
Informatica® Dynamic Data Masking
9.8.1

Stored Procedure Accelerator
Guide for Oracle

Informatica Dynamic Data Masking Stored Procedure Accelerator Guide for Oracle
9.8.1
May 2016

© Copyright Informatica LLC 1993, 2018

This software and documentation contain proprietary information of Informatica LLC and are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright law. Reverse engineering of the software is prohibited. No part of this document may be reproduced or transmitted in any
form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC. This Software may be protected by U.S. and/or
international Patents and other Patents Pending.

Use, duplication, or disclosure of the Software by the U.S. Government is subject to the restrictions set forth in the applicable software license agreement and as
provided in DFARS 227.7202-1(a) and 227.7702-3(a) (1995), DFARS 252.227-7013©(1)(ii) (OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14 (ALT III),
as applicable.

The information in this product or documentation is subject to change without notice. If you find any problems in this product or documentation, please report them to
us in writing.

Informatica, Informatica Platform, Informatica Data Services, PowerCenter, PowerCenterRT, PowerCenter Connect, PowerCenter Data Analyzer, PowerExchange,
PowerMart, Metadata Manager, Informatica Data Quality, Informatica Data Explorer, Informatica B2B Data Transformation, Informatica B2B Data Exchange Informatica
On Demand, Informatica Identity Resolution, Informatica Application Information Lifecycle Management, Informatica Complex Event Processing, Ultra Messaging,
Informatica Master Data Management, and Live Data Map are trademarks or registered trademarks of Informatica LLC in the United States and in jurisdictions
throughout the world. All other company and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © OSS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright (c) University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright© MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/
Consortium/Legal/2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http://forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/faq.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/
EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://
jdbc.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/lz4/; https://github.com/jedisct1/libsodium/blob/master/
LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe WaInes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

Publication Date: 2018-06-08

https://www.informatica.com/legal/patents.html

Table of Contents

Preface . 6
Informatica Resources. 6

Informatica Network. 6

Informatica Knowledge Base. 6

Informatica Documentation. 7

Informatica Product Availability Matrixes. 7

Informatica Velocity. 7

Informatica Marketplace. 7

Informatica Global Customer Support. 7

Chapter 1: Introduction to the Stored Procedure Accelerator for Oracle. 8
Stored Procedure Accelerator for Oracle Overview. 8

Stored Procedure Accelerator Components. 8

Stored Procedure Accelerator Example. 9

Chapter 2: Masking Stored Procedures and User-Defined Table Functions. . . 10
Masking Stored Procedures and User-Defined Table Functions Overview. 10

Parameter Data Types. 11

MATCH_FUNCTION Symbols. 11

MATCH_FUNCTION Symbols Example. 12

Stored Procedure Accelerator Maintenance. 13

Stored Procedure Accelerator Constraints. 13

Variables as Arguments in a Procedure Call. 13

Blocks Containing Multiple Stored Procedure Calls. 14

Multi-Level Object/Table Types. 15

Positional and Named Parameters. 15

Overloaded Program Units. 15

Chapter 3: Stored Procedure Accelerator Setup. 17
Stored Procedure Accelerator Setup Overview. 17

Step 1. Verify Requirements. 18

Step 2. Grant Dynamic Data Masking Administrator Privileges. 18

Step 3. Compile the Masking Package. 19

Compiling the Masking Package. 19

Step 4. Grant Temporary Schema Privileges. 19

Step 5. Create a Decision Making Function. 19

Step 6. Create the Clean Up Procedure. 20

Creating the Clean Up Procedure. 20

Creating the Clean Up Procedure Job. 20

Step 7. Create a Database Connection. 21

4 Table of Contents

Step 8. Create a Connection Rule. 22

Step 9. Import the Security Rule Sets. 23

Importing the StoredProc Rule Set. 24

Configuring the StoredProc Rules. 24

Importing the StoredProcMasks Rule Set. 27

Configuring the StoredProcMasks Rule. 27

Step 10. Define Masking Rules. 28

Chapter 4: Stored Procedure Accelerator Rules. 29
Stored Procedure Accelerator Rules Overview. 29

Connection Rule. 29

StoredProc Rule Set. 30

MatchProcNamesFolder Rule. 30

DefMaskRSSym Rule. 31

MaskProcs Rule. 31

StoredProcMasks Rule Set. 32

ProcMasks1 Rule. 32

Index. 34

Table of Contents 5

Preface
The Stored Procedure Accelerator Guide for Oracle contains information to help administrators use the stored
procedure accelerator to implement Dynamic Data Masking for stored procedures and table-valued functions
in an Oracle database. This guide assumes that you have knowledge of Dynamic Data Masking.

Informatica Resources

Informatica Network
Informatica Network hosts Informatica Global Customer Support, the Informatica Knowledge Base, and other
product resources. To access Informatica Network, visit https://network.informatica.com.

As a member, you can:

• Access all of your Informatica resources in one place.

• Search the Knowledge Base for product resources, including documentation, FAQs, and best practices.

• View product availability information.

• Review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

As a member, you can:

• Access all of your Informatica resources in one place.

• Search the Knowledge Base for product resources, including documentation, FAQs, and best practices.

• View product availability information.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to search Informatica Network for product resources such as
documentation, how-to articles, best practices, and PAMs.

To access the Knowledge Base, visit https://kb.informatica.com. If you have questions, comments, or ideas
about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

6

HTTPS://NETWORK.INFORMATICA.COM/
http://kb.informatica.com
mailto:KB_Feedback@informatica.com

Informatica Documentation
To get the latest documentation for your product, browse the Informatica Knowledge Base at
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx.

If you have questions, comments, or ideas about this documentation, contact the Informatica Documentation
team through email at infa_documentation@informatica.com.

Informatica Product Availability Matrixes
Product Availability Matrixes (PAMs) indicate the versions of operating systems, databases, and other types
of data sources and targets that a product release supports. If you are an Informatica Network member, you
can access PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional
Services. Developed from the real-world experience of hundreds of data management projects, Informatica
Velocity represents the collective knowledge of our consultants who have worked with organizations from
around the world to plan, develop, deploy, and maintain successful data management solutions.

If you are an Informatica Network member, you can access Informatica Velocity resources at
http://velocity.informatica.com.

If you have questions, comments, or ideas about Informatica Velocity, contact Informatica Professional
Services at ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that augment, extend, or enhance your
Informatica implementations. By leveraging any of the hundreds of solutions from Informatica developers
and partners, you can improve your productivity and speed up time to implementation on your projects. You
can access Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through Online Support on Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
http://www.informatica.com/us/services-and-training/support-services/global-support-centers.

If you are an Informatica Network member, you can use Online Support at http://network.informatica.com.

Preface 7

https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx
mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/
http://network.informatica.com

C h a p t e r 1

Introduction to the Stored
Procedure Accelerator for Oracle

This chapter includes the following topics:

• Stored Procedure Accelerator for Oracle Overview, 8

• Stored Procedure Accelerator Components, 8

• Stored Procedure Accelerator Example, 9

Stored Procedure Accelerator for Oracle Overview
Use the Stored Procedure Accelerator for Oracle to implement Dynamic Data Masking to mask stored
procedures and user-defined table functions in an Oracle database. The accelerator contains predefined
Dynamic Data Masking security rule templates and example rules.

The Stored Procedure Accelerator for Oracle is in the Dynamic Data Masking installation directory as an
additional component that you can configure to mask stored procedures and user-defined table functions.
You can define masking rules based on the stored procedures and sensitive data in the Oracle database.

You can use the Stored Procedure Accelerator for Oracle with Oracle 11g and later.

Stored Procedure Accelerator Components
The accelerator contains a PL/SQL package, two .jar files, and four security rule sets.

You can find the accelerator in the following directory:

<Dynamic Data Masking installation>\Accelerators\StoredProcedureMasking

The DDM_SP_MASKING PL/SQL package creates temporary tables, verifies whether to mask the result set,
and creates masked select statements. You must compile the package in the <DDMADMIN> database
schema before you mask stored procedures.

Dynamic Data Masking uses the StoredProcedureMasking.jar and MultipleStatementMasking.jar files in the
Java Action security rule to mask stored procedures and user-defined table functions.

You must configure two security rule sets to use the accelerator. The accelerator contains template rule sets
and sample HR security rule sets.

8

Stored Procedure Accelerator Example
You want to mask data called by a stored procedure.

You have a stored procedure named Proc_Dept_Emp, which has the following parameters:

emp_id IN NUMBER,
job_id IN NUMBER,
salary_rec OUT SYS_REFCURSOR

The SYS_REFCURSOR out parameter of the stored procedure selects the following columns in the Dept_Emp
table:

• EMPLOYEE_ID

• Last_Name

• FIRST_NAME

• JOB_ID

• Job_Title

• SALARY

• COMM

• DEPARTMENT_ID

You set up the stored procedure accelerator and create a masking rule set. You have a masking rule that
masks the Proc_Dept_Emp stored procedure. The following table describes the columns and masking
functions that you define in the masking rule:

Column Masking Function

.*SALARY 999

.*COMM \(col)-FLOOR(\(col) / 7)*7

.*Last_Name substr(\(col),1,2)

Note: When you create the masking rule, you must enter the column name preceded by .*, as in the table.

You send the following request to the database:

CALL Proc_Dept_Emp(25,10, ?)
The ? is a placeholder for the REF_CURSOR as OUT parameter.

Dynamic Data Masking creates a temporary stored procedure in the temporary schema that you defined in
the Dynamic Data Masking ORACLE_DDM_TEMPDB symbol. The temporary stored procedure uses the
DDM_SP_MASKING package and sends the call to the following temporary stored procedure:

CALL TEMPDB.P1436942931536_2 (25,10,?)
The temporary stored procedure executes the original stored procedure. The temporary stored procedure
then creates and populates the global temporary table, TEMPDB.T_1436942931536, with the result set data
and changes the out REF_CURSOR parameter to the following statement according to the masking rules:

SELECT EMPLOYEE_ID , substr(LAST_NAME ,1,2) LAST_NAME , FIRST_NAME , MIDDLE_NAME ,
JOB_ID , MANAGER_ID , HIREDATE , 999 SALARY , COMM -FLOOR(COMM / 7)*7 COMM ,
DEPARTMENT_ID , EMAIL FROM TEMPDB . T_1436942931536 ;

Stored Procedure Accelerator Example 9

C h a p t e r 2

Masking Stored Procedures and
User-Defined Table Functions

This chapter includes the following topics:

• Masking Stored Procedures and User-Defined Table Functions Overview, 10

• Parameter Data Types, 11

• MATCH_FUNCTION Symbols, 11

• Stored Procedure Accelerator Maintenance, 13

• Stored Procedure Accelerator Constraints, 13

Masking Stored Procedures and User-Defined Table
Functions Overview

Dynamic Data Masking uses a Java Action security rule to determine whether an incoming statement is a call
to a stored procedure or a SELECT statement that includes a user-defined table function that returns a result
set. The Java Action rewrites the SQL statement so that the masking rules can use the result set structures.

If the stored routine is a user-defined table function, the Rule Engine rewrites the SQL statement so that the
Java Action receives the altered statement.

The Dynamic Data Masking user defines a temporary Oracle schema in the DefMaskRSSym security rule. To
mask stored procedure outputs, Dynamic Data Masking dynamically creates a temporary stored procedure in
the temporary schema. The temporary stored procedure creates global temporary tables within the
temporary schema based on the structure of the result set. It then populates the table with the data in the
temporary schema. Dynamic Data Masking names the tables in the temporary schema in the following way:

T_<Timestamp>
For example, a table in the temporary schema might have the following name:

T_5290365863
The timestamp is an automatically generated number.

The temporary stored procedure forms SELECT queries for each table in the temporary schema and masks
the queries based on the security rules.

Note: Because the Stored Procedure Accelerator for Oracle uses methods implemented on Oracle 11g, the
database must be Oracle 11g or later.

10

Parameter Data Types
The stored procedures that you mask with the Stored Procedure Accelerator for Oracle must have
parameters with recognized data types.

You can use the accelerator to mask stored procedures that contain parameters with the following data
types:
Constant Arguments

• DATE

• INTEGER

• VARCHAR

• VARCHAR2

Binding Arguments

• DATE

• INTEGER

• OBJECT TYPE

• RECORD TYPE

• REF CURSOR

• TABLE TYPE

• VARCHAR

• VARCHAR2

MATCH_FUNCTION Symbols
You can create MATCH_FUNCTION and MATCH_FUNCTION_PARAMS symbols and a user-defined function
that determine whether to mask a stored procedure.

By default, the DefMaskRSSym rule contains ExplicitRuleSet and ORACLE_DDM_TEMPDB symbols. You can
optionally define additional symbols that use a PL/SQL function to determine whether to mask the stored
procedure.

To use the additional symbols, you must create a decision making function that determines whether to mask
the stored procedure. The function must return 0 or 1. If the function returns 1, Dynamic Data Masking masks
the stored procedure. If the function returns 0, Dynamic Data Masking does not mask the stored procedure.

You can define the following symbols in the DefMaskRSSym rule:
MATCH_FUNCTION

The MATCH_FUNCTION symbol identifies the name of the decision making function.

In the Symbol Name field, enter MATCH_FUNCTION. In the Symbol Value field, enter the fully qualified
name of the PL/SQL decision making function.

MATCH_FUNCTION_PARAMS

The MATCH_FUNCTION_PARAMS symbol defines the number of arguments in the original stored
procedure that you want to pass to the decision making function.

Parameter Data Types 11

In the Symbol Name field, enter MATCH_FUNCTION_PARAMS. In the Symbol Value field, enter the
number of arguments in the original stored procedure that you want to pass to the decision making
function. The count starts from the first argument.

MATCH_FUNCTION Symbols Example
You want to create a user-defined function and Dynamic Data Masking symbols that determine whether to
mask a stored procedure.

You create the following function that serves as the decision making function for the symbols:

create or replace function DDMADMIN.DECISION_FUNCTION(
 I_INST_ID varchar2,
 I_USER_ID varchar2
) return number
is
begin
 if (length(I_INST_ID)+length(I_USER_ID)) > 10
 then
 return 1;
 else
 return 0;
 end if;
end;

The function name is DDMADMIN.DECISION_FUNCTION. The function returns 0 or 1 based on whether the
stored procedure returns sensitive data.

In the DefMaskRSSym security rule, you add MATCH_FUNCTION and MATCH_FUNCTION_PARAMS symbols.
The MATCH_FUNCTION symbol value is the name of the function, DDMADMIN.DECISION_FUNCTION. The
MATCH_FUNCTION_PARAMS symbol value is the number of arguments in the unmasked stored procedure
that you want to pass to the decision making function. In this example, the symbol value is 2 and Dynamic
Data Masking passes the first two arguments of the stored procedure to the decision making function.

The following image shows the rule action of the DefMaskRSSym rule:

12 Chapter 2: Masking Stored Procedures and User-Defined Table Functions

Stored Procedure Accelerator Maintenance
Remove tables in the temporary database schema or use the clean up script template to create an Oracle job
that cleans up the temporary objects that the accelerator creates in the temporary schema as part of the
masking process.

To mask stored procedures, Dynamic Data Masking dynamically creates tables and temporary stored
procedures in the Oracle temporary schema that the Dynamic Data Masking user configures. Because the
tables are global temporary tables, the tables do not contain data.

When you set up the accelerator, you can create the CLEANUP_TEMP_OBJECTS procedure and schedule the
procedure job to drop the tables and stored procedures. If you do not create the procedure, you must
periodically manually drop the tables and stored procedures in the temporary schema.

Stored Procedure Accelerator Constraints
Before you use the Stored Procedure Accelerator for Oracle, review the stored procedure constraints that
result in errors or unmasked data.

Variables as Arguments in a Procedure Call
You cannot declare a variable inside a PL/SQL block if you use the variable as an argument in a masked
stored procedure or stored function.

For example, you want to mask the output of the following stored procedure:

dummy_proc_table2(
 in_int integer,
 o_int integer,
 o_table ddmtabletype) ; -- ddmtabletype is a TABLE Type defined at SCHEMA level

The following text is a stored procedure call that uses the declared variable v_int as an argument to the
stored procedure:

Declare
 v_table ddmtabletype;
 v_int integer; -- declaration of variable
begin
 v_int := 12; -- value assigned
 dummy_proc_table2(
 in_int => v_int, -- variable used
 o_int => :o_int,
 o_var => :o_var,
 v_table => v_table
);
end;

The request returns unmasked data.

The following text is a stored procedure that passes the value directly to the stored procedure call and
returns masked data:

Declare
 v_table ddmtabletype;
begin
 dummy_proc_table2(
 in_int => 12,
 o_int => :o_int,
 o_var => :o_var,

Stored Procedure Accelerator Maintenance 13

 v_table => v_table
);
end;

Blocks Containing Multiple Stored Procedure Calls
If a block contains multiple stored procedure calls, Dynamic Data Masking recognizes the first call, but does
not recognize the following calls.

For example, you want to mask the output of the following stored procedure:

dummy_proc_table2(
 in_int integer,
 o_int integer,
 o_table ddmtabletype) ; -- ddmtabletype is a TABLE Type defined at SCHEMA level

The following text is an example of a call that masks the incorrect stored procedure:

Declare
 v_table ddmtabletype;
begin
-- first procedure call
 dummy_proc_table_3(
 in_int => 12,
 v_table => v_table
);

--second procedure call
dummy_proc_table2(
 in_int => 12,
 o_int => :o_int,
 o_var => :o_var,
 v_table => v_table
);
end;

Because the first stored procedure in the call is dummy_proc_table_3, the stored procedure accelerator
masks the dummy_proc_table_3 procedure, and does not mask the dummy_proc_table2 procedure.

The following text is an example of a call that masks the correct procedure:

Declare
 v_table ddmtabletype;
begin
-- first procedure call
 dummy_proc_table2(
 in_int => 12,
 o_int => :o_int,
 o_var => :o_var,
 v_table => v_table
);

--second procedure call
dummy_proc_table_3(
 in_int => 12,
 v_table => v_table
);

end;
Because dummy_proc_table2 is the first procedure in the block, it is masked. However, in the example above,
the dummy_proc_table_3 procedure is not masked.

14 Chapter 2: Masking Stored Procedures and User-Defined Table Functions

Multi-Level Object/Table Types
Object types must have primitive types attributes.

You cannot use custom or user-defined Object types as attributes inside another Object definition. You
cannot have a hierarchy of Object types.

For example, the following text is a command that returns unmasked data because it defines an attribute
type inside an attribute and defines a function inside an attribute:

create or replace TYPE employee_typ AS OBJECT(
 employee_id NUMBER(6)
 first_name VARCHAR2(20)
 last_name VARCHAR2(25)
 address address_typ // Type inside type
 MEMBER FUNCTION get_idno RETURN SYS_REFCURSOR, // Function inside type
);

Positional and Named Parameters
You cannot use both positional and named parameters in the same stored procedure call.

Stored procedure calls can contain positional parameters or named parameters, but cannot have mixed case.

For example, the following text is a call that contains named parameters:

call dummy_proc_1(v_int=>'123', v_var=>?, v_ref=>?)
The following text is a call that contains positional parameters:

call dummy_proc_1(?,?,?)
The calls with named and positional parameters are masked. However, the following call is not masked
because it contains a mix of named and positional parameters:

call oracle_1out_sys_1rs_2constip(?,eid => 1000,ename
=> 'kannan')

Overloaded Program Units
You can use overloaded program units that have different numbers of arguments, but you cannot use not
overloaded program units that have the same number of arguments with different argument types.

For example, you can use the following package that contains overloaded functions with the same name and
a different number of arguments:

CREATE OR REPLACE PACKAGE SP_FUN_PACKAGE IS
/* Number of arguments : 5 */
FUNCTION fun_with_in_args_pkg_table(
in_int number,
in_var varchar2,
in_date date,
v_ref out SYS_REFCURSOR,
v_ref2 out SYS_REFCURSOR)
RETURN pkg_table_type PIPELINED;

/* Number of arguments : 4 */
FUNCTION fun_with_in_args_pkg_table(
in_int number,
in_int1 number,
in_var varchar2,
in_date date,
v_ref out SYS_REFCURSOR)
RETURN pkg_table_type PIPELINED;
END;

Stored Procedure Accelerator Constraints 15

However, you cannot use the following package, which contains overloaded functions with the same name
and same number of arguments:

CREATE OR REPLACE PACKAGE SP_FUN_PACKAGE IS

/* Number of arguments : 4 */
FUNCTION fun_with_in_args_pkg_table(
in_int number,
in_var varchar2,
in_date date,
v_ref out SYS_REFCURSOR)
RETURN pkg_table_type PIPELINED;

/* Number of arguments : 4 */
FUNCTION fun_with_in_args_pkg_table(
in_int number,
in_int1 number,
in_var varchar2,
v_ref out SYS_REFCURSOR)
RETURN pkg_table_type PIPELINED;
END;

16 Chapter 2: Masking Stored Procedures and User-Defined Table Functions

C h a p t e r 3

Stored Procedure Accelerator
Setup

This chapter includes the following topics:

• Stored Procedure Accelerator Setup Overview, 17

• Step 1. Verify Requirements, 18

• Step 2. Grant Dynamic Data Masking Administrator Privileges, 18

• Step 3. Compile the Masking Package, 19

• Step 4. Grant Temporary Schema Privileges, 19

• Step 5. Create a Decision Making Function, 19

• Step 6. Create the Clean Up Procedure, 20

• Step 7. Create a Database Connection, 21

• Step 8. Create a Connection Rule, 22

• Step 9. Import the Security Rule Sets, 23

• Step 10. Define Masking Rules, 28

Stored Procedure Accelerator Setup Overview
Set up the Stored Procedure Accelerator for Oracle to mask stored procedure and user-defined table function
result sets in an Oracle database.

To set up the accelerator, perform the following tasks:

1. Verify the setup requirements.

2. Create the Dynamic Data Masking administrator and grant privileges to the administrator.

3. Compile the DDM_MASKING_SP package and create the temporary schema.

4. Grant privileges to the temporary schema.

5. Optionally, create a decision making function.

6. Create the clean up procedure and schedule the clean up procedure job.

7. Create an Oracle database connection.

8. Create a connection rule.

9. Import the accelerator security rule sets and configure the rules.

17

10. Define masking rules for stored procedures and user-defined table functions.

Step 1. Verify Requirements
Verify the following requirements before you use the Stored Procedure Accelerator for Oracle:

• You must have Dynamic Data Masking version 9.8.0 or later installed.

• You must have an Oracle database that contains stored procedures or user-defined table functions. If the
database does not contain a stored procedure, you can set up the accelerator and create rules, but the
rules will not return a match and will not mask data.

Step 2. Grant Dynamic Data Masking Administrator
Privileges

Create the Dynamic Data Masking administrator and grant the required privileges.

Grant the following privileges to allow Dynamic Data Masking impersonation on the database:

• CREATE USER <DDM Admin> IDENTIFIED BY <XXXX>
• ALTER USER <DDM Admin> QUOTA UNLIMITED ON USERS
• GRANT BECOME USER TO <DDM Admin>
• GRANT CREATE SESSION TO <DDM Admin>
• GRANT ALTER SESSION TO <DDM Admin>
• GRANT SELECT ANY TABLE TO <DDM Admin>
• GRANT SELECT ANY DICTIONARY TO <DDM Admin>
• GRANT EXECUTE ANY PROCEDURE TO <DDM Admin>

Grant the following privileges to the Dynamic Data Masking administrator to use the Stored Procedure
Accelerator for Oracle:

• GRANT CREATE ANY PROCEDURE TO <DDM Admin>
• GRANT DROP ANY PROCEDURE TO <DDM Admin>
• GRANT EXECUTE ANY TYPE TO <DDM Admin>
• GRANT SELECT_CATALOG_ROLE TO <DDM Admin>
• GRANT GRANT ANY OBJECT PRIVILEGE TO <DDM Admin>
• GRANT CREATE ANY TABLE TO <DDM Admin>
• GRANT DROP ANY TABLE TO <DDM Admin>
• GRANT INSERT ANY TABLE TO <DDM Admin>

18 Chapter 3: Stored Procedure Accelerator Setup

Step 3. Compile the Masking Package
Compile the masking package in the DDMADMIN schema to enable stored procedure masking.

You can find the masking package in the following location:

<Dynamic Data Masking istallation>\Accelerators\StoredProcedureMasking\sql\Oracle
The masking package consists of the following files:

• DDM_MASKING_SP_BODY.sql

• DDM_MASKING_SP_SPEC.sql

The masking package performs the following actions:

• Retrieves result set metadata.

• Verifies whether to mask the result set.

• Creates and populates the global temporary tables in the temporary schema.

• Creates masked select statements in the temporary tables.

Compiling the Masking Package
Compile the masking package and create a temporary schema in the DDMADMIN schema.

1. To create the masking package, run the following script:

DDM_MASKING_SP_SPEC.sql
2. To create the body of the package, run the following script:

DDM_MASKING_SP_BODY.sql
3. To create a PUBLIC synonym for the masking package, run the following commands:

• CREATE PUBLIC SYNONYM DDM_MASKING_SP FOR <DDMAMDIN>.DDM_MASKING_SP
• GRANT EXECUTE ON DDM_MASKING_SP TO PUBLIC

Step 4. Grant Temporary Schema Privileges
Grant the following privileges to the temporary schema:

• GRANT EXECUTE ON DDMADMIN.DDM_MASKING_SP To <TEMP SCHEMA>
• GRANT CREATE SESSION TO <TEMP_SCHEMA>

Step 5. Create a Decision Making Function
Optionally, create a decision making function if you want to use the MATCH_FUNCTION and
MATCH_FUNCTION_PARAMS symbols.

You can define additional symbols in the DefMaskRSSym security rule that use a PL/SQL function to
determine whether to mask the stored procedure. If you want to use the MATCH_FUNCTION and
MATCH_FUNCTION_PARAMS symbols, you must create a PL/SQL function that returns 0 or 1. If the function

Step 3. Compile the Masking Package 19

returns 1, Dynamic Data Masking masks the stored procedure. If the function returns 0, Dynamic Data
Masking does not mask the stored procedure.

Step 6. Create the Clean Up Procedure
To conserve space in the database, use the template for job creation to create an Oracle job that runs
periodically.

Dynamic Data Masking creates tables and temporary stored procedures in the temporary schema. The tables
are global temporary tables and do not contain data. If you do not run the clean up procedure, you must
manually drop the tables and stored procedures in the temporary schema.

Creating the Clean Up Procedure
Create the CLEANUP_TEMP_OBJECTS procedure.

1. Open the following file in Notepad:

<Dynamic Data Masking installation>\Accelerators\StoredProcedureMasking\sql\Oracle
\CLEAN_TEMP_OBJECTS_JOB_CREATION_TEMPLATE.sql

2. Use SQL Developer to log in to the database as an administrator.

3. Paste the text of the CLEAN_TEMP_OBJECTS_JOB_CREATION_TEMPLATE.sql file into the SQL
Worksheet.

4. Run the script to create the CLEANUP_TEMP_OBJECTS procedure.

The CLEANUP_TEMP_OBJECTS has the following attributes:
created_before_seconds

Objects that have a creation time that is before the value of the created_before_seconds attribute are
considered for deletion. Specify the time in seconds.

tempdb_schema

The name of the temporary schema where the accelerator creates the temporary objects.

For example, you want to delete the temporary objects in the DDMTEMPDB schema that the accelerator
created more than 300 seconds ago. You use the following attribute values:

• created_before_seconds : 300
• tempdb_schema : 'DDMTEMPDB'

Creating the Clean Up Procedure Job
Schedule the clean up procedure job.

1. Open the following file in Notepad:

<Dynamic Data Masking installation>\Accelerators\StoredProcedureMasking\sql\Oracle
\CLEAN_TEMP_OBJECTS_JOB_CREATION_TEMPLATE.sql

2. Use SQL Developer to log in to the database as an administrator.

3. Paste the text of the CLEAN_TEMP_OBJECTS_JOB_CREATION_TEMPLATE.sql file into the SQL
Worksheet.

4. Search the text for the following keywords and edit the property values based on the user and client
requirements:

20 Chapter 3: Stored Procedure Accelerator Setup

<SchemaName_where_package_is_created>

The name of the schema in which you created the DDM_MASKING_SP package.

<seconds>

The value of the CLEANUP_TEMP_OBJECTS procedure created_before_seconds argument.

<schema_name>

The name of the temporary schema where the accelerator creates the temporary objects.

5. Run the script.

6. Use the following SQL command to verify that the job was created successfully:

select * from ALL_SCHEDULER_JOBS
The following text is an example execution script with the edited keyword values in bold:

BEGIN
 -- create ddm clean-up job
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'clean_ddm_temp_object',
 job_type => 'STORED_PROCEDURE',
 job_action => 'DDMADMIN.DDM_MASKING_SP.CLEANUP_TEMP_OBJECTS',
 number_of_arguments => 2,
 start_date => sysdate + 10/(24*60*60), -- start after 10 seconds
 repeat_interval => 'FREQ=HOURLY;BYMINUTE=0',
 end_date => null,
 comments => 'DDM Temporary Object Clean-Up');
 -- setting job arguments
 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE (
 job_name => 'clean_ddm_temp_object',
 argument_position => 1,
 argument_value => '300'); -- delete TEMP-OBJECTS created before 300 seconds
from JOB-Execution time.
 DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE (
 job_name => 'clean_ddm_temp_object',|
 argument_position => 2,
 argument_value => 'DDMTEMPDB'); -- schema_name of DDM Temporary Schema (IN
CAPs) from where to delete the temporary objects
 -- enable ddm clean-up job
 DBMS_SCHEDULER.ENABLE('clean_ddm_temp_object');
END;

Step 7. Create a Database Connection
Add the Dynamic Data Masking service for Oracle in the Management Console and connect to the database.

1. Log in to the Dynamic Data Masking Management Console.

2. Select the Dynamic Data Masking Server in the Management Console tree and click Tree > Add DDM
Services.

The Add DDM Services window appears.

3. Select DDM for Oracle and click OK.

The DDM for Oracle node appears in the Management Console tree.

4. Select the Management Console tree root node and click Tree > Add Database.

The Add Database window appears.

5. Select the Oracle database type and configure the following database connection parameters:

Step 7. Create a Database Connection 21

DDM Database Name

Logical name defined for the target database.

Instance name

Instance name for the target database.

Listener Address

Server host name or TCP/IP address for the target database.

Listener Port

TCP/IP listener port for the target database.

Service Name

Service name for the target database. Dynamic Data Masking determines the target database based
on the service name or SID in the client connection request.

DBA Username

User name for the database user account to log in to the Oracle database.

DBA Password

Password for the database user.

6. Click Test Connection and verify that Dynamic Data Masking is connected to the database.

7. Click OK.

The database node appears in the Management Console tree.

Step 8. Create a Connection Rule
Create a connection rule that directs SQL requests to the StoredProcTmpl rule set.

1. Select the Dynamic Data Masking service node for Oracle that you created in the Management Console
tree and click Tree > Connection Rules.

The Rule Editor opens.

2. In the Rule Editor, select the DDM for Oracle node in the tree and select Action > Append Rule.

The Append Rule window opens.

3. In the Append Rule window, configure the following parameters:

Rule Name

Enter the name of the connection rule.

Rule Matcher

Select the Current Target Database matcher.

Database

Enter the name of the Oracle database.

Rule Action

Select the Use Rule Set action. The Use Rule Set action sends the request to a security rule set.

22 Chapter 3: Stored Procedure Accelerator Setup

Rule Set Name

Enter the name of the rule set that you want to direct the request to. To use the template rule set,
enter StoredProcTmpl.

The rule set name that you enter is the name of the rule set that contains the Define Symbol and
Java Action security rules. If you want to use the HR example rule set, enter HRStoredProcRS. If you
want to create your own rule set, enter the name of the rule set that you create.

Processing Action

Select the Continue processing action.

The following image shows the connection rule:

4. Click OK.

The rule appears in the Rule Editor.

5. Select File > Update Rules to save the connection rule.

6. Select File > Exit to close the Rule Editor.

Step 9. Import the Security Rule Sets
Import the security rule sets and configure the rules to mask stored procedures and user-defined table
functions.

You can import the security rule set templates and alter them based on the stored procedures and user-
defined table functions in the database. You can import the HR rule sets to use as an example.

When you import the rule set that contains the masking rules, you must alter the rules based on the columns
that the stored procedure or user-defined table function accesses. Create a separate security rule in the rule
set for each stored procedure or user-defined table function.

Step 9. Import the Security Rule Sets 23

Importing the StoredProc Rule Set
Import the StoredProcTmpl security rule set into the Management Console.

1. Select the Management Console tree root node and click Tree > Add Rule Set.

The Add Rule Set window opens.

2. Enter StoredProcTmpl as the rule set name and click OK.

The StoredProcTmpl rule set node appears in the Management Console tree.

Note: If you want to use the HR example rule sets and you directed the connection rule to the
HRStoredProcRS rule set, you must enter HRStoredProcRS as the rule set name.

3. Select the StoredProcTmpl node and click Tree > Security Rule Set.

The Rule Editor opens.

4. In the Rule Editor, click Action > Import.

The Import window opens.

5. Navigate to the following directory:

<Dynamic Data Masking installation>\Accelerators\StoredProcedureMasking\rules\Oracle
6. Select the Oracle_StoredProcRSTmpl.xml file and click Import.

The MatchProcNamesFolder rule folder appears in the Rule Editor.

Note: If you want to use the HR example rule sets, select the Oracle_HRStoredProcRS.xml file.

7. Expand the MatchProcNamesFolder rule folder to view the DefMaskRSSym and MaskProcs rules.

The following image shows the security rule set rules:

8. Click File > Update Rules to save the security rules.

Configuring the StoredProc Rules
Configure the StoredProc rules in the Rule Editor.

1. Select the MatchProcNamesFolder rule and click Action > Edit.

The Edit Rule window opens.

2. The Text field of the matcher contains a template that you can use to enter the stored procedure names.
Replace "proc name 1," "proc name 2," and "proc name 3" with stored procedure or user-defined table
function names.

For example, you might enter the following text in the Text field:

.*Proc_Dept_Emp.*|.*Func_Job_Location.*
The following image shows the MatchProcsNamesFolder rule matcher parameters:

24 Chapter 3: Stored Procedure Accelerator Setup

3. Click OK.

The Rule Editor closes.

4. Click File > Update Rules to save the security rule.

5. Select the DefMaskRSSym rule and click Action > Edit.

The Edit Rule window opens.

6. Create the following symbols:

ExplicitRuleSet

In the Symbol Name field, enter ExplicitRuleSet. In the Symbol Value field, enter the name of the rule
set that contains the masking rules. For the template rule sets, enter StoredProcMasksTmpl. If you
want to use the HR example rule set, enter HRStoredProcMasksRS. In the Keep Per Session field,
enter No.

ORACLE_DDM_TEMPDB

In the Symbol Name field, enter ORACLE_DDM_TEMPDB. In the Symbol Value field, enter the name
of the Oracle database schema where Dynamic Data Masking will create the temporary objects. In
the Keep Per Session field, enter No.

The following image shows the DefMaskRSSym rule action properties:

Step 9. Import the Security Rule Sets 25

7. Optionally, if you have a function that you want to use to determine whether to mask the stored
procedure, create the following additional symbols:

MATCH_FUNCTION

In the Symbol Name field, enter MATCH_FUNCTION. In the Symbol Value field, enter the fully
qualified name of the PL/SQL decision making function. The function must return 0 or 1. If the
function returns 1, Dynamic Data Masking masks the stored procedure. If the function returns 0,
Dynamic Data Masking does not mask the stored procedure.

MATCH_FUNCTION_PARAMS

In the Symbol Name field, enter MATCH_FUNCTION_PARAMS. In the Symbol Value field, enter the
number of arguments in the original stored procedure that you want to pass to the decision making
function. The count starts from the first argument.

The following image shows the DefMaskRSSym rule action with the additional symbols:

8. Click OK.

The Rule Editor closes.

9. Click File > Update Rules to save the security rule.

10. Select the MaskProcs rule and click Action > Edit.

The Edit Rule window opens.

11. In the rule action Class Path field, enter the file path of the stored procedure accelerator .jar files,
separated by a semicolon (;).

You can find the .jar files in the following directory:

<Dynamic Data Masking installation>\Accelerators\StoredProcedureMasking\lib
For example, you might enter:

C:\Program Files\Informatica\DDM\Accelerators\StoredProcedureMasking\lib
\StoredProcedureMasking.jar;C:\Program Files\Informatica\DDM\Accelerators
\StoredProcedureMasking\lib\MultipleStatementMasking.jar

Note: The Class Name must be ProcMaskerOracle.

12. Click OK.

The Rule Editor closes.

13. Click File > Update Rules to save the security rules.

14. Click File > Exit to close the Rule Editor.

26 Chapter 3: Stored Procedure Accelerator Setup

Importing the StoredProcMasks Rule Set
Import the StoredProcMasks masking rule set into the Management Console.

1. Select the Management Console tree root node and click Tree > Add Rule Set.

The Add Rule Set window opens.

2. Enter StoredProcMasksTmpl as the rule set name and click OK.

The StoredProcMasksTmpl rule set node appears in the Management Console tree.

Note: If you want to use the HR example rule sets, enter HRStoredProcMasksRS as the rule set name.

3. Select the StoredProcMasksTmpl node and click Tree > Security Rule Set.

The Rule Editor opens.

4. In the Rule Editor, click Action > Import.

The Import window opens.

5. Navigate to the following directory:

<Dynamic Data Masking installation>\Accelerators\StoredProcedureMasking\rules\Oracle
6. Select the Oracle_StoredProcMasksRSTmpl.xml file and click Import.

The ProcMasks1 rule appears in the Rule Editor.

Note: If you want to use the HR example rules, select the Oracle_HRStoredProcMasksRS.xml file.

7. Click File > Update Rules to save the security rules.

Configuring the StoredProcMasks Rule
Configure the StoredProcMasks rule in the Rule Editor.

1. Select the ProcMasks1 rule and click Action > Edit.

The Edit Rule window opens.

2. Edit the rule properties based on the stored procedure that you want to mask. For example, the HR rule
set has a MaskProcDeptEmp rule with masking functions defined for each column.

The following image shows the rule action parameters in the HR MaskProcDeptEmp example rule:

3. Click OK.

The Rule Editor closes.

4. Click File > Update Rules to save the security rules.

Step 9. Import the Security Rule Sets 27

5. Click File > Exit to close the Rule Editor.

Step 10. Define Masking Rules
Define masking rules for each stored procedure and user-defined table function.

For each stored procedure and user-defined table function in the database, create a masking rule in the
StoredProcMasks rule set. In the rule, you can add a row in the Mask rule action for each column that the
stored procedure or user-defined table function outputs. For information about masking rules, see the
Dynamic Data Masking User Guide.

28 Chapter 3: Stored Procedure Accelerator Setup

C h a p t e r 4

Stored Procedure Accelerator
Rules

This chapter includes the following topics:

• Stored Procedure Accelerator Rules Overview, 29

• Connection Rule, 29

• StoredProc Rule Set, 30

• StoredProcMasks Rule Set, 32

Stored Procedure Accelerator Rules Overview
The Stored Procedure Accelerator for Oracle contains template rules and sample rules that you can edit or
copy to create rules based on the stored procedures and user-defined table functions in the database.

To use the accelerator, you must create a connection rule and two rule sets. The connection rule directs
requests to the first rule set. The first rule set contains rules to set up the accelerator. The second rule set
contains masking rules. You can import the accelerator rule sets and configure the rules based on the stored
routines in the database.

You can find the .xml files that contain the accelerator rule sets in the following location:

<Dynamic Data Masking installation>\Accelerators\StoredProcedureMasking\rules\Oracle
The Oracle_StoredPRocMasksRSTmpl.xml and Oracle_StoredProcRSTmpl.xml files contain the template rule
sets. You can import the template rule sets and configure the rules to mask stored procedures and user-
defined table functions.

The Oracle_HRStoredProcRS.xml and Oracle_HRStoredPRocMasksRS.xml files contain the example HR rule
sets. You can view the example rules to see how a complete rule set looks.

Connection Rule
A Dynamic Data Masking connection rule directs the SQL request to the StoredProcTmpl security rule set.

You must create a connection rule in the Dynamic Data Masking Management Console to use the
accelerator. Configure the connection rule to identify the incoming connection. For example, you can identify
the incoming connection by the database type. Select the Use Rule Set action and define the StoredProcTmpl

29

rule set name or the name of the rule set that you create that contains the accelerator setup rules. Select the
Stop if Applied processing action. If the client makes a request to the database, the Rule Engine applies the
rule set.

StoredProc Rule Set
The StoredProc rule set contains three rules that identify requests, define the ExplicitRuleSet and
ORACLE_DDM_TEMPDB symbols, and call the accelerator .jar files.

The StoredProc template rule set is the Oracle_StoredPRocRSTmpl.xml file in the accelerator directory. To
use the template rules, create a rule set with the name StoredProcTmpl and import the rules into the rule set.

The StoredProc example HR rule set is the Oracle_HRStoredProcRS.xml file in the accelerator directory. To
use the example rules, create a rule set with the name HRStoredProcRS and import the rules into the rule set.

You can also create a rule set with any name and create rules in the rule set based on the template rules and
example rules.

MatchProcNamesFolder Rule
The MatchProcNamesFolder rule identifies requests that call stored procedures and user-defined table
functions and directs them through the rule set.

The first rule in the StoredProc rule set is the MatchProcNamesFolder rule. The rule identifies requests to
restrict the number of requests that go through the masking rules, which improves performance. The
database might have stored procedures and user-defined table functions that you do not want Dynamic Data
Masking to affect the results of, such as maintenance stored procedures. Configure the
MatchProcNamesFolder rule so that those stored procedures are not a match for the rule.

You can use any matcher to identify incoming requests that call stored procedures or user-defined table
functions. For example, if the names of the stored procedures in the database begin with Proc_, you can use
a regular expression to identify requests that contain Proc_.

The MatchProcNamesFolder has the following parameters:
Rule Name

The rule name is MatchProcNamesFolder.

Matcher

The rule uses the Text matcher. You can change the matcher based on how you want to identify stored
procedures.

Text

You can use regular expressions in the Text parameter to identify stored procedures.

Rule Action

The rule uses the Folder action. The Folder action creates a rule folder.

Processing Action

The rule uses the Stop if Matched action.

30 Chapter 4: Stored Procedure Accelerator Rules

DefMaskRSSym Rule
The DefMaskRSSym rule defines the ExplicitRuleSet and ORACLE_DDM_TEMPDB symbols and directs the
request to the masking rule set.

The DefMaskRSSym rule uses the Define Symbol action to define the ExplicitRuleSet and
ORACLE_DDM_TEMPDB symbol values.

The symbol value of the ExplicitRuleSet symbol is the name of the rule set that contains the masking rules.
For the template rules, you can enter StoredProcMasksTmpl. If you want to use the HR example rule sets,
enter HRStoredProcMasksRS.

The DefMaskRSSym rule has the following properties:
Name

The name of the rule is DefMaskRSSym.

Matcher

The rule uses the Any matcher.

Rule Action

The rule uses the Define Symbol rule action. Do not change the rule action. The Define Symbol rule
action creates the following symbols:

• ExplicitRuleSet. The symbol name is ExplicitRuleSet. Do not change the symbol name. The symbol
value is the name of the rule set that contains the masking rules. The Keep Per Session value is No.

• ORACLE_DDM_TEMPDB. The symbol name is ORACLE_DDM_TEMPDB. Do not change the symbol
name. The symbol value is the name of the schema where Dynamic Data Masking stores the
temporary objects in the Oracle database. The Keep Per Session value is No.

Processing Action

The rule uses the Continue processing action to direct the request to the next rule in the rule set.

Optionally, you can define MATCH_FUNCTION and MATCH_FUNCTION_PARAMS symbols in the
DefMaskRSSym rule.

MaskProcs Rule
The MaskProcs rule specifies the location of the stored procedure accelerator .jar files.

The MaskProcs rule uses the Any matcher so that the rule applies to all requests. It uses the Java Action rule
action to identify the Stored Procedure .jar files. The Class Name must be ProcMaskerOracle.

The MaskProcs rule has the following parameters:
Name

The name of the rule is MaskProcs.

Matcher

The rule uses the Any matcher so that the rule applies to all requests.

Rule Action

The rule uses the Java Action rule action. Do not change the rule action.

Class Path

Enter the file paths of the accelerator .jar files, separated by a semicolon (;). You can find the .jar files in
the following location:

<Dynamic Data Masking installation>\Accelerators\StoredProcedureMasking\lib

StoredProc Rule Set 31

For example, you might enter:

C:\Program Files\Informatica\DDM\Accelerators\StoredProcedureMasking\lib
\StoredProcedureMasking.jar;C:\Program Files\Informatica\DDM\Accelerators
\StoredProcedureMasking\lib\MultipleStatementMasking.jar

Class Name

The class name is ProcMaskerOracle. Do not change the class name.

Processing Action

The rule uses the Continue processing action.

StoredProcMasks Rule Set
The StoredProcMasks rule set contains masking rules for stored procedures.

You can add as many masking rules to the StoredProcMasks rule set as required. You must create a separate
rule for each stored procedure and user-defined table function. The predefined rule set contains a rule that
shows you how to mask a stored procedure.

The StoredProcMasks template rule set is the Oracle_StoredPRocMasksRSTmpl.xml file in the accelerator
directory. To use the template rule, create a rule set with the name StoredProcMasksTmpl and import the
rules into the rule set.

The StoredProcMasks example HR rule set is the Oracle_HRStoredProcRS.xml file in the accelerator
directory. To use the example rule, create a rule set with the name HRStoredProcMasksRS and import the
rules into the rule set.

You can also create a rule set with any name and create masking rules in the rule set based on the template
rules and example rules.

Note: You must identify the StoredProcMasks rule set name in the DefMaskRSSym rule when you define the
symbol value. If you change the name of the StoredProcMasks rule set, update the Value field in the
DefMaskRSSym rule.

ProcMasks1 Rule
The ProcMasks1 rule masks a stored procedure.

You can configure the ProcMasks1 rule to mask a stored procedure. Add a row in the rule action for each
column that the procedure outputs. Create a rule for each stored procedure.

The ProcMasks1 rule has the following values:
Name

The name of the rule is ProcMasks1. You can change the name of the rule based on the name of the
stored procedure.

Matcher

The rule uses the Any matcher.

Rule Action

The rule uses the Mask rule action.

32 Chapter 4: Stored Procedure Accelerator Rules

Table Name

Enter the name of the stored procedure, preceded and followed by .*. For example, you might enter:

.*Proc_EMPLOYEE.*
Column Name

The name of the column that you want to mask, preceded by .*. For example, you might enter:

.*SALARY
Masking Function

The masking function that you want to use to mask the column data.

Processing Action

The rule uses the Continue processing action.

StoredProcMasks Rule Set 33

I n d e x

A
accelerator

components 8
constraints 13
example 9
maintenance 13
masking 10
overview 8
rules 29
setup 17

C
clean up procedure

create 20
components 8
connection rule

creating 22
constraints

blocks 14
multi-level object/table types 15
multiple variable definitions 13
named parameters 15
overloaded program units 15
positional parameters 15

D
DDM_SP_MASKING

compiling 19
DefMaskRSSym

rule 31

M
maintenance 13
masking 10
masking package

compiling 19
MaskProcs

rule 31
MatchProcNamesFolder

rule 30

P
privileges

granting 18

procedure
clean up 20

ProcMasks1
rule 32

R
requirements 18
rule set

importing 23
StoredProcMasks 32
StoreProc 30

rules
connection rule 29
DefMaskRSSym 31
masking rules 28
MaskProcs 31
MatchProcNamesFolder 30
overview 29
ProcMasks1 32
StoredProc 24
StoredProcMasks 27

S
set up

create the clean up procedure 20
setup

database connection 21
StoredProc rule set 24
StoredProcMasks rule set 27
verify requirements 18

StoredProc
configuring 24
importing 24
rule set 30

StoredProcMasks
configuring 27
importing 27
rule set 32

symbols
MATCH_FUNCTION 11
MATCH_FUNCTION example 12
MATCH_FUNCTION_PARAMS 11
MATCH_FUNCTION_PARAMS example 12

34

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrixes
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction to the Stored Procedure Accelerator for Oracle
	Stored Procedure Accelerator for Oracle Overview
	Stored Procedure Accelerator Components
	Stored Procedure Accelerator Example

	Chapter 2: Masking Stored Procedures and User-Defined Table Functions
	Masking Stored Procedures and User-Defined Table Functions Overview
	Parameter Data Types
	MATCH_FUNCTION Symbols
	MATCH_FUNCTION Symbols Example

	Stored Procedure Accelerator Maintenance
	Stored Procedure Accelerator Constraints
	Variables as Arguments in a Procedure Call
	Blocks Containing Multiple Stored Procedure Calls
	Multi-Level Object/Table Types
	Positional and Named Parameters
	Overloaded Program Units

	Chapter 3: Stored Procedure Accelerator Setup
	Stored Procedure Accelerator Setup Overview
	Step 1. Verify Requirements
	Step 2. Grant Dynamic Data Masking Administrator Privileges
	Step 3. Compile the Masking Package
	Compiling the Masking Package

	Step 4. Grant Temporary Schema Privileges
	Step 5. Create a Decision Making Function
	Step 6. Create the Clean Up Procedure
	Creating the Clean Up Procedure
	Creating the Clean Up Procedure Job

	Step 7. Create a Database Connection
	Step 8. Create a Connection Rule
	Step 9. Import the Security Rule Sets
	Importing the StoredProc Rule Set
	Configuring the StoredProc Rules
	Importing the StoredProcMasks Rule Set
	Configuring the StoredProcMasks Rule

	Step 10. Define Masking Rules

	Chapter 4: Stored Procedure Accelerator Rules
	Stored Procedure Accelerator Rules Overview
	Connection Rule
	StoredProc Rule Set
	MatchProcNamesFolder Rule
	DefMaskRSSym Rule
	MaskProcs Rule

	StoredProcMasks Rule Set
	ProcMasks1 Rule

	Index

