialization and Deinitialization Functions

Call the IDVE initialization and deinitialization functions in the following sequence:

1. To initialize IDVE, call IDVE_Initialize().

Pass the configuration information as a string to IDVE_Initialize(). If you use a UTF-16-encoded-string,
call IDVE_InitializeW(). You can also pass the configuration information as a file to IDVE_Initialize().

During initialization, a number of function servers start as separate processes.

2. To deinitialize IDVE, call IDVE_Deinitialize().

Generating a JSON Schema Document
The IDVE_ GetJSONSchema() function generates a JSON schema document for properties that the URI
specifies. The IDVE_GetJSONSchema() function returns the data in a UTF-8-encoded string, whereas the
IDVE_GetJSONSchemaW() function returns the data in a UTF-16-encoded string. The functions otherwise
operate identically. You can call the functions without initializing the engine.

Generating the Schema Document in the UTF-8 Encoding

The following sample code shows the structure of the IDVE_GetJSONSchema() function:

IDVE_EXPORTCALL1 IDVE_StatusCode IDVE_EXPORTCALL2 IDVE_GetJSONSchema(
 const char* const kpksURI,
 char* const kpsValueBuffer,
 const IDVE_U64 ku64ValueBufferSize,
 IDVE_U64* const kpu64SizeWritten,
 char* const kpsExtStatusMsg
);

The following table shows the parameter definitions for the IDVE_GetJSONSchema() function:

Parameter Operation Comment

const char* const kpksURI [in] Pointer to the zero-terminated 7-bit ASCII URI, for example "AV/v1/
Jobs/###". The value might not be NULL.

char* const
kpsValueBuffer

[out] Pointer to the output buffer that receives the UTF-8-encoded JSON value
and the terminating zero. The value might not be NULL.

const IDVE_U64
ku64ValueBufferSize

[in] The size of the output buffer in code units, including the terminating zero.

Initializing the Intelligent Data Verification Engine (IDVE) Framework 27

Parameter Operation Comment

IDVE_U64* const
kpu64SizeWritten

[out] Pointer to an unsigned 64-bit integer value that receives the size of the
output written in code units, excluding the terminating zero. The value can
be NULL.

char* const
kpsExtStatusMsg

[out] Pointer to a buffer of size IDVE_EXT_STATUS_MSG_BUFFER_SIZE for an
optional extended status message. The value can be NULL.

Generating the Schema Document in the UTF-16 Encoding

The following sample code shows the structure of the IDVE_GetJSONSchemaW() function:

IDVE_EXPORTCALL1 IDVE_StatusCode IDVE_EXPORTCALL2 IDVE_GetJSONSchemaW(
 const char* const kpksURI,
 IDVE_WChar* const kpsValueBuffer,
 const IDVE_U64 ku64ValueBufferSize,
 IDVE_U64* const kpu64SizeWritten,
 char* const kpsExtStatusMsg
);

The following table shows the parameter definitions of the IDVE_GetJSONSchemaW() function:

Parameter Operation Comment

const char* const kpksURI [in] Pointer to the zero-terminated 7-bit ASCII URI, for example "AV/v1/
Jobs/###". The value might not be NULL.

IDVE_WChar* const
kpsValueBuffer

[out] Pointer to the output buffer that receives the UTF-16-encoded JSON value
and the terminating zero. The value might not be NULL.

const IDVE_U64
ku64ValueBufferSize

[in] The size of the output buffer in code units, including the terminating zero.

IDVE_U64* const
kpu64SizeWritten

[out] Pointer to an unsigned 64-bit integer value that receives the size of the
output written in code units, excluding the terminating zero. The value can
be NULL.

char* const
kpsExtStatusMsg

[out] Pointer to a buffer of size IDVE_EXT_STATUS_MSG_BUFFER_SIZE for an
optional extended status message. The value can be NULL.

Reference Databases and Packages
Informatica reference databases are proprietary-format database files that contain reference data for the
countries and territories that Informatica supports. The reference databases are read-only and platform-
independent.

Types of Reference Data

Address Verification provides the following types of reference database file:

• Address Code Lookup data

• Batch and Interactive data

• Certified data

28 Chapter 1: Installation and Configuration

• QuickCapture data

• GeocodeToAddress data

• Geocoding data

• CAMEO data

• Supplementary data

Reading the Database File Names

The database file names have the following format:

<ISO3>_<Function>_<ProcessType>_<ProcessSubType>_<DataSetID>_<MinVersion>.MD6
For example, DEU_ADV_VRF_BIA_001_6_1_0.MD6

Interpret the file names in the following way:

• ISO3 denotes the three-character ISO country code. For example, DEU for Germany.

• Function denotes the name of the product. In the file name, ADV represents Address Verification.

• ProcessType denotes the type of process. In the file name, VRF represents Verification, ENR represents
Enrichment, and RLK represents Reverse Lookup.

• ProcessSubType denotes the process mode for which the file is intended or the type of data that the file
contains.

The following list identifies the subtypes:

- ACL for AddressCodeLookup mode

- BIA for Batch and Interactive modes

- Cxx for Certified mode

- QCP for QuickCapture mode

- GTA for GeocodeToAddress mode

- GAP for arrival point geocoding

- GRT for rooftop geocoding

- GST for street center, locality center, and postal code center geocoding

- CAM for CAMEO data

- EN1 for supplementary data

• DataSetID denotes the data set ID value. The supported range is 000 through 999.

• MinVersion denotes the oldest version of Address Verification with which you can use the file.

MinVersion has the following format:

<MajorVersion>_<MinorVersion>_<ReleaseVersion>

Installing the Reference Databases
The FileSetsDirectoryPath option in the IDVEConfig.json file identifies the root directory for the reference
database files and the FileSetsInfo.json file. Download the reference database files to a directory named
FileSetA or FileSetB under the root directory. Install the database files directly to FileSetA or FileSetB. Do
not add the files to a subdirectory in either directory.

By default, Address Verification looks for the data files in the FileSetA directory. During hot swapping,
Address Verification also uses the data files available in the FileSetB directory.

Reference Databases and Packages 29

Note: If the directory that the FileSetsDirectoryPath option specifies does not permit updates to the
FileSetsInfo.json file, you may decide to copy the file to another directory. For more information, see the
option descriptions in “Core Elements in IDVEConfig.json” on page 12.

Retrieving the Software Version Number
To fetch the version number of the software, use the IDVE_GetVersion() or IDVE_GetVersionW() function. Use
the IDVE_GetVersion() function to retrieve the version number in the UTF-8 character encoding. Use the
IDVE_GetVersionW() function to retrieve the version number in the UTF-16 character encoding. The functions
otherwise operate identically.

The Address Verification version number count begins with 6 and the IDVE version number count begins with
1 at launch as IDVE is a new module of the software. You can call the functions at any time.

You can retrieve the following version numbers:

• The version of the IDVE framework. When you provide an empty string URI (""), the function fetches the
IDVE framework version number, for example "0.0.2.51140".

• The version of the Address Verification function. When you provide an URI to the function ("AV"), the
function fetches the Address Verification version number, for example "6.0.0.51140".

Note: You can retrieve the version number without initializing IDVE.

Retrieving the Software Version Number in the UTF-8 Encoding

The following sample code shows the structure of the IDVE_GetVersion() function:

IDVE_EXPORTCALL1 IDVE_StatusCode IDVE_EXPORTCALL2 IDVE_GetVersion(
const char* const kpksURI,
char* const kpsValueBuffer,
const IDVE_U64 ku64ValueBufferSize,
IDVE_U64* const kpu64SizeWritten,
char* const kpsExtStatusMsg
);

The following table shows the function definitions of the IDVE_GetVersion() function:

Function Operation Comment

const char* const kpksURI [in] Pointer to the zero-terminated 7-bit ASCII URI with desired version, for
example "" for IDVE or "AV" for AddressVerification. The value might not be
NULL.

char* const
kpsValueBuffer,

[out] Pointer to the output buffer that receives the UTF-8 encoded version string
and the terminating zero. The value might not be NULL.

const IDVE_U64
ku64ValueBufferSize

[in] Size of the output buffer in code units, including the terminating zero.

IDVE_U64* const
kpu64SizeWritten

[out] Pointer to an unsigned 64-bit integer value that receives the size of the
output written in code units, excluding the terminating zero. The value
might be NULL.

char* const
kpsExtStatusMsg

[out] Pointer to a buffer of size IDVE_EXT_STATUS_MSG_BUFFER_SIZE for an
optional extended status message. The value might be NULL.

30 Chapter 1: Installation and Configuration

Retrieving the Software Version Number in the UTF-16 Encoding

The following sample code shows the structure of the IDVE_GetVersionW() function:

IDVE_EXPORTCALL1 IDVE_StatusCode IDVE_EXPORTCALL2 IDVE_GetVersionW(
const char* const kpksURI,
IDVE_WChar* const kpsValueBuffer,
const IDVE_U64 ku64ValueBufferSize,
IDVE_U64* const kpu64SizeWritten,
char* const kpsExtStatusMsg
);

The following table shows the function definitions of the IDVE_GetVersionW() function:

Function Operation Comment

const char* const kpksURI [in] Pointer to the zero-terminated 7-bit ASCII URI with desired version, for
example "" for IDVE or "AV" for AddressVerification. The value might not be
NULL.

IDVE_WChar* const
kpsValueBuffer

[out] Pointer to the output buffer that receives the UTF-16 encoded version
string and the terminating zero. The value might not be NULL.

const IDVE_U64
ku64ValueBufferSize

[in] Size of the output buffer in code units, including the terminating zero.

IDVE_U64* const
kpu64SizeWritten

[out] Pointer to an unsigned 64-bit integer value that receives the size of the
output written in code units, excluding the terminating zero. The value
might be NULL.

char* const
kpsExtStatusMsg

[out] Pointer to a buffer of size IDVE_EXT_STATUS_MSG_BUFFER_SIZE for an
optional extended status message. The value might be NULL.

Retrieving the Software Version Number 31

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Installation and Configuration
	Supported Platforms
	System Requirements
	Memory Requirements
	Installing Address Verification
	Installing the Informatica Address Verification C/C++-based Package
	Installing the Informatica Address Verification Java-based Package
	Installing the Informatica Address Verification Microsoft .NET-based Package

	Configuring the Engine
	Core Elements in IDVEConfig.json
	Functions Elements in IDVEConfig.json
	FunctionServers Elements in IDVEConfig.json

	Retrieving the State of the Engine
	DateTime Element in the IDVEState.schema.json file
	SystemInformation Elements in the IDVEState.schema.json file
	IDVEInformation Elements in the IDVEState.schema.json file
	Config Elements in the IDVEState.schema.json file
	Licenses Elements in the IDVEState.schema.json file
	Functions Elements in the IDVEState.schema.json file
	FileSets Elements in the IDVEState.schema.json file

	Formatting the JSON Response
	Initializing the Intelligent Data Verification Engine (IDVE) Framework
	Generating a JSON Schema Document
	Reference Databases and Packages
	Installing the Reference Databases

	Retrieving the Software Version Number

