
Informatica® Cloud Data Integration
July 2024

Transformations

Informatica Cloud Data Integration Transformations
July 2024

© Copyright Informatica LLC 2006, 2024

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica, Informatica Cloud, Informatica Intelligent Cloud Services, PowerCenter, PowerExchange, and the Informatica logo are trademarks or registered trademarks
of Informatica LLC in the United States and many jurisdictions throughout the world. A current list of Informatica trademarks is available on the web at https://
www.informatica.com/trademarks.html. Other company and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2024-07-12

Table of Contents

Preface . 16
Informatica Resources. 16

Informatica Documentation. 16

Informatica Intelligent Cloud Services web site. 16

Informatica Intelligent Cloud Services Communities. 16

Informatica Intelligent Cloud Services Marketplace. 16

Data Integration connector documentation. 17

Informatica Knowledge Base. 17

Informatica Intelligent Cloud Services Trust Center. 17

Informatica Global Customer Support. 17

Chapter 1: Transformations. 18
Active and passive transformations. 18

Transformation types. 19

Transformations available in mappings. 21

Transformations available in advanced mode. 22

Transformations available in SQL ELT mode. 23

Licensed transformations. 23

Incoming fields. 24

Field name conflicts. 25

Field rules. 25

Data object preview. 30

Variable fields. 31

Transformation caches. 32

Cache types. 32

Cache files. 33

Cache size. 33

Optimizing the cache size. 33

Expression macros. 34

Macro types. 34

Macro input fields. 34

Vertical macros. 35

Horizontal macros. 39

Hybrid macros. 43

File lists. 44

Manually created file lists. 44

File list commands. 45

Using a file list in a Source transformation. 46

Using a file list in a Lookup transformation. 47

Configuration for multibyte hierarchical data. 47

Table of Contents 3

Chapter 2: Source transformation. 48
Source object. 48

File sources. 50

Database sources. 51

Database source properties. 52

Related objects. 53

Advanced relationships. 56

Custom queries. 56

Source filtering and sorting. 57

Web service sources. 57

Web service operations for sources. 58

Request messages. 59

Field mapping for web service sources. 60

Partitions. 63

Partitioning rules and guidelines. 64

Partitioning examples. 65

Reading hierarchical data in advanced mode. 66

Configuration for multibyte hierarchical data. 66

Source fields. 67

Editing native data types in complex file sources . 68

Editing transformation data types. 68

Chapter 3: Target transformation. 70
Target object. 71

Target file creation on advanced clusters. 72

File targets. 72

File target properties. 72

Flat file targets created at run time. 76

Flat file targets with static file names. 76

Flat file targets with dynamic file names. 78

Creating a flat file target at run time. 79

Database targets. 79

Database target properties. 79

Database targets created at run time. 81

Update columns for relational targets. 81

Target update override. 82

Web service targets. 83

Web service operations for targets. 84

Field mapping for web service targets. 84

Partitions. 85

Writing hierarchical data in advanced mode. 86

Configuration for multibyte hierarchical data. 86

4 Table of Contents

Target fields. 87

Target transformation field mappings. 88

Configuring a Target transformation. 89

Chapter 4: Access Policy transformation. 91
Access Policy transformation configuration. 91

Access Policy transformation example. 93

Chapter 5: Aggregator transformation. 96
Group by fields. 96

Sorted data. 97

Aggregate fields. 98

Aggregate functions. 98

Nested aggregate functions. 98

Conditional clauses. 99

Advanced properties. 99

Hierarchical data in advanced mode. 100

Aggregator transformation example. 100

Chapter 6: B2B transformation. 104
B2B Incoming Fields. 104

B2B settings. 104

Output fields. 104

Field mapping. 105

Advanced settings. 106

Chapter 7: Cleanse transformation. 107
Cleanse transformation configuration. 107

Cleanse asset considerations. 109

Synchronizing data quality assets. 109

Cleanse transformation field mappings. 110

Cleanse transformation output fields. 111

Advanced properties. 112

Chapter 8: Data Masking transformation. 113
Masking techniques. 113

Configuration properties for masking techniques. 114

Repeatable output. 114

Optimize dictionary usage. 115

Seed. 115

Unique substitution. 115

Mask format. 115

Source filter characters. 116

Table of Contents 5

Target filter characters. 117

Range. 117

Blurring. 117

Connections in a Data Masking transformation. 117

Credit card masking. 118

Email masking. 119

Advanced email masking. 119

IP address masking. 120

Key masking. 120

Phone number masking. 121

Random masking. 121

Social Insurance number masking. 121

Social Security number masking. 122

Custom substitution masking. 122

Dependent masking. 124

Dependent masking parameters. 124

Substitution masking. 125

URL address masking. 125

Mask rule parameter. 126

Creating a Data Masking transformation. 126

Consistent masked output. 127

Rules and guidelines. 128

Example. 128

Data Masking transformation example. 129

Chapter 9: Data Services transformation. 131
Dynamic service name. 131

Status tracing messages. 132

Data Services properties. 133

Data Services transformation input fields. 134

Data Services transformation output fields. 135

Data Services transformation field mapping. 136

Chapter 10: Deduplicate transformation. 137
Deduplication and consolidation operations. 137

Identity population data. 138

Groups in duplicate analysis. 139

Example: Selecting a group key column. 140

Deduplicate transformation configuration. 141

Deduplicate transformation field mappings. 143

Metadata fields on the Deduplicate transformation. 144

Link scores and driver scores. 145

Deduplicate transformation output fields. 146

6 Table of Contents

Advanced properties. 147

Chapter 11: Expression transformation. 148
Expression fields. 148

Output fields. 149

Variable fields. 149

Input macro field. 150

Output macro field. 150

Expression editor. 151

Transformation language components for expressions. 152

Expression syntax. 153

String and numeric literals. 153

Adding comments to expressions. 153

Reserved words. 154

Window functions. 155

Frame. 155

Partition and order keys. 157

Example: Use a window to calculate expiration dates. 159

Example: Use a window to flag GPS pings. 160

Example: Run an aggregate function on a window. 162

Advanced properties. 163

Hierarchical data in advanced mode. 164

Chapter 12: Filter transformation. 165
Filter conditions. 165

Advanced properties. 166

Hierarchical data in advanced mode. 166

Chapter 13: Hierarchy Builder transformation. 167
Configure output settings. 167

Rules and guidelines for hierarchical schemas. 168

Single output example. 168

Join and map fields for data conversion. 169

Joining incoming data. 169

Mapping relational fields to hierarchy fields. 170

Configure advanced properties. 170

Configuration for multibyte hierarchical data. 170

Hierarchy Builder transformation example. 171

Chapter 14: Hierarchy Parser transformation . 175
Using a Hierarchy Parser transformation. 175

Hierarchy Parser rules and guidelines. 175

Choosing a sample or schema file. 176

Table of Contents 7

Hierarchical schemas. 177

Rules and guidelines for hierarchical schemas. 177

Creating a hierarchical schema. 177

Input settings. 178

Selecting a hierarchical schema. 178

Creating a hierarchical schema from sample. 178

Input field selection. 179

Field mapping. 179

Selecting the elements to convert. 180

Output fields. 181

Selecting an output group. 181

Configuration for multibyte hierarchical data. 181

Hierarchy Parser transformation example. 182

Chapter 15: Hierarchy Processor transformation. 185
Hierarchy Processor transformation overview. 185

Hierarchical to relational data processing. 186

Relational to hierarchical data processing. 186

Hierarchical to hierarchical data processing. 187

Hierarchical to flattened data processing. 187

Configuration for multibyte hierarchical data. 188

Field restrictions. 188

Processing relational output . 189

Defining relational output with the Hierarchy Processor transformation. 189

Adding incoming fields to relational output groups. 190

Configuring relational output groups and fields. 192

Configuring data sources. 193

Configuring filter conditions. 193

Expression configuration. 195

Running a mapping with JSON data. 196

Hierarchical to relational example. 197

Processing hierarchical output . 199

Defining hierarchical output with the Hierarchy Processor transformation. 199

Adding incoming fields to hierarchical output groups. 200

Configuring hierarchical output group and fields. 206

Configuring data sources. 208

Configuring output data . 213

Expression configuration. 216

Running a mapping with JSON data. 217

Relational to hierarchical example. 217

Hierarchical to hierarchical example. 225

Processing flattened output. 230

Defining flattened output with the Hierarchy Processor transformation. 230

8 Table of Contents

Adding incoming fields to flattened output groups. 231

Renaming flattened output group and fields. 231

Expression format. 232

Running a mapping with JSON data. 233

Hierarchical to flattened example. 233

Chapter 16: Input transformation. 239
Input fields. 239

Chapter 17: Java transformation. 240
Defining a Java transformation. 241

Classpath configuration. 241

JAR or class files on an advanced cluster. 241

Classpath values. 242

Configuring the JVM Classpath for the Secure Agent. 243

Configuring the CLASSPATH environment variable. 243

Configuring the design time classpath. 244

Configuring the Java Classpath session property. 244

Java transformation fields. 244

Data type conversion. 245

Sort conditions. 246

Group by fields. 246

Configuring Java transformation properties. 246

Active and passive Java transformations. 248

Defining the update strategy. 248

Using high precision. 249

Processing subseconds. 249

Developing the Java code. 250

Creating Java code snippets. 251

Importing Java packages. 252

Defining helper code. 252

Defining input row behavior. 253

Defining end of data behavior. 253

Defining transaction notification behavior. 254

Using Java code to parse a flat file. 254

Compiling the code. 255

Viewing the full class code. 255

Troubleshooting a Java transformation. 256

Finding the source of compilation errors. 256

Identifying the error type. 256

Java transformation example. 257

Create the source file. 257

Configure the mapping. 258

Table of Contents 9

Configure the Java code snippets. 259

Compile the code and run the mapping. 261

Chapter 18: Java transformation API reference. 263
failSession. 264

generateRow. 264

getInRowType. 265

incrementErrorCount. 265

invokeJExpression. 266

isNull. 267

logError. 267

logInfo. 268

setNull. 268

setOutRowType. 269

Chapter 19: Joiner transformation. 270
Join condition. 270

Join type. 271

Advanced properties. 271

Hierarchical data in advanced mode. 272

Creating a Joiner transformation. 273

Joiner transformation example. 273

Chapter 20: Labeler transformation. 276
Labeler transformation configuration. 276

Labeler transformation field mappings. 277

Labeler transformation output fields. 279

Chapter 21: Lookup transformation. 280
Lookup object. 281

Lookup object properties. 282

Custom queries. 283

Lookup condition. 284

Lookup return fields. 285

Advanced properties. 286

Lookup SQL overrides. 289

Lookup SQL overrides for cached lookups. 289

Lookup SQL override for uncached lookups. 290

Guidelines for overriding the lookup query. 291

Lookup source filter. 292

Dynamic lookup cache. 292

Static and dynamic lookup comparison. 293

Dynamic cache updates. 293

10 Table of Contents

Inserts and updates for insert rows. 294

Dynamic cache and lookup source synchronization. 294

Dynamic cache and target synchronization. 295

Field mapping. 295

Ignore fields in comparison. 296

Dynamic lookup query overrides. 296

Persistent lookup cache. 297

Rebuilding the lookup cache. 297

Unconnected lookups. 298

Configuring an unconnected Lookup transformation. 299

Calling an unconnected lookup from another transformation. 299

Connected Lookup example. 300

Dynamic Lookup example. 300

Unconnected Lookup example. 301

Chapter 22: Machine Learning transformation. 304
Deploying the model as a REST endpoint. 304

Accessing the machine learning model. 305

Mapping fields to the request schema. 305

Mapping hierarchical fields. 306

Request mapping options. 307

Viewing response fields. 308

Configuring bulk requests. 308

Bulk request options. 310

Configuring an API proxy. 310

Bypassing the proxy server. 310

Configuring a Spark proxy. 310

Configuring a custom proxy. 311

Troubleshooting. 311

Error handling. 312

Machine Learning transformation example. 313

Chapter 23: Mapplet transformation. 315
Mapplet transformation configuration. 315

Selecting a mapplet. 316

Mapplet transformation field mappings. 316

Mapplet parameters. 317

Mapplet transformation output fields. 318

Mapplet transformation names. 318

Synchronizing a mapplet. 319

Chapter 24: Normalizer transformation. 320
Normalized fields. 320

Table of Contents 11

Occurs configuration. 320

Unmatched groups of multiple-occurring fields. 321

Generated keys. 321

Normalizer field mapping. 322

Normalizer field mapping options. 322

Advanced properties. 323

Target configuration for Normalizer transformations. 323

Normalizer field rule for parameterized sources. 324

Mapping example with a Normalizer and Aggregator. 324

Chapter 25: Output transformation. 328
Output fields. 328

Field mapping. 328

Chapter 26: Parse transformation. 330
Parse transformation configuration. 330

Parse transformation field mappings. 331

Parse transformation output fields. 333

Advanced properties. 334

Chapter 27: Python transformation. 335
Install and configure Python. 335

Step 1. Enable access to third-party libraries. 336

Step 2. Install prerequisite packages. 336

Step 3. Download the Python distribution. 336

Step 4. Prepare a directory to install Python. 337

Step 5. Install Python. 337

Step 6. Set environment variables. 337

Step 7. Verify the Python installation. 337

Step 8. Install str2bool library. 338

Step 9. Optionally, install third-party libraries. 338

Step 10. Copy Python to the Secure Agent machine. 338

Step 11. Optionally, verify third-party library installations. 338

Python transformation fields. 339

Data type conversion. 339

Data types in input and output fields. 340

Partition keys. 340

Active and passive Python transformations. 340

Resource files. 341

Developing the Python code. 341

Creating Python code snippets. 343

Referencing a resource file. 343

Example: Add an ID column to nonpartitioned data. 344

12 Table of Contents

Example: Use partitions to find the highest salary. 345

Example: Operationalize a pre-trained model. 347

Chapter 28: Rank transformation. 349
Ranking string values. 349

Rank caches. 350

Defining a Rank transformation. 351

Rank transformation fields. 351

Defining rank properties. 352

Defining rank groups. 353

Advanced properties. 354

Hierarchical data in advanced mode. 355

Rank transformation example. 355

Chapter 29: Router transformation. 358
Working with groups. 359

Guidelines for connecting output groups. 359

Group filter conditions. 359

Configuring a group filter condition. 360

Advanced properties. 361

Hierarchical data in advanced mode. 361

Router transformation examples. 361

Chapter 30: Rule Specification transformation. 363
Rule Specification transformation configuration. 363

Rule Specification transformation field mappings. 365

Rule Specification transformation output fields. 366

Advanced properties. 366

Chapter 31: Sequence transformation. 367
Sequence transformation uses. 367

Sequence output fields. 368

Sequence properties. 369

Disabling incoming fields. 370

Hierarchical data in advanced mode. 371

Sequence transformation rules and guidelines. 371

Sequence transformation example. 372

Chapter 32: Sorter transformation. 376
Sort conditions. 376

Sorter caches. 377

Advanced properties. 377

Hierarchical data in advanced mode. 378

Table of Contents 13

Sorter transformation example. 378

Chapter 33: SQL transformation. 382
Stored procedure or function processing. 382

Connected or unconnected SQL transformation for stored procedure processing. 384

Unconnected SQL transformations. 384

Calling an unconnected SQL transformation from an expression. 385

Invoking a stored procedure before or after a mapping run. 386

Unconnected SQL transformation example. 386

Query processing. 389

Static SQL queries. 389

Dynamic SQL queries. 390

Passive mode configuration. 392

SQL statements that you can use in queries . 392

Rules and guidelines for query processing. 393

SQL transformation configuration. 394

Configuring the SQL type. 395

SQL transformation field mapping. 397

SQL transformation output fields. 398

Advanced properties. 400

Chapter 34: Structure Parser transformation. 402
Processing input from a Hadoop Files source. 403

Processing input from a flat file source . 403

Configuring the flat file source . 403

Configuring the Structure Parser transformation to access flat files. 403

Structure Parser field mapping. 404

Output fields. 405

Advanced properties. 406

Structure Parser transformation configuration. 406

Configuring a Structure Parser transformation. 407

Selecting an intelligent structure model. 407

Selecting an output group. 408

Rules and guidelines for the Structure Parser transformation. 408

Structure Parser transformation example. 409

Chapter 35: Transaction Control transformation. 412
Transaction control condition. 413

Using Transaction Control transformations in mappings. 414

Sample transaction control mappings with multiple targets. 415

Guidelines for using Transaction Control transformations in mappings 416

Advanced properties. 417

14 Table of Contents

Chapter 36: Union transformation. 418
Comparison to Joiner transformation. 418

Planning to use a Union transformation. 419

Input groups. 419

Output fields. 420

Field mappings. 420

Advanced properties. 421

Union Transformation example. 421

Chapter 37: Velocity transformation. 425
Velocity transformation input format. 425

Source configuration for file sources. 426

Velocity template. 427

Testing the template. 428

Velocity transformation output. 429

Target configuration for file targets. 429

Velocity transformation parsers. 429

Examples. 429

XML conversion example. 430

JSON conversion example. 432

Chapter 38: Verifier transformation. 436
Address Reference Data. 436

Verifier transformation configuration. 437

Verifier transformation field mappings. 438

Understanding input and output mappings. 439

Verifier transformation output fields. 439

Advanced properties. 440

Chapter 39: Web Services transformation. 441
Create a Web Services consumer connection. 442

Define a business service. 443

Configure the Web Services transformation. 444

Configuring the transformation. 444

Transaction commit control. 447

Viewing incoming and request fields. 448

Pass-through fields. 449

Web Services transformation example. 450

Configuration for multibyte hierarchical data. 454

Index. 455

Table of Contents 15

Preface
Refer to Transformations for information about the transformations that you can include in mappings and
mapplets. Learn how to transform your data when you move it from source to target.

Informatica Resources
Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Documentation
Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Intelligent Cloud Services web site
You can access the Informatica Intelligent Cloud Services web site at http://www.informatica.com/cloud.
This site contains information about Informatica Cloud integration services.

Informatica Intelligent Cloud Services Communities
Use the Informatica Intelligent Cloud Services Community to discuss and resolve technical issues. You can
also find technical tips, documentation updates, and answers to frequently asked questions.

Access the Informatica Intelligent Cloud Services Community at:

https://network.informatica.com/community/informatica-network/products/cloud-integration

Developers can learn more and share tips at the Cloud Developer community:

https://network.informatica.com/community/informatica-network/products/cloud-integration/cloud-
developers

Informatica Intelligent Cloud Services Marketplace
Visit the Informatica Marketplace to try and buy Data Integration Connectors, templates, and mapplets:

https://marketplace.informatica.com/

16

https://docs.informatica.com
mailto:infa_documentation@informatica.com
http://www.informatica.com/cloud
https://network.informatica.com/community/informatica-network/products/cloud-integration
https://network.informatica.com/community/informatica-network/products/cloud-integration/cloud-developers
https://network.informatica.com/community/informatica-network/products/cloud-integration/cloud-developers
https://marketplace.informatica.com/

Data Integration connector documentation
You can access documentation for Data Integration Connectors at the Documentation Portal. To explore the
Documentation Portal, visit https://docs.informatica.com.

Informatica Knowledge Base
Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Intelligent Cloud Services Trust Center
The Informatica Intelligent Cloud Services Trust Center provides information about Informatica security
policies and real-time system availability.

You can access the trust center at https://www.informatica.com/trust-center.html.

Subscribe to the Informatica Intelligent Cloud Services Trust Center to receive upgrade, maintenance, and
incident notifications. The Informatica Intelligent Cloud Services Status page displays the production status
of all the Informatica cloud products. All maintenance updates are posted to this page, and during an outage,
it will have the most current information. To ensure you are notified of updates and outages, you can
subscribe to receive updates for a single component or all Informatica Intelligent Cloud Services
components. Subscribing to all components is the best way to be certain you never miss an update.

To subscribe, on the Informatica Intelligent Cloud Services Status page, click SUBSCRIBE TO UPDATES. You
can choose to receive notifications sent as emails, SMS text messages, webhooks, RSS feeds, or any
combination of the four.

Informatica Global Customer Support
You can contact a Global Support Center through the Informatica Network or by telephone.

To find online support resources on the Informatica Network, click Contact Support in the Informatica
Intelligent Cloud Services Help menu to go to the Cloud Support page. The Cloud Support page includes
system status information and community discussions. Log in to Informatica Network and click Need Help to
find additional resources and to contact Informatica Global Customer Support through email.

The telephone numbers for Informatica Global Customer Support are available from the Informatica web site
at https://www.informatica.com/services-and-training/support-services/contact-us.html.

Preface 17

https://docs.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://www.informatica.com/trust-center.html
https://status.informatica.com/
https://status.informatica.com/
https://www.informatica.com/services-and-training/support-services/contact-us.html

C h a p t e r 1

Transformations
Transformations are a part of a mapping that represent the operations that you want to perform on data.
Transformations also define how data enters each transformation.

Each transformation performs a specific function. For example, a Source transformation reads data from a
source, and an Expression transformation performs row-level calculations.

Active and passive transformations
A transformation can be active or passive.

An active transformation can change the number of rows that pass through the transformation. For example,
the Filter transformation is active because it removes rows that do not meet the filter condition.

A passive transformation does not change the number of rows that pass through the transformation.

You can connect multiple branches to a downstream passive transformation when all transformations in the
branches are passive.

You cannot connect multiple active transformations or an active and a passive transformation to the same
downstream transformation or transformation input group. You might not be able to concatenate the rows.
An active transformation changes the number of rows, so it might not match the number of rows from
another transformation.

For example, one branch in a mapping contains an Expression transformation, which is passive, and another
branch contains an Aggregator transformation, which is active. The Aggregator transformation performs
aggregations on groups, such as sums, and reduces the number of rows. If you connect the branches, Data
Integration cannot combine the rows from the Expression transformation with the different number of rows
from the Aggregator transformation. Use a Joiner transformation to join the two branches.

18

Transformation types
After you add a transformation to a mapping, you can define transformation details. Each transformation
type has a unique set of options that you can configure.

The following table provides a brief description of each transformation:

Transformation Description

Source Reads data from a source.

Target Writes data to a target.

Access Policy A passive transformation that applies access policies created in Data Access Management.

Aggregator An active transformation that performs aggregate calculations on groups of data.

Cleanse A passive transformation that adds a cleanse asset that you created in Data Quality to a
mapping or mapplet. Use a cleanse asset to standardize the form and content of your data.

Data Masking A passive transformation that masks sensitive data as realistic test data for nonproduction
environments.

Data Services An active transformation that invokes data services from the data services repository,
including industry-standard services, such as HL7 and HIPAA, and customized services.

Deduplicate An active transformation that adds a deduplicate asset that you created in Data Quality to a
mapping or mapplet. Use a deduplicate asset to find instances of duplicate identities in a data
set and optionally to consolidate the duplicates into a single record.

Expression A passive transformation that performs calculations on individual rows of data.

Filter An active transformation that filters data from the data flow.

Hierarchy Builder An active transformation that converts relational input into hierarchical output.

Hierarchy Parser A passive transformation that converts hierarchical input into relational output.

Hierarchy Processor An active transformation that converts hierarchical input into relational output, or relational
input into hierarchical output, or hierarchical output into hierarchical output of a different
schema, or hierarchical input into denormalized flattened output.

Input A passive transformation that passes data into a mapplet. Can be used in a mapplet, but not in
a mapping.

Java Executes user logic coded in Java.
Can be active or passive.

Joiner An active transformation that joins data from two sources.

Labeler A passive transformation that adds a labeler asset that you created in Data Quality to a
mapping or mapplet. Use a labeler asset to identify the types of information in an input field
and to assign labels for each type to the data.

Transformation types 19

Transformation Description

Lookup Looks up data from a lookup object. Defines the lookup object and lookup connection. Also
defines the lookup condition and the return values.
A passive lookup transformation returns one row. An active lookup transformation returns
more than one row.

Machine Learning Runs a machine learning model and returns predictions to the mapping.

Mapplet Inserts a mapplet into a mapping or another mapplet. A mapplet contains transformation logic
that you can create and use to transform data before it is loaded into the target.
Can be active or passive based on the transformation logic in the mapplet.

Normalizer An active transformation that processes data with multiple-occurring fields and returns a row
for each instance of the multiple-occurring data.

Output A passive transformation that passes data from a mapplet to a downstream transformation.
Can be used in a mapplet, but not in a mapping.

Parse A passive transformation that adds a parse asset that you created in Data Quality to a mapping
or mapplet. Use a parse asset to parse the words or strings in an input field into one or more
discrete output fields based on the types of information that the words or strings contain.

Python Runs Python code that defines transformation functionality. Can be active or passive.

Rank An active transformation that limits records to a top or bottom range.

Router An active transformation that you can use to apply a condition to incoming data.

Rule Specification A passive transformation that adds a rule specification asset that you created in Data Quality
to a mapping or mapplet. Use a rule specification asset to apply the data requirements of a
business rule to a data set.

Sequence A passive transformation that generates a sequence of values.

Sorter A passive transformation that sorts data in ascending or descending order, according to a
specified sort condition.

SQL Calls a stored procedure or function or executes a query against a database.
Passive when it calls a stored procedure or function. Can be active or passive when it
processes a query.

Structure Parser A passive transformation that analyzes unstructured data from a flat file source and writes the
data in a structured format.

Transaction Control An active transformation that commits or rolls back sets of rows during a mapping run.

Union An active transformation that merges data from multiple input groups into a single output
group.

Velocity A passive transformation that executes a Velocity script to convert JSON or XML hierarchal
input from one format to another without flattening the data.

20 Chapter 1: Transformations

Transformation Description

Verifier A passive transformation that adds a verifier asset that you created in Data Quality to a
mapping or mapplet. Use a verifier asset to verify and enhance postal address data.

Web Services An active transformation that connects to a web service as a web service client to access,
transform, or deliver data.

Transformations available in mappings
When you create a mapping, the transformation palette displays the available transformations. The
transformations that are available differ depending on whether you are using advanced mode or SQL ELT
mode.

When you copy a transformation into a mapping, the Validation panel shows validation errors if a
transformation is available only in advanced mode. To resolve the errors, update the data logic in the
mapping to use only the available transformations.

The following transformations are available:

Source

Target

Access Policy

Aggregator

Cleanse

Data Masking

Deduplicate

Expression

Filter

Hierarchy Builder

Hierarchy Parser

Input

Java

Joiner

Labeler

Lookup

Mapplet

Normalizer

Output

Parse

Rank

Router

Rule Specification

Sequence

Sorter

Transformation types 21

SQL

Structure Parser

Transaction Control

Union

Velocity

Web Services

Transformations available in advanced mode
In advanced mode, the transformation palette displays the transformations that enable advanced
functionality. When you copy a mapping to advanced mode, you might need to update the data flow to use
the available transformations.

When you copy a mapping to advanced mode, the Validation panel shows validation errors if a
transformation is not available in advanced mode. To resolve the errors, update the data logic in the mapping
to use only the transformations that are available in advanced mode. Transformations in advanced mode
might behave differently.

The following transformations are available in advanced mode:

Source

Target

Aggregator

Cleanse

Deduplicate

Expression

Filter

Hierarchy Processor

Input

Java

Joiner

Labeler

Lookup

Machine Learning

Mapplet

Normalizer

Output

Parse

Python

Rank

Router

Rule Specification

Sequence

Sorter

22 Chapter 1: Transformations

Structure Parser

Union

Transformations available in SQL ELT mode
In SQL ELT mode, the transformation palette displays the transformations that the target cloud data
warehouse can process.

When you copy a transformation into a mapping in SQL ELT mode, the Validation panel shows validation
errors if a transformation is not available in SQL ELT mode. To resolve the errors, update the data logic in the
mapping to use only the transformations that are available in SQL ELT mode.

The following transformations are available in SQL ELT mode:

Source

Target

Aggregator

Expression

Filter

Joiner

Lookup

Normalizer

Rank

Router

Sequence

Sorter

Union

Licensed transformations
The transformations that you can use in a mapping vary based on your organization's licenses.

In the Mapping Designer, you can use the licensed transformations icon to show all transformations available
in Data Integration or only those that your organization has licenses for. By default, the transformation
palette shows the licensed transformations. To see all transformations, click the licensed transformations
icon.

Licensed transformations 23

The licensed transformations icon appears at the bottom of the transformation palette as shown in the
following image:

You can select from the following options:

• Show Licensed. The palette only displays transformations available for your organization.

• Show All. The palette displays all transformations available in Data Integration. Unlicensed
transformations are disabled and cannot be used the mapping.

If a transformation license expires, you must renew the license to validate, run, or import any mapping or task
that contains the transformation.

Incoming fields
An incoming field is a field that enters a transformation from an upstream transformation.

By default, a transformation inherits all incoming fields from an upstream transformation. However, you
might want to change the default. For example, you might not need all of the fields from an upstream
transformation, or you might need to rename fields from an upstream transformation.

A field rule defines how data enters a transformation from an upstream transformation. You can create field
rules to specify which incoming fields to include or exclude and to rename incoming fields as required.

A field name conflict occurs when fields come from multiple transformations and have the same name. To
resolve a field name conflict caused by fields from an upstream transformation, you can create a field name
conflict resolution to rename incoming fields in bulk.

24 Chapter 1: Transformations

The following list shows the order of events that take place as fields enter and move through a
transformation:

1. Field name conflict resolution rules run, if any are present.

2. Field rules run as fields from upstream transformations enter a transformation.

3. Depending on the transformation type, new fields might be added to a transformation. For example, in a
Lookup transformation, fields can enter the transformation from a lookup object.

Field name conflicts
The Mapping Designer generates a field name conflict error when you validate a mapping that has fields with
matching names from different transformations. When a field name conflict occurs, you need to ensure that
each field has a unique name.

To resolve a field name conflict, you can create a field rule to rename fields. If you create a field rule to
resolve a field name conflict, you create the field rule in the upstream transformation.

Alternatively, field name conflict error messages contain a link that you can use to create a field name
conflict rule to resolve the field name conflict. A field name conflict rule renames all of the fields from the
upstream transformation, not just the fields that cause a conflict.

Field name conflict rules take effect before field rules take effect. Field name conflict rules are only
applicable to incoming fields from upstream transformations. Field name conflicts that occur after incoming
fields first enter a transformation cannot be corrected by field name conflict rules. For example, you cannot
use field name conflict rules to correct field name conflicts that occur due to field rules or activities such as
lookup fields. Instead, modify the field rules or transformations that cause the conflict.

Creating a field name conflict resolution
You can resolve a field name conflict by renaming all of the fields coming from an upstream transformation
in bulk using the Resolve Field Name Conflict dialog box, which you access from a field name conflict error
message.

1. Click the link in the error message to access the Resolve Field Name Conflict dialog box.

2. Select the upstream transformation that contains the fields you want to rename in bulk.

3. In the Bulk Rename Options column, specify whether you want to rename by adding a prefix or by adding
a suffix.

4. Enter the text to add to the field names, then click OK.

Field rules
Configure a field rule based on incoming fields from an upstream transformation. Then configure the field
selection criteria and naming convention for the fields.

When you configure a field rule, you perform the following steps:

1. Choose the incoming fields that you want to include or exclude. To improve processing time and keep a
clean set of data, you can include only the incoming fields that you need.

2. Configure the field selection criteria to determine which incoming fields apply to the rule. If you use the
Named Fields selection criteria, you can use a parameter for the incoming fields.

3. Optionally, choose to rename the fields. To distinguish fields that come from different sources or to
avoid field name conflicts, you can rename incoming fields. If you use the pattern option, you can create
a parameter to rename fields in bulk.

Incoming fields 25

4. Verify the order of execution. If you configure multiple rules, you can change the order in which the
mapping task applies them.

Note: You cannot configure field rules on Source transformations or Mapplet transformations that contain
sources.

Step 1. Choose incoming fields
When you configure a field rule, you indicate whether the rule includes or excludes the incoming fields that
you specify.

The include/exclude operator works in conjunction with field selection criteria to determine which incoming
fields a field rule affects.

For example, you want a transformation to exclude all binary fields. You select the exclude operator to
indicate that the incoming fields that meet the field selection criteria do not pass into the current
transformation. Then you specify the binary data type for the field selection criteria.

Step 2. Configure field selection criteria
When you configure a field rule, you specify the field selection criteria to determine which incoming fields
apply to the field rule.

You can choose one of the following field selection criteria:

All Fields

Includes all of the incoming fields. You can rename the incoming fields in bulk when you use this option
in combination with the Includes operator.

Named Fields

Includes or excludes the incoming fields that you specify. Use the Named Fields selection criteria to
specify individual incoming fields to rename or to include or exclude from the incoming transformation.
When you enter the field selection criteria details, you can review all of the incoming fields and select the
fields to include or exclude. You can add a field that exists in the source if it does not display in the list.
You can also create a parameter to represent a field to include or exclude.

Fields by Data Type

Includes or excludes incoming fields with the data types that you specify. When you enter the field
selection criteria details, you can select the data types that you want to include or exclude.

Fields by Text or Pattern

Includes or excludes incoming fields by prefix, suffix, or pattern. You can use this option to select fields
that you renamed earlier in the data flow. When you enter the field selection criteria details, you can
select a prefix, suffix, or pattern, and define the rule to use.

When you select the prefix option or suffix option, you enter the text to use as the prefix or suffix. For
example, to find all fields that start with the string, "Cust," enter Cust as the prefix.

When you select the pattern option, you can enter a regular expression or you can use a parameter for
the pattern. The expression must use perl compatible regular expression syntax. For example, to find all
fields that start with the strings "Cust" or "Addr," enter the pattern Cust.*|Addr.*. To find all fields that
contain the string "Cust" or "CUST" anywhere in the field name, enter the pattern .*Cust.*|.*CUST.*. For
more information about perl compatible regular expression syntax, see the help for the REG_EXTRACT
function in Function Reference.

26 Chapter 1: Transformations

The following image shows the selection of the Fields by Data Types field selection criteria:

The following image shows the selection of the date/time data type for the field selection criteria details:

Step 3. Rename fields
Rename fields to avoid field name conflicts or to clarify field origins in complex mappings. You can rename
fields as part of a field rule in a transformation. After you specify the field selection criteria for a field rule,
you specify how to rename the selected fields.

You can rename fields individually or in bulk. When you rename fields individually, you select the fields you
want to rename from a list of incoming fields. Then you specify the name for each of the selected fields.

When you rename in bulk, you can rename all fields by adding a prefix, suffix, or pattern. When you rename
fields with a prefix or suffix, you enter the text string to use as a prefix or suffix. For example, you can specify
to rename all fields as FF_<field name>.

When you rename fields by pattern, you enter a regular expression to represent the pattern or use a
parameter to define the pattern in the task. You can create a simple expression to add a prefix or suffix to all
field names or you can create an expression to replace a particular pattern with particular text.

To replace a pattern with text use a regular expression in the following syntax, where a forward slash
separates the pattern to match and the text the pattern will be replaced with:

<pattern to match>/<replacement text>

Incoming fields 27

The following table provides a few examples of using regular expressions when you rename fields in bulk:

Goal Expression

Replace all occurrences of Inc with LLC. Inc/LLC

Replace occurrences of Inc that occur at the end of a field
name with LLC.

Inc$/LLC

Replace occurrences of Loc that occur at the beginning of a
field name with Branch.

^Loc/Branch

Remove all occurrences of A/C. A\/C(.*)/$1
Note: When a character in a field name is a regular
expression metacharacter, escape the character with a
backslash to show that it is a literal. In this example,
the forward slash is a metacharacter.

Add a prefix of FF and a suffix of _in to all fields. FF_$0_in

The following image shows the Configure Field Rules dialog box with the Pattern bulk renaming option
selected and a pattern specified to use:

Carefully construct field renaming rules to ensure that the rules do not introduce issues such as field name
conflicts. If a field renaming rule causes field name conflicts, you can edit the rule.

Tip: If the upstream transformation is a source where you cannot rename in bulk, you can add an Expression
transformation to rename the fields.

Step 4. Verify order of rule execution
If you create multiple field rules, confirm that the rules run in a logical order.

To review the order in which the rules run, you can view the rules in the Field Rules area. The mapping task
runs the rules in the order in which the rules appear. If the order of the field rules is incorrect, you can
rearrange the order.

You also can preview the incoming fields for the transformation based on the rules that you have created in
the Preview Fields table. The Preview Fields table lists all included and excluded fields. For example, if you

28 Chapter 1: Transformations

create a field rule that excludes binary fields, the Excluded Fields list shows the binary fields as excluded
from the transformation.

If the Source transformation in the mapping uses a connection parameter or a data object parameter, the
Preview Fields table does not display the transformation incoming fields.

The following image shows the Preview Fields table:

Field rule configuration examples
The following examples show how you can configure field rules in a transformation.

Changing incoming field names

You need to create a mapping to gather revenue data from multiple sales locations. You learn that multiple
fields from the upstream transformation have the same names as fields in a source transformation. To avoid
field name conflicts, you change the field names for all incoming fields so that the source is distinguishable
throughout the mapping. To change the names of incoming fields, you create a field rule to rename all fields
with the SalesForce_ prefix.

To increase performance, you want to ensure that the data set only includes required data. You determine
that information regarding transaction dates is not required, so you remove the data fields from the mapping.
You create a rule to exclude fields that are not required. To exclude date fields, you create a rule to exclude
fields with a date/time data type.

You review the order of the rules. You want the rule to rename the fields to run after the rule to exclude the
date/time fields. You move the rule to remove date/time fields so that it appears before the renaming rule.

Removing patterns in field names

You can use parentheses to group different patterns and use a reference to replace the pattern. In a regular
expression, parentheses group the patterns to be matched. You can use a ($) reference to select a group
matched in the input string.

You might need to change patterns in fields between transformations. If fields in an upstream transformation
contain the suffix _out, you can remove the suffix from the field names in the current transformation. Use the
following expression to remove the _out suffix: (.*)_out/$1. The (.*) part of the expression matches all the
field name characters, _out matches the suffix, and $1 references the input string specified by the matched
(.*) field name characters.

The following expression shows another example:

(.*)(_)out/$1

Incoming fields 29

In a matched string of string_out, for example, the matches are $1 for string, $2 for_, and $3 for out. The
string value is referenced by $1 because string is the first group in the match.

Note: After you apply this field rule to rename the fields, Data Integration appends a suffix, beginning with 1,
to multiple fields with the same name. This convention removes duplicate field names.

Creating a field rule
Configure field rules on the Incoming Fields tab of the Properties panel in the Mapping Designer.

1. On the Incoming Fields tab, in the Field Rules area, insert a row for the rule based on the order in which
the rules must run. In the Actions column for a rule that you want to run before or after the new rule,
select either Insert above or Insert below.

2. To specify whether the rule includes or excludes fields, from the Operator column, choose either Include
or Exclude.

3. In the Field Selection Criteria column, choose one of the following methods:

• To rename all of the incoming fields in bulk, select All Fields.

• To apply the rule to the fields that you specify, select Named Fields.

• To apply the rule based on the data type of each field, select Fields by Data Types.

• To apply the rule to all fields that contain a specific prefix, suffix, or pattern, select Fields by Text or
Pattern.

4. To provide the field selection details, in the Detail column, click the Configure or Rename link. The
Rename link appears if the field selection criteria is All Fields.

5. In the Configure Field Rules dialog box, select the fields to apply to the rule, based on the chosen field
selection criteria. Alternatively, click Parameters to add a parameter so fields can be selected in the
mapping task.

6. To rename fields, click the Rename Fields tab and choose to rename fields individually or in bulk.

If you want to rename all fields, you must rename in bulk. If you want to rename fields in bulk by pattern,
you can create a parameter to specify the pattern in the mapping task.

7. To ensure that the field rules run in a logical order, in the Field Rules area, review the order in which the
rules display. In the Included Fields and Excluded Fields lists, review the results of the rules. Move field
rules to the appropriate location if required.

8. To delete a rule, in the Actions column, select Delete.

Data object preview
When you add a Source, Target, or Lookup transformation to a mapping and you select a single object as the
source, target, or lookup object, you can preview the data.

This data preview feature is different from mapping data preview. A mapping data preview lets you see data
that changed as a result of processing the mapping logic. For information on mapping data preview, see
Mappings.

To preview the data object, open the Source, Target, or Lookup Object tab of the Properties panel, and click
Preview Data.

When you preview data, Data Integration displays the following information:

• The first 10 rows with the fields in native order.

30 Chapter 1: Transformations

• The rows with their fields in alphabetical order if you enable the Display source fields in alphabetical
order option.

If the source, target, or lookup object is a flat file, you can also configure the formatting options. The
following table describes the formatting options for flat files:

Property Description

Flat File Type File type, either delimited or fixed-width.

Delimiter Delimiter character for delimited files.

Treat multiple
characters as a
single delimiter

Treats the specified set of delimiters as one delimiter. For example, a source file contains the
following record: abc~def|ghi~|~|jkl|~mno. If you specify the delimiter as (~ |), Data
Integration reads the record as three columns separated by two delimiters: abc~def|ghi, NULL,
jkl|~mno. If you disable this option, Data Integration reads the record as nine columns
separated by eight delimiters: abc, def, ghi, NULL, NULL, NULL, jkl, NULL, mno.

Text Qualifier Character to qualify text for delimited files.

Escape Character Escape character for delimited files.

Field Labels For delimited files, determines whether the task generates the field labels or imports them from
the source file. If you import them from the source file, enter the row number that contains the
field labels.

Fixed Width File
Format

File format to use for fixed-width files. If the list includes multiple fixed-width file formats with
the same name, use the project and folder location that's appended to the name to determine
the appropriate file format to use. If there are no available fixed-width file formats, select New
> Components > Fixed-Width File Format to create one.

Note: Other formatting options might be available based on the connection type. For more information, see
the help for the appropriate connector.

Variable fields
A variable field defines calculations and stores data temporarily. You can use variable fields in the
Expression and Aggregator transformations.

You might use variables to perform the following tasks:

• Temporarily store data.

• Simplify complex expressions.

• Store values from prior rows.

• Compare values.

For example, you want to generate a mailing list by concatenating first and last names, and then merging the
name with the address data. To do this, you might create a variable field, FullName, that concatenates the
First and Last fields. Then, you create an expression field, NameAddress, to concatenate the FullName
variable field with the Address field.

The results of a variable field does not pass to the data flow. To use data from a variable field in the data
flow, create an expression field for the variable field output. In the preceding example, to pass the

Variable fields 31

concatenated first and last name to the data flow, create a FullName_out expression field. And then, use the
FullName variable field as the expression for the field.

Transformation caches
Data Integration allocates cache memory for Aggregator, Joiner, Lookup, Rank, and Sorter transformations in
a mapping.

You can configure the cache sizes for these transformations. The cache size determines how much memory
Data Integration allocates for each transformation cache at the start of a mapping run.

If the cache size is larger than the available memory on the machine, Data Integration cannot allocate enough
memory and the task fails.

If the cache size is smaller than the amount of memory required to run the transformation, Data Integration
processes some of the transformation in memory and stores overflow data in cache files. When Data
Integration pages cache files to the disk, processing time increases. For optimal performance, configure the
cache size so that Data Integration can process the transformation data in the cache memory.

By default, Data Integration automatically calculates the memory requirements at run time based on the
maximum amount of memory that it can allocate. After you run a mapping in auto cache mode, you can tune
the cache sizes for each transformation.

Cache types
Aggregator, Joiner, Lookup, and Rank transformations require an index cache and a data cache. Sorter
transformations require one cache.

The following table describes the type of information that Data Integration stores in each cache:

Transformation Cache types

Aggregator Index. Stores group values as configured in the group by fields.
Data. Stores calculations based on the group by fields.

Joiner Index. Stores all master rows in the join condition that have unique keys.
Data. Stores master source rows.

Lookup Index. Stores lookup condition information.
Data. Stores lookup data that is not stored in the index cache.

Rank Index. Stores group values as configured in the group by fields.
Data. Stores row data based on the group by fields.

Sorter Sorter. Stores sort keys and data.

32 Chapter 1: Transformations

Cache files
When you run a mapping, Data Integration creates at least one cache file for each Aggregator, Joiner, Lookup,
Rank, and Sorter transformation. If Data Integration cannot run a transformation in memory, it writes the
overflow data to the cache files.

For Aggregator, Joiner, Lookup, and Rank transformations, Data Integration creates index and data cache
files to run the transformation. For Sorter transformations, Data Integration creates one sorter cache file. By
default, Data Integration stores cache files in the directory entered in the Secure Agent $PMCacheDir
property for the Data Integration Server. You can change the cache directory on the Advanced tab of the
transformation properties. If you change the cache directory, verify that the directory exists and contains
enough disk space for the cache files.

Cache size
Cache size determines how much memory Data Integration allocates for each transformation cache at the
start of a mapping run. You can configure a transformation to use auto cache mode or use a specific value.

Auto cache

By default, a transformation cache size is set to Auto. Data Integration automatically calculates the cache
memory requirements at run time. You can also define the maximum amount of memory that Data
Integration can allocate in the advanced session properties when you configure the task.

Data Integration allocates more memory to transformations with higher processing times. For example, Data
Integration allocates more memory to the Sorter transformation because the Sorter transformation typically
takes longer to run.

In transformations that use a data and an index cache, Data Integration also allocates more memory to the
data cache than to the index cache. It allocates all of the memory for the Sorter transformation to the sorter
cache.

Specific cache size

You can configure a specific cache size for a transformation. Data Integration allocates the specified amount
of memory to the transformation cache at the start of the mapping run. Configure a specific value in bytes
when you tune the cache size.

You can use session logs to determine the optimal cache size. When you configure the cache size to use the
value specified in the session log, you can ensure that no allocated memory is wasted. However, the optimal
cache size varies based on the size of the source data. Review the mapping logs after subsequent mapping
runs to monitor changes to the cache size.

To define specific cache sizes, enter the cache size values on the Advanced tab in the transformation
properties.

Optimizing the cache size
For optimal mapping performance, configure the cache sizes so that Data Integration can run the complete
transformation in the cache memory.

1. On the Advanced tab of the transformation properties, set the tracing level to verbose initialization.

2. Run the task in auto cache mode.

3. Analyze the transformation statistics in the session log to determine the cache sizes required for
optimal performance.

Transformation caches 33

For example, you have a Joiner transformation called "Joiner." The session log contains the following
text:

CMN_1795 [2023-01-06 16:16:59.026] The index cache size that would hold [10005]
input rows from the master for [Joiner], in memory, is [8437760] bytes
CMN_1794 [2023-01-06 16:16:59.026] The data cache size that would hold [10005] input
rows from the master for [Joiner], in memory, is [103891920] bytes

The log shows that the index cache size requires 8,437,760 bytes and the data cache requires
103,891,920 bytes.

4. On the Advanced tab of the transformation properties, enter the value in bytes that the session log
recommends for the cache sizes.

Expression macros
An expression macro is a macro that you use to create repetitive or complex expressions in mappings.

You can use an expression macro to perform calculations across a set of fields or constants. For example,
you might use an expression macro to replace null values in a set of fields or to label items based on a set of
sales ranges.

In an expression macro, one or more input fields represent source data for the macro. An expression
represents the calculations that you want to perform. And an output field represents the results of the
calculations.

At run time, the task expands the expression to include all of the input fields and constants, and then writes
the results to the output fields.

You can create expression macros in Expression and Aggregator transformations but you cannot combine an
expression macro and an in-out parameter in an Expression transformation.

Macro types
You can create the following types of macros:

Vertical

A vertical macro expands an expression vertically. The vertical macro generates a set of similar
expressions to perform the same calculation on multiple incoming fields.

Horizontal

A horizontal macro expands an expression horizontally. The horizontal macro generates one extended
expression that includes a set of fields or constants.

Hybrid

A hybrid macro expands an expression both vertically and horizontally. A hybrid macro generates a set
of vertical expressions that also expand horizontally.

Macro input fields
A macro input field is a field that represents input that you want to use in the expression macro. The input
can be fields or constants. All expression macros require a macro input field.

A macro input field in a vertical macro represents a set of incoming fields.

34 Chapter 1: Transformations

A macro input field in a horizontal macro can represent a set of incoming fields or a set of constants. You
can create a multiple macro input fields in a horizontal macro to define multiple sets of constants.

Macro input fields use the following naming convention: %<macro_field_name>%.

For example, you want to apply an expression to a set of address fields. You create a macro input field
named %AddressFields% and define a field rule to indicate the incoming fields to use. When you configure
the expression, you use %AddressFields% to represent the incoming fields.

Vertical macros
Use a vertical macro to apply a macro expression to a set of incoming fields.

The macro input field in a vertical macro represents the incoming fields. The expression represents the
calculations that you want to perform on all incoming fields. And the macro output field represents a set of
output fields that passes the results of the calculations to the rest of the mapping. You configure the macro
expression in the macro output field.

The macro output field represents the output fields of the macro, but the names of the output fields are not
explicitly defined in the mapping. To include the results of a vertical macro in the mapping, configure a field
rule in the downstream transformation to include the output fields that the macro generates.

To write the results of a vertical macro to the target, link the output fields to target fields in the Target
transformation.

When the task runs, the task generates multiple expressions to perform calculations on each field that the
macro input field represents. The task also replaces the macro output field with actual output fields, and then
uses the output fields to pass the results of the calculations to the rest of the mapping.

Note: The macro output field does not pass any data.

Example

The following vertical macro expression trims leading and trailing spaces from fields that the %Addresses%
macro input field represents:

LTRIM(RTRIM(%Addresses%))
At run time, the task generates the following set of expressions to trim spaces from the fields that %Address
% represents:

LTRIM(RTRIM(Street))
LTRIM(RTRIM(City))
LTRIM(RTRIM(State))
LTRIM(RTRIM(ZipCode))

Configuring a vertical macro
You can configure a vertical macro on the Expression tab of the Expression transformation or the Aggregate
tab of the Aggregator transformation.

1. Create a macro input field to define the incoming fields to use.

2. Create a macro output field to define the datatype and naming convention for the output fields.

3. In the macro output field, configure the macro expression. Include the macro input field in the macro
expression.

4. In the downstream transformation, configure a field rule to include the results of the macro in the
mapping.

Expression macros 35

Macro input fields for vertical macros
Use a macro input field to represent the incoming fields that you want to use in a vertical macro.

When you create a macro input field, define a name for the macro input field, and then use field rules to
define the incoming fields that you want to use. At run time, the macro input field expands to represent the
selected fields.

You can use the following field rules when you configure a macro input field:

• All Fields

• Named Fields

• Fields by Text or Pattern

The following image shows a Named Fields field rule that includes the Q1 to Q4 fields:

Macro output fields for vertical macros
A macro output field represents the output fields that the task generates at run time for a vertical macro. You
also define the expression that you want to use in the macro output field.

When you configure a macro output field, you select the macro input field to use and define a naming
convention for the output fields. You can customize a prefix or suffix for the naming convention. By default,
the macro output field uses the following naming convention for output fields: <macro_input_field>_out.

You can define the data type, precision, and scale of the output fields. Or, you can configure the macro output
field to use the datatype, precision, and scale of the incoming fields. Use the datatype of incoming fields

36 Chapter 1: Transformations

when the incoming fields include more than one datatype and when the expression does not change the
datatype of incoming data.

At run time, the task generates output fields based on the macro output field configuration. The task creates
an output field for each incoming field that the macro input field represents, and then writes the results of the
expression to the output fields.

For example, the following image shows a macro output field that creates output fields based on the
incoming fields that %QuarterlyData% represents:

If the %QuarterlyData% macro input field represents the Q1 to Q4 fields, then the task creates the following
output fields at run time: Q1_out, Q2_out, Q3_out, Q4_out. The output fields have the same datatype as the
incoming fields.

Note that you cannot define the precision and scale after you select the Input Field Type datatype.

Field rules for vertical macro output fields
To use the results of a vertical macro in a mapping, configure a field rule to include the output fields in the
downstream transformation or parameterize the target field mapping.

Because an expression macro represents fields that are not explicitly defined until run time, you need to
configure the downstream transformation to include the output fields of a vertical macro. There are two ways
to do this:

• Create named fields in the downstream transformation. On the Incoming Fields tab, create a named field
rule and create a new incoming field for each output field of the vertical macro. You can use these fields
in downstream transformations.

• Alternatively, if your Target transformation is directly downstream from the macro, completely
parameterize the target field mapping. When you configure the mapping task, Data Integration creates the
macro output fields in the target. Map the incoming fields to the target fields.

Expression macros 37

Example

A macro input field named %InputDates% represents the following source fields for a macro that converts the
data to the Date data type:

OrderDate
ShipDate
PaymentReceived

The macro output field uses the default naming convention: <macro input field>_out. To use the Date fields
that the macro generates, create a Named Field rule in the downstream transformation. Create the following
fields:

OrderDate_out
ShipDate_out
PaymentReceived_out

Configure the field rule to include the fields that you create.

After you create the field rule, you can use the fields in expressions and field mappings in downstream
transformations.

Vertical macro example
To find the annual sum of quarterly data for each store, you might use a vertical expression macro in an
Aggregator transformation.

The Aggregator transformation uses the store ID field as the group by field. A %QuarterlyData% macro input
field reads sales data from the following input fields: Q1, Q2, Q3, and Q4.

A %QuarterlyData%_out macro output field is based on the %QuarterlyData% macro input field. To find the
sum of sales for each quarter, the macro output field includes the following expression: SUM(%QuarterlyData
%).

In the Target transformation, a field rule includes the following output fields in the incoming fields list:
Q1_out, Q2_out, Q3_out, Q4_out. In the target field mapping, the Qx_out fields are mapped to the target.

The following image shows the vertical expression macro in an Aggregator transformation:

When the task runs, the expression expands vertically, as follows:

SUM(Q1)
SUM(Q2)

38 Chapter 1: Transformations

SUM(Q3)
SUM(Q4)

The task groups the data by store when it performs the aggregation and writes the results to the target.

Horizontal macros
Use a horizontal macro to generate a single complex expression that includes a set of incoming fields or a
set of constants.

In a horizontal macro, a macro input field can represent a set of incoming fields or a set of constants.

In a horizontal macro, the expression represents calculations that you want to perform with the incoming
fields or constants. The expression must include a horizontal expansion function.

A horizontal macro expression produces one result, so a transformation output field passes the results to the
rest of the mapping. You configure the horizontal macro expression in the transformation output field.

The results of the expression pass to the downstream transformation with the default field rule. You do not
need additional field rules to include the results of a horizontal macro in the mapping.

To write the results of a horizontal macro to the target, connect the transformation output field to a target
field in the Target transformation.

Example

For example, a horizontal macro can check for null values in the fields represented by the %AllFields% macro
input field. When a field is null, it returns 1. And then, the %OPR_SUM% horizontal expansion function returns
the total number of null fields.

The following expression represents the calculations in the macro:

%OPR_SUM[IIF(ISNULL(%AllFields%), 1, 0)]%
At run time, the application expands the expression horizontally as follows to include the fields that
%AllFields% represents:

IIF(ISNULL (AccountID, 1,0)+IIF(ISNULL(AccountName, 1, 0)+IIF(ISNULL(ContactName, 1,
0)+IIF(ISNULL(Phone, 1, 0)+IIF(ISNULL(Email, 1, 0)...

Horizontal expansion functions
Use a horizontal expansion function to create an expression in an expression macro.

Horizontal expansion functions use the following naming convention: %OPR_<function_type>%. Horizontal
expansion functions use square brackets ([]) instead of parentheses.

In the Field Expression dialog box, the functions appear in the Horizontal Expansion group of the functions
list.

You can use the following horizontal expansion functions:
%OPR_CONCAT%

Uses the CONCAT function and expands an expression in an expression macro to concatenate multiple
fields. %OPR_CONCAT% creates calculations similar to the following expression:

FieldA || FieldB || FieldC...

Expression macros 39

%OPR_CONCATDELIM%

Uses the CONCAT function and expands an expression in an expression macro to concatenate multiple
fields, and adds a comma delimiter. %OPR_CONCATDELIM% creates calculations similar to the following
expression:

FieldA || ", " || FieldB || ", " || FieldC...
%OPR_IIF%

Uses the IIF function and expands an expression in an expression macro to evaluate a set of IIF
statements. %OPR_IIF% creates calculations similar to the following expression:

IIF(<field> >= <constantA>, <constant1>,
 IIF(<field> >= <constantB>, <constant2>,
 IIF(<field> >= <constantC>, <constant3>, 'out of range')))

%OPR_SUM%

Uses the SUM function and expands an expression in an expression macro to return the sum of all fields.
%OPR_SUM% creates calculations similar to the following expression:

FieldA + FieldB + FieldC...
For more information about horizontal expansion functions, see Function Reference.

Configuring a horizontal macro
You can configure a horizontal macro on the Expression tab of the Expression transformation or the
Aggregate tab of the Aggregator transformation.

Configure a horizontal macro based on whether you want to use incoming fields or constants in the macro
expression.

1. Create one or more macro input fields:

• To use incoming fields, create a macro input field to define the incoming fields to use.

• To use constants, create a macro input field for each set of constants that you want to use.

2. Create a transformation output field.

3. In the transformation output field, configure the macro expression. Use a horizontal expansion function
and include the macro input fields.

4. To include the results of a horizontal macro in the mapping, use the default field rule in the downstream
transformation. You can use any field rule that includes the transformation output field.

5. To write the results of a horizontal macro to the target, connect the transformation output field to a
target field in the Target transformation.

Macro input fields for incoming fields in horizontal macros
You can use a macro input field to represent the incoming fields that you want to use in a horizontal macro.

When you create a macro input field, define a name for the macro input field, and then use field rules to
define the incoming fields that you want to use. At run time, the macro input field expands to represent the
selected fields.

You can use the following field rules when you configure a macro input field:

• All Fields

• Named Fields

• Fields by Text or Pattern

40 Chapter 1: Transformations

The following image shows a Named Fields field rule that includes the Q1 to Q4 fields:

Macro input fields for constants in horizontal macros
You can use a macro input field to represent the constants that you want to use in a horizontal macro. You
can also create multiple macro input fields to represent corresponding sets of constants.

When you create a macro input field, define a name for the macro input field, and then define the constants
that you want to use. At run time, the macro input field expands to represent the constants and uses them in
the listed order.

When you create multiple macro input fields with corresponding sets of constants, the task evaluates each
set of constants in the listed order.

Expression macros 41

The following image shows a macro input field that represents constants:

At run time, the macro input field expands and uses the constants in the following order: 50000, 100000,
150000.

Transformation output field configuration for horizontal macros
Use a transformation output field to define the expression for a horizontal macro and to pass the results to
the rest of the mapping.

When you create a transformation output field, you define the name and datatype for the field. You also
configure the expression for the macro. In the expression, include a horizontal expansion function and any
macro input fields that you want to use.

The default field rule passes the transformation output field to the downstream transformation. You can use
any field rule that includes the transformation output field to pass the results of a horizontal macro to the
mapping.

Horizontal macro example
To create categories for employees based on salary ranges, you might create a horizontal macro that defines
the minimum and maximum values for each range and corresponding job categories.

In an Expression transformation, macro input fields define the constants to use in the expression.
%IncomeMin% defines the low end of each salary range and %IncomeMax% defines the high end of each
salary range. %EmployeeType% lists the job category that corresponds to each range.

42 Chapter 1: Transformations

The EmployeeStatus transformation output field passes the results to the mapping and includes the
following horizontal macro expression:

%OPR_IIF[(EMP_SALARY>=%IncomeMin%) AND (EMP_SALARY<%IncomeMax%), %EmployeeType%,
'unknown']%

In the Target transformation, the default field rule includes the EmployeeStatus transformation output field in
the incoming fields list. In the target field mapping, the EmployeeStatus is mapped to the target.

The following image shows the horizontal macro in an Expression transformation:

The horizontal macro expression expands as follows when you run the task:

IIF(Salary>=5000 AND Salary<50000), 'IndividualContributor',
 IIF (Salary>=50000 AND Salary<100000), 'Manager',
 IIF (Salary>=100000 AND Salary<150000), 'SeniorManager', 'unknown')))

Note that the expression uses the first value of each macro input field in the first IIF expression and
continues with each subsequent set of constants.

Hybrid macros
A hybrid macro expands an expression both vertically and horizontally. A hybrid macro generates a set of
vertical expressions that also expand horizontally.

Configure a hybrid macro based on your business requirements. Use the configuration guidelines for vertical
and horizontal macros to create a hybrid macro.

Example

For example, the following expression uses the %OPR_IIF% horizontal expansion function to convert the
format of the date fields represented by the %dateports% macro input field to the 'mm-dd-yyyy' format:

%OPR_IIF[IS_DATE(%dateports%,%fromdateformat%),TO_STRING(TO_DATE(%dateports
%,%fromdateformat%),'mm-dd-yyyy'),%dateports%]%

The %fromdateformat% macro input field defines the different date formats used in the date fields:
mm/dd/yy and mm/dd/yyyy.

At run time, the application expands the expression vertically and horizontally, as follows:

IIF(IS_DATE(StartDate,’mm/dd/yy’),TO_STRING(TO_DATE(StartDate,’mm/dd/yy’),’mm-dd-
yyyy’),

Expression macros 43

 IIF(IS_DATE(StartDate,’mm/dd/yyyy’),TO_STRING(TO_DATE(StartDate,’mm/dd/yyyy’),’mm-dd-
yyyy’), StartDate))

IIF(IS_DATE(EndDate,’mm/dd/yy’),TO_STRING(To_Date(EndDate,’mm/dd/yy’),’mm-dd-yyyy’),
 IIF(IS_DATE(END _DT,’mm/dd/yyyy’),TO_STRING(TO_DATE(EndDate,’mm/dd/yyyy’),’mm-dd-
yyyy’), EndDate))

The expression expands vertically to create an expression for the StartDate and EndDate fields that
%dateports% represents. The expression also expands horizontally to use the constants that
%fromdateformat% represents to evaluate the incoming fields.

File lists
You can use a file list as a source for flat file connections. A file list is a file that contains the names and
directories of each source file that you want to use in a mapping. Use a file list to enable a task to read
multiple source files for one source object in a mapping.

For example, you might want to use a file list if your organization collects data for multiple locations that you
want to process through the same mapping.

You configure a source object such as a Source transformation or Lookup transformation to read the file list.
You can also write the source file name to each target row. When you run a mapping that uses a file list, the
task reads rows of data from the different source files in the file list.

Use the following rules and guidelines when you create a file list:

• Each file in the list must use the user-defined code page that is configured in the connection.

• Each file in the list must share the same file properties as configured in the connection.

• If you do not specify a path for a file, the task assumes that the file is in the same directory as the file list.

• Each path must be local to the Secure Agent.

You can create a file list manually or you can use a command to create the file list.

Manually created file lists
To create a file list manually, create the list in a text editor and save it as a text file. Place the text file in a
directory that is local to the Secure Agent.

When you create the file list, enter one file name or one file path and file name on each line. Data Integration
extracts the field names from the first file in the file list.

The following example shows a valid Windows file list:

customers_canada.dat
C:\Customer_Accounts\customers_us.dat
C:\Customer_Accounts\customers_uk.dat
C:\Customer_Accounts\customers_india.dat

In the previous example, Data Integration extracts the field names from the customers_canada.dat file which
resides in the same folder as the file list.

44 Chapter 1: Transformations

File list commands
You can use a command to generate a list of source files for a mapping. You can use a valid DOS or UNIX
command, batch file, or shell script. Data Integration reads each file in the list when the task runs.

Use a command to generate a file list when the list of source files changes often or when you want to
generate a file list based on specific conditions. For example, you can use a command to generate a file list
from all files in a directory or based on the file names.

Use the following guidelines when you generate a file list through a command:

• You must enter Windows commands that use parameters such as "/b" in a batch file.

• You must enter fully qualified file paths in each command, batch file, and shell script.

• You cannot use an in-out parameter for the file list command.

UNIX Example with Shell Script

You need to extract data from parts lists that are stored on a Linux machine. The parts lists are text files that
are stored in the /home/dsmith/flatfile/parts directory.

The following table shows the command that you enter in the Source transformation and the contents of the
corresponding shell script:

Command Shell Script (parts.sh)

/home/dsmith/flatfile/parts/parts.sh cd /home/dsmith/flatfile/parts
ls *.txt

Windows Example with Batch File

You need to extract data from sales records that are stored on a Windows machine. The sales record files
are stored in the C:\SalesRecords directory and use the naming convention SalesRec_??-??-2017.txt.

The following table shows the command that you enter in the Source transformation and the corresponding
batch file contents:

Command Batch File (SalesSrc.bat)

C:\SalesRecords\SalesSrc.bat @echo off
cd C:\SalesRecords
dir /b SalesRec_??-??-2017.txt

Example without Shell Script or Batch File

You can also generate a file list through a command instead of through a batch file or shell script. For
example, the following command generates a file list that contains one file named source.csv:

echo C:\sources\source.csv

File lists 45

Command sample file
When you generate a file list through a command, you select a sample file that Data Integration uses to
extract the field names. Data Integration does not extract data from the sample file unless the sample file is
included in the generated file list.

If a file in the generated file list does not contain all fields in the sample file, Data Integration sets the record
values for the missing fields to null. If a file in the file list contains fields that are not in the sample file, Data
Integration ignores the extra fields.

For example, the sample file that you select contains the fields CustID, NameLast, and NameFirst. One file in
the generated file list does not contain the NameFirst field. When Data Integration reads data from the file, it
sets the first names for each record in the file to null.

Another file in the generated file list contains the fields CustID, NameLast, NameFirst, and PhoneNo. Data
Integration does not import records for the PhoneNo field because the field is not in the sample file. If you
want to import the phone numbers, either select a sample file that contains the PhoneNo field, or add a field
for the phone numbers in the transformation.

Using a file list in a Source transformation
To use a file list in a Source transformation, create the text file, batch file, or shell script that creates the file
list. Then configure the Source transformation to use the file list.

1. Create the text file, batch file, or shell script that creates the file list and install it locally to the Secure
Agent.

2. In the Mapping Designer, select the Source transformation.

3. On the Source tab, select a flat file connection.

4. To use a manually created file list, perform the following steps:

a. In the Source Type field, select File List.

b. In the Object field, select the text file that contains the file list.

c. On the Fields tab, verify the incoming fields for the Source transformation.

Data Integrationextracts source fields from the first file in the file list. If the source fields are not
correct, you can add or remove fields.

5. To use a file list that is generated from a command, perform the following steps:

a. In the Source Type field, select Command.

b. In the Sample Object field, select the sample file from which Data Integration extracts source fields.

You can use one of the files you use to generate the file list as the sample file or select a different
file.

c. In the Command field, enter the command that you use to generate the file list, for example, /home/
dsmith/flatfile/parts/parts.sh.

d. On the Fields tab, verify the incoming fields for the Source transformation.

If the source fields are not correct, you can add or remove fields, or click the Source tab and select a
different sample file.

6. Optionally, to write the source file name to each target row, click the Fields tab, and enable the Add
Currently Processed Filename field option.

The CurrentlyProcessedFileName field is added to the fields table.

46 Chapter 1: Transformations

Using a file list in a Lookup transformation
To use a file list in a Lookup transformation, create the text file, batch file, or shell script that creates the file
list. Then configure the Lookup transformation to use the file list.

1. Create the text file, batch file, or shell script that creates the file list and install it locally to the Secure
Agent.

2. In the Mapping Designer, select the Lookup transformation.

3. On the Lookup Object tab, select a flat file connection.

4. To use a manually created file list, perform the following steps:

a. In the Source Type field, select File List.

b. In the Lookup Object field, select the text file that contains the file list.

c. On the Return Fields tab, verify the return fields for the Lookup transformation.

Data Integration extracts the return fields from the first file in the file list. If the return fields are not
correct, you can add or remove fields.

5. To use a file list that is generated from a command, perform the following steps:

a. In the Source Type field, select Command.

b. In the Lookup Object field, select the sample file from which Data Integration extracts return fields.

You can use one of the files you use to generate the file list as the sample file or select a different
file.

c. In the Command field, enter the command that you use to generate the file list, for example, /home/
dsmith/flatfile/parts/parts.sh.

d. On the Return Fields tab, verify the return fields for the Lookup transformation.

If the return fields are not correct, you can add or remove fields, or click the Lookup Object tab and
select a different sample file.

Configuration for multibyte hierarchical data
If a mapping includes a transformation that processes hierarchical data and the data uses multibyte
characters, configure the Secure Agent machine to use UTF-8.

On Windows, create the INFA_CODEPAGENAME=UTF-8 environment variable in Windows System Properties.

On Linux, set the LC_LOCALE variable to UTF-8.

Configuration for multibyte hierarchical data 47

C h a p t e r 2

Source transformation
A Source transformation extracts data from a source. When you add a Source transformation to a mapping,
you define the source connection, source objects, and source properties related to the connection type. For
some connection types, you can use multiple source objects within a Source transformation.

You can use a Source transformation to read data from the following source types:

• File. The Source transformation can read data from a single source file or a file list.

• Database. The Source transformation can read data from a single source table or multiple source tables.

• Web service. The Source transformation can read data from a single web service operation.

• Data Integration connectors. The Source transformation can read data from a single source object, a
multi-group source object, or multiple source objects based on the connection type.

For more information about sources for individual connectors, see the Connectors section of the online
help.

You can use one or more Source transformations in a mapping. If you use two Source transformations in a
mapping, you can use a Joiner transformation to join the data. If you use multiple Source transformations
with the same structure, you can use a Union transformation to merge the data into a single pipeline.

In a Source transformation, the source properties that appear vary based on the connection type. For
example, when you select a Salesforce connection, you can use multiple related source objects and configure
the Salesforce API advanced source property. In contrast, when you select a flat file connection, you specify
the file type and configure the file formatting options.

Source object
Select the source object for the Source transformation on the Source tab of the Properties panel.

The properties that you configure for the source object vary based on the connection type and the mapping
type. Your organization's licenses can also determine the source properties that appear when the Source
transformation is part of a mapplet.

48

The following image shows the Source tab for a relational source:

1. Source details where you configure the source connection, source type, and source object.
2. Select the source object from the mapping inventory.

You can select a source in the following ways:

Select the connection and source object.

In the Details area, select the source connection, source type, and source object. For some source types,
you can select multiple source objects. You can also create a new connection.

The source type varies based on the connection type. For example, for relational sources you can select
a single object, multiple related objects, or an SQL query. For flat file sources, you can select a single
object, file list, or file list command.

Select the source object from the mapping inventory.

If your organization administrator has configured Enterprise Data Catalog integration properties, and you
have added objects to the mapping from the Data Catalog page, you can select the source object from
the Inventory panel. If your organization administrator has not configured Enterprise Data Catalog
integration properties or you have not performed data catalog discovery, the Inventory panel is empty.
For more information about data catalog discovery, see Mappings.

The Inventory panel isn't available in mappings in SQL ELT mode.

Use a parameter.

You can use input parameters to define the source connection and source object when you run the
mapping task. For more information about parameters, see Mappings.

Source object 49

File sources
File sources include flat files and FTP/SFTP files. When you configure a file source, you specify the
connection, source type, and formatting options. Configure file source properties on the Source tab of the
Properties panel.

The following table describes the file source properties:

Property Description

Connection Name of the source connection.

Source Type Source type. The source type can be single object, file list, command, or parameter.

Object If the source type is a single object, this property specifies the file source, for example,
Customers.csv.
If the source property is a file list, this property specifies the text file that contains the file list, for
example, SourceList.txt.
If the source type is a command, this property specifies the sample file from which Data Integration
imports the source fields.
In advanced mode, the object name cannot contain the dollar sign character, $. The dollar sign is a
reserved character for parameters.

Command If the source type is a command, this property specifies the command that generates the source file
list, for example, ItemSourcesCmd.bat.

Parameter If the source type is a parameter, this property specifies the source parameter.

Formatting
Options

Flat file format options. Opens the Formatting Options dialog box to define the format of the file.
You can choose either a delimited or fixed-width file type. Default is delimited.
For a delimited flat file type, configure the following file format options:
- Delimiter. Delimiter character. Can be a comma, tab character, colon, semicolon, nonprintable

control character, or a single-byte or multibyte character that you specify.
- Treat multiple characters as a single delimiter. Treats the specified set of delimiters as one

delimiter. For example, a source file contains the following record: abc~def|ghi~|~|jkl|~mno. If
you specify the delimiter as (~ |), Data Integration reads the record as three columns separated
by two delimiters: abc~def|ghi, NULL, jkl|~mno. If you disable this option, Data Integration reads
the record as nine columns separated by eight delimiters: abc, def, ghi, NULL, NULL, NULL, jkl,
NULL, mno.

- Treat consecutive delimiters as one. Treats one or more consecutive column delimiters as one.
The default is to treat consecutive delimiters as a null value.

- Row Delimiter. Line break character for data rows. Select a line break character from the list. The
default is line-feed, \012 LF (\n).

- Text Qualifier. Character to qualify text.
- Escape character. Escape character.
- Field labels. Determines if the task generates field labels or imports labels from the source file.
- First data row. The first row of data. The task starts the read at the row number that you enter.
You can use a tab, space, or any printable special character as a delimiter. The delimiter can have a
maximum of 10 characters. The delimiter must be different from the escape character and text
qualifier.
For a fixed-width flat file type, select the fixed-width file format to use. If the list includes multiple
fixed-width file formats with the same name, use the project and folder location that's appended to
the name to determine the appropriate file format to use. If you do not have a fixed-width file format,
go to New > Components > Fixed-Width File Format to create one.

For more information about file lists and commands, see “File lists” on page 44. For more information about
parameters and file formats, see Mappings.

50 Chapter 2: Source transformation

The following table lists the advanced properties for file sources:

Property Description

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

Thousand
Separator

Thousand separator character. Can be none, comma, or period. Cannot be the same as the decimal
separator or the delimiter character.
Field type must be Number. You might also need to update the field precision and scale.
Default is None.

Decimal
Separator

Decimal character. Can be a comma or period. Cannot be the same as the thousand separator or
delimiter character.
Field type must be Number. You might also need to update the field precision and scale.
Default is Period.

Datetime
Format

Optional. Overrides the date format specified in the flat file connection.
Enter the Date/Time format to override. For example, YYYYMMDD.

Source File
Directory

For flat file sources, name of the source directory.
For FTP sources, name and path of the local source file directory used to stage the source data.
By default, the mapping task reads source files from the source connection directory.
You can also use an input parameter to specify the file directory.
If you use the service process variable directory $PMSourceFileDir, the task writes target files to the
configured path for the system variable. To find the configured path of a system variable, see the
pmrdtm.cfg file located at the following directory:

<Secure Agent installation directory>\apps\Data_Integration_Server\<Data
Integration Server version>\ICS\main\bin\rdtm
You can also find the configured path for the $PMSourceFileDir variable in the Data Integration
Server system configuration details in Administrator.

Source File
Name

For flat file sources, file name, or file name and path of the source file.
You can also use an input parameter to specify the file name.
For FTP sources, name of the local source file used to stage the source data.

Remote File
Name

For FTP sources, file name, or file name and path of the remote file.
You can also use an input parameter to specify the remote file name.

File Reader
Truncate
String Null

For flat file sources, truncates string field values from the first null character.
Enable when the source file contains null characters.
Do not enable when you use the FileRdrTreatNullCharAs custom property. Using both properties
creates conflicting settings for how Data Integration handles null characters in a flat file source, and
the task fails.
Default is disabled.

Database sources
Database sources include relational sources such as Oracle, MySQL, and Microsoft SQL Server. When you
configure a Source transformation for a database source, you can use a single source table or multiple

Database sources 51

source tables. If you use multiple tables as a source, you can select related tables or create a relationship
between tables.

To configure a Source transformation for a database source, perform the following tasks:

• Configure the source properties.

• If the source includes multiple tables, configure the Source transformation to join the tables. You can join
related tables or specify a custom relationship.

• Optionally, configure a custom SQL query to extract source data.

• Optionally, configure the Source transformation to filter or sort source data.

• Ensure that the table and column names do not exceed 74 characters.

Database source properties
Configure properties for database sources such as the database connection, source type, and source
objects. You can also specify filter and sort conditions, pre- and post-SQL commands, and whether the output
is deterministic or repeatable.

The following table describes the database source properties:

Property Description

Connection Name of the source connection.

Source Type Source type.

Object Source object for a single source.

Add Source Object Primary source object for multiple sources.

Add Related Objects For multiple sources. Displays objects related to the selected source object.
Select an object with an existing relationship or click Custom Relationship to create a custom
relationship with another object.

Filter Adds conditions to filter records. Configure a simple or an advanced filter.

Sort Adds conditions to sort records.

Select Distinct Rows
Only

Reads unique rows from the source. Adds SELECT DISTINCT to the SQL query.

Define Query For a custom query. Displays the Edit Custom Query dialog box. Enter a valid custom query
and click OK.

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You
can choose terse, normal, verbose initialization, or verbose data. Default is normal.

Pre SQL SQL command to run against the source before reading data from the source.
You can enter a command of up to 5000 characters.

Post SQL SQL command to run against the source after writing data to the target.
You can enter a command of up to 5000 characters.

SQL Query SQL query to override the default query that Data Integration uses to read data from the
source. You can enter an SQL statement supported by the source database.

52 Chapter 2: Source transformation

Property Description

Output is
deterministic

Relational source or transformation output that does not change between mapping runs when
the input data is consistent between runs.
When you configure this property, the Secure Agent does not stage source data for recovery if
transformations in the pipeline always produce repeatable data.

Output is repeatable Relational source or transformation output that is in the same order between session runs
when the order of the input data is consistent.
When output is deterministic and output is repeatable, the Secure Agent does not stage
source data for recovery.

Related objects
You can configure a Source transformation to join related objects. You can join related objects based on
existing relationships or custom relationships. The types of relationships that you can create are based on
the connection type.

Use the following relationships to join related objects:

Existing relationships

You can use relationships defined in the source system to join related objects. You can join objects with
existing relationships for the following connection types:

• Database

• Salesforce

• Some Data Integration connectors

To join related objects, you select a primary object. Then you select a related object from a list of related
objects.

For example, after you add Opportunity as a primary Salesforce source object, you can add any related
objects, such as Account.

Database sources 53

The following image shows a list of Salesforce objects with existing relationships with the Opportunity
object:

Custom relationships

You can create custom relationships to join objects in the same source system. To create a custom
relationship, select a primary object, select another object from the source system, and then select a field
from each source to use in the join condition. You must also specify the join type and join operator.

You can select one of the following join types:

Inner

Performs a normal join. Includes rows with matching join conditions. Discards all rows that do not
match, based on the condition.

Left

Performs a left outer join. Includes all rows for the source to the left of the join syntax and the rows from
both tables that meet the join condition. Discards the unmatched rows from the right source.

Right

Performs a right outer join. Includes all rows for the source to the right of the join syntax and the rows
from both tables that meet the join condition. Discards the unmatched rows from the left source.

54 Chapter 2: Source transformation

For example, the following image shows a custom relationship that uses an inner join to join the EMPLOYEE
and MANAGER database tables when the EMPLOYEE.E_MANAGERID and MANAGER.M_ID fields match:

Joining related objects
You can join related objects in the Source transformation. You can join related objects based on a
relationship defined in the source system or a custom relationship defined in the Source transformation.

1. On the Source tab, select Multiple Objects as the source type.

2. In the Objects and Relationships table, select Add Source Object from the Actions menu.

3. In the Select Source Object dialog box, select a source object.

The source object appears in the Objects and Relationships table.

4. From the Actions menu, select Add Related Objects.

5. To join an object based on relationships in the source system, select Existing Relationships, select the
related object, and then click OK.

6. To join an object based on a custom relationship, select Custom Relationships and perform the
following steps:

a. Select the Related Object to use in the join.

b. Configure the Primary Object Key by selecting the primary object field to use in the join.

c. Configure the join type.

You can configure an inner, left outer, or right outer join.

d. Configure the join operator.

e. Configure the Related Object Key by selecting the related object field to use in the join.

Database sources 55

f. Click Add.

The relationship appears in the Configured Relationships table.

g. Click OK.

7. To join additional sources, select the source to act as the primary source and then repeat steps 4
through 6.

Advanced relationships
You can create an advanced relationship for database sources when the source object in the mapping is
configured for multiple sources.

To create an advanced relationship, you add the primary source object in the Objects and Relationships
table. Then you select fields and write the SQL statement that you want to use. Use an SQL statement that is
valid for the source database. You can also add additional objects from the source.

You can also convert a custom relationship to an advanced relationship. To do this, create a custom
relationship, and then select Advanced Relationship from the menu above the Objects and Relationships
table. You can edit the relationship that Data Integration creates.

When you create an advanced relationship, the wizard converts any relationships that you defined to an SQL
statement that you can edit.

Custom queries
Create a custom query when you want to use a database source that you cannot configure using the single-
or multiple-object source options. You might create a custom query to perform a complicated join of multiple
tables or to reduce the number of fields that enter the data flow in a very large source.

To use a custom query as a source, select Query as the source type, and then click Define Query. When you
define the query, use SQL that is valid for the source database. You can use database-specific functions in
the query.

You can also use a custom query as a lookup source. For information about using a custom query in a
Lookup transformation, see “Custom queries” on page 283.

When you create a custom query, enter an SQL SELECT statement to select the source columns you want to
use. Data Integration uses the SQL statement to retrieve source column information. You can edit the
datatype, precision, or scale of each column before you save the custom query.

For example, you might create a custom query based on a TRANSACTIONS table that includes transactions
from 2016 with the following SQL statement:

SELECT TRANSACTION_ID, TRANSACTION_TOTAL, TRANSACTION_TIMESTAMP from dbo.TRANSACTIONS WHERE
TRANSACTION_TIMESTAMP>’0:0:0:0 01/01/2016’

Data Integration ensures that custom query column names are unique. If an SQL statement returns a
duplicate column name, Data Integration adds a number to the duplicate column name as follows:

<column_name><number>

When you change a custom query in a saved mapping, at design time Data Integration replaces the field
metadata with metadata using the revised query. Typically, this is the desired behavior. However, if the
mapping uses a relational source and you want to retain the original metadata, use the Retain existing field
metadata option. When you use this option, Data Integration doesn't refresh the field metadata during design
time. Data Integration maps the existing fields with the fields from the revised query at run time. Fields that
can't be mapped will cause run time failure.

56 Chapter 2: Source transformation

Tip: Test the SQL statement you want to use on the source database before you create a custom query. Data
Integration does not display specific error messages for invalid SQL statements.

Source filtering and sorting
You can configure the Source transformation to filter or sort data before the data enters the data flow. Use
the source query options to filter or sort source data.

Configure the query options on the Source tab of the Source transformation. Expand the Query Options
section, and configure the filter and sort conditions.

You can use the following source query options:

Filter

Filter source data to limit the amount of source data that enters the data flow. You can create the
following types of filters:

• Non-parameterized. Select the source field and configure the operator and value to use in the filter.
When you configure more than one filter, the task applies the filter expressions in the listed order with
an AND operator between the filters.

• Completely parameterized. Use a parameter for a filter expression and define the filter expression in
the task.

• Advanced. Create complex expressions that use AND, OR, or nested conditions. The expression that
you enter becomes the WHERE clause in the query used to retrieve records from the source. You can
use source fields, input and in-out parameters, or system variables in the expression.
For example, you can use an input parameter for one of the fields, and select it when the task runs.
You can reuse the same parameter in an Expression transformation to create a field expression and
also in the Target transformation. Or, you can you an in-out parameter in the expression to retrieve
rows that have been updated since the last run.

For more information about system variables, see Function Reference. For more information about
parameters, see Mappings.

You can convert simple non-parameterized data filters to an advanced data filter, but you cannot
convert an advanced data filter to simple data filters.

Sort

You can sort source data to provide sorted data to the mapping. For example, you can improve task
performance when you provide sorted data to an Aggregator transformation that uses sorted data.

When you sort data, you select one or more source fields. When you select more than one source field,
the task sorts the fields in the listed order.

Data in each field is sorted in ascending order. If you want to sort in descending order, you can use the
Sorter transformation.

You can use parameters for the sort fields and define the sort fields in the task.

Web service sources
You can use a web service connector for Source transformations, such as Workday v2.

Data that comes from a web service typically has a hierarchical structure. For example, when you use a
Workday v2 source connection, the data passes as XML with a hierarchical structure.

Web service sources 57

When you select a web service connection for a Source transformation, you perform the following steps to
configure the transformation:

1. Select the web service operation.

2. Customize the request message to filter unneeded data out of the data flow.

3. Map the hierarchical data structure to a relational structure.

For example, you want to include worker information from Workday in a mapping with a relational database
target. You create a Source transformation and select the Workday connection. You select the Get_Workers
operation, which pulls the worker data in a defined XML structure. You define an advanced filter so that only
name and contact information enters the data flow. You define a relational structure for the worker data and
then map the fields to fields in the target database.

Web service operations for sources
An operation determines the set of data to pass from a web service connection and defines the hierarchical
data structure.

When you define the source properties for a web service connection, you select the web service operation.
The available operations are determined by the connection. For example, for a Workday connection,
Get_Workers is an operation.

58 Chapter 2: Source transformation

Request messages
Web service operations often include data that you do not want to use in your mapping. You can use the
default request message for the operation or customize the request message to specify the data that you
want to enter the data flow.

The request message is in XML format. To customize the request message, you can begin with a template
that includes the necessary formatting for the message. The request message template shows the contents
for the selected operation.

Copy and paste the template into the Request Message editor pane and then revise the message.

Web service sources 59

For example, if you want to include transactions occurring between January 1, 2016 and March 31, 2016, you
can enter the Effective_From and Effective_Through values in the request message, as shown in the following
image:

You can parameterize the request message using in-out parameters. For example, instead of using specific
Effective_From and Effective_Through dates in the message, you can use $$Effective_From and $
$Effective_Through parameters. You need to create the in-out parameters in the Parameters panel before you
can use them in the request message.

For more information about in-out parameters, see the "Parameters" section in Mappings.

Be sure you use well-formed XML formatting in the request message. You can validate the message to be
sure that the XML matches the structure expected by operation.

Field mapping for web service sources
You can map response fields into a relational structure of output groups and fields for output.

The response shown in the Field Mapping tab shows the hierarchical structure of the data that comes from
the source.

When you select fields in the Response area, the fields appear in the Output Fields area in a relational
structure with generated primary keys and foreign keys. For example, in the Response Fields area you select
First_Name and Last_Name, and then you select Email_Address, which is located under a different parent in

60 Chapter 2: Source transformation

the hierarchy. In the Output Fields area, the structure is relational with assigned primary and foreign keys, as
shown in the following image:

Consider cardinality when you map response fields to the relational structure. Cardinality imposes
constraints on the number of times a field or group can occur at a specific point in the XML structure. A
cardinality of 0-many means the field or group can have zero to many occurrences. A cardinality of 1-1
means a field or group is required and can only occur once.

If you map a field with 0-1 or 1-1 cardinality, the first parent node that has 0 to more than 1 cardinality is also
mapped. If a parent group with 0 to more than 1 cardinality does not exist, the system creates a group. For
example, if you map Email_Comment, which has cardinality of 0-1, the Email_Address_Data group, which has
cardinality of 0-many, is automatically mapped.

Packed fields

You can pack fields to reduce the number of output groups for a request message. You can mark fields to be
packed when you configure field mapping. When you run the mapping task, the task packs the element and
its children into a single XML string.

Fields can come from the source already marked for packing. The Pack icon displays next to elements
marked to be packed. To pack a field, click the Pack icon, as shown in the following image:

You cannot pack fields that are children of packed fields.

Web service sources 61

In the following image, you can see that the Phone_Data element is packed:

You can use XPath expressions to mark multiple fields for packing or unpacking. In the Response Fields area,
click the arrow and select Mark Packed Structures, as shown in the following image:

In the following image, all fields that have ID as a child are marked to pack:

62 Chapter 2: Source transformation

Partitions
If your organization has the Partitioning license, you can use partitions to optimize performance for mapping
tasks.

If a mapping task processes large data sets or includes transformations that perform complicated
calculations, the task can take a long time to process. When you use multiple partitions, the mapping task
divides data into partitions and processes the partitions concurrently, which can optimize performance. Not
all source types support partitioning.

Enable partitioning when you configure the Source transformation in the Mapping Designer. When you
configure partitions in the Source transformation, partitioning occurs throughout the mapping.

Each Source transformation across all data flows in the mapping must contain the same number of
partitions.

To enable partitioning for a source, select a partitioning method on the Partitions tab. The partitioning
methods that you can select vary based on the source type. For more information about partitioning different
types of sources, see the help for the appropriate connector.

You can select one of the following partitioning methods based on the source type:

None

The mapping task processes all data in a single partition. This is the default option.

Fixed

The mapping task distributes rows of data based on the number of partitions that you specify. You can
specify up to 64 partitions.

Use this method for a source type that does not allow key range partitioning such as a flat file source, or
when the mapping includes a transformation that does not support key range partitioning.

Consider the number of records to be passed in the mapping to determine an appropriate number of
partitions for the mapping. For a small number of records, partitioning might not be advantageous.

If the mapping includes multiple sources, specify the same number of partitions for each source.

Key range

The mapping task distributes rows of data based on a field that you define as a partition key. You select
one field in the source as the partition key, and then you define a range of values for the partition key.

You can use this method for tabular sources such as relational, Google BigQuery, and JDBC V2 sources.

Key ranges can be of the following data types:

• String

• Any type of number data type. However, you cannot use decimals in key range values.

• Date/time type. Use the following format: MM/DD/YYYY HH24:MI:SS

If the mapping includes multiple sources, use the same number of key ranges for each source.

Pass through

The mapping task processes data without redistributing rows among partitions. All rows in a single
partition stay in the partition. Choose pass-through partitioning when you want to create additional
partitions to improve performance, but do not want to change the distribution of data across partitions.

You can use this method for sources such as Amazon S3, Netezza, and Teradata.

Partitions 63

Dynamic

The mapping task determines the optimal number of partitions to create at runtime based on the source
size.

You cannot partition a mapping in the following situations:

• The mapping includes a Web Services or Hierarchy Parser transformation.

• The mapping includes multiple sources that use custom relationships or advanced relationships.

• The mapping is a mapping in SQL ELT mode.

When you configure partitions, be sure to save and run the mapping in the Mapping Designer to validate the
partition settings.

Partitioning rules and guidelines
Before you partition a mapping, note the following rules and guidelines:

• Consider the types of transformations in the mapping and the order in which transformations appear so
that you do not get unexpected results. You can partition a mapping if the mapping task can maintain
data consistency when it processes the partitioned data.

• For flat file partitioning, session performance is optimal with large source files. The load may be
unbalanced if the amount of input data is small.

• When a Sequence Generator transformation is in a mapping with partitioning enabled, ensure that you set
up caching in the Sequence Generator transformation. Otherwise, the sequence numbers the task
generates for each partition are not consecutive.

• Sequence numbers generated by Normalizer and Sequence Generator transformations might not be
sequential for a partitioned source, but they are unique.

• When a Sorter transformation is in a mapping with partitioning enabled, the task sorts data in each
partition separately.

• A Sorter transformation must be placed before any Joiner transformation or Aggregator transformation
that is configured to use sorted data.

• You cannot use in-out parameters for key range values.

• If your mapping has more than eight partitions, mapping task performance might degrade. You can
configure the Buffer Block Size and DTM Buffer Size advanced properties in the mapping task to improve
performance.

• On Linux, if a target table name includes a unicode character, you need to set the default locale to UTF-8
to support multibyte data. To set the default locale to UTF-8, see the following examples:

- For bash and related UNIX shells:

export LC_ALL=en_US.UTF-8
- For csh and related UNIX shells:

setenv LC_ALL en_US.UTF-8
• If you use key range partitioning on a source in a mapping in advanced mode, the mapping fails if all of

the following conditions are true:

- The Data Integration Server processes the source.

- An advanced cluster processes a midstream transformation.

- The advanced cluster runs in a Google Cloud or Microsoft Azure environment.

64 Chapter 2: Source transformation

Partitioning examples
The following examples show how you can configure partitioning in a mapping.

Partitioning with a Flat File Source

You have a mapping task that uses a large, 1GB flat file source. You want to specify two partitions in the
Source transformation to optimize performance.

On the Partitions tab for the Source transformation, you select fixed partitioning and enter the number of
partitions, as shown in the following image:

Key Range Partitioning with a Relational Database Source

You have customer names, addresses, and purchasing history in a relational database source. You decide to
partition the source data into three partitions based on postal codes, using the following ranges:

• First partition: Minimum value to 30000

• Second partition: 30000 to 50000

• Third partition: 50000 to maximum value

On the Partitions tab for the Source transformation, you select key range partitioning and choose the
BILLINGPOSTALCODE field as the partition key. You add three key ranges to create three partitions, as shown
in the following image:

Note that for the first partition, you leave the start value blank for the minimum value. In the last partition, you
leave the end value blank for the maximum value.

Using these values, records with a postal code of 0 up to 30000 are processed in partition #1, records with a
postal code of 30000 to 50000 are processed in partition #2, and records with a postal code of 50000 or
higher are processed in partition #3.

After you configure the mapping, you save and run the mapping to validate the partitions.

Partitions 65

Reading hierarchical data in advanced mode
You can use a Source transformation in advanced mode to read hierarchical data from complex files, such as
Avro, JSON, and Parquet files. Advanced mode represents the data as an array, map, or struct.

You can use the hierarchical fields as pass-through fields to convert data from one complex file format to
another. For example, you can read hierarchical data from an Avro source and write the data to a JSON
target. You can also use the hierarchical fields and their child fields in expressions and conditions in
downstream transformations. For information about accessing child fields, see the Function Reference.

You can pass hierarchical fields to the following transformations:

• Target

• Aggregator

• Expression

• Filter

• Hierarchy Processor

• Joiner

• Rank

• Router

• Sequence Generator

• Sorter

Rules and guidelines for reading hierarchical data

Consider the following guidelines when you read hierarchical data:

• You must use an Amazon S3 V2 or Azure Data Lake Storage Gen2 connection to read hierarchical data.
For more information, see the help for the appropriate connector.

• To read data from an XML source, use an intelligent structure model in the Source transformation. For
information about intelligent structure models, see Components.

• You cannot use a parameter for the source connection or the source object.

• If hierarchical fields contain child fields with decimal data types, the mapping runs using low precision.

• The transformation sets the precision and scale based on the values in the first row of data. Note that this
first row is sometimes referred to as row 0.

• To avoid data truncation, increase the precision and scale in the first row of data. Also ensure that the
first row does not include null values.

Configuration for multibyte hierarchical data
If a mapping includes a transformation that processes hierarchical data and the data uses multibyte
characters, configure the Secure Agent machine to use UTF-8.

On Windows, create the INFA_CODEPAGENAME=UTF-8 environment variable in Windows System Properties.

On Linux, set the LC_LOCALE variable to UTF-8.

66 Chapter 2: Source transformation

Source fields
You can configure the source fields that you want to use in the data flow. Configure source fields on the
Fields tab of the Properties panel.

Configuration options vary based on the connection type. For most connection types, you can add and
remove source fields, configure how the fields are displayed, edit field metadata, and restore original fields
from the source object. For some connection types, you can restore original fields from the source object
only. For more information about configuring source fields, see the help for the appropriate connector.

You can configure source fields in the following ways:

Add the source file name to each row.

If you are using a file list as the source, and you want to identify the source for each row, add the source
file name to the field list. You can pass this information to the target table.

To add the source file name to each row, enable the Add Currently Processed Filename Field option. The
Add Currently Processed Filename Field option is visible for file sources.

When you enable or disable this option, Data Integration adds or removes the
CurrentlyProcessedFileName field but it doesn't synchronize the fields with the source object. To
synchronize with the source object, click the Refresh icon. You can synchronize all fields, synchronize
new fields only, or skip the synchronization.

Retain existing fields at runtime.

If field metadata changes after a mapping is saved, Data Integration uses the updated field metadata
when you run the mapping. Typically, this is the desired behavior. However, if the mapping uses a native
flat file connection and you want to retain the metadata used at design time, enable the Retain existing
fields at runtime option. When you enable this option, Data Integration mapping tasks will use the field
metadata that was used when you created the mapping.

Add and remove fields.

You can add fields to a mapping source. Add a field to retrieve a field from the source object that is not
displayed in the list. To add a field, click Add Field, and then enter the field name, type, precision, and
scale.

You can also remove fields that you do not want to use in the mapping. To remove fields, select the
fields that you want to remove, and then click Delete.

Change the sort order.

You can display source fields in native order, ascending order, or descending order. To change the sort
order, click Sort, and select the appropriate sort order.

Use technical field names or labels.

You can display field names by label or technical field name.

To change the display option for field names, select Options > Use Technical Field Names or Options >
Use Labels.

Edit field metadata.

You can edit the metadata for a field. You might edit metadata to change information that is incorrectly
inferred. When you edit metadata, you can change the name, native type, native precision, and native
scale, if applicable for the data type. For some source types, you can also change the transformation
data type in the Type column.

Source fields 67

To edit the name or metadata for one or more fields, click Options > Edit Metadata. When you edit
metadata, you can also display native names by label or technical field name. To change the display
option for native names, select Options > Show Technical Field Names or Options > Show Labels.

When you change the metadata for a field, avoid making changes that can cause errors when you run the
task. For example, you can usually increase the native precision or native scale of a field without causing
errors. But if you reduce the precision of a field, you might cause the truncation of data.

You can't edit field metadata in mappings in SQL ELT mode.

Restore original fields from the source object.

To restore the original fields from the source object, enable the Synchronize option. When you
synchronize fields, Data Integration restores deleted source fields and adds fields that are new to the
source. Data Integration removes any added fields that do not have corresponding fields in the source
object.

Data Integration updates the metadata for existing source fields based on whether you synchronize all
fields or synchronize new fields only. When you synchronize all fields, Data Integration replaces any field
metadata that you edited with the field metadata from the source object. When you synchronize new
fields only, Data Loader retains the metadata for any existing source field. Data Integration does not
revert changes that you made to the Name field.

Editing native data types in complex file sources
Data Integration processes native data types in complex file sources differently on an advanced cluster and
on the Data Integration Server.

On an advanced cluster, hierarchical data types such as array, map, and struct are assigned those native
types. For example, a map field in an Amazon S3 source might have the native data type "map
(string_integer)." You cannot edit the metadata for array, map, or struct fields.

On the Data Integration Server, Data Integration flattens complex hierarchical data types into native string
datatypes with precision up to 4000 characters. Some native data types come from the connector, and others
come from the parser that Data Integration uses when it reads the source data. Parser data types are
prefixed with the format type. For example, in an Amazon S3 source with the Avro format, a map field that
comes from the parser has the native data type avro_string. You can change the native data type for the
connector and parser fields.

To change the native data type, edit the metadata for the source, and select the appropriate data type in the
Native Type column.

When you change the native data type, you cannot change a non-parser data type to a parser data type. For
example, in an Amazon S3 source, Data Integration sets the native data type for the FileName field to string.
You can change the native data type to nstring but not to avro_string. Similarly, you cannot change a parser
data type to a non-parser data type.

For more information about editing native data types in complex file sources, see the help for the appropriate
connector.

Editing transformation data types
When Data Integration reads source data, it converts the native data types to comparable transformation
data types before it transforms the data. When Data Integration writes to a target, it converts the

68 Chapter 2: Source transformation

transformation data types to the comparable native data types. When you edit source metadata, you can
sometimes change the transformation data type for a field.

You can change the transformation data type for connectors in which the native data type has multiple
corresponding transformation data types. For example, in a Kafka source, you can map the native data type
binary to the transformation data type binary or string.

To change the transformation data type, edit the metadata for the source, and select the appropriate
transformation data type in the Type column.

When you edit the transformation data type for a field, Data Integration updates the data type for the field in
the downstream transformations. It also updates the data type for the field in the target if the target is
created at runtime. If the mapping contains an existing target, you might need to edit the field metadata in
the target to ensure that the data types are compatible.

For more information about editing transformation data types for different source types, see the help for the
appropriate connector.

Source fields 69

C h a p t e r 3

Target transformation
Use the Target transformation to define the target connection and target object for the mapping. You can use
one or more Target transformations in a mapping.

Based on the connection type, you can define advanced target options, specify to use a new or existing target
object, or configure update columns for the target. The target options that appear also depend on the
connection type that you select. For example, when you select a Salesforce connection, you can configure
success and error log details.

You can use file, database, and Data Integration connections in the Target transformation.

The following properties are available for the Target transformation:

• General. Defines the transformation name and a description.

• Incoming Fields. Includes the field rules that define the data written to the target. Allows a preview of
target fields.

• Target. Defines the target connection, target object, and advanced options. Based on the connection type,
you can create a new target, use an existing target, or configure update columns.

• Target Fields. Lists the fields in the target objects. Optionally add or remove fields. You can also edit
target field metadata.

• Field Mapping. Defines the field mappings from the upstream transformation to the target. Field mapping
is only applicable when using an existing target object.

Target example

You might work with a flat file target in a mapping that reads Salesforce user account data but excludes user
preference data. A Source transformation reads data from the Account object and the related User object.

The Target transformation uses a flat file connection that writes to the following directory:
C:\UserAccountData. The default All Fields rule includes all incoming fields. You create a Named Field rule
to exclude the unnecessary user preferences fields.

When you select Create New Target at Runtime, you enter the following name for the target file:
SF_UserAccount_%d%m%y.csv.

The mapping task creates a target file named SF_UserAccount_291116.csv in the C:\UserAccountData
directory when the task runs on November 29, 2016. The target file includes all fields from the Salesforce
Account and User objects except for the user preferences fields specified in the Named Fields rule.

70

Target object
Select the target object for the Target transformation on the Target tab of the Properties panel.

The properties that you configure for the target object vary based on the connection type and the mapping
type. Your organization's licenses can also determine the target properties that appear when the Target
transformation is part of a mapplet.

The following image shows the Target tab for a flat file target:

1. Target details where you configure the target connection, target type, target object, and target operation.
2. Select the target object from the mapping inventory.

You can select a target object in the following ways:

Select the connection and target object.

In the Details area, select the target connection, target type, and target object. You can create a new
connection. For flat file and relational targets, you can also create the target object at run time. For
mappings in SQL ELT mode, you configure the target connection in the mapping properties instead of in
the Target transformation.

If you use an existing target object, select the target from a list of target objects and link the target to the
upstream transformation. If the target table changes, you must update the Target transformation to
match it. If the physical target and the Target transformation do not match, the mapping fails.

If you use an existing target object for a flat file target, the existing target is overwritten when you run the
mapping task.

Select the target object from the mapping inventory.

If your organization administrator has configured Enterprise Data Catalog integration properties, and you
have added objects to the mapping from the Data Catalog page, you can select the target object from
the Inventory panel. If your organization administrator has not configured Enterprise Data Catalog
integration properties or you have not performed data catalog discovery, the Inventory panel is empty.
For more information about data catalog discovery, see Mappings.

The Inventory panel isn't available in mappings in SQL ELT mode.

Target object 71

Use a parameter.

You can use input parameters to define the target connection and target object when you run the
mapping task. For more information about parameters, see Mappings.

You must also define the target operation. The available target operations vary based on the connection type.

Target file creation on advanced clusters
When you create a mapping that runs on an advanced cluster and contains a complex file target, the Target
transformation creates a folder with the file name you enter in the File Name property in the Advanced area.
It does not create a single file. This is necessary because the output may be divided into a series of files.

The folder name might also be appended with a unique identifier. You do not need to know the identifier,
because the mapping recognizes the file name and all the contents within the folder.

The part files within the folder are named: part-<unique identifier>.<format>, where the suffix can be
csv, txt, avro, parquet, json, orc.

File targets
File targets include flat files and FTP/SFTP files. When you configure a file target, you specify the connection,
target type, and target object.

For FTP/SFTP targets, you can select an existing target object. For flat file targets, you can select an existing
target object or create a new target at run time.

If you create a flat file target at run time, you can specify a static or dynamic file name.

File target properties
You configure file target properties on the Target tab of the Properties panel.

The following table describes the file target details:

Property Description

Connection Name of the target connection.

Target Type Target type, either single object or parameter.

Object Name of the target object.
In advanced mode, the object name cannot contain the dollar sign character, $. The dollar sign is a
reserved character for parameters.

72 Chapter 3: Target transformation

Property Description

Formatting
Options

Flat file format options. Opens the Formatting Options dialog box to define the format of the file.
You can choose either a delimited or fixed-width file type. Default is delimited.
To write to a delimited flat file type, configure the following file format options:
- Delimiter. Delimiter character. Can be a comma, tab character, colon, semicolon, nonprintable

control character, or a single-byte or multibyte character that you specify.
- Treat multiple characters as a single delimiter. Treats the specified set of delimiters as one

delimiter. For example, a source file contains the following record: abc~def|ghi~|~|jkl|~mno. If
you specify the delimiter as (~ |), Data Integration reads the record as three columns separated
by two delimiters: abc~def|ghi, NULL, jkl|~mno. If you disable this option, Data Integration reads
the record as nine columns separated by eight delimiters: abc, def, ghi, NULL, NULL, NULL, jkl,
NULL, mno.

- Treat consecutive delimiters as one. Treats one or more consecutive column delimiters as one.
The default is to treat consecutive delimiters as a null value.

- Row Delimiter. Line break character. Select a line break character from the list. The default is
line-feed, \012 LF.
Note: Linux machines write "\n" as the line-feed character. Windows machines write "\r\n" as
the line-feed character.

- Text Qualifier. Character to qualify text.
- Escape character. Escape character.
- Field labels. Determines if the mapping task generates field labels or imports labels from the

source file.
- First data row. The first row of data. The task starts the read at the row number that you enter.
You can use a tab, space, or any printable special character as a delimiter. The delimiter can have
a maximum of 10 characters. The delimiter must be different from the escape character and text
qualifier.
To write to a fixed-width flat file type, select the fixed-width file format to use. If the list includes
multiple fixed-width file formats with the same name, use the project and folder location that's
appended to the name to determine the appropriate file format to use. If you do not have a fixed-
width file format, click New > Components > Fixed Width File Format to create one.

Operation For file targets, the operation is always Insert.

The following table describes the advanced properties for flat file targets:

Property Description

Forward
Rejected
Rows

Indicates whether the mapping task forwards rejected rows to the reject file.
If you enable row error handling, the mapping task writes the rejected rows and the dropped rows to
the row error logs. It doesn't generate a reject file. If you want to write the dropped rows to the
session log in addition to the row error logs, you can enable verbose data tracing.
If you don't forward rejected rows, the mapping task drops rejected rows and writes them to the
session log.

Thousand
Separator

Thousand separator character. Can be none, comma, or period. Cannot be the same as the decimal
separator or the delimiter character.
Field type must be Number. You might also need to update the field precision and scale.
Default is None.

Decimal
Separator

Decimal character. Can be a comma or period. Cannot be the same as the thousand separator or
delimiter character.
Field type must be Number. You might also need to update the field precision and scale.
Default is Period.

File targets 73

Property Description

Datetime
Format

Optional. Overrides the datetime format specified in the flat file connection.
Enter the datetimeformat to override.
For example, YYYYMMDD.

Append if
Exists

Appends the output data to the target files and reject files for each partition. You cannot use this
option for FTP/SFTP target files.
If you do not select this option, the mapping task truncates each target file before writing the output
data to the target file. If the file does not exist, the mapping task creates it.

Create Target
Directory

Creates the target directory if it doesn't exist as specified in the Output file directory field.

Header
Options

Creates a header row in the file target. You can choose the following options:
- No Header. Do not create a header row in the flat file target.
- Output Field Names. Create a header row in the file target with the output field names.
- Use header command output. Use the command in the Header Command field to generate a

header row. For example, you can use a command to add the date to a header row for the file
target.

Default is No Header.

Header
Command

Command used to generate the header row in the file target. For example, you can use a command to
add the date to a header row for the file target.

Footer
Command

Command used to generate the footer row in the file target.

Output Type Type of target for the task. Select File to write the target data to a file target. Select Command to
output data to a command. You cannot select Command for FTP/SFTP target connections.

Output File
Name

File name or file name and path of the output file. By default, the mapping task names output files
after the target object.
Target objects must use one of the following file extensions: csv, dat, txt

Output File
Directory

Name of the output directory for a flat file target. By default, the mapping task writes output files to
the target connection directory.
You can also use an input parameter to specify the target file directory.
If you use the service process variable directory $PMTargetFileDir, the task writes target files to the
configured path for the system variable. To find the configured path of a system variable, see the
pmrdtm.cfg file located at the following directory:

<Secure Agent installation directory>\apps\Data_Integration_Server\<Data
Integration Server version>\ICS\main\bin\rdtm
You can also find the configured path for the $PMTargetFileDir variable in the Data Integration Server
system configuration details in Administrator.

74 Chapter 3: Target transformation

Property Description

Reject File
Directory

Directory path to write the reject file. By default, the mapping task writes all reject files to the
following service process variable directory:

$PMBadFileDir/<federated task ID>
If you specify both the directory and file name in the Reject File Name field, clear this field. The
mapping task concatenates this field with the Reject File Name field when it runs the task.

Reject File
Name

File name, or file name and path of the reject file. By default, the mapping task names the reject file
after the target object name: <target name>.bad.
The mapping task concatenates this field with the Reject File Directory field when it runs the task.
For example, if you have C:\reject_file\ in the Reject File Directory field, and enter
filename.bad in the Reject File Name field, the mapping task writes rejected rows to
C:\reject_file\filename.bad.

The following table describes the advanced properties when you write a message to a file target:

Property Description

Input Type Type of input to write to the target. Select one of the following options:
- Buffer
- File
The available options depend on the incoming data from upstream transformations.
Default is buffer.

Acknowledgement Options Options to save the acknowledgement. Select one of the following options:
- Save to session log to write the acknowledgement to the session log.
- Save to file to save the acknowledgement to a file.
- Discard to discard the acknowledgement.

Acknowledgement File Path File path to write the acknowledgement if you save the acknowledgement to a file.

Operation if File Exists Operation to perform if the acknowledgement file already exists. Select one of the
following operations:
- Rename to rename the acknowledgement file.
- Append to append the acknowledgement to the file.
- Overwrite to overwrite the acknowledgement file.

Fail the job if
acknowledgement is not
AA/CA

Fails the job if the acknowledgement code is not AA or CA.

Retry the job if
acknowledgement is AR/CR

Tries to run the job again if the acknowledgement code is AR or CR.

Message Retry Attempts Number of attempts to try writing the message.

Message Retry Interval Time interval in seconds to try writing the message again.

File targets 75

Property Description

Validate Message Indicates whether Data Integration validates the message.

Forward Rejected Rows Indicates whether the mapping task forwards rejected rows to the reject file.
If you enable row error handling, the mapping task writes the rejected rows and the
dropped rows to the row error logs. It doesn't generate a reject file. If you want to write
the dropped rows to the session log in addition to the row error logs, you can enable
verbose data tracing.
If you don't forward rejected rows, the mapping task drops rejected rows and writes
them to the session log.

Flat file targets created at run time
If a mapping includes a flat file target, you can select an existing target file or create the target at run time.
When you create a target at run time, Data Integration automatically discovers the target object metadata for
data type, precision, and scale, based on the data source.

If you need to edit target object metadata, you can edit it in the Source transformation.

You cannot link the target fields to the upstream transformation. If you want to reduce the number of unused
fields in the target, configure field rules in the Target transformation or in the upstream transformations.

When you create a flat file target at run time, the mapping task creates the physical target the first time the
mapping runs based on the fields from the upstream transformation. In subsequent runs, if the target file
name does not change, the mapping task overwrites the target file. If the file name changes between
mapping runs, the mapping task creates a new target. Data Integration creates the target in the default
connection directory.

You can configure a static or dynamic file name for the target file. A static file name can include a time
stamp. A dynamic file name uses an expression to generate the file name when the mapping task runs.

Data Integration can write to a delimited or fixed-width target file. By default, when Data Integration creates a
target at run time using a fixed-width file format, it rounds data that uses the Decimal or Double data types.
You can choose to skip rounding the data for Decimal and Double data types. Data Integration doesn't round
delimited data by default.

Flat file targets with static file names
If you create a flat file target at run time, you can specify a static file name. The file name can include a time
stamp that indicates when the file was created.

To specify a static file name, in the Target Object dialog box, enter the file name in the Static File Name field.
To include a time stamp, enable Handle Special Characters and add the time stamp characters to the file
name. For example, the file name MyTarget_%d-%m.csv includes the day and month in which the mapping
ran.

76 Chapter 3: Target transformation

The following image shows the Target Object dialog box:

If you do not include a time stamp, the mapping task creates the target file the first time the task runs and
overwrites the file during subsequent runs.

If you append a time stamp to the target file name, the mapping task writes data to a new file when the time
stamp changes. For example, you enable special character handling, enter static file name MyTarget_%d-
%m.csv, and run the mapping task on January 15 and January 16. The mapping task creates the target files
MyTarget_15-01.csv and MyTarget_16-01.csv.

Flat file target time stamps
When you create a flat file target at run time, you can append time stamp information to the file name to
show when the file is created.

When you specify the file name for the target file, you include special characters based on Linux STRFTIME
function formats that the mapping task uses to include the time stamp information in the file name. The time
stamp is based on the organization's time zone.

The following table describes some common STRFTIME function formats that you might use:

Special Character Description

%d Day as a two-decimal number, with a range of 01-31.

%m Month as a two-decimal number, with a range of 01-12.

%y Year as a two-decimal number without the century, with range of 00-99.

%Y Year including the century, for example 2015.

%T Time in 24-hour notation, equivalent to %H:%:M:%S.

%H Hour in 24-hour clock notation, with a range of 00-24.

%l Hour in 12-hour clock notation, with a range of 01-12.

%M Minute as a decimal, with a range of 00-59.

%S Second as a decimal, with a range of 00-60.

%p Either AM or PM.

File targets 77

Flat file targets with dynamic file names
If you create a flat file target at run time, you can specify a dynamic file name. A dynamic file name uses an
expression to generate the file name.

You can use a dynamic file name to create a new target file every time the mapping task runs. For example,
the following expression creates a file called "OrdersOut_<system_timestamp_with_second_precision>.csv"
each time the mapping task runs:

'OrdersOut_'||To_Char(SYSDATE, 'YYYYMMDDHH24MISS')||'.csv'

You can also use a dynamic file name in a mapping that contains a Transaction Control transformation to
write data to a different target file each time a transaction boundary changes. For example, the following
expression can be used in a target that is downstream of the Transaction Control transformation to commit
data to a different target file every time the DEPT_ID field changes:

'Results_Dept_'||To_Char(DEPT_ID)||'.dat'

To specify a dynamic file name, in the Target Object dialog box, select Use a Dynamic File Name and enter
the file name expression in the expression editor.

The following image shows the Target Object dialog box with the Use a Dynamic File Name option enabled:

You can include incoming field names, constants, operators, built-in functions, and user-defined functions in
the target file name expression.

If you use an incoming field name in the file name expression, you can choose to exclude the field from the
target. When you enable the Exclude Dynamic File Name Field option, Data Integration does not write the
incoming field used in the expression to the target. Include only one incoming field in the expression. If you
include more than one incoming field, the expression is invalid.

To use more than one incoming field, add an Expression transformation directly before the Target
transformation. In the Expression transformation, configure a field to hold the expression that you want to
use as the file name. In the Target transformation, use this field as the expression in the dynamic file name.

For more information about creating expressions, see the Function Reference.

78 Chapter 3: Target transformation

Creating a flat file target at run time
To create a flat file target at run time, select Create New at Runtime in the Target Object dialog box. Then
configure a static or dynamic file name for the target file.

1. On the Target tab of the Target transformation, select a flat file connection.

2. Set the target type to Single Object.

3. Click Select to select the target object.

4. In the Target Object dialog box, select Create New at Runtime.

5. Configure the target file name:

• To enter a static file name without a time stamp, enter the file name in the Static File Name field.

• To enter a static file name that contains a time stamp, enable Handle Special Characters and enter
the file name, including the time stamp characters, in the Static File Name field.

• To enter a dynamic file name, enable Use a Dynamic File Name and configure the expression to
create the file name.

You can use fields, system variables, parameters, built-in functions, and user-defined functions in the
file name expression.

6. Optionally, if you're using a fixed-width flat file format that uses the Decimal or Double data type, and you
don't want Data Integration to round the data, select Skip rounding decimal and double data types.

7. Click OK.

Database targets
Database targets include relational sources such as Oracle, MySQL, and Microsoft SQL Server.

When you configure a Target transformation for a database target, you can write data to a single target table.
You can select an existing table or create the table at run time.

Ensure that the table and column names do not exceed 74 characters.

Database target properties
You configure database target properties on the Target tab of the Properties panel.

The following table describes the database target properties:

Property Description

Connection Name of the target connection.
Alternatively, you can define a parameter, and then specify the connection in the mapping task.

Target Type Target type, either single object or parameter.

Object Name of the target object.
If you select a single object, you can also preview the data.

Operation Target operation, either insert, update, upsert, delete, or data driven.

Database targets 79

Property Description

Truncate
Target

Truncates the target object before inserting new rows.
Applies to insert and data driven operations.

Enable Target
Bulk Load

Uses the database bulk API to perform an insert operation.
Use the bulk API to write large amounts of data to the database with a minimal number of API calls.
Loading in bulk mode can improve performance, but it limits the ability to recover because no
database logging occurs.
Applies to insert operations.

Update
Columns

The fields to use as temporary primary key columns when you update, upsert, or delete target data.
When you select more than one update column, the mapping task uses the AND operator with the
update columns to identify matching rows.
Applies to update, upsert, delete and data driven operations.

Data Driven
Condition

Enables you to define expressions that flag rows for an insert, update, delete, or reject operation.
For example, the following IIF statement flags a row for reject if the ID field is null. Otherwise, it
flags the row for update:
IIF (ISNULL(ID), DD_REJECT, DD_UPDATE)
Applies to the data driven operation.

Forward
Rejected Rows

Causes the mapping task to forward rejected rows to the reject file.
If you do not forward rejected rows, the mapping task drops rejected rows and writes them to the
session log.
If you enable row error handling, the mapping task writes the rejected rows and the dropped rows to
the row error logs. It does not generate a reject file. If you want to write the dropped rows to the
session log in addition to the row error logs, you can enable verbose data tracing.

Pre SQL SQL command to run against the target before reading data from the source.
You can enter a command of up to 5000 characters.

Post SQL SQL command to run against the target after writing data to the target.
You can enter a command of up to 5000 characters.

Update
Override

Overrides the default UPDATE statement for the target.
Enter the update statement. Alternatively, click Configure to generate the default UPDATE
statement, and then modify the default statement.
The UPDATE statement that you enter overrides the default UPDATE statement that Data
Integration uses to update targets based on key columns. You can define an override UPDATE
statement to update target tables based on non-key columns.

Reject File
Directory

Directory path to write the reject file. By default, the mapping task writes all reject files to the
following service process variable directory:

$PMBadFileDir/<federated task ID>
If you specify both the directory and file name in the Reject File Name field, clear this field. The
mapping task concatenates this field with the Reject File Name field when it runs the task.

Reject File
Name

File name, or file name and path of the reject file. By default, the mapping task names the reject file
after the target object name: <target name>.bad.
The mapping task concatenates this field with the Reject File Directory field when it runs the task.
For example, if you have C:\reject_file\ in the Reject File Directory field, and enter
filename.bad in the Reject File Name field, the mapping task writes rejected rows to
C:\reject_file\filename.bad.

80 Chapter 3: Target transformation

For more information about database target properties, see the help for the appropriate connector.

Database targets created at run time
If a mapping includes a database target, you can select an existing target table or create the target table at
run time. When you create a database target at run time, Data Integration automatically discovers the target
object metadata for data type, precision, and scale, based on the data source.

If you need to edit target object metadata, you can edit it in the Source transformation.

You cannot link the target fields to the upstream transformation. If you want to reduce the number of unused
fields in the target, configure field rules in the Target transformation or in the upstream transformations.

When you create a database target at run time, the mapping task creates the database table the first time the
mapping runs based on the fields from the upstream transformation.

In subsequent runs, the mapping task replaces the data in the target table that was created in the initial run.
Consequently, if you change the mapping after the initial run, in subsequent runs the target will not reflect
changes to the number of target fields and its metadata. To see the changes, you can either delete the
existing target before you run the mapping or change the name of the target.

If you create a relational target at run time, the target operation is always insert. You can choose to truncate
the target.

Note: In mappings created before the Spring 2020 September release, Data Integration converts Bigint data
from a parameterized source to Int data in database targets created at runtime. To write Bigint data to the
target without conversion, edit the mapping in the Mapping Designer and enable the option in the mapping
advanced properties.

Data Integration does not convert Bigint data in mappings created after the Spring 2020 September release.

Creating a database target at run time
To create a database target at run time, select Create New at Runtime in the Target Object dialog box and
enter the target table name.

1. On the Target tab of the Target transformation, select a database connection.

2. Set the target type to Single Object.

3. Click Select to select the target object.

4. In the Target Object dialog box, select Create New at Runtime.

5. Enter the target table name.

6. Click OK.

Update columns for relational targets
You can configure one or more fields as update columns in relational targets. Update columns are columns
that uniquely identify rows in the target table. The mapping task uses them to update, upsert, or delete data
in the target.

Configure update columns when the target table does not contain a primary key and the mapping uses an
update, upsert, or delete operation. When you select more than one update column, the mapping uses the
AND operator with the update columns to identify matching rows.

When you run the mapping, it uses the field mapping to match rows in the upstream transformations to the
target table. If the mapping task matches an incoming row to multiple target rows, it performs the specified
task operation on all matched target rows.

Database targets 81

When you use a parameter for the target connection or target object, you can configure update columns in
the mapping task.

Configuring update columns
You can configure update columns when you use the update or upsert operation to update data in a relational
target.

1. In the Properties panel, click the Target tab.

2. Select a relational connection.

You can also use a connection parameter for a relational database connection type.

3. Select the target type that you want to use.

4. Select a target object.

5. Select the update or upsert operation.

6. To select update columns, click Add.

The Update Columns window displays all target columns.

7. Move the fields that you want to use from the Target Columns list to the Update Columns list.

8. Click OK.

Target update override
By default, Data Integration updates target tables based on key values. However, you can override the default
UPDATE statement for each target in a mapping. You might want to update the target based on non-key
columns.

You can enter a target update override for relational and ODBC connections. For information on the specific
steps to override the default target UPDATE statement, see the help for the appropriate connector.

Override the UPDATE statement in the Target transformation advanced properties. Enter the target UPDATE
statement in the Update Override field. In some relational connections, you can generate the default UPDATE
statement. Click Configure to generate the default UPDATE statement and then modify the statement.

Because the target fields must match the target column names, the update statement includes the
keyword :TU to specify the fields in the target transformation. If you modify the UPDATE portion of the
statement, you must use :TU to specify fields.

When you override the default UPDATE statement, you must enter an SQL statement that is valid for the
database. Data Integration does not validate the syntax.

Example

A mapping passes the total sales for each salesperson to the T_SALES table.

Data Integration generates the following default UPDATE statement for the target T_SALES:

UPDATE
 T_SALES
SET
 EMP_NAME = :TU.EMP_NAME,
 DATE_SHIPPED = :TU.DATE_SHIPPED,
 TOTAL_SALES = :TU.TOTAL_SALES
WHERE
 EMP_ID = :TU.EMP_ID

82 Chapter 3: Target transformation

You want to override the WHERE clause to update records for employees named Mike Smith only. To do this,
you edit the WHERE clause as follows:

UPDATE
 T_SALES
SET
 DATE_SHIPPED = :TU.DATE_SHIPPED,
 TOTAL_SALES = :TU.TOTAL_SALES
WHERE
 :TU.EMP_NAME = EMP_NAME AND EMP_NAME = 'MIKE SMITH'

Guidelines for configuring the target update override
Use the following guidelines when you enter target update queries:

• If you use target update override, you must manually put all database reserved words in quotes.

• You cannot override the default UPDATE statement if a target column name contains any of the following
characters:

' , () < > = + - * / \ t \ n \ 0 <space>
• If you update an individual row in the target table more than once, the database only has data from the

last update. If the mapping does not define an order for the result data, different runs of the mapping on
identical input data may result in different data in the target table.

• A WHERE clause that does not contain any column references updates all rows in the target table, or no
rows in the target table, depending on the WHERE clause and the data from the mapping. For example, the
following query sets the EMP_NAME to "MIKE SMITH" for all rows in the target table if any row of the
transformation has EMP_ID > 100:

UPDATE T_SALES SET EMP_NAME = 'MIKE SMITH' WHERE :TU.EMP_ID > 100
• If the WHERE clause contains no field references, the mapping updates the same set of rows for each row

of the mapping. For example, the following query updates all employees with EMP_ID > 100 to have the
EMP_NAME from the last row in the mapping:

UPDATE T_SALES SET EMP_NAME = :TU.EMP_NAME WHERE EMP_ID > 100
• If you set the target operation to update or upsert, configure the mapping task to treat source rows as

update in the advanced session properties.

Web service targets
You can use a web service connector such as Workday V2 for Target transformations.

You can map fields that are in a relational structure to request fields in a web service target to generate
hierarchical output.

When you select a web service connection for a Target transformation, you perform the following steps to
configure the transformation:

1. Select the web service operation.

2. Map the incoming fields to the web service request structure.

For example, you want to update contact information in Workday. You create a Target transformation and
select the Workday connection. You select the Maintain_Contact_Info operation. You map the incoming fields
to the request of the Workday operation.

Web service targets 83

Web service operations for targets
In a Target transformation, the operation determines the set of data that you can pass to a web service.

When you define the target properties for a web service connection, you select the web service operation.
The available operations are determined by the connection. For example, for a Workday connection,
Update_Job_Posting is an operation.

Field mapping for web service targets
You can map fields that are in a relational structure to the hierarchical structure used by a web service target.

On the Field Mapping tab for the Target transformation, the fields shown in the Target Fields area are shown
in a hierarchical structure. The target fields are determined by the request message structure of the
operation selected for the Target transformation.

Each source object displays as a group in the Input Fields area. You can select fields in the Input Fields area
to map the fields to the web service request. If the input fields include multiple input groups, map the groups
to the corresponding nodes in the web service request. You need to map all of the fields that are required in
the web service request.

If you map multiple source objects, you must assign primary and foreign keys to at least two groups. Ensure
that the source data is sorted on the primary key for the parent object, and sorted on the foreign key and
primary key for child objects.

To assign keys, click the key icon next to a field that you want to be a primary or foreign key, as shown in the
following image:

84 Chapter 3: Target transformation

In the Mark as Key dialog box, you can assign a field as primary or foreign key and select the related group,
as shown in the following image:

Keys must be of data type Bigint or String.

Partitions
In advanced mode, when you load data to some types of partitioned targets that you create at runtime, you
can configure the partition key fields. For some target types, you can use partitions to optimize loading data
to the target.

You can configure partition key fields and the partitioning method on the Partitions tab. The Partitions tab is
displayed for targets in advanced mode.

Partition key fields

When you load data to certain types of partitioned targets that you create at runtime, you can configure the
fields to be used as partition keys. You might need to configure partition key fields when you write data to
complex file targets.

For example, you can create a mapping that loads data to an Amazon S3 V2 target that you create at runtime.
The target is a partitioned Hive table that is backed by Avro data files. You want to write the data files in
directories that are partitioned based on the columns YEAR, MONTH, and DAY. Configure the fields YEAR,
MONTH, and DAY as partition keys.

Configure the fields to be used as partition keys in the Partition Fields area on the Partitions tab. You can
add, delete, and change the order of the partition key fields.

For more information about configuring partition key fields for different target types, see the help for the
appropriate connector.

Partitioning methods

If a mapping task loads large data sets, the task can take a long time to load data. When you use multiple
partitions, the mapping task divides data into partitions and loads the data in each partition concurrently,
which can optimize performance. Not all target types support partitioning.

Partitions 85

If a target in advanced mode supports partitioning, you can select the partitioning method in the Parallel
Processing area on the Partitions tab. The partitioning methods that you can select vary based on the target
type. For more information about partitioning different types of targets, see the help for the appropriate
connector.

You can select one of the following partitioning methods based on the target type:

None

The mapping task loads all data in a single partition. This is the default option.

Fixed

The mapping task distributes rows of data based on the number of partitions that you specify. You can
specify up to 64 partitions.

Consider the number of records to be passed to the target to determine an appropriate number of target
partitions. For a small number of records, partitioning might not be advantageous.

Pass through

The mapping task processes data without redistributing rows among partitions. All rows in a single
partition stay in the partition. Choose pass-through partitioning when you want to create additional
partitions to improve performance, but do not want to change the distribution of data across partitions.

Dynamic

The mapping task determines the optimal number of partitions to create at runtime.

Writing hierarchical data in advanced mode
You can use a Target transformation in advanced mode to write hierarchical data to complex files, such as
Avro, JSON, and Parquet files.

Consider the following guidelines when you write hierarchical data:

• You must use an Amazon S3 V2 or Azure Data Lake Storage Gen2 connection to write hierarchical data.
For more information, see the help for the appropriate connector.

• You must create a new target at run time.

• Do not use a parameter for the target connection or the target object.

Configuration for multibyte hierarchical data
If a mapping includes a transformation that processes hierarchical data and the data uses multibyte
characters, configure the Secure Agent machine to use UTF-8.

On Windows, create the INFA_CODEPAGENAME=UTF-8 environment variable in Windows System Properties.

On Linux, set the LC_LOCALE variable to UTF-8.

86 Chapter 3: Target transformation

Target fields
You can configure the target fields that you want to use in the data flow. You can add and remove target
fields, configure how the fields are displayed, edit field metadata, and restore original fields from the target
object.

Configure target fields on the Target Fields tab of the Properties panel.

You can configure target fields in the following ways:

Add and remove fields.

You can add fields to a mapping target. To add a field, click Add Field, and then enter the field name,
type, precision, and scale.

You can also remove fields that you do not want to use in the mapping. To remove fields, select the
fields that you want to remove, and then click Delete.

Change the sort order.

You can display target fields in native order, ascending order, or descending order. To change the sort
order, click Sort, and select the appropriate sort order.

Use technical field names or labels.

You can display field names by label or technical field name.

To change the display option for field names, select Options > Use Technical Field Names or Options >
Use Labels.

Edit field metadata.

You can edit the metadata for a field. You might edit metadata to change information that is incorrectly
inferred. When you edit metadata, you can change the name, native type, native precision, and native
scale, if applicable for the data type.

To edit the name or metadata for one or more fields, click Options > Edit Metadata. When you edit
metadata, you can also display native names by label or technical field name. To change the display
option for native names, select Options > Show Technical Field Names or Options > Show Labels.

When you change the metadata for a field, avoid making changes that can cause errors when you run the
task. For example, you can usually increase the native precision or native scale of a field without causing
errors. But if you reduce the precision of a field, you might cause the truncation of data.

You can't edit field metadata in mappings in SQL ELT mode.

Restore original fields from the target object.

To restore the original fields from the target object, use the Synchronize option. When you synchronize
fields, Data Integration restores deleted target fields, reverts data type and precision changes, and adds
fields that are new to the target. Data Integration removes any added fields that do not have
corresponding fields in the target object.

For existing target fields, Data Integration replaces any metadata that you edited with the field metadata
from the target object. Data Integration does not revert changes that you made to the Name field.

Target fields 87

Target transformation field mappings
Configure field mappings in a Target transformation to define how data moves from the data flow to the
target object.

Configure field mappings on the Field Mappings tab.

The Field Mappings tab includes a list of incoming fields and a list of target fields.

You can configure the following field mapping options:

Target Field Group

The target field group that lists the tables for which you want to configure field mappings. This option
appears when the transformation target type is Multi Group.

Field Map Options

Method of mapping incoming fields to target fields. Select one of the following options:

• Manual. Manually link incoming fields to target fields. Selecting this option removes links for
automatically mapped fields. To map fields manually, drag a field from the incoming fields list and
position it next to the appropriate field in the target fields list. Or, you can map selected fields, unmap
selected fields, or clear all of the mappings using the Actions menu.

• Automatic. Automatically link fields with the same name. Use when all of the fields that you want to
link share the same name. You cannot manually link fields with this option.

• Completely Parameterized. Use a parameter to represent the field mapping. In the task, you can
configure all field mappings.

• Partially Parameterized. Configure links in the mapping that you want to enforce and use a parameter
to allow other fields to be mapped in the mapping task. Or, use a parameter to configure links in the
mapping, and allow all fields and links to display in the task for configuration.
To see more information on field mapping parameters, see Mappings.

Options

You can configure how the fields display and which fields to display. To do so, click Options and select
from the following display options:

• Display fields using field labels or technical field names.

• Show mapped, unmapped, or all fields.

Automap

If you want Data Integration to automatically link fields with the same name and you also want to
manually map fields, select the Manual option and open the Automap menu.

You can map fields in the following ways:

• Exact Field Name. Data Integration matches fields of the same name.

• Smart Map. Data Integration matches fields with similar names. For example, if you have an incoming
field Cust_Name and a target field Customer_Name, Data Integration automatically links the Cust_Name
field with the Customer_Name field.

You can use both Exact Field Name and Smart Map in the same field mapping. For example, use Exact
Field Name to match fields with the same name and then use Smart Map to map fields with similar
names.

You can undo all automapped field mappings by clicking Automap > Undo Automap. To unmap a single
field, select the field to unmap and click Actions > Unmap.

88 Chapter 3: Target transformation

Data Integration highlights newly mapped fields. For example, when you use Exact Field Name, Data
Integration highlights the mapped fields. If you then use Smart Map, Data Integration only highlights the
fields mapped using Smart Map.

Configuring a Target transformation
You can use an existing target or create a target to hold the results of a mapping. If you choose to create the
target, the Secure Agent creates the target when you run the task.

1. Select the Target transformation in the mapping.

2. On the General tab, enter a target name and optional description

3. On the Incoming Fields tab, configure field rules that specify the fields to include in the target

For more information about field rules, see “Field rules” on page 25.

4. On the Target tab, select the target connection and specify the target type, for example, Single Object or
Parameter.

For mappings in SQL ELT mode, you select the target connection in the mapping properties.

The option to select multiple objects is available for NetSuite connections only.

5. To use an input parameter for the target object, select an existing parameter, or click New Parameter
and create a new parameter for the target object.

6. To use an existing target object, either enter the object name or click Select and select the target object.

7. To create a new target object, perform the following steps:

a. Click Select.

b. In the Target Object dialog box, select Create New at Runtime:

c. For flat file targets, enter the name of the target file including the extension, for example,
Accounts.csv.

If you want the file name to include a time stamp, select Handle Special Characters and add special
characters to the file name, for example, Accounts_%d%m%y%T.csv.

If you want to use a dynamic file name, select Use a Dynamic File Name and configure the file name
expression.

If you're using a fixed-width flat file format that uses the Decimal or Double data type with precision
and scale, and you don't want the data to be rounded in the target file, select Skip rounding decimal
and double data types.

Configuring a Target transformation 89

d. For relational targets, enter the table name.

e. For cloud data warehouse targets, optionally choose to use exact field names in the new target
object, enter the object name, and enter other properties such as the table location, table type, and
path, if required.

For more information about the target properties for different connection types, see the help for the
appropriate connector.

f. Click OK.

8. To configure formatting options for flat file targets, click Formatting Options, and configure the
formatting options such as the delimiter character and text qualifier.

9. For relational targets, select the target operation and related properties such as whether to truncate the
table for Insert operations.

If you create a relational target at run time, the target operation is always Insert.

10. Specify advanced properties for the target, if required.

Advanced properties vary based on the connection type. For information about connector properties, see
the help for the appropriate connector.

11. Configure the target fields on the Target Fields tab.

You can edit field names and metadata, add fields, and delete unnecessary fields.

You can't edit field metadata in mappings in SQL ELT mode. If you create the target at run time, you can't
configure target fields.

12. Map incoming fields to target fields on the Field Mapping tab.

If you create the target at run time, fields are mapped automatically.

For more information about field mapping, see “Target transformation field mappings” on page 88.

90 Chapter 3: Target transformation

C h a p t e r 4

Access Policy transformation
The Access Policy transformation applies data protection policies created in Data Access Management
according to the properties of the Access Policy transformation. An access policy is a set of policies and
associated data protection rules that apply data protection techniques and transform the data accordingly.

These techniques can replace, transform, or redact values in a data set while maintaining the overall
usefulness of the data. An access policy can protect different values in different mappings, based on factors
such as the intended user of the data and metadata classifications that users assign to the source data.
Access policies can help your organization comply with data privacy regulations such as the European
General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA).

Rules apply pre-defined transformations to data classes. A data class is a categorization applied to fields
within data assets to indicate the category of data such as birth dates, national identifiers, and postal codes.

Rules in an access policy can apply multiple data protection techniques, including the following operations:

• Retaining data

• Redacting all values of a given type such as birth dates

• Replacing specified field values with null

• Truncating values such as redacting the first three characters of a postal code

• Replacing values with consistently tokenized values such as always replacing "Smith" with "Abcd" or
"1234" with "5678"

• Generalizing date values to the month, year, or decade

• Replacing values with a constant text value such as replacing all passwords with five asterisks

An Access Policy transformation doesn't display the policies, since those are dynamically applied based on
the data and metadata. Users with the appropriate permissions manage policies in Data Access
Management.

Note: Not all organizations have Data Access Management. Your organization has Data Access Management
if it appears on the My Services page. If it doesn't appear, contact Informatica Global Customer Support to
request Data Access Management.

Access Policy transformation configuration
When you configure an Access Policy transformation, you select a data asset that associates policies that
you create in Data Access Management with the source data set.

A data asset is a data structure such as a table in a database that you have cataloged in Data Governance
and Catalog. You select the data asset when you configure the properties on the Access Policy tab.

91

The following image shows where to place an Access Policy transformation and its configuration options:

The following table describes the fields on the Access Policy tab:

Field Description

Consumer Identifies the user who will consume the data. Select a single user.
Active users in your organization with the Data Marketplace User role appear in this list. Select
one of those users. Note that the user you choose helps determine the set of rules that the
transformation applies to the data.

Usage Identifies the usage context such as for customer analysis or anti-money laundering research.
Usage context is one type of metadata that helps determine the set of rules that the
transformation applies to the data.
Users create and manage usage contexts in Data Marketplace. To learn more, see Set Up Data
Marketplace in the Data Marketplace help.

92 Chapter 4: Access Policy transformation

Field Description

Data Asset Identifies the data asset to which the transformation applies the rules.
A data asset is a data structure such as a table in a database that you have cataloged in Data
Governance and Catalog.
By default, the source object that you selected when you configured the Source transformation
appears when you click Select. Select the data asset in that source object.
Alternatively, you can select a new connection and a new data asset.
Select Override Asset name if there is a difference between the table name and the asset name
in the data catalog.

Consistency Seed Provides a value that represents the rule logic that the transformation applies to the data class.
A consistency seed ensures that a rule's behavior for a data class will be consistent for the same
consistency seed value, usage context, and user across mappings. For example, you can ensure
that a rule always replaces the last name "Smith" with "Abcd."
If you want consistent tokenization between different Access Policy transformations, insert the
same consistency seed in other Access Policy transformations. If you don't want consistent
tokenization between different Access Policy transformations, generate a unique seed.

Click Synchronize Access Policy and save the mapping to ensure that all required design time properties are
configured. This ensures that the appropriate access policy rules resolve correctly when the mapping runs.

Use a single Source transformation with an Access Policy transformation. Connect the Access Policy
transformation directly to the Source transformation.

Currently, the Access Policy transformation only applies data protection policies.

Access Policy transformation example
You need to make customer data available to a colleague in your bank's marketing department for customer
analysis. As part of their role and the needs of their project, your colleague in the marketing department has
limited access rights to customer data.

Use an Access Policy transformation to ensure that your organization complies with data privacy regulations
while allowing your colleague to gain valuable insights. At run time, the transformation hides or obscures the
information for which your colleague does not have access rights based on metadata and the properties that
you set on the Access Policy tab.

Access Policy transformation example 93

The following table shows part of a table called BANK_CUSTOMERS, which includes contact details, birth
dates, and other items of personally identifiable information:

CUSTOMER_N
AME

ADDRE
SS

POSTAL_CO
DE

PROFESSIO
N

EMAIL_ADDRES
S

CUSTOMER_TY
PE

DAY_OF_BIR
TH

Brayden Combs 7776
Proctor
Drive

48089 Associate
Marketing

brayden.combs@
organization.com

1 03/14/1990

Osvaldo Patton 63
Rosewo
od
Court

64051 Project
Manager

osvaldo.patton@
organization.com

5 01/13/1988

Alivia Oneal 64 East
Thorne
Court

30043 Business
Analyst

alivia.oneal@org
anization.com

3 06/22/1956

Skyla Weeks 7556
South
Shore
Drive

48045 Operations
Manage

skyla.weeks@org
anization.com

4 10/08/1961

Justice Cobb 9136 S.
Lafayet
te St.

60187 Financial
Controller

justice.cobb@org
anization.com

1 02/23/1963

Braxton Kramer 7 Hill
Field
St.

28376 Restaurant
Manager

braxton.kramer@
organization.com

5 11/01/1969

Erin Ryan 20
Lakesh
ore
Street

20706 Project
Manager

erin.ryan@organi
zation.com

2 07/23/1959

To configure the mapping, complete the following tasks:

1. Add a Source transformation that reads the BANK_CUSTOMERS source table.

2. Add an Access Policy transformation to the mapping canvas, and connect it to the data flow.

3. On the Access Policy tab, take the following actions:

a. In the Consumer field, select your marketing department colleague.

b. In the Usage field, select "customer analysis" as the usage context.

Users create and manage usage context in Data Marketplace. To learn more, see Working With Data
Collections in the Data Marketplace help.

c. In the Data Asset field, select the BANK_CUSTOMERS table as the source data asset.

d. To use consistent tokenization, enter a consistency seed from another Access Policy
transformation. Otherwise, generate a new consistency seed.

e. Click Synchronize Access Policy.

4. Add other transformations to the mapping as required.

5. Add a Target transformation to the mapping and connect it to the upstream transformation.

6. Click Run.

The mapping task applies the policies to the data, protecting it.

94 Chapter 4: Access Policy transformation

The following table shows the protected data:

CUSTOMER_N
AME

ADDRE
SS

POSTAL_CO
DE

PROFESSIO
N

EMAIL_ADDRES
S

CUSTOMER_TY
PE

DAY_OF_BIR
TH

Bray 48089 Associate
Marketing

iywefie.wecisdng
@organization.c
om

1

Osva 64051 Project
Manager

yojniw.sdfhihd@
organization.com

5

Aliv 30043 Business
Analyst

25dxk7og.x9jney
c@organization.c
om

3

Sky 48045 Operations
Manage

oeunx.ed7uncr@
organization.com

4

Just 60187 Financial
Controller

justice.cobb@org
anization.com

1

Brax 28376 Restaurant
Manager

zdkljvkr.xbei@or
ganization.com

5

Erin 20706 Project
Manager

0ick.39ft@organi
zation.com

2

The Access Policy transformation protects the data in the following ways:

• It retains only the first four characters of the customer names.

• It replaces the street address and day of birth data with null values.

• It assigns random characters to the customer email addresses, but it keeps the addresses in a valid email
format.

The ZIP codes, professions, and customer types remain unaltered.

Access Policy transformation example 95

C h a p t e r 5

Aggregator transformation
Configure an Aggregator transformation to perform aggregate calculations, such as averages and sums,
against groups of data. You can use an Aggregator transformation to remove duplicate rows.

The Aggregator transformation behaves like the Expression transformation except you can configure the
Aggregator transformation to perform calculations on a group of data. The Expression transformation
returns results on a row-by-row basis.

For example, you can use the Aggregator transformation to calculate the average salary for employees in
each department of an organization. In the Aggregator transformation, create a group for the department
number and then configure an expression to calculate the average salary for the employees in each group.

Group by fields
Use group by fields to define how to group data for aggregate expressions. Configure group by fields on the
Group By tab of the Properties panel.

To define a group for the aggregate expression, select the appropriate input, input/output, and output fields
in the Aggregator transformation. You can select multiple group by fields to create a new group for each
unique combination. Data Integration then performs the defined aggregation for each group.

When you group values, Data Integration produces one row for each group. If you do not group values, Data
Integration returns one row for all input rows.

If the Aggregator transformation runs on an advanced cluster and the input and output fields aren't grouped
by field, the transformation might not return the last row of each group with the result of the aggregation.

When you select multiple group by fields in the Aggregator transformation, Data Integration uses field order
to determine the order by which it groups. The group order can affect the results. Order the group by fields to
ensure the appropriate grouping. You can change the field order after you select the fields in the group.

For example, you create aggregate fields called TOTAL_QTY and TOTAL_PRICE to store the total quantity and
total price for each item by store. You define the following expressions for each field:

• TOTAL_QTY: SUM (QTY)
• TOTAL_PRICE: SUM (QTY*PRICE)
You define STORE_ID and ITEM as the group by fields.

The input rows contain the following data:

STORE_ID ITEM QTY PRICE

101 'battery' 3 2.99

96

STORE_ID ITEM QTY PRICE

101 'battery' 1 3.19

101 'battery' 2 2.59

101 'AAA' 2 2.45

201 'battery' 1 1.99

201 'battery' 4 1.59

301 'battery' 1 2.45

Data Integration performs the aggregate calculations on the following unique groups:

STORE_ID ITEM

101 'battery'

101 'AAA'

201 'battery'

301 'battery'

Data Integration returns the store ID, item name, total quantity for each item by store, and total price for each
item by store:

STORE_ID ITEM TOTAL_QTY TOTAL_PRICE

101 'AAA' 2 4.90

101 'battery' 6 17.34

201 'battery' 5 8.35

301 'battery' 1 2.45

Sorted data
To improve job performance, you can configure an Aggregator transformation to use sorted data. To
configure the Aggregator transformation to process sorted data, on the Advanced tab, select Sorted Input.

When you configure an Aggregator transformation to use sorted data, you must sort data earlier in the data
flow. If the Aggregator transformation processes data from a relational database, you must also ensure that
the sort keys in the source are unique. If the data is not presorted correctly or the sort keys are not unique,
you can receive unexpected results or errors when you run the mapping task.

When the mapping task performs aggregate calculations on sorted data, the task caches sequential rows of
the same group. When the task reads data for different group, it performs aggregate calculations for the
cached group, and then continues with the next group.

Sorted data 97

For example, an Aggregator transformation has the STORE_ID and ITEM group by fields, with the sorted input
option selected. When you pass the following data through the Aggregator, the mapping task performs an
aggregation for the three rows in the 101/battery group as soon as it finds the new group, 201/battery:

STORE_ID ITEM QTY PRICE

101 'battery' 3 2.99

101 'battery' 1 3.19

101 'battery' 2 2.59

201 'battery' 4 1.59

201 'battery' 1 1.99

When you do not use sorted data, the mapping task performs aggregate calculations after it reads all data.

Aggregate fields
Use an aggregate field to define aggregate calculations.

When you configure an Aggregator transformation, create an aggregate field for the output of each
calculation that you want to use in the data flow. You can use aggregate functions in aggregate fields. You
can also use conditional clauses and nonaggregate functions.

Configure aggregate fields on the Aggregate tab of the Properties panel. When you configure an aggregate
field, you define the field name, data type, precision, scale, and optional description. The description can
contain up to 4000 characters. You also define the calculations that you want to perform.

When you configure aggregate fields, you can use variable fields for calculations that you want to use within
the transformation. You can also include macros in aggregate and variable fields.

In advanced mode, the output is NULL if the Group by field returns a single row and the aggregate expression
contains the STDDEV and VARIANCE functions. This is because Data Integration uses Spark 3.2. To get an
output value of 0, set the spark.sql.legacy.statisticalAggregate session property to true in the mapping
task.

Aggregate functions
You can use aggregate functions in expressions in aggregate fields.

For more information about aggregate functions, see Function Reference.

In mappings in SQL ELT mode, you use your cloud data warehouse's native aggregate functions. For more
information, see the documentation for your cloud data warehouse.

Nested aggregate functions
A nested aggregate function is an aggregate function within another aggregate function.

For example, the following expression sums sales and returns the highest number:

MAX(SUM(SALES))

98 Chapter 5: Aggregator transformation

You can include multiple single-level or multiple nested functions in different output fields in an Aggregator
transformation. You cannot include both single-level and nested functions in an Aggregator transformation.
You cannot nest aggregate functions in advanced mode.

When an Aggregator transformation contains a single-level function in any output field, you cannot use a
nested function in any other field in that transformation. If you need to create both single-level and nested
functions, create separate Aggregator transformations.

Conditional clauses
Use conditional clauses in the aggregate expression to reduce the number of rows used in the aggregation.
The conditional clause can be any clause that evaluates to TRUE or FALSE.

For example, use the following expression to calculate the total commissions of employees who exceeded
their quarterly quota:

SUM(COMMISSION, COMMISSION > QUOTA)

Advanced properties
You can configure advanced properties for an Aggregator transformation. The advanced properties control
settings such as the tracing level for session log messages, whether the transformation uses sorted input,
cache settings, and whether the transformation is optional or required.

The properties that are available vary based on the mapping mode.

You can configure the following properties:

Property Description

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

Sorted Input Indicates that input data is pre-sorted by groups. Select this option only if the mapping passes
sorted data to the Aggregator transformation.

Cache Directory Local directory where Data Integration creates the index and data cache files.
By default, Data Integration uses the directory entered in the Secure Agent $PMCacheDir property
for the Data Integration Server. If you enter a new directory, make sure that the directory exists
and contains enough disk space for the aggregate caches.

Data Cache Size Data cache size for the transformation. Select one of the following options:
- Auto. Data Integration sets the cache size automatically. If you select Auto, you can also

configure a maximum amount of memory for Data Integration to allocate to the cache.
- Value. Enter the cache size in bytes.
Default is Auto.

Index Cache Size Index cache size for the transformation. Select one of the following options:
- Auto. Data Integration sets the cache size automatically. If you select Auto, you can also

configure a maximum amount of memory for Data Integration to allocate to the cache.
- Value. Enter the cache size in bytes.
Default is Auto.

Advanced properties 99

Property Description

Transformation
Scope

Specifies how Data Integration applies the transformation logic to incoming data. Select one of
the following options:
- Transaction. Applies the transformation logic to all rows in a transaction. Choose Transaction

when a row of data depends on all rows in the same transaction, but does not depend on rows
in other transactions.

- All Input. Applies the transformation logic on all incoming data. When you choose All Input,
Data Integration drops incoming transaction boundaries. Choose All Input when a row of data
depends on all rows in the source.

Optional Determines whether the transformation is optional. If a transformation is optional and there are
no incoming fields, the mapping task can run and the data can go through another branch in the
data flow. If a transformation is required and there are no incoming fields, the task fails.
For example, you configure a parameter for the source connection. In one branch of the data
flow, you add a transformation with a field rule so that only Date/Time data enters the
transformation, and you specify that the transformation is optional. When you configure the
mapping task, you select a source that does not have Date/Time data. The mapping task ignores
the branch with the optional transformation, and the data flow continues through another branch
of the mapping.

Hierarchical data in advanced mode
In advanced mode, you can use hierarchical fields that represent an array, map, or struct.

You can use hierarchical fields as pass-through fields. You can also use complex operators to access a
primitive child field and use the child field to perform an aggregate calculation. For example, you can use the
dot operator to access an integer in a struct field and pass the integer as an argument to the SUM function.
For more information about complex operators, see Function Reference.

Consider the following guidelines when you use hierarchical fields:

• You cannot use a hierarchical field as a group by field.

• The output of an aggregate calculation cannot be an array, map, or struct.

Aggregator transformation example
You need to retrieve the latest price for every stock in your change data capture (CDC) system.

To retrieve the most recent price for each stock, create a mapping and add an Aggregator transformation and
Joiner transformation.

• Configure the Aggregator transformation to group all the stocks by stock ID and calculate the latest
trading time for each stock ID.

• Configure the Joiner transformation to perform a self join with the stock ID and trading time, using the
source data and Aggregator transformation output.

The Target transformation writes the stock ID and price to the target file.

100 Chapter 5: Aggregator transformation

Source data

The following table shows the source data:

STOCK_ID PRICE VOLUME TRADETIME

100 1.12 125 2023.01.20.1245

105 3.45 56 2023.01.18.0821

102 2.29 25 2023.01.19.1118

101 4.56 87 2023.01.17.0901

102 2.35 38 2023.01.20.1649

100 0.99 94 2023.01.20.1355

104 1.88 67 2023.01.20.1730

103 2.11 41 2023.01.17.1211

105 3.40 90 2023.01.18.1525

104 3.40 90 2023.01.20.1634

103 3.40 90 2023.01.20.1526

105 3.40 90 2023.01.19.1745

Mapping configuration

The following image shows the mapping that you configure:

Configure the transformations in the following ways:

Aggregator transformation example 101

Aggregator transformation

The following table describes the properties to configure in the Aggregator transformation:

Properties Configuration

Incoming Fields Configure a field rule to prefix all incoming fields with "agg_" so that the aggregated fields
have unique names.

Group By Group by the field agg_stock_id.

Aggregate Create one aggregate field with the following properties to return the latest trading time for
each stock ID:
- Field Type: Output Field
- Name: agg_maxtime
- Type: string
- Precision: 10
Configure the following expression: max(agg_tradetime)

Joiner transformation

In the Joiner transformation, configure a normal join with the following join conditions:

• agg_stock_id = STOCK_ID
• agg_maxtime = TRADETIME

Target transformation

The following table describes the properties to configure in the Target transformation:

Properties Configuration

Incoming Fields Configure the following field rules:
- Include all fields.
- Exclude Fields by Text or Pattern with the prefix "agg_".
The list of included fields shows all the source fields: PRICE, STOCK_ID, TRADETIME, VOLUME

Target Fields Add the following target fields: STOCK_ID and PRICE

Field Mapping Perform an automap with Exact Field Name. This maps the incoming fields STOCK_ID and
PRICE to the target fields STOCK_ID and PRICE.

Target Data

The following table shows the data that the mapping writes to the target file:

STOCK_ID PRICE

100 0.99

101 4.56

102 2.35

103 3.40

104 3.40

105 3.40

102 Chapter 5: Aggregator transformation

Since the fields are grouped by STOCK_ID in the Aggregator transformation, each stock ID is listed in one row
with its most recent price. For example, the most recently traded price for stock 105 is $3.40.

Aggregator transformation example 103

C h a p t e r 6

B2B transformation
Use the B2B transformation that is available in Data Integration mappings to communicate with B2B Gateway
and send commands such as updating an event status. With the Update Event Status command type you can
select a dynamic event status name that is configured in the field mapping or select an event status name
that is configured in B2B Gateway.

B2B Incoming Fields
An incoming field is a field that enters a B2B transformation from an upstream transformation.

For more information about incoming fields in transformations, see “Incoming fields” on page 24.

B2B settings
Configure B2B settings to either map a dynamic event status name based on the field names that are
configured on the Mapping Fields tab or select a status that is defined in B2B Gateway.

To configure the transformation, complete the following tasks:

1. Connect the B2B transformation to a Source transformation.

2. On the B2B Settings tab, perform the following actions:

• Select the type as Update Event Status.

• In the Event Status field, you can either map a dynamic event status name based on the field names
that are configured on the Mapping Fields tab or select a status that is defined in B2B Gateway.

Output fields
View the output fields on the Output Fields tab of the Properties panel. A B2B transformation creates output
fields based on the fields that you map on the Field Mapping tab.

You can also define new fields and select from an input groups to be displayed in Output Fields. The tab
displays the following fields:

• ERROR_CODE

104

• ERROR_MESSAGE

• EVENT_ID

• STATUS_NAME

You can only delete the ERROR_CODE and ERROR_MESSAGE fields from the list of default output fields. You
can't delete the EVENT_ID and the STATUS_NAME entries.

When you define output fields, note the following:

• When you add an output field, you define the field name, data type, precision, scale, and an optional
description. You can edit the data type and precision of the output fields. The description can contain up
to 4,000 characters.

• If you connect the B2B transformation to another step that does not pass in any field, the output fields are
not initialized.

• At run time, the mapping passes null values to output fields that are not in a field mapping.

Field mapping
Configure field mappings to define how the event statuses must move from the incoming transformation
fields to the downstream trasnformation. Configure field mappings on the Field Mapping tab of the
Properties panel.

The Field Mapping tab includes a list of incoming fields and B2B input fields. In B2B input fields, EVENT_ID
will be the default field. The STATUS_ NAME field appears when you select Pass the status as a parameter in
the B2B Settings tab. You can also include additional entries in the B2B input fields by adding a new field or
by selecting from input group on the Output fields tab.

Field Map Options

Defines the method of mapping fields to the B2B transformation. Select one of the following options:

• Manual. Manually link incoming fields to the B2B transformation input fields.

• Automatic. Automatically link fields with the same name. Use when all of the fields that you want to
link share the same name. You can't manually link fields with this option.

Automap

Links fields with matching names. Allows you to link matching fields, and then manually configure other
field mappings.

You can map fields in the following ways:

• Exact Field Name. Data Integration matches fields of the same name.

• Smart Map. Data Integration matches fields with similar names. For example, if you have an incoming
field Cust_Name and a target field Customer_Name, Data Integration automatically links the Cust_Name
field with the Customer_Name field.

You can use both Exact Field Name and Smart Map in the same field mapping. For example, use Exact
Field Name to match fields with the same name and then use Smart Map to map fields with similar
names.

You can undo all automapped field mappings by clicking Automap > Undo Automap. To unmap a single
field, select the field to unmap and click Actions > Unmap.

Field mapping 105

Data Integration highlights newly mapped fields. For example, when you use Exact Field Name, Data
Integration highlights the mapped fields. If you then use Smart Map, Data Integration only highlights the
fields mapped using Smart Map.

Options

Controls how fields are displayed in the Incoming Fields and Output Fields lists. Configure the following
options:

• The fields that appear. You can show all fields, unmapped fields, or mapped fields.

• Field names. You can use technical field names or labels.

Actions menu

Provides additional field mapping options. You can select the following options:

• Map Selected. Links the selected incoming field with the selected B2B input field.

• Unmap Selected. Clears the link for the selected field.

• Clear Mapping. Clears all field mappings.

Advanced settings
You can configure advanced properties for a B2B transformation. The advanced properties control the
tracing level for session log messages.

You can configure the following property:

Property Description

Tracing
Level

Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

Optional Determines whether the transformation is optional. If a transformation is optional and there are no
incoming fields, the mapping task can run and the data can go through another branch in the data
flow. If a transformation is required and there are no incoming fields, the task fails.

106 Chapter 6: B2B transformation

C h a p t e r 7

Cleanse transformation
The Cleanse transformation adds a cleanse asset that you created in Data Quality to a mapping. A cleanse
asset is a set of data transformation operations that standardize the form and content of your data.

You add a single cleanse asset to a Cleanse transformation. You can map one or more input fields to a
cleanse asset.

A cleanse asset can perform one or more of the following operations:

• Change the character case of the input data.

• Remove leading and trailing spaces from input data.

• Remove values from the input data.

• Find and replace values in the input data.

• Merge the cleansed data from two or more input fields into a single new output field.

You can configure multiple operations in a cleanse asset, and you can add any type of operation to the asset
multiple times. The mapping performs the operations on an input data field in a sequence that you define, so
that a single cleanse asset can specify multiple changes to the input field data.

A Cleanse transformation is similar to a Mapplet transformation, as it allows you to add data transformation
logic that you designed elsewhere to a mapping. Like mapplets, cleanse assets are reusable assets.

A Cleanse transformation does not display the logic that the cleanse asset contains or allow you to edit the
cleanse asset. To edit the cleanse asset, open it in Data Quality.

Cleanse transformation configuration
When you configure a Cleanse transformation in a mapping, you first select the cleanse asset that contains
the logic to include in the transformation. Next, you map one or more incoming fields on the transformation
to target fields that cleanse asset specifies.

The steps to configure the transformation depend on the number of inputs that the cleanse asset specifies.

To configure the transformation, complete the following tasks:

1. Connect the Cleanse transformation to a Source transformation or other upstream object.

2. On the Cleanse tab, select the cleanse asset that you want to include in the transformation.

You can select a cleanse asset that contains a single input or multiple inputs.

• If you include a cleanse asset that contains a single input, you can select one or more fields from
upstream objects as inputs. To map the fields to the cleanse asset, click Add.

107

The following image shows the options that you use to select the cleanse asset and add the input
fields:

• If you include a cleanse asset that contains multiple inputs, the Add option does not appear on the
Cleanse tab. Use the Field Mapping tab options to connect the transformation input fields to the
asset.

3. On the Incoming Fields tab, verify the incoming fields.

By default, the transformation inherits all incoming fields from any connected upstream object in the
mapping. You can define a field rule to limit or rename the incoming fields.

4. On the Field Mapping tab, connect one or more input fields on the transformation to the asset. If the
cleanse asset specifies a single input, Data Integration automatically links the incoming fields with the
target field. If the cleanse asset specifies multiple inputs, link the incoming fields to the fields manually.

The cleanse asset input names might reflect the names of the transformation input fields. If so, you can
use the Automap options to connect the fields.

108 Chapter 7: Cleanse transformation

The following image shows the options that you can use to map the input fields in the transformation:

5. Verify the output field properties on the Output Fields tab.

6. You can optionally rename the Cleanse transformation and add a description on the General tab. You
can also update the tracing level for the transformation on the Advanced tab. The default tracing level is
Normal.

Cleanse asset considerations
A cleanse asset comprises one or more cleanse instances. Each instance represents one or more input fields
for which the asset specifies a set of cleanse operations.

You can add multiple cleanse instances to an asset in Data Quality, so that a Cleanse transformation can
apply multiple cleanse operations to different sets of input fields with a single asset.

If you select a cleanse asset that specifies more than one input field, you must understand the asset
configuration and know the types of cleanse operation that the asset will perform on each input. The Cleanse
transformation does not identify the instance on which each asset input originates. If you define multiple
instances on the asset in Data Quality, make a record of the instances to which each input belongs. Use the
record as a guide when you connect the asset inputs to the transformation input fields.

Synchronizing data quality assets
If you update an asset in Data Quality after you add it to a transformation, you may need to synchronize the
asset version in the transformation with the latest version.

To synchronize the asset versions, open the transformation in the mapping and select the transformation
name in the properties panel. For example, in a Cleanse transformation select Cleanse in the properties
panel. If synchronization is necessary, Data Integration displays a message that prompts you to synchronize
the assets.

When you synchronize the asset versions, Data Integration may prompt you to propagate the field attributes
of the current asset to other assets in the mapping. Data Integration may display the prompt if the current
asset originates in an earlier version of Data Quality.

Cleanse transformation configuration 109

You select the assets to which to propagate the field attributes. You can select multiple assets and
propagate the attributes in a single operation.

Note: Field propagation occurs by default for assets that you create in the current version of Data Quality.

Cleanse transformation field mappings
Configure field mappings to define how data moves from the incoming transformation fields to the cleanse
asset. Configure field mappings on the Field Mapping tab of the Properties panel.

You can configure the following field mapping options:

Field map options

Method of mapping fields to the transformation.

Select one of the following options:

• Manual. Manually link an incoming field to an asset input field. Removes links for any automatically
mapped field. Manual is the default option when you select an asset that contains multiple inputs.

• Automatic. Automatically link fields with the same name. You cannot manually link fields with this
option. Automatic is the default option when you select an asset that contains a single input.

• Completely Parameterized. Use a parameter to represent the field mapping.
Choose the Completely Parameterized option when the cleanse asset in the transformation is
parameterized or any upstream transformation in the mapping is parameterized.

• Partially Parameterized. Configure links in the mapping that you want to enforce and use a parameter
to allow other fields to be mapped in the mapping task. Or, use a parameter to configure links in the
mapping, and allow all fields and links to display in the task for configuration.

Parameter

Select the parameter to use for the field mapping, or create a new parameter. This option appears when
you select Completely Parameterized or Partially Parameterized as the field map option. The parameter
must be of type field mapping.

Do not use the same field mapping parameter in more than one Cleanse transformation in a single
mapping.

Options

Controls how fields are displayed in the Incoming Fields and Target Fields lists.

Configure the following options:

• The fields that appear. You can show all fields, unmapped fields, or mapped fields.

• Field names. You can use technical field names or labels.

Automap

Links fields with matching names. Allows you to link matching fields and to manually configure other
field mappings. The Automap options appear when you select the Manual or Partially Parameterized
field map option.

You can map fields in the following ways:

• Exact Field Name. Data Integration matches fields of the same name.

110 Chapter 7: Cleanse transformation

• Smart Map. Data Integration matches fields with similar names. For example, if you have an incoming
field Cust_Name and a target field Customer_Name, Data Integration automatically links the Cust_Name
field with the Customer_Name field.

You can use both Exact Field Name and Smart Map in the same field mapping. For example, use Exact
Field Name to match fields with the same name and then use Smart Map to map fields with similar
names.

You can undo all automapped field mappings by clicking Automap > Undo Automap.

To unmap a single field, select the field to unmap and click Actions > Unmap on the context menu for the
field. To unmap one or more fields that you selected, click Unmap Selected on the Target Fields context
menu.

To clear all field mappings from the transformation, click Clear Mapping on the Target Fields context
menu.

Cleanse transformation output fields
View the output fields on the Output Fields tab of the Properties panel. A Cleanse transformation creates
output fields based on the fields that you map in the Field Mapping tab.

The Output Fields tab displays the name, type, precision, and scale for each output field.

The transformation creates output fields in the following manner:

Cleanse asset with a single output

The transformation creates the cleansed field.

The output field name is the name of the target field appended by the name of the Cleanse
transformation. For example, if you have a target field Person_name and you entered the name for the
Cleanse transformation as Cleanse_TX, the operation returns the output field name as
Person_name_Cleanse_TX.

Cleanse asset with multiple outputs

The transformation creates the cleansed fields and additionally any merged output field that you or
another user configured in the asset.

The transformation attempts to adds the suffix _Cleansed to the name of each target field. For example,
if you have a target field FirstName, the operation returns the output field name as FirstName_Cleansed.

Note: If you created the cleanse asset in the current version of Data Quality, the transformation applies
the suffix _Cleansed to all output fields. If you created the asset in an older version of Data Quality, the
transformation may apply a different naming policy to the outputs. See Rules and guidelines for output
field names for more information.

The merged output field names are the names of the merged fields that you configured in the asset.

You cannot edit the output field properties in the Cleanse transformation. To edit the properties, open the
cleanse asset in Data Quality.

Rules and guidelines for output field names

You may create a cleanse asset in Data Quality and add outputs to the asset over time. This can impact the
type of suffix that the Cleanse transformation applies to the output fields.

Cleanse transformation output fields 111

When you use a cleanse asset with multiple outputs in a transformation, verify that the field names meet your
mapping requirements. You may need to map the output fields again to ensure that the transformation
defines the field names in the manner that you expect.

Consider the following rules and guidelines when you review the output field names:

• Some older cleanse assets supported a single output field in a single cleanse instance. If you add outputs
to such an asset and you do not update the original instance, the Cleanse transformation applies the
_Cleansed suffix to the newer outputs only. The transformation does not apply any suffix to the output in
the original instance.

The Cleanse transformation applies this policy regardless of when you add the asset to the
transformation. The transformation deletes a suffix from an older output field when you add an output in
another instance and you do not change the original instance.

• If you add an output to the original instance in any cleanse asset, the Cleanse transformation applies the
_Cleansed suffix to all output names.

The Cleanse transformation applies this policy regardless of the age of the asset and regardless of when
you add the asset to the transformation.

Advanced properties
You can configure advanced properties for a Cleanse transformation. The advanced properties control the
tracing level for session log messages.

You can configure the following property:

Property Description

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

112 Chapter 7: Cleanse transformation

C h a p t e r 8

Data Masking transformation
Use the Data Masking transformation to change sensitive production data to realistic test data for non-
production environments. The Data Masking transformation modifies source data based on masking rules
that you configure for each column.

Create masked data for software development, testing, training, and data mining. You can maintain data
relationships in the masked data and maintain referential integrity between database tables. The Data
Masking transformation is a passive transformation.

The Data Masking transformation provides masking rules based on the source data type and masking type
you configure for a port. For strings, you can restrict the characters in a string to replace and the characters
to apply in the mask. For numbers and dates, you can provide a range of numbers for the masked data. You
can configure a range that is a fixed or percentage variance from the original number. The Integration Service
replaces characters based on the locale that you configure with the masking rules.

To use the Data Masking transformation, you need the appropriate license.

Masking techniques
The masking technique is the type of data masking to apply to a selected column.

Select one of the following masking techniques:

Credit Card masking

Applies a credit card mask format to columns of string data type that contain credit card numbers.

Email masking

Applies an email mask format to columns of string data type that contain email addresses.

Advanced Email Masking

Masks an email address with a realistic email address from a first name, last name, and a domain name.
You can mask the string data type.

IP Address masking

Applies an IP address mask format to columns of string data type that contain IP addresses.

Key masking

Produces deterministic results for the same source data and seed value. You can apply key masking to
datetime, string, and numeric data types.

Phone masking

Applies a phone number mask format to columns of string data type that contain phone numbers.

113

Random masking

Produces random results for the same source data and mask format. You can apply random masking to
datetime, string, and numeric data types.

SIN masking

Applies a Social Insurance number mask format to columns of string data type that contain Social
Insurance numbers.

SSN masking

Applies a Social Security number mask format to columns of string data type that contain Social Security
numbers.

Custom Substitution masking

Replaces a column of data with similar but unrelated data from a custom dictionary. You can apply
custom substitution masking to columns with string data type.

Dependent masking

Replaces a field value with a value from a custom dictionary based on the values returned from the
dictionary for another input column. You can mask the string data type.

Substitution masking

Replaces a column of data with similar but unrelated data from a default dictionary. You can apply
substitution masking to columns with string data type.

URL masking

Applies a URL mask format to columns of string data type that contain URLs.

Configuration properties for masking techniques
You can define how a specific masking technique works by configuring different properties for a masking
technique. The Data Masking transformation masks data based on the masking technique that you select
and the specific configuration that you set.

The configuration properties that appear depend on the masking technique and the data type. For example,
you cannot blur string data. You cannot select a seed value when you use the Random masking technique.

Repeatable output
Repeatable output is the consistent set of values that the Data Masking transformation returns.

Repeatable output returns deterministic values. For example, you configure repeatable output for a column of
first names. The Data Masking transformation returns the same masked value every time the same name
appears in the workflow.

You can configure repeatable masking when you use the Random masking technique, Substitution masking
technique, or the special mask formats for string data type. Select Repeatable and enter the seed value to
configure repeatable masking.

You cannot configure repeatable output for the Key masking technique.

114 Chapter 8: Data Masking transformation

Optimize dictionary usage
The Optimize Dictionary Output option increases the use of dictionary values for masking and reduces
duplicate dictionary values in the target.

If you perform substitution masking or custom substitution masking, you can choose to optimize the
dictionary usage. The workflow uses some values from the selected dictionary to mask source data. These
dictionary values might be used for multiple entries so that all source data is masked in the target. The
chances of using duplicate dictionary values reduces if you optimize dictionary usage. To optimize dictionary
output, you must configure the masking rule for repeatable output.

Seed
The seed value is a starting point to generate masked values.

The Data Masking transformation creates a default seed value that is a random number from 1 through 999.
You can enter a different seed value. Apply the same seed value to a column to return the same masked data
values in different source data. For example, if you have the same Cust_ID column in four tables, and you
want all of them to output the same masked values. You can set all four columns to the same seed value.

You can enter the seed value as a parameter. Seed value parameter names must begin with $$. You can
include an underscore (_) in the name but you cannot include other special characters. Add the required
parameter and value to the parameter file and specify the parameter file name at run time.

Note: If you enter the seed value as a parameter, you must run the mapping in a mapping task. If you run a
mapping that includes a seed value parameter, the mapping uses an incorrect value because it cannot read
the parameter value.

Unique substitution
Unique substitution masking ensures that each unique source value uses a unique dictionary value.

To mask a source value with a unique dictionary value, you can configure unique substitution masking. If a
source value is masked with a specific dictionary value, then no other source value is masked with this
dictionary value.

For example, the Name column in the source data contains multiple entries of John. If you configure
repeatable masking, every entry of John takes the same dictionary value, such as Xyza. However, other
source values might also be masked with the same dictionary value. A source entry Jack can also use the
dictionary value Xyza. As a result, all entries of John and Jack use the same dictionary value. When you
configure unique substitution masking, if all source values of John use the Xyza dictionary value, then no
other source value uses the same dictionary value.

Unique substitution masking requires a storage connection for the storage tables. Storage tables contain the
source to dictionary value mapping information required for unique substitution masking.

Note: If the source data contains more unique values than the dictionary, the masking fails because there are
not enough unique dictionary values to mask all the source data.

Mask format
When you configure key or random masking for string data type, configure a mask format to limit each
character in the output column to an alphabetic, numeric, or alphanumeric character.

If you do not define a mask format, the Data Masking transformation replaces each source character with
any character. If the mask format is longer than the input string, the Data Masking transformation ignores the

Configuration properties for masking techniques 115

extra characters in the mask format. If the mask format is shorter than the source string, the Data Masking
transformation does not mask the characters at the end of the source string.

When you configure a mask format, configure the source filter characters or target filter characters that you
want to use the mask format with.

The mask format contains uppercase characters. When you enter a lowercase mask character, the Data
Masking transformation converts the character to uppercase.

The following table describes mask format characters:

Character Description

A Alphabetical characters. For example, ASCII characters a to z and A to Z.

D Digits. From 0 through 9.

N Alphanumeric characters. For example, ASCII characters a to z, A to Z, and 0-9.

X Any character. For example, alphanumeric or symbol.

+ No masking.

R Remaining characters. R specifies that the remaining characters in the string can be any character type.
R must appear as the last character of the mask.

For example, a department name has the following format:

nnn-<department_name>

You can configure a mask to force the first three characters to be numeric, the department name to be
alphabetic, and the dash to remain in the output. Configure the following mask format:

DDD+AAAAAAAAAAAAAAAA

The Data Masking transformation replaces the first three characters with numeric characters. It does not
replace the fourth character. The Data Masking transformation replaces the remaining characters with
alphabetic characters.

Source filter characters
When you configure key or random masking for string data type, configure source filter characters to choose
the characters that you want to mask.

When you set a character as a source filter character, the character is masked every time it occurs in the
source data. The position of the characters in the source string does not matter, and you can configure any
number of characters. If you do not configure source filter characters, the masking replaces all the source
characters in the column.

The source filter characters are case-sensitive. The Data Masking transformation does not always return
unique data if the number of source string characters is fewer than the number of result string characters.

116 Chapter 8: Data Masking transformation

Target filter characters
When you configure key or random masking for string data type, configure target filter characters to limit the
characters that appear in a target column.

The Data Masking transformation replaces characters in the target with the target filter characters. For
example, enter the following characters to configure each mask to contain all uppercase alphabetic
characters: ABCDEFGHIJKLMNOPQRSTUVWXYZ.

To avoid generating the same output for different input values, configure a wide range of substitute
characters or mask only a few source characters. The position of each character in the string does not
matter.

Range
Define a range for numeric or datetime data. When you define a range for numeric or date values, the Data
Masking transformation masks the source data with a value between the minimum and maximum values.

Numeric Range

Set the minimum and maximum values for a numeric column. The maximum value must be less than or equal
to the field precision. The default range is from one to the field precision length.

Date Range

Set minimum and maximum values for a datetime value. The minimum and maximum fields contain the
default minimum and maximum dates. The default datetime format is MM/DD/YYYY HH24:MI:SS. The
maximum datetime must be later than the minimum datetime.

Blurring
Blurring creates an output value within a fixed or percent variance from the source data value. Configure
blurring to return a random value that is close to the original value. You can blur numeric and date values.

Select a fixed or percent variance to blur a numeric source value. The low bound value is a variance below the
source value. The high bound value is a variance above the source value. The low and high values must be
greater than or equal to zero. When the Data Masking transformation returns masked data, the numeric data
is within the range that you define.

You can mask a date as a variance of the source date by configuring blurring. Select a unit of the date to
apply the variance to. You can select the year, month, day, hour, minute, or second. Enter the low and high
bounds to define a variance above and below the unit in the source date. The Data Masking transformation
applies the variance and returns a date that is within the variance.

For example, to restrict the masked date to a date within two years of the source date, select year as the unit.
Enter two as the low and high bound. If a source date is February 2, 2006, the Data Masking transformation
returns a date between February 2, 2004, and February 2, 2008.

Connections in a Data Masking transformation
To use a custom dictionary connection or storage connection in a masking technique, you must add the
connection to the Data Masking transformation.

You can use custom flat file or relational dictionaries. Unique substitution masking techniques also require a
storage connection for source- to dictionary-value mapping.

Configuration properties for masking techniques 117

Add the connections on the Masking Rules tab of the data masking transformation. When you configure a
masking technique for a column, you can use the dictionaries and storage connection that you specify on the
Masking Rules tab.

The following connection fields appear on the Masking Rules tab:

• Relational Dictionary Connection

• Flat File Dictionary Connection

• Storage Connection

If you export a mapping created before the April 2022 release, the Data Masking transformation in the
mapping might not include the dictionary and storage connection information. When you import the mapping,
the fields appear blank. To avoid this issue when you import the mapping into an environment with the April
2022 release or later, open and save the mapping before you export the mapping. The exported mapping
displays the dictionary and storage connection information when imported. The connections also appear on
the Uses tab of the Show Dependencies page.

Note: You might need to make a change to the mapping to enable the Save button.

Credit card masking
Credit card masking applies a built-in mask format to mask credit card numbers. You can create a masked
number in the format for a specific credit card issuer.

The Data Masking transformation generates a logically valid credit card number when it masks a valid credit
card number. The length of the source credit card number must be from 13 through 19 digits. The input credit
card number must have a valid checksum based on credit card industry rules.

The first six digits of a credit card number identify the credit card issuer. You can keep the original credit card
issuer or you can select another credit card issuer to appear in the masking results.

Credit card parameters

The following table describes the parameters that you can configure for credit card masking:

Parameter Description

Repeatable Returns the same masked value when you run a task multiple times or when you generate masked
values for a field that is in multiple tables.

Seed Value A starting number to create repeatable output. Enter a number from 1 through 999. Default seed value
is 190. You can enter the seed value as a parameter.

Keep Issuer Returns the same credit card type for the masked credit card. For example, if the source credit card is a
Visa card, generate a masked credit card number that is the Visa format.

Mask Issuer Replaces the source credit card type with another credit card type. When you disable Keep Issuer,
select which type of credit card to replace it with. You can choose credit cards such as AMEX, VISA,
and MASTERCARD. Default is ANY.

118 Chapter 8: Data Masking transformation

Email masking
The Data Masking transformation returns an email address of random characters when it masks an email
address.

For example, the Data Masking transformation can mask Georgesmith@yahoo.com as
KtrIupQAPyk@vdSKh.BICJ.

When you use the email masking format, you must set the seed value. The seed value is a random number
from 1 through 999 and is a starting point to generate masked values. You can enter a different seed value.
Apply the same seed value to a column to return the same masked data values in different source data. For
example, you have the same Cust_ID column in four tables. You want all of them to output the same masked
values. Set all four columns to the same seed value.

Advanced email masking
You can create a realistic email address from a first name, last name, and domain name.

When you configure advanced email masking, you can configure parameters to mask the user name and the
domain name in the email address. For example, a source table might contain columns called First_Name
and Last_Name. You can configure the email address to contain the first character of First_Name and seven
characters of the last name. Define a domain name for the email address. The Masking task creates an
address with the following syntax:

VSingh@mycompany.com

The following table describes the parameters you can configure for advanced email masking:

Parameter Description

Repeatable Returns the same masked value when you run a task multiple times or when you generate
masked values for a field that is in multiple tables.

Seed Value A starting number to create repeatable output. Enter a number from 1 through 999. Default seed
value is 190. You can enter the seed value as a parameter.

First Name Name of the column to use as the first part of the email name. The email name contains the
masked value of the column you choose.

First Name Length The number of characters in the first name to include in the email address.

Delimiter Delimiter, such as a dot, hyphen, or underscore, to separate the first name and last name in the
email address. If you do not want to separate the first name and last name in the email address,
leave the delimiter blank.

Last Name Name of the masked column to use in the email name. The email name contains the masked
value of the column you choose.

Last Name Length The number of characters in the last name to include in the email address.

Domain Name A string value that represents an Internet Protocol (IP) resource such as gmail.com.

Email masking 119

IP address masking
The Data Masking transformation masks an IP address as another IP address by splitting it into four
numbers that are separated by a period. The first number is the network. The Data Masking transformation
masks the network number within the network range.

The Data Masking transformation masks a Class A IP address as a Class A IP Address and a 10.x.x.x address
as a 10.x.x.x address. The Data Masking transformation does not mask the class and private network
address. For example, the Data Masking transformation can mask 11.12.23.34 as 75.32.42.52. and
10.23.24.32 as 10.61.74.84.

Note: When you mask many IP addresses, the Data Masking transformation can return nonunique values
because it does not mask the class or private network of the IP addresses.

Key masking
A column configured for key masking returns deterministic masked data each time the source value and seed
value are the same. The Data Masking transformation returns unique values for the column.

When you configure a column for key masking, the Data Masking transformation creates a seed value for the
column. You can change the seed value to produce repeatable data between different Data Masking
transformations. For example, configure key masking to enforce referential integrity. Use the same seed
value to mask a primary key in a table and the foreign key value in another table.

You can configure masking rules that affect the format of data that the Data Masking transformation returns.
You can mask numeric, string, and datetime data types with key masking.

When you can configure key masking for datetime values, the Data Masking transformation requires a
random number as a seed. You can change the seed to match the seed value for another column to return
repeatable datetime values between the columns. The Data Masking transformation can mask dates between
1753 and 2400 with key masking. If the source year is in a leap year, the Data Masking transformation returns
a year that is also a leap year. If the source month contains 31 days, the Data Masking transformation returns
a month that has 31 days. If the source month is February, the Data Masking transformation returns
February. The Data Masking transformation always generates valid dates.

Configure key masking for numeric source data to generate deterministic output. When you configure a
column for numeric key masking, you assign a random seed value to the column. When the Data Masking
transformation masks the source data, it applies a masking algorithm that requires the seed.

You can configure key masking for strings to generate repeatable output. Configure a mask format to define
limitations for each character in the output string. To define a mask format, configure the Source Filter
characters and the Target Filter characters. The source filter characters define the source characters to
mask. The target filter characters define the characters to mask the source filter characters with.

120 Chapter 8: Data Masking transformation

Phone number masking
You can mask phone numbers with random numbers.

The Data Masking transformation masks a phone number without changing the format of the original phone
number. For example, the Data Masking transformation can mask the phone number (408) 382-0658 as (607)
256-3106.

The source data can contain numbers, spaces, hyphens, and parentheses. The Data Masking transformation
does not mask alphabetic and special characters.

You can configure repeatable output when you mask phone numbers. You must select Repeatable and enter
a seed value.

Random masking
Random masking generates random nondeterministic masked data.

The Data Masking transformation returns different values when the same source value occurs in different
rows. You can configure masking rules that affect the format of data that the Data Masking transformation
returns.

You can mask datetime, numeric, and string values with random masking.

To mask date values with random masking, either configure a range of output dates or choose a variance.
When you configure a variance, choose a part of the date to blur. Choose the year, month, day, hour, minute,
or second. The Data Masking transformation returns a date that is within the range you configure.

When you mask numeric data, you can configure a range of output values for a column. The Data Masking
transformation returns a value between the minimum and maximum values of the range based on field
precision. To define the range, configure the minimum and maximum ranges or configure a blurring range
based on a variance from the original source value.

Configure random masking to generate random output for string columns. To configure limitations for each
character in the output string, configure a mask format. Configure source and target filter characters to
define which source characters to mask and the characters to mask them with.

Social Insurance number masking
The Data Masking transformation masks a Social Insurance number that is nine digits. The digits can be
delimited by any set of characters.

If the number contains no delimiters, the masked number contains no delimiters. Otherwise the masked
number has the following format:

xxx-xxx-xxx
SIN start digit

You can define the first digit of the masked SIN.

To set a start digit, enable Start Digit and enter the digit. The Data Masking transformation creates masked
Social Insurance numbers that start with the number that you enter.

Phone number masking 121

Repeatable Social Insurance numbers

You can configure the Data Masking transformation to return repeatable SIN values. When you configure a
field for repeatable SIN masking, the Data Masking transformation returns deterministic masked data each
time the source SIN value and seed value are the same. To return repeatable SIN numbers, enable Repeatable
Values and enter a seed number.

The Data Masking transformation returns unique values for each Social Insurance number.

Social Security number masking
Social Security number masking applies a built-in mask format to change Social Security numbers.

The Data Masking transformation generates a Social Security number that is not valid based on the latest
High Group List from the Social Security Administration. The High Group List contains valid numbers that the
Social Security Administration has issued. The Data Masking transformation accesses the latest High Group
List from the following location:

<Installation directory>\Informatica Cloud Secure Agent\highgroup.txt

The Data Masking transformation generates Social Security numbers that are not on the High Group List. The
Social Security Administration updates the High Group List every month. Download the latest version of the
list from the following location: http://www.socialsecurity.gov/employer/ssns/highgroup.txt

Social Security number format

The Data Masking transformation accepts any SSN format that contains nine digits. The digits can be
delimited by any set of characters. For example, the Data Masking transformation accepts the following
format: +=54-*9944$#789-,*()”.

Area code requirement

The Data Masking transformation returns a Social Security number that is not valid with the same format as
the source. The first three digits of the SSN define the area code. The Data Masking transformation does not
mask the area code. It masks the group number and serial number. The source SSN must contain a valid area
code. The Data Masking transformation finds the area code on the High Group List and determines a range of
unused numbers that it can apply as masked data. If the SSN is not valid, the Data Masking transformation
does not mask the source data.

Repeatable Social Security number masking

The Data Masking transformation returns deterministic Social Security numbers with repeatable masking.
The Data Masking transformation cannot return all unique Social Security numbers because it cannot return
valid Social Security numbers that the Social Security Administration has issued.

Custom substitution masking
Use custom substitution masking to replace production data with realistic test data from a flat file or
relational dictionary that you create.

Substitution masking replaces a column of data with similar but unrelated data. For example, you can create
a dictionary that contains male and female first names. Use the dictionary to perform substitution masking
on a column that contains both male and female first names.

122 Chapter 8: Data Masking transformation

http://www.socialsecurity.gov/employer/ssns/highgroup.txt

You can configure custom substitution masking to replace the target column with unique masked values for
every unique source column value. Unique masking requires a storage connection for source- to dictionary-
value mapping.

Before you can use a dictionary or storage connection in a masking rule assignment, you must add the
dictionary and storage connection to the transformation. Add the connections to the transformation on the
Masking Rules tab. For flat file dictionaries, create a connection to the flat file dictionary from the Configure |
Connections view and add the connection to the transformation.

When you configure custom substitution masking, select the dictionary type and the dictionary connection.
You can then select the column that you want to use from the dictionary. To support non-English characters,
you can use different code pages from a flat file connection.

The flat file connection code page and the Secure Agent system code page must be compatible for the
masking task to work.

You can substitute data with repeatable or nonrepeatable values. When you choose repeatable values, the
Data Masking transformation produces deterministic results for the same source data and seed value. You
must configure a seed value to substitute data with deterministic results. You can substitute more than one
column of data with masked values from the same dictionary row.

Note: Before you run the mapping, verify that the dictionary file is present in the following location: <Secure
Agent installation directory>\apps\Data_Integration_Server\data

Custom substitution parameters

The following table describes the parameters that you configure for custom substitution masking:

Parameter Description

Flat File
Dictionary
Relational
Dictionary

Choose the type of custom dictionary to use. The transformation must include the required
dictionary connection.
If you choose flat file, you must create a flat file connection with the directory that points to the
dictionary files.
To make a flat file dictionary available to all Secure Agents in a runtime environment, verify that the
file is in the following location:
<Secure Agent installation directory>\apps\Data_Integration_Server\data

Dictionary The custom dictionary that you want to select.
The list includes relational or flat file dictionaries based on what you choose.

Dictionary
Column

The output column from the custom dictionary. For flat file dictionaries, you can select a dictionary
column if the flat file contains column headers.

Order By Applicable for relational dictionaries. The dictionary column on which you want to sort entries.
Specify a sort column to generate deterministic results even if the order of entries in the dictionary
changes. For example, if you move a relational dictionary and the order of entries changes, sort on
the serial number column to consistently mask the data.
Note: The column that you choose must contain unique values. Do not use columns that can
contain duplicate values to sort the data.

Lookup Input
Column

Optional. The source input column on which you perform a lookup operation with the dictionary.

Lookup
Dictionary
Column

Required if you enter a lookup Input Column value. The dictionary column to compare with the input
port. The source is replaced with values from the dictionary rows where the Lookup Input and
Lookup Dictionary values match.

Custom substitution masking 123

Parameter Description

Lookup Error
Constant

Optional. A constant value that you can configure when there are no matching values for the lookup
condition from the dictionary. Default is an empty string.

Repeatable Returns the same masked value when you run a task multiple times or when you generate masked
values for a field that is in multiple tables.

Seed Value A starting number to create repeatable output. Enter a number from 1 through 999. Default seed
value is 190. You can enter the seed value as a parameter.

Optimize
Dictionary
Usage

Increases the usage of masked values from the dictionary. Available if you choose the Repeatable
option. The property is not applicable if you enable unique substitution.

Is Unique Applicable for repeatable substitution. Replaces the target column with unique dictionary values for
every unique source column value. If there are more unique values in the source than in the
dictionary file, the data masking operation fails. Default is nonunique substitution.

Dependent masking
Dependent masking replaces a column of data with values from a custom dictionary that you use to mask
data in another column. To use dependent masking, at least one other source column must be masked with a
custom substitution rule.

For example, mask a Name column in the source data with a custom substitution rule. Configure the rule to
mask the values with values from the Name column in a Personal_Information dictionary.

You can configure dependent masking on another column to mask the source with values from a
corresponding column in the same dictionary. For example, apply dependent masking on the Age column.
Choose the Name column as the dependent column. You can then select a corresponding column from the
Personal_Information dictionary as the dependent output column. If you select the Age column from the
dictionary, the masking rule uses the age value that corresponds to the name value.

Dependent masking parameters
To apply dependent masking on a source column, at least one column must be masked with a custom
substitution rule.

The following table describes the parameters that you can configure for dependent masking:

Property Description

Dependent
Column

The input column configured for custom substitution masking that you want to relate to the
source column. Choose a column from the list. Columns that you configure with substitution
masking appear in the list.

Dependent
Output Column

The dictionary column to use to mask the source data column. Lists the columns in the dictionary
used to mask the dependent column. Choose the required column from the list of dictionary
columns.

124 Chapter 8: Data Masking transformation

Substitution masking
Substitution masking replaces a column of data with similar but unrelated data. Use substitution masking to
replace production data with realistic test data. When you configure substitution masking, select the type of
substitution masking based on the data.

The following table describes the substitution masking types that are available:

Name Description

Substitution Name Substitutes source data with data from a dictionary file of names.

Substitution Female Name Substitutes source data with data from a dictionary file of female names.

Substitution Male Name Substitutes source data with data from a dictionary file of male names.

Substitution Last Name Substitutes source data with data from a dictionary file of last names.

Substitution Position Substitutes source data with data from a dictionary file of job positions.

Substitution US ZIP Code Substitutes source data with data from a dictionary file of U.S. ZIP codes.

Substitution Street Substitutes source data with data from a dictionary file of street names.

Substitution City Substitutes source data with data from a dictionary file of U.S. city names.

Substitution State Substitutes source data with data from a dictionary file of U.S. state names

Substitution Country Substitutes source data with data from a dictionary file of country names.

The Data Masking transformation performs a lookup on the dictionary file and replaces source data with data
from the dictionary. You download the dictionary files when you download the Secure Agent. The dictionary
files are stored in the following location:

<Secure Agent installation directory>\apps\Data_Integration_Server\data

You can substitute data with repeatable or nonrepeatable values. When you choose repeatable values, the
Data Masking transformation produces deterministic results for the same source data and seed value. You
must configure a seed value to substitute data with deterministic results.

You can substitute more than one column of data with masked values from the same dictionary row.

URL address masking
The Data Masking transformation parses a URL by searching for the ‘://’ string and parsing the substring to
the right of it. The source URL must contain the ‘://’ string. The source URL can contain numbers and
alphabetic characters.

The Data Masking transformation does not mask the protocol of the URL. For example, if the URL is
http://www.yahoo.com, the Data Masking transformation can return http://MgL.aHjCa.VsD/. The Data
Masking transformation can generate a URL that is not valid.

Note: The Data Masking transformation always returns ASCII characters for a URL.

Substitution masking 125

Mask rule parameter
A parameter is a placeholder for a value or values in a mapping. You can use a mask rule parameter when
you configure a Data Masking transformation object in a mapping.

Use a mask rule parameter when you do not have the source connection information. You can also use a
mask rule parameter when you want to assign masking techniques to source fields when you run the
mapping task. For example, if the source transformation object in a mapping uses a parameter, you cannot
assign masking techniques when you create the mapping. After you create a mapping with a source
connection, you might add additional fields to the source that you want to mask. Use a mask rule parameter
when you create the mapping. You can then create multiple tasks to mask different data based on the same
mapping.

For more information about parameters, see Mappings.

Creating a Data Masking transformation
Create a Data Masking transformation to mask source data. You can assign masking techniques in the
transformation object or enter a mask rule parameter to assign masking techniques when you run the
mapping.

Use the Mapping Designer to create a Data Masking transformation. When you create a mapping, a Source
transformation and a Target transformation are already on the canvas for you to configure. Configure the
Source transformation to represent the source data that you want to mask. Configure the Target
transformation to represent the target connection where you want to store the masked data.

1. Drag a Data Masking transformation from the transformations palette onto the mapping canvas.

2. Connect the Data Masking transformation object to the data flow.

3. Select the Data Masking transformation object in the mapping designer.

The properties appear in the properties tab.

4. On the General tab, enter a name and optional description for the transformation object.

5. On the Incoming Fields tab, configure the field rules that define the data that you want to copy to the
target.

By default, the transformation includes all fields.

6. On the Masking Rules tab, you can configure the following properties:

• Parameter. To assign masking techniques at run time, add or create another mask rule parameter.

• Relational Dictionary Connection. To use a relational dictionary for custom substitution masking,
choose the dictionary connection from the list of relational connections.

• Flat File Dictionary Connection. To use a flat file dictionary for custom substitution masking, choose
the dictionary connection from the list of flat file connections.

• Storage Connection. To configure unique substitution masking, choose a storage connection from
the list of connections.

• Add. To configure masking techniques in the mapping, click Add and select the fields that you want
to mask. Click Configure to select and configure the required masking technique. If you assign a
masking technique in the mapping, you cannot edit it at run time.

7. Select the Target transformation and map the incoming fields to fields in the target.

126 Chapter 8: Data Masking transformation

By default, the Data Masking transformation adds the prefix "out_ " to fields that you include from the
Source transformation object. You cannot use automatic field mapping to map the fields in the Target
transformation object because the field names do not match. Rename the incoming field names in the
Target transformation if you want to use automatic field mapping. Select the pattern rename option and
enter "out_/" as the pattern to delete the prefix.

8. Save and run the mapping.

If you use a mask rule parameter in the mapping, you assign and configure the masking techniques when
you run the mapping task.
The following image shows the second step of a mapping task that uses a mask rule parameter:

Note: If you assign a masking technique to a column in a mapping task and then change the assignment
of the column in the mapping, the mapping task configuration takes precedence. If you unselect the rule
assignment of the column in the mapping task, then the mapping task uses the masking technique
assigned to the column in the mapping.

Consistent masked output
You might want to use different tools to mask the source data.

You can use the following tools to generate the same masked output from the same source data:

• Informatica Intelligent Cloud Services
You can use the following tools in Informatica Intelligent Cloud Services:

•Masking tasks on Informatica Intelligent Cloud Services

•Mapping tasks that contain mappings with the data masking transformation on Informatica Intelligent
Cloud Services

•Mappings that contain the data masking transformation on Informatica Intelligent Cloud Services

• Test Data Management (on-premise)

• PowerCenter mappings that contain the data masking transformation

Consistent masked output 127

Rules and guidelines
Consider the following rules and guidelines before you run mappings, tasks, or workflows to generate
consistent masked output:

• Use substitution masking rules to generate consistent masked output.

• The masking rules must use the same dictionaries.

• The Repeatable option must be set to ON.

• Use the same seed value.

Substitution masking rules use values from dictionaries to create masked output. The default dictionaries on
Informatica Intelligent Cloud Services and on-premise Test Data Management are the same. When you use
the same substitution rule, the workflow uses the same dictionary to substitute source data. The same seed
value therefore ensures that the same substitute value is used for all rows provided the dictionaries are the
same.

On Informatica Intelligent Cloud Services, the dictionary files are available at: <Secure Agent installation
directory>\apps\Data_Integration_Server\data

In on-premise Test Data Management, the dictionary files are available at: <Informatica installation
directory>\server\infa_shared\LkpFiles

The Repeatable option must be set to ON to ensure that the task or workflow repeats dictionary values for
the same source value.

Example
Consider the following example:

The source data contains First Name and Last Name columns that you need to mask to ensure that you mask
the full name in the target data.

You can use the following methods to generate the masked output:

• Run a masking task on Informatica Intelligent Cloud Services.

• Run a mapping task that contains a data masking transformation on Informatica Intelligent Cloud
Services.

• Run a mapping that contains a data masking transformation on Informatica Intelligent Cloud Services

• Run a data masking plan in Test Data Management.

• Run a PowerCenter mapping that contains a data masking transformation.

Perform the following high-level tasks to generate the masked output:

1. Use the Substitution Name masking rule to mask the First Name column. Set the Repeatable option to
ON. Enter a seed value.

2. Use the Substitution Last Name masking rule to mask the Last Name column. Set the Repeatable option
to ON. Enter a seed value.

3. Use the default dictionaries available with the setup. Do not make changes to the dictionaries.

When you run the masking task, mapping, or mapping task on Informatica Intelligent Cloud Services, Test
Data Management workflow, or PowerCenter mapping to generate output, you generate the same masked
output for the same source data.

128 Chapter 8: Data Masking transformation

Data Masking transformation example
You need realistic data for testing in a nonproduction environment. You have production data that includes
sensitive data columns. You cannot use the data without the risk of compromising sensitive data. Use the
Data Masking transformation to mask sensitive data before you use the data in a test environment.

The production data includes a table Personnel_Information with the following data:

First Name Surname DOB Address State

Uma Hilel 03/12/1985 24, Atkins Avenue CA

John Sen 07/15/1963 49, Wheeler Road MN

Keiko Burns 11/24/1989 13, Draker Drive PA

Isadora Buckley 08/16/1990 20, Fountain Center CA

In the Mapping Designer, add Personnel as a source transformation for the table Personnel_Information. Add
a target transformation Personnel_test.

Add the Data Masking transformation to the mapping canvas and connect it to the data flow.

You need to mask the Surname, DOB, and the State columns to ensure sensitive data is masked. You can use
the Substitution Last Name masking technique to mask the Surname column. This masking technique
replaces data in the column with data from the dictionary file on surnames. You can use the Random Date
masking technique to mask the DOB column. Use the Substitution State masking technique to mask the State
column. This masking technique replaces data in the column with data from the dictionary file on U.S. state
names.

Data Masking transformation example 129

When the mapping run completes successfully, you can view the masked data in the Personnel_test output
table :

First Name Surname DOB Address State

Uma Acothley 05/12/1985 24, Atkins Avenue Michigan

John Mcgovern 04/15/1963 49, Wheeler Road Oklahoma

Keiko Garsia 03/24/1990 13, Draker Drive Montana

Isadora Sonnier 01/16/1991 20, Fountain Center South Carolina

You can now use the masked data in the table Personnel_test in the test environment.

130 Chapter 8: Data Masking transformation

C h a p t e r 9

Data Services transformation
Use the Data Services transformation to invoke data services from the data services repository, including
industry-standard services, such as HL7 and HIPAA, and customized services. For example, you can use the
transformation to invoke data services to process HIPAA messages that you exchange with your healthcare
partners.

By default, the data services repository includes out-of-the-box data services that process industry standards.
You can create customized services in the data services repository and use the Data Services transformation
to invoke them, as well. For more information about the data services and the data services repository, see
Data Services Repository in the Administrator help.

When you add the transformation to a mapping, you define the data services that the transformation invokes.
You can choose one of the following options:

• Use a single data service to process a single message type for a specific standard and a specific usage
type. For HIPAA messages, you can also select a data service that sends messages and validation
messages to your partners.

• Use a dynamic service name to process messages for multiple message types from different standards
and usage types. When you use a dynamic service name, you pass the data service names to the
transformation as parameters.

The Data Services transformation passes message data to the downstream transformation in a file or as a
buffer, based on your selection. The transformation might create additional output fields, based on the status
tracing level that you select for the transformation and on the data service usage type. You can add more
Target transformations to the mapping and configure the Data Services transformation to send different
output types to different targets. For example, send message data to one target and send status tracing
reports to another target.

Dynamic service name
Use a dynamic service name with the Data Services transformation to process messages for message types
from different standards and usage types. When you use a dynamic service name, you pass the data service
names to the transformation as parameters.

The name of a data service indicates the industry standard, the version of the standard, the message type,
and the service usage type, in the following syntax:

<industry standard>_<version>_<message type>_<usage type>
The usage type can be one of the following types:

• Parser. Use a parser service to receive messages from your partners.

• Serializer. Use a serializer service to send messages to your partners.

131

• Restricted serializer. Use a restricted serializer service to send messages to your partners, including
validation messages. Applies to HIPAA messages.

For example, the name of the service you use to receive HIPAA message 270 version 5010A1 is
HIPAA_5010A1_270_Parser.

To use a dynamic service name, complete the following tasks when you configure the mapping:

1. Configure the mapping to pass the data service names to the Data Services transformation as
parameters. For example, add an Expression transformation to the mapping and configure the
Expression transformation to extract the data service names from the messages and pass the names to
the Data Services transformation.

2. When you configure Data Services properties, select the option to use a dynamic service name.

3. In the field mapping of the Data Services transformation, map the incoming field that contains the
service name to the service_Name field.

Using the Message Discovery Service

When you use a dynamic service name, you can optionally enable the Message Discovery Service. It detects
the name of a parser data service from the upstream transformation and invokes the parser data service
from the data services repository.

To use the Message Discovery Service, complete the following tasks when you configure the mapping:

1. Add an Expression transformation to the mapping that receives incoming messages.

2. In the Expression transformation, create an expression field to pass an empty string to the Data Services
transformation.

3. In the Data Services transformation, select the option to use a dynamic service name. Then, enable the
Message Discovery Service and select the mode and type.

4. In the field mapping of the Data Services transformation, map the incoming expression field with the
empty string to the service_Name field.

Note: The Message Discovery Service only detects the names of parser data services. It doesn't detect the
names of serializers or restricted serializers.

Status tracing messages
You can configure the status tracing level of the Data Services transformation to write status messages to
output fields. The Mapping Designer creates UDT_Status_Code and the UDT_Status_Message output fields in
the Data Services transformation.

When you choose to write the description only, the transformation returns a status code and one of the
following status messages:

Status code Status message

1 Success

2 Warning

3 Failure

132 Chapter 9: Data Services transformation

Status code Status message

4 Error

5 Fatal Error

When you choose to write the full status, the transformation returns a status code and a detailed XML status
message.

Data Services properties
Configure data services properties to define the input and output types, the data services that the
transformation invokes, and the status tracing level on the Data Services tab.

Configure the following properties:

Property Description

Input Type Type of input that the Data Services transformation receives from the upstream transformation.
Select one of the following options:
- Buffer. The Data Services transformation receives source data in the inputBuffer input field.
- File. The Data Services transformation receives a source file path in the inputBuffer input field.
Default is Buffer.

Output Type Type of output that the transformation passes on to the downstream transformation. Select one of
the following options:
- Buffer. The Data Services transformation passes the data to the outputBuffer output field.
- File. The Data Services transformation writes the output to the outputBuffer output field as an

output.xml file.
Default is Buffer.

Service Type Type of service that the Data Services transformation uses. Select one of the following options:
- Data Services. The transformation uses the parser, serializer, and restricted serializer data

services in the data services repository.
- FHIR Validation. The transformation uses a built-in FHIR validation service to validate incoming

FHIR bundles and messages in XML or JSON format. You can configure the FHIR version and the
terminology server.

- Hierarchical Mapper. The transformation uses a hierarchical mapper to convert hierarchical input
to hierarchical output, such as the XML output from a parser data service to a target XSD file.

Service Name Select a data service from the data services that reside in the data services repository. Choose this
option for a mapping that processes a single message type for a specific standard and usage type.
Tip: Click Populate Fields to automatically populate the input and output fields based on the data
service.
Applies when the service type is Data Services and you don't use a dynamic service name.

Dynamic
Service Name

Select this option to pass service names to the downstream transformation as parameters. Choose
this option for a mapping that processes messages for multiple message types from different
standards and usage types.
Applies when the service type is Data Services.

Data Services properties 133

Property Description

Message
Discovery
Service

Select this option to enable the Message Discovery Service to detect the name of a parser data
service.
Applies when Dynamic Service Name is enabled.

Mode Select the environment that the data service runs in. The environment can be either development or
production.
Applies when Message Discovery Service is enabled.

Type Select the data service type. The type can be either custom or out-of-the-box. Custom data services
are services that you customize and upload to the data services repository. Out-of-the-box data
services are services that are available in the data services repository by default.
Applies when Message Discovery Service is enabled.

Operation Operation that the data service performs. By default, the transformation uses a parser data service.
Applies when Message Discovery Service is enabled.

Status Tracing
Level

Detail level of job status that the Data Services transformation writes to output fields. Select one of
the following options:
- None. The transformation doesn't write the status to output fields. You can view the information

in the job the session log.
- Description only. The transformation writes a status code and a short description to the

UDT_Status_Code output field.
- Full status (XML). The transformation writes a status code to the UDT_Status_Code output field

and a detailed XML status message to the UDT_Status_Mesage output field.
Default is none.
Applies when the service type is Data Services or Hierarchical Mapper.

FHIR Version FHIR version that the FHIR validation service uses to validate FHIR bundles and messages.
Applies when the service type is FHIR Validation.

Terminology
Server

URL to the terminology server that the FHIR validation service uses to validate FHIR bundles and
messages. If you leave the field blank or the value is n/a, the transformation doesn't use a
terminology server to validate the resources.
Applies when the service type is FHIR Validation.

Hierarchical
Mapper

Hierarchical mapper that the transformation uses to convert hierarchical input to hierarchical
output.
Applies when the service type is Hierarchical Mapper.

Data Services transformation input fields
View and add input fields on the Input Fields tab of the Properties panel. The Input Fields tab displays the
name, type, precision, and scale for each input field.

By default, the Data Services transformation creates an inputBuffer field. The Data Services transformation
might create additional input fields depending on the transformation properties and data services type that
you configure.

If you need to pass additional files, file names, or parameters to the data service, you can add additional
input fields. You configure the field name, type, and precision for each field.

134 Chapter 9: Data Services transformation

The following table describes the default input fields that Data Service transformation creates based on the
transformation properties:

Field name Description

inputBuffer Receives the source data when the input type is buffer.
Receives the source file name and path when the input type is file.

OutputFilename Receives the output file name when the output type is file.

Service_Name Receives data service names when you enable the Dynamic Service Name property.

The following table describes the additional input fields that you can create for a Data Services
transformation:

Field type Input/Output Description

Service Parameter Input Receives an input parameter
for a data service.

Additional Output (File) Output Receives an output file name.

Additional Input (Buffer) Input Receives input data to pass to
the Data Services
transformation.

Data Services transformation output fields
View the output fields on the Output Fields tab of the Properties panel. The Output Fields tab displays the
name, type, precision, and scale for each output field.

A Data Services transformation creates an outputBuffer output field for the messages that it processes. The
transformation might create additional output fields, based on the status tracing level that you select for the
transformation and on the data service usage type. For example, for a HIPAA restricted serialize service, the
transformation creates output fields for error reports and for a validation report. If you use the Data Services
transformation to validate incoming FHIR resources, the transformation creates output fields only for error
reports and for a validation report.

If you use custom messages, configure additional output fields for custom message elements. To pass
parameters to the output, create pass-through fields with an Input/Output field type and map them to output
fields.

When you add a Target transformation to the mapping, the Data Services transformation maps all the output
fields to the Target transformation. To receive the output in different targets, add more Target
transformations to the mapping and configure field rules to exclude output fields that you don't want to send
to the target. For example, to receive messages and validation reports in two different targets, add two
Target transformations to the mapping. Exclude the validation report output fields from the target that
receives the messages and exclude the outputBuffer output field from the target that receives the validation
reports.

Data Services transformation output fields 135

Data Services transformation field mapping
View and configure the field mappings of the Data Services transformation on the Fields Mappings tab of the
Properties panel.

By default, the Data Services transformation maps the input it receives from the upstream transformation to
the inputBuffer field. When you use a dynamic service name, map the incoming field that contains the service
name to the Service_Name field.

136 Chapter 9: Data Services transformation

C h a p t e r 1 0

Deduplicate transformation
The Deduplicate transformation adds a deduplicate asset that you created in Data Quality to a mapping.

Use a Deduplicate transformation to analyze the levels of duplication in a data set and optionally to
consolidate sets of duplicate records into a single, preferred record. Deduplicate transformations analyze the
identity information in the records. An identity is a group of data values in a record that identify a person or
an organization.

Deduplication and consolidation are useful operations in the following types of data project:

• Customer Relationship Management. For example, a store designs a mail campaign and must check the
customer database for duplicate customer records.

• Regulatory compliance initiatives. For example, a business operates under government or industry
regulations that insist all data systems are free of duplicate records.

• Financial risk management. For example, a bank may want to search for relationships between account
holders.

• Any project that must identify or eliminate records that store duplicate identity information.

Deduplication and consolidation operations
When you run a mapping with a Deduplicate transformation, the transformation analyzes the identity data in
each input record. The transformation generates a set of percentage scores that represent the degrees of
similarity between the input records. If two or more records match one another with scores that exceed a
given threshold, the transformation considers the records to be duplicates.

The deduplicate asset that you add to the transformation specifies the comparison criteria for the
deduplication operation, including the threshold score that duplicate records must meet.

Consolidation is an optional process that the deduplicate asset can specify for the transformation. During
consolidation, the transformation evaluates the sets of matching records that the deduplication process
identifies. The transformation selects or constructs a preferred version of the records in each set.

A Data Quality user configures the deduplication and consolidation processes in the deduplicate asset. For
more information about the criteria that the asset defines, contact the Data Quality user.

Rules and guidelines for deduplication and consolidation

When you add a Deduplicate transformation to a mapping, consider the following rules and guidelines:

Mapping fields for identity analysis

The deduplicate asset that you add to the transformation specifies a type of identity, such as a person
name or an organization name. The asset identifies the identity type as the objective of the deduplication

137

operations. The type of identity on the asset defines the types of information that the transformation
expects to find in the input fields.

You must map the appropriate input fields on the transformation to the target fields that the
transformation indicates. You can optionally map the optional input fields to other fields.

Scores and thresholds

The Deduplicate transformation calculates a score for each possible pair of records in the input data.
The transformation returns the scores for the records within each set of matching duplicate records. It
does not return the scores for records that do not belong in the same set.

The transformation represents the relationships between the records in a matching set as a link score
and a driver score.

SequenceId and GroupKey fields

On the Field Mapping tab, the transformation adds a GroupKey field and a SequenceId field to the fields
that the asset specifies. The GroupKey field is mandatory. The SequenceId field is mandatory in
advanced mode.

A group key is a data value that allows the transformation to sort input records into subsets and to
perform discrete duplicate analyses on each subset. When you select a suitable group key, you reduce
the time that the mapping takes to run without reducing the quality of the mapping results. For more
information about groups, see “Groups in duplicate analysis” on page 139.

Sequence ID values determine the order in which the transformation reads the input records. If your
input records do not contain a field that can provide data to the SequenceId field, the transformation
reads the records in the order in which they appear in the input data set.

Metadata fields

On the Output Fields tab, the transformation adds fields that display the score values for pairs of
matching records. The fields also identify the set of matching records to which each record belongs. If
the deduplicate asset specifies a consolidation process, the metadata fields specify a preferred record
for each record set. The transformation identifies the preferred record as the survivor record.

Use the fields to understand the mapping results.

Identity population data
The deduplication process uses country-specific reference data files to evaluate the identity information in
the input data. The reference data files are called population files. When you run a mapping with a
Deduplicate transformation, the transformation compares the input data to the population file for the country
that the asset specifies.

Data Quality downloads the population files to the Secure Agent host machine when you install the Secure
Agent. You do not need to take any action to download the files.

For more information on population file properties, consult the Deduplicate Guide in the Data Quality online
help.

138 Chapter 10: Deduplicate transformation

Groups in duplicate analysis
A duplicate analysis mapping can take time to run because of the number of data comparisons that the
Deduplicate transformation must perform. The number of comparisons relates to the number of data values
on the fields that you select.

The following table shows the number of calculations that a mapping performs on a single field:

Number of data values Number of comparisons

10,000 50 million

100,000 5,000 million

1 million 500,000 million

To reduce the time that the mapping takes to run, you configure the Deduplicate transformation to assign the
input records to groups.

A group is a set of records that contain identical values on a field that you specify. When you perform
duplicate analysis on grouped data, the Deduplicate transformation analyzes the records exclusively within
each group and combines the results from each group into a single output data set. The field on which you
group the data is the GroupKey field. When you choose an appropriate group key, you reduce the overall
number of comparisons that the Deduplicate transformation must perform without any meaningful loss of
accuracy in the mapping analysis. Select the GroupKey field in the Deduplicate transformation.

The following table shows the number of calculations that a mapping performs on a single field that you sort
into ten groups:

Number of data
values

Number of groups Group size Total number of comparisons
(all groups)

10,000 10 1,000 5 million

100,000 10 10,000 500 million

1 million 10 100,000 50,000 million

Consider the following rules and guidelines when you organize data into groups:

• The GroupKey field must contain a range of identical values, such as a city name or a state name in an
address data set.

• Do not select a group key that contains information that is relevant to the duplicate analysis. For example,
do not select the index key field as the GroupKey field. The goal in group creation is to organize the data
according to values whose duplicate nature is not relevant to the objectives of the analysis.

• When you select a group key, consider whether the transformation can create groups that are a valid size
relative to your input data. If the groups are too small, the match analysis might not find all of the
duplicate records in the data set. If the groups are too large, the match analysis might return false
duplicates.

• If your data does not contain a suitable field for group keys, create a data column that the transformation
can use to can sort the records into the group sizes that you require. For example, for a data set that
contains 1 million records, you might decide to create a column that repeats a series of values from 1

Groups in duplicate analysis 139

through 50. The records in each group will be distributed evenly in the data set and will allow the duplicate
analysis to proceed on grouped data.

• If you do not want to sort the records into groups, specify a GroupKey field that contains the same value
in every record. If a suitable field does not exist, create the field. For example, create a column of data in
which every value is Group1 and select the column as the GroupKey field. When the mapping runs, the
Deduplicate transformation sorts the records by the GroupKey field values and therefore assigns every
record to the same group.

• Groups do not reorder the position of the records in the mapping data set.

Example: Selecting a group key column
Let's say that a bank wants to search for duplicate bank account holders. The bank's customer data set
includes columns for customer names and addresses, and the bank chooses Contact as the objective in the
deduplicate asset. The bank decides to sort the input records into groups and to perform duplicate analysis
on each group. The bank must select a column in the Deduplicate transformation on which to create the
groups.

The following table shows a fragment of the data set:

Customer ID Lastname Firstname Address1 City State Zip Country

90999990 Armstrong Al 6121 SUNSET BLVD. LOS ANGELES CA 90028 USA

90999907 Baldwin Lynn 1600 EL CAMINO REAL,
SUITE 1500

MENLO PARK CA 94025 USA

90999917 Baldwyn Linn 1600 EL CAMINO REAL,
#1500

MENLO PK CA 94025 USA

90999859 Belleperche Carmen 9255 SUNSET BLVD. LOS ANGELES CA 90069 USA

90999876 Clark Wick 777 S. FIGUEROA LOS ANGELES CA 90071 USA

90999859 Bachtin Guy 30 S. WACKER CHICAGO IL 60606 USA

90999868 Dicintio David 181 WEST MADISON ST CHICAGO IL 60602 USA

90999869 Ash Pascal 335 WEST 16TH STREET NEW YORK NY 10011 USA

90999996 Bachtin David 1633 BROADWAY NEW YORK NY 10022 USA

90999994 Carpenter Brad 30 BROAD ST NEW YORK NY 42304 USA

90999820 Dedmond David ONE FINANCIAL SQUARE NEW YORK NY 10008 USA

90999902 Backwell Chris 901 SE OAK,
WILLAMETTE PLZ

PORTLAND OR 97214 USA

90999897 Askerup Nancy 400 MARKET STREET HOUSTON TX 77027 USA

90999904 Choy Shelley 1177 WEST LOOP SOUTH HOUSTON TX 77027 USA

140 Chapter 10: Deduplicate transformation

Customer ID Lastname Firstname Address1 City State Zip Country

90999886 Cote Lian 530 E. SWEDESFORD RD. HOUSTON TX 77027 USA

90999999 Croteau Paul 3829-55 GASKINS ROAD HOUSTON TX 77027 USA

In this scenario, you might identify the State column as the most suitable column on which to sort the
records. You select the State column as the GroupKey field in the transformation.

When you select the State column as the GroupKey field, the deduplication operation enables the creation of
five groups, one for each state. The likelihood that the bank has customers with the same contact
information in different states is very low. Additionally, the data includes a Customer ID column that can add
to the confidence of the deduplication process.

The Customer ID column is a poor candidate for group creation, as it is a primary key field. If you select the
column as the GroupKey field, the deduplication operation creates a group for every unique ID and thus for
every record.

The Country column is also a poor candidate for group creation, as the column contains the same value in
every row. If you select the Country column as the GroupKey field, the deduplication operation adds all of the
records to the same group. Your bank might have two or more genuine customers with the same name living
across the country, and you do not want to deduplicate their entries.

Deduplicate transformation configuration
When you configure a Deduplicate transformation in a mapping, you first select the deduplicate asset that
contains the logic to include in the transformation. Next, you map the appropriate incoming fields to the
asset.

The deduplicate asset specifies the type of identity that the transformation searches for. The identity type
determines the types of input field that you must connect to the transformation. For more information about
the fields that the Deduplicate transformation expects, consult the Data Quality user who configured the
asset.

To configure the transformation, complete the following tasks:

1. Connect the Deduplicate transformation to a Source transformation or other upstream object.

2. On the Deduplicate tab, select the deduplicate asset that you want to include in the transformation.

Deduplicate transformation configuration 141

The following image shows the options that you use to select the deduplicate asset:

3. On the Incoming Fields tab, verify the fields that enter the transformation from upstream objects.

By default, the transformation inherits all incoming fields from any connected upstream object in the
mapping. You can define a field rule to limit or rename the incoming fields.

4. On the Field Mapping tab, connect one or more incoming fields to the fields on the deduplicate asset.

The fields that you map must include data that can describe an identity of the type that the asset
specifies. You must also map a GroupKey field that the transformation can use to create groups during
duplicate analysis.

The tab lists the fields from upstream objects in the Incoming Fields section and lists the fields that the
asset specifies in the Target Fields section.

The incoming field names might reflect the names of the target fields in the transformation. If so, you
can use the Automap options to connect the fields.

5. Verify the output field properties on the Output Fields tab.

The output fields include several metadata fields that contain important information about the results of
the duplication and consolidation process. For more information about the metadata fields, see
“Metadata fields on the Deduplicate transformation” on page 144.

6. You can optionally rename the Deduplicate transformation and add a description on the General tab. You
can also update the tracing level for the transformation on the Advanced tab. The default tracing level is
Normal.

Note: If you update an asset in Data Quality after you add it to a transformation, you may need to synchronize
the asset version in the transformation with the latest version. For more information about data quality asset
synchronization, see “Synchronizing data quality assets” on page 109.

142 Chapter 10: Deduplicate transformation

Deduplicate transformation field mappings
Configure field mappings to define how data moves from the upstream transformation to the Deduplicate
transformation and connects to the inputs on the deduplicate asset. Configure field mappings on the Field
Mapping tab of the Properties panel.

Note: You map an incoming field to a single field on a deduplicate asset.

You can configure the following field mapping options:

Field map options

Method of mapping fields to the transformation.

Select one of the following options:

• Manual. Manually link an incoming field to a transformation input field. Removes links for any
automatically mapped field.

• Automatic. Automatically link fields with the same name. You cannot manually link fields with this
option.

• Completely Parameterized. Use a parameter to represent the field mapping.
Choose the Completely Parameterized option when the deduplicate asset in the transformation is
parameterized or any upstream transformation in the mapping is parameterized.

• Partially Parameterized. Configure links in the mapping that you want to enforce and use a parameter
to allow other fields to be mapped in the mapping task. Or, use a parameter to configure links in the
mapping, and allow all fields and links to display in the task for configuration.

Parameter

Select the parameter to use for the field mapping, or create a new parameter. This option appears when
you select Completely Parameterized or Partially Parameterized as the field map option. The parameter
must be of type field mapping.

Do not use the same field mapping parameter in more than one Deduplicate transformation in a single
mapping.

Options

Controls how fields are displayed in the Incoming Fields and Target Fields lists.

Configure the following options:

• The fields that appear. You can show all fields, unmapped fields, or mapped fields.

• Field names. You can use technical field names or labels.

Automap

Links fields with matching names. Allows you to link matching fields and to manually configure other
field mappings. The Automap options appear when you select the Manual or Partially Parameterized
field map option.

You can map fields in the following ways:

• Exact Field Name. Data Integration matches fields of the same name.

• Smart Map. Data Integration matches fields with similar names. For example, if you have an incoming
field Cust_Name and a target field Customer_Name, Data Integration automatically links the Cust_Name
field with the Customer_Name field.

You can use both Exact Field Name and Smart Map in the same field mapping. For example, use Exact
Field Name to match fields with the same name and then use Smart Map to map fields with similar
names.

Deduplicate transformation field mappings 143

You can undo all automapped field mappings by clicking Automap > Undo Automap.

To unmap a single field, select the field to unmap and click Actions > Unmap on the context menu for the
field. To unmap one or more fields that you selected, click Unmap Selected on the Target Fields context
menu.

To clear all field mappings from the transformation, click Clear Mapping on the Target Fields context
menu.

Metadata fields on the Deduplicate transformation
The Deduplicate transformation includes a set of predefined fields that contain metadata for the
deduplication and consolidation processes. The transformation creates the fields by default and populates
the fields when the mapping runs.

Metadata fields on the Field Mapping tab

The Target Fields list in the Field Mappings tab includes the following metadata fields:

GroupKey

Contains the data values that the transformation uses to sort input records into groups for duplicate
analysis.

SequenceId

Contains a unique identifier for each record that enters the transformation.

The transformation uses the sequence ID values to identify records in the Out_DriverId and Out_LinkId
data. If you do not map the SequenceId field, the transformation uses the values on the OutRowId field
as unique identifiers for the records.

Metadata fields on the Output Fields tab

The Output Fields tab includes the following metadata fields:

Out_ClusterId

Contains the identifiers of the cluster to which each record belongs.

Note: In the deduplication process, a cluster is a set of records whose data values match each other to a
degree that exceeds the duplicate threshold. Records in the same set are likely to identify the same
identity. A set may contain a single record, as every unique record is a perfect match with itself.

Out_ClusterSize

Contains the number of records in the set to which the current record belongs. When a set contains a
unique record, the cluster size is 1.

Out_DriverId

Contains the identifier of the driver record in each matching record set. The driver record is the record in
the set with the lowest value on the SequenceId input field. If the transformation does not use the
SequenceId field, the driver record is the record in the matching set with the lowest Out_RowId value.

Out_DriverScore

Contains the score that represents the degree of similarity between the current record and the driver
record in the matching record set.

144 Chapter 10: Deduplicate transformation

Out_IsSurvivor

Contains an identifier for the preferred record that a consolidation process specifies.

Out_LinkId

Contains the identifier of the record that matched with the current record and linked it to the matching
record set.

Out_LinkScore

Contains the score between two records that results in the addition of a record to a matching record set.
The Out_LinkId field identifies the record with which the current record shares the link score.

Out_RowId

Contains a unique identifier for each record in the mapping source data set.

The transformation uses the Out_RowId values to identify records if you do not map a field of unique
identifiers to the SequenceId field.

Selecting metadata fields

The metadata fields can provide important information about the relationship between duplicate records. For
example, the metadata includes the Out_LinkScore field, which represents the degree of similarity between
two records as a numerical value. If you select the Out_LinkScore field, select the Out_LinkId field also. The
Out_LinkId field identifies the other record in the pair of records that the Out_LinkScore value describes.

The Out_DriverId value provides a benchmark for all records in a matching record set. The Out_DriverId value
is the score between the current record and the record in the set with the lowest sequence ID or row ID value.
The record with the lowest ID is also the first record that the deduplication process added to the set.

Link scores and driver scores
The deduplication process adds a link score and a driver score data to the Deduplicate transformation
output. You can use the scores to better understand the relationship between duplicate records.

The link score is the score between two records that identifies them as members of the same matching set.
The transformation creates a link between a given record and the first record that it matches with a score
above the threshold value.

The LinkId field identifies the records to which a link score applies. The link score and link ID values do not
imply that a pair of records are the best match in the input data. The purpose of the link score and link ID
values is to determine the composition of the matching record set.

The driver score is the score between the first record added to a matching record set and another record in
the same set. The transformation uses the sequence ID or row ID values to identify the first record in the set.
Driver scores provide a means to assess all records in the set against a single record.

Note: Duplicate analysis generates a single set of scores for the input records. The driver scores and link
scores represent the different relationships between the records and do not indicate different types of
duplicate analysis. The driver score and link score assignments can depend on the order in which the records
enter the transformation. A driver score for a given pair of records might be lower than the threshold value.

Example of link scores and driver scores

A Deduplicate transformation analyzes a column of surname data. The deduplicate asset defines a threshold
value of 0.825 for duplicate records.

Link scores and driver scores 145

The following table shows the results that the transformation might return:

Surname Sequence
ID

ClusterId ClusterSiz
e

DriverId DriverSco
re

LinkId LinkScore

SMITH 1 1 2 1 - 6 1 1 - 1 1

SMYTH 2 2 2 1 - 3 0.83333 1 - 2 1

SMYTHE 3 2 2 1 - 3 1 1 - 2 0.83333

SMITT 4 3 1 1 - 4 1 1 - 4 1

SMITS 5 4 1 1 - 5 1 1 - 5 1

SMITH 6 1 2 1 - 6 1 1 - 1 1

The results provide the following information about the surname data:

• SMITT and SMITS do not match any other record with a score that meets the threshold. The
transformation determines that the records are unique in the data set.

SMITT and SMITS each have a ClusterSize value of 1, which indicates that they are the only record in their
respective sets. To find unique records in the output, search for matching record sets that contain a single
record.

• SMITH and SMITH have a link score of 1. The transformation determines that the records are identical.
The transformation adds the records to a single matching record set. The ClusterId value indicates that
the records belong to the same set.

• SMYTH and SMYTHE have a link score of 0.83333. The score exceeds the duplicate threshold. Therefore,
the transformation adds the records to a single matching record set.

Deduplicate transformation output fields
A Deduplicate transformation displays the output fields from the Field Mapping tab and also displays a series
of metadata fields that the transformation creates. View the fields on the Output Fields tab of the Properties
panel.

The tab displays the name, type, precision, and scale for the output fields.

You cannot edit the output field properties in the Deduplicate transformation. To edit the properties, open the
deduplicate asset in Data Quality.

For more information about the metadata fields that the transformation creates, see “Metadata fields on the
Deduplicate transformation” on page 144.

146 Chapter 10: Deduplicate transformation

Advanced properties
You can configure advanced properties for a Deduplicate transformation. The advanced properties control
the tracing level for session log messages.

You can configure the following property:

Property Description

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

Advanced properties 147

C h a p t e r 1 1

Expression transformation
The Expression transformation calculates values within a single row. Use the Expression transformation to
perform non-aggregate calculations.

For example, you might use an Expression transformation to adjust bonus percentages or to concatenate
first and last names.

When you configure an Expression transformation, create an expression field for the output of each
calculation that you want to use in the data flow. Create a variable field for calculations that you want to use
within the transformation.

Expression fields
An expression field defines the calculations to perform on an incoming field and acts as the output field for
the results. You can use as many expression fields as necessary to perform calculations on incoming fields.

When you configure an expression field, you define the field properties and the calculations that you want to
perform. You configure expression fields in the Expression tab.

You can create the following types of expression fields:

• Output

• Variable

• Input Macro

• Output Macro

When you have a long list of types and want to see the type for each expression field, add the Field Type
column in the Expression table as shown in the following image.

148

Output fields
Create an output field to define a calculation that does not require an expression macro.

The following table describes the properties you can define when you create an output field:

Properties Description

Name Name of the field.

Type The data type of the field.

Precision Total number of digits in a number. For example, the number 123.45 has a precision of 5.
The precision must be greater than or equal to 1.
You cannot specify a decimal field precision greater than 38.

Scale Number of digits to the right of the decimal point of a number. For example, the number 123.45 has a
scale of 2.
Scale must be greater than or equal to 0.
The scale of a number must be less than its precision.
Not editable for all data types.

Default Value The default value tells the mapping task what to do when the transformation encounters output
errors. The default value is not available in mappings in advanced mode. You can enter one of the
following values:
- ERROR('transformation error'). When a transformation error occurs, the mapping task skips the row

and writes the error to the session log or row error log.
- A constant or constant expression. The mapping task replaces the error with the constant or

constant expression. Nothing is written to the logs.
- ABORT. Transformation aborts and the mapping task writes a message to the session log.
Default is ERROR('transformation error').
Data Integration validates the output field default value when you save or validate the mapping. If you
enter an invalid value, the Mapping Designer marks the mapping as not valid.

Description Optional. Description of the field. The description can contain up to 4000 characters.

Variable fields
Create a variable field to define calculations that you want to use within the Expression transformation.

The following table describes the properties you can define when you create a variable field:

Property Description

Name Name of the field.

Type The data type of the field.

Precision Total number of digits in a number. For example, the number 123.45 has a precision of 5.
The precision must be greater than or equal to 1.
You cannot specify a decimal field precision greater than 38.

Expression fields 149

Property Description

Scale Number of digits to the right of the decimal point of a number. For example, the number 123.45 has a
scale of 2.
Scale must be greater than or equal to 0.
The scale of a number must be less than its precision.
Not editable for all data types.

Description Optional. Description of the field. The description can contain up to 4000 characters.

Input macro field
Create an input macro field to represent the input that you want to use in an expression macro. Depending on
the type of macro, the input can be fields or constants.

The following table describes the properties you can define when you create an input macro field:

Property Description

Name Name of the input macro field.

Type The data type of the field.

Precision Total number of digits in a number. For example, the number 123.45 has a precision of 5.
The precision must be greater than or equal to 1.
You cannot specify a decimal field precision greater than 38.

Scale Number of digits to the right of the decimal point of a number. For example, the number 123.45 has a
scale of 2.
Scale must be greater than or equal to 0.
The scale of a number must be less than its precision.
Not editable for all data types.

Description Optional. Description of the field. The description can contain up to 4000 characters.

Output macro field
Create an output macro field to define the calculations that you want to perform on all incoming fields or
constants. The macro input field represents the incoming fields or constants.

The following table describes the properties you can define when you create an output macro field.

Property Description

Input Macro Field Name of the input macro field that represents the input of the expression macro.

Output Macro
Field

Name of the output macro field in the following format:

<prefix>%<input mactiro field name>%<suffix>
The output macro field name must contain either a prefix, suffix, or both.

150 Chapter 11: Expression transformation

Property Description

Suffix Suffix of the output macro field name.
Default is _out.

Prefix Prefix of the output macro field name.
Default is none.

Type The data type of the field.

Precision Total number of digits in a number. For example, the number 123.45 has a precision of 5.
The precision must be greater than or equal to 1.
You cannot specify a decimal field precision greater than 38.

Scale Number of digits to the right of the decimal point of a number. For example, the number 123.45
has a scale of 2.
Scale must be greater than or equal to 0.
The scale of a number must be less than its precision.
Not editable for all data types.

Description Optional. Description of the field. The description can contain up to 4000 characters.

Expression editor
Use the expression editor to configure the expression field. The expression can contain constants, variables,
built-in functions, and user-defined functions. You can also create a complex expression by nesting functions
within functions.

To configure an expression, enter it in the expression editor.

Expression editor 151

The following image shows the expression editor and the actions you can perform:

1. Parameterize the expression.
2. Switch between fields, system variables, parameters, built-in functions, and user defined functions.
3. Validate the expression.

You can add source fields, functions, and variables to the expression by clicking Add next to the object that
you want to use. You can also type in the expression manually.

Alternatively, press the Ctrl + Space keys to see a list of recommended arguments and functions in-line. Data
Integration provides recommendations based on the type of function arguments and keystrokes. In-line
recommendations are not available for hierarchical source data.

To validate the expression, click Validate. Data Integration validates the expression.

In mappings in SQL ELT mode, the expression editor displays your cloud data warehouse's native functions
instead of Informatica transformation language functions. Data Integration doesn't validate the expression. If
you enter an invalid expression, the mapping fails at run time.

Transformation language components for
expressions

The transformation language includes the following components to create simple or complex expressions:

• Fields. Use the name of a source field to refer to the value of the field.

• Literals. Use numeric or string literals to refer to specific values.

• Functions. Use these SQL-like functions to change data in a task.

• Operators. Use transformation operators to create expressions to perform mathematical computations,
combine data, or compare data.

• Constants. Use the predefined constants to reference values that remain constant, such as TRUE.

In mappings in SQL ELT mode, you use your cloud data warehouse's native expression components to create
expressions. You don't use the Informatica transformation language to create expressions.

152 Chapter 11: Expression transformation

Expression syntax
You can create a simple expression that only contains a field, such as ORDERS, or a numeric literal, such as
10. You can also write complex expressions that include functions nested within functions, or combine
different fields using the transformation language operators.

Note: Although the transformation language is based on standard SQL, there are differences between the two
languages.

String and numeric literals
You can include numeric or string literals.

Enclose string literals within single quotation marks. For example:

'Alice Davis'
String literals are case sensitive and can contain any character except a single quotation mark. For example,
the following string is not allowed:

'Joan's car'
To return a string containing a single quotation mark, use the CHR function:

'Joan' || CHR(39) || 's car'
Do not use single quotation marks with numeric literals. Just enter the number you want to include. For
example:

.05
or

$$Sales_Tax

Adding comments to expressions
You can use the following comment specifiers to insert comments in expressions:

• Two dashes:

-- These are comments
• Two forward slashes:

// These are comments
Data integration tasks ignore all text on a line preceded by comment specifiers. For example, to concatenate
two strings, enter the following expression with comments in the middle of the expression:

 -- This expression concatenates first and last names for customers:
FIRST_NAME -- First names from the CUST table
|| // Concat symbol
LAST_NAME // Last names from the CUST table
// Joe Smith Aug 18 1998

Data integration tasks ignore the comments and evaluates the expression as follows:

FIRST_NAME || LAST_NAME

Expression syntax 153

You cannot continue a comment to a new line:

-- This expression concatenates first and last names for customers:
FIRST_NAME -- First names from the CUST table
|| // Concat symbol
LAST_NAME // Last names from the CUST table
Joe Smith Aug 18 1998

In this case, data integration tasks do not validate the expression because the last line is not a valid
expression.

Reserved words
Some keywords, such as constants, operators, and system variables, are reserved for specific functions.
These include:

• :EXT

• :INFA

• :LKP

• :MCR

• :SD

• :SEQ

• :SP

• :TD

• AND

• DD_DELETE

• DD_INSERT

• DD_REJECT

• DD_UPDATE

• FALSE

• NOT

• NULL

• OR

• PROC_RESULT

• SPOUTPUT

• TRUE

• WORKFLOWSTARTTIME

The following words are reserved for Informatica Intelligent Cloud Services:

• ABORTED

• DISABLED

• FAILED

• NOTSTARTED

• STARTED

154 Chapter 11: Expression transformation

• STOPPED

• SUCCEEDED

Note: You cannot use a reserved word to name a field. Reserved words have predefined meanings in
expressions.

Window functions
In advanced mode, you can use a window function to concisely express stateful computations. A window
function takes a small subset of a larger data set for processing and analysis.

Window functions operate on a group of rows and calculate a return value for every input row.

Use window functions to perform the following tasks:

• Retrieve data from upstream or downstream rows.

• Calculate a cumulative sum based on a group of rows.

• Calculate a cumulative average based on a group of rows.

Before you define a window function, configure the following window properties on the Window tab:

Frame

Defines the rows that are included in the frame for the current input row, based on physical offsets from
the position of the current input row.

You configure a frame if you use an aggregate function as a window function. The window functions
LEAD and LAG reference individual rows and ignore the frame.

Partition Keys

Separates the input rows into different partitions.

If you do not define partition keys, all rows belong to a single partition.

Order Keys

Defines how rows in a partition are ordered.

The fields you choose determine the position of a row within a partition. The order key can be ascending
or descending. If you do not define order keys, the rows have no particular order.

You cannot parameterize an expression that contains a window function. If the expression is parameterized,
you cannot specify a window function in the mapping task.

Frame
The frame determines which rows are included in the calculation for the current input row based on the rows'
relative position to the current row. Configure a frame if you use an aggregate function as a window function.

The start offset and end offset describe the number of rows that appear before and after the current input
row. An offset of "0" represents the current input row. For example, a start offset of -3 and an end offset of 0
describe a frame including the current input row and the three rows before the current row.

The following image shows a frame with a start offset of -1 and an end offset of 1:

Window functions 155

For every input row, the function performs an aggregate operation on the rows inside the frame. If you
configure an aggregate expression like SUM on the frame in the previous image, the expression calculates
the sum of the values within the frame and returns a value of 6000 for the input row.

You can also specify a frame that does not include the current input row. For example, a start offset of 10
and an end offset of 15 describe a frame that includes six total rows, from the tenth to the fifteenth row after
the current row.

Offsets of All Preceding Rows and All Following Rows represent the first row of the partition and the last row
of the partition. For example, if the start offset is All Preceding Rows and the end offset is -1, the frame
includes one row before the current row and all rows before that.

The following image shows a frame with a start offset of 0 and an end offset of All Following Rows:

If the frame offsets are outside the partition, the aggregate function ignores the frame. If the offsets of a
frame are not within the partition or table, the aggregate function processes only the rows within the
partition. The aggregate function lists the skipped rows in the log file. The function returns one of the
following responses for the skipped rows: a default value of ERROR('transformation error'), NULL, or a
predefined constant.

For example, you partition a table by seller ID and you order by quantity. You set the start offset to -3 and the
end offset to 4.

The following image shows the partition and frame for the current input row:

156 Chapter 11: Expression transformation

The frame includes eight total rows, but the calculation remains within the partition. If you define an AVG
function with this frame, the function calculates the average of the quantities inside the partition and returns
18.75.

Consider the following rules and guidelines when you define a frame:

• LEAD and LAG use the frame that you specify in the function arguments and ignore the frame that you
configure on the Window tab.

• The start offset must be less than or equal to the end offset.

Partition and order keys
Configure partition and order keys to form groups of rows and define the order or sequence of rows within
each partition.

Use the following keys to group and order the rows in a window:

Partition keys

Configure partition keys to define partition boundaries rather than performing the calculation across all
rows.

If you do not specify partition keys, all the data is included in the same partition.

Order keys

Use order keys to determine how rows in a partition are ordered. Order keys define the position of a
particular row in a partition.

You must also arrange the data in ascending or descending order. If you do not specify order keys, the
rows in a partition are arranged randomly.

Consider the following rules and guidelines when you define window properties for partition and order keys:

• You cannot use hierarchical fields as partition or order keys.

• Define unique fields as partition and order keys.

Window functions 157

Example

You are the owner of a coffee and tea shop. You want to calculate the best-selling and second best-selling
coffee and tea products.

The following table lists the products, the corresponding product categories, and the revenue from each
product:

Product Category Revenue

Espresso Coffee 600

Black Tea 550

Cappuccino Coffee 500

Americano Coffee 600

Oolong Tea 250

Macchiato Coffee 300

Green Tea 450

White Tea 650

You partition the data by category and order the data by descending revenue.

The following table shows the data grouped into two partitions according to category. Within each partition,
the revenue is organized in descending order:

Product Category Revenue

Espresso Coffee 600

Americano Coffee 600

Cappuccino Coffee 500

Macchiato Coffee 300

White Tea 650

Black Tea 550

Green Tea 450

Oolong Tea 250

You can run the MAX function within each partition to determine that the two best-selling coffees are
espresso and Americano, and the two best-selling teas are white and black.

158 Chapter 11: Expression transformation

Example: Use a window to calculate expiration dates
You are a banker with information about the financial plans of two of your customers. Each plan has an
associated start date.

For each customer, you want to know the expiration date for the current plan based on the activation date of
the next plan. The previous plan ends when a new plan starts, so the end date for the previous plan is the
start date of the next plan minus one day.

The following table lists the customer codes, the associated plan codes, and the start date of each plan:

CustomerCode PlanCode StartDate

C1 00001 2014-10-01

C2 00002 2014-10-01

C2 00002 2014-11-01

C1 00004 2014-10-25

C1 00001 2014-09-01

C1 00003 2014-10-10

To calculate expiration dates, complete the following tasks:

1. Define partition and order keys.
You configure the following window properties to partition the data by customer code and order the data
by ascending start date:

Property Value Description

Frame Not specified. The LEAD function will access rows based on the offset argument and
ignore the frame.

Partition
key

CustomerCode Groups the rows according to customer code so that calculations are
based on individual customers.

Order key StartDate
Ascending

Arranges the data chronologically by ascending start date.

The following table lists the data grouped by customer code and ordered by start date:

CustomerCode PlanCode StartDate

C1 00001 2014-09-01

C1 00002 2014-10-01

C1 00003 2014-10-10

Example: Use a window to calculate expiration dates 159

CustomerCode PlanCode StartDate

C1 00004 2014-10-25

C2 00001 2014-10-01

C2 00002 2014-11-01

2. Define a window function.
You define a LEAD function to access the subsequent row for every input.

You configure an expression field that performs the following calculation:

LEAD (StartDate, 1, '01-Jan-2100')
For more information about the LEAD function, see Function Reference.

3. Define an ADD_TO_DATE function.
You use an ADD_TO_DATE function to subtract one day from the date you accessed.

You configure an expression field that performs the following calculation:

ADD_TO_DATE (LEAD (StartDate, 1, '01-Jan-2100'), 'DD', -1,)
By subtracting one day from the start date of the next plan, you find the end date of the current plan.

The following table lists the end dates of each plan:

CustomerCode PlanCode StartDate EndDate

C1 00001 2014-09-01 2014-09-30

C1 00002 2014-10-01 2014-10-09

C1 00003 2014-10-10 2014-10-24

C1 00004 2014-10-25 2099-12-31*

C2 00001 2014-10-01 2014-10-31

C2 00002 2014-11-01 2099-12-31*

*The LEAD function returned the default value because these plans have not yet ended. The rows were
outside the partition, so the ADD_TO_DATE function subtracted one day from 01-Jan-2100, returning
2099-12-31.

Example: Use a window to flag GPS pings
Your organization receives GPS pings from vehicles that include trip and event IDs and a time stamp. You
want to calculate the time difference between each ping and flag the row as skipped if the time difference
with the previous row is less than 60 seconds.

You order the events chronologically and partition the events by trip. You define a window function that
accesses the event time from the previous row, and you use an ADD_TO_DATE function to calculate the time
difference between the two events.

160 Chapter 11: Expression transformation

Window properties
You define the following window properties on the Window tab:

Property Value Description

Frame Not specified Window functions access rows based on the offset argument and
ignore the frame.

Partition key trip_id Groups the rows according to trip ID so that calculations are based
on events from the same trip.

Order key _event_id Ascending Arranges the data chronologically by ascending event ID.

Window function

You define the following LAG function to get the event time from the previous row:

LAG (_event_time, 1, NULL)
For more information about the LAG function, see Function Reference.

You define the following DATE_DIFF function to calculate the length of time between the two dates:

DATE_DIFF (_event_time, LAG (_event_time, 1, NULL), 'ss')
You flag the row as skipped if the DATE_DIFF is less than 60 seconds, or if the _event_time is NULL:

IIF (DATE_DIFF < 60 or ISNULL (_event_time), 'Skip', 'Valid')
Output

The transformation produces the following outputs:

Trip ID Event ID Event Time Time Difference Flag

101 1 2017-05-03 12:00:00 NULL* Skip

101 2 2017-05-03 12:00:34 34 Skip

101 3 2017-05-03 12:02:00 86 Valid

101 4 2017-05-03 12:02:23 23 Skip

102 1 2017-05-03 12:00:00 NULL* Skip

102 2 2017-05-03 12:01:56 116 Valid

102 3 2017-05-03 12:02:00 4 Skip

102 4 2017-05-03 13:00:00 3480 Valid

103 1 2017-05-03 12:00:00 NULL* Skip

103 2 2017-05-03 12:00:12 12 Skip

103 3 2017-05-03 12:01:12 60 Valid

*The rows preceding these rows are outside the bounds of the partition, so the LAG function produces NULL
values.

Example: Use a window to flag GPS pings 161

Example: Run an aggregate function on a window
You want to compare the salary of each employee with the average salary for the corresponding department.

The following table lists the department names, the employee identification number, and the employee
salary:

Department Employee Salary

Development 11 5200

Development 7 4200

Development 9 4500

Development 8 6000

Development 10 5200

Personnel 5 3500

Personnel 2 3900

Sales 3 4800

Sales 1 5000

Sales 4 4800

You set an unbounded frame to include all employees in the calculation, and you define an aggregate
function to calculate the difference between the salary of each employee and the average salary in the
department.

Window Properties
You define the following window properties on the Window tab:

Property Value Description

Start offset All Preceding Rows Describes the number of rows that appear before the current
input row.

End offset All Following Rows Describes the number of rows that appear after the current
input row.

Order key Salary Ascending Arranges the data by increasing salary.

Partition key Department Groups the rows according to department.

When you select All Preceding Rows and All Following Rows, the function includes all partition rows. For
example, suppose the current row is the third row. The third row is in the "Development" partition, so the
frame includes the third row in addition to all rows before and after the third row in the "Development"
partition.

162 Chapter 11: Expression transformation

Window Function

Because you configure window properties in the Expression transformation, you can use an aggregate
function as a window function.

You define the following aggregate function to calculate the difference between the salary of each employee
and the average salary in the corresponding department:

Salary - AVG (Salary) = Salary_Diff
Output

The transformation produces the following salary differences:

Department Employee Salary Salary_Diff

Development 11 5200 -820

Development 7 4200 -520

Development 9 4500 180

Development 8 6000 180

Development 10 5200 980

Personnel 5 3500 200

Personnel 2 3900 200

Sales 3 4800 -66

Sales 1 5000 -66

Sales 4 4800 134

You can identify which employees are making less or more than the average salary within the same
department. Based on this information, you can add other transformations to learn more about the data. For
example, you might add a Rank transformation to produce a numerical rank for each employee within the
same department.

Advanced properties
You can configure advanced properties for an Expression transformation. The advanced properties control
settings such as the tracing level for session log messages and whether the transformation is optional or
required.

The properties that are available vary based on the mapping mode.

Advanced properties 163

You can configure the following properties:

Property Description

Tracing
Level

Detail level of error and status messages that Data Integration writes in the session log. You can choose
terse, normal, verbose initialization, or verbose data. Default is normal.

Optional Determines whether the transformation is optional. If a transformation is optional and there are no
incoming fields, the mapping task can run and the data can go through another branch in the data flow.
If a transformation is required and there are no incoming fields, the task fails.
For example, you configure a parameter for the source connection. In one branch of the data flow, you
add a transformation with a field rule so that only Date/Time data enters the transformation, and you
specify that the transformation is optional. When you configure the mapping task, you select a source
that does not have Date/Time data. The mapping task ignores the branch with the optional
transformation, and the data flow continues through another branch of the mapping.

Hierarchical data in advanced mode
In advanced mode, you can use hierarchical fields that represent an array, map, or struct.

You can use hierarchical fields as pass-through fields. You can also use hierarchical fields in an expression
or use a hierarchical field with a complex operator to access primitive child fields in the expression. For more
information about complex operators, see Function Reference.

Consider the following guidelines when you use hierarchical fields in an expression:

• Do not use a parameter for the expression.

• The output of an expression cannot be an array, map, or struct.

164 Chapter 11: Expression transformation

C h a p t e r 1 2

Filter transformation
The Filter transformation filters data out of the data flow based on a specified filter condition. To improve job
performance, place the Filter transformation close to mapping sources to remove unnecessary data from the
data flow.

A filter condition is an expression that returns TRUE or FALSE. When the filter condition returns TRUE for a
row, the Filter transformation passes the row to the rest of the data flow. When the filter condition returns
FALSE, the Filter transformation drops the row.

You can filter data based on one or more conditions. For example, to work with data within a data range, you
can create conditions to remove data before and after specified dates.

Link a single transformation to the Filter transformation. You cannot merge transformations into the Filter
transformation.

Filter conditions
The filter condition is an expression that returns TRUE or FALSE.

You can create one or more simple filter conditions. A simple filter condition includes a field name, operator,
and value. For example, Sales > 0 retains rows where all sales values are greater than zero. In advanced
mode, the filter condition must evaluate to a numeric result.

Filter conditions are case sensitive. You can use the following operators in a simple filter:

= (equals)

< (less than)

> (greater than)

< = (less than or equal to)

> = (greater than or equal to)

! = (not equals)

When you define more than one simple filter condition, the mapping task evaluates the conditions in the
order that you specify. The task evaluates the filter conditions using the AND logical operator to join the
conditions. The task returns rows that match all of the filter conditions.

You can use an advanced filter condition to define a complex filter condition. When you configure an
advanced filter condition, you can incorporate multiple conditions using the AND or OR logical operators. You
can use a constant to represent condition results: 0 is the equivalent of FALSE, and any non-zero value is the
equivalent of TRUE.

165

When you change the filter condition type from simple to advanced, the Mapping Designer includes
configured simple filter conditions in the advanced filter condition. You can use or delete the simple filter
conditions. The conversion does not include parameters.

To filter rows that contain null values, use the ISNULL function to test the value of the field. To filter rows that
contain spaces, use IS_SPACES.

For example, if you want to filter out rows that contain a null value in the First_Name field, use the following
condition: IIF(ISNULL(First_Name),FALSE,TRUE). The condition states that if the First_Name field is NULL, the
return value is FALSE. The mapping task discards the row. Otherwise, the row passes through to the next
transformation.

In mappings in SQL ELT mode, you need to enter a filter condition that is valid in your target cloud data
warehouse.

Advanced properties
You can configure advanced properties for a Filter transformation. The advanced properties control settings
such as the tracing level for session log messages and whether the transformation is optional or required.

The properties that are available vary based on the mapping mode.

You can configure the following properties:

Property Description

Tracing
Level

Detail level of error and status messages that Data Integration writes in the session log. You can choose
terse, normal, verbose initialization, or verbose data. Default is normal.

Optional Determines whether the transformation is optional. If a transformation is optional and there are no
incoming fields, the mapping task can run and the data can go through another branch in the data flow.
If a transformation is required and there are no incoming fields, the task fails.
For example, you configure a parameter for the source connection. In one branch of the data flow, you
add a transformation with a field rule so that only Date/Time data enters the transformation, and you
specify that the transformation is optional. When you configure the mapping task, you select a source
that does not have Date/Time data. The mapping task ignores the branch with the optional
transformation, and the data flow continues through another branch of the mapping.

Hierarchical data in advanced mode
In advanced mode, you can use hierarchical fields that represent an array, map, or struct.

You can use hierarchical fields as pass-through fields. You can also use hierarchical fields in an advanced
filter condition or use a hierarchical field with a complex operator to access primitive child fields in the filter
condition. For more information about complex operators, see Function Reference.

Consider the following guidelines when you use hierarchical fields in a filter condition:

• You cannot use a hierarchical field in a simple filter condition.

• Do not use a parameter for the filter condition.

166 Chapter 12: Filter transformation

C h a p t e r 1 3

Hierarchy Builder transformation
The Hierarchy Builder transformation converts relational input into hierarchical output.

It converts data based on a schema that defines the hierarchical structure of the output. The transformation
can output hierarchical data in Avro, JSON, ORC, Parquet, or XML format.

To configure a Hierarchy Builder transformation, perform the following tasks:

1. Add the transformation to a mapping and configure the output settings.

2. Join incoming sources and map incoming fields with hierarchical elements to define the data
conversion.

3. Optionally, configure advanced properties.

4. If needed, configure the Secure Agent machine for multibyte hierarchical data.

Note: If you use the Hierarchy Builder transformation in a mapplet, to prevent runtime errors, ensure that the
combined Mapplet transformation name doesn't exceed 80 characters. For more information, see “Mapplet
transformation names” on page 318.

Configure output settings
Configure properties for the output, including the schema and output format.

The following table describes the output properties:

Property Description

Schema Schema that defines the structure of the hierarchical output.
To convert data to Avro, ORC, or Parquet format, click Auto-generate from sample file and
create an intelligent structure model.
To convert data to JSON or XML format, select an existing hierarchical schema or click Create
new schema. When you create a hierarchical schema for the Hierarchy Builder transformation,
refer to “Rules and guidelines for hierarchical schemas” on page 168.
For more information about intelligent structure models and hierarchical schemas, see
Components.

Precision Buffer size for the output.

Null Values Determines whether the transformation keeps or omits null values in primitive JSON types.
Applicable when you associate the transformation with a JSON-based schema.

167

Property Description

Output Format Format for the output data, either string or binary.

Write to file Determines whether the transformation writes the data to a flat file. When you enable this
option, enter the file path in the File path field. The path can't be parameterized.
Tip: Write data to a flat file when the transformation processes a large amount of data and the
output field size exceeds 100 MB.

Enable passthrough
fields

Determines whether unmapped fields are passed to the downstream transformation.
If there is more than one upstream transformation connected to the Hierarchy Builder
transformation, the transformation only passes through fields from the upstream
transformation that was connected first.

Generate single
output

Determines if the transformation generates a single JSON or XML structure containing all the
output elements. By default, the transformation generates a JSON or XML output structure for
each output element.
To generate a single output structure, map an incoming group to a recurring element in the
hierarchy fields.
For examples of the difference in ouput, see “Single output example” on page 168.

Optimize
transformation

Optimizes the processing performance of converting data from relational to hierarchical output
at run time.

Rules and guidelines for hierarchical schemas
Consider the following rules and guidelines when you create a hierarchical schema to associate with a
Hierarchy Builder transformation:

• The schema must be smaller than 10,000 elements.

• The schema can contain up to 10,000 fields.

• The schema can contain up to 20,000 groups.

• The schema can contain up to 20 levels of data hierarchy.

• To optimize performance, create a schema with fewer than 5,000 ports and fewer than 10 groups.

Single output example
You can configure the Hierarchy Builder transformation to generate a single output structure or output
structures for each output element. For example, you're creating an XML file for employee contact
information.

If you choose to generate a single output structure, the transformation outputs the following data:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<EMPLOYEE_CONTACT xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <item>
 <PHONE>5551234567</PHONE>
 </item>
 <item>
 <PHONE>5553456789</PHONE>
 </item>
</EMPLOYEE_CONTACT>

If you don't generate a single output structure, the transformation outputs the following data:

<?xml version="1.0" encoding="UTF-8"?>
<EMPLOYEE_CONTACT xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

168 Chapter 13: Hierarchy Builder transformation

 <item>
 <PHONE>5551234567</PHONE>
 </item>
</EMPLOYEE_CONTACT>
<?xml version="1.0" encoding="UTF-8"?>
<EMPLOYEE_CONTACT xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <item>
 <PHONE>5553456789</PHONE>
 </item>
</EMPLOYEE_CONTACT>

Join and map fields for data conversion
To define the conversion of data from upstream transformations to the hierarchical output, join the incoming
data and then map the relationships between fields.

If more than one upstream transformation is connected to the Hierarchy Builder transformation, set primary
and foreign keys to join the incoming data before you map the fields. If only one upstream transformation is
connected to the Hierarchy Builder transformation, the data will be treated as denormalized input, and you
don't define primary and foreign keys. Then, map the input fields to the matching field in the hierarchy.

The Field Mapping tab displays the relational fields from the upstream transformations and the hierarchy
fields from the schema. Use this tab to join incoming sources and map the relationships between fields. The
following image shows the Field Mapping tab:

Joining incoming data
If more than one upstream transformation is connected to the Hierarchy Builder transformation, set primary
and foreign keys to join the incoming data.

You can perform the following actions to set and remove keys:

• To set a field as a key, click the Key column of the field that you want to set, and then specify the field as
either a primary or foreign key. When you set a foreign key, you also select the name of the source that
contains the related primary key.

• To remove a primary or foreign key designation, click the Key column of the field and select Not a key.

• To clear all the keys, click the action menu at the top of the Hierarchy Fields panel, and then select Clear
Keys.

Join and map fields for data conversion 169

Mapping relational fields to hierarchy fields
Map relational input fields to hierarchy elements to define how the transformation converts the data.

You can perform the following actions to map and unmap fields:

• To map a relational input field to a schema element, drag the relational field to the schema element.

• To remove a mapped field from a schema element, click the delete icon in the Action column for the
schema element.

• To clear all of the mapped fields, click the action menu at the top of the Hierarchy Fields panel and select
Clear Mapping.

Configure advanced properties
You can configure advanced properties for a Hierarchy Builder transformation. The advanced properties
control the tracing level for session log messages and the transformation scope.

You can configure the following properties:

Property Description

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

Transformation
Scope

Specifies how Data Integration applies the transformation logic to incoming data. Select one of
the following options:
- Transaction. Applies the transformation logic to all rows in a transaction. Choose Transaction

when a row of data depends on all rows in the same transaction, but does not depend on rows
in other transactions.

- All Input. Applies the transformation logic on all incoming data. When you choose All Input,
Data Integration drops incoming transaction boundaries. Choose All Input when a row of data
depends on all rows in the source.

Default is All Input.

Configuration for multibyte hierarchical data
If a mapping includes a transformation that processes hierarchical data and the data uses multibyte
characters, configure the Secure Agent machine to use UTF-8.

On Windows, create the INFA_CODEPAGENAME=UTF-8 environment variable in Windows System Properties.

On Linux, set the LC_LOCALE variable to UTF-8.

170 Chapter 13: Hierarchy Builder transformation

Hierarchy Builder transformation example
You want to convert relational data to hierarchical data and write the data to a target file in a hierarchical
format.

To use the Hierarchy Builder transformation to convert the data, complete the following steps:

1. Create a hierarchical schema.

2. Create a mapping.

3. Configure the Hierarchy Builder transformation.

4. Configure the target.

5. Run the mapping.

Step 1. Create a hierarchical schema

You need to configure a hierarchical schema that uses a schema file to define the hierarchy of the output
data.

The following example shows the schema hierarchy that you want to use:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://www.itemfield.com"
targetNamespace="http://www.itemfield.com" elementFormDefault="qualified">
 <xs:element name="Employees">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string" minOccurs="0"/>
 <xs:element name="Address" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="Employee" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="EmployeeID" type="xs:string" minOccurs="0"/>
 <xs:element name="Department" type="xs:string" minOccurs="0"/>
 <xs:element name="Subdivision" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Building" type="xs:string" minOccurs="0"/>
 <xs:element name="Room" type="xs:string" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The following example shows the first input file data that you want to use:

CompanyName,Address
First National Bank,874 Louis Road
Jackson Industry,13 Sydney Drive

The following example shows the second input file data that you want to use:

Name,EmployeeID,Department,Building,Room
First National Bank,122,Credit,6,1532
First National Bank,261,Credit,6,2251
First National Bank,431,Credit,6,5312
Jackson Industry,3875,Manufacture,C,673
Jackson Industry,2837,Manufacture,B,211

Create the hierarchical schema in Data Integration with the schema hierarchy that you want to use.

Hierarchy Builder transformation example 171

Step 2. Create a mapping

To parse the input data, use a Hierarchy Builder transformation in a mapping to transform the data from the
hierarchical input.

In the Mapping Designer, you add two source objects that are flat files that contain the paths to the data files
that you want to parse. The following image shows one of the Source transformations:

Step 3. Configure the Hierarchy Builder transformation

You add an Hierarchy Builder transformation and use the name NewHierarchyBuilder. Configure it to use the
hierarchical schema that you created.

You connect the source objects to the NewHierarchyBuilder transformation. To map the incoming data to the
fields of the transformation, select the NewHierarchyBuilder transformation. In the Incoming Fields tab,
ensure that there are no field name conflicts. The following image shows the input field selection:

172 Chapter 13: Hierarchy Builder transformation

To map the relational fields to the hierarchical output, in the Field Mapping tab, select primary and foreign
keys. Then select which relational fields are linked to schema elements for the hierarchical output.

The following image shows the field mapping selection:

Step 4. Configure the target

Add a file target object for the fields.

The following image shows the final mapping:

Step 5. Run the mapping

Run the mapping to write the data in a hierarchical format to the Target transformation.

The following example shows the hierarchical output:

<Employees>
<Name>First National Bank</Name>
<Address>874 Louis Road</Address>
<Employee>
<EmployeeID>122</EmployeeID>
<Department>Credit</Department>
<Subdivision>
<Building>6</Building>
<Room>1532</Room>
</Subdivision>
</Employee>
<Employee>
<EmployeeID>261</EmployeeID>
<Department>Credit</Department>
<Subdivision>
<Building>6</Building>
<Room>2251</Room>
</Subdivision>
</Employee>
<Employee>
<EmployeeID>431</EmployeeID>
<Department>Credit</Department>
<Subdivision>
<Building>6</Building>
<Room>5312</Room>
</Subdivision>
</Employee>

Hierarchy Builder transformation example 173

</Employees>
<Employees>
<Name>Jackson Industry</Name>
<Address>13 Sydney Drive</Address>
<Employee>
<EmployeeID>3875</EmployeeID>
<Department>Manufacture</Department>
<Subdivision>
<Building>C</Building>
<Room>673</Room>
</Subdivision>
</Employee>
<Employee>
<EmployeeID>2837</EmployeeID>
<Department>Manufacture</Department>
<Subdivision>
<Building>B</Building>
<Room>211</Room>
</Subdivision>
</Employee>
</Employees>

174 Chapter 13: Hierarchy Builder transformation

C h a p t e r 1 4

Hierarchy Parser transformation
The Hierarchy Parser transformation converts hierarchical input into relational output. The transformation
processes XML or JSON input from the upstream transformation and provides relational output to the
downstream transformation.

You can configure a hierarchical schema that defines the expected hierarchy of the output data from a
sample file or schema file. The Hierarchy Parser transformation converts hierarchical input based on the
hierarchical schema that you associate with the transformation. You can use an existing hierarchical schema,
or configure one.

Note: To create a JSON-based schema object use a JSON sample, not a JSON schema.

To parse complex hierarchical structures, consider using the Structure Parser transformation for a more
comprehensive handling of hierarchical file inputs. For more information, see Chapter 34, “Structure Parser
transformation” on page 402.

To use the Hierarchy Parser transformation, you need the appropriate license.

Using a Hierarchy Parser transformation
To use the Hierarchy Parser transformation in a mapping, perform the following steps:

1. Create a hierarchical schema.

2. Add a Hierarchy Parser transformation to the mapping.

3. Associate a hierarchical schema with the Hierarchy Parser transformation.

4. Configure the field mapping to select which schema elements provide relational output.

Hierarchy Parser rules and guidelines
When you use the Hierarchy Parser transformation, consider the following rules and guidelines.

Source file size

The Hierarchy Parser transformation can process source files that are up to 1.5 GB in size. To process files
that are larger than 1.5 GB, use an intelligent structure model. For more information about intelligent
structure models, see Components.

175

Handling of Boolean data types

The Hierarchy Parser transformation always returns 0 for Boolean data type input.

Hierarchical schema that is based on an XSD file

When you associate a hierarchical schema that is based on an XSD file with a Hierarchy Parser
transformation, note that you can't use the Hierarchy Parser transformation with the following XSD
component types:

• xsd:any

• xsd:type

• mixed

• xsi:type

• default values

• fixed values

• no type, for example <xs:element name="A" maxOccurs="unbounded"/>
To parse large or complex XSD files that contains more than 10,000 elements and attributes, recursive
elements, or complex deep hierarchies, use the Structure Parser transformation. For more information, see
Chapter 34, “Structure Parser transformation” on page 402.

Using a Hierarchy Parser transformation in a Mapplet transformation

When you use a Hierarchy Parser transformation in a mapplet, to prevent runtime errors, be sure that the
combined Mapplet transformation name doesn't exceed 80 characters. For more information, see “Mapplet
transformation names” on page 318.

Choosing a sample or schema file
When you create a hierarchical schema, you base it on either a sample file or a schema file. To improve
accuracy, use a schema file instead of a sample file whenever possible.

Schema files

When you use a schema file, consider the following rules and guidelines:

• The schema can't contain recursive elements.

• Each schema file can contain a maximum of 10,000 elements. To use a schema that contains more than
10,000 elements, split it into multiple files.

• To use a schema that references other schemas, you can upload each file individually or upload them
together in a ZIP file. If the ZIP file contains other files in addition to XSD files, Data Integration ignores
the additional files and uses only the XSD files to generate the hierarchical schema.

• If you need to upload multiple schema files with the same name, upload them in a ZIP file. If you upload
them individually, Data Integration renames the duplicate files.

Sample files

When you use a sample file, ensure that it represents the data that you expect to process, including all
possible fields, all permutations of the values and data types, and values that represent the length of the data
that the mapping will process.

176 Chapter 14: Hierarchy Parser transformation

Hierarchical schemas
A hierarchical schema is based on a schema file or sample file that you import to Data Integration. If you
import a sample file, Data Integration generates a schema based on the structure of the sample file. The
schema defines the expected hierarchy of the input data.

You can create a hierarchical schema in two ways. You can create a standalone hierarchical schema that can
be associated with any transformation that you choose. Alternatively, you can create a hierarchical schema
from within a specific transformation.

When you create a standalone hierarchical schema, you import a JSON sample file or XSD file as the basis of
the schema.

You can associate the hierarchical schema with any transformation, whether you create it as a standalone
hierarchical schema or as part of a specific transformation.

You can create, edit, or delete a hierarchical schema. You can edit a hierarchical schema and change the root
or change the schema definition. However if you have used the hierarchical schema in a transformation, you
cannot edit or delete it. Before you delete a hierarchical schema, verify that you did not use it in a
transformation.

Rules and guidelines for hierarchical schemas
Consider the following rules and guidelines when you create a hierarchical schema to associate with a
Hierarchy Parser transformation:

• The schema must be smaller than 10,000 elements.

• The schema can contain up to 10,000 fields.

• The schema can contain up to 500 groups.

• The schema can contain up to 20 levels of data hierarchy.

• Schemas that contain more than 5,000 ports and more than 100 groups might affect the processing time.

Creating a hierarchical schema
To create a hierarchical schema, define general properties and upload a sample or schema file.

1. Click New > Components > Hierarchical Schema.

2. On the New Hierarchical Schema page, specify a name and location for the hierarchical schema, or use
the default values.

3. Optionally, enter a description of the hierarchical schema.

4. Click Upload to select a file as the basis of the hierarchical schema.

5. In the Upload Schema/Sample File dialog box, click Choose File to browse for a file, and then click OK to
upload it.

6. If you upload an XSD file that references other XSD files, Data Integration displays a list of the
referenced files. Click Upload to upload each referenced file.

7. If you upload an XSD file with multiple possible root elements, select a root element from the drop-down
menu.

8. To save the hierarchical schema, click OK.

Hierarchical schemas 177

Input settings
The Hierarchy Parser transformation converts hierarchical input to relational data based on the hierarchical
schema that you associate with the transformation.

The following table describes the input properties:

Property Description

Input Type Select the Buffer input type if the source transformation passes data to the Hierarchy Parser
transformation.
Select the File input type if the source transformation passes data by reference instead. If the
source transformation passes a path to an input file, this applies.

Schema Choose an existing hierarchical schema and add it to the transformation or create a
hierarchical schema from an XSD file or a JSON sample file.

Enable pass-through
fields

Determines whether unmapped fields are passed to the downstream transformation.
If there is more than one upstream transformation connected to the Hierarchy Parser
transformation, the transformation passes through fields from the upstream transformation
that was connected first.

Optimize
transformation

Optimizes the processing performance of converting data from hierarchical to relational
output at run time.

Selecting a hierarchical schema
Choose the hierarchical schema for the Hierarchy Parser transformation.

1. In the Properties panel of the Hierarchy Parser transformation, click the Input Settings tab.

2. Click Select.

The Select Schema dialog box appears.

3. Select a hierarchical schema from the list.

4. To search for a hierarchical schema, select the search criteria, enter the characters to search for in the
Search field, and click Search.

You can search for a hierarchical schema by name or description. You can sort the hierarchical schema
by name, description, or date last modified.

5. Select the hierarchical schema to include in the Hierarchy Parser transformation and click OK.

The selected hierarchical schema appears in the Properties panel.

Creating a hierarchical schema from sample

1. In the Properties panel of the Hierarchy Parser transformation, click the Input Settings tab.

2. To create a schema, click New.

The New Hierarchical Schema page appears.

3. In the New Hierarchical Schema page, enter a name and description. You must provide a name for the
hierarchical schema.

4. Browse to select a project location.

178 Chapter 14: Hierarchy Parser transformation

5. To select a schema or sample file, click Upload. Click Choose File and browse for an XSD file or select a
sample JSON file, and then click OK.

When you add a JSON sample file, Data Integration generates a schema from the sample.

6. If you selected an XSD file with multiple possible root elements, select a root from the drop-down menu.

7. If you selected a schema that refers to another schema, you must also upload the referenced schema.
To upload the referenced schema, click Upload, browse for the referenced schema file and click OK.

8. To save the hierarchical schema, click OK.

Input field selection
Configure the input field selection in a Hierarchy Parser transformation to define which field in the upstream
transformation to map to the input field in the Hierarchy Parser transformation.

Configure the Input Field Selection tab of the Properties panel.

You can configure the following input field selection options:

Automap

Links fields with matching names.

You can map fields in the following ways:

• Exact Field Name. Data Integration matches fields of the same name.

• Smart Map. Data Integration matches fields with similar names. For example, if you have an incoming
field Employee_Name and an hierarchical schema input field Emp_Name, Data Integration automatically
links the Employee_Name with the Emp_Name field.

You can use both Exact Field Name and Smart Map in the same field mapping. For example, use Exact
Field Name to match fields with the same name and then use Smart Map to map fields with similar
names.

You can undo all automapped field mappings by clicking Automap > Undo Automap. To unmap a single
field, select the field to unmap and click Actions > Unmap.

Data Integration highlights newly mapped fields. For example, when you use Exact Field Name, Data
Integration highlights the mapped fields. If you then use Smart Map, Data Integration only highlights the
fields mapped using Smart Map.

Options

Controls the fields that appear in the Incoming Fields list. Show all fields, unmapped fields, or mapped
fields. Determine how field names appear in the input field list. Use technical field names or labels.

Field mapping
Configure the field mapping in a Hierarchy Parser transformation to define which schema elements provide
the relational output. Configure the field mapping on the Field Mapping tab of the Properties panel. Use the

Input field selection 179

field mapping editor to select or exclude schema elements. When you exclude schema elements, the editor
removes the corresponding relational fields.

The following image shows the field mapping editor.

To the left, the field mapping editor shows the schema elements. To the right, the editor shows the relational
fields. The transformation creates a separate output group for each multiple-occurring input element. The
transformation also creates primary and foreign keys and assigns them to the groups. A primary key is
signified by the prefix PK_ in the name of the field. A foreign key is signified by the prefix FK_.

For each relational field, the Relational Fields panel shows the XPath expression of the hierarchy element
from which the relational field was mapped.

When you select to include schema elements, the editor displays corresponding relational fields to the right.
When you exclude schema elements, the editor removes the corresponding relational fields.

You can select to include or exclude all child elements nested under an element. Alternatively, you can select
to include or exclude immediate child elements that are one hierarchy level down.

You can select to denormalize relational output. When you denormalize relation output, all the hierarchy
elements you select to map are mapped to relational fields in one group.

You can delete relational fields and groups. When you delete a group whose primary key serves as a foreign
key for other groups, the editor updates or deletes the other groups. If the group you deleted was a reflection
of a repeating element nested within another repeating element, the primary key for the higher level repeating
element becomes the foreign key for the other groups. If the group you delete is a reflection of the highest
level repeating element, the editor deletes all the groups.

Selecting the elements to convert
Select the schema elements to convert to relational output fields.

1. In the Properties panel of the Hierarchy Parser transformation, click the Field Mapping tab.

The field mapping editor displays the transformation input elements and output fields. To the left, the
editor shows the schema elements. To the right, the editor shows the relational output fields.

2. To view child elements, expand an element.

3. To search for an element, enter the characters to search for in the Search field, and click Search.

4. To denormalize the relational output, in the Format field select Denormalized, then select elements to
include in the relational output. By default, the relational output is not denormalized, and the setting for
the Format field is Relational.

5. To include an element without child elements in the relational output, select the element.

6. To exclude an element without child elements from the relational output, clear the element.

7. For an element with child elements, you can choose from the following options:

• To select to include all child elements in the relational output, right-click the element and select Map
all descendants.

180 Chapter 14: Hierarchy Parser transformation

• To select to include immediate child elements in the relational output, right-click the element and
select Map immediate children.

• To select to exclude all child elements in the relational output, right-click the element and select
Unmap all descendants.

• To select to exclude immediate child elements in the relational output, right-click the element and
select Unmap immediate children.

8. To search for a relational field, enter the characters to search for in the Search field, and click Search.

9. To exclude a relational output field from the output, click the field.

Output fields
When you select schema elements to use in the Hierarchy Parser transformation, the schema output fields
appear on the Output Fields tab of the Properties panel.

The Mapping Designer displays the name, type, precision, scale, and origin for each output field in each
output group.

To edit the precision of the output fields, click the precision and enter the precision you require.

You can edit the transformation output fields, except for primary key and foreign key fields.

Selecting an output group
When you link the transformation to a downstream transformation, you must select one output group to map
to the downstream transformation.

1. Link the transformation to a downstream transformation.

The Select Output Group dialog box appears.

2. To search for an output group, enter the characters to search for in the Search field, and click Search.

3. Select an output group.

4. Click OK.

Configuration for multibyte hierarchical data
If a mapping includes a transformation that processes hierarchical data and the data uses multibyte
characters, configure the Secure Agent machine to use UTF-8.

On Windows, create the INFA_CODEPAGENAME=UTF-8 environment variable in Windows System Properties.

On Linux, set the LC_LOCALE variable to UTF-8.

Output fields 181

Hierarchy Parser transformation example
You want to convert hierarchical data to relational data and write the data to a target file in a relational
format.

You need to configure a hierarchical schema that uses a schema file to define the hierarchy of the input data.

The following example shows the schema hierarchy that you want to use:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://www.itemfield.com"
targetNamespace="http://www.itemfield.com" elementFormDefault="qualified">
<xs:element name="root">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Emp_Details" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="employee">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Employeeid" type="xs:short"/>
 <xs:element name="Name">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Firstname" type="xs:string"/>
 <xs:element name="Lastname" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Dependents" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="address" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Addressid" type="xs:byte"/>
 <xs:element name="Employeeid" type="xs:short"/>
 <xs:element name="Line1" type="xs:string"/>
 <xs:element name="Line2" type="xs:string"/>
 <xs:element name="City" type="xs:string"/>
 <xs:element name="State" type="xs:string"/>
 <xs:element name="Zipcode" type="xs:int"/>
 <xs:element name="Fromdate" type="xs:date"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="EmpAttribute" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

The following example shows the input file data that you want to use:

<itm:root xmlns:itm="http://www.itemfield.com">
 <!--Zero or more repetitions:-->
 <itm:Emp_Details EmpAttribute="string">
 <itm:employee>
 <itm:Employeeid>1</itm:Employeeid>
 <itm:Name>
 <itm:Firstname>Gina</itm:Firstname>
 <itm:Lastname>Aniston</itm:Lastname>
 </itm:Name>
 <!--1 or more repetitions:-->
 <itm:Dependents>anyType</itm:Dependents>

182 Chapter 14: Hierarchy Parser transformation

 </itm:employee>
 <!--Optional:-->
 <itm:address>
 <itm:Addressid>2</itm:Addressid>
 <itm:Employeeid>1</itm:Employeeid>
 <itm:Line1>Long Tech Park</itm:Line1>
 <itm:Line2>Industrial Zone</itm:Line2>
 <itm:City>Wichita</itm:City>
 <itm:State>KA</itm:State>
 <itm:Zipcode>773301</itm:Zipcode>
 <itm:Fromdate>2011-09-29</itm:Fromdate>
 </itm:address>
 </itm:Emp_Details>
</itm:root>

Create the hierarchical schema in Data Integration with the schema hierarchy that you want to use.

To parse the input data, use a Hierarchy Parser transformation in a mapping to transform the data from the
hierarchical input. In the Mapping Designer, you add a source object that is flat file that contains the path to
the data that you want to parse.

The following image shows the selected Source transformation:

You add an Hierarchy Parser transformation and use the name NewHierarchyParser. Configure it to use the
hierarchical schema that you created.

You connect the source object to the NewHierarchyParser transformation. To map the incoming data to the
fields of the transformation, select the NewHierarchyParser transformation. In the Input Field Selection tab,
map the selected incoming field from the source transformation to the NewHierarchyParser hierarchical
schema input field.

To map the data to relational fields, in the Field Mapping tab, select which schema elements are reflected as
relational fields to the output.

Hierarchy Parser transformation example 183

The following image shows the field mapping selection:

Add a file target object for the fields.

The following image shows the mapping:

Run the mapping to write the data in a relational format to the Target transformation.

The following example shows the relational output:

EmpAttribute Employeeid Firstname Lastname Addressid Employeeid1 Line1 Line2

string 1 Gina Aniston 2 1 Long Tech
Park

Industrial
Zone

City State Zipcode Fromdate

Wichita KA 773301 9/29/2008 12:00:00 AM

184 Chapter 14: Hierarchy Parser transformation

C h a p t e r 1 5

Hierarchy Processor
transformation

In advanced mode, you can use the Hierarchy Processor transformation to process data from complex data
sources. The transformation can read hierarchical or relational input and convert it to relational, hierarchical,
or flattened denormalized output.

The Hierarchy Processor transformation is an active transformation that processes hierarchical fields that
represent a struct or an array.

Hierarchy Processor transformation overview
You can choose from several different processing strategies to meet your needs, depending on the format of
the source data and your desired output format.

The Hierarchy Processor transformation can operate in the following modes:

• Hierarchical to relational. Converts one hierarchical input group to multiple output groups, which can
include delimited flat files or relational files.

• Relational to hierarchical. Converts up to five relational input groups to one hierarchical output group.

• Hierarchical to hierarchical. Converts one or more hierarchical input groups to one hierarchical output
group with a different schema.

• Hierarchical to flattened. Converts one hierarchical input group to one flattened denormalized output
group.

The default output format is relational.

The data that you pass to or from the Hierarchy Processor transformation requires a Microsoft Azure Data
Lake Store V2 or an Amazon S3 V2 connection.

For more information about the Hierarchy Processor transformation, you can watch the following videos on
YouTube:

• Creating a Hierarchical to Relational Mapping Using the Hierarchy Processor Transformation

• Creating a Relational to Hierarchical Mapping Using the Hierarchy Processor Transformation

• Modifying the Schema of Hierarchical Data in an Elastic Mapping

185

https://www.youtube.com/watch?v=5TuBZcHq0vM
https://www.youtube.com/watch?v=Ucndm55vbGU
https://www.youtube.com/watch?v=2OjvEntQV0g

Hierarchical to relational data processing
In a mapping that converts hierarchical data to relational output, you can process one hierarchical input
group and write the data to multiple relational output groups. The output data can be written as normalized
relational data or to delimited flat files.

The following image shows an example mapping:

In this mapping, the data source is a complex file containing customer and order data. The data flows into
two relational files: a file with customer data and a file with order data.

For more information, see “Defining relational output with the Hierarchy Processor transformation” on page
189.

Relational to hierarchical data processing
In a mapping that converts relational data to hierarchical output, you can have up to five relational input
groups and write to one hierarchical output group. This transformation allows you to create structs and
arrays. It also allows you to join data sources, group by and order by data fields, filter for specific information,
and aggregate both the input and output data.

The following image shows an example mapping:

In this mapping, the source input includes three relational files: customer address data, purchase orders, and
purchase order details. The data flows into one complex file that combines data from the three source files.

For more information, see “Defining hierarchical output with the Hierarchy Processor transformation” on page
199.

186 Chapter 15: Hierarchy Processor transformation

Hierarchical to hierarchical data processing
In a mapping that converts hierarchical data to hierarchical data, you can read from one or more hierarchical
input groups and write to one hierarchical output group.

You can convert hierarchical input from one schema to a different schema. You can read data from primitive
fields, structs, and arrays and arrange the data in a different structure.

You can also transform the data that you are converting. You can join data sources, configure group by and
order by fields, filter for specific information, and aggregate incoming and output data.

The following image shows an example of a mapping that uses a Hierarchy Processor transformation to
convert hierarchical data to hierarchical data of a different structure:

In this mapping, the data source is a JSON file that contains orders and items data. The data flows into a
different JSON file that contains order information. The Hierarchy Processor transformation is selected, and
the Hierarchy Processor tab shows the structure of the incoming and output data.

For more information, see “Defining hierarchical output with the Hierarchy Processor transformation” on page
199.

Hierarchical to flattened data processing
The Hierarchy Processor transformation includes a flattened option for output data. Use the flattened output
format to convert hierarchical input into denormalized output.

In a mapping that converts hierarchical data to flattened data, you can read from one hierarchical input group
and write to one flattened output group. You can read data from primitive fields, structs, and arrays and
quickly create a fully denormalized output file. You can also flatten and denormalize only a portion of the
incoming fields.

Hierarchy Processor transformation overview 187

For data sources that contain sibling arrays, you can easily denormalize the output data without the need for
complex joins. Select the check box next to the incoming fields you want. The Hierarchy Processor
transformation adds the field to the output and creates the expression automatically.

The following image shows a mapping that uses a Hierarchy Processor transformation to convert
hierarchical data to flattened data:

In this mapping, the data source is a JSON file that contains personal and vehicle data. The data flows into a
flattened file that contains vehicle information. The Hierarchy Processor transformation is selected, and the
Hierarchy Processor tab shows the structure of the incoming and output data.

For more information, see “Defining flattened output with the Hierarchy Processor transformation” on page
230.

Configuration for multibyte hierarchical data
If a mapping includes a transformation that processes hierarchical data and the data uses multibyte
characters, configure the Secure Agent machine to use UTF-8.

On Windows, create the INFA_CODEPAGENAME=UTF-8 environment variable in Windows System Properties.

On Linux, set the LC_LOCALE variable to UTF-8.

Field restrictions
Elastic mappings support up to 7,000,000 input and output fields. All mappings are subject to this limit.
However, mappings that include the Hierarchy Processor transformation are more likely to approach the limit
because of the complex data involved.

The more joins, child fields, nested fields, and flattened arrays that the Hierarchy Processor transformation
contains, the more likely the mapping will exceed the field limit.

If the mapping exceeds the limit, the following message appears in the mapping compilation log:

[LDTM_0502] The mapping [<mapping name>] failed because the number of fields in the
compiled mapping exceeds the threshold: [7,000,000]. Number of fields: [<actual
number>]. Create multiple mappings to process the data incrementally.

To resolve the error, create multiple mappings to process the complex data incrementally or reduce the size
of the mapping.

188 Chapter 15: Hierarchy Processor transformation

Processing relational output
The Hierarchy Processor transformation can convert one hierarchical input group to multiple output groups.
These output groups can contain delimited flat files or relational files.

For example, you have a customer order file with customer and order information. This file is in hierarchical
JSON format. You wish to create a relational customers table to update information in the master database.
You also want a separate delimited orders file to see which orders have been increasing.

Defining relational output with the Hierarchy Processor
transformation

To define a Hierarchy Processor transformation, use the Hierarchy Processor tab to map incoming fields to
output fields, configure the output data structure, and optionally generate keys for relational output.

The following image shows the Hierarchy Processor tab with hierarchical input and relational output:

1. Output format. Select Relational to convert incoming hierarchical data into one or more relational output groups.
2. Input groups, incoming fields. Use these fields to map to the output fields.
3. Output group, output fields. Use these fields to create the complex output file.
4. Generate keys. Optionally generate keys for the input group to define relationships between output groups.
5. Add incoming field to output group. Use to add fields to the output group.
6. Output field names. Click on a field name to modify the field name or data type.
7. Data Configuration icons. Use to configure the output groups and fields.
8. Expression. Click on an expression to view or customize the output field expression.
9. Add or delete output field. Use to create or delete output fields.

Tip: You can resize the Incoming Fields or Output Fields panels to better see the information.

Configuring the Hierarchy Processor transformation
You can configure the Hierarchy Processor transformation to produce relational output.

1. Select the Relational output format.

2. Configure the transformation output by adding incoming fields to the output or by manually adding fields
to the output.

3. Optionally, generate keys for the input group to define relationships between output groups.

4. Configure the output groups and fields:

a. Configure data sources.

Processing relational output 189

b. Optionally, customize the output field expressions.

c. Optionally, add filters to the transformation.

Generating unique keys
In a mapping that converts hierarchical data to relational output, you can optionally generate unique keys for
the hierarchical input group.

The following image shows the option to generate unique keys in the Hierarchy Processor tab:

When you generate unique keys, you generate a primary key for the input group and a key for every array
element within the input group. Each key is a combination of a global unique ID and a value that increases for
each additional field. You can map the generated keys to the output groups just like any other incoming field.

When you map key fields from an input parent element to the output group of the child data set, the output
data or output group has a primary key and foreign key relationship. This relationship is generated on the
output side, based on how you mapped the generated keys.

Adding incoming fields to relational output groups
You can add incoming fields to the output individually or you can add an entire input group. You can add
incoming fields to an output group, array, or struct field. You can rename or delete output fields as needed.

To add an output field, hover over the incoming field or input group that you want to add and then click the
Add button.

You can add fields in the following ways based on the incoming field's data type and the output type:

Add incoming field

Adds the selected incoming field to the selected output group or field.

Select "Add incoming field" to add incoming fields with primitive data types to the output.

Add input group

Adds all incoming fields in the group to the selected output group or field.

Select "Add input group" to add incoming fields with primitive data types to the output.

Add single occurring children

Adds all single occurring children under the field to the output, including single occurring child fields that
are nested under a struct. Does not add single occurring children that are nested under arrays.

You can select the "Add single occurring children" option only when you've select an incoming struct or
array field and the output is relational. For more information, see “Add single occurring children” on page
191.

190 Chapter 15: Hierarchy Processor transformation

Add all descendants

Adds all children under the field to the output, including all arrays and structs. If the incoming field
contains arrays, Data Integration creates a separate output group for each array.

You can select the "Add all descendants" option only when you've select an incoming struct or array field
and the output is relational. For more information, see “Add all descendants” on page 192.

Add single occurring children
You can add single occurring children when adding incoming struct and array fields to the output and the
output format is relational. The "Add single occurring children" option adds all single occurring children under
the field to the output group, including the single occurring child fields that are nested under a struct.

When you select "Add single occurring children", the incoming field must have child objects.

If the field you select contains an array, the array and its children are not added because an array can contain
multiple elements.

Example of adding single occurring children

You want to extract customer information from the Customer array, with each output record containing
information about one customer.

Select Add on the Customer array, with the Add Single Occurring Children option selected. This action adds
all single occurring children under Customer, including the children under the FullAddress struct to the output
group.

Note that you cannot add single occurring children at the Customers struct level, because there are no single
occurring children under that top-level struct.

The following image shows the incoming and output fields:

Processing relational output 191

Add all descendants
You can add all descendants when adding incoming struct and array fields to the output and the output
format is relational. The "Add all descendants" option adds all children under the field to the output group,
including all arrays and structs.

You can't map hierarchical data with arrays to the same output group when you select the "Add all
descendants" option. If you add an incoming field that contains hierarchical data with arrays to the output
group, the Hierarchy Processor transformation creates a separate output group for each array.

Example of adding all descendants

You want to add all incoming fields to relational output groups. The incoming fields contain the arrays
Customer and Order.

Click Add next to the parent incoming field and select the Add All Descendants option. This action maps the
fields in the Customer array to the first output group, and maps all fields in the Order array to the second
output group.

The following image shows the input and output fields:

Configuring relational output groups and fields
You can create and modify output groups and output fields. When the output format is relational, you can
create multiple output groups.

After you add incoming fields to an output group, you can click the output field name on the Hierarchy
Processor tab to modify the fields. You can also add and define output fields manually.

192 Chapter 15: Hierarchy Processor transformation

The following table describes the properties for output fields:

Property Description

Child Of The parent field or group that this field belongs to. The name structure describes the group,
parent fields, and struct name. For example: OUTGROUP.Grandparent.Parent.<struct
name>

Name The name of the current output group or field.

Type The data type of the current field. You can choose a primitive data type.

Precision The total number of significant digits in the field.

Scale The number of digits to the right of the decimal point.

Array Element Type The data type of the current array element.

Array Element
Precision

The precision for the current array element. Used when creating the target data.

Array Element
Scale

The scale for the current array element. Used when creating the target data.

Struct Name The struct name for the current struct field.

Element Struct
Name

The element struct name for the current array of structs field.

Description Optional description of the field and its usage.

Note: The output field properties that appear depend on the data type.

Configuring data sources
In a Hierarchy Processor transformation, a data source identifies the input group or incoming array that
populates the primitive child fields of the output group or field.

When the output is relational, the data source for the output groups is always the input group or an incoming
field. For example, you add an array to the output group. If you add single occurring children, the data source
for the output group is the input group. If you add all descendants, the data source for each output group is
an incoming field array.

Configuring filter conditions
You can define filter conditions to project a subset of the input data in the Hierarchy Processor
transformation. You can filter based on incoming fields or output fields.

You can configure a filter condition to read data from primitive fields into an output array or struct field when
the data in the array or struct field must correspond to the data in a sibling field in the output group.

Filter configuration example

You want to convert relational data to a JSON file. The incoming data is in a relational table that contains
orders information. The orders table contains multiple rows for each order because each order can contain
several products.

Processing relational output 193

The incoming data looks like the following data:

OrderNumber,ProductName,ProductType,NumberOfItems,PricePerItem
12345,M&Ms Candies Chocolate Peanut Party Size - 38 Oz,Candy,2,14.49
12345,Stella Parm Shredded Cup - 20 Oz,Dairy,1,10.99
12345,AHA Sparkling Water Blueberry Pomegranate - 8-12 Fl. Oz.,Beverages,1,3.33
23456,Weetabix Biscuit Cereal Whole Grain 2 Count - 14 Oz,Breakfast & Cereal,2,4.99
23456,Producers Milk Lowfat 1% - Half Gallon,Dairy,1,2.79
23456,Egglands Best Eggs Cage Free Large Brown - 12 Count,Eggs,1,4.99

You want to read the product details into an array, where the product details are associated with a particular
order number.

The following image shows the structure of the incoming and output fields:

In the Output Fields panel, set the data source for the Output group to Input, and configure the group by field
as Input.OrderNumber to remove duplicate records from the output. Set the data source for the
ProductDetails array to Input.

To ensure that the details in the ProductDetails array correspond to the order number in the output, configure
the following filter condition for the array:

:fld.{Input.OrderNumber}= :fld.{Output.OrderNumber}

To further refine the records, use an AND condition in the filter. For example, to exclude records in which the
product type is "Candy," configure the following filter condition:

:fld.{Input.OrderNumber}= :fld.{Output.OrderNumber} AND :fld.{Input.ProductType} != 'Candy'

The output contains one record for each order, and incoming records with the product type "Candy" are
excluded.

The output data contains the following records:

{
 "OrderNumber":"12345",
 "ProductDetails":[
 {
 "ProductName":"AHA Sparkling Water Blueberry Pomegranate - 8-12 Fl. Oz.",
 "ProductType":"Beverages",
 "NumberOfItems":"1",
 "PricePerItem":"3.33"
 },
 {
 "ProductName":"Stella Parm Shredded Cup - 20 Oz",
 "ProductType":"Dairy",
 "NumberOfItems":"1",
 "PricePerItem":"10.99"
 }
]

194 Chapter 15: Hierarchy Processor transformation

}
{
 "OrderNumber":"23456",
 "ProductDetails":[
 {
 "ProductName":"Egglands Best Eggs Cage Free Large Brown - 12 Count",
 "ProductType":"Eggs",
 "NumberOfItems":"1",
 "PricePerItem":"4.99"
 },
 {
 "ProductName":"Producers Milk Lowfat 1% - Half Gallon",
 "ProductType":"Dairy",
 "NumberOfItems":"1",
 "PricePerItem":"2.79"
 },
 {
 "ProductName":"Weetabix Biscuit Cereal Whole Grain 2 Count - 14 Oz",
 "ProductType":"Breakfast & Cereal",
 "NumberOfItems":"2",
 "PricePerItem":"4.99"
 }
]
}

Expression configuration
You can define expressions in the Hierarchy Processor transformation to create customized relational or
hierarchical output, but not flattened output. You also use expressions to define filter conditions.

The Hierarchy Processor transformation can process information from different data sets. Some of the field
names might not be unique among the different data sets. As a result, you can't simply reference the field by
its name, because the same field name might be used in a different data set, or within the hierarchy of the
same data set.

The syntax of the expressions in the Hierarchy Processor transformation differs from that used in the
Expression transformation.

To reference a field in a Hierarchy Processor transformation, use the following syntax:

:fld.{input_group_name.field_name}.field_name
The following table describes the syntax in more detail:

Syntax part Description

.fld. Denotes the Hierarchy Processor transformation expression syntax.

input_group_name Name of the input group or dataset.

field_name Name of the field, including the full path name if it's not a top-level field.
If any field is of the type array, include the array name. If an array is primitive and
has no array name, use elem as the array name.
For fields within a struct or an array, the actual field name is specified outside of
the closing brace.

.field_name Include the field_name portion only when referencing a field within a struct or an
array. Follow these guidelines:
- For fields within a struct, the field_name portion uses the

format: .structName.fieldname
- For fields within an array, the field_name portion uses the format: .fieldName

Processing relational output 195

Configuring expressions
You can configure expressions when the output format is relational or hierarchical. For flattened output, the
expression is fixed to the default format once you add the field and configuration is not possible.

To configure an expression in the Hierarchy Processor transformation, follow these steps:

1. Perform one of the following actions to create the output fields:

a. To use an incoming field as an output, click the Add link that appears when you hover over the
incoming field.

b. To create a new field, click New Field in the Output Fields panel near the output group name or near
an array name.

2. Click the expression in the Output Fields section.

For newly created fields, the link appears as Configure. The Field Expression dialog box appears.

3. Enter the expression in the expression editor. You can add incoming fields, functions, and variables to
the expression by clicking the Add link next to the object that you want to use. You can also type in the
expression manually.

The expression can contain constants, variables, built-in functions, and user-defined functions. You can
nest functions to create a complex expression.

Note: If you modify the references to any of the fields, your expression will fail.

4. Click Validate.

5. Correct any errors.

6. Click OK.

You can close the editor and troubleshoot an invalid expression at another time.

Running a mapping with JSON data
To run a mapping that contains a Hierarchy Processor transformation with JSON-formatted data, you need to
use a mapping task.

Reading JSON input

When you read JSON data, the input files can be based on a schema with multiple lines or on a schema with
a single line.

The following sample shows a JSON schema on a single line:

{"Name":"Tom","Street":"2100 Seaport Blvd","City":"Redwood
City","State":"CA","Country":"USA","Zip":"94063"}

The following sample shows a JSON schema that spans across multiple lines:

{
 "Name": "Tom",
 "Surname": "Day",
 "City": "Redwood City",
 "State": "CA",
 "Country": "USA",
 "Zip": "94063"
}

By default, the Hierarchy Processor transformation reads each JSON schema as a single line. To read input
that spans across multiple lines, you can configure the formatting options in the Source transformation to
read multiple-line JSON files.

196 Chapter 15: Hierarchy Processor transformation

Writing JSON output

When you write JSON data, you can write each output record to a separate file, or you can write all output
records to one file.

By default, each output record is written to a separate file. To write the output records to one JSON-formatted
file, set the following Spark session property in the mapping task:

Session Property Name Session Property Value

spark.sql.shuffle.partitions 1

Hierarchical to relational example
A customer order file contains the current customer contact information and the recent orders for those
customers. The order file is in hierarchical JSON format and is generated by your company's cloud
application. You want to process the hierarchical data and write the data to target files in relational and
delimited formats.

Using the order file data, you want to create a relational customers table to use for an update on the
customer information in the master database. Separately, you want to analyze the orders that have been
increasing. You can use the order file to create a separate delimited orders file for the analysis.

You want to transform the data from the hierarchical input to relational and delimited output.

To create and run the mapping, perform the following tasks:

1. Ensure that you have access to an Amazon S3 V2 Connector for the S3 source and target objects.

2. Add a Source transformation that reads hierarchical data from the source JSON file.

3. Configure the following properties for the source object:

Property Value

Connection Amazon S3 V2

Source Format JSON

4. Add a Hierarchy Processor transformation. The following image shows the data flow:

5. Create the OutputCustomers output group to create the relational customers data file.

Processing relational output 197

The following image shows how to add incoming fields, which will create the output group:

6. Create the OutputOrders output group to create the delimited orders data file.

7. In the Hierarchy Processor tab, map Incoming Fields to Output Fields.
You can add fields individually or use the following options for struct and array fields:

• Add All Descendants. Adds all children under the field, including all arrays and structs. If the incoming
field contains arrays, Data Integration creates a separate output group for each array.

• Add Single Occurring Children. Adds all single occurring children under the field, even if the single
occurring child is nested under a struct.

8. Add a Target transformation to write the customers data output.

9. Configure the following properties for the target object:

Property Value

Connection Amazon S3 V2

Formatting Option Relational

10. Add a Target transformation to write the orders data output.

11. Configure the following properties for the target object:

Property Value

Connection Amazon S3 V2

Formatting Option Delimited

12. Link the OutputCustomers output group to the TargetCustomers Target transformation.

13. Link the OutputOrders output group to the TargetOrders Target transformation.

14. Run the mapping.

198 Chapter 15: Hierarchy Processor transformation

Processing hierarchical output
The Hierarchy Processor transformation can process the following types of hierarchical output:

• Relational to hierarchical. Convert up to five relational input groups to one hierarchical output group.

• Hierarchical to hierarchical. Convert one or more hierarchical input groups to one hierarchical output
group with a different schema.

Defining hierarchical output with the Hierarchy Processor
transformation

You can map the incoming fields to output fields to configure the output data structure for hierarchical
output.

When the output data format is hierarchical, consider the following guidelines:

• There is a specific order that you should follow when performing operations.

• You can rename or delete output groups.

• You can aggregate both the input and output data.

The following image shows the Hierarchy Processor tab with relational input and hierarchical output:

1. Output format. Select Hierarchical to construct a hierarchical schema for incoming fields.
2. Input groups, incoming fields. Use these fields to map to the output fields.
3. Output fields. Use these fields to create the complex output file.
4. Add incoming field to output group. Use to add fields to the output group.
5. Output field names. Click on a field name to modify the field name or data type.
6. Data Configuration icons. Use to configure the output groups and fields.
7. Expression. Click on an expression to view or customize the output field expression.
8. Add or delete output field. Use to create or delete output fields.

Tip: You can resize the Incoming Fields or Output Fields panels to better see the information.

Define hierarchical output
To define a Hierarchy Processor transformation with hierarchical output, perform the following tasks:

1. Select the Hierarchical output format.

2. Configure the transformation output by adding incoming fields to the output or by manually adding fields
to the output.

Processing hierarchical output 199

3. Configure the output groups and fields.

a. Configure data sources.

b. Optionally, join data sources.

c. Optionally, customize the output field expressions.

d. Optionally, add filters to the transformation.

e. Optionally, define output order using order by fields.

f. Optional, aggregate input data using group by fields.

g. Optionally, aggregate output data.

Order of operations
You should perform operations in a certain order when working with hierarchical output.

When the output data format is hierarchical, perform the operations in the following order:

1. Join. Specify join conditions in the data sources.

2. Filter. Optionally, specify filter conditions to include only a subset of the source data.

3. Group By. Optionally, specify the incoming fields for aggregate expressions.

4. Order By. Optionally, specify the incoming fields to create sorted output.

Renaming and deleting output groups
When the output data format is hierarchical, you can rename or delete input groups.

When you modify the input group, the following configurations are also updated if they refer to the input
group:

• Input data source names

• Join data source names

• Order by fields

• Group by fields

However, you must modify the following configurations manually:

• Expressions

• Join conditions

• Filter conditions

Note: When the output data format is hierarchical, you cannot change the input group name.

Adding incoming fields to hierarchical output groups
You can add individual incoming fields or all fields in an input group to the output group, You can add
incoming fields to an output group or to an array or struct field. You can rename or delete output fields as
needed.

Click the Add link on the Hierarchy Processor tab next to the incoming field or input group that you want to
add.

You can add fields in the following ways based on the incoming field's data type and the output type:

200 Chapter 15: Hierarchy Processor transformation

Add incoming field

Adds the selected incoming field to the selected output group or field.

The "Add incoming field" option is available when you add incoming fields with primitive data types to
the output.

Add input group

Adds all incoming fields in the group to the selected output group or field.

The "Add input group" option is available when you add incoming fields with primitive data types to the
output.

Add primitive single occurring children

Adds all primitive single occurring children under the field to the output, including the primitive, single
occurring child fields that are nested under a struct. Adding primitive single occurring children doesn't
add children that are nested under arrays.

You can add primitive single occurring children when you select an incoming struct or array field, and the
output is hierarchical. For more information, see “Add primitive single occurring children” on page 201.

Preserve incoming field

Preserves the hierarchical structure of the selected field in the output. For example, if you add an array
of structs to the output group, then the output group contains an array of structs with the same
structure.

The "Preserve incoming field" option is available when you select an incoming struct or array field, and
the output is hierarchical. For more information, see “Preserve incoming fields” on page 202.

Flatten selected array

Flattens an array of primitives into a primitive field. Creates one output record for each element in the
array.

The "Flatten selected array" option is available when you select an incoming struct or array field, and the
output is hierarchical. For more information, see “Flatten selected array” on page 203.

Add selected array as struct

Flattens an array of structs into a struct field. Creates one output record for each element the array.

The "Add selected array as struct" option is available when you select an incoming struct or array field,
and the output is hierarchical. For more information, see “Add selected array as struct” on page 204.

Add primitive single occurring children
You can add primitive single occurring children when you are adding incoming struct and array fields to the
output. The "Add primitive single occurring children" option is available when you add incoming struct or
array fields to hierarchical output. It adds all primitive single occurring children under the field to the output
group, including the primitive, single occurring child fields that are nested under a struct.

You can add primitive single occurring children only for incoming fields with child objects.

If the field you select contains an array, the array and its children are not added because an array can contain
multiple elements.

Example

You want to extract the make, model, company, and policy number from an array of vehicle records. Each
output record should contain information about one vehicle.

Add the vehicle array to the output group and choose Add Primitive Single Occurring Children.

Processing hierarchical output 201

The following image shows the incoming and output fields:

Note that the date field is not added to the output group because it is under a child array of the selected field
and is not single occurring.

Preserve incoming fields
When you add incoming struct and array fields to the output, you can preserve the incoming field. When you
preserve the incoming field, it's copied to hierarchical output without changing the structure.

When you add a nested array and select "Preserve incoming fields", the data source configuration for the
output group determines how the records are created.

Example of preserving incoming fields

You want to extract the description information from a nested array of maintenance records. The description
information is in an array of strings. You want the output data to also be in an array of strings.

Add the description array to the output group and choose Preserve Incoming Field.

The following image shows the incoming and output fields:

202 Chapter 15: Hierarchy Processor transformation

When Data Integration creates the output array, it sets the data source for the description array to
Input.vehicle.vehicle.maintenance.maintenance.desc.elem, indicating that the information for the
output array comes from the elements in the desc array in the Input group. The data source for the Output
group determines the structure of the output records.

By default, Data Integration sets the data source for the Output group to Input. When you run the mapping,
Data Integration collates all descriptions into one output record. To write the descriptions to separate
records for each vehicle, set the data source to Input.vehicle.vehicle. To write the descriptions to
separate records for each maintenance record, set the data source to
Input.vehicle.vehicle.maintenance.maintenance. For more information about data source configuration,
see “Configuring data sources” on page 208.

Flatten selected array
When you add an incoming array of primitives to the output, you can flatten the selected array into a field of
the same data type.

When you flatten a selected array, it creates one record for each element in the array.

Example of flattening an array

You want to extract the description information from a nested array of maintenance records. The description
information is in an array of strings. You want to flatten the output into a string field.

Add the description array to the output group and choose Flatten Selected Array.

The following image shows the incoming and output fields:

The output contains one record for each occurrence of description in the incoming data.

For example, the incoming data contains the following record:

[
 {
 "vehicle": [
 {
 "make": "Toyota",
 "model": "Corolla",
 "insurance": {
 "company": "Allstate",
 "policy_num": "AS12876"
 },
 "maintenance": [
 {

Processing hierarchical output 203

 "date": "01/01/2020",
 "description": ["oil filter1", "oil filter2"]
 },
 {
 "date": "01/08/2020",
 "description": ["tire rotation1", "tire rotation2"]
 }
]
 },
 {
 "make": "Toyota",
 "model": "RAV4",
 "insurance": {
 "company": "Allstate",
 "policy_num": "AS2033"
 },
 "maintenance": [
 {
 "date": "01/02/2020",
 "description": ["air filter replacement1", "air filter replacement2"]
 },
 {
 "date": "01/08/2020",
 "description": ["battery replacement1", "battery replacement2"]
 }
]
 }
]
 }
]

Data Integration creates the following output records, one for each occurrence of description in the incoming
data:

{"description":"oil filter1"}
{"description":"oil filter2"}
{"description":"tire rotation1"}
{"description":"tire rotation2"}
{"description":"air filter replacement1"}
{"description":"air filter replacement2"}
{"description":"battery replacement1"}
{"description":"battery replacement2"}

Add selected array as struct
When you add an incoming array of primitives as a struct, the array is flattened into a struct field, without
flattening any descendant arrays.

The "Add selected array as struct" option creates one record for each element in the selected array.

Example of adding an array as struct

You want to flatten an array of vehicle records into a struct without flattening the child array of maintenance
records.

Add the vehicle array to the output group and choose Add Selected Array as Struct.

204 Chapter 15: Hierarchy Processor transformation

The following image shows the incoming and output fields:

The output contains one record for each element in the vehicle array.

For example, the incoming data contains the following record which contains data about two vehicles:

[
 {
 "vehicle": [
 {
 "make": "Toyota",
 "model": "Corolla",
 "insurance": {
 "company": "Allstate",
 "policy_num": "AS12876"
 },
 "maintenance": [
 {
 "date": "01/01/2020",
 "description": ["oil filter1", "oil filter2"]
 },
 {
 "date": "01/08/2020",
 "description": ["tire rotation1", "tire rotation2"]
 }
]
 },
 {
 "make": "Toyota",
 "model": "RAV4",
 "insurance": {
 "company": "Allstate",
 "policy_num": "AS2033"
 },
 "maintenance": [
 {
 "date": "01/02/2020",
 "description": ["air filter replacement1", "air filter replacement2"]
 },
 {
 "date": "01/08/2020",
 "description": ["battery replacement1", "battery replacement2"]
 }
]
 }
]

Processing hierarchical output 205

 }
]

The Hierarchy Processor transformation creates the following output records, one for each vehicle:

{
 "vehicle":{
 "make":"Toyota",
 "model":"Corolla",
 "insurance":{
 "company":"Allstate",
 "policy_num":"AS12876"
 },
 "maintenance":[
 {
 "date":"01/08/2020",
 "description":["tire rotation2","tire rotation1"]
 },
 {
 "date":"01/01/2020",
 "description":["oil filter2","oil filter1"]
 }
]
 }
}
{
 "vehicle":{
 "make":"Toyota",
 "model":"RAV4",
 "insurance":{
 "company":"Allstate",
 "policy_num":"AS2033"
 },
 "maintenance":[
 {
 "date":"01/08/2020",
 "description":["battery replacement2","battery replacement1"]
 },
 {
 "date":"01/02/2020",
 "description":["air filter replacement2","air filter replacement1"]
 }
]
 }
}

Configuring hierarchical output group and fields
Uou can create and modify the output group and output fields for hierarchical output.

After you add incoming fields to an output group, you can select an output field name to modify the fields.
You can also add and define output fields manually.

Name and Type

The following table describes the properties for hierarchical output fields:

Property Description

Child Of The parent field or group that this field belongs to. The name structure describes the group,
parent fields, and struct name. For example: OUTGROUP.Grandparent.Parent.struct_name

Name The name of the current output group or field.

206 Chapter 15: Hierarchy Processor transformation

Property Description

Type The data type of the current field. For hierarchical output, you can choose either a primitive or
complex data type.

Precision The total number of significant digits in the field.

Scale The number of digits to the right of the decimal point.

Array Element
Type

The data type of the current array element.

Array Element
Precision

The precision for the current array element. Used when creating the target data.

Array Element
Scale

The scale for the current array element. Used when creating the target data.

Struct Name The struct name for the current struct field.

Element Struct
Name

The element struct name for the current array of structs field.

Description Optional description of the field and its usage.

Note: The output field properties that appear depend on the data type.

Aggregate Options

All output fields except for parent fields have aggregation options that you can set. The following table
describes the aggregate options:

Property Description

Use this field to aggregate values
in an output field array.

Select this property to aggregate output data into the current field.

Output Field If you are aggregating, specify the sibling array with fields to aggregate. The
array must be a child of the current output field or group.

Aggregating values in an output field array
If the Hierarchy Processor transformation output contains an array, you might want to add an output field to
aggregate values in the array. The output field must be a sibling of the array field.

For example, the Output group contains an array with orders information. The Orders array contains the
OrderPrice field, which stores the price for each order. You want to find the total order price for each
company.

Processing hierarchical output 207

The following image shows the output fields:

To find the total order price, add a field called TotalOrderPrice to the output group.

Edit the TotalOrderPrice field. Select Use this field to aggregate values in an output field array, and select
the Orders array as the output field for which you want to aggregate values. Configure the following
expression for the TotalOrderPrice field:

SUM(:fld.{Output.Orders.Orders.OrderPrice})

Configuring data sources
You can configure a data source for the output group and for all array and struct fields in the output. A data
source identifies the input group or incoming array that populates the primitive child fields for the output
group or field.

If you select a field as a data source, you have access to the following objects:

• All its primitive children

• All its ancestors’ primitive children

• Individual elements of its array children

• Individual elements of its ancestors’ array children

You can configure multiple data sources for an output group or field. If you do this, you must configure a join
condition to join the data.

You can configure filters to exclude certain records. You can also specify group by fields for aggregating the
data and order by fields for sorting records.

The data sources for hierarchical output group and fields can vary based on the output data structure.

Inheriting data sources from the parent
When you configure the data source for an array or struct field, you can populate the children of the field
either with the incoming data or by inheriting the parent's data sources.

When you use the incoming data, the incoming data is used to populate the children of the array or struct.

When you inherit the parent's data sources, the data transformed into the parent output field populates the
children of the array or struct. This preserves the data transformations (for example, joins and filters), in the

208 Chapter 15: Hierarchy Processor transformation

parent fields. You can apply filters to the field to further filter the data, but you can't configure data sources,
joins, group by fields, or order by fields.

For example, you are reading data from a relational table of customer records in which the customer ID is
unique. The incoming data contains the following records:

CustID,Name,Street,City,State,ZIP
00234,Ravindra Singh,123 6th St. Apt. 5A,Boston,MA,02134
14416,Melissa Clark,11 Winding Way,Watch Hill,RI,02891

You want to write the customer address fields to a struct.

The following image shows the incoming and output fields:

In the Output Fields panel, set the data source for the Output group to Input and the data source for the
Address struct to Inherit parent's data sources (Output). When you run the mapping, the Hierarchy
Processor transformation creates one record for each occurrence of CustID in the input data and populates
the struct with the address data that corresponds to the customer ID in the output:

{
 "CustID":"00234",
 "Name":"Ravindra Singh",
 "Address":{
 "Street":"123 6th St. Apt. 5A",
 "City":"Boston",
 "State":"MA",
 "ZIP":"02134"
 }
}
{
 "CustID":"14416",
 "Name":"Melissa Clark",
 "Address":{
 "Street":"11 Winding Way",
 "City":"Watch Hill",
 "State":"RI",
 "ZIP":"02891"
 }
}

If you set the data source for the Address struct to Input, then you must also configure the following filter
condition on the struct to get the same output: :fld.{Input.CustID} = :fld.{Output.CustID} AND :fld.
{Input.Name} = :fld.{Output.Name}. For more information about configuring filter conditions, see
“Configure filter conditions” on page 213.

When the output field is an array that inherits its parent's data, the Hierarchy Processor transformation
creates an array with one element.

Processing hierarchical output 209

Configure data source in hierarchical output example
When you add a nested array to the output and preserve the incoming field, the records that get created vary
based on how you configure the data source for the output group.

For example, you want to extract the description information from a nested array of maintenance records in a
JSON file. The description information is in an array of strings. You want the output data to also be in an
array of strings.

The following sample data shows an incoming record:

[
 {
 "vehicle": [
 {
 "make": "Toyota",
 "model": "Corolla",
 "insurance": {
 "company": "Allstate",
 "policy_num": "AS12876"
 },
 "maintenance": [
 {
 "date": "01/01/2020",
 "description": ["oil filter1", "oil filter2"]
 },
 {
 "date": "01/08/2020",
 "description": ["tire rotation1", "tire rotation2"]
 }
]
 },
 {
 "make": "Toyota",
 "model": "RAV4",
 "insurance": {
 "company": "Allstate",
 "policy_num": "AS2033"
 },
 "maintenance": [
 {
 "date": "01/02/2020",
 "description": ["air filter replacement1", "air filter replacement2"]
 },
 {
 "date": "01/08/2020",
 "description": ["battery replacement1", "battery replacement2"]
 }
]
 }
]
 }
]

In the Hierarchy Processor transformation, you add the description array to the output group and choose
Preserve Incoming Field.

210 Chapter 15: Hierarchy Processor transformation

The following image shows the incoming and output fields:

When the Hierarchy Processor transformation creates the output array, it sets the data source for the
description array to Input.vehicle.vehicle.maintenance.maintenance.desc.elem, indicating that the
information for the output array comes from the elements in the desc array in the Input group. By default, the
Hierarchy Processor transformation sets the data source for the Output group to Input.

The data source configuration for the output group determines how the Hierarchy Processor transformation
creates the output records.

To combine all descriptions into one output record, keep the data source for the output group as Input. This
produces the following output:

{"description":["battery replacement2","battery replacement1","air filter
replacement2","air filter replacement1","tire rotation2","tire rotation1","oil
filter2","oil filter1"]}

To create one output record for each occurrence of vehicle in the incoming data, set the data source to
Input.vehicle.vehicle. In this case, the output data contains one record for each vehicle:

{"description":["tire rotation2","tire rotation1","oil filter2","oil filter1"]}
{"description":["battery replacement2","battery replacement1","air filter
replacement2","air filter replacement1"]}

To create one output record for each occurrence of maintenance in the incoming data, set the data source to
Input.vehicle.vehicle.maintenance.maintenance. In this case, the output contains one record for each
maintenance record:

{"description":["oil filter2","oil filter1"]}
{"description":["tire rotation2","tire rotation1"]}
{"description":["air filter replacement2","air filter replacement1"]}
{"description":["battery replacement2","battery replacement1"]}

Data source conflicts
If you convert hierarchical data to hierarchical data and you add multi-level arrays to the output, you must
ensure that the data sources for the output group or fields do not conflict. A conflict occurs when you select
both an incoming array and one of its descendant arrays to be data sources for the same output group or
field.

If you have a data source conflict, the transformation remains invalid until you resolve the conflict.
Additionally, you cannot configure joins, filters, order by fields, or group by fields until you resolve the
conflict.

Processing hierarchical output 211

Example of a data source conflict

A data source conflict occurs if you select both Array1 and Array2 as data sources for the output group in the
following image:

The conflict occurs because there is no way to determine which data source provides the data for Field1 and
Field2. In this case, the Hierarchy Processor transformation displays a conflicting data sources error.

To resolve the conflict, remove one of the data sources from the Output group.

Modify data sources for output group or fields
The output group and all array and struct fields in the output require a data source. When you add an input
group or incoming field to the output, the Hierarchy Processor transformation usually sets a data source for
you. You can manually add or edit a data source.

To configure a data source for the output group:

1. Click the Data Sources icon for the output group.

2. Examine if there is already a data source configured for the output group. If it requires any changes,
continue with these steps, otherwise you can exit the dialog box.

3. Click the Add Data Source icon to add a new data source.

4. Click the ellipsis icon to select the input group or array to use as a data source.

5. Validate the configuration.

6. Click Save.

Tip: Click the trash icon to remove any incorrect or unneeded data source.

To configure a data source for struct or array fields:

1. Click the Data Sources icon for the output group.

2. Examine if there is already a data source configured for the struct or array. If it requires any changes,
continue with these steps, otherwise you can exit the dialog box.

3. Select the type of data source to use:

• Inherit parent's data sources: Use the same data sources as the parent for the struct or array.

• Use input group or incoming fields: Select an input group or incoming field to use as a data source.

4. Validate the configuration.

5. Click Save.

Tip: Click the trash icon to remove any incorrect or unneeded data source.

212 Chapter 15: Hierarchy Processor transformation

Configuring output data
For hierarchical output, you can configure data source join and filter conditions as well as group by and order
by fields. You can aggregate on both the input and output data.

Configure join conditions
When the output data format is hierarchical, you can define join conditions for the data sources. You must
configure a join condition if an output group or field has multiple data sources. Configure a join condition to
join the data from the input groups or incoming fields.

Configure the join conditions for the output groups on the Hierarchy Processor tab.

1. Click the Join Conditions icon for the output group.

2. Add a join condition.

3. Select the left data source.

4. Select the join type:

• Inner. Includes rows with matching join conditions. Discards rows that do not match the join
conditions.

• Left Outer. Includes all rows from the right pipeline and the matching rows from the left pipeline.
Discards the unmatched rows from the left pipeline.

• Right Outer. Includes all rows from the left pipeline and the matching rows from the right pipeline.
Discards the unmatched rows from the right pipeline.

• Full Outer. Includes rows with matching join conditions and all incoming data from the left pipeline
and right pipeline.

Note: If you select an outer join on a large data set, you might need to increase the Spark driver memory
in the mapping task. For more information about Spark session properties, see Tasks.

5. Select the right data source.

6. Click Configure Join Condition.

7. Select fields and built-in functions to create the expression.

8. Validate the expression.

9. Click Save.

Configure filter conditions
You can define filter conditions to project a subset of the input data in the Hierarchy Processor
transformation. You can filter based on incoming fields or output fields.

You can configure a filter condition to read data from primitive fields into an output array or struct field when
the data in the array or struct field must correspond to the data in a sibling field in the output group.

Filter configuration example

You want to convert relational data to a JSON file. The incoming data is in a relational table that contains
orders information. The orders table contains multiple rows for each order because each order can contain
several products.

The incoming data looks like the following data:

OrderNumber,ProductName,ProductType,NumberOfItems,PricePerItem
12345,M&Ms Candies Chocolate Peanut Party Size - 38 Oz,Candy,2,14.49
12345,Stella Parm Shredded Cup - 20 Oz,Dairy,1,10.99
12345,AHA Sparkling Water Blueberry Pomegranate - 8-12 Fl. Oz.,Beverages,1,3.33

Processing hierarchical output 213

23456,Weetabix Biscuit Cereal Whole Grain 2 Count - 14 Oz,Breakfast & Cereal,2,4.99
23456,Producers Milk Lowfat 1% - Half Gallon,Dairy,1,2.79
23456,Egglands Best Eggs Cage Free Large Brown - 12 Count,Eggs,1,4.99

You want to read the product details into an array, where the product details are associated with a particular
order number.

The following image shows the structure of the incoming and output fields:

In the Output Fields panel, set the data source for the Output group to Input, and configure the group by field
as Input.OrderNumber to remove duplicate records from the output. Set the data source for the
ProductDetails array to Input.

To ensure that the details in the ProductDetails array correspond to the order number in the output, configure
the following filter condition for the array:

:fld.{Input.OrderNumber}= :fld.{Output.OrderNumber}

To further refine the records, use an AND condition in the filter. For example, to exclude records in which the
product type is "Candy," configure the following filter condition:

:fld.{Input.OrderNumber}= :fld.{Output.OrderNumber} AND :fld.{Input.ProductType} != 'Candy'

The output contains one record for each order, and incoming records with the product type "Candy" are
excluded.

The output data contains the following records:

{
 "OrderNumber":"12345",
 "ProductDetails":[
 {
 "ProductName":"AHA Sparkling Water Blueberry Pomegranate - 8-12 Fl. Oz.",
 "ProductType":"Beverages",
 "NumberOfItems":"1",
 "PricePerItem":"3.33"
 },
 {
 "ProductName":"Stella Parm Shredded Cup - 20 Oz",
 "ProductType":"Dairy",
 "NumberOfItems":"1",
 "PricePerItem":"10.99"
 }
]
}
{
 "OrderNumber":"23456",
 "ProductDetails":[
 {

214 Chapter 15: Hierarchy Processor transformation

 "ProductName":"Egglands Best Eggs Cage Free Large Brown - 12 Count",
 "ProductType":"Eggs",
 "NumberOfItems":"1",
 "PricePerItem":"4.99"
 },
 {
 "ProductName":"Producers Milk Lowfat 1% - Half Gallon",
 "ProductType":"Dairy",
 "NumberOfItems":"1",
 "PricePerItem":"2.79"
 },
 {
 "ProductName":"Weetabix Biscuit Cereal Whole Grain 2 Count - 14 Oz",
 "ProductType":"Breakfast & Cereal",
 "NumberOfItems":"2",
 "PricePerItem":"4.99"
 }
]
}

Configure group by fields
For hierarchical output, you can group primitive incoming fields for aggregation to produce one row for each
group of input data.

To group fields for aggregation:

1. Click the Group By fields icon for the output group or array.

2. Examine if there is already a grouping present. If it requires any changes, continue with these steps,
otherwise you can exit the dialog box.

3. Click the Add New Group by Field icon to add a new field for grouping.

4. Clip the ellipsis icon to select the primitive field to add to the grouping.

5. Validate the configuration.

6. Click Save.

Configure order by fields
When the output data format is hierarchical, you can define how the output is sorted.

Note: The following conditions must be true for the sort operation to take effect:

• The Hierarchy Processor transformation is connected directly to the Target transformation.

• All sort fields are connected to the Target transformation.

• The data types in the connected order by fields match the data types in the target fields.

Configure order by fields on the Hierarchy Processor tab.

1. Click the Order By fields icon for the output group or the array or struct field.

2. Add the incoming fields to order by and sort the data in ascending or descending order.

3. Rearrange the fields to adjust the sort order.

4. Validate the configuration.

5. Click Save.

Processing hierarchical output 215

Expression configuration
You can define expressions in the Hierarchy Processor transformation to create customized relational or
hierarchical output, but not for flattened output. You also use expressions to define filter conditions.

The Hierarchy Processor transformation can process information from different data sets. Some of the field
names might not be unique among the different data sets. As a result, you can't simply reference the field by
its name, because the same field name might be used in a different data set, or within the hierarchy of the
same data set.

The syntax of the expressions in the Hierarchy Processor transformation differs from that used in the
Expression transformation.

To reference a field in a Hierarchy Processor transformation, use the following syntax:

:fld.{input_group_name.field_name}.field_name
The following table describes the syntax in more detail:

Syntax part Description

.fld. Denotes the Hierarchy Processor transformation expression syntax.

input_group_name Name of the input group or dataset.

field_name Name of the field, including the full path name if it's not a top-level field.
If any field is of the type array, include the array name. If an array is primitive and
has no array name, use elem as the array name.
For fields within a struct or an array, the actual field name is specified outside of
the closing brace.

.field_name Include the field_name portion only when referencing a field within a struct or an
array. Follow these guidelines:
- For fields within a struct, the field_name portion uses the

format: .structName.fieldname
- For fields within an array, the field_name portion uses the format: .fieldName

Configure expressions
You can configure expressions when the output format is relational or hierarchical. For flattened output, can't
configure the default expression once you add the field.

To configure an expression in the Hierarchy Processor transformation, follow these steps:

1. Perform one of the following actions to create the output fields:

a. To use an incoming field as an output, click the Add link that appears when you hover over the
incoming field.

b. To create a new field, click New Field in the Output Fields panel near the output group name or near
an array name.

2. Click the expression in the Output Fields section.

For newly created fields, the link appears as Configure. The Field Expression dialog box appears.

3. Enter the expression in the expression editor. You can add incoming fields, functions, and variables to
the expression by clicking the Add link next to the object that you want to use. You can also type in the
expression manually.

216 Chapter 15: Hierarchy Processor transformation

The expression can contain constants, variables, built-in functions, and user-defined functions. You can
nest functions to create a complex expression.

Note: If you modify the references to any of the fields, your expression will fail.

4. Click Validate.

5. Correct any errors.

6. Click OK.

You can close the editor and troubleshoot an invalid expression at another time.

Running a mapping with JSON data
To run a mapping that contains a Hierarchy Processor transformation with JSON-formatted data, you need to
use a mapping task.

Reading JSON input

When you read JSON data, the input files can be based on a schema with multiple lines or on a schema with
a single line.

The following sample shows a JSON schema on a single line:

{"Name":"Tom","Street":"2100 Seaport Blvd","City":"Redwood
City","State":"CA","Country":"USA","Zip":"94063"}

The following sample shows a JSON schema that spans across multiple lines:

{
 "Name": "Tom",
 "Surname": "Day",
 "City": "Redwood City",
 "State": "CA",
 "Country": "USA",
 "Zip": "94063"
}

By default, the Hierarchy Processor transformation reads each JSON schema as a single line. To read input
that spans across multiple lines, you can configure the formatting options in the Source transformation to
read multiple-line JSON files.

Writing JSON output

When you write JSON data, you can write each output record to a separate file, or you can write all output
records to one file.

By default, each output record is written to a separate file. To write the output records to one JSON-formatted
file, set the following Spark session property in the mapping task:

Session Property Name Session Property Value

spark.sql.shuffle.partitions 1

Relational to hierarchical example
You need to create a purchase order file in hierarchical format using customer sales data from two purchase
order tables and the customer address table.

Use the Hierarchy Processor transformation to create purchase orders in hierarchical format.

Processing hierarchical output 217

The POHeader table contains basic information about the orders placed by customers:

OrderNumber Comment OrderDate ConfirmDate

1 AppD for POD4 2020-10-01 00:00:00.0 2020-10-02 00:00:00.0

2 GoJS for IICS 2020-10-12 00:00:00.0 2020-10-12 00:00:00.0

The Address table contains customer address information for each order:

OrderNumber AddressType Name Street City State Country Zip

1 ShipTo Tom 2100 Seaport Blvd Redwood City CA USA 94063

1 BillTo Tom 2100 Seaport Blvd Redwood City CA USA 94063

2 ShipTo Bill 1630 S Delaware St San Mateo CA USA 94402

2 BillTo Bill PO Box 313 San Mateo CA USA 94402

The PODetail table contains details about the customer purchase orders:

OrderNumber ItemNum ProductName Quantity Price Comment ShipDate PartNum

1 1 AppD Agent for
JVM

60 500 JVM agents 2020-10-15
00:00:00.0

1

1 3 ELB agents 10 200 ELB agents 2020-10-15
00:00:00.0

3

1 2 MySQL agents 2 120 MySQL
agents

2020-10-16
00:00:00.0

2

1 4 MySQL agents 2 120 MySQL
agents

2020-10-01
00:00:00.0

2

1 5 MySQL agents 2 120 MySQL
agents

2020-10-01
00:00:00.0

2

2 1 GOJS OEM Edition 2 20000 GOJS Dev 2020-10-19
00:00:00.0

101

2 2 GOJS Professional
Service

5 5000 GOJS Dev 2020-10-19
00:00:00.0

102

Perform the following steps to create purchase orders in hierarchical format:

1. Step 1. Design the mapping.

2. Step 2. Build the output group and create a struct.

3. Step 3. Create an array of structs.

4. Step 4. Aggregate the output data.

5. Step 5. Create an array of structs and join data sources.

6. Step 6. Run the mapping.

218 Chapter 15: Hierarchy Processor transformation

Step 1. Design the mapping
The first step is to configure the Hierarchy Processor in the Mapping Designer with the Source and Target
transformations.

Perform the following steps in the Mapping Designer:

1. Add a Hierarchy Processor transformation and change the output data format to Hierarchical.

2. Add the POHeader, PODetail, and Address tables as source objects.

3. Connect the source objects to the Hierarchy Processor transformation in the data flow.

4. In the Hierarchy Processor transformation, add the PurchaseOrder output group and connect the target
object in the data flow.

Your mapping should look like the following image:

Step 2. Build the output group and create a struct
Once you configure the basic mapping, create the output group next.

Perform the following steps to create the output group with the basic purchase order data and add the ship-
to address:

1. Add all the incoming fields from POHeader to the PurchaseOrder output group.

2. Add a new output field with the following properties:

Property Value

Child Of PurchaseOrder

Name shipToAddress

Type struct

Struct Name address_struct

Processing hierarchical output 219

3. Add all the incoming fields from Address to the shipToAddress struct in the output group:

4. Delete the following fields that you do not need in the output group:

• PurchaseOrder.shipToAddress.OrderNumber

• PurchaseOrder.shipToAddress.AddressType

5. Add a filter condition for the PurchaseOrder.shipToAddress struct:

:fld.{Address.OrderNumber}=:fld.{PurchaseOrder.OrderNumber} AND :fld.
{Address.AddressType}='ShipTo'.

Step 3. Create an array of structs
Continue to configure the output by adding the purchase order details in the items array of structs. Configure
the data processing strategies to sort by item number, group by part number, and aggregate the incoming
quantity and price.

Perform the following steps

1. Add a new output field with the following properties:

Property Value

Child Of PurchaseOrder

Name Items_arr

Type array

Array Element Type struct

Element Struct Name item_str

2. Add all the incoming fields from PODetail to the Items_arr array in the output group.

3. Delete the following field that you do not need in the output group:
PurchaseOrder.Items_arr.OrderNumber.

4. Add a filter condition for the PurchaseOrder.Items_arr array: :fld.{PODetail.OrderNumber}=:fld.
{PurchaseOrder.OrderNumber}.

5. Configure a group by field for the PurchaseOrder.Items_arr array: PODetail.PartNum.

220 Chapter 15: Hierarchy Processor transformation

6. Configure an order by field in ascending order for the PurchaseOrder.Items_arr array: PODetail.ItemNum.

7. Update the field expression for PODetail.Quantity in the PurchaseOrder.Items_arr array: SUM(:fld.
{PODetail.Quantity}) to aggregate quantity.

8. Update the field expression for PODetail.Price in the PurchaseOrder.Items_arr array: SUM(:fld.
{PODetail.Price}) to aggregate price.

The following image shows the data configuration icons and expressions for the Items_arr array in the output
group.

Step 4. Aggregate the output data
You aggregate the output data to calculate the total price.

Perform the following steps to aggregate all the items in a particular purchase order:

1. Add a new output field with the following properties:

Property Value

Child Of PurchaseOrder

Name TotalPrice

Type bigint

Aggregate Options: This field will aggregate values in an output field array Enabled

Output Field Items_arr

Processing hierarchical output 221

The following image shows the aggregate options for the TotalPrice output field:

2. Configure the following field expression for PurchaseOrder.TotalPrice to aggregate the total price:

SUM(:fld.{PurchaseOrder.Items_arr.item_str.Quantity}*:fld.
{PurchaseOrder.Items_arr.item_str.Price})

Step 5. Create an array of structs and join data sources
Add and configure the same-day items array of structs. Using a filter, a join, and a field expression, you
output only the items that were ordered and shipped on the same date.

Perform the following steps:

1. Add a new output field with the following properties:

Property Value

Child Of PurchaseOrder

Name SameDayItems

Type array

222 Chapter 15: Hierarchy Processor transformation

Property Value

Array Element Type struct

Element Struct Name sameday_str

2. Add all the incoming fields from PODetail to the SameDayItems array in the output group.

3. Delete the following field that you do not need in the output group:
PurchaseOrder.SameDayItems.OrderNumber.

4. Add POHeader as a data source for PurchaseOrder.SameDayItems array.

5. Add a join condition for the PurchaseOrder.SameDayItems array with the following properties:

Property Value

Left Group POHeader

Join Type Inner

Right Group PODetail

Join Condition :fld.{POHeader.OrderDate}=:fld.{PODetail.ShipDate} AND :fld.{POHeader.OrderNumber}=:fld.
{PODetail.OrderNumber}

The following image shows the data sources and join condition for SameDayItems:

6. Add a filter condition for the PurchaseOrder.SameDayItems array:

:fld.{PODetail.OrderNumber}=:fld.{PurchaseOrder.OrderNumber}
.

Processing hierarchical output 223

Step 6. Run the mapping
The final step is to create and run the mapping task to produce the JSON output.

Perform the following steps:

1. Create a mapping task.

2. Run the mapping task.

3. Review your output.

Tip: For more information about mapping tasks, see the Tasks guide.

The following JSON shows the PurchaseOrder target output after you run the mapping:

{
 "OrderNumber": "1",
 "Comment": "AppD for POD4",
 "OrderDate": "2018-10-01 00:00:00.0",
 "ConfirmDate": "2018-10-02 00:00:00.0",
 "address_struct": {
 "Name": "Tom",
 "Street": "2100 Seaport blvd",
 "City": "Redwood City",
 "State": "CA",
 "Country": "USA",
 "Zip": "94063"
 },
 "Items_arr": [{
 "itemNum": "1",
 "ProductName": "AppD Agent for JVM",
 "Quantity": 60,
 "price": 500,
 "comment": "JVM agents",
 "shipDate": "2018-10-15 00:00:00.0",
 "PartNum": "1"
 }, {
 "itemNum": "2",
 "ProductName": "MySQL agents",
 "Quantity": 6,
 "price": 360,
 "comment": "MySQL agents",
 "shipDate": "2018-10-15 00:00:00.0",
 "PartNum": "2"
 }, {
 "itemNum": "3",
 "ProductName": "ELB agents",
 "Quantity": 10,
 "price": 200,
 "comment": "ELB agents",
 "shipDate": "2018-10-16 00:00:00.0",
 "PartNum": "3"
 }],
 "TotalPrice": 34160
} {
 "OrderNumber": "2",
 "Comment": "GoJS for IICS",
 "OrderDate": "2018-10-12 00:00:00.0",
 "ConfirmDate": "2018-10-12 00:00:00.0",
 "address_struct": {
 "Name": "Bill",
 "Street": "23rd Ave",
 "City": "San Mateo",
 "State": "CA",
 "Country": "USA",
 "Zip": "94401"
 },
 "Items_arr": [{
 "itemNum": "1",
 "ProductName": "GOJS OEM Edition",
 "Quantity": 2,

224 Chapter 15: Hierarchy Processor transformation

 "price": 20000,
 "comment": "GOJS Dev",
 "shipDate": "2018-10-19 00:00:00.0",
 "PartNum": "101"
 }, {
 "itemNum": "2",
 "ProductName": "GOJS Prefessional Service",
 "Quantity": 5,
 "price": 5000,
 "comment": "GOJS Dev",
 "shipDate": "2018-10-19 00:00:00.0",
 "PartNum": "102"
 }],
 "TotalPrice": 65000
}

Hierarchical to hierarchical example
You want to create a customer order file in hierarchical format, using an existing file of hierarchical data.

The existing customer order file CompanyOrders contains the names of companies that have placed orders
and information about each order, including the price, date, shipping address, and ID numbers of ordered
items.

The following image shows the structure of the CompanyOrders file:

You want to restructure the shipping address into a struct and add a field to calculate the total price of all
orders for each company.

Perform the following steps to create and configure the target file:

1. Step 1. Design the mapping.

2. Step 2. Configure the output group.

3. Step 3. Create an output field to aggregate the total price.

4. Step 4. Create an output struct for the order address.

Processing hierarchical output 225

5. Step 5. Run the mapping.

Step 1. Design the mapping
The first step is to configure the Hierarchy Processor in the Mapping Designer with the Source and Target
transformations.

Perform the following steps in the Mapping Designer:

1. Add the CompanyOrders file as a source object.

2. Add a Hierarchy Processor transformation to the mapping and connect CompanyOrders as an input
source.

3. In the Hierarchy Processor transformation and change the output data format to Hierarchical. This
creates an output group.

4. Add a Target transformation to the mapping, and connect the Hierarchy Processor transformation output
to this target object.

The following image shows how the mapping should look like:

226 Chapter 15: Hierarchy Processor transformation

Step 2. Configure the output group
Once you configure the basic mapping, create the output group by adding all the incoming fields.

Perform the following steps in the Hierarchy Processor transformation:

1. Add all the incoming fields from the input to the output group. Set Add to Preserve incoming field.
The following image shows the Add Field dialog:

2. Verify that the data source for the output group is set to Input.

Step 3. Create an output field to aggregate the total price
Create an output field in the Hierarchy Processor transformation that calculates the total price of all orders
for each company.

Perform the following steps:

1. Add a new output field with the following properties:

Property Value

Child Of Output

Name TotalOrdersPrice

Type double

Aggregate Options Enabled

Output Field Orders

The following image shows the aggregate options for the TotalOrdersPrice output field:

Processing hierarchical output 227

2. Configure the following field expression for Output.TotalOrdersPrice to aggregate the total price of all
orders for a company:

SUM(:fld.{Output.Orders.Orders.OrderPrice})

Step 4. Create an output struct for the order address
Create a structure for the order address in the output and remove fields from the output that you do not need.

Perform the following steps:

1. Add a new output field with the following properties:

Property Value

Child Of Output.Orders.Orders

Name OrderAddress

228 Chapter 15: Hierarchy Processor transformation

Property Value

Type struct

Struct Name Address

2. Add all the incoming fields from Orders to OrderAddress. Set Add to Add primitive single occurring
children.

3. Set the data source for OrderAddress to Use Output.

4. Delete the following fields from the OrderAddress struct that you do not need:

• Output.Orders.Orders.OrderAddress.OrderPrice

• Output.Orders.Orders.OrderAddress.OrderDate

5. Delete the following fields from the Orders output group that you do not need:

• Output.Orders.Orders.Street

• Output.Orders.Orders.City

• Output.Orders.Orders.State

• Output.Orders.Orders.Country

• Output.Orders.Orders.ZipCode

The following image shows the OrderAddress struct:

Processing hierarchical output 229

Step 5. Run the mapping
The final step is to create and run the mapping task to produce the JSON output.

Perform the following steps:

1. Create a mapping task.

2. Run the mapping task.

3. Review your output.

Tip: For more information about mapping tasks, see the Tasks guide.

Processing flattened output
The Hierarchy Processor transformation can convert a hierarchical input group to a flattened denormalized
output group.

For example, you have a shop maintenance file that contains customer and vehicle information for all your
customers. You want to denormalize the vehicle maintenance data and exclude personal information about
the customers.

Defining flattened output with the Hierarchy Processor
transformation

Use the Hierarchy Processor tab to map incoming fields to output fields. The flattened output option allows
you to create denormalized output.

The following image shows the Hierarchy Processor tab with hierarchical input and flattened output:

1. Output format. Select Flattened to convert hierarchical input into denormalized output.
2. Incoming fields. View the incoming data schema and field types.
3. Output fields. View the output fields as you create the output file.
4. Configure the output. Select incoming fields to build the flattened output file schema.
5. Output field names. Click on a field name to modify the field name.
6. Expression. View the field expressions to determine the input to output field mappings.
7. Delete. Use to delete output fields.

Tip: Use the maximize icon and resize the Incoming Fields panel or Output Fields panel to see the information
you need.

230 Chapter 15: Hierarchy Processor transformation

To define a Hierarchy Processor transformation with flattened output, perform the following tasks:

1. Select the Flattened output format.

2. Configure the transformation output by selecting incoming fields to add to the output.

3. Optional. Rename output fields.

4. Optional. Delete output fields.

Adding incoming fields to flattened output groups
You can add incoming fields to the output individually or you can add an entire input group. After you add the
incoming fields to the output group, you can rename or delete output fields as needed.

To add output fields, select the check box next to the input field or input group that you want to add.
Selecting a parent automatically selects all child items, but you can deselect the entries that you do not want.
You can also delete any unneeded entries from the output.

Flatten hierarchical data
When you add incoming hierarchical fields to the output, all fields in the output schema are automatically
flattened.

Example of flattened hierarchical data

The incoming fields are contained within a hierarchy of structs and arrays. You just need four fields in the
output: OrderNumber, Name, ProductName, and Quantity.

Select the appropriate check boxes to add the incoming fields to the output.

The following image shows the input and output:

Renaming flattened output group and fields
After you add incoming fields to the output group in the flattened format, you can change the names of these
fields if necessary. You can also change the name of the output group.

To change the name of any output field, click on the field name. To change the name of the output group,
click on the output group name.

Processing flattened output 231

The following table describes the properties for the output fields:

Property Description

Name The name of the output field.

Type The data type of the current field. You cannot change the data type.

Precision The total number of significant digits in the field. You cannot change the precision.

Scale The number of digits to the right of the decimal point. You cannot change the scale.

Expression format
When you use the flattened output, the expression is fixed to the default and can't be changed. But if you
understand the syntax of the default expression, you can easily identify the source location of each output
field.

Tip: To add fields to the output group, use the check boxes next to the incoming field names. This differs
from the Add link that you use for relational or hierarchical output.

The Hierarchy Processor transformation can process information from different data sets. Some of the field
names might not be unique among the different data sets. As a result, you can't simply reference the field by
its name, because the same field name might be used in a different data set, or within the hierarchy of the
same data set.

The syntax of the expressions in the Hierarchy Processor transformation differs from that used in the
Expression transformation.

To reference a field in a Hierarchy Processor transformation, use the following syntax:

:fld.{input_group_name.field_name}.field_name
The following table describes the syntax in more detail:

Syntax part Description

.fld. Denotes the Hierarchy Processor transformation expression syntax.

input_group_name Name of the input group or dataset.

field_name Name of the field, including the full path name if it's not a top-level field.
If any field is of the type array, include the array name. If an array is primitive and
has no array name, use elem as the array name.
For fields within a struct or an array, the actual field name is specified outside of
the closing brace.

.field_name Include the field_name portion only when referencing a field within a struct or an
array. Follow these guidelines:
- For fields within a struct, the field_name portion uses the

format: .structName.fieldname
- For fields within an array, the field_name portion uses the format: .fieldName

232 Chapter 15: Hierarchy Processor transformation

Running a mapping with JSON data
To run a mapping that contains a Hierarchy Processor transformation with JSON-formatted data, you need to
use a mapping task.

Reading JSON input

When you read JSON data, the input files can be based on a schema with multiple lines or on a schema with
a single line.

The following sample shows a JSON schema on a single line:

{"Name":"Tom","Street":"2100 Seaport Blvd","City":"Redwood
City","State":"CA","Country":"USA","Zip":"94063"}

The following sample shows a JSON schema that spans across multiple lines:

{
 "Name": "Tom",
 "Surname": "Day",
 "City": "Redwood City",
 "State": "CA",
 "Country": "USA",
 "Zip": "94063"
}

By default, the Hierarchy Processor transformation reads each JSON schema as a single line. To read input
that spans across multiple lines, you can configure the formatting options in the Source transformation to
read multiple-line JSON files.

Writing JSON output

When you write JSON data, you can write each output record to a separate file, or you can write all output
records to one file.

By default, each output record is written to a separate file. To write the output records to one JSON-formatted
file, set the following Spark session property in the mapping task:

Session Property Name Session Property Value

spark.sql.shuffle.partitions 1

Hierarchical to flattened example
You want to convert hierarchical data to relational data and write the data to a target file in denormalized
format.

A shop maintenance file contains the customer and vehicle information for customers. The file is in
hierarchical JSON format and is generated by your company's shop application.

The following JSON script shows the shop maintenance source input before you run the mapping:

{
 "people": [{
 "personal": {
 "age": 20,
 "gender": "M",
 "name": {
 "first": "John",
 "last": "Doe"
 }
 },
 "vehicles": [{

Processing flattened output 233

 "type": "car",
 "model": "Honda Civic",
 "insurance": {
 "policy_num": "HA12345"
 },
 "maintenance": [{
 "desc": "oil change",
 "cost": "111.50",
 "summary": [{
 "line1": "0w20",
 "line2": "synthetic"
 }, {
 "line1": "2.0L 4-cyl",
 "line2": "4.4 quarts"
 }]
 }, {
 "desc": "new tires",
 "cost": "425.00",
 "summary": [{
 "line1": "235/40R18",
 "line2": "4 tires"
 }, {
 "line1": "All Season",
 "line2": "No spare"
 }]
 }]
 }, {
 "type": "truck",
 "model": "Dodge Ram",
 "insurance": {
 "policy_num": "DR12345"
 },
 "maintenance": [{
 "desc": "new tires",
 "cost": "299.99",
 "summary": [{
 "line1": "275/60R20",
 "line2": "2 tires"
 }, {
 "line1": "All Season",
 "line2": "No spare"
 }]
 }, {
 "desc": "oil change",
 "cost": "111.50",
 "summary": [{
 "line1": "5w30",
 "line2": "conventional"
 }, {
 "line1": "5.7L V8",
 "line2": "7.0 quarts"
 }]
 }]
 }],
 "source": "internet"
 }, {
 "personal": {
 "age": 24,
 "gender": "F",
 "name": {
 "first": "Jane",
 "last": "Roberts"
 }
 },
 "vehicles": [{
 "type": "car",
 "model": "Toyota Camry",
 "insurance": {
 "policy_num": "TC98765"
 },

234 Chapter 15: Hierarchy Processor transformation

 "maintenance": [{
 "desc": "tires rotated",
 "cost": "389.50",
 "summary": [{
 "line1": "4 tires",
 "line2": "leak repairs"
 }]
 }, {
 "desc": "oil change",
 "cost": "59.50",
 "summary": [{
 "line1": "0w20",
 "line2": "special"
 }]
 }]
 }, {
 "type": "car",
 "model": "Honda Accord",
 "insurance": {
 "policy_num": "HA98765"
 },
 "maintenance": [{
 "desc": "new air filter",
 "cost": "399.50",
 "summary": [{
 "line1": "17220-6B2-A00",
 "line2": "rebuild assembly"
 }]
 }, {
 "desc": "new brakes",
 "cost": "799.50",
 "summary": [{
 "line1": "2-443344586",
 "line2": "rear brake kit"
 }]
 }]
 }],
 "source": "phone"
 }]
}

You want to denormalize the vehicle maintenance data and exclude the customers' personal information.

Perform the following steps to create and configure the target file:

1. Step 1. Design the mapping.

2. Step 2. Configure the output group.

3. Step 3. Run the mapping.

Step 1. Design the mapping
The first step is to configure the Hierarchy Processor in the Mapping Designer with the Source and Target
transformations.

Perform the following steps in the Mapping Designer:

1. Add a Source transformation to the mapping with the shop maintenance file as a source object.

2. Add a Hierarchy Processor transformation to the mapping and connect shop maintenance as an input
source.

3. In the Hierarchy Processor transformation, select Flattened for the output format.

4. Add a Target transformation to the mapping, and connect the Hierarchy Processor transformation output
to this target object.

Your mapping should look like the following image:

Processing flattened output 235

Step 2. Configure the output group
Once you configure the basic mapping, create an output group with the vehicle shop maintenance data.

Perform the following steps in the Hierarchy Processor transformation:

1. Select the top-level input group. This automatically selects all the input fields and adds them to the
output.

2. Clear the personal struct. This automatically clears all the elements within the struct and removes them
from the output.
Your incoming and output fields should look like the following image:

3. Click on the output field for summary line1 and rename it to "Summary_line1."

4. Repeat the rename process for summary line2.

236 Chapter 15: Hierarchy Processor transformation

The following image shows how you edit the field name in the Edit Output Field dialog box:

5. Verify the mapping.

Step 3. Run the mapping
The final step is to create and run the mapping task to produce the JSON output.

Perform the following steps:

1. Create a mapping task.

2. Run the mapping task.

3. Review your output.

The following table shows the partially denormalized target output after you run the mapping:

type model policy_num desc cost Summary_line1 Summary_line2 source

car Honda
Civic

HA12345 oil
change

111.5 0w20 synthetic internet

car Honda
Civic

HA12345 oil
change

111.5 2.0L 4-cyl 4.4 quarts internet

car Honda
Civic

HA12345 new
tires

425 235/40R18 4 tires internet

car Honda
Civic

HA12345 new
tires

425 All Season No spare internet

truck Dodge
Ram

DR12345 new
tires

299.99 275/60R20 2 tires internet

truck Dodge
Ram

DR12345 new
tires

299.99 All Season No spare internet

Processing flattened output 237

type model policy_num desc cost Summary_line1 Summary_line2 source

truck Dodge
Ram

DR12345 oil
change

111.5 5w30 conventional internet

truck Dodge
Ram

DR12345 oil
change

111.5 5.7L V8 7.0 quarts internet

car Toyota
Camry

TC98765 tires
rotated

389.5 4 tires leak repairs phone

car Toyota
Camry

TC98765 oil
change

59.5 0w20 special phone

car Honda
Accord

HA98765 new air
filter

399.5 17220-6B2-A00 rebuild
assembly

phone

car Honda
Accord

HA98765 new
brakes

799.5 2-443344586 rear brake kit phone

238 Chapter 15: Hierarchy Processor transformation

C h a p t e r 1 6

Input transformation
The Input transformation is a passive transformation that you use to configure the data that you want to pass
into a mapplet. Use an Input transformation when you want a mapplet to receive data from an upstream
transformation in a mapping or mapplet.

Add input fields to define the data fields that you want to pass into the mapplet from the upstream
transformation.

You can add multiple Input transformations to a mapplet. Each Input transformation in a mapplet becomes
an input group in when you use the mapplet in a Mapplet transformation. You must connect at least one input
group to an upstream transformation.

You can use an Input transformation in a mapplet, but not in a mapping.

Input fields
Add input fields to an Input transformation to define the fields that you want to pass into the mapplet. You
must add at least one input field to each Input transformation.

Add input fields on the Input Fields tab. To add a field, click Add Fields, and then enter the field name, data
type, precision, scale, and optional description. The description can contain up to 4000 characters.

When you use the mapplet in a Mapplet transformation, map at least one input field to the upstream
transformation.

239

C h a p t e r 1 7

Java transformation
Extend Data Integration functionality with the Java transformation. The Java transformation provides a
simple, native programming interface to define transformation functionality with the Java programming
language.

You can use the Java transformation to quickly define simple or moderately complex transformation
functionality without advanced knowledge of the Java programming language. The Java transformation can
be an active or passive transformation.

The Secure Agent requires a Java Development Kit (JDK) to compile the Java code and generate byte code
for the transformation. Azul OpenJDK is installed with the Secure Agent, so you do not need to install a
separate JDK. Azul OpenJDK includes the Java Runtime Environment (JRE).

The Secure Agent uses the JRE to execute generated byte code at run time. When you run a mapping or
mapping task that includes a Java transformation, the Secure Agent uses the JRE to execute the byte code,
process input rows, and generate output rows.

To create a Java transformation, you write Java code snippets that define the transformation logic. Define
transformation behavior for a Java transformation based on the following events:

• The transformation receives an input row.

• The transformation has processed all input rows.

• The transformation receives a transaction notification.

You can invoke expressions in a Java transformation only in advanced mode.

You cannot use the Java transformation with a Graviton-enabled cluster. For more information about
Graviton-enabled clusters, see the Administrator help.

Note: When you create a Java transformation, ensure that you review the Java code to verify that it is free
from potentially unsafe active content such as queries, remote scripts, or data connections before you run
the code in a mapping task.

240

Defining a Java transformation
To define a Java transformation, configure the transformation fields and properties, enter Java code snippets
on the Java tab, and compile the code.

Note: If you use third-party or custom Java packages, before you create a Java transformation, configure the
classpaths to use when you compile the code and when you run the mapping that contains the
transformation.

1. In the Mapping Designer, drag a Java transformation from the transformations palette onto the canvas
and connect it to the upstream and downstream transformations.

2. Configure incoming field rules and output fields for the transformation.

3. Configure the transformation properties.

4. Write the Java code snippets that define the transformation functionality.

5. Compile the code.

6. Locate and fix compilation errors.

Classpath configuration
If you use third-party or custom Java packages in the Java transformation, configure the classpath and at
least on class value. The Secure Agent includes the classes and resource files within the classpath when it
compiles the Java code

For example, you import the Java package converter in the Java transformation and define the package in
converter.jar. You must add converter.jar to the classpath before you compile the Java code. However, if you
import the package java.io, you do not need to set the classpath because java.io is a built-in Java package.
You do not need to configure the classpath if you use only built-in Java packages.

To make the JAR or class files accessible to the Secure Agent, set the classpath to each JAR file or class file
directory associated with the Java package. Separate multiple classpath entries with a semicolon on
Windows or a colon on UNIX.

JAR or class files on an advanced cluster
If you use third-party or custom Java packages in the Java transformation in advanced mode, store the JAR
or class files in the Secure Agent installation directory.

Store the JAR or class files in the following directory on the Secure Agent machine:

<Secure Agent installation directory>/ext/ctjars
If you use native libraries in a Java transformation on in advanced mode, create the following native-lib and
native-bin directories for the .so files and executables, respectively, at the same location as the ctjars
directory:

<Secure Agent installation directory>/ext/native-lib
<Secure Agent installation directory>/ext/native-bin

If you update the JAR or class files on the Secure Agent machine, the files take effect the next time you run a
job in advanced mode. If the Secure Agent machine stops unexpectedly and the agent restarts on a different
machine, add the JAR or class files to the same directory on the new machine.

Defining a Java transformation 241

Note: In production environments, avoid frequent updates to the contents under the ext folder (ctjars,
connectors, python, native-lib, native-bin) during workload execution. It can negatively impact long running
jobs and cause failures. If necessary, you can set the k8s.infarpm.max.installers=x flag to a higher value than
the default of 5, but doing so can cause disk pressure issues on the worker nodes.

If you use a serverless runtime environment, store the files in the supplementary file location. For more
information about the supplementary file location, see the Administrator help.

Classpath values
If you use third-party or custom Java packages in the Java transformation, configure at least one classpath
value.

You can set the following classpath values:

JVMClassPath property for the Secure Agent

The Secure Agent uses this classpath when you design and validate the Java transformation, run the
mapping from the Mapping Designer, or run the mapping task. This classpath applies to all mappings
and mapping tasks that run on the agent.

Set the JVMClassPath property for the Secure Agent in Administrator.

Set this property or set the CLASSPATH environment variable on the Secure Agent machine. You do not
need to set both classpath values.

CLASSPATH environment variable

The Secure Agent uses this classpath when you design and validate the Java transformation, run the
mapping from the Mapping Designer, or run the mapping task. This classpath applies to all mappings
and mapping tasks that run on the agent.

Set the CLASSPATH environment variable on the Secure Agent machine.

Set the CLASSPATH environment variable or set the JVMClassPath property for the Secure Agent. You
do not need to set both classpath values.

Design time classpath

The Secure Agent uses this classpath when you design and validate the Java transformation and when
you run the mapping from the Mapping Designer. This classpath is not used when you run the mapping
through a mapping task.

Set the design-time classpath when you want to test the transformation and neither the JVMClassPath
property nor the CLASSPATH environment variable contain the required packages. If you configured the
JVMClassPath property or the CLASSPATH environment variable to include the required packages, then
you do not need to configure the design time classpath.

You configure the design-time classpath in the Java transformation advanced properties.

Java Classpath session property

The Secure Agent uses this classpath when you run the mapping task. This classpath applies only to the
mapping task in which the property is set.

Set the Java Classpath session property when you want the classpath to apply to one mapping task but
not others. If you configured the JVMClassPath property or the CLASSPATH environment variable to
include the required packages, then you do not need to configure the Java Classpath session property.

Set the Java Classpath session property in the advanced session properties of the mapping task.

If you set multiple classpath values, the Secure Agent uses all of the classpaths that apply. For example, you
set the JVMClassPath property for the Secure Agent, the CLASSPATH environment variable, and the design

242 Chapter 17: Java transformation

time classpath in the Java transformation. When you compile the Java code in the Java transformation or run
the mapping through the Mapping Designer, the Secure Agent uses all three classpaths. When you run the
mapping through a mapping task, the Secure Agent uses the JVMClassPath and the CLASSPATH
environment variable only.

Warning: If you set multiple classpaths, ensure that they do not create multiple copies of a class or resource
which can cause runtime errors.

Configuring the JVM Classpath for the Secure Agent
Configure the DTM JVMClassPath property for the Secure Agent on the Secure Agent page in Administrator.
The Secure Agent uses this classpath when you design and validate the Java transformation, run the
mapping from the Mapping Designer, or run the mapping task. You must restart the Secure Agent after you
configure this classpath.

1. In Administrator, select Runtime Environments.

2. Select the Secure Agent.

3. On the Secure Agent page, click Edit.

4. In the system configuration details, select the following values:

Option Value

Service Data Integration Server

Type DTM

5. In the row for the JVMClassPath property, click Edit.

6. Append your classpath to the existing classpath value.

On Windows, use a semicolon (;) to separate classpath entries. On UNIX, use a colon (:).

Note: Do not delete the default value, 'pmserversdk.jar'.

7. Click Save.

Restart the Secure Agent after you update the system configuration details.

Configuring the CLASSPATH environment variable
Configure the CLASSPATH environment variable on the Secure Agent machine. The Secure Agent uses this
classpath when you design and validate the Java transformation, run the mapping from the Mapping
Designer, or run the mapping task. You must restart the Secure Agent after you configure this classpath.

You configure the CLASSPATH environment variable differently on Windows and UNIX.

Configuring the CLASSPATH on Windows
On Windows, you configure the CLASSPATH environment variable from the Advanced System Properties in
the Control Panel.

1. Open the Advanced System Properties from the Windows Control Panel.

2. Click Environment Variables.

3. Under System variables, click New.

4. Set the variable name to CLASSPATH and the variable value to the classpath.

Classpath configuration 243

5. Click OK.

Restart the Secure Agent after you configure the environment variable.

Configuring the CLASSPATH on UNIX
On UNIX, you configure the CLASSPATH environment variable from a UNIX shell.

u Enter one of the following commands:

• In a UNIX C shell environment, type:

setenv CLASSPATH <classpath>
• In a UNIX Bourne shell environment, type:

CLASSPATH = <classpath>
export CLASSPATH

Restart the Secure Agent after you configure the environment variable.

Configuring the design time classpath
Configure the design time classpath in the Java transformation advanced properties. The Secure Agent uses
the design time classpath when you design and validate the Java transformation and when you run the
mapping from the Mapping Designer.

1. Open the mapping that contains the Java transformation.

2. Select the Java transformation and click the Advanced Properties tab.

3. Enter the classpath in the Design Time Classpath field.

Configuring the Java Classpath session property
Configure the Java Classpath session property in the advanced session properties of the mapping task. The
Secure Agent uses this classpath when you run the mapping task.

1. Open the mapping task.

2. On the Schedule page, scroll down to the advanced session properties, and click Add.

3. Under General Options Settings, select Java Classpath.

4. Enter the classpath in the Set the Session Property Value field.

5. Click Save.

Java transformation fields
A Java transformation has incoming fields and output fields. Use incoming and output fields as variables in
the Java code snippets that you define on the Java tab.

Incoming fields appear on the Incoming Fields tab. By default, the Java transformation inherits all incoming
fields from the upstream transformation. If you do not need to use all of the incoming fields, you can define
field rules to include or exclude certain fields. For more information about field rules, see “Field rules” on
page 25.

244 Chapter 17: Java transformation

Add output fields on the Output Fields tab. Add output fields for the output data that you want to pass to the
downstream transformation. To add a field, click Add Field, and then enter the field name, data type,
precision, scale, and optional description. The description can contain up to 4000 characters. You can also
create output fields on the Outputs tab of the Java editor by clicking Create New Field.

The Java transformation initializes output field values based on the following field data types:

• Primitive data types. The transformation initializes the value of the field variable to 0.

• Complex data types. The transformation initializes the field variable to null.

Data type conversion
A Java transformation converts Data Integration transformation data types to Java data types, based on the
Java transformation field type.

When a Java transformation reads input rows, it converts input field data types to Java data types. When a
Java transformation writes output rows, it converts Java data types to output field data types.

For example, the following processing occurs for an input field with the integer data type in a Java
transformation:

1. The Java transformation converts the integer data type of the input field to the Java primitive int data
type.

2. In the transformation, the transformation treats the value of the input field as the Java primitive int data
type.

3. When the transformation generates the output row, it converts the Java primitive int data type to the
integer data type.

The following table shows how the Java transformation maps the Data Integration transformation data types
to Java primitive and complex data types:

Transformation data type Java data type

bigint long

binary byte[]

date/time BigDecimal
long (number of milliseconds since January 1, 1970 00:00:00.000 GMT)

decimal double
BigDecimal

double double

integer int

string String

text String

In Java, the String, byte[], and BigDecimal data types are complex data types, and the double, int, and long
data types are primitive data types.

Java transformation fields 245

The Java transformation sets null values in primitive data types to zero. You can use the isNull and the
setNull API methods in the On Input Row section of the Java editor to set null values in the input field to null
values in the output field. For an example, see “setNull” on page 268.

When you configure the Java transformation, you can convert the date/time data type to BigDecimal or to
long. BigDecimal has nanosecond precision while long has millisecond precision. For more information, see
“Configuring Java transformation properties” on page 246.

The decimal data type maps to BigDecimal when high precision is enabled. BigDecimal cannot be used with
some operators, such as the + operator. If the Java code contains an expression that uses a decimal field
and the field is used with one of the operators, the Java code fails to compile.

Sort conditions
In advanced mode, you can configure a sort condition to specify the sort fields and the sort order. The
mapping task uses the sort condition to sort the data before the Java code runs.

The sort fields are one or more fields that you want to use as the sort criteria. Configure the sort order to sort
data in ascending or descending order.

If you configure a sort condition for data that is grouped into partitions, the mapping task sorts the data in
each partition.

When you specify multiple sort conditions, the mapping task sorts each condition sequentially. The mapping
task treats each successive sort condition as a secondary sort of the previous sort condition. You can
configure the order of sort conditions.

If you use a parameter for the sort condition, define the sort fields and the sort order when you run the
mapping or when you configure the mapping task.

Group by fields
In advanced mode, you can use group by fields to define how to group data into partitions before the Java
code runs.

When you configure a group by field, the mapping task groups rows with the same data into a partition. Then,
the Java code runs for each partition in the transformation. For example, the input row behavior is processed
for each partition and each row in the partition, and the end of data behavior is processed for each partition
after processing all rows in the partition.

When you select more than one group by field, the task creates a partition for each unique combination of
data in the group by fields.

If you do not configure a group by field, the Java code runs based on the data's default partitioning scheme.

If you use a parameter for the group by fields, define the group by fields when you run the mapping or when
you configure the mapping task.

Configuring Java transformation properties
The Java transformation includes properties for both the transformation code and the transformation.
Configure Java transformation properties on the Advanced tab.

The properties that are available vary based on the mapping mode.

246 Chapter 17: Java transformation

The following table describes the Java transformation properties:

Property Description

Behavior Transformation behavior, either active or passive. If active, the transformation can generate
more than one output row for each input row. If passive, the transformation generates one output
row for each input row.
Default is Active.

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

Transformation
Scope

The method in which the Secure Agent applies the transformation logic to incoming data. Use the
following options:
- Row. Applies the transformation logic to one row of data at a time. Choose Row when the

results of the transformation depend on a single row of data.
- Transaction. Applies the transformation logic to all rows in a transaction. Choose Transaction

when the results of the transformation depend on all rows in the same transaction, but not on
rows in other transactions. For example, you might choose Transaction when the Java code
performs aggregate calculations on the data in a single transaction.

- All Input. Applies the transformation logic to all incoming data. When you choose All Input, the
Secure Agent drops transaction boundaries. Choose All Input when the results of the
transformation depend on all rows of data in the source. For example, you might choose All
Input when the Java code for the transformation sorts all incoming data.

For active transformations, default is All Input. For passive transformations, this property is
always set to Row.

Defines Update
Strategy

Specifies whether the transformation defines the update strategy for output rows. When enabled,
the Java code determines the update strategy for output rows. When disabled, the update
strategy is determined by the operation set in the Target transformation.
You can configure this property for active Java transformations.
Default is disabled.

Enable High
Precision

Enables high precision to process decimal fields with the Java class BigDecimal. Enable this
option to process decimal data types with a precision greater than 15 and less than 28.
Default is disabled.
In advanced mode, the Java transformation always uses high precision.

Use Nanoseconds
in Date/Time

Specifies whether the generated Java code converts the transformation date/time data type to
the Java BigDecimal data type, which has nanosecond precision.
When enabled, the generated Java code converts the transformation date/time data type to the
Java BigDecimal data type. When disabled, the code converts the date/time data type to the Java
long data type, which has millisecond precision.
Default is disabled.

Configuring Java transformation properties 247

Property Description

Optional Determines whether the transformation is optional. If a transformation is optional and there are
no incoming fields, the mapping task can run and the data can go through another branch in the
data flow. If a transformation is required and there are no incoming fields, the task fails.
For example, you configure a parameter for the source connection. In one branch of the data
flow, you add a transformation with a field rule so that only Date/Time data enters the
transformation, and you specify that the transformation is optional. When you configure the
mapping task, you select a source that does not have Date/Time data. The mapping task ignores
the branch with the optional transformation, and the data flow continues through another branch
of the mapping.
Default is enabled.

Design Time
Classpath

Classpath that the Secure Agent uses for custom or third-party packages when you design and
validate the transformation and when you run the mapping from the Mapping Designer.
This classpath is not used when you run the mapping through a mapping task.
Set the design-time classpath when you want to test the transformation and neither the
JVMClassPath property for the Secure Agent nor the CLASSPATH environment variable on the
Secure Agent machine contain the required packages. If you configured the JVMClassPath
property or the CLASSPATH environment variable to include the required packages, then you do
not need to configure this property.

Active and passive Java transformations
When you create a Java transformation, you define the behavior as active or passive. Define the behavior on
the Advanced tab.

A Java transformation runs the Java code that you define in the On Input Row section of the Java editor one
time for each row of input data.

A Java transformation handles output rows based on the behavior as follows:

• An active Java transformation generates multiple output rows for each input row in the transformation.

Use the generateRow method to generate each output row. For example, the transformation contains two
input fields that represent a start date and an end date. You can use the generateRow method to generate
an output row for each date between the start date and the end date.

• A passive Java transformation generates one output row for each input row in the transformation after
processing each input row.

You can change the transformation behavior. However, when you change the behavior, you must recompile
the Java code.

Defining the update strategy
You can define the update strategy for active Java transformations. To define the update strategy, use the
Defines Update Strategy option on the Advanced tab.

You can define the update strategy at the following levels:

Within the Java code

You can write the Java code to set the update strategy for output rows. The Java code can flag rows for
insert, update, delete, or reject. To define the update strategy with in the Java code, enable the Defines
Update Strategy option and use the setOutRowType method in the On Input Row section of the Java
editor to flag rows. For more information about setting the update strategy, see “setOutRowType” on
page 269.

248 Chapter 17: Java transformation

Within the Target transformation

You can configure the Target transformation to set the update strategy. To configure the Target
transformation to set the update strategy, disable the Defines Update Strategy option and configure the
target operation in the target properties.

This option does not apply to passive transformations.

Using high precision
You can configure how the Java transformation handles high precision for decimal data types. To enable
high precision, use the Enable High Precision option on the Advanced tab.

By default, the Java transformation converts fields of type decimal to double data types with a precision of
15. If you want to process a decimal data type with a precision greater than 15, enable high precision to
process decimal fields with the Java class BigDecimal.

When you enable high precision, you can process decimal fields with precision less than 28 as BigDecimal.
The Java transformation converts decimal data with a precision greater than 28 to the double data type.

For example, a Java transformation has an input field of type decimal that receives a value of
40012030304957666903. If you enable high precision, the value of the field is treated as it appears. If you do
not enable high precision, the value of the field is 4.00120303049577 x 10^19.

High precision in advanced mode

To run a mapping task based on a mapping in advanced mode successfully, the Java transformation and the
mapping must use the same precision mode. The Java transformation always uses high precision, but the
mapping uses either high or low precision based on the types of hierarchical fields in the mapping.

If the mapping has hierarchical fields that contain child fields with decimal data types, the mapping runs
using low precision. If the same mapping contains a Java transformation with a decimal field, the mapping
task fails.

Processing subseconds
You can configure how the Java transformation processes subseconds for date/time data types. Define
subsecond handling on the Advanced tab.

By default, the generated Java code converts the transformation date/time data type to the Java long data
type, which has precision to the millisecond.

You can process subsecond data up to nanoseconds in the Java code. To process nanoseconds, enable the
Use Nanoseconds in Date/Time option. When you enable this option, the generated Java code converts the
transformation date/time data type to the Java BigDecimal data type, which has precision to the
nanosecond.

Advanced mode supports precision to the microsecond. If a date/time value contains nanoseconds, the
trailing digits are truncated.

Configuring Java transformation properties 249

Developing the Java code
To define the Java transformation functionality, you enter Java code snippets on the Java tab. Enter code
snippets to import Java packages, write helper code, and write Java code that defines the behavior for
specific transformation events. You can develop code snippets in the Java editor in any order.

Enter Java code snippets in the following sections of the Java editor:

Import Packages

Import third-party Java packages, built-in Java packages, or custom Java packages.

Helper Code

Define variables and methods available to all sections except Import Packages.

On Input Row

Define the transformation behavior when it receives an input row.

At End of Data

Define the transformation behavior when it has processed all input data.

On Receiving Transaction

Define the transformation behavior when it receives a transaction notification. Use with active Java
transformations.

You cannot use the On Receiving Transaction section in advanced mode.

Access input data and set output data in the On Input Row section. For active transformations, you can also
set output data in the At End of Data and On Receiving Transaction sections.

250 Chapter 17: Java transformation

Creating Java code snippets
To create Java code snippets that define transformation behavior, use the Java editor on the Java tab.

The following image shows the Java tab with the Java editor expanded:

1. Inputs, Outputs, and APIs tabs. Use these tabs to add input and output fields as variables and to call API methods
in the Java code snippets. The fields and methods displayed on these tabs vary based on which section of the code
entry area is selected.

2. Go to list. Use to switch among the sections in the code entry area.
3. Minimize, Open Both, and Maximize icons. Use the Minimize and Maximize buttons to minimize and maximize the

transformation properties. Use the Open Both icon to open the Mapping Designer canvas and the transformation
properties at the same time.

4. Code entry area. Enter Java code snippets in the Import Packages, Helper Code, On Input Row, At End of Data, and
On Receiving Transaction sections.

5. Compilation results. Expand the compilation results to see detailed compilation results, compilation errors, and
view the full code.

Tip: To expand the transformation properties so that you can see the code entry area more fully, click
Maximize.

1. In the Go to list, select the section in which you want to enter a code snippet.

2. To access an input or output field in the snippet, select the field on the Inputs or Outputs tab, and click
Add.

You can also create output fields on the Outputs tab by clicking Create New Field.

3. To call a Java transformation API method in the snippet, select the method on the APIs tab, and click
Add.

The methods displayed on the APIs tab change based on which section is selected. For example, you
can use the getInRowType method only in the On Input Row section but not in other sections. Therefore,
this method is listed only when the On Input Row section is selected.

4. If necessary, configure the method input values.

5. Write appropriate Java code based on the section.

After you finish creating the Java code snippets, compile the code to validate the transformation.

Developing the Java code 251

Importing Java packages
You can import Java packages for active or passive Java transformations. Import packages in the Import
Packages section of the Java editor.

For example, to import the Java I/O package, enter the following code in the Import Packages section:

import java.io.*;

You can import built-in, third-party, or custom Java packages. If you import third-party or custom Java
packages, you must add the packages to the classpath. For more information about configuring the
classpath, see “Classpath configuration” on page 241.

After you import Java packages, you can use the imported packages in the other sections.

You cannot declare or use static variables, instance variables, or user methods in the Import Packages
section.

Note: When you export a mapping or mapping task that contains a Java transformation, the jar or class files
that contain the third-party or custom packages required by the Java transformation are not included in the
export XML file. Therefore, when you import the mapping or task, you must copy the jar or class files that
contain the required third-party or custom packages to the Secure Agent machine.

Defining helper code
You can declare user-defined variables and methods for the Java transformation class in active or passive
Java transformations. Define helper code in the Helper Code section of the Java editor.

After you declare variables and methods in the Helper Code area, you can use them in any code entry area
except the Import Packages area.

You can declare the following types of code, variables, and methods:

Static code and static variables

Within a static block, you can declare static variables and static code. Static code runs before any other
code in a Java transformation.

For example, the following code declares a static variable to store the error threshold for a Java
transformation:

static int errorThreshold;
User-defined static or instance methods

These methods extend the functionality of the Java transformation. Java methods that you declare in
the Helper Code section can use or modify output variables. You cannot access input variables from
Java methods in the Helper Code section.

For example, use the following code in the Helper Code section to declare a function that adds two
integers:

private int myTXAdd (int num1,int num2)
{
 return num1+num2;
}

252 Chapter 17: Java transformation

Defining input row behavior
You can define the behavior of the Java transformation when it receives an input row. Define input row
behavior in the On Input Row section of the Java editor. The Java code in this section executes one time for
each input row.

Access and use the following input and output field data, variables, and methods in the On Input Row section:

Input field and output field variables

Access input and output field data as a variable by using the name of the field as the name of the
variable. For example, if “in_int” is an integer input field, you can access the data for this field by
referring as a variable “in_int” with the Java primitive data type int. You do not need to declare input and
output fields as variables.

Do not assign a value to an input field variable. If you assign a value to an input variable in the On Input
Row section, you cannot get the input data for the corresponding field in the current row.

Static variables and user-defined methods

Use any static variable or user-defined method that you declared in the Helper Code section.

For example, an active Java transformation has two input fields, BASE_SALARY and BONUSES, with an
integer data type, and a single output field, TOTAL_COMP, with an integer data type. You create a user-
defined method in the Helper Code section, myTXAdd, that adds two integers and returns the result.

Use the following Java code in the On Input Row section to assign the total values for the input fields to
the output field and generate an output row:

TOTAL_COMP = myTXAdd (BASE_SALARY,BONUSES);
generateRow();

When the Java transformation receives an input row, it adds the values of the BASE_SALARY and
BONUSES input fields, assigns the value to the TOTAL_COMP output field, and generates an output row.

Java transformation API methods

You can call API methods provided by the Java transformation.

Defining end of data behavior
You can define the behavior of an active or passive Java transformation when it has processed all input data.
Define end of data behavior in the At End of Data section of the Java editor.

To generate output rows in the At End of Data section, set the transformation scope for the transformation to
Transaction or to All Input on the Advanced tab. You cannot access or set the value of input field variables in
this section.

Access and use the following variables and methods in the At End of Data section:

Output field variables

Use the names of output fields as variables to access or set output data for active Java transformations.

User-defined methods

Use any user-defined method that you declared in the Helper Code section.

Java transformation API methods

Call API methods provided by the Java transformation. For example, use the following Java code to write
information to the session log when the end of data is reached:

logInfo("Number of null rows for partition is: " + partCountNullRows);

Developing the Java code 253

If you use the Java transformation in advanced mode, consider the following guidelines:

• You cannot write output to standard output, but you can write output to standard error which appears in
the log files.

• You cannot pass binary null characters to an output field.

To avoid a mapping failure, you can add code to the Java transformation that replaces the binary null
characters with an alternative character before writing the data to the output field.

Defining transaction notification behavior
You can define the behavior of an active Java transformation when it receives a transaction notification.
Define the transaction notification behavior in the On Receiving Transaction section of the Java editor.

The code snippet in the On Receiving Transaction section is only executed if the Transaction Scope for the
transformation is set to Transaction. You cannot access or set the value of input field variables in this
section.

Access and use the following output data, variables, and methods from the On Receiving Transaction section:

Output field variables

Use the names of output fields as variables to access or set output data.

User-defined methods

Use any iuser-defined method that you declare in the Helper Code section.

Java transformation API methods

Call API methods provided by the Java transformation.

Using Java code to parse a flat file
You can develop Java code to parse a flat file. Use Java code to extract specific columns of data from a flat
file of varying schema or from a JMS message.

For example, you want to read the first two columns of data from a delimited flat file. Create a mapping that
reads data from a delimited flat file and passes data to one or more output fields.

The mapping contains the following components:

Source transformation

The source is a delimited flat file. Configure the source to pass each row as a single string to the Java
transformation. The source file contains the following data:

1a,2a,3a,4a,5a,6a,7a,8a,9a,10a
1b,2b,3b,4b,5b,6b,7b,8b,9b
1c,2c,3c,4c,5c,6c,7c
1d,2d,3d,4d,5d,6d,7d,8d,9d,10d

Java transformation

Define the Java transformation functionality in the Java editor.

Use the On Input Row section of the Java editor to read each input row and pass the first two fields to
the output field, outputRow. Enter the following code in the On Input Row section:

// Collect the first two fields of the row and output them into outputRow.
String[] rowsSplit = row.split(",", 3);
if (rowsSplit.length >= 2) {
 outputRow = rowsSplit[0] + "," + rowsSplit[1];
}
generateRow();

254 Chapter 17: Java transformation

Target transformation

Configure the target to receive the output field, outputRow, from the Java transformation. After you run
the mapping, the target file has the following data:

1a,2a
1b,2b
1c,2c
1d,2d

Compiling the code
To validate a Java transformation, you must compile the Java code snippets that you enter in the Java editor.
Data Integration uses the Secure Agent to compile the Java code snippets. Compile the code and view
compilation results on the Java tab.

When you create a Java transformation, it contains a Java class that defines the base functionality for the
transformation. When you compile the transformation, the Secure Agent adds the code that you enter in the
Java editor to the template class for the transformation. This generates the full class code for the
transformation.

The Secure Agent calls the JDK to compile the full class code. The JDK compiles the transformation and
generates the byte code for the transformation.

Note: In a mapplet, the Java transformation compiles based on the data types and APIs that you can run on
the Data Integration Server. If the code contains data types or APIs that you can run only on an advanced
cluster, such as the invokeJExpression API method, the code fails to compile.

Before you can compile the code, you must complete the following tasks:

1. If you use non-standard Java packages, configure the classpath.

For more information about configuring the classpath, see “Classpath configuration” on page 241.

2. Select the runtime environment to use for compilation.

Select the runtime environment on the Java tab. The Hosted Agent is not supported for compilation.

To compile the code, click Compile in the Java editor.

The compilation results shows the results of the compilation. Use the compilation results to identify and
locate Java code errors.

Viewing the full class code
You can view and download the full class code that is generated when you compile a Java transformation.
You can access the full class code from the Compilation Results on the Java tab.

To view the full class code, click View Full Code in the compilation results. Data Integration displays the full
class code in the Full Code dialog box.

To download the full code, click Download Full Code in the Full Code dialog box.

Compiling the code 255

Troubleshooting a Java transformation
You can identify Java code errors and locate the source of Java code errors for a Java transformation in the
compilation results of the Java tab. Java transformation errors might occur because of an error in the Java
editor or because of an error in the full code for the Java transformation class.

To troubleshoot a Java transformation:

• Find the source of the error in the Java code snippets or in the full class code for the transformation.

• Identify the type of error using the compilation results and the location of the error.

After you identify the source and type of error, fix the Java code on the Java tab and compile the
transformation again.

Finding the source of compilation errors
When you compile a Java transformation, results are displayed in the compilation results. If the compilation
succeeds, the compilation results displays the message, "Compilation Successful." If the compilation fails,
the compilation results displays the compilation errors and error locations.

Compilation errors can occur in the following locations:

Java editor

If the error is located in a code snippet in Java editor, Data Integration lists the section and the line that
contains the error. Data Integration also highlights the source of the error in the Java editor.

Full code

If the error is located in the full code, Data Integration lists the error location as "Full Code" and lists the
line in the Full Code dialog box that contains the error.

You can locate errors in the Full Code dialog box, but you cannot edit the Java code. To fix errors that
you find in the Full Code dialog box, edit the code in the appropriate section. You might need to use the
Full Code dialog box to view errors caused by adding user code to the full class code for the
transformation.

Identifying the error type
Compilation errors can appear as a result of errors in the user code. Errors in the user code might also
generate an error in the non-user code for the class.

Compilation errors can be of the following types:

User code errors

Errors can occur in the user code in different sections of the Java editor. User code errors include
standard Java syntax and language errors. User code errors might also occur when Data Integration
adds the user code to the full class code.

For example, a Java transformation has an input field with a name of int1 and an integer data type. The
full code for the class declares the input field variable with the following code:

int int1;
However, if you use the same variable name in the On Input Row section, the Java compiler issues an
error for a redeclaration of a variable. To fix the error, rename the variable in the On Input Row section.

Non-user code errors

User code in sections of the Java editor can cause errors in non-user code.

256 Chapter 17: Java transformation

For example, a Java transformation has an input field, int1, and an output field, out1, with integer data
types. You enter the following code in the On Input Row section to calculate interest for input field int1
and assign it to output field out1:

int interest;
interest = CallInterest(int1); // calculate interest
out1 = int1 + interest;
}

When you compile the transformation, Data Integration adds the code from the On Input Row section to
the full class code for the transformation. When the Java compiler compiles the Java code, the
unmatched brace causes a method in the full class code to end prematurely, and the Java compiler
issues an error.

Java transformation example
You can use the Java code in this example to create and compile an active Java transformation.

Use a Java transformation to process employee data for a fictional company. The Java transformation reads
input rows from a flat file source and writes output rows to a flat file target. The source file contains
employee data, including the employee identification number, name, job title, and the manager identification
number.

The transformation finds the manager name for a given employee based on the manager identification
number and generates output rows that contain employee data. The output data includes the employee
identification number, name, job title, and the name of the employee’s manager. If the employee has no
manager in the source data, the transformation assumes the employee is at the top of the hierarchy in the
company organizational chart.

Note: The transformation logic assumes that the employee job titles are arranged in descending order in the
source file.

To create and run the mapping in this example, perform the following steps:

1. Create the source file.

Create a comma-delimited flat file in a directory that the Secure Agent can access.

2. Configure the mapping.

Add a source, target, and Java transformation to the mapping, and configure the fields.

3. Configure the Java code snippets in the Java transformation.

Enter code snippets in the Import Packages, Helper Code, and On Input Row sections of the Java editor.

4. Compile the code and run the mapping.

Create the source file
Create the source file as a comma-delimited flat file. Save the file in a directory that the Secure Agent can
access.

Use the following data:

EMP_ID,EMP_NAME,EMP_AGE,EMP_DESC,EMP_PARENT_EMPID
1,James Davis,50,CEO,
4,Elaine Masters,40,Vice President - Sales,1
5,Naresh Thiagarajan,40,Vice President - HR,1
6,Jeanne Williams,40,Vice President - Software,1
9,Geetha Manjunath,34,Senior HR Manager,5

Java transformation example 257

10,Dan Thomas,32,Senior Software Manager,6
14,Shankar Rahul,34,Senior Software Manager,6
20,Juan Cardenas,32,Technical Lead,10
21,Pramodh Rahman,36,Lead Engineer,14
22,Sandra Patterson,24,Software Engineer,10
23,Tom Kelly,32,Lead Engineer,10
35,Betty Johnson,27,Lead Engineer,14
50,Dave Chu,26,Software Engineer,23
70,Srihari Giran,23,Software Engineer,35
71,Frank Smalls,24,Software Engineer,35

Configure the mapping
To configure the mapping in this example, create a new mapping, and add a Java transformation. Then
configure the source fields, target fields, and Java transformation fields. In the Java transformation, verify
that the transformation behavior is active.

The following image shows the mapping:

Configure the transformations as follows:

Source transformation

In the Source transformation, update the source field metadata as shown in the following table:

Name Type Precision Scale Origin

EMP_ID integer 10 0 <source file name>

EMP_NAME string 100 0 <source file name>

EMP_DESC string 100 0 <source file name>

EMP_AGE integer 10 0 <source file name>

EMP_PARENT_EMPID integer 10 0 <source file name>

Java transformation

The Java transformation includes all incoming fields from the Source transformation.

Create the following output fields:

Name Type Precision Scale

EMP_ID_OUT integer 10 0

EMP_NAME_OUT string 100 0

258 Chapter 17: Java transformation

Name Type Precision Scale

EMP_DESC_OUT string 100 0

EMP_PARENT_EMPNAME string 100 0

On the Advanced tab, verify that the behavior is set to active.

Target transformation

In the target transformation, create the following target fields:

Name Type Precision Scale Origin

EMP_ID integer 10 0 <target file name>

EMP_NAME string 100 0 <target file name>

EMP_DESC string 100 0 <target file name>

EMP_PARENT_EMPNAME string 100 0 <target file name>

Configure the field mapping as shown in the following table:

Target Field Name Mapped Field

EMP_ID EMP_ID_OUT

EMP_NAME EMP_NAME_OUT

EMP_DESC EMP_DESC_OUT

EMP_PARENT_EMPNAME EMP_PARENT_EMPNAME

Configure the Java code snippets
Enter the Java code snippets that define the transformation functionality on the Java tab.

Enter the Java code snippets in the following sections of the Java editor:

Import Packages

Import the java.util.Map and java.util.HashMap packages.

Helper Code

Create a Map object, lock object, and boolean variables to track the state of data in the Java
transformation.

On Input Row

Enter code that defines the behavior of the Java transformation when it receives an input row.

Java transformation example 259

Import packages
Import third-party Java packages, built-in Java packages, or custom Java packages in the Import Packages
section. This example uses the Map and HashMap packages.

Enter the following code in the Import Packages section:

import java.util.Map;
import java.util.HashMap;

Data Integration adds the import statements to the Java code for the transformation.

Helper code
Declare user-defined variables and methods for the Java transformation in the Helper Code section.

The Helper Code section defines the following variables that are used by the Java code in the On Input Row
section:

Variable Description

empMap Map object that stores the identification number and employee name from the source.

lock Lock object used to synchronize the access to empMap across partitions.

generateRow Boolean variable used to determine whether an output row should be generated for the current input
row.

isRoot Boolean variable used to determine whether an employee is at the top of the company organizational
chart (root).

Enter the following code in the Helper Code section:

// Static Map object to store the ID and name relationship of an employee.
// If a session uses multiple partitions, empMap is shared across all partitions.
private static Map <Integer, String> empMap = new HashMap <Integer, String> ();

// Static lock object to synchronize the access to empMap across partitions.
private static Object lock = new Object();

// Boolean to track whether to generate an output row based on validity of the
// input data.
private boolean generateRow;

// Boolean to track whether the employee is root.
private boolean isRoot;

Data Integration adds the import statements to the Java code for the transformation.

On Input Row
The Java transformation executes the Java code in the On Input Row section when the transformation
receives an input row. In this example, the transformation might or might not generate an output row, based
on the values of the input row.

Enter the following code in the On Input Row section:

// Initially set generateRow to true for each input row.
generateRow = true;

// Initially set isRoot to false for each input row.
isRoot = false;

260 Chapter 17: Java transformation

// Check if input employee id and name is null.
if (isNull ("EMP_ID") || isNull ("EMP_NAME"))
{
 incrementErrorCount(1);

 // If input employee id and/or name is null, don't generate a output row for this
 // input row.
 generateRow = false;

} else {

 // Set the output field values.
 EMP_ID_OUT = EMP_ID;
 EMP_NAME_OUT = EMP_NAME;
}

if (isNull ("EMP_DESC"))
{
 setNull("EMP_DESC_OUT");
} else {
 EMP_DESC_OUT = EMP_DESC;
}

boolean isParentEmpIdNull = isNull("EMP_PARENT_EMPID");

if(isParentEmpIdNull)
{
 // This employee is the root for the hierarchy.
 isRoot = true;
 logInfo("This is the root for this hierarchy.");
 setNull("EMP_PARENT_EMPNAME");
}

synchronized(lock)

{
 // If the employee is not the root for this hierarchy, get the corresponding
 // parent ID.
 if(!isParentEmpIdNull)
 EMP_PARENT_EMPNAME = (String) (empMap.get(new Integer (EMP_PARENT_EMPID)));

 // Add employee to the map for future reference.
 empMap.put (new Integer(EMP_ID), EMP_NAME);
}

// Generate row if generateRow is true.
if(generateRow)
 generateRow();

Compile the code and run the mapping
To compile the Java code for the transformation, click Compile in the Java editor. After you compile the code
successfully, you can run the mapping.

The compilation results displays the status of the compilation. If the Java code does not compile
successfully, correct the errors in the Java editor and recompile the Java code. After you successfully
compile the transformation, save and run the mapping.

To run the mapping, click Run in the Mapping Designer.

The target file contains the following results:

"EMP_ID","EMP_NAME","EMP_DESC","EMP_PARENT_EMPNAME"
1,"James Davis","CEO",
4,"Elaine Masters","Vice President - Sales","James Davis"
5,"Naresh Thiagarajan","Vice President - HR","James Davis"
6,"Jeanne Williams","Vice President - Software","James Davis"
9,"Geetha Manjunath","Senior HR Manager","Naresh Thiagarajan"

Java transformation example 261

10,"Dan Thomas","Senior Software Manager","Jeanne Williams"
14,"Shankar Rahul","Senior Software Manager","Jeanne Williams"
20,"Juan Cardenas","Technical Lead","Dan Thomas"
21,"Pramodh Rahman","Lead Engineer","Shankar Rahul"
22,"Sandra Patterson","Software Engineer","Dan Thomas"
23,"Tom Kelly","Lead Engineer","Dan Thomas"
35,"Betty Johnson","Lead Engineer","Shankar Rahul"
50,"Dave Chu","Software Engineer","Tom Kelly"
70,"Srihari Giran","Software Engineer","Betty Johnson"
71,"Frank Smalls","Software Engineer","Betty Johnson"

262 Chapter 17: Java transformation

C h a p t e r 1 8

Java transformation API
reference

When you create a Java transformation, you can add API methods to the Java code snippets to define the
transformation behavior.

To add an API method to a code snippet, click the APIs tab in the Java editor, select the method that you
want to add, and click Add. Alternatively, you can manually enter the API method in the Java code snippet.

You can add the following API methods to the Java code snippets in a Java transformation:

failSession

Throws an exception with an error message and fails the session.

generateRow

Generates an output row for active Java transformations.

getInRowType

Returns the input type of the current row in the transformation.

incrementErrorCount

Increments the error count for the session.

invokeJExpression

Invokes an expression and returns the value for the expression. Use only in advanced mode..

isNull

Checks for a null value in an input column.

logError

Writes an error message to the session log.

logInfo

Writes an informational message to the session log.

setNull

Sets the value of an output column in an active or passive Java transformation to null.

setOutRowType

Sets the update strategy for output rows. Can flag rows for insert, update, or delete.

263

failSession
Throws an exception with an error message and fails the session. Use failSession to terminate the session.

Use failSession in any section of the Java editor except Import Packages. Do not use failSession in a try/
catch block in the Java editor.

Use the following syntax:

failSession(String errorMessage);

Argument Data Type Input/Output Description

errorMessage String Input Error message string.

Use the following Java code to test the input field input1 for a null value and fail the session if input1 is
NULL:

if(isNull(”input1”)) {
 failSession(“Cannot process a null value for field input1.”);
}

generateRow
Generates an output row for active Java transformations.

When you call generateRow, the Java transformation generates an output row using the current value of the
output field variables. If you want to generate multiple rows corresponding to an input row, you can call
generateRow more than once for each input row. If you do not use generateRow in an active Java
transformation, the transformation does not generate output rows.

Use generateRow in any section of the Java editor except Import Packages. You can use generateRow with
active transformations only. If you use generateRow in a passive transformation, the session generates an
error.

Use the following syntax:

generateRow();
Use the following Java code to generate one output row, modify the values of the output fields, and generate
another output row:

// Generate multiple rows.
if(!isNull("input1") && !isNull("input2"))
{
 output1 = input1 + input2;
 output2 = input1 - input2;
}
generateRow();

// Generate another row with modified values.
output1 = output1 * 2;
output2 = output2 * 2;
generateRow();

264 Chapter 18: Java transformation API reference

getInRowType
Returns the input type of the current row in the transformation. The method returns a value of insert, update,
delete, or reject.

You can only use getInRowType in the On Input Row section of the Java editor. You can only use the
getInRowType method in active transformations that are configured to set the update strategy. If you use this
method in an active transformation that is not configured to set the update strategy, the session generates
an error.

Use the following syntax:

rowType getInRowType();

Argument Data Type Input/Output Description

rowType String Output Update strategy type. Value can be INSERT, UPDATE, DELETE, or REJECT.

Use the following Java code to propagate the input type of the current row if the row type is UPDATE or
INSERT and the value of the input field input1 is less than 100 or set the output type as DELETE if the value of
input1 is greater than 100:

// Set the value of the output field.
output1 = input1;

// Get and set the row type.
String rowType = getInRowType();
setOutRowType(rowType);

// Set row type to DELETE if the output field value is > 100.
if(input1 > 100
 setOutRowType(DELETE);

incrementErrorCount
Increases the error count for the session. If the error count reaches the error threshold for the session, the
session fails.

Use incrementErrorCount in any section of the Java editor except Import Packages.

Use the following syntax:

incrementErrorCount(int nErrors);

Argument Data Type Input/Output Description

nErrors Integer Input Number of errors to increment the error count for the session.

Use the following Java code to increment the error count if an input field for a transformation has a null
value:

// Check whether input employee ID or name is null.
if (isNull ("EMP_ID_INP") || isNull ("EMP_NAME_INP"))
{
 incrementErrorCount(1);

 // If input employee ID or name is null, don't generate an output row for this

getInRowType 265

input row.
 generateRow = false;
}

invokeJExpression
Invokes an expression and returns the value for the expression. Use only in advanced mode.

Use invokeJExpression in any section of the Java editor except Import Packages and Helper Code.

Use the following syntax:

(dataType)invokeJExpression(
 String expression,
 Object[] paramMetadataArray);

The following table describes the arguments:

Argument Data Type Input/Output Description

dataType - Output Data type that you want to cast the return
value to. By default, the return data type is
an object.
You can cast the return value to an integer,
double, string, or byte[] data type.

expression String Input String that represents the expression to
invoke.
You must use the letter "x" and number the
parameters consecutively. For example, if
the invoked expression requires three
parameters, name the parameters x1, x2, and
x3.

paramMetadataArray Object[] Input Array of objects that contains the input
parameters for the invoked expression.

Use the following Java code to invoke the concat() method to concatenate the strings John and Smith:

(String)invokeJExpression("concat(x1,x2)", new Object [] { "John ", "Smith" });
The code returns the following string:

John Smith
Consider the following rules and guidelines for the invokeJExpression method:

• By default, the update strategy for return values is INSERT. To use a different update strategy, you must
define the update strategy in the Java code.

• If an argument, parameter, or return value is NULL, the value is treated as a null indicator.

For example, if the return value of the invoked expression is NULL and the return data type is a string, the
invokeJExpression method returns a string with a value of NULL.

• If an input parameter to the invoked expression is a date/time data type, you must pass the parameter as
a string and use the TO_DATE function to convert the string to a date/time data type.

For example, use the following argument to pass a date/time value to the invoked expression:

new Object [] { "TO_DATE("01/22/98", "MM/DD/YY")" }

266 Chapter 18: Java transformation API reference

• If the invokeJExpression method returns a date/time data type, you must cast the return value to a string.

isNull
Checks the value of an input column for a null value. Use isNull to check if data of an input column is NULL
before using the column as a value.

Use isNull in the On Input Row section of the Java editor.

Use the following syntax:

Boolean isNull(String satrColName);

Argument Data Type Input/Output Description

strColName String Input Name of an input column.

Use the following Java code to check the value of the SALARY input column before adding it to the output
field TOTAL_SALARIES:

// If value of SALARY is not null
if (!isNull("SALARY")) {

 // Add to TOTAL_SALARIES.
 TOTAL_SALARIES += SALARY;
}

or

// If value of SALARY is not null
String strColName = "SALARY";
if (!isNull(strColName)) {

 // Add to TOTAL_SALARIES.
 TOTAL_SALARIES += SALARY;
}

logError
Writes an error message to the session log.

Use logError in any section of the Java editor except Import Packages.

Use the following syntax:

logError(String errorMessage);

Argument Data Type Input/Output Description

errorMessage String Input Error message string.

Use the following Java code to log an error if the input field is null:

// Log an error if BASE_SALARY is null.
if (isNull("BASE_SALARY")) {

isNull 267

 logError("Cannot process a null salary field.");
}

The following message appears in the message log:

[JTX_1013] [ERROR] Cannot process a null salary field.

logInfo
Writes an informational message to the session log.

Use logInfo in any section of the Java editor except Import Packages.

Use the following syntax:

logInfo(String logMessage);

Argument Data Type Input/Output Description

logMessage String Input Information message string.

Use the following Java code to write a message to the session log after the Java transformation processes a
message threshold of 1000 rows:

if (numRowsProcessed == messageThreshold) {
 logInfo("Processed " + messageThreshold + " rows.");
}

The following message appears in the session log:

[JTX_1012] [INFO] Processed 1000 rows.

setNull
Sets the value of an output column in an active or passive Java transformation to NULL. Once you set an
output column to NULL, you cannot modify the value until you generate an output row.

Use setNull in any section of the Java editor except Import Packages.

Use the following syntax:

setNull(String strColName);

Argument Data Type Input/Output Description

strColName String Input Name of an output column.

Use the following Java code to check the value of an input column and set the corresponding value of an
output column to null:

// Check the value of Q3RESULTS input column.
if(isNull("Q3RESULTS")) {

 // Set the value of output column to null.

268 Chapter 18: Java transformation API reference

 setNull("RESULTS");
}

or

// Check the value of Q3RESULTS input column.
String strColName = "Q3RESULTS";
if(isNull(strColName)) {

 // Set the value of output column to null.
 setNull(strColName);
}

setOutRowType
Sets the update strategy for output rows. The setOutRowType method can flag rows for insert, update, or
delete.

Use setOutRowType in the On Input Row section of the Java editor. You can use setOutRowType in active
transformations that are configured to set the update strategy. If you use setOutRowType in an active
transformation that is not configured to set the update strategy, the session generates an error and the
session fails.

Use the following syntax:

setOutRowType(String rowType);

Argument Data Type Input/ Output Description

rowType String Input Update strategy type. Value can be INSERT, UPDATE, or DELETE.

Use the following Java code to propagate the input type of the current row if the row type is UPDATE or
INSERT and the value of the input field input1 is less than 100, or set the output type as DELETE if the value
of input1 is greater than 100:

// Set the value of the output field.
output1 = input1;

// Get and set the row type.
String rowType = getInRowType();
setOutRowType(rowType);

// Set row type to DELETE if the output field value is > 100.
if(input1 > 100)
 setOutRowType(DELETE);

setOutRowType 269

C h a p t e r 1 9

Joiner transformation
The Joiner transformation can join data from two related heterogeneous sources. For example, you can use
the Joiner transformation to join account information from flat files with data from the Salesforce Account
object.

The Joiner transformation joins data based on the join conditions and the join type. A join condition matches
fields between the two sources. You can create multiple join conditions. A join type defines the set of data
that is included in the results.

When you link a transformation to the Joiner transformation, you connect it to the Master or Detail group. To
improve job performance, connect the transformation that represents the smaller data set to the Master
group.

To join more than two sources in a mapping, you can use multiple Joiner transformations. You can join the
output from the Joiner transformation with another source pipeline. You can add Joiner transformations to
the mapping until you join all source pipelines.

Field name conflicts can occur when you join sources with matching field names. You can resolve the
conflict in one of the following ways:

• Create a field name conflict resolution.

• Rename matching fields in an upstream transformation.

• Pass data through an Expression transformation to rename fields.

Join condition
The join condition defines when incoming rows are joined. It includes fields from both sources that must
match to join source rows.

You define one or more conditions based on equality between the master and detail data. For example, if two
sets of employee data contain employee ID numbers, the following condition matches rows with the same
employee IDs in both sets of data:

EMP_ID1 = EMP_ID2
Use one or more join conditions. Additional join conditions increase the time necessary to join the data.
When you use multiple join conditions, the mapping task evaluates the conditions in the order that you
specify.

Both fields in a condition must have the same data type. If you need to use two fields with non-matching data
types, convert the data types so they match.

For example, when you try to join Char and Varchar data, any spaces that pad Char values are included as
part of the string. Both fields might include the value "Shoes," but because the Char(40) field includes 35

270

trailing spaces, the values do not match. To ensure that the values match, change the data type of one field
to match the other.

In advanced mode, the join condition can’t contain a binary data type or evaluate to a binary data type.

Note: The Joiner transformation does not match null values. To join rows with null values, you can replace
null values with default values, and then join on the default values.

Join type
The join type determines the result set that passes to the rest of the mapping.

You can use the following join types:

Normal Join

Includes rows with matching join conditions. Discards rows that do not match the join conditions.

Master Outer

Includes all rows from the detail pipeline and the matching rows from the master pipeline. It discards the
unmatched rows from the master pipeline.

Detail Outer

Includes all rows from the master pipeline and the matching rows from the detail pipeline. It discards the
unmatched rows from the detail pipeline.

Full Outer

Includes rows with matching join conditions and all incoming data from the master pipeline and detail
pipeline.

Advanced properties
You can configure advanced properties for a Joiner transformation. The advanced properties control settings
such as the tracing level for session log messages, cache settings, null ordering, and whether the
transformation is optional or required.

The properties that are available vary based on the mapping mode.

You can configure the following properties:

Property Description

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You
can choose terse, normal, verbose initialization, or verbose data. Default is normal.

Cache Directory Specifies the directory used to cache master or detail rows and the index to these rows.
By default, Data Integration uses the directory entered in the Secure Agent $PMCacheDir
property for the Data Integration Server. If you enter a new directory, make sure that the
directory exists and contains enough disk space for the cache files. The directory can be on a
mapped or mounted drive.

Join type 271

Property Description

Null Ordering in
Master

Null ordering in the master pipeline. Select Null is Highest Value or Null is Lowest Value.

Null Ordering in
Detail

Null ordering in the detail pipeline. Select Null is Highest Value or Null is Lowest Value.

Data Cache Size Data cache size for the transformation. Select one of the following options:
- Auto. Data Integration sets the cache size automatically. If you select Auto, you can also

configure a maximum amount of memory for Data Integration to allocate to the cache.
- Value. Enter the cache size in bytes.
Default is Auto.

Index Cache Size Index cache size for the transformation. Select one of the following options:
- Auto. Data Integration sets the cache size automatically. If you select Auto, you can also

configure a maximum amount of memory for Data Integration to allocate to the cache.
- Value. Enter the cache size in bytes.
Default is Auto.

Sorted Input Specifies that data is sorted. Select this option to join sorted data, which can improve
performance.

Master Sort Order Specifies the sort order of the master source data. Select Ascending if the master source data
is in ascending order. If you select Ascending, enable sorted input. Default is Auto.

Transformation
Scope

Specifies how Data Integration applies the transformation logic to incoming data:
- Transaction. Applies the transformation logic to all rows in a transaction. Choose

Transaction when a row of data depends on all rows in the same transaction, but does not
depend on rows in other transactions.

- All Input. Applies the transformation logic on all incoming data. When you choose All Input,
Data Integration drops incoming transaction boundaries. Choose All Input when a row of data
depends on all rows in the source.

- Row. Applies the transformation logic to one row of data at-a-time. Choose Row when a row
of data does not depend on any other row.

Optional Determines whether the transformation is optional. If a transformation is optional and there are
no incoming fields, the mapping task can run and the data can go through another branch in the
data flow. If a transformation is required and there are no incoming fields, the task fails.
For example, you configure a parameter for the source connection. In one branch of the data
flow, you add a transformation with a field rule so that only Date/Time data enters the
transformation, and you specify that the transformation is optional. When you configure the
mapping task, you select a source that does not have Date/Time data. The mapping task
ignores the branch with the optional transformation, and the data flow continues through
another branch of the mapping.

Hierarchical data in advanced mode
In advanced mode, you can use hierarchical fields that represent an array, map, or struct.

You can use hierarchical fields as pass-through fields.

Note: You cannot use a hierarchical field in a join condition.

272 Chapter 19: Joiner transformation

Creating a Joiner transformation
Use a Joiner transformation to join data from two related heterogenous sources.

Before you create a Joiner transformation, add Source transformations to the mapping to represent source
data. Include any other upstream transformations that you want to use.

If the data in the two pipelines include matching field names, rename one set of fields in a transformation
upstream from the Joiner transformation.

1. In the Transformation palette, drag a Joiner transformation onto the mapping canvas.

2. Connect an upstream transformation that represents one data set to the Master group of the Joiner
transformation.

To improve job performance, use the transformation that represents the smaller data set.

3. Connect an upstream transformation that represents the other data set to the Detail group of the Joiner
transformation.

4. On the General tab, enter a name and optional description for the transformation.

5. On the Incoming Fields tab, configure the field rules that define the data that enters the transformation.

6. On the Join Condition tab, select the join yype.

7. To configure a join condition, select Simple for the join condition. Click Add New Join Condition, and
then select the master and detail fields to use and the operator. You can create multiple join conditions.

Alternatively, to use a parameter for the join condition, select Completely Parameterized for the join
condition.

You can add downstream transformations to the mapping and configure them. When the mapping is
complete, you can validate and save the mapping.

Joiner transformation example
You're a marketing manager for an online retailer, and you want to merge order data with product and
customer data from different Amazon S3 sources to understand what customers are purchasing. Use Joiner
transformations to join the data from your sources.

You have three source data tables in an Amazon S3 bucket: orders, order_items, and customer_data. The
following image shows a mapping that joins the data from these sources:

Creating a Joiner transformation 273

The mapping contains the following elements:
Source transformation for orders

The orders data table includes fields for the order number, date, price, and ID of the customer for each
online order.

The following table shows a portion of orders:

order_id order_date customer_id order_price

1005 2023-01-20 789 78.25

1006 2023-01-24 268 150.09

1007 2023-02-07 268 30.20

Source transformation for order_items

The order_items data table includes details about the items in each order, including the quantity and
price.

The following table shows a portion of order_items:

order_id item_id qty price

1005 5063 2 34.99

1006 2389 3 19.99

1006 5063 1 34.99

1007 9871 2 10.99

In the Source transformation, you rename the field order_id to items_order_id to avoid a field name
conflict when you join order_items with orders.

Source transformation for customer_data

The customer_data table includes fields for information that the customers provide, including their name,
date of birth, and phone number.

The following table shows a portion of customer_data:

c_id c_name c_dob

789 Kelcy Almeida 1969-07-20

268 Chidi Donalds 1972-12-07

Joiner transformation for orders and order_items

The first Joiner transformation performs a normal join between orders and order_items. The orders
Source transformation is the master group and the order_items Source transformation is the detail group
so that order information is added to each item ordered.

The Joiner transformation uses the following join condition to match the data by the order ID: order_id
= items_order_id.

274 Chapter 19: Joiner transformation

Joiner transformation for customer_data

The second Joiner transformation performs a detail outer join between customer_data and the output
from the first Joiner transformation. The transformation uses the customer_data Source transformation
as the master group since it is the smaller data set.

The second Joiner transformation uses the following join condition to match the data by the customer
ID: customer_id = c_id.

Target transformation

The Target transformation writes the data to a new file in Amazon S3. You can configure the incoming
fields to exclude the duplicate fields that result from the joins.

The following table shows a portion of the output data:

order_id order_date order_price item_id qty price c_id c_name c_dob

1005 2023-01-20 78.25 5063 2 34.99 789 Kelcy
Almeida

1969-07-20

1006 2023-01-24 150.09 2389 3 19.99 268 Chidi
Donalds

1972-12-07

1006 2023-01-24 150.09 5063 1 34.99 268 Chidi
Donalds

1972-12-07

1007 2023-02-07 30.20 9871 2 10.99 268 Chidi
Donalds

1972-12-07

Joiner transformation example 275

C h a p t e r 2 0

Labeler transformation
The Labeler transformation adds a labeler asset that you created in Data Quality to a mapping.

A labeler asset defines a set of operations that evaluates the types of information in an input field and
assigns a label to each type of data that it finds.

When you configure the transformation, you map an input field to a target field that links to the labeler asset.
When the mapping runs, the transformation searches the input field for values that match the labeling criteria
that the asset defines. The transformation writes the results of the labeling operation to two output fields.
For more information about the output fields, see “Labeler transformation output fields” on page 279.

A Labeler transformation is similar to a Mapplet transformation, as it allows you to add data transformation
logic that you designed elsewhere to a mapping. Like mapplets, labeler assets are reusable assets.

A Labeler transformation shows incoming and outgoing fields. It does not display the logic that the labeler
asset contains or allow you to edit the labeler asset. To edit the labeler asset, open it in Data Quality.

Labeler transformation configuration
When you configure a Labeler transformation in a mapping, you first select the labeler asset that contains the
logic to include in the transformation. Next, you map an incoming field on the transformation to the target
field that labeler asset specifies.

To configure the transformation, complete the following tasks:

1. Connect the Labeler transformation to a Source transformation or other upstream object.

2. On the Labeler tab, select the labeler asset that you want to include in the transformation.

276

The following image shows the options that you use to select the labeler asset:

3. On the Incoming Fields tab, verify the incoming fields.

By default, the transformation inherits all incoming fields from any connected upstream object in the
mapping. You can define a field rule to limit or rename the incoming fields.

4. On the Field Mapping tab, connect a field from an upstream object to the target field.

The labeler asset field name might reflect the name of an input field. If so, you can use the Automap
options to connect the fields.

5. Verify the output field properties on the Output Fields tab.

To learn more about the transformation output fields, see “Labeler transformation output fields” on page
279.

6. You can optionally rename the Labeler transformation and add a description on the General tab.

Synchronizing data quality assets

If you update an asset in Data Quality after you add it to a transformation, you may need to synchronize the
asset version in the transformation with the latest version.

To synchronize the asset versions, open the transformation in the mapping and select the transformation
name in the properties panel. For example, in a Cleanse transformation select Cleanse in the properties
panel. If synchronization is necessary, Data Integration displays a message that prompts you to synchronize
the assets.

Labeler transformation field mappings
Configure field mappings to define how data moves from the upstream transformation to the Labeler
transformation. Configure field mappings on the Field Mapping tab of the Properties panel.

Note: You map an incoming field to a single field on a labeler asset.

You can configure the following field mapping options:

Labeler transformation field mappings 277

Field map options

Method of mapping fields to the transformation.

Select one of the following options:

• Manual. Manually link an incoming field to a transformation input field. Removes links for any
automatically mapped field.

• Automatic. Automatically link fields with the same name. Use when all of the fields that you want to
link share the same name. You cannot manually link fields with this option.

• Completely Parameterized. Use a parameter to represent the field mapping.
Choose the Completely Parameterized option when the labeler asset in the transformation is
parameterized or any upstream transformation in the mapping is parameterized.

• Partially Parameterized. Configure links in the mapping that you want to enforce and use a parameter
to allow other fields to be mapped in the mapping task. Or, use a parameter to configure links in the
mapping, and allow all fields and links to display in the task for configuration.

Parameter

Select the parameter to use for the field mapping, or create a new parameter. This option appears when
you select Completely Parameterized or Partially Parameterized as the field map option. The parameter
must be of type field mapping.

Do not use the same field mapping parameter in more than one Labeler transformation in a single
mapping.

Options

Controls how fields are displayed in the Incoming Fields and Target Fields lists.

Configure the following options:

• The fields that appear. You can show all fields, unmapped fields, or mapped fields.

• Field names. You can use technical field names or labels.

Automap

Links fields with matching names. Allows you to link matching fields and to manually configure other
field mappings. The Automap options appear when you select the Manual or Partially Parameterized
field map option.

You can map fields in the following ways:

• Exact Field Name. Data Integration matches fields of the same name.

• Smart Map. Data Integration matches fields with similar names. For example, if you have an incoming
field Cust_Name and a target field Customer_Name, Data Integration automatically links the Cust_Name
field with the Customer_Name field.

You can use both Exact Field Name and Smart Map in the same field mapping. For example, use Exact
Field Name to match fields with the same name and then use Smart Map to map fields with similar
names.

You can undo all automapped field mappings by clicking Automap > Undo Automap.

To unmap a single field, select the field to unmap and click Actions > Unmap on the context menu for the
field. To unmap one or more fields that you selected, click Unmap Selected on the Target Fields context
menu.

To clear all field mappings from the transformation, click Clear Mapping on the Target Fields context
menu.

278 Chapter 20: Labeler transformation

Labeler transformation output fields
A Labeler transformation creates one or more output fields to contain the outcome of the labeling operation.
The number of fields depends on whether the labeler asset in the transformation specifies a token labeling or
character labeling operation. View the output fields on the Output Fields tab of the Properties panel. The tab
displays the name, type, precision, and scale of the output fields.

Token labeling output

The Labeler transformation creates the following output fields in token labeling mode:

LabeledOutput

A copy of the input field data in which any value that matches the labeling criteria is replaced with the
label that the asset specifies.

TokenizedData

A copy of the input field data. If the labeler asset reads a dictionary, the transformation may replace any
input value that matches a dictionary value with an alternative value from the dictionary. A Data Quality
user can configure the labeler asset to replace the input values with the alternative values.

The transformation copies any value in the input field that the labeling operation does not identify to each
output field.

Character labeling output

The Labeler transformation creates the following output field in character labeling mode:

LabeledOutput

A copy of the input field data in which any character that matches the labeling criteria is replaced with
the label that the asset specifies.

The field can contain character labels and characters from the input data to which a label does not
apply.

Labeler transformation output fields 279

C h a p t e r 2 1

Lookup transformation
Use a Lookup transformation to retrieve data based on a specified lookup condition. For example, you can
use a Lookup transformation to retrieve values from a database table for codes used in source data.

When a mapping task includes a Lookup transformation, the task queries the lookup source based on the
lookup fields and a lookup condition. The Lookup transformation returns the result of the lookup to the target
or another transformation. You can configure the Lookup transformation to return a single row or multiple
rows. When you configure the Lookup transformation to return a single row, the Lookup transformation is a
passive transformation. When you configure the Lookup transformation to return multiple rows, the Lookup
transformation is an active transformation. You can use multiple Lookup transformations in a mapping.

Perform the following tasks with a Lookup transformation:

• Get a related value. Retrieve a value from the lookup table based on a value in the source. For example,
the source has an employee ID. Retrieve the employee name from the lookup table.

• Get multiple values. Retrieve multiple rows from a lookup table. For example, return all employees in a
department.

• Update slowly changing dimension tables. Determine whether rows exist in a target.

You can perform the following types of lookups:
Connected or unconnected lookup

A connected Lookup transformation receives source data, performs a lookup, and returns data.

An unconnected Lookup transformation is not connected to a source or target. A transformation calls
the Lookup transformation with a lookup expression. The unconnected Lookup transformation returns
one column to the calling transformation.

Cached or uncached lookup

Cache the lookup source to optimize performance. If you cache the lookup source, you can use a static
or dynamic cache. You can also use a persistent or non-persistent cache.

By default, the lookup cache remains static and does not change as the mapping task runs. With a
dynamic cache, the task inserts or updates rows in the cache as the target table changes. When you
cache the target table as the lookup source, you can look up values in the cache to determine if the
values exist in the target.

By default, the lookup cache is also non-persistent. Therefore, Data Integration deletes the cache files
after the mapping task completes. If the lookup table does not change between mapping runs, you can
use a persistent cache to increase performance.

280

Lookup object
The Lookup object is the source object that Data Integration queries when it performs the lookup. The lookup
object is also called the lookup source.

Select the lookup source on the Lookup Object tab of the Properties panel. The properties that you configure
for the lookup source vary based on the connection type

The following image shows the Lookup Object tab for a relational lookup:

1. Lookup object details where you configure the connection, source type, lookup object, and multiple match behavior.
2. Select the lookup source from the mapping inventory.

You can select the lookup source in the following ways:

Select the connection and lookup object.

In the Lookup Object Details area, select the connection, source type, and lookup object. You can also
create a new connection.

Select the lookup source from the mapping inventory.

If your organization administrator has configured Enterprise Data Catalog integration properties, and you
have added objects to the mapping from the Data Catalog page, you can select the lookup source from
the Inventory panel. If your organization administrator has not configured Enterprise Data Catalog
integration properties or you have not performed data catalog discovery, the Inventory panel is empty.
For more information about data catalog discovery, see Mappings.

Use a parameter.

You can use an input parameter to define the connection or lookup object when you run the mapping
task. For more information about parameters, see Mappings.

Use a custom query.

You can use a custom query to reduce the number of columns to query. You might want to use a custom
query when the source object is large.

You must also specify the transformation behavior when the lookup returns multiple matches.

Lookup object 281

Lookup object properties
When you configure a lookup, you select the lookup connection and lookup object. You also define the
behavior when a lookup condition returns more than one match.

The following table describes the lookup object properties:

Property Description

Connection Name of the lookup connection.

Source Type Source type. For database lookups, the source type can be single object, parameter, or query. For
flat file lookups, the source type can be single object, file list, command, or parameter.

Lookup Object If the source type is a single object, this property specifies the lookup file, table, or object.
If the source property is a file list, this property specifies the text file that contains the file list.
If the source type is a command, this property specifies the sample file from which Data Integration
imports the return fields.

Parameter If the source type is a parameter, this property specifies the parameter.

Define Query If the source type is a query, displays the Edit Custom Query dialog box. Enter a valid custom query
and click OK.

Multiple
Matches

Behavior when the lookup condition returns multiple matches. You can return all rows, any row, the
first row, the last row, or an error.
If you choose all rows and there are multiple matches, the Lookup transformation is an active
transformation. If you choose any row, the first row, or the last row and there are multiple matches,
the Lookup transformation is a passive transformation.

Formatting
Options

File formatting options which are applicable if the lookup object is a flat file.
Opens the Formatting Options dialog box to define the format of the file. Configure the following file
format options:
- Delimiter. Delimiter character.
- Treat multiple characters as a single delimiter. Treats the specified set of delimiters as one

delimiter. For example, a source file contains the following record: abc~def|ghi~|~|jkl|~mno. If
you specify the delimiter as (~ |), Data Integration reads the record as three columns separated
by two delimiters: abc~def|ghi, NULL, jkl|~mno. If you disable this option, Data Integration reads
the record as nine columns separated by eight delimiters: abc, def, ghi, NULL, NULL, NULL, jkl,
NULL, mno.

- Treat consecutive delimiters as one. Treats one or more consecutive column delimiters as one.
The default is to treat consecutive delimiters as a null value.

- Row Delimiter. Line break character. Select a line break character from the list. The default is line-
feed, \012 LF (\n).

- Text Qualifier. Character to qualify text.
- Escape character. Escape character.
- Field labels. Determines if the task generates field labels or imports labels from the source file.
- First data row. The first row of data. The task starts the read at the row number that you enter.

Command If the source type is a command, this property specifies the command that generates the file list.

For more information about file lists and commands, see “File lists” on page 44. For more information about
parameters and file formats, see Mappings.

282 Chapter 21: Lookup transformation

Multiple match policy restrictions
When you configure a lookup, you define the behavior when a lookup condition returns more than one match.
Some types of lookups have restrictions on the multiple match policy.

The following types of lookups have multiple match policy restrictions:

Uncached lookups

Some connector types do not support the multiple match policies Return first row and Return last row in
uncached lookups. If you select either of these policies, and the connector does not support the policy in
uncached lookups, Data Integration enables the Lookup Caching Enabled advanced property, and you
cannot edit it.

Lookups that use a dynamic cache

If the Lookup transformation uses a dynamic cache, you must configure the multiple match policy to
return an error. Other multiple match policies are not supported.

Salesforce lookups

When you perform a lookup against a Salesforce object, you can return any row or return an error.

Lookups in advanced mode

When you use the Lookup transformation in advanced mode, you can return all rows, return any row, or
return an error. The multiple match policies Return first row and Return last row are not supported.

When you define the behavior for multiple matches in advanced mode to return an error, the Lookup
transformation drops duplicate rows and does not include the duplicate rows in the log files.

For more information about the multiple match policies supported by different connectors, see the help for
the appropriate connector.

Custom queries
You can create a custom query for database lookups. You might create a custom query to reduce the number
of columns to query.

To use a custom query as a lookup source, select Query as the source type, and then define the query. When
you define the query, enter an SQL SELECT statement to select the source columns that you want to use.
Data Integration uses the SQL statement to retrieve source column information.

When you use a custom query in a lookup transformation, use the following format for the SQL statement:

• For a relational database connection, use an alias for each column in the SQL statement, for example:

SELECT COL1 AS COL1, COL2 AS COL2, COL3 AS COL3 from TABLE_NAME
• For other types of database connections, use SQL that is valid for the source database. You can use

database-specific functions in the query.

To use a custom query as a lookup source, you must enable lookup caching.

When you change a custom query in a saved mapping, at design time Data Integration replaces the field
metadata with metadata using the revised query. Typically, this is the desired behavior. However, if the
mapping uses a relational source and you want to retain the original metadata, use the Retain existing field
metadata option, which is available in the following connectors:

• JDBCV2 connector

• PostgreSQL connector

• MongoDB connector

Lookup object 283

• Couchbase connector

When you use the Retain existing field metadata option, Data Integration doesn't refresh the field metadata
during design time. Data Integration maps the existing fields with the fields from the revised query at run
time. Fields that can't be mapped will cause run time failure.

Tip: Test the SQL statement you want to use on the source database before you create a custom query. Data
Integration does not display specific error messages for invalid SQL statements.

Lookup condition
The lookup condition defines when the lookup returns values from the lookup object. When you configure the
lookup condition, you compare the value of one or more fields from the data flow with values in the lookup
object.

A lookup condition includes an incoming field from the data flow, a field from the lookup object, and an
operator. For flat file and database connections, you can use the following operators in a lookup condition:

= (Equal to)

< (Less than)

> (Greater than)

<= (Less than or equal to)

>= (Greater than or equal to)

!= (Not equal to)

For other connections and for Lookup transformations that use a dynamic cache, you can use the = (Equal to)
operator in a lookup condition.

Note the following information about lookup conditions:

• When you enter multiple conditions, the mapping task evaluates the lookup conditions using the AND
logical operator to join the conditions. It returns rows that match all of the lookup conditions.

• When you include multiple conditions, to optimize performance enter the conditions in the following order:

1. = (Equal to)

2. < (Less than), <= (Less than or equal to), > (Greater than), >= (Greater than or equal to)

3. != (Not equal to)

• The lookup condition matches null values. When an input field is NULL, the mapping task evaluates the
NULL equal to null values in the lookup.

• In advanced mode, the mapping becomes invalid if the lookup condition contains a binary data type.

• If the lookup condition is completely parameterized, then you need to enter the lookup condition in the
format:

<Lookup field><Operator><Incoming field>
If multiple conditions are required, join them with AND.

284 Chapter 21: Lookup transformation

Lookup return fields
Select the fields to return from the lookup object on the Return Fields tab of the Properties panel.

The Return Fields tab displays all fields from the selected lookup object. By default, the mapping includes all
fields in the list in the data flow. Remove fields that you do not want to use.

For Lookup transformations that use a dynamic cache, the task returns the NewLookupRow return field. You
cannot remove this field. For more information about the NewLookupRow return field, see “Dynamic cache
updates” on page 293.

You can edit the name of a field and edit the metadata for a field. When you edit field metadata, you can
change the name, native data type, native precision, and native scale.

For some relational connection types, you can specify the default column value for lookup return fields. You
can use a string or an expression for the default value. If you use a string, enclose the string in single quotes,
for example, 'ABC'. To see if you can set default values for lookup return fields, see the help for the
appropriate connector.

Note: When you change field metadata, you cannot automatically revert your changes. Avoid making changes
that can cause errors when you run the task.

You can add a field to the field list if the field exists in the lookup object. To add a field, you need exact field
details, including the field name, data type, precision, and scale.

To restore the original fields from the lookup object, use the Synchronize icon. Synchronization restores
deleted fields, adds new fields, and retains added fields with corresponding fields in the lookup object.
Synchronization removes any added fields that do not have corresponding fields in the lookup object.
Synchronization does not revert any local changes to the field metadata.

The following table describes the options that you can use on the Return Fields tab:

Field option Description

Add Field icon Adds a field from the selected lookup object. Use to retrieve a field from the object that does not
display in the list.
Opens the New Field dialog box. Enter the exact field name, data type, precision, and scale, and
click OK.

Delete icon Deletes the field from the list, removing the field from the data flow.

Sort icon Sorts fields in native order, ascending order, or descending order.

Find field Enter a search string to find the fields with names that contain the string.

Options menu Contains the following options:
- Use Technical Field Names. Displays field names by technical field name.
- Use Labels. Displays field names by label.
- Edit Metadata. Change the name, native type, native precision, or native scale, if applicable for

the data type. For some relational connection types, you can set the default value for lookup
return fields.
When you edit metadata, you can display native names by technical field name or label.

Synchronize icon Synchronizes the list of fields with the lookup object.
Note: If you select this option, you lose any changes you make to the metadata for return fields.

Lookup return fields 285

Field option Description

Ignore in
Comparison

When the transformation uses a dynamic cache, by default, Data Integration compares the values
in all lookup fields with the values in the associated incoming fields to determine whether to
update the row in the lookup cache.
Enable this property if you want Data Integration to ignore the field when it compares the values
before updating a row. You must configure the transformation to compare at least one field.
This property is displayed for each field when the Lookup transformation uses a dynamic cache.

Ignore Null Inputs
for Updates

When enabled, if the value in the associated incoming field contains a null value, Data Integration
doesn't update the column in the cache.
This property is displayed for each field except the NewLookupRow field when the Lookup
transformation uses a dynamic cache.
Default is disabled.

Retain existing
fields at runtime

If field metadata changes after a mapping is saved, Data Integration uses the updated field
metadata when you run the mapping. Typically, this is the desired behavior. However, if the
mapping uses a native flat file connection and you want to retain the metadata used at design
time, enable the Retain existing fields at runtime option. When you enable this option, Data
Integration mapping tasks will use the field metadata that was used when you created the
mapping.

Advanced properties
You can configure advanced properties for a Lookup transformation. The connection type and the mapping
type determine which advanced properties are available for the Lookup transformation.

The properties that are available vary based on the mapping mode.

You can set the following properties:

Property Description

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

Lookup Source
File Directory

Name of the directory for a flat file lookup source. By default, Data Integration reads files from
the lookup source connection directory.
You can also use an input parameter to specify the source file directory.
If you use the service process variable directory $PMLookupFileDir, the task writes target files to
the configured path for the system variable. To find the configured path of a system variable, see
the pmrdtm.cfg file located at the following directory:

<Secure Agent installation directory>\apps\Data_Integration_Server\<Data
Integration Server version>\ICS\main\bin\rdtm
You can also find the configured path for the $PMLookupFileDir variable in the Data Integration
Server system configuration details in Administrator.

Lookup Source
File Name

File name, or file name and path of the lookup source file.

286 Chapter 21: Lookup transformation

Property Description

Lookup SQL
Override

Overrides the default SQL statement to query the lookup table. Specifies the SQL statement you
want to use for querying lookup values.

Lookup Source
Filter

Restricts the lookups based on the value of data in any field in the Lookup transformation.
Use with lookup cache enabled.

Lookup Caching
Enabled

Determines whether to cache lookup data during the runtime session. When you enable caching,
Data Integration queries the lookup source once and caches the values for use during the session,
which can improve performance. When you disable caching, a SELECT statement gets the lookup
values each time a row passes into the transformation.
Caching is enabled and is not editable in the following circumstances:
- When the lookup source type does not support uncached lookups.
- When you select a multiple match policy, but the lookup source type does not support the

policy in uncached lookups. For example, you cannot disable caching when you select Return
first row or Return last row as the multiple match policy for a lookup against an Amazon
Redshift V2 source.

Default is enabled.
This property is not displayed for flat file lookups because flat file lookups are always cached.

Use Lookup Field
Default Value

Determines whether to return the default value when there's no match in the lookup source. By
default, the transformation returns NULL when there's no match in the lookup source.
Doesn't apply when you parameterize the lookup object, perform an unconnected lookup, or
disable lookup caching.

Lookup Cache
Directory Name

Specifies the directory to store cached lookup data when you select Lookup Caching Enabled.
The directory name can be an environment variable.

Lookup Cache
Persistent

Determines whether to save the lookup cache file to reuse it the next time Data Integration
processes a Lookup transformation configured to use the cache.

Cache File Name
Prefix

Use with persistent lookup cache. Specifies the file name prefix to use with persistent lookup
cache files. Data Integration uses the file name prefix as the file name for the persistent cache
files that it saves to disk.
If the named persistent cache files exist, Data Integration builds the memory cache from the files.
If the named persistent cache files do not exist, Data Integration rebuilds the persistent cache
files.
Enter the prefix. Do not include a file extension such as .idx or .dat.

Re-cache from
Lookup Source

Use with persistent lookup cache. When selected, Data Integration rebuilds the persistent lookup
cache from the lookup source when it first calls the Lookup transformation instance.

Data Cache Size Data cache size for the transformation. Select one of the following options:
- Auto. Data Integration sets the cache size automatically. If you select Auto, you can also

configure a maximum amount of memory for Data Integration to allocate to the cache.
- Value. Enter the cache size in bytes.
Default is Auto.

Index Cache Size Index cache size for the transformation. Select one of the following options:
- Auto. Data Integration sets the cache size automatically. If you select Auto, you can also

configure a maximum amount of memory for Data Integration to allocate to the cache.
- Value. Enter the cache size in bytes.
Default is Auto.

Advanced properties 287

Property Description

Dynamic Lookup
Cache

Determines whether to use a dynamic cache instead of a static cache. When you enable dynamic
caching, the task updates the cache as it inserts or updates rows in the target so that the cache
and target remain in sync.
Use when lookup cache is enabled.

Update Dynamic
Cache Condition

When the lookup uses a dynamic lookup cache, Data Integration uses the expression condition to
determine whether to update the dynamic cache. Data Integration updates the cache when the
condition is true and the data exists in the cache.
Enter a boolean expression. You can include field names and values, and in-out parameters in the
expression.
Doesn't apply to mappings in advanced mode.
Default is TRUE.

Output Old Value
On Update

When you enable this property, when the task updates a row in the cache, it outputs the value that
existed in the lookup cache before it updated the row. When it inserts a row, it returns a null
value.
Use when dynamic lookup cache is enabled.

Synchronize
dynamic cache

When you enable this property, the task retrieves the latest values from the lookup source and
updates the dynamic cache. This is helpful when multiple tasks that use the same lookup source
are running simultaneously.
Use when dynamic lookup cache is enabled.
Cache synchronization is not available for some connection types. For more information, see the
help for the appropriate connector.

Insert Else
Update

Applies to rows entering the Lookup transformation with the row type of insert. When enabled, the
mapping task inserts rows in the cache and updates existing rows. When disabled, the mapping
task does not update existing rows.
Use when dynamic lookup cache is enabled.

Lookup Source is
Static

When you enable this property, the lookup source does not change when the task runs.

Datetime Format Sets the datetime format and field width. Milliseconds, microseconds, or nanoseconds formats
have a field width of 29. If you do not specify a datetime format here, you can enter any datetime
format for fields. Default is YYYY-MM-DD HH24:MI:SS. The format does not change the size of the
field.
Default is YYYY-MM-DD HH24:MI:SS. The Datetime format does not change the size of the field.

Thousand
Separator

Specifies the thousand separator. Enter a comma (,) a period (.) or None.
Default is None.

Decimal
Separator

Specifies the decimal separator. Enter a comma (,) or a period (.).
Default is period.

Case Sensitive
String
Comparison

Determines whether to enable case-sensitive string comparisons when you perform lookups on
string columns in flat files. For relational uncached lookups, the column types that support case-
sensitive comparison depend on the database.
Case-sensitivity is automatically enabled for lookups in advanced mode.

288 Chapter 21: Lookup transformation

Property Description

Null Ordering Determines how the null values are ordered. You can choose to sort null values high or low. By
default, null values are sorted high. This overrides configuration to treat nulls in comparison
operators as high, low, or null. For relational lookups, null ordering depends on the database
default value.

Sorted Input Indicates whether or not the lookup file data is in sorted order. This increases lookup
performance for file lookups. If you enable sorted input and the condition columns are not
grouped, the session fails. If the condition columns are grouped but not sorted, the lookup is
processed as if you did not configure sorted input.

Pre-build Lookup
Cache

Specifies to build the lookup cache before the Lookup transformation receives data. Multiple
lookup cache files can be built at the same time to improve performance.

Subsecond
Precision

Sets the subsecond precision for datetime fields. For relational lookups, you can change the
precision for databases that have an editable scale for datetime data. You can change the
subsecond precision for Oracle Timestamp, Informix Datetime, and Teradata Timestamp data
types.
Enter a positive integer value from 0 to 9. Default is 6 microseconds.
If you enable SQL ELT optimization in a task, the database returns the complete datetime value,
regardless of the subsecond precision setting.

Optional Determines whether the transformation is optional. If a transformation is optional and there are
no incoming fields, the mapping task can run and the data can go through another branch in the
data flow. If a transformation is required and there are no incoming fields, the task fails.
For example, you configure a parameter for the source connection. In one branch of the data flow,
you add a transformation with a field rule so that only Date/Time data enters the transformation,
and you specify that the transformation is optional. When you configure the mapping task, you
select a source that does not have Date/Time data. The mapping task ignores the branch with the
optional transformation, and the data flow continues through another branch of the mapping.

Lookup SQL overrides
When a mapping includes a Lookup transformation, the mapping task queries the lookup object based on the
fields and properties that you configure in the Lookup transformation. The mapping task runs a default
lookup query when the first row of data enters the Lookup transformation. If the Lookup transformation
performs a relational lookup, you can override the default query.

You can override the default query for both cached and uncached lookups. To view the default query, run the
mapping task. The default query appears in the log file.

Lookup SQL overrides for cached lookups
In a cached lookup, you can override the default SQL query to change the ORDER BY clause, add a WHERE
clause, or transform the data. The mapping task uses the override statement to build the lookup cache.

The default query contains a SELECT statement that includes all lookup fields in the mapping. The SELECT
statement also contains an ORDER BY clause that orders all columns in the same order in which they appear
in the Lookup transformation.

If you want to change the ORDER BY clause, add a WHERE clause, or transform the lookup data before it is
cached, override the default query. For example, you might use database functions to adjust the data types or

Lookup SQL overrides 289

formats in the lookup table to match the data types and formats of fields that are used in the mapping. Or,
you might override the default query to query multiple tables.

Override the default query on the Advanced tab of the Lookup transformation. Enter the entire SELECT
statement in the Lookup SQL Override field. Use an alias for each column in the query. If you want to change
the ORDER BY clause, append "--" to the end of the query to suppress the ORDER BY clause that the mapping
task generates.

Example

A Lookup transformation returns the following fields from Microsoft SQL Server table ALC_ORDER_DETAILS:

The transformation uses the following lookup condition:

ORDERID=in_ORDERID

When you run the mapping task, the following query appears in the log file:

LKPDP_1> DBG_21097 [2018-11-07 14:11:33.509] Lookup Transformation [lkp_ALC_ORDER_DETAILS]:
Default sql to create lookup cache: SELECT PRODUCTID,UNITPRICE,QUANTITY,DISCOUNT,ORDERID FROM
"icsauto"."ALC_ORDER_DETAILS" ORDER BY ORDERID,PRODUCTID,UNITPRICE,QUANTITY,DISCOUNT

To override the ORDER BY clause and sort by PRODUCTID, enter the following query in the Lookup SQL
Override field on the Advanced tab:

SELECT PRODUCTID AS PRODUCTID, UNITPRICE AS UNITPRICE, QUANTITY AS QUANTITY, DISCOUNT AS
DISCOUNT, ORDERID AS ORDERID FROM "icsauto"."ALC_ORDER_DETAILS" ORDER BY PRODUCTID --

When you run the mapping task again, the following query appears in the log file:

LKPDP_1> DBG_21312 [2018-11-07 14:14:36.734] Lookup Transformation [lkp_ALC_ORDER_DETAILS]:
Lookup override sql to create cache: SELECT PRODUCTID AS PRODUCTID, UNITPRICE AS UNITPRICE,
QUANTITY AS QUANTITY, DISCOUNT AS DISCOUNT, ORDERID AS ORDERID FROM
"icsauto"."ALC_ORDER_DETAILS" ORDER BY PRODUCTID -- ORDER BY
ORDERID,PRODUCTID,UNITPRICE,QUANTITY,DISCOUNT

Lookup SQL override for uncached lookups
You can override the default SQL query for an uncached lookup including the WHERE and ORDER BY clauses.
The mapping task doesn't build a cache from the override statement for an uncached lookup.

When you run the mapping task, the task generates a default SELECT statement that includes the lookup
fields, output fields, and WHERE clause based on the lookup condition. If the Lookup transformation is an
unconnected lookup, the SELECT statement includes the lookup fields and the return field, but the mapping
task doesn't generate the WHERE clause from the lookup condition.

290 Chapter 21: Lookup transformation

Override the default query on the Advanced tab of the Lookup transformation. Enter the entire SELECT
statement in the Lookup SQL Override field. Use an alias for each column in the query. If you want to change
the ORDER BY clause, append " --" to the end of the query to suppress the ORDER BY clause that the mapping
task generates.

To reference incoming fields in the WHERE clause, configure parameter binding by adding a "?" before and
after the field name. The query data changes based on the value of the data in the field. The following
example includes a WHERE statement that references the Name field:

SELECT EMPLOYEE.NAME as NAME, max(EMPLOYEE.ID) as ID from EMPLOYEE WHERE EMPLOYEE.NAME=?
NAME1?

If you add a function to the SQL statement, the return data type must match the data type of the alias
column. For example, the data type of ID matches the return type of the MAX function:

SELECT EMPLOYEE.NAME as NAME, MAX(EMPLOYEE.ID) as ID FROM EMPLOYEE
Note: You can't use subqueries in the SQL override for uncached lookups.

Guidelines for overriding the lookup query
Certain rules and guidelines apply when you override a lookup query.

Use the following guidelines:

• You can override the lookup SQL query for relational lookups.

• Enter the entire SELECT statement using the syntax that is required by the database.

• Enclose all database reserved words in quotes.

• Include all lookup and return fields in the SELECT statement.

If you add or subtract fields in the SELECT statement, the mapping task fails.

• Use an alias for each column in the query.

If you do not use column aliases, the mapping task fails with the following error:

Failed to initialize transformation [<Lookup Transformation Name>]
• To override the ORDER BY clause, append "--" at the end of the query.

The mapping task generates an ORDER BY clause, even when you enter one in the override. Therefore, you
must enter two dashes (--) at the end of the query to suppress the generated ORDER BY clause.

• If the ORDER BY clause contains multiple columns, enter the columns in the same order as the fields in
the lookup condition.

• If the mapping task uses SQL ELT optimization or is based on a mapping in SQL ELT mode, you can't
override the ORDER BY clause or suppress the generated ORDER BY clause with comment notation.

• If multiple Lookup transformations share a lookup cache, use the same lookup SQL override for each
Lookup transformation.

• When you configure a Lookup transformation that returns all rows, the mapping task builds the lookup
cache with sorted keys. When the transformation retrieves all rows in a lookup, the mapping task builds
the data cache with the keys in sorted order. The mapping task cannot retrieve all the rows from the
cache if the rows are not sorted. If the data is not sorted on the keys, you might get unexpected results.

• You cannot include parameters in the lookup SQL override.

• If you configure a lookup SQL override and a lookup source filter in the same transformation, the mapping
task ignores the filter.

Lookup SQL overrides 291

Lookup source filter
You can configure a lookup source filter for a relational Lookup transformation that has caching enabled.
Add the lookup source filter to limit the number of lookups that the mapping task performs on a lookup
source table. When you configure a lookup source filter, the mapping task performs lookups based on the
results of the filter statement.

To configure a lookup source filter, open the Advanced tab of the Lookup transformation, and enter the filter
in the Lookup Source Filter field. Do not include the WHERE keyword in the filter condition.

For example, you might need to retrieve the last name of every employee whose ID is greater than 510.

You configure the following lookup source filter on the EmployeeID field in the Lookup transformation:

EmployeeID >= 510

When the mapping task reads the source row, it performs a lookup on the cache when the value of
EmployeeID is greater than 510. When EmployeeID is less than or equal to 510, the Lookup transformation
does not retrieve the last name.

When you add a lookup source filter to the Lookup query for a mapping task that uses SQL ELT optimization
or is based on a mapping in SQL ELT mode, the task creates a view to represent the SQL override. The
mapping task runs an SQL query against this view to push the transformation logic to the database.

Note: If you configure a lookup source filter and a lookup SQL override in the same transformation, the
mapping task ignores the filter.

Dynamic lookup cache
Use a dynamic lookup cache to keep the lookup cache synchronized with the target.

When you enable lookup caching, a mapping task builds the lookup cache when it processes the first lookup
request. The cache can be static or dynamic. If the cache is static, the data in the lookup cache doesn't
change as the mapping task runs. If the task uses the cache multiple times, the task uses the same data. If
the cache is dynamic, the task updates the cache based on the actions in the task, so if the task uses the
lookup multiple times, downstream transformations can use updated data.

You can use a dynamic cache with most types of lookup sources. You cannot use a dynamic cache with flat
file or Salesforce lookups. For more information about using a dynamic cache with a specific type of lookup
source, see the help for the appropriate connector.

Based on the results of the lookup query, the row type, and the Lookup transformation properties, the
mapping task performs one of the following actions on the dynamic lookup cache when it reads a row from
the source:

Inserts the row into the cache

The mapping task inserts the row when the row is not in the cache. The mapping task flags the row as
insert.

Updates the row in the cache

The mapping task updates the row when the row exists in the cache. The mapping task updates the row
in the cache based on the input fields. The mapping task flags the row as an update row.

292 Chapter 21: Lookup transformation

Makes no change to the cache

The mapping task makes no change when the row is in the cache and nothing changes. The mapping
task flags the row as unchanged.

The dynamic Lookup transformation includes the return field, NewLookupRow, which describes the changes
the task makes to each row in the cache. Based on the value of the NewLookupRow, you can also configure a
Router or Filter transformation with the dynamic Lookup transformation to route insert or update rows to the
target table. You can route unchanged rows to another target table or flat file, or you can drop them.

You cannot use a parameterized source, target, or lookup with a Lookup transformation that uses a dynamic
cache.

Static and dynamic lookup comparison
You might want to use dynamic cache instead of a static cache if the source might contain duplicate private
keys. Or, you might want to use a dynamic cache when the source contains a large table of data to optimize
performance.

Data Integration processes lookup conditions differently based on whether you configure the Lookup
transformation to use a static or dynamic cache.

The following table compares a Lookup transformation that uses a static cache to a Lookup transformation
that uses a dynamic cache:

Static Lookup Cache Dynamic Lookup Cache

The cache does not change during the task
run.

The task inserts or updates rows in the cache as it passes rows to the
target.

You can use a flat file, relational database,
and other connection types such as
Salesforce for lookup.

You cannot use a flat file or Salesforce connection type.

When the lookup condition is true, the task
returns a value from the lookup table or
cache.
When the condition is not true, the task
returns the default value.

When the lookup condition is true, the task either updates the row in
the cache and target or leaves the cache unchanged. This indicates
that the row is in the cache and target table.
When the lookup condition is not true, the task either inserts the row in
the cache and target or leaves the cache unchanged based on the row
type. This indicates that the row is not in the cache or target table.

Dynamic cache updates
When the mapping task reads a row, it changes the lookup cache depending on the results of the lookup
query and the Lookup transformation properties that you define. The mapping task assigns a value to the
NewLookupRow return field that indicates the action it takes.

The following table lists the possible NewLookupRow values:

NewLookupRow Value Description

0 Mapping task does not update or insert the row in the cache.

1 Mapping task inserts the row into the cache.

2 Mapping task updates the row in the cache.

Dynamic lookup cache 293

You can use the NewLookupRow values in downstream transformations.

Inserts and updates for insert rows
You can configure how the mapping task handles inserts and updates to the cache for insert rows. To update
existing rows in the dynamic lookup cache when the row type is insert, enable the Insert Else Update
advanced property for the transformation.

Note: This property only applies to rows entering the Lookup transformation where the row type is insert.
When a row of any other row type, such as update, enters the Lookup transformation, the Insert Else Update
property has no effect on how the mapping task handles the row.

When you enable Insert Else Update and the row type entering the Lookup transformation is insert, the
mapping task inserts the row into the cache if it is new. If the row exists in the index cache but the data
cache is different than the current row, the mapping task updates the row in the data cache.

If you do not enable Insert Else Update and the row type entering the Lookup transformation is insert, the
mapping task inserts the row into the cache if it is new, and makes no change to the cache if the row exists.

The following table describes how the mapping task changes the lookup cache when the row type of the
rows entering the Lookup transformation is insert:

Insert Else Update
Option

Row found in
cache?

Data cache is
different?

Lookup Cache
Result

NewLookupRow Value

Disabled - insert only Yes - No change 0

Disabled - insert only No - Insert 1

Enabled Yes Yes Update 2

Enabled Yes No No change 0

Enabled No - Insert 1

Dynamic cache and lookup source synchronization
The Lookup transformation maintains a dynamic lookup cache to track the rows that it passes to the target.
When multiple tasks update the same target, you can configure the Lookup transformation in each task to
synchronize the dynamic lookup cache to the same lookup source instead of a target.

To synchronize the cache with the lookup source, enable the Synchronize Dynamic Cache property for the
Lookup transformation.

When you configure a Lookup transformation to synchronize the cache with the Lookup source, the Lookup
transformation performs a lookup on the lookup source. If the data does not exist in the Lookup source, the
Lookup transformation inserts the row into the lookup source before it updates the dynamic lookup cache.

The data might exist in the lookup source if another task inserted the row. To synchronize the lookup cache
to the lookup source, the task retrieves the latest values from the lookup source. The Lookup transformation
inserts the values from the Lookup source in the dynamic lookup cache.

For example, you have multiple tasks running simultaneously. Each task generates product numbers for new
product names. When a task generates a product number, the other tasks must use the same product
number to identify the product. The product number is generated once and inserted in the lookup source. If
another task processes a row containing the product, it must use the product number that is in the lookup

294 Chapter 21: Lookup transformation

source. Each task performs a lookup on the lookup source to determine which product numbers have already
been generated.

When you configure the Lookup transformation to synchronize the cache with the lookup source, the task
performs a lookup on the dynamic lookup cache for insert rows. If data does not exist in the dynamic lookup
cache, the task performs a lookup on the lookup source. It then completes one of the following tasks:

• If data exists in the lookup source, the task inserts a row in the dynamic lookup cache with the columns
from the lookup source. It does not update the cache with the source row.

• If data does not exist in the lookup source, the task inserts the data into the lookup source and inserts the
row into the cache.

The lookup source contains the same fields as the lookup cache. The task does not insert a row in the lookup
cache unless the column is projected from the Lookup transformation or the field is part of a lookup
condition.

Dynamic cache and target synchronization
Configure downstream transformations to ensure that the dynamic lookup cache and target are
synchronized.

When you use a dynamic lookup cache, the mapping task writes to the lookup cache before it writes to the
target table. The lookup cache and target table can become unsynchronized if the task does not write the
data to the target. For example, the target database might reject the data.

Consider the following guidelines to keep the lookup cache synchronized with the lookup table:

• Use the Router transformation to pass rows to the cached target when the NewLookupRow value equals
one or two.

• Use the Router transformation to drop rows when the NewLookupRow value equals zero. Or, output the
rows to a different target.

Field mapping
When you use a dynamic lookup cache, map incoming fields with lookup cache fields on the Field Mapping
tab. The Field Mapping tab is only available when you configure the Lookup transformation to use a dynamic
cache.

You must map all of the incoming fields when you use a dynamic cache so that the cache can update as the
task runs. Optionally, you can map the Sequence-ID field instead of an incoming field if you want to create a
generated key for a field in the target object.

Generated key fields
When you configure a dynamic lookup cache, you can create a generated key for a field in the target object.

To create a generated key for a field in the target object, map the Sequence-ID field to a lookup cache field on
the Field Mapping tab. You can map the Sequence-ID field instead of an incoming field to lookup cache fields
with the integer or Bigint data type. For integer lookup fields, the generated key maximum value is
2,147,483,647. For Bigint lookup fields, the generated key maximum value is 9,223,372,036,854,775,807.

When you map the Sequence-ID field, Data Integration generates a key when it inserts a row into the lookup
cache.

Data Integration uses the following process to generate sequence IDs:

1. When Data Integration creates the dynamic lookup cache, it tracks the range of values for each field that
has a sequence ID in the dynamic lookup cache.

Dynamic lookup cache 295

2. When Data Integration inserts a row of data into the cache, it generates a key for a field by incrementing
the greatest sequence ID value by one.

3. When Data Integration reaches the maximum number for a generated sequence ID, it starts over at one.
Data Integration increments each sequence ID by one until it reaches the smallest existing value minus
one. If Data Integration runs out of unique sequence ID numbers, the mapping task fails.

Data Integration generates a sequence ID for each row it inserts into the cache.

Ignore fields in comparison
When you use a dynamic lookup cache, you can configure fields to be ignored when Data Integration
compares the values in the lookup fields with the values in the associated incoming fields. Ignoring some
fields in the comparison can improve mapping performance.

When you run a mapping that uses a dynamic lookup cache, by default, Data Integration compares the values
in all lookup fields with the values in the associated incoming fields. Data Integration compares the values to
determine whether to update the row in the lookup cache. When a value in an incoming field differs from the
value in the lookup field, Data Integration updates the row in the cache.

If you do not want to compare all fields, you can choose the fields that you want Data Integration to ignore
when it compares fields. For example, the source data includes a column that indicates whether the row
contains data that you need to update. Enable the Ignore in Comparison property for all lookup fields except
the field that indicates whether to update the row in the cache and target table.

Configure the fields to be ignored on the Return Fields tab of the Lookup transformation. To ignore a field,
enable the Ignore in Comparison property for the field.

You must configure the transformation to compare at least one field.

Dynamic lookup query overrides
When you add a WHERE clause in a Lookup transformation that uses a dynamic cache, connect a Filter
transformation before the Lookup transformation to filter rows that you do not want to insert into the cache
or target table. If you do not include the Filter transformation, you might get inconsistent results between the
cache and the target table.

For example, you configure a Lookup transformation to perform a dynamic lookup on the employee table,
EMP, matching rows by EMP_ID. You define the following lookup SQL override:

SELECT EMP_ID, EMP_STATUS FROM EMP ORDER BY EMP_ID, EMP_STATUS WHERE EMP_STATUS = 4
When you first run the mapping, the mapping task builds the lookup cache from the target table based on the
lookup SQL override. All rows in the cache match the condition in the WHERE clause, EMP_STATUS = 4.

The mapping task reads a source row that meets the lookup condition you specify, but the value of
EMP_STATUS is 2. Although the target might have the row where EMP_STATUS is 2, the mapping task does
not find the row in the cache because of the SQL override. The mapping task inserts the row into the cache
and passes the row to the target table. When the mapping task inserts this row in the target table, you might
get inconsistent results when the row already exists. In addition, not all rows in the cache match the
condition in the WHERE clause in the SQL override.

To verify that you only insert rows into the cache that match the WHERE clause, you add a Filter
transformation before the Lookup transformation and define the filter condition as the condition in the
WHERE clause in the lookup SQL override.

You enter the following filter condition in the Filter transformation and the WHERE clause in the SQL override:

EMP_STATUS = 4

296 Chapter 21: Lookup transformation

Persistent lookup cache
You can configure a Lookup transformation to use a persistent cache. When you use a persistent cache, Data
Integration saves and reuses the cache files from mapping run to mapping run.

By default, Data Integration uses a non-persistent cache when you enable caching in a Lookup
transformation. When you use a non-persistent cache, Data Integration deletes the cache files at the end of
the mapping run. The next time you run the mapping, Data Integration builds the memory cache from the
database.

If the lookup table does not change between mapping runs, you can use a persistent cache. A persistent
cache can improve mapping performance because it eliminates the time required to read the lookup table.
The first time that Data Integration runs a mapping using a persistent lookup cache, it saves the cache files
to disk. The next time that Data Integration runs the mapping, it builds the memory cache from the cache
files.

Configure the Lookup transformation to use a persistent lookup cache in the transformation advanced
properties. To use a persistent cache, enable the Lookup Cache Persistent property.

You can configure the following options when you use a persistent cache:

Specify a name for the cache files.

When you use a persistent lookup cache, you can specify a name for the cache files.

To specify a name, enter the file name prefix in the Cache File Name Prefix field on the Advanced tab of
the Lookup transformation. Do not enter a suffix such as .idx or .dat.

Rebuild the lookup cache.

If the lookup table changes occasionally, you can configure the Lookup transformation to rebuild the
lookup cache. When you do this, Data Integration rebuilds the lookup cache from the lookup source
when it first calls the Lookup transformation instance.

To configure the transformation to rebuild the cache, enable the Re-cache from Lookup Source property
on the Advanced tab of the Lookup transformation.

Rebuilding the lookup cache
You can rebuild the lookup cache if you think the lookup source changed since the last time Data Integration
built the persistent cache.

When you rebuild a cache, Data Integration creates new cache files, overwriting existing persistent cache
files. Data Integration writes a message to the session log when it rebuilds the cache.

If Data Integration cannot reuse the cache, it rebuilds the cache or fails the mapping task. The behavior can
differ based on whether the cache is named or unnamed.

The following table summarizes how Data Integration handles named and unnamed persistent caches when
the mapping changes between runs:

Mapping changes between runs Named cache Unnamed cache

Data Integration cannot locate cache files. For example, the file no longer
exists.

Rebuilds cache Rebuilds cache

Enable or disable the Enable High Precision option in the mapping task
advanced session properties.

Fails mapping task Rebuilds cache

Persistent lookup cache 297

Mapping changes between runs Named cache Unnamed cache

Edit the transformation in the Mapping Designer or Mapplet Designer,
excluding editing the transformation description.

Fails mapping task Rebuilds cache

Edit the mapping, excluding the Lookup transformation. Reuses cache Rebuilds cache

Change the number of partitions in the pipeline that contains the Lookup
transformation.

Fails mapping task Rebuilds cache

Change database connection or the file location used to access the lookup
table.

Fails mapping task Rebuilds cache

Unconnected lookups
An unconnected Lookup transformation is a Lookup transformation that is not connected to other
transformations in a mapping. A transformation in the mapping pipeline calls the Lookup transformation with
a :LKP expression. The unconnected Lookup transformation returns one column to the calling
transformation.

You can use an unconnected Lookup transformation to perform a lookup against the following types of data
objects:

• Flat file

• Relational database

• Amazon Redshift V2

• Amazon S3 V2

• Google BigQuery V2

• Microsoft Azure Synapse SQL

• Snowflake Data Cloud

The following table lists the differences between connected and unconnected Lookup transformations:

Functionality Connected lookup Unconnected lookup

Input values Receives input values directly from the mapping
pipeline.

Receives input values from the result of
a :LKP expression in another transformation.

Cache Cache includes all lookup columns used in the
mapping. This includes columns in the lookup
condition and columns linked as output fields to
other transformations.
Can use static or dynamic cache.

Cache includes all lookup/output fields in the
lookup condition and the lookup/return field.
Cannot use dynamic cache.

Return values Returns multiple values from the same row. Returns the specified field for each row.

298 Chapter 21: Lookup transformation

Functionality Connected lookup Unconnected lookup

Lookup
conditions

If there is no match for a lookup condition, Data
Integration returns the default value for all
output fields.
If there is a match, Data Integration returns the
results of the lookup condition for all lookup/
output fields.

If there is no match for the lookup condition,
Data Integration returns NULL.
If there is a match, Data Integration returns
the result of the lookup condition to the
return field.

Output values Passes multiple output values to another
transformation. Links lookup/output fields to
another transformation.

Passes one output value to another
transformation. The lookup/output/return
field passes the value to the transformation
that contains the :LKP expression.

Configuring an unconnected Lookup transformation
To configure an unconnected Lookup transformation, select the Unconnected Lookup option, add incoming
fields, configure the lookup condition, and designate a return value. Then configure a lookup expression in a
different transformation.

1. On the General tab of the Lookup transformation, enable the Unconnected Lookup option.

2. Create the incoming fields.

On the Incoming Fields tab of the Lookup transformation, create an incoming field for each argument in
the :LKP expression. For each lookup condition you plan to create, you need to add an incoming field to
the Lookup transformation. You can create a different field for each condition, or use the same incoming
field in more than one condition.

3. Designate a return value.

You can pass multiple input values into a Lookup transformation and return one column of data. Data
Integration can return one value from the lookup query. Use the return field to specify the return value.

4. Configure a lookup expression in another transformation.

Supply input values for an unconnected Lookup transformation from a :LKP expression in a
transformation that uses expressions such as an Expression, Aggregator, Filter, or Router
transformation. The arguments are local input fields that match the Lookup transformation input fields
used in the lookup condition.

Calling an unconnected lookup from another transformation
Supply input values for an unconnected Lookup transformation from a :LKP expression in another
transformation such as an Expression transformation or Aggregator transformation. You can call the same
lookup multiple times in one mapping. You cannot call an unconnected lookup from a Joiner or Java
transformation.

Use the following syntax for a :LKP expression:

:LKP.<Lookup transformation name> (<argument>, <argument>, ...)

The arguments are local input fields that match the Lookup transformation input fields used in the lookup
condition.

For example, the following expression passes the ITEM_ID and PRICE fields to an unconnected Lookup
transformation named lkp_ItemPrices:

:LKP.lkp_ItemPrices (ITEM_ID, PRICE)

Unconnected lookups 299

Use the following guidelines to write an expression that calls an unconnected Lookup transformation:

• The order in which you list each argument must match the order of the lookup conditions in the Lookup
transformation.

• The datatypes for the fields in the expression must match the datatypes for the input fields in the Lookup
transformation.

• The argument fields in the expression must be in the same order as the input fields in the lookup
condition.

• If you call a connected Lookup transformation in a :LKP expression, Data Integration marks the mapping
invalid.

Connected Lookup example
In the following example, the Lookup transformation performs a lookup on an Orders table and returns all the
orders for a specific customer. You could also define the Lookup to return only the first order or last order for
the customer.

First, you configure a Lookup Condition, which is an expression that identifies what rows to return from the
lookup table. For example, create a Simple Lookup Condition to find all the records where the CUSTOMER_ID
Lookup Field is equal to the Incoming Field, CUSTOMER_IN.

Based on this condition, the Lookup finds all the rows where the customer ID is equal to the customer
number that is passed to the Lookup transformation.

You can also add multiple conditions. For example, if you add this condition, the Lookup returns only the
orders that are greater than $100.00.

O_ORDER_AMT > 100.00

The Lookup returns data only when all conditions are true.

Dynamic Lookup example
To configure a Lookup transformation to be dynamic, use a dynamic lookup cache.

A dynamic cache is helpful when the source table contains a large amount of data or it contains duplicate
primary keys.

The following example illustrates the advantage of using a dynamic cache rather than a static cache when
the source table includes duplicate primary keys.

You want to update your payroll table with data from your Human Resources department. The payroll table
includes the following data, where ID is the primary key:

ID Name Location

1 Abhi USA

2 Alice UK

300 Chapter 21: Lookup transformation

You create a mapping with a Lookup transformation and use the payroll table for the target and the lookup
cache. You configure the cache to be dynamic because you expect the Human Resources department's table
to contain duplicate keys.

In the mapping, you specify the Human Resources department's table to be the source. The source table
includes the following data:

ID Name Location

1 Abhi India

2 Alice UK

3 James Japan

3 James USA

You create a mapping task to update the payroll table. When the mapping task begins, it creates the cache
file that contains the rows in the target table. As the task processes the rows, it flags the first row as an
update and it updates the cache. It flags the third row as an insert and inserts the row in the cache. It flags
the fourth row as an update because the row exists in the cache.

If you follow the same scenario using a static cache, the task flags the fourth row as an insert. The cache
does not contain the row for James because it does not update as the task processes the rows. The target
database produces an error because it cannot handle two rows with the same primary key.

Unconnected Lookup example
You can use an unconnected Lookup transformation to replace cryptic or numeric ID values in a table with
meaningful names from a lookup table.

For example, you need to load some sales order data from SAP transactional tables to a relational table in
your data warehouse. The SAP tables contain numeric IDs for values such as the sales group and sales
office. In the data warehouse table, you want to replace the numeric IDs with the corresponding names in
your local language. The name that is associated with each ID is stored in a reference table. Use an
unconnected Lookup transformation to retrieve the names from the reference table.

The following image shows the mapping:

Configure the transformations in the following ways:

Source transformation

Use a Source transformation to specify the tables from which to extract data.

On the Source tab, configure the source connection and select the tables from which you want to extract
data.

Unconnected Lookup example 301

First Expression transformation (optional)

Optionally, use an Expression transformation to rename fields and replace null values.

On the Incoming Fields tab, use the Named Fields field selection criteria to select the fields that you
want to load to the target table. If required, rename the selected fields to give them more meaningful
names.

On the Expression tab, create output fields to replace the null values. For example, to replace null values
for the sales group code and sales office code with spaces, you might create the following output fields:

Output Field Expression

in_sales_group IIF(ISNULL(sales_group_code),' ',sales_group_code)

in_sales_office IIF(ISNULL(sales_office_code),' ',sales_office_code)

Unconnected Lookup transformation

Use an unconnected Lookup transformation to retrieve the descriptions from the reference table.

On the General tab, enable the Unconnected Lookup option.

On the Incoming Fields tab, create an incoming field for each value that you need to pass to the Lookup
transformation to retrieve the data that you want. For example, to pass the domain name, language, and
code value to the Lookup transformation, create the in_domain_name, in_language, and in_lookup_code
fields.

On the Lookup Object tab, configure the lookup connection and select the reference table that you want
to use as the lookup table.

On the Lookup Condition tab, specify the lookup condition for each incoming field. For example:

Lookup Field Operator Incoming Field

domain_name = in_domain_name

language_code = in_language

lookup_code = in_lookup_code

On the Return Fields tab, select the field in the reference table that you want to return. For example, to
return a description, you might select lookup_description as the return field.

Second Expression transformation

Use an Expression transformation to call the unconnected Lookup transformation and retrieve the name
that is associated with each ID value.

On the Incoming Fields tab, include all fields from the upstream transformation.

On the Expression tab, create an output field to retrieve each description from the Lookup
transformation. Call the Lookup transformation with a :LKP expression. For example, to retrieve the

302 Chapter 21: Lookup transformation

sales group and sales office names from the appropriate domain in English, you might create the
following output fields:

Output Field Expression

sales_group :LKP.lkp_Descriptions('sales_group','en',in_sales_group)

sales_office :LKP.lkp_Descriptions('sales_office','en',in_sales_office)

Target transformation

On the Target tab, configure the target connection and select the relational table to which you want to
load data.

On the Field Mapping tab, map the output fields from the upstream transformation to the appropriate
target fields. For example, to map the sales_group and sales_office output fields from the second
Expression transformation to the SALES_GROUP and SALES_OFFICE target fields, configure the
following field mapping:

Target Field Mapped Field

SALES_GROUP sales_group

SALES_OFFICE sales_office

Unconnected Lookup example 303

C h a p t e r 2 2

Machine Learning transformation
In advanced mode, the Machine Learning transformation runs a machine learning model and returns
predictions. It uses a REST API to pass incoming data to the machine learning model and pass the
predictions to downstream transformations.

The following video shows a use case for how you can use the Machine Learning transformation to
incorporate a machine learning model into data integration jobs in your organization:

Consuming a Machine Learning Model in Informatica Cloud Data Integration Elastic

Before you use the Machine Learning transformation, verify that the following requirements are met:

• The machine learning model is deployed on a machine learning platform, such as Amazon SageMaker or
Azure Machine Learning, and a REST endpoint is available to get predictions from the model.

• An API collection has a POST request to access the REST endpoint using a REST V3 connection.

For information about API collections, see Components.

Deploying the model as a REST endpoint
The machine learning model must be deployed as a REST endpoint. The Machine Learning transformation
uses the endpoint to communicate with the model.

Deploy the model as a REST endpoint according to your machine learning platform:

Amazon SageMaker

In Amazon SageMaker, use Amazon API Gateway and AWS Lambda to deploy the model as an endpoint.

For more information, refer to the instructions in the following AWS Machine Learning blog post:

https://aws.amazon.com/blogs/machine-learning/call-an-amazon-sagemaker-model-endpoint-using-
amazon-api-gateway-and-aws-lambda/

Azure Machine Learning

In Azure Machine Learning, deploy the model as a real-time endpoint.

For more information about real-time endpoints, refer to the Microsoft Azure documentation.

After you deploy the model as a REST endpoint, create an API collection and configure a REST API request to
access the endpoint.

304

https://www.youtube.com/watch?v=X1prpiVeg4A&ab_channel=InformaticaSupport
https://aws.amazon.com/blogs/machine-learning/call-an-amazon-sagemaker-model-endpoint-using-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/machine-learning/call-an-amazon-sagemaker-model-endpoint-using-amazon-api-gateway-and-aws-lambda/

Accessing the machine learning model
Define how the Machine Learning transformation accesses the machine learning model on the Model tab.

Select a REST API request from an API collection. You can use the same REST V3 connection as the API
collection, or you can select a different REST V3 connection.

You cannot use the following authorization methods in the REST V3 connection because they are not
available in the Machine Learning transformation:

• OAuth 2.0 authorization code

• OAuth 2.0 client credentials

If you run the Machine Learning transformation in a serverless runtime environment and you want to
configure TLS for server authentication between the transformation and the machine learning model, see the
Administrator help for details. To configure TLS for a non-serverless runtime environment, contact
Informatica Global Customer Support.

The API collection must have a POST request to access the machine learning model. If you change the
request type and synchronize the API collection, the Machine Learning transformation clears the Model,
Request Mapping, and Response Fields tabs. You must select a different POST request and reconfigure the
transformation.

Mapping fields to the request schema
Map incoming fields to request schema fields on the Request Mapping tab. The Machine Learning
transformation uses the request schema fields to send data to the machine learning model at the REST
endpoint.

The request schema fields come from the request schema in the REST API request from the API collection.
The working field name is the key that the Machine Learning transformation passes in the REST API request.
If the REST API can't process a special character in the field name, the working field name replaces the
special character. For example, underscores are replaced with a period character (.).

The names of incoming fields and request schema fields can differ, but the data types and hierarchies must
match. All request schema fields must have a mapped field, even if the fields are not mandatory in the REST
API.

Note that only parent fields appear in the request mapping. To review child fields, refer to the incoming fields
in the Machine Learning transformation and the request schema fields in the API collection.

Accessing the machine learning model 305

Mapping hierarchical fields
To map hierarchical fields in the request mapping, the hierarchies of the incoming fields and request schema
fields must match.

For example, the following image shows a request schema in an API collection:

The following image shows incoming fields in a Machine Learning transformation with a hierarchy that
matches the request schema:

306 Chapter 22: Machine Learning transformation

The following image shows the request mapping between the incoming fields and the request schema fields:

If the hierarchies don't match, use a Hierarchy Processor transformation before the Machine Learning
transformation to restructure the incoming data according to the request schema fields. For more
information, see “Hierarchy Processor transformation overview” on page 185.

Request mapping options
Configure request mapping options to define how incoming fields are mapped to request schema fields.

You can configure the following request mapping options:

Field Map Options

Method to map fields to the target. Use one of the following options:

• Manual. Manually link incoming fields to target fields. Selecting this option removes links for
automatically mapped fields. To map fields manually, drag a field from the incoming fields list and
position it next to the appropriate field in the target fields list. Or, you can map selected fields, unmap
selected fields, or clear all of the mappings using the Actions menu.

• Automatic. Automatically link fields with the same name. Use when all of the fields that you want to
link share the same name. You cannot manually link fields with this option.

• Completely Parameterized. Use a parameter to represent the field mapping. In the task, you can
configure all field mappings.

• Partially Parameterized. Configure links in the mapping that you want to enforce and use a parameter
to allow other fields to be mapped in the mapping task. Or, use a parameter to configure links in the
mapping, and allow all fields and links to display in the task for configuration.
To see more information on field mapping parameters, see Mappings.

Parameter

Parameter to use for the field mapping.

New Parameter

Creates a field mapping parameter.

Show Fields

Controls the fields that appear in the Incoming Fields list. Show all fields, unmapped fields, or mapped
fields.

Automap

Links fields with matching names. Allows you to link matching fields, and then manually configure other
field mappings.

Mapping fields to the request schema 307

You can map fields in the following ways:

• Exact Field Name. Data Integration matches fields of the same name.

• Smart Map. Data Integration matches fields with similar names. For example, if you have an incoming
field Cust_Name and a target field Customer_Name, Data Integration automatically links the Cust_Name
field with the Customer_Name field.

You can use both Exact Field Name and Smart Map in the same field mapping. For example, use Exact
Field Name to match fields with the same name and then use Smart Map to map fields with similar
names.

You can undo all automapped field mappings by clicking Automap > Undo Automap. To unmap a single
field, select the field to unmap and click Actions > Unmap.

Data Integration highlights newly mapped fields. For example, when you use Exact Field Name, Data
Integration highlights the mapped fields. If you then use Smart Map, Data Integration only highlights the
fields mapped using Smart Map.

Action menu

Additional field link options. Provides the following options:

• Map Selected. Links the selected incoming field with the selected target field.

• Unmap Selected. Clears the link for the selected field.

• Clear Mapping. Clears all field mappings.

Show

Determines how field names appear in the target fields list. Use technical field names or labels.

Viewing response fields
View the response schema fields that the REST API returns on the Response Fields tab. The response
schema fields capture the predictions that you can pass to downstream transformations.

The response schema fields come from the response schema in the REST API request from the API
collection. The working field name is the key that the Machine Learning transformation reads from the REST
API response. The working field name might replace special characters that the REST API can't process. The
field name is the corresponding output field that the Machine Learning transformation uses to represent the
response data in the mapping.

Additionally, the ouput fields that are passed to downstream transformations can't contain special characters
except for the following characters: @ # (). The Machine Learning transformation replaces the special
characters with an underscore (_).

Configuring bulk requests
Configure bulk requests to optimize performance by combining multiple requests into one request that the
Machine Learning transformation sends to the machine learning model. Bulk requests can improve

308 Chapter 22: Machine Learning transformation

performance by reducing processing overhead and the amount of time that it takes to communicate with the
model.

To create a bulk request, the Machine Learning transformation selects the highest-level array field in the
request schema. In the JSON request body for the bulk request, the transformation combines request rows
as elements of the selected array field so that one JSON request body contains data for multiple requests.
You can configure bulk request options to determine how much data each bulk request contains.

For example, the request schema might have the following structure:

The Machine Learning transformation selects the data array as the highest-level array field to combine
requests. If you configure each bulk request to send 2 MB of data to the machine learning model, the
Machine Learning transformation configures the data array in the JSON request body to include data for 2
MB of request rows.

The highest-level array cannot have sibling array fields. If the highest-level array has a sibling field of a
primitive data type, the data in the sibling field will not be combined. Instead, one random record in the
sibling field will be sent to the machine learning model.

To create a bulk response, the machine learning endpoint must combine response rows as elements of the
highest-level array in the response schema. The Machine Learning transformation parses the array into
output rows. Review the bulk request options to verify which field the Machine Learning transformation will
parse.

To use bulk requests in the Machine Learning transformation, the machine learning endpoint must be
configured to accept bulk requests and send bulk responses.

Configuring bulk requests 309

Bulk request options
Bulk request options determine the fields that the Machine Learning transformation uses to combine
requests and parse responses. They also determine how much data each bulk request contains.

The following table describes the bulk request options:

Option Description

Combine Requests
on Field

The transformation combines request rows as elements of this array field and sends one
request to the machine learning model. The request schema determines this field
automatically.

Request Size Maximum size of each request. To choose a size, consult the best practices on your machine
learning platform.

Parse Requests on
Field

The machine learning endpoint combines response rows as elements of this array field. Then,
the transformation parses the array into output rows. The response schema determines this
field automatically.

Configuring an API proxy
You can configure an API proxy to enforce security for APIs at run time.

The following table describes the types of proxies that are available:

Proxy type Description

None Bypasses the proxy server configured at the agent, Spark, or connection level.

Spark Considers the proxy configured for the Spark engine.

Custom Considers the proxy configured at the connection level.

Note: A platform proxy is not available and you must configure a Spark proxy instead. A platform proxy
considers the proxy configured at the agent level, but mappings that use the Machine Learning
transformation refer to the Spark engine for proxy details.

API proxies do not apply if the Machine Learning transformation runs in a serverless runtime environment.

Bypassing the proxy server
To bypass the proxy server, select None as the proxy type in the REST V3 connection. Do not configure a
proxy server at the agent or Spark level. For more information, see the help for the appropriate connector.

Configuring a Spark proxy
A Spark proxy replaces a platform proxy. You must configure the Spark proxy in the mapping task. For more
information, see the help for the appropriate connector.

1. In the REST V3 connection, select Platform as the proxy type.

310 Chapter 22: Machine Learning transformation

2. In the mapping task, set the Spark session property spark.driver.extraJavaOptions to the following
value: -Dhttp.proxyHost=<host> -Dhttp.proxyPort=<port> -Dhttp.proxyUser=<user> -
Dhttp.proxyPassword=<password>

Configuring a custom proxy
Configure a custom proxy to use the proxy details in the REST V3 connection. Do not configure a proxy server
at the agent or Spark level. For more information, see the help for the appropriate connector.

1. In the REST V3 connection, select Custom as the proxy type.

2. Configure the host, post, user, and password.

3. Save the connection.

Troubleshooting
Use Monitor to access log files to troubleshoot REST API requests and responses in the Machine Learning
transformation. Set the tracing level to verbose data to view the details.

The following table lists the details that are available in each log file:

Log file Details

Spark driver log - Input schema
- Output schema
- URL
- HTTP method

Spark executor log If the mapping fails, the following details become available for each failed row:
- Response code*
- Request details, such as the URL, headers, and request body
- Response details, such as the headers and response body
The following details are available for each successful row:
- Response code
- Time to receive the response

Session log Stack trace, if the mapping fails*

* Also available when the log level is set to INFO.

For more information about log files in advanced mode, see the Monitor help.

Troubleshooting 311

Error handling
The Machine Learning transformation handles errors based on the type of issue that occurs and the response
code that it receives from the REST API. You can review the response details in the Spark executor log.

The mapping fails when the following types of issues occur:

• Connection issues when there is a connection timeout, the route cannot be found, or there is an unknown
host.

• Syntax issues in the URL.

• SSL handshake issues such as certificate issues during SSL handshakes with the server.

The following table describes the action that occurs for each response code:

HTTP Status Code Action

100 Continue Row is skipped.
Partial requests are not permitted.

101,102,103 Informational, interim Mapping fails.

3XX Redirection Row is skipped.
Mapping fails if the redirected URL cannot be reached or the redirected URL
returns a code that fails the mapping.

400 Bad request Row is skipped.

401 Unauthorized Mapping fails.

403 Forbidden Mapping fails.

404 Resource not found Mapping fails.

405 Method not allowed Mapping fails.

407 Proxy authentication required Request is tried again.

408 Request timeout Mapping fails.

409 Conflict Row is skipped.

415 Unsupported media type Mapping fails.

418 I'm a teapot Mapping fails.

421 Misdirected request Mapping fails.

423 Resource is locked Row is skipped.

429 Too many requests Mapping fails.

500 Internal server error Mapping fails.

501 Not implemented Mapping fails.

312 Chapter 22: Machine Learning transformation

HTTP Status Code Action

502 Bad gateway Mapping fails.

503 Service unavailable Mapping fails.

504 Gateway timeout Mapping fails.

505 HTTP version not supported Mapping fails.

506 Server internal configuration error Mapping fails.

511 Network authentication required Mapping fails.

Machine Learning transformation example
You're a data scientist at a popular video streaming site and you need to generate a report on which users are
likely to cancel their subscription so the marketing team can target their upcoming ad campaign.

You built a machine learning model to predict how likely users are to cancel their subscription based on their
watch history, content preferences, and other user data. Your company stores this user data in a cloud data
lake. To generate the report, you'll create a mapping to read from the data lake, pass the data through the
machine learning model, and filter out results that aren't important to the marketing campaign.

Before you create the mapping, you set up a REST endpoint for the machine learning model. You also create
an API collection with a POST request in Data Integration.

Then, you create a mapping that includes a Machine Learning transformation and a Filter transformation. The
following image shows an overview of the mapping:

You configure the transformations in the following ways:
Machine Learning transformation

On the Model tab, select a POST request from your API collection as the operation and select the
connection to the machine learning model. The following image shows the configured Model tab:

Machine Learning transformation example 313

On the Request Mapping tab, verify that the mapping of the incoming field from the Source
transformation to the request schema field is correct. If needed, manually map the fields. The following
image shows the configured Request Mapping tab:

Filter transformation

Since the marketing team is only interested in users who are unlikely to renew their subscription, set the
filter condition to filter for users who have a probability of renewing less than 50%. The following image
shows the configured filter condition:

When you run the mapping, it reads user data from the cloud data lake. The Machine Learning transformation
makes a REST API call to pass the data through the request schema fields to the machine learning model.
The model generates predictions about each user's likelihood of renewing, and the Machine Learning
transformation captures the predictions in the response schema fields. The Machine Learning transformation
passes the results to the Filter transformation, which filters out users who are likely to renew and passes
users who are unlikely to renew to the Target transformation. The Target transformation writes the results to
the target file, which you can send over to the marketing team.

314 Chapter 22: Machine Learning transformation

C h a p t e r 2 3

Mapplet transformation
The Mapplet transformation inserts a mapplet that you created in Data Integration, imported from
PowerCenter, or generated from an SAP asset into a mapping. Each Mapplet transformation can contain one
mapplet. You can add multiple Mapplet transformations to a mapping or mapplet.

The Mapplet transformation can be active or passive based on the transformation logic within the mapplet.
An active mapplet includes at least one active transformation. An active mapplet can return a number of
rows that is different from the number of source rows passed to the mapplet. A passive mapplet includes
only passive transformations. A passive mapplet returns the same number of rows that are passed from the
source.

Use a Mapplet transformation to accomplish the following goals:

Extend the data transformation capabilities of Data Integration.

For example, you want to create a mapping that passes customer records to a target if the customers
pass a credit check. You create a Web Services transformation to run a credit check on each customer.
You include the Web Services transformation in a mapplet and use the mapplet in a mapping to perform
the credit check.

Reuse transformation logic in different mappings.

For example, you have different fact tables that require a series of dimension keys. You create a mapplet
that contains a series of Lookup transformations to find each dimension key. You include the mapplet in
different fact table mappings instead of re-creating the lookup logic in each mapping.

Hide complex transformation logic.

The Mapplet transformation shows the mapplet incoming and outgoing fields. It does not display the
transformations that the mapplet contains.

For more information about mapplets, see Components.

Mapplet transformation configuration
When you add a Mapplet transformation to a mapping, you must first select the mapplet that contains the
transformation logic that you want to include in the mapping. If the mapplet includes one or more input
groups, configure the incoming fields and field mappings. If the mapplet includes one or more output groups,
verify the output fields.

To configure a Mapplet transformation, complete the following tasks:

1. Select the mapplet that you want to include in the transformation.

2. If the mapplet includes one or more input groups, configure the incoming fields.

315

By default, the transformation inherits all incoming fields from the upstream transformation. You can
define a field rule to limit or rename the incoming fields. If the mapplet contains multiple input groups,
configure incoming fields for each input group.

For information about configuring incoming fields for a transformation, see “Incoming fields” on page
24.

3. If the mapplet includes one or more input groups, configure field mappings to define how data moves
from the upstream transformation to the Mapplet transformation.

If the mapplet contains multiple input groups, configure the field mappings for each input group.

4. If the mapplet contains one or more output groups, verify the mapplet output fields on the Output Fields
tab. Connect at least one output group to a downstream transformation.

Selecting a mapplet
Select the mapplet that you want to use in the Mapplet transformation on the Mapplet tab of the Properties
panel. You can select a mapplet that you created or imported into Data Integration, or you can select a
mapplet that is included in an installed bundle.

1. In the Properties panel for the Mapplet transformation, click the Mapplet tab.

2. Click Select.

3. Open the project and folder that contains the mapplet and click Select.

Mapplets in installed bundles are in the Add-On Bundles project.

The selected mapplet appears in the Properties panel.

If the mapplet that you select does not include a source, configure the incoming fields and field mappings
after you select the mapplet.

If the mapplet that you select does not contain a target, configure the output fields and field mappings after
you select the mapplet.

Mapplet transformation field mappings
Configure field mappings in a Mapplet transformation to define how data moves from the upstream
transformation to the Mapplet transformation. Configure field mappings on the Field Mapping tab of the
Properties panel.

Note: Mapped field names can have a maximum of 72 characters.

You can configure the following field mapping options:

Mapplet Input Group

The input group for which you want to configure field mappings. This option appears when the Mapplet
transformation has multiple input groups.

316 Chapter 23: Mapplet transformation

Field Map Options

Method of mapping fields to the Mapplet transformation. Select one of the following options:

• Manual. Manually link incoming fields to Mapplet transformation input fields. Removes links for
automatically mapped fields.

• Automatic. Automatically link fields with the same name. Use when all of the fields that you want to
link share the same name. You cannot manually link fields with this option.

Options

Controls how fields are displayed in the Incoming Fields and Mapplet Input Fields lists. Configure the
following options:

• The fields that appear. You can show all fields, unmapped fields, or mapped fields.

• Field names. You can use technical field names or labels.

Automap

Links fields with matching names. Allows you to link matching fields, and then manually configure other
field mappings.

You can map fields in the following ways:

• Exact Field Name. Data Integration matches fields of the same name.

• Smart Map. Data Integration matches fields with similar names. For example, if you have an incoming
field Cust_Name and a target field Customer_Name, Data Integration automatically links the Cust_Name
field with the Customer_Name field.

You can use both Exact Field Name and Smart Map in the same field mapping. For example, use Exact
Field Name to match fields with the same name and then use Smart Map to map fields with similar
names.

You can undo all automapped field mappings by clicking Automap > Undo Automap. To unmap a single
field, select the field to unmap and click Actions > Unmap.

Data Integration highlights newly mapped fields. For example, when you use Exact Field Name, Data
Integration highlights the mapped fields. If you then use Smart Map, Data Integration only highlights the
fields mapped using Smart Map.

Action menu

Additional field mapping options. Provides the following options:

• Map Selected. Links the selected incoming field with the selected mapplet input field.

• Unmap Selected. Clears the link for the selected field.

• Clear Mapping. Clears all field mappings.

Mapplet parameters
When you select a mapplet that contains parameters, the parameters are renamed in the Mapplet
transformation. You can view the corresponding parameter names on the Parameter tab of the Properties
panel.

In the Mapplet transformation, mapplet parameter names are prefixed with the Mapplet transformation
name.

Mapplet parameters 317

The following image shows the Parameters tab:

You can edit the properties of the mapplet parameters, but you cannot change the parameter type or delete
the parameters. To delete a parameter, open the mapplet and remove the parameter.

To edit the parameter properties, click the new parameter name on the Parameters tab or on the Parameters
panel. When you change the parameter properties in a Mapplet transformation, the changes do not affect the
mapplet.

You can reuse the parameters in other transformations in the mapping.

Mapplet transformation output fields
When you select a mapplet that contains an Output transformation to use in a Mapplet transformation, the
mapplet output fields appear on the Output Fields tab of the Properties panel.

The Mapping Designer displays the name, type, precision, scale, and origin for each output field in each
output group. You cannot edit the transformation output fields. If you want to exclude output fields from the
data flow or rename output fields before you pass them to a downstream transformation, configure the field
rules in the downstream transformation.

Mapplet transformation names
Data Integration renames the transformations in a mapplet when you use the mapplet in a Mapplet
transformation. If you reference a transformation in the mapplet in a downstream transformation, be sure to
use the updated name.

The mapplet that you use in the Mapplet transformation might contain transformations with names that
conflict with the names of transformations in the mapping. To avoid name conflicts with transformations in
the mapping, Data Integration prefixes the names of transformations in the mapplet with the Mapplet
transformation name at run time.

For example, a mapplet contains an Expression transformation named Expression_1. You create a mapping
and use the mapplet in the Mapplet transformation Mapplet_Tx_1. When you run the mapping, the Expression
transformation is renamed to Mapplet_Tx_1_Expression_1.

318 Chapter 23: Mapplet transformation

If the mapplet contains another Mapplet transformation, Data Integration also prefixes the transformation
names with the second Mapplet transformation name. For example, the mapplet in the previous example also
contains a Mapplet transformation named MappletTx, which contains FilterTx_1. In the mapping, FilterTx_1 is
renamed to Mapplet_Tx_1_MappletTx_FilterTx_1.

In most cases, Data Integration truncates transformation names that contain more than 80 characters. Data
Integration doesn't truncate the names of Mapplet transformations that contain Hierarchy Builder, Hierarchy
Parser, or Structure Parser transformations. When you use a Hierarchy Builder, Hierarchy Parser, or Structure
Parser transformation in a mapplet, to prevent runtime errors, be sure that the combined Mapplet
transformation name doesn't exceed 80 characters.

Note: Data Integration only renames transformations in mapplets when the mapplet is used in a mapping
created after the April 2022 release.

Synchronizing a mapplet
If the interface of a mapplet changes after it has been added to a Mapplet transformation, you must
synchronize the mapplet to get the changes. Synchronize a mapplet on the Mapplet tab.

Mappings and mapplets that use the mapplet are invalid until the mapplet is synchronized. If you run a
mapping task that includes a changed mapplet, the task fails.

When you synchronize a mapplet, the updates might cause validation errors in other transformations in the
mapping or mapplet.

You cannot synchronize a mapplet that you imported into Data Integration from PowerCenter or SAP.

To synchronize a mapplet, perform the following steps:

1. Open the mapping or mapplet that uses the mapplet.

2. Select the mapplet transformation.

3. On the Mapplet tab, click Synchronize.

4. Correct any resulting errors in the transformation logic.

Synchronizing a mapplet 319

C h a p t e r 2 4

Normalizer transformation
The Normalizer transformation is an active transformation that transforms one incoming row into multiple
output rows. When the Normalizer transformation receives a row that contains multiple-occurring data, it
returns a row for each instance of the multiple-occurring data.

For example, a relational source includes four fields with quarterly sales data. You can configure a
Normalizer transformation to generate a separate output row for each quarter.

When the Normalizer transformation returns multiple rows from an incoming row, it returns duplicate data for
single-occurring incoming columns.

When you configure a Normalizer transformation, you define Normalizer properties on the following tabs of
the Properties panel:

• Normalized Fields tab. Define the multiple-occurring fields and specify additional fields that you want to
use in the mapping.

• Field Mapping tab. Connect the incoming fields to the normalized fields.

Normalized fields
Define the fields to be normalized on the Normalized Fields tab. You can also include other incoming fields
that you want to use in the mapping.

When you define normalized fields, you can create fields manually or select fields from a list of incoming
fields. When you create a normalized field, you can set the data type to String or Number, and then define the
precision and scale. In advanced mode, you can use any primitive data type.

In advanced mode, the Normalizer transformation produces multiple output groups. Otherwise, the
Normalizer transformation produces only one output group.

When incoming fields include multiple-occurring fields without a corresponding category field, you can create
the category field to define the occurs for the data. For example, to represent three fields with different types
of income, you can create an Income category field and set the occurs value to 3.

Occurs configuration
Configure the occurs value for a normalized field to define the number of instances the field occurs in
incoming data.

To define a multiple occurring field, set the occurs value for the field to an integer greater than one. When you
set an occurs value to greater than one, the Normalizer transformation creates a generated column ID field
for the field. The Normalizer transformation also creates a generated key field for all normalized data.

320

The Normalizer transformation also uses the occurs value to create a corresponding set of output fields. The
output fields display on the Field Mapping tab of the Normalizer transformation. The naming convention for
the output fields is <occurs field name>_<occurs number>.

To define a single-occurring field, set the occurs value for the field to one. Define a single-occurring field to
include incoming fields that do not need to be normalized in the normalized fields list.

Unmatched groups of multiple-occurring fields
You can normalize more than one group of multiple-occurring fields in a Normalizer transformation. When
you include more than one group and the occurs values do not match, configure the mapping to avoid
validation errors.

Use one of the following methods to process groups of multiple-occurring fields with different occurs values.

Write the normalized data to different targets

You can use multiple-occurring fields with different occurs values when you write the normalized data to
different targets.

For example, the source data includes an Expenses field with four occurs and an Income field with three
occurs. You can configure the mapping to write the normalized expense data to one target and to write
the normalized income data to a different target.

Use the same occurs value for multiple occurring fields

You can configure the multiple-occurring fields to use the same number of occurs, and then use the
generated fields that you need. When you use the same number of occurs for multiple-occurring fields,
you can write the normalized data to the same target.

For example, when the source data includes an Expenses field with four occurs and an Income field with
three occurs, you can configure both fields to have four occurs.

When you configure the Normalizer field mappings, you can connect the four expense fields and the
three income fields, leaving the unnecessary income output field unused. Then, you can configure the
mapping to write all normalized data to the same target.

Generated keys
The Normalizer transformation generates key values for normalized data.

Generated keys fields appear on the Normalized Fields tab when you configure the field to have more than
one occurrence.

The mapping task generates the following fields for normalized data.

Generated Key

A key value that the task generates each time it processes an incoming row. When a task runs, it starts
the generated key with one and increments by one for each processed row.

The Normalizer transformation uses one generated key field for all data to be normalized.

The naming convention for the Normalizer generated key is GK_<redefined_field_name>.

Note: The generated key is not applicable in advanced mode.

Generated Column ID

A column ID value that represents the instance of the multiple-occurring data. For example, if an
Expenses field that includes four occurs, the task uses values 1 through 4 to represent each type of
occurring data.

Normalized fields 321

The Normalizer transformation uses a generated column ID for each field configured to occur more than
one time.

The naming convention for the Normalizer generated key is GCID_<redefined_field_name>.

An advanced cluster processes the generated column ID field as a bigint. The Data Integration Server
processes the ID as an integer.

Normalizer field mapping
Map incoming fields to normalized fields on the Field Mapping tab of the Normalizer transformation.

When you configure the Normalizer field mappings, complete the following steps:

1. Map the multiple-occurring incoming fields that you want to normalize to the corresponding output fields
that the Normalizer transformation created.

Note: Map at least one output field for each set of normalized fields.

2. Map incoming fields to all normalized fields with a single occurrence.

Normalizer field mapping options
You can use the following field mapping options on the Normalizer Field Mapping tab.

Show Fields

Controls the fields that appear in the Incoming Fields list. Show all fields, unmapped fields, or mapped
fields.

Automap

Links fields with matching names. Allows you to link matching fields, and then manually configure other
field mappings.

You can map fields in the following ways:

• Exact Field Name. Data Integration matches fields of the same name.

• Smart Map. Data Integration matches fields with similar names. For example, if you have an incoming
field Cust_Name and a target field Customer_Name, Data Integration automatically links the Cust_Name
field with the Customer_Name field.

You can use both Exact Field Name and Smart Map in the same field mapping. For example, use Exact
Field Name to match fields with the same name and then use Smart Map to map fields with similar
names.

You can undo all automapped field mappings by clicking Automap > Undo Automap. To unmap a single
field, select the field to unmap and click Actions > Unmap.

Data Integration highlights newly mapped fields. For example, when you use Exact Field Name, Data
Integration highlights the mapped fields. If you then use Smart Map, Data Integration only highlights the
fields mapped using Smart Map.

Action menu

Additional field link options. Provides the following options:

• Map Selected. Links the selected incoming field with the selected target field.

322 Chapter 24: Normalizer transformation

• Unmap Selected. Clears the link for the selected field.

• Clear Mapping. Clears all field mappings.

Advanced properties
You can configure advanced properties for a Normalizer transformation. The advanced properties control
settings such as the tracing level for session log messages and whether the transformation is optional or
required.

The properties that are available vary based on the mapping mode.

You can configure the following properties:

Property Description

Tracing
Level

Detail level of error and status messages that Data Integration writes in the session log. You can choose
terse, normal, verbose initialization, or verbose data. Default is normal.

Optional Determines whether the transformation is optional. If a transformation is optional and there are no
incoming fields, the mapping task can run and the data can go through another branch in the data flow.
If a transformation is required and there are no incoming fields, the task fails.
For example, you configure a parameter for the source connection. In one branch of the data flow, you
add a transformation with a field rule so that only Date/Time data enters the transformation, and you
specify that the transformation is optional. When you configure the mapping task, you select a source
that does not have Date/Time data. The mapping task ignores the branch with the optional
transformation, and the data flow continues through another branch of the mapping.

Target configuration for Normalizer transformations
When you use a Normalizer transformation in a mapping, consider the following configuration guidelines for
targets and Target transformations:

• To write normalized data to the target, map the multiple occurring field to a target field in the Target
transformation field mapping.

• To include generated keys or generated column IDs in target data, create additional target fields as
required, and then map the fields in the Target transformation field mapping.

Note: Generated keys are not applicable in advanced mode.

Advanced properties 323

Normalizer field rule for parameterized sources
When you use a parameter as the source object to provide data for a Normalizer transformation, use a
Named Fields field rule in the Normalizer to define incoming fields.

When you configure a Normalizer transformation, you define the field mappings between the incoming fields
and the normalized fields. When you use a parameter for a source object, field names do not appear in the
list of incoming fields until you use a Named Field rule to add fields.

To add fields, on the Incoming Fields tab of the Normalizer transformation, create a Named Fields rule. In the
Include Named Fields dialog box, click Add and enter the name of an incoming field.

Create fields to represent all of the source fields that you want to use in the Normalizer transformation.

Mapping example with a Normalizer and Aggregator
A relational table includes the quarterly unit sales for each store. To calculate the annual unit sales for each
store, use a Normalizer transformation to create a row for each quarter. Then, use an Aggregator
transformation to aggregate the quarterly sales for each store.

The following image shows the mapping to create:

The source data includes the following rows:

StoreNo Q1 Q2 Q3 Q4 Year
1001 30 50 48 80 2014
1022 100 120 125 140 2014
1190 80 108 123 134 2014

Use the Normalizer transformation to pivot source data before the data passes to the Aggregator
transformation, as follows:

StoreNo QuarterlySales
1001 30
1001 50
1001 48
1001 80
1022 100
1022 120
1022 125
1022 140
1190 80
1190 108
1190 123
1190 134

Define the normalized fields

On the Normalized Fields tab, create a normalized field called "QuarterlySales." To indicate that this field
represents four fields, set the occurs value to four.

To include the store number data in the mapping, from the menu, select Generate From Incoming Fields and
select StoreNo. Use the default occurs value of one because this field does not include multiple-occurring
data.

324 Chapter 24: Normalizer transformation

The following image shows the Normalized Field tab after adding both fields:

Notice that when you set the QuarterlySales occurs value to four, the Normalizer creates the generated
column ID field and the generated key field.

Configure the Normalizer field mappings

On the Field Mapping tab of the Normalizer transformation, connect the incoming fields to the normalized
fields.

In the Normalized Fields list, the Normalizer replaces the multiple-occurring QuarterlySales field with
corresponding fields to hold the normalized data: QuarterlySales_1, QuarterlySales_2, QuarterlySales_3, and
QuarterlySales_4. The list also includes the StoreNo field.

Connect the incoming fields to the StoreNo and QuarterlySales normalized fields as follows:

Configure the Aggregator transformation

To calculate the annual sales by store, add an Aggregator transformation to the mapping and connect the
Normalizer to the Aggregator.

In the Aggregator transformation, use the default All Fields rule to pass all fields from the Normalizer to the
Aggregator.

To group data by store number, add a group by field on the Group By tab, and then select the StoreNo field.

Mapping example with a Normalizer and Aggregator 325

The following image shows the Group By tab with the StoreNo group by field:

On the Aggregate tab, create a Decimal output field named AnnualSales_byStore. To configure the output
field, use the QuarterlySales field in the following aggregate expression: SUM(QuarterlySales). The
QuarterlySales field represents all of the normalized quarterly data.

The following image shows the Aggregate tab with the AnnualSales_byStore output field:

Configure the Target

Add a Target transformation and connect the Aggregator transformation to the Target transformation.

Use the default All Fields rule to pass all fields from the Aggregator to the Target transformation.

On the Target tab, select the target connection and the target object.

On the Field Mapping tab, the incoming fields list includes the AnnualSales_byStore field created in the
Aggregator transformation, and the StoreNo field that passed through the mapping from the source.

The incoming fields list also includes the QuarterlySales and generated key columns created by the
Normalizer. These fields do not need to be written to the target.

Connect the StoreNo and AnnualSales_byStore fields to corresponding target fields.

326 Chapter 24: Normalizer transformation

The following image shows the configured Field Mapping tab:

Task results

When you run the task, the mapping task normalizes the source data, creating one row for each quarter. The
task groups the normalized data by store, and then aggregates the quarterly unit sales for each store.

The task writes the following data to the target:

StoreNo SalesbyStore
1001 208
1022 485
1190 445

Mapping example with a Normalizer and Aggregator 327

C h a p t e r 2 5

Output transformation
The Output transformation is a passive transformation that you use to pass data from a mapplet to a
downstream transformation.

Add output fields to the Output transformation to define the data fields you want to pass from the mapplet.
You must add at least one output field to each output transformation. You can add multiple output
transformations to a mapplet. Each Output transformation becomes an output group when you use the
mapplet in a Mapplet transformation. You must connect at least one output group to a downstream
transformation. You can connect an output group to multiple downstream transformations.

You can use an Output transformation in a mapplet but not in a mapping.

Output fields
Add output fields to an Output transformation to define the data fields you want to pass from the Mapplet to
the downstream transformation. You must add at least one output field to each Output transformation.

Add output fields on the Output Fields tab of the properties panel. To add a field, click Add Field, and then
enter the field name, data type, precision, and scale.

When you use the mapplet in a Mapplet transformation, map at least one output field to the downstream
transformation.

Field mapping
Map fields to configure how data moves from the upstream transformation to the Output transformation.

Configure field mappings on the Field Mapping tab.

The Field Mapping tab includes a list of incoming fields and a list of target fields.

Note: Mapped field names can have a maximum of 72 characters.

You can configure the following field mapping options:

Field Map Options

Method of mapping fields to the Mapplet transformation. Select one of the following options:

• Manual. Manually link incoming fields to Mapplet transformation input fields. Removes links for
automatically mapped fields.

328

• Automatic. Automatically link fields with the same name. Use when all of the fields that you want to
link share the same name. You cannot manually link fields with this option.

Options

Controls how fields are displayed in the Incoming Fields and Output Fields lists. Configure the following
options:

• The fields that appear. You can show all fields, unmapped fields, or mapped fields.

• Field names. You can use technical field names or labels.

Automap

Links fields with matching names. Allows you to link matching fields, and then manually configure other
field mappings.

You can map fields in the following ways:

• Exact Field Name. Data Integration matches fields of the same name.

• Smart Map. Data Integration matches fields with similar names. For example, if you have an incoming
field Cust_Name and a target field Customer_Name, Data Integration automatically links the Cust_Name
field with the Customer_Name field.

You can use both Exact Field Name and Smart Map in the same field mapping. For example, use Exact
Field Name to match fields with the same name and then use Smart Map to map fields with similar
names.

You can undo all automapped field mappings by clicking Automap > Undo Automap. To unmap a single
field, select the field to unmap and click Actions > Unmap.

Data Integration highlights newly mapped fields. For example, when you use Exact Field Name, Data
Integration highlights the mapped fields. If you then use Smart Map, Data Integration only highlights the
fields mapped using Smart Map.

Action menu

Additional field mapping options. Provides the following options:

• Map Selected. Links the selected incoming field with the selected mapplet input field.

• Unmap Selected. Clears the link for the selected field.

• Clear Mapping. Clears all field mappings.

Field mapping 329

C h a p t e r 2 6

Parse transformation
The Parse transformation adds a parse asset that you created in Data Quality to a mapping.

A parse asset defines a set of operations that identify tokens in an input field based on the content or
structure of the token. In a parsing operation, a token is a discrete word or string.

The Parse transformation parses the tokens to output fields that the asset specifies. When you configure the
transformation, you map an input field to the appropriate target field in the transformation. When the
mapping runs, the transformation searches the input field for tokens that meet the parsing criteria and writes
the tokens to the associated output fields. If the transformation can identify an input data value but a defined
output field is not available, the transformation may write the value to a predefined field for overflow data. If
the transformation cannot identify a value in the input data, it may write the value to a predefined field for
unparsed data. The asset that you add to the transformation determines the number of overflow and
unparsed data fields that the transformation creates.

A Parse transformation is similar to a Mapplet transformation, as it allows you to add data transformation
logic that you designed elsewhere to a mapping. Like mapplets, parse assets are reusable assets.

A Parse transformation shows incoming and outgoing fields. It does not display the logic that the parse asset
contains or allow to you edit the parse asset. To edit the parse asset, open it in Data Quality.

Parse transformation configuration
When you configure a Parse transformation in a mapping, you first select the parse asset that contains the
logic to include in the transformation. Next, you map an incoming field on the transformation to the target
field that parse asset specifies.

To configure the transformation, complete the following tasks:

1. Connect the Parse transformation to a Source transformation or other upstream object.

2. On the Parse tab, select the parse asset that you want to include in the transformation.

330

The following image shows the options that you use to select the parse asset:

3. On the Incoming Fields tab, verify the incoming fields.

By default, the transformation inherits all incoming fields from any connected upstream object in the
mapping. You can define a field rule to limit or rename the incoming fields.

4. On the Field Mapping tab, connect an incoming field to the target field.

The parse asset input names might reflect the name of an input field. If so, you can use the Automap
options to connect the fields.

5. Verify the output field properties on the Output Fields tab.

To learn more about the transformation output fields, see “Parse transformation output fields” on page
333.

6. You can optionally rename the Parse transformation and add a description on the General tab. You can
also update the tracing level for the transformation on the Advanced tab. The default tracing level is
Normal.

Note: If you update an asset in Data Quality after you add it to a transformation, you may need to synchronize
the asset version in the transformation with the latest version. For more information about data quality asset
synchronization, see “Synchronizing data quality assets” on page 109.

Parse transformation field mappings
Configure field mappings to define how data moves from the upstream transformation to the Parse
transformation. Configure field mappings on the Field Mapping tab of the Properties panel.

Note: You map an incoming field to a single field on a parse asset.

You can configure the following field mapping options:

Field map options

Method of mapping fields to the transformation.

Parse transformation field mappings 331

Select one of the following options:

• Manual. Manually link an incoming field to a transformation input field. Removes links for any
automatically mapped field.

• Automatic. Automatically link fields with the same name. Use when all of the fields that you want to
link share the same name. You cannot manually link fields with this option.

• Completely Parameterized. Use a parameter to represent the field mapping.
Choose the Completely Parameterized option when the parse asset in the transformation is
parameterized or any upstream transformation in the mapping is parameterized.

• Partially Parameterized. Configure links in the mapping that you want to enforce and use a parameter
to allow other fields to be mapped in the mapping task. Or, use a parameter to configure links in the
mapping, and allow all fields and links to display in the task for configuration.

Parameter

Select the parameter to use for the field mapping, or create a new parameter. This option appears when
you select Completely Parameterized or Partially Parameterized as the field map option. The parameter
must be of type field mapping.

Do not use the same field mapping parameter in more than one Parse transformation in a single
mapping.

Options

Controls how fields are displayed in the Incoming Fields and Target Fields lists.

Configure the following options:

• The fields that appear. You can show all fields, unmapped fields, or mapped fields.

• Field names. You can use technical field names or labels.

Automap

Links fields with matching names. Allows you to link matching fields and to manually configure other
field mappings. The Automap options appear when you select the Manual or Partially Parameterized
field map option.

You can map fields in the following ways:

• Exact Field Name. Data Integration matches fields of the same name.

• Smart Map. Data Integration matches fields with similar names. For example, if you have an incoming
field Cust_Name and a target field Customer_Name, Data Integration automatically links the Cust_Name
field with the Customer_Name field.

You can undo all automapped field mappings by clicking Automap > Undo Automap.

To unmap a single field, select the field to unmap and click Actions > Unmap on the context menu for the
field. To unmap one or more fields that you selected, click Unmap Selected on the Target Fields context
menu.

To clear all field mappings from the transformation, click Clear Mapping on the Target Fields context
menu.

332 Chapter 26: Parse transformation

Parse transformation output fields
A Parse transformation creates the output fields that the parse asset specifies. The type and number of
output fields depends on the parsing operations that the user configures in the parse asset. View the output
fields on the Output Fields tab of the Properties panel.

The Parse transformation can create some or all of the following types of output field:

Parsed data fields

Contain data values that meet the parsing criteria that the asset defines.

Overflow fields

Contain data values that meet the parsing criteria but for which a corresponding output field is not
available. The Parse transformation writes a value to an overflow field when all appropriate output fields
for the value are already populated.

Unparsed field

A field that contains any value that does not meet the parsing criteria that the asset defines.

Rule and guidelines for Parse transformation output fields

Consider the following rules and guidelines when you review the output fields on the transformation:

• The type and number of output fields depends on the parsing operations that the user configures in the
parse asset.

• When the asset specifies a regular expression or a dictionary, the transformation creates one or more
output fields for the data that each regular expression or dictionary parses successfully.

The user who configures the asset determines the number of output fields for each regular expression or
dictionary operation. Each regular expression or dictionary operation is called a step in the asset
configuration.

• When the asset specifies pattern-based parsing, the transformation creates a range of output fields that
represent the types of information that the pattern logic might find.

A pattern-based parsing operation can generate output fields for the following types of information:

- Person names, such as first names, family names, name prefixes, and name suffixes.

- Derived information, such as gender, formal greetings, and informal greetings.

- Label values that represent the pattern that the parsing operation identified in the input data row. The
Data Quality user can use the labels to enhance the pattern logic in the asset.

The asset logic determines the number of output fields for parsed data.

• When the asset specifies a regular expression or a dictionary, the transformation may create a single
overflow field for all overflow data. Or, the transformation may create an overflow field for each regular
expression or dictionary that the asset defines. The user can update the asset properties to determine the
policy for overflow fields.

When the asset specifies a pattern parsing operation, the transformation may or may not create a single
overflow field. The presence or absence of the overflow field depends on the locale that the asset
specifies for the input data. For example, the Parse transformation creates an overflow field for pattern
parsing operations when the asset specifies the locale as Portugal or Brazil. The Data Quality user sets
the locale.

Parse transformation output fields 333

• The transformation creates a single field for all unparsed data when the asset specifies a regular
expression or a dictionary.

The transformation may or may not create an unparsed data field when the asset specifies a pattern
parsing operation. The presence or absence of the unparsed data field in pattern-based parsing depends
on the locale that the asset specifies for the input data.

Advanced properties
You can configure advanced properties for a Parse transformation. The advanced properties control the
tracing level for session log messages.

You can configure the following property:

Property Description

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

334 Chapter 26: Parse transformation

C h a p t e r 2 7

Python transformation
In advanced mode, you can use the Python transformation to define transformation functionality using the
Python programming language. The Python transformation can be an active or passive transformation.

You can use the Python transformation to define simple or complex transformation functionality. You can
also use the Python transformation to implement machine learning. For example, you can load a pre-trained
model through a resource file and use the model to classify input data or to create predictions.

To create a Python transformation, you write the following types of Python code snippets:

• Pre-partition Python code that runs one time before it processes any input rows.

• Main Python code that runs when the transformation receives an input row.

• Post-partition Python code that runs after the transformation processes all input rows.

To use the Python transformation, your organization must have the appropriate licenses.

You can't use the Python transformation with a Graviton-enabled cluster. For more information about
Graviton-enabled clusters, see the Administrator help.

Note: When you create a Python transformation, ensure that you review the Python code to verify that it is
free from potentially unsafe active content such as queries, remote scripts, or data connections before you
run the code in a mapping task.

Install and configure Python
Install and configure your Python code to run on a Secure Agent machine. Configure tasks such as setting
the advanced session property and installing the Python packages.

Note: You can't create a custom Python installation when you use a serverless runtime environment, so these
steps don't apply.

To install and configure Python, complete the following tasks:

1. To allow the Python transformation to use third-party libraries, make sure that the runtime environment
has access to an installation of Python and the referenced resource files.

2. Install the prerequisite packages on the Secure Agent machine.

3. Download the version of Python that you want to install on the Secure Agent machine and extract the
files.

4. Prepare the installation directory.

5. Compile and build the installation directory.

6. Set environment variables to allow the Secure Agent machine access to the installation.

335

7. Verify the installation contains the correct folders.

8. For custom installations, install the str2bool library.

9. If your installation uses third-party libraries, install them.

10. Copy the installation to the Secure Agent machine.

11. If your installation uses third-party libraries, verify their installation.

Step 1. Enable access to third-party libraries
To use the Python transformation with third-party libraries, the runtime environment must have access to an
installation of Python and the resource files that you reference in the Python code.

When you install Python, you can include any third-party libraries you want to access in the Python code.

In the mapping task, use an advanced session property to specify the locations of the Python installation
directory and the Python executable:

1. In the mapping task advanced session properties, click Add.

2. Select advanced.custom.property as the session property name.

3. For the session property value, enter the following text:

infaspark.pythontx.executorEnv.PYTHONHOME=$INFA_HOME/python&:infaspark.pythontx.exec=
$INFA_HOME/python/bin/python3

4. Click Finish.

Step 2. Install prerequisite packages
Before you install Python, make sure that the Secure Agent machine has the required packages.

The following table lists the commands to install a package on the Secure Agent machine:

Package Command

OpenSSL sudo yum install openssl-devel

zlib sudo yum install zlib-devel

libffi sudo yum install libffi-devel

Step 3. Download the Python distribution
Find the version of Python that you want to install on the Secure Agent machine and extract the files.

1. Navigate to the home directory.

2. Download the Python distribution onto the Secure Agent machine. For example, you can run the
following command to get an installation of Python 3.6.5 from the internet:

wget https://www.python.org/ftp/python/3.6.5/Python-3.6.5.tgz
This command downloads the Python distribution in the home directory.

3. To untar the file, run the following command :

tar -xvf Python-3.6.5.tgz
The extracted files appear in the directory ~/Python-3.6.5.

336 Chapter 27: Python transformation

Step 4. Prepare a directory to install Python
Specify a location to contain the Python installation. To prepare an installation directory, run commands to
create a directory and set it as the working directory.

1. To create a Python3 directory under the home directory, run the following command:

mkdir Python3
2. To create an environment variable called $workingdir and set the value to the present working directory,

run the following command :

export workingdir=`pwd`
3. To verify the $workingdir environment variable, run the following command:

echo $workingdir

Step 5. Install Python
Run commands to compile and build the Python installation.

1. Navigate to the ~/Python-3.6.5 directory where you extracted the Python distribution:

cd Python-3.6.5
2. To compile Python under $workingdir/Python3, run the following command:

./configure --enable-shared --prefix=$workingdir/Python3
3. To build the Python installation, run the following command:

make
make install

Step 6. Set environment variables
Configure the Secure Agent machine to access the Python installation.

1. To set the PYTHONHOME environment variable, run the following command:

export PYTHONHOME=$workingdir/Python3
Notice that $PYTHONHOME is the directory where we installed Python.

2. To set the LD_LIBRARY_PATH environment variable, run the following command:

export LD_LIBRARY_PATH=$PYTHONHOME/lib
3. To set the PATH environment variable, run the following command:

export PATH=$PYTHONHOME/bin:$PATH

Step 7. Verify the Python installation
Confirm the location of the installation folders.

Verify that the Python installation directory contains the correct folders:

1. To change the directory to $PYTHONHOME, run the following command:

cd $PYTHONHOME
2. To verify that $PYTHONHOME contains the following folders, run the ls command :

bin
include
lib
share

Install and configure Python 337

Step 8. Install str2bool library
Custom Python installations require the str2bool library.

Use the following pip command to install the str2bool library in $PYTHONHOME:

bin/pip3 install str2bool

Step 9. Optionally, install third-party libraries
Identify and install any additional libraries that you need in your Python installation.

If your Python installation uses third-party libraries, use the pip command to install them in $PYTHONHOME.

For example, you can run the following commands to install numpy and scikit-learn:

bin/pip3 install numpy
bin/pip3 install scikit-learn

Step 10. Copy Python to the Secure Agent machine
Copy the Python installation to the Secure Agent machine.

To complete the Python installation, run the following commands:

1. Create the following directory on the Secure Agent machine if it doesn't exist:

<Secure Agent installation directory>/ext/python/
2. To copy the Python installation to the Secure Agent machine, run the following command:

cp -r $PYTHONHOME/* <Secure Agent installation directory>/ext/python/
3. To check the contents of the Informatica domain, run the following command:

ll <Secure Agent installation directory>/ext/python/
4. Verify that the contents include the following folders:

bin
include
lib
share

Step 11. Optionally, verify third-party library installations
If your Python installation uses third-party libraries, make sure they are installed on the Secure Agent
machine.

1. To change directories to the Secure Agent machine, run the following command:

cd <Secure Agent installation directory>/ext/python/
2. To invoke the Python interpreter, run the following command:

bin/python3
3. Run the following Python code:

import numpy
import sklearn

4. Verify that the import statement is successful for each Python third-party library that you installed.

Press Ctrl+D to exit the Python interpreter.

338 Chapter 27: Python transformation

Python transformation fields
A Python transformation has incoming fields and output fields. Use incoming fields and output fields as
variables in the Python code snippets that you define on the Python tab.

Add output fields on the Output Fields tab.

Add output fields for the output data that you want to pass to the downstream transformation. To add a field,
click Add Field, and then enter the field name, data type, precision, and scale. You can also create output
fields on the Outputs tab of the Python editor by clicking Create New Field.

After you add fields to the transformation, you can use the field names as variables in the Python code.

Use the following guidelines when you create output fields:

• A field name can contain only ASCII characters.

• Don't use a Python keyword for a field name. For example, don't use fields names such as import, global,
or class.

• Don't use these reserved terms for a field name: resourceJepFile or resourceFilesArray.

• Set user-defined default values in the Python code.
For example, you can enter output_field = 'value' to set the default value 'value' for the output field
output_field.

You can configure one or more input fields as partition keys. Data Integration uses the partition keys to
repartition the data before the code runs. If you don't add an incoming fields as a partition key, the data is
processed using its default partitioning scheme.

Data type conversion
A Python transformation converts transformation data types to Python data types based on the Python
transformation field type.

When a Python transformation reads input rows, it converts incoming field data types to Python data types.
When a Python transformation writes output rows, it converts Python data types to output field data types.

For example, the following processing occurs for an input field with the double data type:

1. The Python transformation converts the double data type in the incoming field to the Python float data
type.

2. The Python transformation uses the value in the incoming field as the value for the Python float data
type.

3. When the transformation generates the output row, it converts the Python float data type to the double
data type.

The following table shows how the Python transformation maps transformation data types to Python data
types:

Transformation data type Python data type

Integer Int

Decimal Float

Double Float

Python transformation fields 339

Transformation data type Python data type

Timestamp Datetime

String Str

text Text

Data types in input and output fields
In the Python transformation, the data types in corresponding incoming fields and output fields must be the
same. If the data types are not the same, convert them in the Python code.

For example, you create an incoming field with the integer data type and an output field with the string data
type. You define the Python code to process the data in the incoming field and write the data to the output
field. In the Python code, you can use the str() function to convert the integer data type in the incoming field
and write the output as a string data type in the output field.

Partition keys
You can use partition keys to define how to group data into partitions before the Python code runs.

You can configure one or more input fields as partition keys. The Python transformation uses the partition
keys to repartition the data before the code runs. If you do not add an incoming field as a partition key, the
data is processed using its default partitioning scheme.

Active and passive Python transformations
When you create a Python transformation, you specify how it generates output rows by defining the behavior
as active or passive. You define the behavior on the Advanced tab. By default, the Python transformation is
active.

A Python transformation handles output rows based on the behavior as follows:

• An active transformation can change the number of rows that pass through it.
To define the number of rows in the output, call the generateRow() method in the code to generate each
output row. You might choose to generate multiple output rows from a single input row or generate a
single output row from multiple input rows. For example, if the transformation contains two incoming
fields that represent a start date and an end date, you can call the generateRow() method to generate an
output row for each date between the start date and the end date.

• A passive transformation cannot change the number of rows that pass through the transformation. The
transformation calls the generateRow() method to generate an output row after processing each input
row.

340 Chapter 27: Python transformation

Resource files
The Python transformation uses resource files and the Python code to define the transformation
functionality. If you use a pre-trained model, you specify the pre-trained model as a resource file in the Python
transformation.

The Python transformation contains the following components:
Resource file

A file that contains the resources that you access in the Python code.

The file can be a pre-trained model that has been trained on a larger data set outside Data Integration.
You can use the pre-trained model to classify data or make predictions based on the data that you pass
to the Python transformation. You can access the pre-trained model in the Python code.

Runtime environment

Add resource files based on the type of runtime environment. If you reference resource files in the
Python code, add the resource files to the same directory. To maintain consistency, you can store the
resource files in a dedicated folder named python_resources.

Consider the following guidelines:

• If the Secure Agent machine stops unexpectedly and the agent restarts on a different machine, you
must add the Python installation and resource files to the same directory on the new machine.

• If you update the Python installation or resource files on the Secure Agent machine, the files take
effect the next time that you run a job in advanced mode.

• To prevent long-running jobs from failing, do not update the files on the Secure Agent machine more
than four times while you have jobs running.

Serverless runtime environment

Add resource files in the supplementary file location.

If you update the Python installation or resource files, you must redeploy the serverless runtime
environment for the changes to take effect.

For more information about the supplementary file location, see Administrator in the Administrator help.

Python code

The Python code that the Python transformation uses to process data that you pass to the
transformation. When you write Python code, you might reconstruct input variables, load a pre-trained
model, or define output variables.

Developing the Python code
To define the Python transformation functionality, you enter Python code snippets on the Python tab. Enter
code snippets to reconstruct input variables, load a pre-trained model, define output variables, and define
additional transformation functionality.

Enter Python code snippets in the following sections of the Python editor:

Pre-Partition Python Code

Defines code that can be interpreted one time and shared among all rows of data.

Resource files 341

Use the Pre-Partition Python Code section to perform the following tasks:

• Declare import statements.

• Declare variables.

• Initialize variables.

• Define helper methods.

Main Python Code

Defines how the Python transformation behaves when it receives an input row while processing a
partition. The Python transformation processes the code on the Main Python Code section for each
partition and each row.

Post-Partition Python Code

Defines how the Python transformation behaves after it processes all input data in a partition. You can
call the generateRow() method to generate output rows.

Use the following guidelines when you write Python code:

• Define variables before you use them. For example, you cannot reference a variable in the Pre-Partition
Python Code section if the variable is defined in the Main Python Code section.

• Call the incoming field name to access incoming fields.

• The Python code must assign a value to each output field.

• To define how the transformation writes data from the incoming fields to output fields, set the output field
to the value of the incoming field.
For example, write output_field = incoming_field to write the data from the incoming field
incoming_field to the output field output_field.

• To access resource files, use the variable resourceFilesArray. Specify the resource file using an index
such as resourceFilesArray[0].

• The Mapping Designer does not validate Python code.

342 Chapter 27: Python transformation

Creating Python code snippets
To create Python code snippets that define transformation functionality, use the Python editor on the Python
tab.

The following image shows the Python tab with the Python editor expanded:

1. Inputs and Outputs tabs. Use these tabs to add incoming fields and output fields as variables in the
Python code snippets. The fields and methods displayed on these tabs vary based on which section of
the code entry area is selected.

2. Go to list. Use to switch among the sections in the code entry area.

3. Minimize, Open Both, and Maximize icons. Use the Minimize and Maximize buttons to minimize and
maximize the transformation properties. Use the Open Both icon to open the Mapping Designer canvas
and the transformation properties at the same time.

4. Code entry area. Enter Python code snippets in the Pre-Partition Python Code, Main Python Code, and
Post-Partition Python Code sections.

Tip: To expand the transformation properties so that you can see the code entry area more fully, click
Maximize.

To create Python code snippets, perform the following tasks:

1. Select the section in which you want to enter a code snippet in the Go to list.

2. To access an incoming field or output field in the snippet, select the field on the Inputs or Outputs tab,
and click Add.

You can also create output fields on the Outputs tab by clicking Create New Field.

3. Write appropriate Python code based on the section.

Referencing a resource file
A resource file contains the resources that you use in the Python code.

In the Python transformation, enter the relative path of the resource file. For example, if the resource file is
stored in <Secure Agent installation directory>/ext/python/folder1/myfile, then the relative path
would be /folder1/myfile.

Developing the Python code 343

When you access a resource file in the Python code, you reference the array resourceFilesArray[index]. To
access a specific resource file, you specify an index to locate the resource file according to the order that the
resource file appears in the list of resource file paths.

For example when you specify several resource files, you reference the first resource file in the Python code
using resourceFilesArray[0]. You reference the second resource using resourceFilesArray[1].

Example: Add an ID column to nonpartitioned data
Your organization runs a solar thermal power system that uses sensors to monitor the health of the system.
Currently, each sensor is identified by its location. Instead, you want to identify each sensor using an ID to
simplify future analytics on the data.

You collect the following data on sensor readings:

SensorLocation LastReadingTime

Area A 7/9/2019 11:36:09

Area B 7/9/2019 16:43:42

Area C 7/9/2019 13:23:53

To add an ID column and assign ID values to each sensor, perform the following tasks:

Step 1. Create a Python transformation.

Create a Python transformation. On the Advanced tab, set the behavior to Passive.

Step 2. Pass data to the Python transformation.

Pass data from upstream transformations in the mapping to the Python transformation.

After you pass the data to the Python transformation, it contains the following incoming fields:

• SensorLocation

• LastReadingTime

Step 3. Create output fields.

Use the Output Fields tab in the Python transformation to create the output field SensorID_out to
represent the ID column.

Additionally, create the following output fields to pass incoming data to downstream transformations:

• SensorLocation_out

• LastReadingTime_out

Step 4. Set the ID value for each row.

In the Main Python Code section, set the ID value for each row that is processed and write the data to
the output fields using the following code:

SensorID="".join(str(x) for x in map(ord, SensorLocation))

SensorID_out = SensorID
SensorLocation_out = SensorLocation
LastReadingTime_out = LastReadingTime

344 Chapter 27: Python transformation

Step 5. Run the mapping.

If the output fields in the Python transformation are linked directly to a Write transformation, the target
contains the following data after you run the mapping:

SensorID_out SensorLocation_out LastReadingTime_out

65114101973265 Area A 7/9/2019 11:30:00

65114101973266 Area B 7/9/2019 11:35:00

65114101973267 Area C 7/9/2019 11:40:00

Example: Use partitions to find the highest salary
You are an HR staff member at your organization. You are working on a project to model how employee
salaries are associated with aspects of life that employees find important. The project is part of the wellness
program at your organization. You want to use the information to better personalize the wellness program.

You can use the Python transformation to determine which employee earns the highest salary in their
department.

The following table shows the data that your organization might collect:

DepartmentName DepartmentID EmployeeName SalaryIndex EmployeeSince

HR 1 Jane Smith 500 2/16/2010

R&D 2 Ellioth Consar 150 3/29/2018

Finance 3 Concor Valashe 230 11/22/2007

Marketing 4 Manchini Voliore 800 5/17/2009

HR 1 Blaze Concave 501 8/25/2016

R&D 2 Janet Encarr 890 1/26/2019

HR 1 Chelsea Blanch 389 9/3/2018

R&D 1 Samuel Coin 10 1/26/2005

To use the Python transformation to determine which employee earns the highest salary in their department,
perform the following tasks:

Step 1. Add a Python transformation to the mapping.

Create a Python transformation. On the Advanced tab, set the behavior to Active.

Step 2. Pass data to the Python transformation.

Pass the following fields from upstream transformations in the mapping to the Python transformation:

• DepartmentName

• DepartmentID

Example: Use partitions to find the highest salary 345

• EmployeeName

• SalaryIndex

• EmployeeSince

Step 3. Partition the data by department.

Partition the data by department to track the highest salary within each department. To partition the data
by department, add the incoming field DepartmentID as a partition key on the Partition Keys tab.

Step 4. Create output fields.

Create the following output fields on the Output Fields tab to pass data to downstream transformations:

• DepartmentName_out

• DepartmentID_out

• EmployeeName_out

• SalaryIndex_out

• EmployeeSince_out

Step 5. Initialize a map.

Declare a map variable outputmap to associate each department ID with the employee in the department
who has the highest salary.

Add the following code in the Pre-Partition Python Code section:

print("Using partitions to find the employee with the highest salary")
outputmap = {}

Step 6. Define code to process the data.

For each input row that passes through the Python transformation, define code that checks if the salary
of the employee is higher than the maximum salary of the previous rows that have been processed. If the
salary of the employee is higher, update the employee who has the maximum salary in the department.

Add the following code in the Main Python Code section:

DepartmentID_out = DepartmentID
print("Processing rows for department ID " + str(DepartmentID_out))

outputmap.setdefault(DepartmentID, None)
updateMax = False

if outputmap.get(DepartmentID, None) is None:
 updateMax = True
else:
 max_salary = outputmap[DepartmentID]['SalaryIndex']
 if max_salary is None:
 updateMax = True
 if SalaryIndex > max_salary:
 updateMax = True

if updateMax == True:
 employee_data = {'SalaryIndex':SalaryIndex,'EmployeeName':EmployeeName,
 'EmployeeSince':EmployeeSince,'DepartmentName':DepartmentName}

 outputmap[DepartmentID] = employee_data
Step 7. Write the data to the output files.

In the Post-Partition Python Code section of the Python tab, use the data in the map variable outputmap
to generate a row for the employee that has the highest salary in each department.

346 Chapter 27: Python transformation

Add the following code in the Post-Partition Python Code section:

for x in outputmap:
 DepartmentID_out = x
 smap = outputmap[x]
 SalaryIndex_out = smap["SalaryIndex"]
 EmployeeName_out = smap["EmployeeName"]
 DepartmentName_out = smap["DepartmentName"]
 EmployeeSince_out = smap["EmployeeSince"]

 ## Generate the output row
 generateRow()

Step 8. Run the mapping.

If the output fields in the Python transformation are linked directly to a Target transformation, the target
contains the following data after you run the mapping:

DepartmentName DepartmentID EmployeeName SalaryIndex EmployeeSince

Finance 3 Concor Valashe 230 11/22/2007

Marketing 4 Manchini Voliore 800 5/17/2009

HR 1 Blaze Concave 501 8/25/2016

R&D 2 Janet Encarr 890 1/26/2019

Example: Operationalize a pre-trained model
You work for a pharmaceutical company and you are studying data on flower formation in foxgloves to
provide a better treatment for heart diseases. You want to find out whether the common foxglove Digitalis
purpurea or the woolly foxglove Digitalis lanata can provide a better prognosis.

To perform your research, you must classify data on the length and width of the flower sepals and petals by
flower species. To classify the data, you developed a pre-trained model outside of Data Integration.

To operationalize the pre-trained model, complete the following tasks:

1. Create a mapping that contains a passive Python transformation and list the pre-trained model as a
resource file.

2. Write a Python script that accesses the pre-trained model.

3. Pass the data on flower sepals and petals to the Python transformation to classify the data by foxglove
species.

The following table shows sample sepals and petals data that you can pass to the Python transformation:

Name Type Precision
sepal_length decimal 10

sepal_width decimal 10

petal_length decimal 10

Example: Operationalize a pre-trained model 347

Name Type Precision
petal_width decimal 10

true_class string 50

The passive Python transformation uses the following components:

Resource File

Specify the path of the pre-trained model as the resource file.

For example, you might use a pre-trained model that is stored in the file foxgloveDataMLmodel.pkl in
the following path:

• Path that is relative to the location on the Secure Agent machine.

For example, if the resource file is under <Secure Agent installation directory>/ext/python/
folder1/foxgloveDataMLmodel.pkl, then the relative path would be /folder1/
foxgloveDataMLmodel.pkl.

• The supplementary file location for a serverless runtime environment.

/data/home/dtmqa/data/foxgloveDataMLmodel.pkl
Python Code

Specify the Python code in the Pre-Partition Python Code and Main Python Code sections.

Use the Pre-Partition Python Code section to import libraries, load the resource file, and initialize
variables.

For example, you might enter the following code in the Pre-Partition Python Code section:

from sklearn import svm
from sklearn.externals import joblib
import numpy as np
clf = joblib.load(resourceFileArrays[0])
classes = ['common', 'woolly']

Use the Main Python Code section to define how the Python transformation uses the pre-trained model
to evaluate each row of data.

For example, you might enter the following code in the Main Python Code section:

input = [sepal_length, sepal_width, petal_length, petal_width]
input = np.array(input).reshape(1,-1)
pred = clf.predict(input)
predicted_class = classes[pred[0]]
sepal_length_out = sepal_length
sepal_width_out = sepal_width
petal_length_out = petal_length
petal_width_out = petal_width
true_class_out = true_class

348 Chapter 27: Python transformation

C h a p t e r 2 8

Rank transformation
The Rank transformation selects the top or bottom range of data. Use the Rank transformation to return the
largest or smallest numeric values in a group. You can also use the Rank transformation to return strings at
the top or bottom of the mapping sort order.

For example, you can use a Rank transformation to select the top 10 customers by region. Or, you might
identify the three departments with the lowest expenses in salaries and overhead.

The Rank transformation differs from the transformation functions MAX and MIN because the Rank
transformation returns a group of values, not just one value. While the SQL language provides many functions
designed to handle groups of data, identifying top or bottom strata within a set of rows is not possible using
standard SQL functions.

The Rank transformation is an active transformation because it can change the number of rows that pass
through it. For example, you configure the transformation to select the top 10 rows from a source that
contains 100 rows. In this case, 100 rows pass into the transformation but only 10 rows pass from the Rank
transformation to the downstream transformation or target.

When you run a mapping that contains a Rank transformation, Data Integration caches input data until it can
perform the rank calculations.

Ranking string values
You can configure the Rank transformation to return the top or bottom values of a string field. To sort string
fields, Data Integration uses the session sort order configured for the mapping task.

You set the Session Sort Order property in the advanced session properties for the mapping task. You can
select binary or a specific language such as Danish or Spanish. If you select binary, Data Integration
calculates the binary value of each string and sorts the strings using the binary values. If you select a
language, Data Integration sorts the strings alphabetically using the sort order for the language.

349

The following image shows the Session Sort Order property in the advanced session properties for a
mapping task:

Rank caches
When you run a mapping that contains a Rank transformation, Data Integration creates data and index cache
files to run the transformation. By default, Data Integration stores the cache files in the directory entered in
the Secure Agent $PMCacheDir property for the Data Integration Server.

You can change the cache directory and cache sizes on the Advanced tab of the Rank transformation.

Data Integration creates the following caches for the Rank transformation:

• Data cache that stores row data based on the group by fields.

• Index cache that stores group values as configured in the group by fields.

When you run a mapping that contains a Rank transformation, Data Integration compares an input row with
rows in the data cache. If the input row out-ranks a cached row, Data Integration replaces the cached row
with the input row. If you configure the Rank transformation to rank across multiple groups, Data Integration
ranks incrementally for each group that it finds.

If you create multiple partitions in the Source transformation, Data Integration creates separate caches for
each partition.

350 Chapter 28: Rank transformation

Defining a Rank transformation
To define a Rank transformation, you drag the transformation into the Mapping Designer, configure fields,
and configure the transformation properties.

1. In the Mapping Designer, drag a Rank transformation from the transformation palette onto the canvas
and connect it to the upstream and downstream transformations.

2. Configure the transformation fields.

By default, the transformation inherits all incoming fields from the upstream transformation. If you do
not need to use all of the incoming fields, you can configure field rules to include or exclude certain
fields.

3. Configure the rank properties.

Select the field that you want to rank by, the rank order, and the number of rows to rank.

4. Optionally, configure rank groups.

You can configure the Rank transformation to create groups for ranked rows.

5. Optionally, configure the transformation advanced properties.

You can update the cache properties, tracing level for log messages, transformation scope, case-
sensitivity for string comparisons, and whether the transformation is optional.

Rank transformation fields
A Rank transformation inherits incoming fields from the upstream transformation. When you create a Rank
transformation, Data Integration also creates a RANKINDEX output field.

The Rank transformation uses the following fields:

Incoming fields

Incoming fields appear on the Incoming Fields tab. By default, the Rank transformation inherits all
incoming fields from the upstream transformation. If you do not need to use all of the incoming fields,
you can define field rules to include or exclude certain fields. For more information about field rules, see
“Field rules” on page 25.

RANKINDEX

After the Rank transformation identifies all rows that belong to a top or bottom rank, it assigns rank
index values. Data Integration creates the RANKINDEX field to store the rank index value for each row in
a group.

For example, you create a Rank transformation to identify the five retail stores in the company with the
highest monthly gross sales. The store with the highest sales receives a rank index of 1. The store with
the next highest sales receives a rank index of 2, and so on. If two stores have the same gross sales,
they receive the same rank index, and the transformation skips the next rank index.

For example, in the following data set, the Long Beach and Anaheim stores have the same gross sales,
so they are assigned the same rank index:

RANKINDEX STORE GROSS_SALES

1 Long Beach 100000

Defining a Rank transformation 351

RANKINDEX STORE GROSS_SALES

1 Anaheim 100000

3 Riverside 90000

4 Chula Vista 80050

When measuring a bottom rank, such as the 10 lowest priced products in the inventory, the Rank
transformation assigns a rank index from lowest to highest. Therefore, the least expensive item receives
a rank index of 1.

The RANKINDEX is an output field. It appears on the Incoming Fields tab of the downstream
transformation.

Defining rank properties
When you define the rank properties for a Rank transformation, you select the field to rank by, specify the
rank order, and specify number of rows to rank by. Define rank properties on the Rank tab.

The following image shows the Rank tab:

Configure the following properties:

Rank By

Specify the field that you want to use for ranking in the Rank By field.

For example, you create a Rank transformation to rank the top 10 employees in each department based
on salary. The EMP_SALARY field contains the salary for each employee. Select EMP_SALARY as the
Rank By field.

In advanced mode, the Rank By field can’t be a binary data type.

Rank Order

Specify the rank order in the Rank Order field. Select Top or Bottom.

Number of Rows

Specify the number of rows to include in each rank group in the Number of Rows field. For example, to
rank the top 10 employees in each department based on salary, enter 10 in the Number of Rows field.

352 Chapter 28: Rank transformation

You can use a parameter to specify the number of rows. To use a parameter, select Parameterized in the
Parameterize Number of Rows field, and enter the parameter in the Parameter field.

Defining rank groups
You can configure the Rank transformation to define groups for ranked rows. For example, to select the 10
most expensive items by manufacturer, define a rank group for the manufacturer. Define rank groups on the
Group By tab.

To define rank groups, select one or more incoming fields as Group By Fields. For each unique value in a rank
group, the transformation creates a group of rows that fall within the rank definition (top or bottom, and
number in each rank).

Note: Define rank groups to improve performance in a mapping in advanced mode that processes a large
volume of data. When you define rank groups, processing is distributed across multiple worker nodes. If you
do not define rank groups, the data is processed on one worker node. Depending on the volume of data,
performance is impacted and the mapping might fail due to a lack of storage space on the EBS volume that is
attached to the worker node.

For example, you create a Rank transformation that ranks the top five salespersons grouped by quarter. The
rank index numbers the salespeople from 1 to 5 for each quarter as follows:

RANKINDEX SALES_PERSON SALES QUARTER

1 Alexandra B. 10000 1

2 Boris M. 9000 1

3 Chanchal R. 8000 1

4 Dong T. 7000 1

5 Elias M. 6000 1

1 Elias M. 11000 2

2 Boris M. 10000 2

3 Alexandra B. 9050 2

4 Dong T. 7500 2

5 Frances Z. 6900 2

If you define multiple rank groups, the Rank transformation groups the ranked rows in the order in which the
fields are selected in the Group By Fields list.

Defining rank groups 353

Advanced properties
Configure advanced properties to define how the Rank transformation processes data. Configure advanced
properties on the Advanced tab.

The properties that are available vary based on the mapping mode.

Configure the following properties:

Property Description

Cache Directory Directory where Data Integration creates the data cache and index cache files. By default, Data
Integration stores the cache files in the directory entered in the Secure Agent $PMCacheDir
property for the Data Integration Server.
If you change the cache directory, verify that the directory exists and contains enough disk
space for the cache files.
To increase performance during cache partitioning, enter multiple directories separated by
semicolons. Cache partitioning creates a separate cache for each partition that processes the
transformation.
Default is $PMCacheDir.

Rank Data Cache
Size

Data cache size for the transformation. Select one of the following options:
- Auto. Data Integration sets the cache size automatically. If you select Auto, you can also

configure a maximum amount of memory for Data Integration to allocate to the cache.
- Value. Enter the cache size in bytes.
Default is Auto.

Rank Index Cache
Size

Index cache size for the transformation. Select one of the following options:
- Auto. Data Integration sets the cache size automatically. If you select Auto, you can also

configure a maximum amount of memory for Data Integration to allocate to the cache.
- Value. Enter the cache size in bytes.
Default is Auto.

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

Transformation
Scope

The method in which Data Integration applies the transformation logic to incoming data. Select
one of the following values:
- Transaction. Applies the transformation logic to all rows in a transaction. Choose Transaction

when the results of the transformation depend on all rows in the same transaction, but not on
rows in other transactions.

- All Input. Applies the transformation logic to all incoming data. When you choose All Input,
Data Integration drops transaction boundaries. Select All Input when the results of the
transformation depend on all rows of data in the source.

Default is All Input.

354 Chapter 28: Rank transformation

Property Description

Case Sensitive
String Comparison

Specifies whether Data Integration uses case-sensitive string comparisons when it ranks strings.
To ignore case in strings, disable this option. Default is enabled.
On an advanced cluster, comparisons are always case-sensitive.

Optional Determines whether the transformation is optional. If a transformation is optional and there are
no incoming fields, the mapping task can run and the data can go through another branch in the
data flow. If a transformation is required and there are no incoming fields, the task fails.
For example, you configure a parameter for the source connection. In one branch of the data
flow, you add a transformation with a field rule so that only Date/Time data enters the
transformation, and you specify that the transformation is optional. When you configure the
mapping task, you select a source that does not have Date/Time data. The mapping task ignores
the branch with the optional transformation, and the data flow continues through another branch
of the mapping.
Default is enabled.

Hierarchical data in advanced mode
In advanced mode, you can use hierarchical fields that represent an array, map, or struct.

You can use the hierarchical fields as pass-through fields.

Consider the following guidelines when you pass hierarchical fields to the Rank transformation:

• You cannot rank data using a hierarchical field.

• You cannot define a rank group using a hierarchical field.

Rank transformation example
You store customer data in a relational database table. You want send a promotion to the top three
customers in each tier. Use a Rank transformation to rank the customers in each tier by order amount.

The source, mapping, and target are configured as follows:

Source Data

The following table shows the source data:

CUST_ID CUST_TIER CUST_NAME ORDER_AMT

10110102 Gold Brosseau, Derrick 63508.12

10110109 Platinum Acheson, Jeff 139824.15

10110143 Silver Cudell, Bob 49614.00

10110211 Silver Amico, Paul 47677.30

10110215 Platinum Bergeron, Kim 148871.25

Hierarchical data in advanced mode 355

CUST_ID CUST_TIER CUST_NAME ORDER_AMT

10110224 Silver Madison, Shelley 40497.10

10110235 Gold Anderson, Rick 50429.27

10110236 Silver Tucker, Paul 42585.00

10110237 Silver Smith, Robert 38563.98

10110393 Gold Washington, Rochelle 73767.96

10110425 Gold Nguyen, Trang 65522.25

10110434 Silver Keane, Thomas 38055.40

10110436 Platinum Catherwood, Jennifer 117107.44

10110442 Platinum Charest, Walter 126618.60

10110458 Gold Coutts, Sylvain 70646.32

10110497 Platinum Zheng, Wei 191422.00

10110506 Gold Gonzales, Roberto 79342.90

10110526 Gold Vanelo, Susan 81978.06

10110528 Platinum Abedini, John 136506.32

10110530 Silver Sousa, Maria 10155.42

Mapping Configuration

Configure the mapping as shown in the following image:

Configure the Rank transformation as follows:

Rank tab

Configure the following properties:

Field Value

Rank By ORDER_AMT

Rank Order Top

Parameterize Number of Rows Not Parameterized

Number of Rows 3

356 Chapter 28: Rank transformation

Group By tab

Select CUST_TIER as the group by field.

Target Data

The following table shows the data that is written to the target when you run the mapping:

RANKINDEX CUST_ID CUST_TIER CUST_NAME ORDER_AMT

1 10110526 Gold Vanelo, Susan 81978.06

2 10110506 Gold Gonzales, Roberto 79342.90

3 10110393 Gold Washington, Rochelle 73767.96

1 10110497 Platinum Zheng, Wei 191422.00

2 10110215 Platinum Bergeron, Kim 148871.25

3 10110109 Platinum Acheson, Jeff 139824.15

1 10110143 Silver Cudell, Bob 49614.00

2 10110211 Silver Amico, Paul 47677.30

3 10110236 Silver Tucker, Paul 42585.00

Rank transformation example 357

C h a p t e r 2 9

Router transformation
The Router transformation is an active transformation that you can use to apply a condition to incoming data.

In a Router transformation, Data Integration uses a filter condition to evaluate each row of incoming data. It
tests the conditions of each user-defined group before processing the default group. If a row meets more
than one group filter condition, Data Integration passes the row multiple times. You can either drop rows that
do not meet any of the conditions or route those rows to a default output group.

If you need to test the same input data based on multiple conditions, use a Router transformation in a
mapping instead of creating multiple Filter transformations to perform the same task.

The following table compares the Router transformation to the Filter transformation:

Options Router Filter

Conditions Test for multiple conditions in a single Router
transformation

Test for one condition per
Filter transformation

Handle rows that do not meet the
condition

Route rows to the default output group or drop
rows that do not meet the condition

Drop rows that do not meet
the condition

Incoming data Process once with a single Router
transformation

Process in each Filter
transformation

The following figure shows a mapping with a Router transformation that filters data based on region and
routes it to a different target, either NA, EMEA, or APAC. The transformation routes data for other regions to
the default target:

358

Working with groups
You use groups in a Router transformation to filter the incoming data.

Data Integration uses the filter conditions to evaluate each row of incoming data. It tests the conditions of
each user-defined group before processing the default group. If a row meets more than one group filter
condition, Data Integration passes the row to multiple groups.

A Router transformation has the following types of groups:

Input

Data Integration copies properties from the input group fields to create the fields for each output group.

Output

There are two types of output groups:

• User-defined groups. Create a user-defined group to test a condition based on incoming data. A user-
defined group consists of output ports and a group filter condition. Create one user-defined group for
each condition that you want to specify. Data Integration processes user-defined groups that are
connected to a transformation or a target.

• Default group. The default group captures rows that do not satisfy any group condition. You cannot
edit, delete, or define a group filter condition for the default group. If all of the conditions evaluate to
FALSE, Data Integration passes the row to the default group. If you want to drop rows that do not
satisfy any group condition, do not connect the default group to a transformation or a target.

You can modify a user-defined output group name. Click the row to open the Edit Output Group dialog
box.

Guidelines for connecting output groups
Note the following guidelines when you connect Router transformation output groups to downstream
transformations:

• You can connect each output group to one or more transformations or targets.

• You cannot connect more than one group to one target or a single input group transformation.

• You can connect more than one output group to a downstream transformation if you connect each output
group to a different input group.

• If you want Data Integration to drop all rows in the default group, do not connect it to a transformation or
a target in a mapping.

Group filter conditions
You can test data based on one or more group filter conditions. You can enter any expression that returns a
single value. You can also specify a constant for the condition. In advanced mode, the filter condition must
evaluate to a numeric result.

A group filter condition returns TRUE or FALSE for each row that passes through the transformation,
depending on whether a row satisfies the specified condition. Zero (0) is the equivalent of FALSE, and any
non-zero value is the equivalent of TRUE.

Working with groups 359

When the task runs, Data Integration handles the data in the following ways:

• Passes the rows of data that evaluate to TRUE to each transformation or target that is associated with
each user-defined group.

The Router transformation can pass data through multiple output groups. For example, if the data meets
three output group conditions, the Router transformation passes the data through three output groups.

• Passes the row to the default group if all of the conditions evaluate to FALSE.

You cannot configure a group filter condition for the default group. However, you can add an Expression
transformation to perform a calculation and handle the rows in the default group.

Configuring a group filter condition
Configure a group filter condition for each user-defined output group.

1. Connect the source to the Router transformation.

2. Click the Output Groups tab.

3. Click the + sign and add the group you want to configure.

4. Click Configure.

5. In the Edit Filter Condition dialog box, select one of the following filter condition types:

• Simple. Enter a simple condition based on available field names and operators.

• Advanced. Select this option to open the expression editor and validate the syntax for a complex
condition.

• Completely Parameterized. Select this option to base the filter condition on an input parameter.

The following image shows the Edit Filter Condition dialog box:

6. Click the + sign to add a row for each condition that you want to apply to this group.

7. Choose a Field Name, Operator, and Value for each condition.

8. Click OK to save the conditions.

360 Chapter 29: Router transformation

Advanced properties
You can configure advanced properties for a Router transformation. The advanced properties control settings
such as the tracing level for session log messages and whether the transformation is optional or required.

The properties that are available vary based on the mapping mode.

You can configure the following properties:

Property Description

Tracing
Level

Detail level of error and status messages that Data Integration writes in the session log. You can choose
terse, normal, verbose initialization, or verbose data. Default is normal.

Optional Determines whether the transformation is optional. If a transformation is optional and there are no
incoming fields, the mapping task can run and the data can go through another branch in the data flow.
If a transformation is required and there are no incoming fields, the task fails.
For example, you configure a parameter for the source connection. In one branch of the data flow, you
add a transformation with a field rule so that only Date/Time data enters the transformation, and you
specify that the transformation is optional. When you configure the mapping task, you select a source
that does not have Date/Time data. The mapping task ignores the branch with the optional
transformation, and the data flow continues through another branch of the mapping.

Hierarchical data in advanced mode
In advanced mode, you can use hierarchical fields that represent an array, map, or struct.

You can use the hierarchical fields as pass-through fields. You can also use hierarchical fields in an
advanced filter condition or use a hierarchical field with a complex operator to access primitive child fields in
the filter condition. For more information about complex operators, see Function Reference.

Consider the following guidelines when you use hierarchical fields in a filter condition:

• You cannot use a hierarchical field in a simple filter condition.

• Do not use a parameter for the filter condition.

Router transformation examples
You can use a Router transformation to complete the following tasks:

• Group data by different country attributes and route each group to different target tables based on
conditions that test for the region.

• Group inventory items by different price categories and route each group to different target tables based
on conditions that test for low, medium, and high prices.

Example 1: Route data to different targets by region.

Your source includes data for customers in different regions. You want to configure a marketing campaign
with variants for customers in the North America region, the Europe, Middle East, and Africa region, and the

Advanced properties 361

Asia Pacific region. All other customers see the default ad campaign. Use a Router transformation to route
the data to four different Target transformations.

The following figure shows a mapping with a Router transformation that filters data based on these
conditions:

Create three output groups and specify the group filter conditions on the Output Groups tab as shown in the
following table:

Group Name Condition

NA region = ‘NA’

EMEA region = ‘EMEA’

APAC region = ‘APAC’

The default group includes data for all customers that are not in the NA, EMEA, or APAC region.

Example 2: Route some rows to multiple output groups.

The Router transformation passes data through all output groups that meet the filter condition. In the
following example, the conditions test for a price threshold, but the filter conditions for the two output groups
overlap:

Group Name Condition

PriceGroup1 item_price > 100

PriceGroup2 item_price > 500

When the Router transformation processes an input row with item_price=510, it routes the row to both output
groups.

If you want to pass the data through a single output group, define the filter conditions so that they do not
overlap. For example, you might change the filter condition for PriceGroup1 to item_price <= 500.

362 Chapter 29: Router transformation

C h a p t e r 3 0

Rule Specification transformation
The Rule Specification transformation adds a rule specification asset that you created in Data Quality to a
mapping.

A rule specification is a set of one or more logical operations that analyze data according to business criteria
that you define. The rule specification generates an output that indicates whether the data satisfies the
business criteria. The rule specification can also update the data that it analyzes. You define the logical
operations as IF/THEN/ELSE statements in Data Quality.

Each Rule Specification transformation can contain a single rule specification. You can add multiple Rule
Specification transformations to a mapping.

Use a Rule Specification transformation to accomplish the following goals:

• Define the types of data that a business data set contains.

• Define a set of conditions that the business data must satisfy.

• Define the actions to take when the data satisfies the conditions of the business rule.

• Define the actions to take when the data fails to satisfy the conditions of the business rule.

A Rule Specification transformation is similar to a Mapplet transformation, as it allows you to add data
analysis and data transformation logic that you designed elsewhere to a mapping. Like mapplets, rule
specifications are reusable assets. A Rule Specification transformation shows incoming and outgoing fields.
It does not display the logic that the rule specification contains or allow to you edit the rule specification. To
edit the rule specification, open it in Data Quality.

To use the Rule Specification transformation, you need the appropriate license.

Rule Specification transformation configuration
When you configure a Rule Specification transformation in a mapping, you first select the rule specification
asset that contains the logic to include in the mapping. Next, you configure the incoming fields and the field
mappings. Then, you verify the output fields.

To configure the transformation, complete the following tasks:

1. Connect the Rule Specification transformation to a Source transformation or other upstream object.

2. On the Rule Specification tab, select the rule specification that you want to include in the
transformation.

363

The following image shows the options that you use to select the rule specification:

3. On the Incoming Fields tab, configure the incoming fields.

By default, the transformation inherits all incoming fields from any connected upstream object in the
mapping. You can define a field rule to limit or rename the incoming fields.

4. On the Field Mapping tab, configure the field mapping options to connect the data from the incoming
fields to the target fields on the rule specification asset.

The rule specification inputs might already reflect the names of the input fields in the data. If so, you can
use the Automap options to connect the fields. For more information about connecting to upstream
object fields, see “Rule Specification transformation field mappings” on page 365.

5. Verify the rule specification output fields on the Output Fields tab.

6. You can optionally rename the Rule Specification transformation and add a description on the General
tab. You can also update the tracing level for the transformation on the Advanced tab. The default
tracing level is Normal.

Note: Consider the following rules and guidelines when you use a parameter to identify the rule specification
that the transformation uses:

• If you use a parameter to identify the rule specification, you must use a parameter to define the field
mappings on the Field Mapping tab. The parameter must be of type string.

• If you use a parameter to identify the rule specification, any downstream object in the mapping that
connects to the Rule Specification transformation must be completely parameterized.

Note: If you update an asset in Data Quality after you add it to a transformation, you may need to synchronize
the asset version in the transformation with the latest version. For more information about data quality asset
synchronization, see “Synchronizing data quality assets” on page 109.

364 Chapter 30: Rule Specification transformation

Rule Specification transformation field mappings
Configure field mappings to define how data moves from the upstream transformation to the Rule
Specification transformation. Configure field mappings on the Field Mapping tab of the Properties panel.

You can configure the following field mapping options:

Field map options

Method of mapping fields to the transformation.

Select one of the following options:

• Manual. Manually link incoming fields to transformation input fields. Removes links for automatically
mapped fields.

• Automatic. Automatically link fields with the same name. Use when all of the fields that you want to
link share the same name. You cannot manually link fields with this option.

• Completely Parameterized. Use a parameter to represent the field mapping. In the task, you can
configure all field mappings.
Choose the Completely Parameterized option when the rule specification in the transformation is
parameterized or any upstream transformation in the mapping is parameterized

• Partially Parameterized. Configure links in the mapping that you want to enforce and use a parameter
to allow other fields to be mapped in the mapping task. Or, use a parameter to configure links in the
mapping, and allow all fields and links to display in the task for configuration.

Parameter

Select the parameter to use for the field mapping, or create a new parameter. This option appears when
you select Completely Parameterized or Partially Parameterized as the field map option. The parameter
must be of type field mapping.

Do not use the same field mapping parameter in more than one Rule Specification transformation in a
single mapping.

Options

Controls how fields are displayed in the Incoming Fields and Rule Specification Input Fields lists.

Configure the following options:

• The fields that appear. You can show all fields, unmapped fields, or mapped fields.

• Field names. You can use technical field names or labels.

Automap

Links fields with matching names. Allows you to link matching fields and to manually configure other
field mappings. The Automap options appear when you select the Manual or Partially Parameterized
field map option.

You can map fields in the following ways:

• Exact Field Name. Data Integration matches fields of the same name.

• Smart Map. Data Integration matches fields with similar names. For example, if you have an incoming
field Cust_Name and a target field Customer_Name, Data Integration automatically links the Cust_Name
field with the Customer_Name field.

You can use both Exact Field Name and Smart Map in the same field mapping. For example, use Exact
Field Name to match fields with the same name and then use Smart Map to map fields with similar
names.

You can undo all automapped field mappings by clicking Automap > Undo Automap.

Rule Specification transformation field mappings 365

To unmap a single field, select the field to unmap and click Actions > Unmap on the context menu for the
field. To unmap one or more fields that you selected, click Unmap Selected on the Rule Specification
Input Fields context menu.

To clear all field mappings from the transformation, click Clear Mapping on the Rule Specification Input
Fields context menu.

Rule Specification transformation output fields
A Rule Specification transformation displays an output field for each rule set in the rule specification. View
the output fields on the Output Fields tab of the Properties panel. The transformation outputs include the
output from each rule set in the rule specification.

The tab displays the name, type, precision, and scale for each output field. The output field names are the
names of the rule sets in the rule specification.

You cannot edit the output field properties in the Rule Specification transformation. To edit the properties,
open the rule specification in Data Quality.

Advanced properties
You can configure advanced properties for a Rule Specification transformation. The advanced properties
control the tracing level for session log messages.

You can configure the following property:

Property Description

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

366 Chapter 30: Rule Specification transformation

C h a p t e r 3 1

Sequence transformation
The Sequence transformation is a passive and connected transformation that generates numeric values. Use
the Sequence transformation to create unique primary key values, replace missing primary keys, or cycle
through a sequential range of numbers.

The Sequence transformation contains pass-through fields and two output fields, NEXTVAL and CURRVAL. In
advanced mode, the transformation contains one output field, NEXTVAL. You can connect the output fields to
one or more downstream transformations.

The mapping task generates a numeric sequence of values each time the mapped fields enter a connected
transformation. You set the range of numbers in the Mapping Designer. You can change the initial number in
the sequence when you run the task.

After the task completes, you can see the current value and the initial value for a Sequence transformation in
the mapping task details.

Sequence transformation uses
Use a Sequence transformation to generate a sequence of numbers in the following ways:

Generate a sequence of unique numbers.

The sequence begins with the Initial Value that you specify.

Generate a cyclic sequence of numbers.

You can establish a range of values for the Sequence transformation. If you use the cycle option, the
Sequence transformation repeats the range when it reaches the end value. For example, if you set the
sequence range to start at 10 and end at 50, and you set an increment value of 10, the Sequence
transformation generates the following values: 10, 20, 30, 40, 50. The sequence starts over again at 10.

Doesn't apply in advanced mode or SQL ELT mode.

Continue an existing sequence of numbers.

Each time you run the mapping task, the task updates the value to reflect the last-generated value plus
the Increment By value. If you want the numbering to start over each time you run the task, you can
enable the Reset configuration property.

Generate a sequence of unique numbers for multiple partitions using the same Sequence transformation.

You can specify the number of sequential values the mapping task caches at a time so that the task
doesn't generate the same numbers for each partition. You can't generate a cyclic sequence of numbers
when you use the same Sequence transformation for multiple partitions.

Doesn't apply in advanced mode or SQL ELT mode.

367

Sequence output fields
The Sequence transformation has two output fields, NEXTVAL and CURRVAL. In advanced mode and SQL
ELT mode, the transformation has one output field, NEXTVAL. You can't edit or delete these fields.

You can connect a Sequence transformation to any transformation. If the mapping contains both fields, you
don't need to map both of the output fields. If you don't map one of the output fields, the mapping task
ignores the unmapped field.

In mappings in SQL ELT mode, you can only connect a Sequence transformation directly to a downstream
Expression transformation or target.

NEXTVAL field

Use the NEXTVAL field to generate a sequence of numbers based on the Initial Value and Increment By
properties.

Map the NEXTVAL field to an input field in a Target transformation or other downstream transformation to
generate a sequence of numbers. If you don't configure the Sequence transformation to cycle through the
sequence, the NEXTVAL field generates sequence numbers up to the configured End Value.

If you map the NEXTVAL field to multiple transformations, the mapping task generates the same sequence or
a unique sequence of numbers for each downstream transformation based on the mapping type and whether
incoming fields are disabled.

The following table lists the situations where the Sequence transformation generates the same sequence or
a unique sequence of numbers:

Mapping type Incoming fields are... Same sequence or unique sequence?

Mapping Not disabled Same sequence

Mapping Disabled Unique sequence*

Mapping (Advanced mode) - Same sequence

Mapping (SQL ELT mode) - Same sequence

* To generate the same sequence of numbers when incoming fields are disabled, you can place an Expression
transformation between the Sequence transformation and its downstream transformations to stage the sequence of
numbers.

CURRVAL field

The CURRVAL field value is the NEXTVAL value plus the Increment By value. For example, if the Initial Value
is 1 and Increment By is 1, the mapping task generates the following values for NEXTVAL and CURRVAL:

NEXTVAL CURRVAL

1 2

2 3

3 4

368 Chapter 31: Sequence transformation

NEXTVAL CURRVAL

4 5

5 6

Typically, you map the CURRVAL field when the NEXTVAL field is already mapped to a downstream
transformation in the map. If you map the CURRVAL field without mapping the NEXTVAL field, the mapping
task generates the same number for each row.

Sequence properties
Configure Sequence properties to define how the Sequence transformation generates numeric values.

The properties that are available vary based on the mapping mode.

Configure the following Sequence properties on the Sequence tab:

Property Description

Use Shared
Sequence

Enable to generate sequence values using a shared sequence. When enabled, the sequence starts
with the Current Value of the shared sequence.
For information about shared sequences, see Components.
Default is disabled.

Increment By The difference between two consecutive values in a generated sequence. For example, if Increment
By is 2 and the existing value is 4, then the next value generated in the sequence will be 6.
Default is 1.
Maximum value is 2,147,483,647.

End Value Maximum value that the mapping task generates. If the sequence reaches this value during the task
run and the sequence is not configured to cycle, the run fails.
Maximum value is 9,223,372,036,854,775,807.
If you connect the NEXTVAL field to a downstream integer field, set the End Value to a value no larger
than the integer maximum value. If the NEXTVAL exceeds the data type maximum value for the
downstream field, the mapping run fails.
In advanced mode, set the end value to at least the maximum number of rows that you process.

Initial Value The value you want the mapping task to use as the first value in the sequence. If you want to cycle
through a series of values, the value must be greater than or equal to the Start Value and less than
the End Value.
Default is 1.

Cycle If enabled, the mapping task cycles through the sequence range. If disabled, the task stops the
sequence at the configured End Value. The session fails if the task reaches the End Value and still
has rows to process.
Default is disabled.

Sequence properties 369

Property Description

Cycle Start
Value

Start value of the generated sequence that you want the mapping task to use if you use the Cycle
option. When the sequence values reach the End Value, they cycle back to this value.
Default is 0.
Maximum value is 9,223,372,036,854,775,806.

Number of
Cached
Values

Number of sequential values the mapping task caches for each run. Each subsequent run uses a new
batch of values. The task discards unused sequences for the batch. The mapping task updates the
repository as it caches each value. When set to 0, the task does not cache values.
Use this option when multiple partitions use the same Sequence transformation at the same time to
ensure each partition receives unique values.
Default is 0.
This option is not available when the Cycle property is enabled.
In advanced mode, you can't set the number of cached values. However, your organization
administrator can optimize how values are cached. For more information, contact Informatica Global
Customer Support. (Ref 619019)

Reset If enabled, the mapping task generates values based on the original Initial Value for each run.
Default is disabled.

Configure advanced Sequence properties on the Advanced tab:

Property Description

Tracing
Level

Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

Optional Determines whether the transformation is optional. If a transformation is optional and there are no
incoming fields, the mapping task can run and the data can go through another branch in the data flow.
If a transformation is required and there are no incoming fields, the task fails.
For example, you configure a parameter for the source connection. In one branch of the data flow, you
add a transformation with a field rule so that only Date/Time data enters the transformation, and you
specify that the transformation is optional. When you configure the mapping task, you select a source
that does not have Date/Time data. The mapping task ignores the branch with the optional
transformation, and the data flow continues through another branch of the mapping.

Disable
incoming
fields

Disable incoming fields to connect only the generated sequence to a downstream transformation. If
you disable incoming fields, you must connect at least one field from another transformation to the
downstream transformation.

Sequence advanced properties aren't available in mappings in SQL ELT mode.

Disabling incoming fields
You can disable incoming fields to connect only the generated sequence in the output fields, NEXTVAL and
CURRVAL, to one or more downstream transformations. When you disable incoming fields, you can't connect
the Sequence transformation to upstream transformations.

When you disable incoming fields, at least one field from another transformation must be connected to the
downstream transformation along with the Sequence transformation fields. For example, if the mapping
contains a Sequence transformation and a Source transformation and the Sequence transformation is
connected to a Target transformation, you must connect at least one field from the Source transformation to
the Target transformation.

370 Chapter 31: Sequence transformation

The following image shows a mapping where incoming fields are disabled in the Sequence transformation:

Note: You can't disable incoming fields in advanced mode.

Hierarchical data in advanced mode
In advanced mode, you can use hierarchical fields that represent an array, map, or struct.

You can use the hierarchical fields as pass-through fields.

Sequence transformation rules and guidelines
Consider the following guidelines when you create a Sequence transformation:

• When you map the NEXTVAL or CURRVAL output fields, ensure that the data type of the mapped field is
appropriate.

• When you run the mapping in the Mapping Designer, the current value is not saved so each time you run
the mapping, it begins with the initial value.

• When you run the task in the mapping task wizard, you can edit the current value to start the sequence
with a specified value.

• You can't use a Sequence transformation in a mapplet.

• To use the Sequence transformation in advanced mode, the Secure Agent must run on a virtual machine.

• A self-service cluster might intermittently fail to connect to the agent, which can cause the mapping to
fail. Error messages related to this appear in the session logs.

• In advanced mode, generated values might not increase monotonically. Values are generated based on
the order that the Spark engine processes the data.

• In mappings in SQL ELT mode, you can't use shared sequences.

• In mappings in SQL ELT mode, a Sequence transformation needs to be connected directly to a
downstream Expression transformation or target.

Hierarchical data in advanced mode 371

Sequence transformation example
The following example shows how you can use the Sequence transformation to generate primary keys.

You are gathering customer data and need to assign customer IDs to each customer. The CustomerData.csv
flat file contains your source customer data. You create a mapping that includes the Sequence
transformation to create customer IDs, using the following process:

1. Create a copy of the CustomerData.csv file to use as the target and then add the cust_id field to the file
to hold the generated customer ID values. You name the file CustomerData_IDs.csv. The following image
shows a sample of the file:

2. Create a connection that has access to the CustomerData.csv and CustomerData_IDs.csv files.

3. Create a mapping in the Mapping Designer and add a Source transformation to the mapping. You
configure the transformation to use the CustomerData.csv file.

4. Add a Sequence transformation to the mapping.

5. To generate a simple sequence starting with 1, set the Initial Value to 1 and the Increment By value to 1.
This configuration starts the sequence at 1 and increments the value by 1, for example, 1, 2, 3.

You leave the default values for the other properties. The following image shows this configuration:

6. Add a Target transformation to the mapping and configure the transformation to use the
CustomerData_IDs.csv file that you created.

372 Chapter 31: Sequence transformation

7. Connect the Source transformation to the Sequence transformation and the Sequence transformation to
the Target transformation:

8. In the Target transformation, map the NEXTVAL output field to the cust_id field.

9. Save the mapping and create a mapping task in the mapping task wizard. The Current Value is 1
because the mapping hasn't been run yet and the Initial Value is 1.

Sequence transformation example 373

10. After running the mapping task, view the mapping task details. The task details show the current value
and the initial value of the sequence.

374 Chapter 31: Sequence transformation

11. Open the CustomerData_IDs.csv file and note that the cust_id field is populated with a numeric
sequence:

Sequence transformation example 375

C h a p t e r 3 2

Sorter transformation
Use a Sorter transformation to sort data in ascending or descending order, according to a specified sort
condition. You can configure the Sorter transformation for case-sensitive sorting and for distinct output. The
Sorter transformation is a passive transformation.

You can use the Sorter transformation to increase performance with other transformations. For example, you
can sort data that passes through a Lookup or an Aggregator transformation configured to use sorted
incoming fields.

When you create a Sorter transformation, specify fields as sort conditions and configure each sort field to
sort in ascending or descending order. You can use a parameter for the sort condition and define the value of
the parameter when you configure the mapping task.

Note: In advanced mode, make sure that the following conditions are true for the Sorter transformation to
take effect:

• The Sorter transformation is connected directly to the Target transformation.

• All sort fields used in the sort condition are connected to the Target transformation.

• The data types in the connected sort fields match the data types in the target fields.

Sort conditions
Configure the sort condition to specify the sort fields and the sort order. The mapping task uses the sort
condition to sort the data.

The sort fields are one or more fields that you want to use as the sort criteria. Configure the sort order to sort
data in ascending or descending order. In advanced mode, you can override the sort order using the
advanced session properties when you schedule the mapping task.

When you specify multiple sort conditions, the mapping task sorts each condition sequentially. The mapping
task treats each successive sort condition as a secondary sort of the previous sort condition. You can
configure the order of sort conditions.

If you use a parameter for the sort condition, define the sort fields and the sort order when you run the
mapping or when you configure the mapping task.

376

Sorter caches
The mapping task passes all incoming data into the Sorter transformation before it performs the sort
operation. The mapping task uses cache memory to process Sorter transformations. If the mapping task
cannot allocate enough memory, the mapping fails.

By default, the mapping task determines the cache size at run time. Before starting the sort operation, the
mapping task allocates the amount of memory configured for the Sorter cache size.

Configure the Sorter cache size with a value less than the amount of available physical RAM on the machine
that hosts the Secure Agent. Allocate at least 16 MB (16,777,216 bytes) of physical memory to sort data with
a Sorter transformation. When you allocate memory to the Sorter cache, consider other transformations in
the mapping and the volume of data in the mapping task.

If the amount of incoming data is greater than the Sorter cache size, the mapping task temporarily stores
data in the work directory. When storing data in the Sorter transformation work directory, the mapping task
requires disk space of at least twice the amount of incoming data.

When you configure the tracing level to Normal, the mapping task writes the memory amount that the Sorter
transformation uses to the session log.

Advanced properties
You can specify additional sort criteria in the Sorter transformation advanced properties. The mapping task
applies the properties to all sort fields. The Sorter transformation properties also determine the system
resources that the mapping task allocates when it sorts data.

The properties that are available vary based on the mapping mode.

You can configure the following advanced properties for a Sorter transformation:

Property Description

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

Sorter Cache Size The maximum amount of memory required to perform the sort operation. The mapping task
passes all incoming data into the Sorter transformation before it performs the sort operation. If
the mapping task cannot allocate enough memory, the mapping fails.
You can configure a numeric value for the sorter cache. Allocate at least 16 MB of physical
memory. Default is Auto.

Case Sensitive Determines whether the mapping task considers case when sorting data. When you enable a
case-sensitive sort, the mapping task sorts uppercase characters higher than lowercase
characters. Default is Case Sensitive.
On an advanced cluster, sorting is always case-sensitive.

Work Directory The mapping task uses the work directory to create temporary files while it sorts data. After the
mapping task sorts data, it deletes the temporary files.
You can specify any directory on the Secure Agent machine to use as a work directory. Allocate
at least 16 MB (16,777,216 bytes) of physical memory for the work directory. You can configure a
system parameter or a user-defined parameter in this field. Default is the TempDir system
parameter.

Sorter caches 377

Property Description

Distinct Treats output rows as distinct. If you configure the Sorter transformation for distinct output rows,
the mapping task configures all fields as part of the sort condition. The mapping task discards
duplicate rows compared during the sort operation.

Null Treated Low Treats a null value as lower than any other value. For example, if you configure a descending sort
condition, rows with a null value in the sort field appear after all other rows.
On an advanced cluster, null values are treated as high.

Transformation
Scope

The transaction is determined by the commit or rollback point. The transformation scope
specifies how the mapping task applies the transformation logic to incoming data:
- Transaction. Applies the transformation logic to all rows in a transaction. Choose Transaction

when the results of the transformation depend on all rows in the same transaction, but not on
rows in other transactions.

- All Input. Applies the transformation logic to all incoming data. When you choose All Input, the
mapping task drops incoming transaction boundaries. Choose All Input when the results of the
transformation depend on all rows of data in the source.

Optional Determines whether the transformation is optional. If a transformation is optional and there are
no incoming fields, the mapping task can run and the data can go through another branch in the
data flow. If a transformation is required and there are no incoming fields, the task fails.
For example, you configure a parameter for the source connection. In one branch of the data
flow, you add a transformation with a field rule so that only Date/Time data enters the
transformation, and you specify that the transformation is optional. When you configure the
mapping task, you select a source that does not have Date/Time data. The mapping task ignores
the branch with the optional transformation, and the data flow continues through another branch
of the mapping.

Hierarchical data in advanced mode
In advanced mode, you can use hierarchical fields that represent an array, map, or struct.

You can use the hierarchical fields as pass-through fields.

Note: You cannot use a hierarchical field in a sort condition.

Sorter transformation example
You need to create an invoice for customer sales from a customer database. Use a Sorter transformation on
the customer sales object to sort the data in ascending order according to the order number. Use the result
of the Sorter transformation as an input to the Aggregator transformation. You can increase Aggregator
transformation performance with the sorted incoming fields option.

The Product_Orders table contains information about all the orders placed by customers.

OrderID ItemID Item Quantity Price

43 123456 ItemA 3 3.04

41 456789 ItemB 2 12.02

378 Chapter 32: Sorter transformation

OrderID ItemID Item Quantity Price

43 000246 ItemC 6 34.55

45 000468 ItemD 5 0.56

43 NULL ItemE 1 0.75

41 123456 ItemA 4 3.04

45 123456 ItemA 5 3.04

45 456789 ItemB 3 12.02

In the Mapping Designer, add Product_Orders as a source object.

Add a Sorter transformation to the mapping canvas, and connect it to the data flow. Sort the product orders
by order ID and item ID.

The following image shows a sort condition with the order ID and item ID fields configured to sort in
descending order:

Enable a null treated low sort so that the mapping task considers null values to be lower than other values.

Sorter transformation example 379

The following image shows the advanced properties for the Sorter transformation, with the Null Treated Low
option selected:

After the mapping task sorts the data, it passes the following rows out of the Sorter transformation:

OrderID ItemID Item Quantity Price

45 456789 ItemB 3 12.02

45 123456 ItemA 5 3.04

45 000468 ItemD 5 0.56

43 123456 ItemA 3 3.04

43 000246 ItemC 6 34.55

43 NULL ItemE 1 0.75

41 456789 ItemB 2 12.02

41 123456 ItemA 4 3.04

You need to find out the total amount and the item quantity for each order. You can use the result of the
Sorter transformation as an input to an Aggregator transformation to increase performance. Add the
Aggregator transformation to the mapping, and connect the transformation to the data flow. Group the fields
in the Aggregator transformation by the Order ID, and add an expression to sum the orders by price.

When you pass the data from the Sorter transformation, the Aggregator transformation groups the order ID to
calculate the total amount for each order.

OrderID Sum

45 54.06

43 217.17

41 36.2

Write the order summaries to an object in the data warehouse that stores all order totals.

380 Chapter 32: Sorter transformation

The mapping task reads the orders data from the source, sorts the orders, totals the prices, and then writes
the data to the target.

The following image shows the mapping of the data flow:

Sorter transformation example 381

C h a p t e r 3 3

SQL transformation
Use the SQL transformation to call a stored procedure or function in a relational database or to processes
SQL queries midstream in a pipeline. The transformation can call a stored procedure or function, process a
saved query, or process a query that you create in the transformation SQL editor.

The SQL transformation can process the following types of SQL statements:

Stored procedure or stored function

A stored procedure is a precompiled collection of database procedural statements and optional flow
control statements, similar to an executable script. Stored procedures reside in the database and run
within the database. A stored function is similar to a stored procedure, except that a function returns a
single value.

When the SQL transformation processes a stored procedure or function, it passes input parameters to
the stored procedure or function. The stored procedure or function passes the return value or values to
the output fields of the transformation.

Saved or user-entered query

You can configure the SQL transformation to process a saved query that you create in Data Integration
or you can enter a query in the SQL editor. The SQL transformation processes the query and returns rows
and database errors.

You can pass strings or parameters to the query to define dynamic queries or change the selection
parameters. You can output multiple rows when the query has a SELECT statement.

Stored procedure or function processing
You can use the SQL transformation to call a stored procedure or function in a Microsoft SQL Server, MySQL,
ODBC, or Oracle database. The stored procedure or stored function must exist in the database before you
create the SQL transformation.

You can call a stored procedure or function with the following types of SQL transformations:
Connected SQL transformation

The transformation is connected to the mapping pipeline. The stored procedure or function runs on a
row by row basis and can return a single output parameter or multiple output parameters.

You can map the incoming fields of the SQL transformation to the input fields of a stored procedure. The
output fields in the SQL transformation consist of the stored procedure output parameters or return
values.

382

A return value is a code or text string that you define in the stored procedure. For example, a stored
procedure can return a value that indicates the date the stored procedure was run. When a stored
procedure has a return value, the SQL transformation has a return value field.

Unconnected SQL transformation

The SQL transformation is not connected to the mapping pipeline. An Expression transformation calls
the SQL transformation with a stored procedure expression, or the stored procedure runs before or after
the mapping.

You can configure the expression to return the stored procedure output to expression output fields and
variables. You can call the stored procedure from multiple expressions and nest stored procedures.

You cannot process a stored function with an unconnected SQL transformation.

You might use a stored procedure to perform the following tasks:

• Check the status of a target database before loading data into it.

• Determine if enough space exists in a database.

• Perform a specialized calculation.

• Retrieve data by a value.

• Drop and re-create indexes.

• Remove temporary tables.

• Verify that a table exists in a database

You can use a stored procedure to perform a calculation that you would otherwise make part of a mapping.
For example, if you have a stored procedure to calculate sales tax, perform that calculation in an SQL
transformation instead of re-creating the calculation in an Expression transformation.

When you run a mapping, the SQL transformation passes input parameters to the stored procedure. The
stored procedure passes the return value or values to the output fields of the transformation.

Connected SQL transformation example

Your mapping includes user IDs in the data flow. You want to include user names in addition to user IDs.

You have a stored procedure that matches user IDs with user names in the database. You add an SQL
transformation to your mapping, select the stored procedure, and map the userId incoming field with the
userId input field in the stored procedure. You check the Output Fields tab for the SQL transformation to
confirm that it includes the username field. When you run the mapping, the username value is returned with
the user ID.

Unconnected SQL transformation example

Your mapping includes employee salary data and you want to update each employee's salary with a raise.

You have a stored procedure that calculates employee salary increases. The stored procedure returns the
new salary and the percentage of increase. You add an unconnected SQL transformation and select the
stored procedure.

You then add an Expression transformation to the mapping pipeline. In the Expression transformation, you
add a variable field to capture the new salary. You add an output field and use the stored procedure function
to configure the expression. You configure the arguments so that the output field returns the increase
percentage and you create a second output field to return the new salary. You then map the new output fields
to the downstream transformation.

Stored procedure or function processing 383

Connected or unconnected SQL transformation for
stored procedure processing

When you call a stored procedure in an SQL transformation, you can use a connected or an unconnected SQL
transformation.

You process a stored procedure with a connected SQL transformation when you need data from an input field
sent as an input parameter to the stored procedure, or you need the results of a stored procedure sent as an
output parameter to another transformation.

You process a stored procedure with an unconnected SQL transformation when you need the stored
procedure to run before or after a mapping, run nested stored procedures, or call the stored procedure
multiple times.

The following table describes when you would use a connected or unconnected SQL transformation to
process a stored procedure:

Scenario SQL transformation type

Run a stored procedure before or after a mapping. Unconnected

Run a stored procedure once during a mapping. Unconnected

Run a stored procedure every time a row passes through the SQL transformation. Connected or
unconnected

Run a stored procedure based on data that passes through the mapping such as when a
specific field does not contain a null value.

Unconnected

Pass parameters to the stored procedure and receive a single output parameter. Connected or
unconnected

Pass parameters to the stored procedure and receive multiple output parameters.
Note: To get multiple output parameters from an unconnected SQL transformation, you
must create variables for each output parameter.

Connected or
unconnected

Run nested stored procedures. Unconnected

Call a stored procedure multiple times within a mapping. Unconnected

Unconnected SQL transformations
An unconnected SQL transformation is an SQL transformation that is not connected to the mapping pipeline.
Use an unconnected SQL transformation to call a stored procedure.

You use an Expression transformation to call the unconnected SQL transformation with an :SP expression.
Or, you configure the SQL transformation to invoke a stored procedure before or after a mapping run. For
example, you might use an unconnected SQL transformation to remove temporary source tables after the
mapping receives data from the source.

You might also use an unconnected SQL transformation when you want to call a stored procedure multiple
times in a mapping.

384 Chapter 33: SQL transformation

Calling an unconnected SQL transformation from an expression
Call an unconnected SQL transformation from an Expression transformation with an :SP expression.

When you call a stored procedure from an expression, you configure the expression to return the stored
procedure output values to fields in the expression. Use one of the following methods to return the output
values:

• Assign the output value to a local variable field.

• Assign the output value to the system variable PROC_RESULT.

When you use the PROC_RESULT variable, Data Integration assigns the value of the return parameter directly
to the output field, which you can write to a target. You can also assign one output parameter to
PROC_RESULT and the other parameter to a variable.

Use expression variables to access OUT or INOUT parameters in the stored procedure. If the stored
procedure returns multiple output parameters, you must create variables for each output parameter.

Use the following syntax to call a stored procedure in an expression:

:SP.<SQL transformation name> (arg1, arg2, PROC_RESULT)
If the stored procedure returns a single output parameter or return value, use the reserved variable
PROC_RESULT as the output variable.

For example, the following expression calls a stored procedure called GET_NAME_FROM_ID:

:SP.GET_NAME_FROM_ID(inID, PROC_RESULT)
inID can be either an input field in the stored procedure or a variable in the Expression transformation. When
you run the mapping, Data Integration applies the value of PROC_RESULT to the output field for the
expression.

If the stored procedure returns multiple output parameters, you must create expression variables for each
output parameter. For example, if the stored procedure also returns a title, create a variable field called
varTitle1 in the Expression transformation and use the field as the expression for an output field called Title.
You write the following expression:

:SP.GET_NAME_FROM_ID(inID, varTitle1, PROC_RESULT)
The following image shows how you configure the Expression transformation:

Data Integration returns output parameters in the order they are declared in the stored procedure. In this
example, Data Integration applies the value of the first output field in the stored procedure to varTitle1 and
passes it to the Title field in the Expression transformation. It applies the value of the second stored
procedure output field to the output field for the expression.

Unconnected SQL transformations 385

The data types for the expression fields and variables must match the data types for the stored procedure
input/output variables and return value.

Invoking a stored procedure before or after a mapping run
You can configure an unconnected SQL transformation to process a stored procedure before or after a
mapping run. Data Integration invokes the stored procedure at the specified time. You do not need to call the
stored procedure with an :SP expression. You can configure the stored procedure to run before or after the
mapping receives data from the source, or before or after the mapping loads data to the target.

You can configure the following stored procedure types:

• Source Pre-load. The stored procedure runs before the mapping retrieves data from the source.

• Source Post-load. The stored procedure runs after the mapping retrieves data from the source.

• Target Pre-load. The stored procedure runs before the mapping sends data to the target.

• Target Post-load. The stored procedure runs after the mapping sends data to the target.

On the Advanced tab, configure the stored procedure type and enter the call text for the stored procedure.
The call text is the name of the stored procedure followed by any applicable input parameters in parentheses.
If there are no input parameters, you must include an empty pair of parentheses. Do not include the SQL
statement EXEC or use the :SP keyword.

For example, to call the stored procedure Drop_Table, enter the following call text:

Drop_Table()
To pass a string input parameter, enter it without quotes. If the string has spaces in it, enclose the parameter
in double quotes. For example, if the stored procedure Drop_Table requires a table name as an input
parameter, enter the following call text:

Drop_Table(Customer_list)

Unconnected SQL transformation example
You are updating employee salaries with a cost of living increase. You have a CSV file that contains
employee names and IDs. You need to add each employee's salary, calculate their increase, and write the
data to a new CSV file.

You have the following source data:

EMP_ID, EMP_NAME
1001, John
1002, Alice
1003, Mary
1004, Mark
1005, Stephan

You have a stored procedure called ADD_SALARY in an Oracle database that adds the employee's salary to
the file and a second stored procedure called SALARY_INCREASE which calculates the salary increase. In the
mapping, use two unconnected SQL transformations to call the stored procedures and two Expression
transformations to call the SQL transformations.

386 Chapter 33: SQL transformation

The following image shows the mapping:

Configure the transformations in the following ways:
Source transformation

Configure the Source transformation to load the source data that you want to use.

SQL_Add_Salary transformation

Configure the first SQL transformation to call the ADD_SALARY stored procedure.

On the SQL tab, select the connection that contains the ADD_SALARY stored procedure and then select
the stored procedure.

Select Unconnected stored procedure.

The stored procedure has one input field for the employee ID and returns the current salary in the output
field.

SQL_Increase transformation

Configure the second SQL transformation to call the SALARY_INCREASE stored procedure.

On the SQL tab, select the connection that contains the SALARY_INCREASE stored procedure and then
select the stored procedure.

Select Unconnected stored procedure.

The stored procedure has one input field for the employee name and returns the new salary in the output
field.

Expression_Add_Salary transformation

Configure the first Expression transformation to call the SQL_Add_Salary transformation. Create a
variable field for the input parameter and an output field to capture the output of the stored procedure.

On the Expression tab, add a variable field named ID and configure its value as the EMP_ID field in the
source. Create an output field called salary to capture the return value of the ADD_SALARY stored
procedure in the first SQL transformation. Configure the salary field to call the ADD_SALARY stored
procedure with the following expression:

:SP.SQL_Add_Salary(ID, PROC_RESULT)
The expression takes the variable field ID as the input parameter of the stored procedure and returns the
salary value to the SALARY output field.

Unconnected SQL transformations 387

The following image shows how you configure the Expression transformation:

Expression_Increase transformation

Configure the second Expression transformation to call the SQL_increase transformation. Add a variable
field called CurrentSalary and configure its value as the incoming salary field. Add a output field called
newSalary to capture the return value of the SALARY_INCREASE stored procedure. Configure the
newSalary field to call the SALARY_INCREASE stored procedure with the following expression:

:SP.SQL_increase(CurrentSalary, PROC_RESULT)
The expression takes the variable field CurrentSalary as the input parameter of the stored procedure and
returns the new salary to the newSalary output field.

The following image shows how you configure the Expression transformation:

Target transformation

Configure the Target transformation to create a target file at run time.

When you run the mapping, you get the following results:

EMP_ID, EMP_NAME, salary, newSalary
1001, John, 400, 480
1002, Alice, 500, 600
1003, Mary, 400, 480
1004, Mark, 700, 840
1005, Stephan, 600, 720

388 Chapter 33: SQL transformation

Query processing
You can configure the SQL transformation to process a saved query or a user-entered query that runs against
a Microsoft SQL Server or Oracle database. When you configure the SQL transformation to process a query,
you create an active transformation. The transformation can return multiple rows for each input row.

When you enter a query, you can format the SQL and validate the syntax. Alternatively, you can create a string
parameter to define the query in the mapping task.

You can create the following types of SQL queries:

Static SQL query

The query statement does not change, but you can use query parameters to change the data. Data
Integration prepares the SQL query once and runs the query for all input rows.

Dynamic SQL query

You can change the query statements and the data. Data Integration prepares an SQL query for each
input row.

You can optimize performance by creating static queries.

Static SQL queries
Create a static SQL query when you need to run the same query statements for each input row, but you want
to change the data in the query for each input row. When you create a static SQL query, you use parameter
binding in the SQL editor to define parameters for query data.

To change the data in the query, you configure query parameters and bind them to input fields in the
transformation. When you bind a parameter to an input field, you identify the field by name in the query.
Enclose the field name in question marks (?). The query data changes based on the value of the data in the
input field.

For example, the following static queries use parameter binding:

DELETE FROM Employee WHERE Dept = ?Dept?
INSERT INTO Employee(Employee_ID, Dept) VALUES (?Employee_ID?, ?Dept?)
UPDATE Employee SET Dept = ?Dept? WHERE Employee_ID > 100

Example

The following static SQL query uses query parameters that bind to the Employee_ID and Dept input fields of
an SQL transformation:

SELECT Name, Address FROM Employees WHERE Employee_Num = ?Employee_ID? and Dept = ?Dept?
The source has the following rows:

Employee_ID Dept

100 Products

123 HR

130 Accounting

Data Integration generates the following query statements from the rows:

SELECT Name, Address FROM Employees WHERE Employee_ID = ‘100’ and DEPT = ‘Products’
SELECT Name, Address FROM Employees WHERE Employee_ID = ‘123’ and DEPT = ‘HR’
SELECT Name, Address FROM Employees WHERE Employee_ID = ‘130’ and DEPT = ‘Accounting’

Query processing 389

Selecting multiple database rows
When the SQL query contains a SELECT statement, the transformation returns one row for each database row
it retrieves. You must configure an output field for each column in the SELECT statement. The output fields
must be in the same order as the columns in the SELECT statement.

When you configure output fields for database columns, you must configure the data type of each database
column that you select. Select a native data type from the list. When you select the native data type, Data
Integration configures the transformation data type for you.

The native data type in the transformation must match the database column data type. Data Integration
matches the column data type in the database with the native database type in the transformation at run
time. If the data types do not match, Data Integration generates a row error.

Dynamic SQL queries
A dynamic SQL query can execute different query statements for each input row. When you create a dynamic
SQL query, you use string substitution to define string variables in the query and link them to input fields in
the transformation.

To change a query statement, configure a string variable in the query for the portion of the query that you
want to change. To configure the string variable, identify an input field by name in the query and enclose the
name in tilde characters (~). The query changes based on the value of the data in the field.

The transformation input field that contains the query variable must be a string data type. You can use string
substitution to change the query statement and the query data.

When you create a dynamic SQL query, Data Integration prepares a query for each input row. You can pass
the following types of dynamic queries in an input field:

Full query

You can substitute the entire SQL query with query statements from source data.

Partial query

You can substitute a portion of the query statement, such as the table name.

Passing the full query
You can pass the full SQL query through an input field in the transformation. To pass the full query, create a
query in the SQL editor that consists of one string variable to represent the full query: ~Query_Field~

To pass the full query, configure the source to pass the full query in an output field. Then, configure the SQL
transformation to receive the query in the Query_Field input field.

390 Chapter 33: SQL transformation

The following image shows the transformation configuration:

Data Integration replaces the ~Query_Field~ variable in the dynamic query with the SQL statements from the
source. It prepares the query and sends it to the database to process. The database executes the query. The
SQL transformation returns database errors to the SQLError output field.

When you pass the full query, you can pass more than one query statement for each input row. For example,
the source might contain the following rows:

DELETE FROM Person WHERE LastName = ‘Jones’; INSERT INTO Person (LastName, Address)
VALUES ('Smith', '38 Summit Drive')
DELETE FROM Person WHERE LastName = ‘Jones’; INSERT INTO Person (LastName, Address)
VALUES ('Smith', '38 Summit Drive')
DELETE FROM Person WHERE LastName = ‘Russell’;

You can pass any type of query in the source data. When you configure SELECT statements in the query, you
must configure output fields for the database columns that you retrieve from the database. When you mix
SELECT statements and other types of queries, the output fields that represent database columns contain
null values when no database columns are retrieved.

Substituting the table name in a string
You can use a partial query to substitute the table name. To substitute the table name, configure an input
field to receive the table name from each input row. Identify the input field by name in the query and enclose
the name with tilde characters (~).

For example, the following dynamic query contains a string variable, ~Table_Field~:

SELECT Emp_ID, Address from ~Table_Field~ where Dept = ‘HR’
The source might pass the following values to the Table_Field column:

Table_Field

Employees_USA

Employees_England

Employees_Australia

Query processing 391

Data Integration replaces the ~Table_Field~ variable with the table name in the input field:

SELECT Emp_ID, Address from Employees_USA where Dept = ‘HR’
SELECT Emp_ID, Address from Employees_England where Dept = ‘HR’
SELECT Emp_ID, Address from Employees_Australia where Dept = ‘HR’

Passive mode configuration
When you create an SQL transformation, you can configure it to run in passive mode instead of active mode.
A passive transformation does not change the number of rows that pass through it. It maintains transaction
boundaries and row types.

If you configure the SQL transformation to process a query, you can configure passive mode when you create
the transformation. Configure passive mode in the transformation advanced properties.

When you configure the transformation as a passive transformation and a SELECT query returns more than
one row, Data Integration returns the first row and an error to the SQLError field. The error states that the SQL
transformation generated multiple rows.

If the SQL query has multiple SQL statements, Data Integration executes all statements but returns data for
the first SQL statement only. The SQL transformation returns one row. The SQLError field contains the errors
from all SQL statements. When multiple errors occur, they are separated by semicolons (;) in the SQLError
field.

SQL statements that you can use in queries
You can use certain data definition, data manipulation, data language control, and transaction control
statements with the SQL transformation.

The following table lists the statements that you can use in an SQL query in the SQL transformation:

Statement Type Statement Description

Data Definition ALTER Modifies the structure of the database.

Data Definition COMMENT Adds comments to the data dictionary.

Data Definition CREATE Creates a database, table, or index.

Data Definition DROP Deletes an index, table, or database.

Data Definition RENAME Renames a database object.

Data Definition TRUNCATE Removes all rows from a table.

Data Manipulation CALL Calls a PL/SQL or Java subprogram.

Data Manipulation DELETE Deletes rows from a table.

Data Manipulation EXPLAIN PLAN Writes the access plan for a statement into the database Explain tables.

Data Manipulation INSERT Inserts rows into a table.

Data Manipulation LOCK TABLE Prevents concurrent application processes from using or changing a
table.

Data Manipulation MERGE Updates a table with source data.

392 Chapter 33: SQL transformation

Statement Type Statement Description

Data Manipulation SELECT Retrieves data from the database.

Data Manipulation UPDATE Updates the values of rows of a table.

Data Control Language GRANT Grants privileges to a database user.

Data Control Language REVOKE Removes access privileges for a database user.

Transaction Control COMMIT Saves a unit of work and performs the database changes for that unit of
work.

Transaction Control ROLLBACK Reverses changes to the database since the last COMMIT.

Rules and guidelines for query processing
Use the following rules and guidelines when you configure the SQL transformation to process a query:

• The number and the order of the output fields must match the number and order of the fields in the query
SELECT clause.

• The native data type of an output field in the transformation must match the data type of the
corresponding column in the database. Data Integration generates a row error when the data types do not
match.

• When the SQL query contains an INSERT, UPDATE, or DELETE clause, the transformation returns data to
the SQLError field, the pass-through fields, and the NumRowsAffected field when it is enabled. If you add
output fields, the fields receive NULL data values.

• When the SQL query contains a SELECT statement and the transformation has a pass-through field, the
transformation returns data to the pass-through field whether or not the query returns database data. The
SQL transformation returns a row with NULL data in the output fields.

• When the number of output fields is more than the number of columns in the SELECT clause, the extra
fields receive a NULL value.

• When the number of output fields is less than the number of columns in the SELECT clause, Data
Integration generates a row error.

• You can use string substitution instead of parameter binding in a query. However, the input fields must be
string data types.

Query processing 393

SQL transformation configuration
Use the Properties panel to configure the SQL transformation. When you configure the transformation, you
specify the transformation name and description, configure fields and field mapping, and specify the type of
SQL that the transformation processes. You also set the advanced properties for the transformation.

The following image shows the Properties panel of an SQL transformation that is configured to process a
stored procedure:

Configure the transformation using the following tabs on the Properties panel:

General

Configure the SQL transformation name and optional description.

Incoming Fields

Define field rules that determine the data to include in the transformation.

Not applicable to unconnected SQL transformations.

SQL

Define the database connection and the type of SQL that the transformation processes: either a stored
procedure, stored function, or query.

If you configure the transformation to process a stored procedure, stored function, or saved query, you
select the stored procedure, stored function, or saved query on this tab.

If you configure the transformation to process a stored procedure, you can choose to run the
transformation as an unconnected transformation.

If you configure the transformation to process a user-entered query, the SQL editor appears on this tab.
Enter the query in the SQL editor.

Input Fields

For transformations that process stored procedures, displays the stored procedure input fields.

Field Mapping

For stored procedure and stored functions, specify how to map incoming fields to the input fields of the
selected stored procedure or function.

You do not configure the field mapping for queries or unconnected SQL transformations.

394 Chapter 33: SQL transformation

Output Fields

For stored procedures, stored functions, and saved queries, displays a preview of the SQL
transformation output fields. For user-entered queries, configure output fields for the columns retrieved
from the database.

For queries, the output fields also include the SQLError field, the optional NumRowsAffected field, and
optional pass-through fields.

Advanced

Define advanced properties for the transformation. Advanced properties differ based on the type of SQL
that the transformation processes.

Note: Field name conflicts must be resolved in an upstream transformation. You cannot use field name
conflict resolution rules in an SQL transformation.

Configuring the SQL type
You can configure the SQL transformation to process a stored procedure, stored function, saved query, or
user-entered query on the SQL tab of the SQL transformation.

The steps for configuring the transformation vary based on the type of SQL that the transformation
processes.

Selecting a stored procedure or function
You can configure the SQL transformation to process a stored procedure or stored function on the SQL tab of
the SQL transformation.

1. In the Properties panel of the SQL transformation, click the SQL tab.

The following image shows the SQL tab when the SQL type is set to Stored Procedure:

2. Select the connection to the database.

You can select the connection or use a parameter.

Note: If you want to parameterize the connection, create the parameter after you select the stored
procedure or function.

3. Set the SQL Type to Stored Procedure or Stored Function.

4. Click Select to select the stored procedure or function from the database, or enter the exact name of the
stored procedure or function to call.

The stored procedure or function name is case-sensitive.

SQL transformation configuration 395

Note: If you add a new stored procedure to the database while you have the mapping open, the new
stored procedure does not appear in the list of available stored procedures. To refresh the list, close and
reopen the mapping.

5. If the transformation processes a stored procedure, and you want to run the transformation in
unconnected mode, select Unconnected Stored Procedure.

Note: This option is not available for all connector types. For more information, see the help for the
appropriate connector.

6. If you want to parameterize the connection, click New Parameter and enter the details for the connection
parameter.

Selecting a saved query
You can configure the SQL transformation to process a saved query on the SQL tab of the SQL
transformation.

1. In the Properties panel of the SQL transformation, click the SQL tab.

2. Select the connection to the database.

You can select the connection or use a parameter.

3. Set the SQL type to SQL Query.

4. Set the query type to Saved Query.

5. Click Select to select the saved query from a list of Data Integration assets.

Entering a query
You can configure the SQL transformation to process a user-entered query on the SQL tab of the SQL
transformation. Optionally, you can parameterize the query. When you parameterize the query, you enter the
full query in the mapping task.

1. In the Properties panel of the SQL transformation, click the SQL tab.

2. Select the connection to the database or use a parameter.

3. Set the SQL type to SQL Query.

4. Set the query type to Entered Query.

5. If you do not want to parameterize the query, enter the query in the query editor.

Incoming fields are listed on the Fields tab. To add a field to the query, select the field and click Add.

You can format the SQL and validate the syntax.

Note: The syntax validation performs a general SQL syntax check but does not verify the SQL against the
database. The validation can return a syntax error even though the SQL is valid for the database. In this
case, you can still save and run the mapping.

If you update the incoming fields after you configure the query, open the SQL tab to refresh the changes.

6. If you want to parameterize the query, perform the following steps:

a. Open the Parameters tab and create a new string parameter.

b. Select the parameter, and then click Add to add the parameter to the query editor.

When you add the parameter to the query editor, Data Integration encloses it in dollar sign
characters ($).

Do not format the SQL or validate the query.

396 Chapter 33: SQL transformation

SQL transformation field mapping
Configure field mapping in an SQL transformation to define how to use data from the upstream
transformation in a stored procedure or function. You do not configure field mapping when the
transformation processes a query.

Configure field mapping on the Field Mapping tab of the Properties panel.

You can configure the following field mapping options:
Field Map Options

Method of mapping fields to the SQL transformation. Select one of the following options:

• Manual. Manually link incoming fields to the store procedure or function's input fields. Removes links
for automatically mapped fields.

• Automatic. Automatically link fields with the same name. Use when all of the fields that you want to
link share the same name. You cannot manually link fields with this option.

• Completely Parameterized. Use a parameter to represent the field mapping. In the task, you can
configure all field mappings.

• Partially Parameterized. Configure links in the mapping that you want to enforce and use a parameter
to allow other fields to be mapped in the mapping task. Or, use a parameter to configure links in the
mapping, and allow all fields and links to display in the task for configuration.
To see more information on field mapping parameters, see Mappings.

Show Fields

Controls the fields that appear in the Incoming Fields list. Show all fields, unmapped fields, or mapped
fields.

Automap

Links fields with matching names. Allows you to link matching fields, and then manually configure other
field mappings.

You can map fields in the following ways:

• Exact Field Name. Data Integration matches fields of the same name.

• Smart Map. Data Integration matches fields with similar names. For example, if you have an incoming
field Cust_Name and a target field Customer_Name, Data Integration automatically links the Cust_Name
field with the Customer_Name field.

You can use both Exact Field Name and Smart Map in the same field mapping. For example, use Exact
Field Name to match fields with the same name and then use Smart Map to map fields with similar
names.

You can undo all automapped field mappings by clicking Automap > Undo Automap. To unmap a single
field, select the field to unmap and click Actions > Unmap.

Data Integration highlights newly mapped fields. For example, when you use Exact Field Name, Data
Integration highlights the mapped fields. If you then use Smart Map, Data Integration only highlights the
fields mapped using Smart Map.

Action menu

Additional field link options. Provides the following options:

• Map selected. Links the selected incoming field with the selected stored procedure or function input
field.

• Unmap selected. Clears the link for the selected field.

SQL transformation configuration 397

• Clear all. Clears all field mappings.

Show

Determines how field names appear in the Stored Procedure Input Fields list. Use technical field names
or labels.

SQL transformation output fields
You can view output fields for the SQL transformation on the Output Fields tab of the Properties panel. The
Mapping Designer displays the name, type, precision, scale, and origin for each output field.

Information on the Output Fields tab varies based on the SQL type.

Output fields for stored procedures and functions

When the SQL transformation processes a stored procedure or function, the output fields include output
parameters from the database. You cannot edit the transformation output fields. If you want to exclude
output fields from the data flow or rename output fields before you pass them to a downstream
transformation, configure the field rules for the downstream transformation.

Output fields for queries

When the SQL transformation processes a query, the output fields include the following fields:

Retrieved column fields

When the SQL query contains a SELECT statement, the transformation returns one row for each
database row that it retrieves.

For user-entered queries, you must configure an output field for each column in the SELECT statement.
The output fields must be in the same order as the columns in the SELECT statement.

For saved queries, Data Integration creates the output fields.

SQLError field

Data Integration returns row errors to the SQLError field when it encounters a connection or syntax error.
It returns NULL to the SQLError field when no SQL errors occur.

For example, the following SQL query generates a row error from an Oracle database when the
Employees table does not contain Product_ID:

SELECT Product_ID FROM Employees
Data Integration generates one row. The SQLError field contains the following error text in one line:

ORA-0094: “Product_ID”: invalid identifier Database driver error... Function Name:
Execute SQL Stmt: SELECT Product_ID from Employees Oracle Fatal Error

When a query contains multiple statements, and you configure the SQL transformation to continue on
SQL error, the SQL transformation might return rows from the database for one query statement, but
return database errors for another query statement. The SQL transformation returns any database error
in a separate row.

NumRowsAffected field

You can enable the NumRowsAffected output field to return the number of rows affected by the INSERT,
UPDATE, or DELETE query statements in each input row. Data Integration returns the NumRowsAffected
for each statement in the query. NumRowsAffected is disabled by default.

When you enable NumRowsAffected and the SQL query does not contain an INSERT, UPDATE, or DELETE
statement, NumRowsAffected is zero in each output row.

398 Chapter 33: SQL transformation

The following table lists the output rows that the SQL transformation generates when you enable
NumRowsAffected:

Query Statement Output Rows

UPDATE, INSERT, DELETE only One row for each statement with the NumRowsAffected for the
statement.

One or more SELECT statements Total number of database rows retrieved.
NumRowsAffected is zero in each row.

DDL queries such as CREATE, DROP,
TRUNCATE

One row with zero NumRowsAffected.

When a query contains multiple statements, Data Integration returns the NumRowsAffected for each
statement. NumRowsAffected contains the sum of the rows affected by each INSERT, UPDATE, and
DELETE statement in an input row.

For example, a query contains the following statements:

DELETE from Employees WHERE Employee_ID = ‘101’;
SELECT Employee_ID, LastName from Employees WHERE Employee_ID = ‘103’;
INSERT into Employees (Employee_ID, LastName, Address)VALUES (‘102’, 'Gein', '38
Beach Rd')

The DELETE statement affects one row. The SELECT statement does not affect any row. The INSERT
statement affects one row.

Data Integration returns one row from the DELETE statement. NumRowsAffected is equal to one. It
returns one row from the SELECT statement, NumRowsAffected is zero. It returns one row from the
INSERT statement with NumRowsAffected equal to one.

Pass-through fields

Define incoming fields as pass-through fields to pass data through the SQL transformation. The SQL
transformation returns data from pass-through fields whether or not the SQL query returns rows.

When the source row contains a SELECT statement, the SQL transformation returns the data in the pass-
through field in each row it returns from the database. If the query result contains multiple rows, the SQL
transformation repeats the pass through field data in each row.

When a query returns no rows, the SQL transformation returns the pass-through column data and null
values in the output fields. For example, queries that contain INSERT, UPDATE, and DELETE statements
return no rows. If the query has errors, the SQL transformation returns the pass-through column data, the
SQLError message, and null values in the output fields.

To define a pass-through field, click Add in the Pass-Through Fields area, and then select the field you
want to pass through the SQL transformation. When you configure an incoming field as a pass-through
field, Data Integration adds the field with the suffix "_output" in the Pass-Through Fields area.

If you configure a field as a pass-through field and then change the field name in the source, Data
Integration does not update the pass-through field name and no data is passed through the field. In the
SQL transformation, delete the old pass-through field and configure the updated incoming field as a
pass-through field.

SQL transformation configuration 399

Advanced properties
Configure advanced properties for the SQL transformation on the Advanced tab. The advanced properties
vary based on whether the transformation processes a stored procedure or function or a query.

Advanced properties for stored procedures or functions

The following table describes the advanced properties when the transformation processes a stored
procedure or function:

Property Description

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

Subsecond
Precision

Subsecond precision for datetime fields. You can change the precision for databases that have an
editable scale for datetime data.
If you enable SQL ELT optimization, the database returns the complete datetime value, regardless of
the subsecond precision setting.
Enter a positive integer value from 0 to 9. Default is 6 microseconds.

Stored
Procedure
Type

For unconnected transformations, determines when the stored procedure runs.
Select one of the following options:
- Target Pre Load. Runs before the target is loaded.
- Target Post Load. Runs after the target is loaded.
- Normal. Runs on a row-by-row basis.
- Source Pre Load. Runs before the mapping receives data from the source.
- Source Post Load. Runs after the mapping receives data from the source.
Note: When the SQL transformation is part of a mapplet, the stored procedure type is always Normal.

Call Text For unconnected transformations with stored procedure type Target Pre/Post Load or Source Pre/
Post Load, enter the call text for the stored procedure.
The call text is the stored procedure name followed by the input parameters in parentheses. If there
are no input parameters, you must include an empty pair of parentheses. Do not include the SQL
statement EXEC or use the :SP keyword.
The call text does not apply to Normal stored procedure types.

400 Chapter 33: SQL transformation

Advanced properties for queries

The following table describes the advanced properties when the transformation processes a saved or user-
entered query:

Property Description

Behavior Transformation behavior, either active or passive.
If active, the transformation can generate more than one output row for each input row. If
passive, the transformation generates one output row for each input row.
Default is Active.

Continue on SQL
Error within Row

Continues processing the remaining SQL statements in a query after an SQL error occurs.
Enable this option to ignore SQL errors in a statement. Data Integration continues to run the
rest of the SQL statements for the row. The SQL transformation does not generate a row error,
but the SQLError field contains the failed SQL statement and error messages.
Tip: Disable this option to debug database errors. Otherwise, you might not be able to
associate errors with the query statements that caused them.
Default is disabled.

Auto Commit Enables auto-commit for each database connection.
Each SQL statement in a query defines a transaction. A commit occurs when the SQL statement
completes or the next statement is executed, whichever comes first.
Default is disabled.

Max Output Row
Count

The maximum number of rows that the SQL transformation can output from a SELECT query.
To configure unlimited rows, set this property to zero. Default is 600.

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You
can choose terse, normal, verbose initialization, or verbose data. Default is normal.

Transformation
Scope

The method in which Data Integration applies the transformation logic to incoming data.
Select one of the following options:
- Row. Applies the transformation logic to one row of data at a time. Choose Row when the

results of the transformation depend on a single row of data.
- Transaction. Applies the transformation logic to all rows in a transaction. Choose

Transaction when a row of data depends on all rows in the same transaction, but does not
depend on rows in other transactions.

- All Input. Applies the transformation logic on all incoming data. When you choose All Input,
Data Integration drops incoming transaction boundaries. Choose All Input when a row of
data depends on all rows in the source.

Default is Row.

SQL transformation configuration 401

C h a p t e r 3 4

Structure Parser transformation
The Structure Parser transformation transforms your input data into a user-defined structured format based
on an intelligent structure model. You can use the Structure Parser transformation to analyze data such as
log files, clickstreams, XML or JSON files, Word tables, and other unstructured or semi-structured formats.

You can connect a Structure Parser transformation to the following types of sources:

• A Source transformation based on a flat file to process local input files

• A Source transformation based on a Hadoop Files V2 connection to stream input files in HDFS or to
process local input files

When you configure a Structure Parser transformation, you associate it with an intelligent structure model.
An intelligent structure model is an asset that Intelligent Structure Discovery generates to represent the data
that you expect the model to parse at run time. You can create a model before you configure the Structure
Parser transformation or as you configure it.

Intelligent Structure Discovery generates the intelligent structure model based on a sample of your input data
or a schema that you provide. You can create a model from the following input types:

• Text files, including delimited files such as CSV files and complex files that contain textual hierarchies

• Machine generated files such as weblogs and clickstreams

• JSON files

• XML files

• ORC files

• Avro files

• Parquet files

• Microsoft Excel files

• Data within PDF form fields

• Data within Microsoft Word tables

• XSD files

• Cobol copybooks

After Intelligent Structure Discovery generates the intelligent structure model, you can refine the model and
customize the structure of the output data. You can edit the nodes in the model to combine, exclude, flatten,
or collapse them.

402

Processing input from a Hadoop Files source
When you connect a Hadoop Files source to the Structure Parser transformation, you can process local file
input or HDFS input. For example, the Structure Parser transformation can process big data input from a
Hadoop Files source in streaming mode in a Hadoop environment.

You can create a Hadoop Files connection to a Hortonworks Data Platform or Cloudera distribution to provide
input to a Structure Parser transformation.

Hadoop Files V2 Connector can process a single file or an entire directory. When the connector processes a
directory, it processes the files recursively.

To ensure that the Structure Parser transformation can process output from the Hadoop Files source, define
the field mapping settings in the Structure Parser transformation. Map the Data and File Path fields in the
Incoming Field panel to the Data and File Path fields in the Structure Parser Input Fields panel. You can map
the fields automatically or manually.

Processing input from a flat file source
The Structure Parser transformation can process input from one or more files when you add a flat file source.

The Source transformation uses a reference file that contains a file path or a list of file paths to one or more
files that you want the Structure Parser transformation to process. Ensure that you use a reference file when
you configure the Source transformation. On the Source tab, select the reference file in the Object field.

Configuring the flat file source
To use a flat file source with a Structure Parser transformation, ensure that the Source transformation has
one source field.

1. On the Source transformation Source tab, select Formatting Options near the Object field.

2. Select None for the Text Qualifier.

3. Select Auto-generate for the Field Labels.

4. Click OK.

Configuring the Structure Parser transformation to access flat files
To ensure that the Structure Parser transformation can access the files in the reference file, configure the
Field Mapping settings.

u On the Structure Parser transformation Field Mapping tab, map the field in the Incoming Field panel to
the File Path field in the Structure Parser Input Fields panel.

Processing input from a Hadoop Files source 403

Structure Parser field mapping
Configure the field mapping in a Structure Parser transformation to define which fields in the source
transformation to map to fields in the Structure Parser transformation. Configure field mappings on the Field
Mapping tab of the Properties panel.

The Structure Parser contains the following Field Mapping fields in the Structure Parser Input Fields panel:

Data

Used to map the data field in the source transformation to the data field in the Structure Parser
transformation. Map this field for a Hadoop Files source and for a Structure Parser transformation that
is used midstream.

File Path

Used to map the file path or reference file in the source transformation to the file path field in the
Structure Parser transformation.

You can configure the following field mapping options:

Field Map Options

Determines how field names appear in the Structure Parser transformation input fields list. Use technical
field names or labels.

Select one of the following options:

• Manual. Manually link incoming fields to target fields. Removes links for automatically mapped fields.

• Automatic. Automatically link fields with the same name. Use when all of the fields that you want to
link share the same name. You can't manually link fields with this option.

Note: You can't use parameterized field names with the Structure Parser transformation. Do not select
the options Completely Parameterized or Partially Parameterized.

Automap

Links fields with matching or similar names. Allows you to link matching fields, and then manually
configure other field mappings.

Show Fields

Controls the fields that appear in the Incoming Fields list. Show all fields, unmapped fields, or mapped
fields.

For a Hadoop Files source

For a Hadoop Files source, map the Data and the File Path fields in the Incoming Field panel to the same
fields in the Structure Parser Input Fields panel. You can use the Automap option to automatically map these
fields.

For a flat file source

For a flat file source, map the field in the Incoming Field panel to the File Path field in the Structure Parser
Input Fields panel.

For a Structure Parser transformation that is used midstream

When using a Structure Parser transformation midstream, that is not after the source transformation, map
the incoming data ports to fields in the Structure Parser Input Fields panel.

404 Chapter 34: Structure Parser transformation

Output fields
When you select an intelligent structure to use in a Structure Parser transformation, the intelligent structure
model output fields appear on the Output Fields tab of the Properties panel.

In a mapping, the output fields are grouped into the following groups:

• Unidentified group. This group contains the data that was not identified by the intelligent structure. You
might want to pass this data to a target file for further analysis.

• Output groups. One or more groups that contain the data that the intelligent structure model identifies.

You can select a group or groups to transfer pass-through fields to. Pass-through fields are fields that you
don't map in the transformation field mapping and that the transformation transfers to the selected group or
groups as is. Use this option if you want to use the pass-through fields later in the mapping, for example, to
pass a timestamp field to the next downstream transformation. The Structure Parser transformation passes
the pass-through fields to each selected group.

In a mapping in advanced mode, the output fields are put in one group. This group includes pass-through
fields if you configure the transformation to enable pass-through fields.

The Output Fields tab displays the first five fields in each output group, including the name, type, precision,
scale, and origin of each field. You can click the link at the bottom of the group to display all the fields in the
group. The origin of a field shows the path of the respective node in the intelligent structure model. If a name
of a node in the intelligent structure model contains special characters, the Secure Agent replaces them with
an underscore (_) character, and the Output Fields tab displays the revised name as the output field name.
The Output Fields tab doesn't display the origin of fields with revised names.

To edit the precision of an output field, click the precision value and enter the precision you require.

Note: Intelligent Structure Discovery doesn't enforce precision and scale on decimal fields.

You can't edit the transformation output fields. If you want to exclude output fields from the data flow or
rename output fields before you pass them to a downstream transformation or target, configure the field
rules for the downstream transformation.

Output groups for relational output

If you configure the transformation to generate relational output, the transformation can contain multiple
output groups. Each output group contains one or more fields that you can write to a relational target or pass
to a downstream transformation for further processing.

In advanced mode, the Structure Parser transformation can't generate relational output.

Output groups for JSON, JSON lines, and XML output

If you configure the transformation to generate JSON, JSON lines, or XML output, the transformation
contains one output group. The output group contains one string field which contains the output data. The
default precision is 1,000,000 characters. You can pass the data in the string field to a downstream
transformation or to a target of the appropriate type. For example, if you configure the transformation to
generate XML output, you can connect the output field to a flat file target to save the output to an XML file.

Output groups for Avro, Parquet, and ORC output

If you configure the transformation to generate Avro, Parquet, or ORC output, the transformation contains one
output group. The output group contains one binary field which contains the output data. The default
precision is 1,000,000 characters. You can pass the data in the binary field to a downstream transformation
or to a target of the appropriate type. For example, if you configure the transformation to generate Parquet
output, you can connect the output field to a target such as Amazon S3 or Hadoop Files.

In advanced mode, the Structure Parser transformation can't generate Avro, Parquet, or ORC output.

Output fields 405

Advanced properties
You can configure advanced properties for a Structure Parser transformation. The advanced properties
control the transformation scope.

The properties that are available vary based on the mapping mode.

You can configure the following property:

Property Description

Transformation
Scope

Specifies how Data Integration applies the transformation logic to incoming data. Select one of
the following options:
- Transaction. Applies the transformation logic to all rows in a transaction. Choose Transaction

when a row of data depends on all rows in the same transaction, but does not depend on rows
in other transactions.

- All Input. Applies the transformation logic on all incoming data. When you choose All Input,
Data Integration drops incoming transaction boundaries. Choose All Input when a row of data
depends on all rows in the source.

- Row. Applies the transformation logic to one row of data at a time. Choose Row when the
results of the transformation depend on a single row of data.

Structure Parser transformation configuration
When you configure a Structure Parser transformation, you associate an intelligent structure model with the
transformation and select the output type.

To associate an intelligent structure model with the transformation, you can select an existing model or
create a new model. If you create a new model, you can select one of the following actions:

• Design new. You create the model in the Intelligent Structure Model page. For more information about
creating an intelligent structure model, see Components.

• Auto-generate from a sample. You select a sample file and Intelligent Structure Discovery creates the
model and saves it in the location that you select.

You can also select and view a model on the Intelligent Structure Model page before you use it.

When you configure a Structure Parser transformation, you select the data output type. The transformation
can generate the following output types:

• Relational

• JSON

• JSON lines

• XML

• Avro

• Parquet

• ORC

406 Chapter 34: Structure Parser transformation

Configuring a Structure Parser transformation
Add a Structure Parser transformation to a mapping and configure transformation settings.

1. Add a Structure Parser transformation to the mapping and configure general settings.

2. On the Properties panel, click Structure Parser and choose one of the following options to associate an
intelligent structure model with the transformation:

Option Description

Select Select an existing intelligent structure model.

New > Design New Create a new model in the Intelligent Structure Model page.

New > Auto-generate from
sample file

Select a sample file and a location for the model and click Create. Intelligent
Structure Discovery creates the model and saves it in the selected location.

3. Select the output type for the Structure Parser transformation from the Output As list.

4. If you select the JSON output type, you can select Include empty tags to add all the model tags to the
output at run time, including tags that don't exist in the input. The transformation adds tags that don't
exist in the input as empty tags with a NULL value.

5. On the Properties panel, click Incoming Fields and configure the incoming fields.

6. On the Properties panel, click Field Mappings and configure field mapping.

7. Optionally, on the Properties panel, click Advanced and configure the transformation scope.

8. Link the previous transformation on the map to the Structure Parser transformation

9. Link the Structure Parser transformation to the downstream transformation and select an output group.

Selecting an intelligent structure model
Select an intelligent structure model to include in the Structure Parser transformation on the Structure Parser
tab of the Properties panel.

1. In the Properties panel of the Structure Parser transformation, click the Structure Parser tab.

2. Click Select.

The Select Intelligent Structure dialog box appears.

3. In the Explore list, select an intelligent structure model.

4. To search for an intelligent structure model, select the search criteria, enter the characters to search for
in the Find field.

You can search for an intelligent structure model by name or description. You can sort the intelligent
structure models by name, type, description, tags, status, or date last modified.

5. Choose the intelligent structure model to include in the Structure Parser transformation and click Select.

The intelligent structure model appears in the Properties panel.

Structure Parser transformation configuration 407

Selecting an output group
When you link the Structure Parser transformation to a downstream transformation, you must select one
output group to map to the downstream transformation. If you want to map more than one output group,
create a different downstream transformation for each output group.

1. Link the Structure Parser transformation to a downstream transformation.

The Select Output Group dialog box appears.

2. To map the data that was identified by the intelligent structure, select one of the output groups.
Alternatively, to map the data that was not identified by the intelligent structure, select the Unidentified
output group.

3. Click OK.

Rules and guidelines for the Structure Parser
transformation

Consider the following rules and guidelines when you use a Structure Parser transformation:

• When you open a mapping that contains a Structure Parser transformation in the Mapping Designer, and
the associated intelligent structure model changed after it was associated with the transformation, a
message appears in the Mapping Designer. Click the link that is provided in the message to update the
model so that it complies with the mapping.

• If you update an intelligent structure model that was created with an older version of Intelligent Structure
Discovery, where all output fields were assigned a string data type, the Structure Parser transformation
might change field data types during the update. If, for any of the affected fields, the downstream
transformation or the target expects a string, edit the model to change the data type back to string. Then,
in the Mapping Designer, click the provided link to update the model in the transformation again.
For more information about editing an intelligent structure model, see Components.

• The Structure Parser transformation can parse recursive elements in an XSD input file if all of the
following conditions are true:

- The recursive element isn't nested inside a repeating element.

- The recursive element always uses the same name element.

- The Structure Parser transformation isn't used in a mapping in advanced mode.

If the transformation can't parse a recursive element, it outputs the data in a single output group. The
transformation can parse recursive elements in mappings created after the October 2023 release or when
you reupload the schema file after upgrading to the October 2023 release.

• When you use a Structure Parser transformation in a mapplet, to prevent runtime errors, be sure that the
combined Mapplet transformation name doesn't exceed 80 characters. For more information, see
“Mapplet transformation names” on page 318.

Rules and guidelines for mappings in advanced mode

Consider the following rules and guidelines when you use the Structure Parser transformation in a mapping in
advanced mode:

• In advanced mode, a Structure Parser transformation can process a JSON object as input, but not a JSON
array.

408 Chapter 34: Structure Parser transformation

• By default in advanced mode, the schema of the source data must match exactly the schema of the
intelligent structure model associated with the transformation, and the transformation can't process pass-
through fields. To process pass-through fields, set the following Spark custom property in the Spark
session properties for the mapping task: Spark.MSPEnableUnassigedData=true
When you set this property, the output group contains an array called UnassignedData that contains the
data that was not identified by the intelligent structure.

Rules and guidelines for output types

Consider the following rules and guidelines when you select the output type for a Structure Parser
transformation:

• Before you use the Parquet output type, set the HADOOP_HOME and hadoop.home.dir environment
variables.

• When you use an AVRO output type, the transformation doesn't generate output for input fields with
identical names.

• The transformation creates ORC output based on the local date and time. Processing the same input in
different locations or environments might result in output with different times and time formats.

• We recommend that you use a binary output type to create large XML and JSON files.

Structure Parser transformation example
You need to parse the unstructured data in a log file and write the data to a target file in relational format.

You need to configure an intelligent structure model that analyzes unstructured data and discovers its
structure.

The following image shows the log file that you want to parse:

Structure Parser transformation example 409

Create the intelligent structure model in Informatica Cloud. The following image shows the intelligent
structure model details:

To parse the log file, use a Structure Parser transformation in a mapping to transform the data in the log file.

In the Mapping Designer, you add a source object that is flat file that contains the path to the log file you
want to parse.

The following image shows the selected source file properties:

410 Chapter 34: Structure Parser transformation

You add a Structure Parser transformation. Configure it to use the intelligent structure model that you
configured. Select the relational output type.

You connect the source object to the Structure Parser transformation. To map the incoming data to the fields
of the transformation, select the Structure Parser transformation. In the Field Mapping tab, map Path to the
Structure Parser Input Fields Field Path.

The following image shows the field mapping:

Add a text file target transformation for the parsed output group that you want to process named TargetFile.
Add a separate text file target transformation for data that was not identified named Unidentified.

The following image shows the mapping:

Run the mapping to write the data in a structured format to the TargetFile transformation. The mapping
sends any data that was not identified by the intelligent structure to the Unidentified transformation.

The following image shows the parsed data output file from the TargetFile transformation:

If you need to further parse the data, you can include additional Structure Parser transformations midstream
that will parse the output from the preceding parser.

Structure Parser transformation example 411

C h a p t e r 3 5

Transaction Control
transformation

The Transaction Control transformation is an active transformation that commits or rolls back sets of rows
during a mapping run. Use the Transaction Control transformation to commit or roll back transactions from
transactional targets such as relational, XML, Amazon Redshift, and REST V2 targets. You can also use the
transformation in a mapping to write data to a different flat file each time that Data Integration starts a new
transaction.

You might want to use a Transaction Control transformation when you process large amounts of data. You
can use the Transaction Control transformation to commit the data at certain intervals to prevent data loss.
For example, you run a mapping that processes thousands of records in a table that is sorted by order type.
You might want to commit the data each time that the mapping processes a different order type.

In a Transaction Control transformation, a transaction is the row or set of rows bound by commit or roll back
rows. A transaction can be based on a group of rows that are ordered on a common key, such as employee ID
or order entry date. The number of rows in each transaction can vary.

You define a transaction by specifying the transaction control condition in the transformation. Based on
whether the condition is met, you can choose to commit rows, roll back rows, or continue processing data
without changing the transaction boundaries.

When you run the mapping task, Data Integration evaluates the transaction control condition for each row
that enters the transformation. When it evaluates a commit row, it commits all rows in the transaction to the
targets. When Data Integration evaluates a roll back row, it rolls back all rows in the transaction from the
targets.

If the mapping has a flat file target that is created at run time, you can generate an output file each time Data
Integration starts a new transaction. You can dynamically name each target flat file.

Example

You want to use transaction control to write order information based on the order type. You want to ensure
that all orders of a specific type are written to a different target file. To accomplish this, you create the
following mapping:

The mapping contains the following transformations:

Source transformation

Configure the connection to the source ORDERS table.

412

Sorter transformation

Configure the sort condition to sort the source data by ORDER_TYPE.

Transaction Control transformation

Create the following transaction control condition to commit data when the Integration Service
encounters a new order entry date:

Property Value

Transaction Control Condition If Field Value Changes

Field ORDER_TYPE (string)

Then Commit Before

Else Continue Transaction

Target transformation

Create a new file target at run time and specify a dynamic file name. Use the following expression for the
target name to create a different target file for each order type:

'Orders_ '||ORDER_TYPE||'.csv'

Transaction control condition
Configure the transaction control condition on the Transaction Control tab. The transaction control condition
tests each row to determine when to commit rows, roll back rows, or continue without any transaction
changes.

The following image shows the Transaction Control tab:

Note: Before you specify the transaction control condition, verify that the incoming data is sorted. Incoming
data must be sorted by the fields that you use in the transaction control condition.

You can use one of the following types of conditions to test the row data:

If Field Value Changes

Use an If Field Value Changes condition when you want to test whether a field value changes. For
example, if ORDER_DATE changes, then commit the transaction before writing the current row to the
target. Otherwise, continue processing the data.

Transaction control condition 413

Select the field to test from the Field list.

Advanced

Use an advanced condition when you want to use an expression to test the row data. For example, if
NEW_FILE_FLAG=’Y’ AND DEPT_ID>1000, then commit the transaction but include the current row in the
next transaction. Otherwise, continue processing the data.

Configure the expression in the If part of the condition. The expression can use fields, parameters, built-
in functions, and user-defined functions.

Parameterized

You can use an expression parameter to represent the condition. Enter the parameter value when you
run the mapping task or enter the value in a parameter file.

You can specify the following actions for the Then and Else parts of the condition based on the test results:

Action Description

Continue
Transaction

Data Integration does not perform any transaction change for this row.

Commit Before Data Integration commits the transaction, begins a new transaction, and writes the current row
to the target. The current row is in the new transaction.

Commit After Data Integration writes the current row to the target, commits the transaction, and begins a new
transaction. The current row is in the committed transaction.

Rollback Before Data Integration rolls back the current transaction, begins a new transaction, and writes the
current row to the target. The current row is in the new transaction.

Rollback After Data Integration writes the current row to the target, rolls back the transaction, and begins a
new transaction. The current row is in the rolled back transaction.

The Then and Else parts of the condition must contain different actions.

Using Transaction Control transformations in
mappings

Transaction Control transformations are transaction generators. They define and redefine transaction
boundaries in a mapping. They drop any incoming transaction boundaries from an upstream active source or
transaction generator, and they generate new transaction boundaries downstream.

Transaction Control transformations can be effective or ineffective for the downstream transformations and
targets in the mapping. The Transaction Control transformation becomes ineffective for downstream
transformations or targets if you put a transformation that drops incoming transaction boundaries after it.
This includes any of the following active sources or transformations:

• Aggregator transformation with the All Input level transformation scope

• Java transformation with the All Input level transformation scope

• Joiner transformation with the All Input level transformation scope

• Rank transformation with the All Input level transformation scope

414 Chapter 35: Transaction Control transformation

• Sorter transformation with the All Input level transformation scope

• SQL transformation that uses a saved or user-entered query and has the All Input level transformation
scope

• Transaction Control transformation

• Any multiple input group transformation that is connected to multiple upstream transaction control points

Although a Transaction Control transformation may be ineffective for a target, it can be effective for
downstream transformations. Downstream transformations with the Transaction level transformation scope
can use the transaction boundaries defined by an upstream Transaction Control transformation.

The following image shows a valid mapping with a Transaction Control transformation that is effective for a
Sorter transformation, but ineffective for the target:

In this example, TransactionControl_1 is ineffective for the target, but effective for the Sorter transformation.
The transformation scope for the Sorter transformation is Transaction. It uses the transaction boundaries
defined by TransactionControl_1. The transformation scope for the Aggregator transformation is All Input. It
drops transaction boundaries defined by TransactionControl_1. Transaction control transformation
TransactionControl_2 is an effective Transaction Control transformation for the target.

Sample transaction control mappings with multiple targets
In a mapping with multiple targets, a Transaction Control transformation can be effective for one target and
ineffective for another target. If each target is connected to an effective Transaction Control transformation,
the mapping is valid. If one target in the mapping is not connected to an effective Transaction Control
transformation, the mapping is invalid.

The following image shows a valid mapping with both an ineffective and an effective Transaction Control
transformation:

Data Integration processes TransactionControl_1, evaluates the transaction control expression, and creates
transaction boundaries. The mapping does not include a transformation that drops transaction boundaries
between TransactionControl_1 and Target_1, making TransactionControl_1 effective for Target_1. Data
Integration uses the transaction boundaries defined by TransactionControl_1 for Target_1.

However, the mapping includes a transformation that drops transaction boundaries between
TransactionControl_1 and Target_2, which makes TransactionControl_1 ineffective for Target_2. When Data
Integration processes the Aggregator transformation, with transformation scope set to All Input, it drops the
transaction boundaries defined by TransactionControl_1 and outputs all rows in an open transaction. Then
Data Integration evaluates TransactionControl_2, creates transaction boundaries, and uses them for
Target_2.

If a roll back occurs in TransactionControl_1, Data Integration rolls back only rows from Target_1. It does not
roll back any rows from Target_2.

Using Transaction Control transformations in mappings 415

The following image shows an invalid mapping with both an ineffective and an effective Transaction Control
transformation:

The mapplet, mplt_TransactionControl, contains a Transaction Control transformation. It is ineffective for
Target_1 and Target_2. The transformation scope for Aggregator_1 is All Input. It is an active source for
Target_1. The transformation scope for Aggregator_2 is All Input. It is an active source for Target_2.
TransactionControl_2 is effective for Target_2.

The mapping is invalid because Target_1 is not connected to an effective Transaction Control
transformation.

Guidelines for using Transaction Control
transformations in mappings

Consider the following guidelines when you use a Transaction Control transformation in a mapping:

• Incoming data must be sorted by the fields that you use in the transaction condition. Place a Sorter
transformation upstream of the Transaction Control transformation or use a sorted data source.

• Configuring the transaction control condition to perform frequent commits can affect performance.

• If the mapping includes an XML target, and you choose to append or create a new document on commit,
the input groups must receive data from the same transaction control point.

• Transaction Control transformations that are connected to any target that does not support batch or
transaction real-time processing are ineffective for those targets.

• You must connect each target instance to a Transaction Control transformation.

• You can connect multiple targets to the same Transaction Control transformation.

• You can connect only one effective Transaction Control transformation to a target.

• You cannot place a Transaction Control transformation in a pipeline branch that starts with a Sequence
Generator transformation.

• If you use a dynamic Lookup transformation and a Transaction Control transformation in the same
mapping, a rolled-back transaction might result in unsynchronized target data.

• Either all targets or no targets in the mapping should be connected to an effective Transaction Control
transformation.

416 Chapter 35: Transaction Control transformation

Advanced properties
You can configure advanced properties for a Transaction Control transformation. The advanced properties
control the tracing level for session log messages.

You can configure the following property:

Property Description

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

Advanced properties 417

C h a p t e r 3 6

Union transformation
The Union transformation is an active transformation that you use to merge data from multiple pipelines into
a single pipeline.

For data integration patterns, it is common to combine two or more data sources into a single stream that
includes the union of all rows. The data sources often do not have the same structure, so you cannot freely
join the data streams. The Union transformation enables you to make the metadata of the streams alike so
that you can combine the data sources in a single target.

The Union transformation merges data from multiple sources similar to the UNION ALL SQL statement. For
example, you might use the Union transformation to merge employee information from ADP with data from a
Workday employee object.

You can add, change, or remove specific fields when you merge data sources with a Union transformation.

At run time, the mapping task processes input groups in parallel. It concurrently reads the sources connected
to the Union transformation and pushes blocks of data into the input groups of the transformation. As the
mapping runs, it merges data into a single output group based on the field mappings.

Comparison to Joiner transformation
A Union transformation can merge data from multiple sources but does not combine data based on a join
condition like a Joiner transformation.

The following table identifies some key differences between the Union transformation and Joiner
transformation, which also merges data from multiple sources. Factor these differences into your mapping
design:

Requirement Union transformation Joiner transformation

Combine records based
on a join condition

No. The Union Transformation is equivalent to
a UNION ALL statement in SQL, which
combines data vertically from multiple
sources.

Yes. The Joiner transformation
supports Normal, Right Outer, Left
Outer, and Full Outer JOINs.

Include multiple input
groups

Yes. You can define multiple input groups and
one output group.

Yes. You can define two input groups,
Master and Detail.

Include heterogeneous
sources

Yes Yes

418

Requirement Union transformation Joiner transformation

Merge different data
types

All of the source columns must have similar
data types. The number of columns in each
source must be the same.

At least one column in the sources to
be joined must have the same data
type.

Generate transactions No Yes

Planning to use a Union transformation
When you use a Union transformation in a mapping, consider the following guidelines:

• Before you add a Union transformation to a mapping, add all Source transformations and include the other
upstream transformations that you want to use.

• You can use a Sequence Generator transformation upstream from a Union transformation if you connect
both the Sequence Generator and a Source transformation to one input group of the Union
transformation.

Input groups
By default, a Union transformation has two input groups. If you want to merge data from more than two
sources, add an input group for each additional source. Each group can have different field rules for each
upstream transformation.

The input groups have the following characteristics:

• The Union transformation initializes its output fields based on fields in the first source that you connect to
an input group.

• Each input group can use a different field mapping mode or parameter.

• You can parameterize the field mappings or define the field mapping for each input group.

To add an input group, in the Mapping Designer, connect an upstream transformation to the "New Group"
group of the Union transformation. You can also add input groups on the Incoming Fields tab of the Union
transformation.

You can rename input groups. You can also delete input groups as long as there are at least two remaining
input groups. Rename and delete input groups on the Incoming Fields tab.

Planning to use a Union transformation 419

Output fields
When you connect upstream transformations to a Union transformation, you initialize the output fields. The
initial output fields are an exact copy of the input fields in group Input1.

When you define output fields, note the following:

• After you initialize the output fields, you cannot change the output fields by connecting or disconnecting
the input group.

• You can manually add output fields if you add them before you connect one of the Union transformation
input groups.

• When you add an output field, you define the field name, data type, precision, scale, and optional
description. The description can contain up to 4000 characters.

• If you connect the Union transformation to an upstream transformation that does not pass in any fields,
the output fields are not initialized.

• At run time, the mapping passes null values to output fields that are not in a field mapping.

Field mappings
The Union transformation can merge data from multiple source pipelines. The sources can have the same set
of fields, have some matching fields, or use parameterized field mappings.

When you work with field mappings in a Union transformation, note the following:

• You must use input groups where the fields have the identical name, type, precision, and scale.

• You can edit, remove, or manually add some of the output fields.

• As part of the field mapping, you choose an input group and specify the parameter from the input group.

• You can use parameters for fields in all input groups.

• You can parameterize the field mapping or map by field name for each input group. At run time, the task
adds an exact copy of the fields from the input group as output fields.

If you want Data Integration to automatically link fields with the same name and you also want to manually
map fields, select the Manual option and click Automap.

You can map fields in the following ways:

• Exact Field Name. Data Integration matches fields of the same name.

• Smart Map. Data Integration matches fields with similar names. For example, if you have an incoming
field Cust_Name and a target field Customer_Name, Data Integration automatically links the Cust_Name field
with the Customer_Name field.

You can use both Exact Field Name and Smart Map in the same field mapping. For example, use Exact Field
Name to match fields with the same name and then use Smart Map to map fields with similar names.

You can undo all automapped field mappings by clicking Automap > Undo Automap. To unmap a single field,
select the field to unmap and click Actions > Unmap.

Data Integration highlights newly mapped fields. For example, when you use Exact Field Name, Data
Integration highlights the mapped fields. If you then use Smart Map, Data Integration only highlights the
fields mapped using Smart Map.

420 Chapter 36: Union transformation

Advanced properties
You can configure advanced properties for a Union transformation. The advanced properties control settings
such as the tracing level for session log messages and whether the transformation is optional or required.

The properties that are available vary based on the mapping mode.

You can configure the following properties:

Property Description

Tracing
Level

Detail level of error and status messages that Data Integration writes in the session log. You can choose
terse, normal, verbose initialization, or verbose data. Default is normal.

Optional Determines whether the transformation is optional. If a transformation is optional and there are no
incoming fields, the mapping task can run and the data can go through another branch in the data flow.
If a transformation is required and there are no incoming fields, the task fails.
For example, you configure a parameter for the source connection. In one branch of the data flow, you
add a transformation with a field rule so that only Date/Time data enters the transformation, and you
specify that the transformation is optional. When you configure the mapping task, you select a source
that does not have Date/Time data. The mapping task ignores the branch with the optional
transformation, and the data flow continues through another branch of the mapping.

Union Transformation example
You have demographic data about employees from two flat file sources and you want to merge that data.

You receive the following data in a .txt file:

employee_ID,first_name,last_name,location,email,phone
1211,John,Davis,Redwood City,jdavis@infa2.com,555-555-4444
0233,Miles,Simone,Barcelona,msimone@infa2.com,555-555-6666
1045,Billie,Coltrane,Philadelphia,bcoltrane@infa2.com,555-555-7777
0987,Django,Holiday,Paris,dholiday@infa3.com,444-444-4444
1199,Nina,Reinhardt,New York,nreinhardt@infa3.com,444-555-5555

A second file contains the following data:

ID,first,last,dept,e-mail,phone
0456,Joni,Smith,Marketing,j_smith@infa4.com,333-333-3333
1325,David,Mitchell,R&D,dmitchell@infa4.com,222-222-2222
1101,David,Harry,R&D,dharry@infa5.com,777-777-7777
0623,Debbie,Byrne,HR,dbyrne@infa5.com,888-888-8888
0777,Patti,Bowie,Sales,pbowie@infa5.com,999-999-9999

You want to merge those records into a single dataset in MySQL with the following columns:

• id

• last

• first

• email

• phone

Note: Remember that the data to be merged with a Union transformation must have the same data type,
precision, and scale.

Advanced properties 421

To merge the files with a Union transformation, complete the following steps:

1. Ensure that the source files reside in a location accessible to your Secure Agent.

2. Define a connection to access the .csv files.

3. Create a mapping in the Mapping Designer.

4. Add two Source transformations to the mapping to connect to data in the .csv files.

5. Add a Union transformation and connect the Source transformations to it.

6. In the Union transformation Properties, perform the following steps for each input group:

a. In the Field Rules section, click the group you want to configure.

b. (Optional) For the incoming fields, select the fields you want to merge in the output.

The following image shows the selected fields in the first input group:

422 Chapter 36: Union transformation

The following image shows the selected fields in the second input group:

If you do not specify a rule to exclude fields, at run time, the task ignores any fields that you do not
map to the output fields.

c. Edit the Output field names in the Union transformation, to correspond to the field names that you
want in the target:

Note: You can also select fields, change metadata, add other fields, or convert the field types, for
example, from integer to number.

Union Transformation example 423

7. In the Field Mapping of the Union transformation, ensure that the fields are correctly mapped for each
input group:

8. Add a Target transformation to the mapping.

9. Connect the Union transformation to the Target transformation.

10. In the Target transformation field mapping, select automatic field mapping:

When complete, the mapping appears similar to the following image:

424 Chapter 36: Union transformation

C h a p t e r 3 7

Velocity transformation
Use the Velocity transformation in a mapping to convert hierarchal input from one format to another without
flattening the data. The transformation can convert JSON or XML data to JSON, XML, or text output such as
plain text, email, or HTML.

You might want to use the Velocity transformation to convert hierarchical data to comply with a downstream
API call or for use in a downstream application such as a campaign management system or machine learning
algorithm. You can also use the Velocity transformation to process row data such as a JSON BLOB in a
database.

To convert the data, the Velocity transformation uses an Apache Velocity script that you provide. The script
can contain Velocity Template Language (VTL) statements, Data Integration built-in functions, and Data
Integration unconnected lookup expressions.

You can pass data to the Velocity transformation in one of the following ways:

Pass the data directly to the transformation.

You can pass data directly to the Velocity transformation through the input field. The data must be a
JSON BLOB or string or an XML BLOB or string.

Pass the name and location of the file that contains the data you want to convert.

If you want the Velocity transformation to convert data stored in a flat file such as an XML or JSON file,
pass the file name and location to the transformation through the input field. The data must be a string
that contains the file path and file name. The file must be a delimited flat file that is accessible from the
Secure Agent machine.

The transformation returns the converted data in one string field.

To use the Velocity transformation, you need the appropriate licenses.

Velocity transformation input format
You configure the format of the incoming data on the Input Format tab. Configure input format properties
such as the input field and type, the format of the data that you want to convert, and the variable name that

425

refers to the data in the template. If the data to be converted is binary data or is in a file, you also select the
code page.

The following table describes the file input format properties:

Property Description

Input Field Field in the upstream transformation that contains the input for the Velocity transformation. The field
that you select must contain either the data to be converted or the file path and name of the flat file
that contains the data.
Since the input to the transformation must be character or binary data, this field displays only string,
text, and binary fields from the upstream transformation.

Input Type Type of data in the selected input field. Select one of the following input types:
- Buffer. Select this option when the input field contains the data that you want to convert such as a

JSON BLOB or XML string.
- File. Select this option when the input field contains the path to a flat file that contains the data to

be converted.

Format
Type

Format type of the data that you want to process, either JSON or XML.

Variable
Name in
Template

The variable that you define in the template to refer to the data to be processed. Do not include a
leading dollar sign or other special character.
For example, in the following template, the variable name "root" is used to refer to the data to be
processed:

<xml>
#foreach ($child in $root.getRootElement().getChildren())
 <$child.getChild("name").getText()>
 <id>$child.getChild("id").getText()</id>
 <size>$child.getChild("size").getText()</size>
 </$child.getChild("name").getText()>
#end
</xml>

The following table describes the file input format advanced property:

Property Description

Code Page Code page of the data that you want to convert. This field is enabled if the input type is File or if the
input field contains binary data.
Select a code page if the code page of the data that you want to convert differs from the code page of
the Secure Agent machine. Otherwise, select Default.

Source configuration for file sources
If you configure the Velocity transformation to read data from a file, configure the Source transformation to
read data from a single, delimited flat file and configure the formatting options. The flat file must contain the
file path on one line.

For example, the following text shows the contents of a source file that reads data from an XML file named
Products.xml:

C:\IICS_XML_SourceFiles\Products.xml

426 Chapter 37: Velocity transformation

To configure the Source transformation formatting options, complete the following steps:

1. On the Source tab, select the file that contains the file path as the source object, and then click
Formatting Options.

2. In the Formatting Options dialog box, ensure that the flat file type is Delimited, and configure the
following properties:

Property Value

Text Qualifier None

Field Labels Auto-generate

First Data Row 1

3. Click OK.

Velocity template
You create the Velocity template on the Velocity tab. To create the template, enter or paste the template in
the template editor. Then click Validate to validate the syntax.

The following image shows the template editor:

The template can contain VTL statements, Data Integration built-in functions, and Data Integration
unconnected lookup expressions. For more information about the Velocity Template Language, see the
Apache Velocity documentation.

To call a built-in function, use the following syntax:

$function.call('<function name>',<argument>,<argument>,...)

For example, the following template code returns the system time stamp in an XML comment:

<!--Generation date: $function.call('Systimestamp')-->

The following function call passes the property $vendor.name as an argument to the INITCAP function to
capitalize the first letter of each word in the vendor name:

$function.call('InitCap',$vendor.name)

Velocity template 427

Tip: You can select a function in the Built-in Functions list to copy the function call syntax into the template
at the cursor position.

To call an unconnected lookup, use the following syntax:

$function.call(':LKP.<Lookup transformation name>)',<argument>,<argument>,...)

For example, the following expression passes the properties $item.id and $item.category as arguments to an
unconnected lookup Transformation named lkp_ItemPrices:

$function.call(':LKP.lkp_ItemPrices',$item.id,$item.category)

To validate the syntax, click Validate. Data Integration checks the template and displays any syntax errors. If
the template syntax is invalid, you can save the mapping but the mapping is invalid.

Validation does not test the template output or find runtime errors. You can test the template output on the
Test tab.

Testing the template
You can test the template on the Test tab. The Test tab contains fields for sample input and output so you
can test the template as you create it.

The following image shows the Test tab:

To test the template you created, select a runtime environment, enter or paste a portion of the incoming data
into the Sample Input field, and then click Test. You can select any runtime environment in which the Data
Integration Server is enabled except the Hosted Agent.

Sample input can contain up to 1000000 characters. For best results, ensure that the sample input is a
representative sample of the data that you want to convert.

Sample output appears in the Sample Output field. When you test a template, Data Integration does not
process built-in function or lookup expression calls. In the sample output, these expressions appear exactly
as they were entered it in the template. If the template does not generate valid output, an error message
appears in the Sample Output field.

428 Chapter 37: Velocity transformation

Velocity transformation output
The Velocity transformation returns converted data in a string field named VELOCITYOUT. You cannot
change the output field name or type, but you can change the precision. Change the output field precision on
the Output Field tab.

The precision is the maximum number of characters that the returned character string can contain. Data
Integration truncates the returned character string at the precision value. By default, the output field precision
is 1000000 characters. To change the output field precision, enter a different value in the Precision field.

Target configuration for file targets
You can write the data that is converted by the Velocity transformation to a target file. If the target file is an
XML or JSON file that you create at run time, you might want to specify no header and no text qualifier in the
output file.

To specify no header in the output file, open the Target tab of the Target transformation. In the Advanced
properties, set the header options to No Header.

To specify no text qualifier, on the Target tab, click Formatting Options next to the Object field. In the
Formatting Options dialog box, set the text qualifier to None.

Velocity transformation parsers
The Velocity transformation uses different parsers to parse JSON and XML data.

The Velocity transformation uses the following parsers based on the type of data you want to process:

JSON data

To parse JSON data, the Velocity transformation uses the Java package org.json. The transformation
passes the data that you want to process to the JSONObject(java.lang.String source) constructor to
construct a JSONObject object within Java. For more information about the JSONObject constructor, see
javadoc.io.

XML data

To parse XML data, the Velocity transformation uses the Java package org.jdom2.input. The
transformation uses the SAX parser that this package provides and creates a SAXBuilder object in Java.
For more information about the SAX parser, see the JDOM v2.0.6 API Specification.

Examples
The following examples show how to use the Velocity transformation to convert XML data from one format
to another and to convert and augment JSON data.

Velocity transformation output 429

XML conversion example
You have product data in an XML file that you want to convert to XML of a different format.

The XML file that you want to convert, products.xml, contains data in the following format:

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <product>
 <id>1</id>
 <name>milk</name>
 <size>16 oz</size>
 </product>
 <product>
 <id>2</id>
 <name>water</name>
 <size> 8 oz</size>
 </product>
</document>

You want to convert the XML so that each product is in its own element, for example, <milk>...</milk>. You
also want to append a timestamp in a comment inside the XML file.

To convert the file, first create a source file that contains the path to the XML file that you want to convert so
that the mapping can read data from the XML file. Then, create the mapping.

Create a text file called "filepath.txt" that contains the following line:

C:\XMLSources\products.xml

After you create the source file, create the mapping. The following image shows the mapping:

Configure the transformations in the following ways:

Source transformation

Configure the Source transformation to read data from the file that contains the file path, and configure
the source formatting options.

On the Source tab, select a connection that can access the source file, set the source type to Single
Object, and select filepath.txt as the source object.

Click Formatting Options and then configure the following properties:

Property Value

Flat File Type Delimited

Text Qualifier None

Field Labels Auto-generate

First Data Row 1

Velocity transformation

Configure the Velocity transformation input and create the template.

430 Chapter 37: Velocity transformation

On the Input Format tab, configure the following properties:

Property Value

Input Field Incoming string field from the Source transformation.

Input Type File

Format Type XML

Variable Name in Template root

Code Page UTF-8

On the Velocity Template tab, enter the following template in the template editor and validate the syntax:

<?xml version="1.0" encoding="UTF-8"?>
<!--Generation date: $function.call('Systimestamp')-->
Convert each product to an element:
<products>
#foreach ($child in $root.getRootElement().getChildren())
 <$child.getChild("name").getText()>
 <id>$child.getChild("id").getText()</id>
 <size>$child.getChild("size").getText()</size>
 </$child.getChild("name").getText()>
#end
</products>

Target transformation

Configure the Target transformation to write data to a flat file target created at run time. To ensure that
the target file contains no header and no text qualifier character, configure the formatting options.

On the Target tab, select the connection and set the target type to Single Object. Click Select next to the
Object field. Select Create New at Runtime, and enter the file name "products_converted.xml."

Click Formatting Options and set the text qualifier to None.

In the Advanced properties, set the header options to No Header.

When you run the mapping, the target file, products_converted.xml, contains the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<!--Generation date: 06/17/2020 17:45:41.341526-->
<products>
 <milk>
 <id>1</id>
 <size>16 oz</size>
 </milk>
 <water>
 <id>2</id>
 <size> 8 oz</size>
 </water>
</products>

Examples 431

JSON conversion example
You have vendor data from an online review service that is stored in a JSON BLOB in a database. You want to
filter the records, convert the data to a different format, and write it to a JSON file. You also want to augment
the data with additional attributes.

The database contains a JSON BLOB that contains data in the following format:

{"items":[
{"business_id":"1SWheh84yJXfytovILXOAQ","name":"Rancho Golf Club","address":"1200 E
Camino Acequia
Drive","postal_code":"85016","stars":3.0,"review_count":5,"is_open":0,"attributes":
{"GoodForKids":"False"},"categories":"Golf, Active Life","hours":null},
{"business_id":"QXAEGFB4oINsVuTFxEYKFQ","name":"Garden Blessing Chinese
Restaurant","address":"25 Eglinton Avenue W","postal_code":"L5R
3E7","stars":2.5,"review_count":128,"is_open":1,"attributes":
{"RestaurantsReservations":"True","GoodForMeal":"{'dessert': False, 'latenight': False,
'lunch': True, 'dinner': True, 'brunch': False, 'breakfast':
False}","BusinessParking":"{'garage': False, 'street': False, 'validated': False, 'lot':
True, 'valet':
False}","Caters":"True","NoiseLevel":"u'loud'","RestaurantsTableService":"True","Restaura
ntsTakeOut":"True","RestaurantsPriceRange2":"2","OutdoorSeating":"False","BikeParking":"F
alse","Ambience":"{'romantic': False, 'intimate': False, 'classy': False, 'hipster':
False, 'divey': False, 'touristy': False, 'trendy': False, 'upscale': False, 'casual':
True}","HasTV":"False","WiFi":"u'no'","GoodForKids":"True","Alcohol":"u'full_bar'","Resta
urantsAttire":"u'casual'","RestaurantsGoodForGroups":"True","RestaurantsDelivery":"False"
},"categories":"Specialty Food, Restaurants, Dim Sum, Imported Food, Food, Chinese,
Ethnic Food, Seafood","hours":
{"Monday":"9:0-0:0","Tuesday":"9:0-0:0","Wednesday":"9:0-0:0","Thursday":"9:0-0:0","Frida
y":"9:0-1:0","Saturday":"9:0-1:0","Sunday":"9:0-0:0"}},
{"business_id":"gnKjwL_1w79qoiV3IC_xQQ","name":"Fujiyama Japanese
Cuisine","address":"111 Johnston Rd, Ste
15","postal_code":"28210","stars":4.0,"review_count":170,"is_open":1,"attributes":
{"GoodForKids":"True","NoiseLevel":"u'average'","RestaurantsDelivery":"False","GoodForMea
l":"{'dessert': False, 'latenight': False, 'lunch': True, 'dinner': True, 'brunch':
False, 'breakfast':
False}","Alcohol":"u'beer_and_wine'","Caters":"False","WiFi":"u'no'","RestaurantsTakeOut"
:"True","BusinessAcceptsCreditCards":"True","Ambience":"{'romantic': False, 'intimate':
False, 'touristy': False, 'hipster': False, 'divey': False, 'classy': False, 'trendy':
False, 'upscale': False, 'casual': True}","BusinessParking":"{'garage': False, 'street':
False, 'validated': False, 'lot': True, 'valet':
False}","RestaurantsTableService":"True","RestaurantsGoodForGroups":"True","OutdoorSeatin
g":"False","HasTV":"True","BikeParking":"True","RestaurantsReservations":"True","Restaura
ntsPriceRange2":"2","RestaurantsAttire":"'casual'"},"categories":"Sushi Bars,
Restaurants, Japanese","hours":
{"Monday":"17:30-21:30","Wednesday":"17:30-21:30","Thursday":"17:30-21:30","Friday":"17:3
0-22:0","Saturday":"17:30-22:0","Sunday":"17:30-21:0"}}
...

You want to filter the records so that they only include restaurants with three or more stars. You also want to
add the city to each record based on the postal code.

The postal codes and corresponding cities exist in a flat file with the following format:

postal_code|city
15090|Wexford, PA
15102|Bethel Park, PA
15206|Pittsburgh, PA
15317|Canonsburg, PA
28012|Belmont, NC
28027|Concord, NC
...

You want the target file to contain JSON data in the following format:

{ "Date": "<date>",
"vendors":[

 {
 "name": "<restaurant name>",
 "location": "<city, state/province>",

432 Chapter 37: Velocity transformation

 "desc": "<description>",
 "stars": <number of stars>
 }
,
...

To convert the data, create a mapping with a Velocity transformation that converts the JSON data and an
unconnected Lookup transformation that returns the city based on the postal code.

The following image shows the mapping:

Configure the transformations in the following ways:

Source transformation

Configure the Source transformation to read data from the database table that contains the JSON BLOB.

Velocity transformation

Configure the Velocity transformation input and create the template.

On the Input Format tab, configure the following properties:

Property Value

Input Field Incoming string field from the Source transformation that contains the JSON BLOB.

Input Type Buffer

Format Type JSON

Variable Name in Template inputRoot

Code Page Default

On the Velocity Template tab, enter the following template in the template editor and validate the syntax:

#set($comma ="")
{ "Date": "$function.call('Systimestamp')",
"vendors":[
#foreach($vend in $inputRoot.items)
 #if($vend.categories.toString().contains("Restaurants") && ($vend.stars > 3))
$comma
 {
 "name": "$vend.name",
 "location": "$function.call(':lkp.lkp_CityLookup', $vend.postal_code)",
 "desc": "$vend.categories",
 "stars": $vend.stars
 }
 #set($comma =",")
 #end

Examples 433

#end
]
}

Unconnected Lookup transformation

Configure the Lookup transformation to return the city based on the postal code. The Lookup
transformation must be an unconnected Lookup transformation so that you can call it from the template
in the Velocity transformation.

On the General tab, select Unconnected Lookup.

On the Incoming Fields tab, create an incoming field for the postal code called in_postal_code.

On the Lookup Object tab, select the text file that contains the postal codes and cities. Then, click
Formatting Options and configure the following properties:

Property Value

Flat File Type Delimited

Delimiter Other: |

Text Qualifier None

Field Labels Import from Row 1

First Data Row 2

On the Lookup Condition tab, configure the following lookup condition:

postal_code = in_postal_code

On the Return Fields tab, select city as the return field.

Target transformation

Configure the Target transformation to write data to a flat file target created at run time. To ensure that
the target file contains no header and no text qualifier character, configure the formatting options.

On the Target tab, select the connection and set the target type to Single Object. Click Select next to the
Object field. Select Create New at Runtime, and enter the file name "vendors.json."

Click Formatting Options and set the text qualifier to None.

In the Advanced properties, set the header options to No Header.

When you run the mapping, the target file, vendors.json, contains the following data:

{ "Date": "07/08/2020 12:33:44.647037",
"vendors":[

 {
 "name": "Fujiyama Japanese Cuisine",
 "location": "Charlotte, NC",
 "desc": "Sushi Bars, Restaurants, Japanese",
 "stars": 4.0
 }
,
 {
 "name": "D'Amico's Pizzeria",
 "location": "Mentor-on-the-Lake, OH",
 "desc": "Italian, Restaurants, Pizza, Chicken Wings",
 "stars": 4.0
 }

434 Chapter 37: Velocity transformation

,
 {
 "name": "Villa Borghese",
 "location": "Las Vegas, NV",
 "desc": "Restaurants, Italian",
 "stars": 4.0
 }
,
 {
 "name": "3-Rivers Diner",
 "location": "Pittsburgh, PA",
 "desc": "Sandwiches, Salad, Restaurants, Burgers, Comfort Food",
 "stars": 4.0
 }
,
...

Examples 435

C h a p t e r 3 8

Verifier transformation
The Verifier transformation adds a verifier asset that you created in Data Quality to a mapping.

A verifier asset defines a template for input and output address data that you can connect to the input and
output fields on the Verifier transformation. Connect the fields in your source data or in upstream
transformations to the corresponding input ports on the Verifier transformation. Connect the output ports on
the Verifier transformation to downstream transformations in the mapping or to the mapping target.

The Verifier transformation performs the following operations on the input address data:

• The transformation compares the address records in the source data to address reference data.

• It fixes errors and completes partial address records. To fix an address, the transformation must find a
positive match with an address in the reference data. The transformation copies the required data
elements from the address reference data to the address records.

• It writes output addresses in the format that the verifier asset specifies. You define a verifier asset in Data
Quality to create address records that suit your business needs and that conform to the structure that the
mail carrier requires.

• It can report on the deliverable status of each address and the nature of any error or ambiguity that the
address contains.

• It can provide suggestions for any ambiguous or incomplete address.

For more information about the types of address information that the Verifier transformation can read and
write, including address status information, consult the verifier asset documentation in the Data Quality
online help.

A Verifier transformation is similar to a Mapplet transformation, as it allows you to add address verification
logic that you created elsewhere to a mapping. Like mapplets, verifiers are reusable assets. A Verifier
transformation shows incoming and outgoing fields. It does not display the address data that the verifier
contains or allow to you edit the verifier. To edit the verifier, open it in Data Quality.

Address Reference Data
To verify the quality of the addresses in your source data, the Verifier transformation compares the
addresses to the data in one or more reference data files.

When you run a mapping with a Verifier transformation, the Secure Agent evaluates the input data and
downloads the reference data files that you need. Each reference data file is specific to a single country. The
Secure Agent downloads one or more files for each county that the input address data specifies.

You do not need to take any action to download the files. If the current reference data files already exist on
the system, the Secure Agent does not download them again.

436

Each reference data file requires a license. You buy the license from Informatica. You enter the license key
information as a system configuration property on the Secure Agent that runs the mapping. Find the Secure
Agent properties in the Administrator service.

For more information on reference data properties, consult the Verifier Guide in the Data Quality online help.

Verifier transformation configuration
When you configure a Verifier transformation in a mapping, you first select the verifier asset that contains the
address data to include in the mapping. Next, you configure the incoming fields and the field mappings. Then,
you verify the output fields.

To configure the transformation, complete the following tasks:

1. Connect the Verifier transformation to a Source transformation or other upstream object.

2. On the Verifier tab, select the verifier that you want to include in the transformation.

The following image shows the options that you use to select the verifier:

3. On the Incoming Fields tab, configure the incoming fields.

By default, the transformation inherits all incoming fields from any connected upstream object in the
mapping. You can define a field rule to limit or rename the incoming fields.

4. On the Field Mapping tab, configure the options to connect the data from incoming fields to the target
fields on the verifier asset.

The verifier inputs might already reflect the names of the input fields in the data. If so, you can use the
Automap options to connect the fields.

For more information about connecting to upstream object fields, see “Verifier transformation field
mappings” on page 438.

5. Verify the verifier output fields on the Output Fields tab.

6. You can optionally rename the Verifier transformation and add a description on the General tab. You can
also update the tracing level for the transformation on the Advanced tab. The default tracing level is
Normal.

Verifier transformation configuration 437

Note: If you update an asset in Data Quality after you add it to a transformation, you may need to synchronize
the asset version in the transformation with the latest version. For more information about data quality asset
synchronization, see “Synchronizing data quality assets” on page 109.

Verifier transformation field mappings
Configure field mappings to define how data moves from an upstream transformation to the Verifier
transformation. Configure field mappings on the Field Mapping tab of the Properties panel.

You can configure the following field mapping options:

Field map options

Method of mapping fields to the transformation.

Select one of the following options:

• Manual. Manually link incoming fields to transformation input fields. Removes links for automatically
mapped fields.

• Automatic. Automatically link fields with the same name. Use when all of the fields that you want to
link share the same name. You cannot manually link fields with this option.

• Completely Parameterized. Use a parameter to represent the field mapping. In the task, you can
configure all field mappings.
Choose the Completely Parameterized option when the verifier in the transformation is parameterized
or any upstream transformation in the mapping is parameterized.

• Partially Parameterized. Configure links in the mapping that you want to enforce and use a parameter
to allow other fields to be mapped in the mapping task. Or, use a parameter to configure links in the
mapping, and allow all fields and links to display in the task for configuration.

Parameter

Select the parameter to use for the field mapping, or create a new parameter. This option appears when
you select Completely Parameterized or Partially Parameterized as the field map option. The parameter
must be of type field mapping.

Do not use the same field mapping parameter in more than one Verifier transformation in a single
mapping.

Options

Controls how fields are displayed in the Incoming Fields and Target Fields lists.

Configure the following options:

• The fields that appear. You can show all fields, unmapped fields, or mapped fields.

• Field names. You can use technical field names or labels.

Automap

Links fields with matching names. Allows you to link matching fields and to manually configure other
field mappings. The Automap options appear when you select the Manual or Partially Parameterized
field map option.

You can map fields in the following ways:

• Exact Field Name. Data Integration matches fields of the same name.

438 Chapter 38: Verifier transformation

• Smart Map. Data Integration matches fields with similar names. For example, if you have an incoming
field Post Code and a target field Postal Code, Data Integration automatically links the Post Code
field with the Postal Code field.

You can use both Exact Field Name and Smart Map in the same field mapping. For example, use Exact
Field Name to match fields with the same name and then use Smart Map to map fields with similar
names.

You can undo all automapped field mappings by clicking Automap > Undo Automap.

To unmap a single field, select the field to unmap and click Actions > Unmap on the context menu for the
field. To unmap one or more fields that you selected, click Unmap Selected on the Target Fields context
menu.

To clear all field mappings from the transformation, click Clear Mapping on the Target Fields context
menu.

Understanding input and output mappings
The verifier asset that you add to the transformation is an address template with a preconfigured set of input
and output fields. Each input and output field on the asset represents a different type of address information.

The data on the transformation input fields that you map to the verifier asset must reflect the types of
information that the asset inputs expect. If the fields do not correspond, the mapping cannot evaluate the
input data with full accuracy.

The asset inputs may expect a single element of address data, or they may expect multiple elements
organized in a single field. Likewise, the asset outputs may write a single element of address data, or they
may write multiple elements to a single field. If necessary, work with the asset designer to determine the
meaning of the inputs.

Verifier transformation output fields
A Verifier transformation displays an output field for each output on the verifier asset. View the output fields
on the Output Fields tab of the Properties panel.

The tab displays the name, type, precision, and scale for each output field. The output field names are the
names of the output fields on the asset.

Verifier transformation output fields 439

Advanced properties
You can configure advanced properties for a Verifier transformation. The advanced properties control the
tracing level for session log messages.

You can configure the following property:

Property Description

Tracing Level Detail level of error and status messages that Data Integration writes in the session log. You can
choose terse, normal, verbose initialization, or verbose data. Default is normal.

440 Chapter 38: Verifier transformation

C h a p t e r 3 9

Web Services transformation
Use the Web Services transformation in the Mapping Designer to make a web service request and to map the
web service response to a target.

A web service integrates applications and uses open standards, such as SOAP, WSDL, and XML. SOAP is the
communications protocol for web services. Web Services Description Language (WSDL) is an XML schema
that describes the protocols, formats, and signatures of the web service operations. Web service operations
include requests for information, requests to update data, and requests to perform tasks.

A Web Services transformation connects to a web service as a web service client to access, transform, or
deliver data. The web service client request and the web service response are SOAP messages. The mapping
task processes SOAP messages with document/literal encoding. The Web Service transformation does not
support RPC/encoded or document/encoded WSDL files.

For example, the Web Services transformation sends a SOAP request to a web service to run a web service
operation called getCityWeatherByZIP. The Web Services transformation passes zip codes in the request.
The web service retrieves weather information and then returns the information in a SOAP response.

SOAP request messages and response messages can contain hierarchical data, such as data that follows an
XML schema. For example, a web service client sends a request to add customer orders to a sales database.
The web service returns the following hierarchy in the response:

Response
 Order
 Order_ID
 Order_Date
 Customer_ID
 Product
 Product_ID
 Qty
 Status

The response has information on orders, including information on each product in the order. The response is
hierarchical because within the Order element, the Product element contains more elements.

To use the Web Services transformation, you need the appropriate license.

To use the Web Services transformation, perform the following steps:

1. Create a Web Services Consumer connection and use a WSDL URL and an endpoint URL.

2. Define a business service. A business service is a web service with configured operations.

3. Configure the Web Services transformation in a mapping in the Mapping Designer.

441

Create a Web Services consumer connection
Connect to a web service using Web Services Description Language (WSDL) and an endpoint URL. You can
also enable security for the web service.

1. In Administrator, select Connections, and click New Connection.

2. Enter the connection details. For the Type, select WSConsumer.

If the WSConsumer connection is not in the list of connections, in Administrator, open the Add-On
Connectors page to install the connector for your organization.

Note: Ensure that you select WSConsumer, not Web Service. Web Service connections are used for
mapplets or PowerCenter tasks.

3. Enter the connection properties:

a. Select the runtime environment for the web service connection.

b. For Authentication, select one of the following options:

• Select Username Token to enter the user name and the password to authenticate the web
service. You can choose to encrypt the password by sending a digest that is derived from the
password in the security token.

• Select Other Authentication to enter the WSDL URL and endpoint URL to access the web service.
If the web service is a private web service, enter the HTTP user name and password.

4. Enter the authentication connection properties. The properties that appear depend on the authentication
that you selected.

The following table describes the properties to configure:

Property Description

WSDL URL The URL provided by the web service.
If you are using a WSDL URL that has HTTP Basic authentication, download the WSDL to the
machine where the Secure Agent runs. For the WSDL URL, enter the file path. For example, you
can enter the following directory path: C:\WSDL\Human_Resources.wsdl

Endpoint URL Endpoint URL for the web service. The WSDL file specifies this URL in the location element.

Username Applicable to username token authentication. User name to authenticate the web service.

Password Applicable to username token authentication. Password to authenticate the web service.

Encrypt
Password

Applicable to username token authentication. Enables the PasswordDigest property which
combines the password with a nonce and a time stamp. The mapping task applies a SHA hash
on the password, encodes it in base64 encoding, and uses the encoded password in the SOAP
header.
If you do not select this option, the PasswordText property is enabled and the mapping task
does not change the password in the WS-Security SOAP header.

HTTP
Username

User name used to access the web service.

HTTP
Password

Password to access the web service.

5. Save the connection.

442 Chapter 39: Web Services transformation

Define a business service
A business service is a web service with configured operations. Define a business service to add operations
to the Web Services transformation in the Mapping Designer.

1. Click New > Components > Business Services and then click Create.

2. Enter a name for the business service and select the location to save it.

3. Select the connection that you want to use or create a new one.

4. Optionally, to refresh the connection metadata every time you run the task, enable dynamic refresh.

5. Select the operation you want to use from the web service.

6. If necessary, configure the operation to specify the choice elements and derived type elements for the
request and the response.

If operation components include choice elements or complexType elements where the abstract attribute
is true, then you must choose one or more elements or derived types when you configure the operation
mapping.

Optionally, for a complexType element where the abstract attribute is false, you can also select a derived
type for a complexType element.

a. For the operation you want to configure, click Configure.

b. From the Configure Operation window, click the Request, Response, or Fault tab and navigate to the
node you need to configure.

Note: If the WSDL uses the anyAttribute element, the element will not appear for the request or the
response.

You can click the icons at the top to navigate to the nodes that you need to configure:

1. Expand all nodes.
2. Collapse all nodes.
3. Show only nodes that you must configure. If you select this icon and no nodes expand, then you do not

have to choose any choice elements or derived types.

c. Select the choice elements or derived types.

Ensure that you configure the request and the response for the operation by clicking the relevant
tabs.

Define a business service 443

d. Save the configured operation.

7. Optionally, add more operations and configure the operations if necessary.

8. Save the business service.

If you have not configured all the required choice elements and derived types, then you cannot save the
business service.

Configure the Web Services transformation
After you have defined the business service, you can configure the Web Services transformation in a mapping
to access or transform data from a web service. The requirements and available options depend on whether
you are connecting the Web Services transformation to one source object or to more than one source object.

Configuring the transformation
When you configure the web services transformation, you connect a source object, configure properties for
the transformation, map incoming fields to requested fields for the web service, and map the response to
output fields to create one or more success groups. Data Integration creates a fault group automatically but
you can choose whether to map it to the output fields.

1. Create a mapping and add the source objects you want to work with.

2. Add a Web Services transformation to the canvas.

3. Connect the source to the Web Services transformation.

4. Select the business service and operation in the Web Service tab.

5. On the Request Mapping and Response Mapping tabs, create the field mappings between the source
fields and the web service request.

For an illustration of the mapping process, see “Web Services transformation example” on page 450.

6. On the Output Fields tab, review the success groups, fault group, and field details. You can edit the field
metadata, if needed. The success groups contain the SOAP response from the web service. The fault
group contains SOAP faults with the fault code, string, and object name that caused the fault to occur.

7. Define the advanced properties.

8. Save and run the mapping.

For additional information about the mapping process, see the following sections:

444 Chapter 39: Web Services transformation

Advanced properties

The following table describes the properties available for the Web Services transformation from the
Advanced tab:

Property Description

Cache Size Memory available for the web service request and response. If the web service request or response
contains a large number of rows or columns, you might want to increase the cache size. Default is
100 KB.

Allow Input
Flush

The mapping task creates XML when it has all of the data for a group. When enabled, the mapping
task flushes the XML after it receives all of the data for the root value. When not enabled, the
mapping task stores the XML in memory and creates the XML after it receives data for all the
groups.
Note: You cannot select the option to allow input flush if you are connecting to multiple source
objects.

Transaction
Commit Control

Control to commit or roll back transactions based on the set of rows that pass through the
transformation. Enter an IIF function to specify the conditions to determine whether the mapping
task commits, rolls back, or makes no transaction changes to the row. Use the transaction commit
control if you have a large amount of data and you want to control how it is processed.
Note: You cannot configure a transaction commit control if you are connecting to multiple source
objects.

Mapping incoming fields

When you define the request mapping, you can configure relationships between more than one source object.
You configure relationships between the response mapping and the output fields separately.

When you map incoming fields, note the following guidelines:

• If you need to apply an expression to incoming fields, use an Expression transformation upstream of the
Web Services transformation.

• To ensure that a web service request has all the required information, map incoming derived type fields to
fields in the request structure.

You can map the incoming fields to the request mapping as shown in the following image:

Drag each incoming field onto the node in the request structure where you want to map it.

Configure the Web Services transformation 445

Working with multiple source objects

If you have multiple sources, note the following requirements:

• Any source fields you want to designate as primary key and foreign key must use the data type Bigint or
String. If needed, you can edit the metadata in the Source transformation.

Note: If the Bigint data type is not available for a source, you can convert the data with an Expression
transformation upstream of the Web Services transformation.

• Ensure that the source data is sorted on the primary key for the parent object and sorted on the foreign
key and primary key for child objects.

• Map one of the fields or a group of fields to the recurring elements. In the incoming fields, you can see
where each recurring element is mapped.

• Map at least one field from each child object to the request structure.

• You must map fields from the parent object to fields in the request structure that are higher in the
hierarchy than fields from the child object.

• For child objects, select a primary key and a foreign key.

- On the Incoming Fields tab, select the source object you want to designate as the parent object.

- Right-click on an incoming field in the tree to designate the primary key and foreign key.

- For the foreign key, specify the parent object.

• Do not choose a foreign key for the parent object.

Mapping outgoing fields

On the Response Mapping tab, you map the response structure to the output fields you want to use. You can
choose relational or denormalized format for the output fields.

When you choose Relational, the transformation generates the following output groups:

• One output group for the parent element.

• One output group for each element in which the cardinality is greater than one.

• FaultGroup, if it is supported by the connection type you are using.

When you choose Denormalized, the transformation generates the following output groups:

• Output group for the parent element. In denormalized output, the element values from the parent group
repeat for each child element.

• FaultGroup, if it is supported by the connection type you are using.

446 Chapter 39: Web Services transformation

Right-click the node in the node of the response where you want to map the response to output fields. You
can choose to map all descendants or only the immediate children, as shown in the following image:

Transaction commit control
The transaction commit control lets you control commit and roll back transactions based on a set of rows
that pass through the transformation.

Enter an IIF function to specify the conditions to determine whether the mapping task commits, rolls back, or
makes no transaction changes to the row. When the mapping task issues a commit or roll back based on the
return value of the expression, it begins a new transaction.

Note: You cannot configure a transaction commit control if you are connecting to multiple source objects.

Use the following syntax for the expression:

IIF (condition, value1, value2)
Use the following built-in variables when you create a transaction control expression:

• TC_CONTINUE_TRANSACTION. The mapping task does not perform any transaction change for this row.
This is the default value of the expression.

• TC_COMMIT_BEFORE. The mapping task commits the transaction, begins a new transaction, and writes
the current row to the target. The current row is in the new transaction.

• TC_COMMIT_AFTER. The mapping task writes the current row to the target, commits the transaction, and
begins a new transaction. The current row is in the committed transaction.

• TC_ROLLBACK_BEFORE. The mapping task rolls back the current transaction, begins a new transaction,
and writes the current row to the target. The current row is in the new transaction.

• TC_ROLLBACK_AFTER. The mapping task writes the current row to the target, rolls back the transaction,
and begins a new transaction. The current row is in the rolled back transaction.

If the transaction control expression evaluates to a value other than commit, roll back, or continue, the
mapping is invalid.

Example

You want to use transaction commit control to write order information based on the order entry date. You
want all orders entered on a given date to be committed to the target in the same transaction.

You create a field named New_Date and populate it by comparing the order date of the current row to the
order date of the previous row. If the orders have different dates, then New_Date evaluates to 1.

Configure the Web Services transformation 447

You then use the following expression to commit data when the mapping task encounters a new order date:

IIF(New_Date = 1, TC_COMMIT_BEFORE, TC_CONTINUE_TRANSACTION)

Viewing incoming and request fields
When you review incoming fields and request fields, you might want to reduce the number of fields that
appear on the page.

You can view and locate fields using the following methods:

Expanding and collapsing nodes

To display the parent and child nodes in a tree, you can expand all nodes. To display only the parent
nodes, collapse the nodes. Use the Expand All Nodes and Collapse Nodes icons on the Request Mapping
or Response Mapping tabs.

Searching for fields

To search for a particular field, type the field name in the Search text box.

Filtering the fields

You can filter the incoming fields view to show all fields, keys, mapped fields, or unmapped fields. You
have a similar option in other tree views:

View the field and field mapping details

For each node in a hierarchy, you can view the field and field mapping details. Right-click on the node to
show the properties:

448 Chapter 39: Web Services transformation

Clear the field mappings and keys

In the Request Structure tree, you can clear the mapping, clear the keys, or map and unmap selected
fields:

Pass-through fields
Pass-through fields are response fields that you do not need for the current transformation but you might
want to use later in the mapping.

For example you might only need the primary key from a source object for the Web Service transformation.
However, you might want to use the other fields in the source object in a downstream transformation.

Incoming fields and response fields pass through the Web Services transformation to the success groups
and fault group. However, when the mapping contains multiple sources, only the fields from the primary
source pass through. The source that is connected to the Web Service transformation first is the primary
source. For example, in the following image, NewSource is the primary source and NewSource1 is the
secondary source:

Because NewSource1 is a secondary source, fields from this source do not pass through to the success
groups and fault group.

To determine the source of a field in the Success or Fault group, choose the Incoming Fields tab. The Origin
column shows the source for each field.

Configure the Web Services transformation 449

Web Services transformation example
The following example demonstrates how to use the Web Services transformation to interact with NetSuite to
get product availability details.

You can review this example to learn how to configure a Web Services transformation to structure a SOAP
request and response using the NetSuite operation, getItemAvailability. The web service client passes the
item ID in the request. The web service then returns information on the latest item availability in a SOAP
response.

First, to connect to the web service, create a WSConsumer connection. You add a WSDL that describes the
request and response web service messages and configures the necessary security. For this example, we use
the following NetSuite connection:

450 Chapter 39: Web Services transformation

Second, define a business service using the connection. In this case, we use the connection to define a
business service and access the getItemAvailability operation:

Third, create a mapping that uses the Web Service transformation. The example mapping includes the
following configuration options:

1. The source is a simple .csv file that includes four fields with the login details and an item ID:

2. On the Web Service tab, select the business service and operation previously defined:

Web Services transformation example 451

3. After you add a Web Services transformation, you can connect the source and see four incoming fields.
You can filter your view of the incoming fields to show all fields, mapped fields, unmapped fields, or
keys:

4. In the Request Mapping, the incoming fields are mapped to the SOAP message. The Envelope contains
the credentials and the Body contains the item ID, as shown in the following image. You drag incoming
fields onto items in the request structure to create the mapping:

5. On the Response Mapping tab, you map the SOAP message to the output fields you want to use. You can
choose Relational or Denormalized format for output fields. This example uses Relational format:

452 Chapter 39: Web Services transformation

The system generates these output field groups automatically:

• FaultGroup, if it is supported by the connection type you are using.

• Envelope, which contains the documentinfo, if you map the header.

• One group for each element you have mapped where the cardinality is greater than one.

The example above has three groups. In the response, you can choose to map or unmap objects and
fields by selecting a node in the hierarchy and choosing an option to map (or unmap), as shown in this
image. Click the down arrow to display the mapping options for a specific node:

6. On the Output Fields tab, you can see each group. If needed, you can edit the type, precision, and scale of
the fields:

Web Services transformation example 453

7. The mapping includes three targets: one for the status, one for the availability, and one for the
FaultGroup data:

When the mapping runs, it returns the item availability and status code. If it cannot successfully run, it
creates a record in the default target that contains the fault information.

Configuration for multibyte hierarchical data
If a mapping includes a transformation that processes hierarchical data and the data uses multibyte
characters, configure the Secure Agent machine to use UTF-8.

On Windows, create the INFA_CODEPAGENAME=UTF-8 environment variable in Windows System Properties.

On Linux, set the LC_LOCALE variable to UTF-8.

454 Chapter 39: Web Services transformation

I n d e x

A
Access Policy transformations

configuring 91
in mappings 91
overview 91

active transformations
Java 248
Rank 349
Router 358
Sorter 376

advanced email masking
description 119

aggregate fields
Aggregator transformations 98

aggregate functions
in Aggregator transformations 98
nested 98

Aggregator transformation
advanced properties 99
example 100

Aggregator transformations
aggregate fields 98
aggregate functions 98
conditional clause example 99
example in mapping 324
group by fields 96
overview 96
using sorted data 97

AND
reserved word 154

API methods
Java transformation 263

API proxy
Machine Learning transformation 310

B
bulk requests

Machine Learning transformation 309
Business Services

defining for Web Service transformations 443

C
caches

dynamic lookup cache 292
Rank transformation 350, 354
Sorter transformation 377

CHR function
inserting single quotation mark 153

classpath
configuring design time value 244
configuring for Java transformation 241

classpath (continued)
configuring the Java Classpath session property 244
configuring the JVMClassPath agent property 243

CLASSPATH environment variable
configuration 243
configuring on UNIX 244
configuring on Windows 243

Cleanse transformations
configuring 107
in mappings 107
overview 107

Cloud Application Integration community
URL 16

Cloud Developer community
URL 16

comments
adding to field expressions 153

conditions
Router transformation 359

connected transformations
Java 240
Rank 349
Router 358
Transaction Control 412
Velocity 425

connections
Web Services Consumer 442

constants
definition 152

credit card masking
masking technique 118

CURRVAL 368
custom substitution masking

masking technique 122
unique substitution 122

D
data cache 32
Data Integration community

URL 16
data masking

masking techniques 113
repeatable output 114
seed 115

Data Masking transformations
creating 126

data preview
sources, targets, and lookup objects 30

data type conversion
Java transformation 245

databases
configuration in mapping sources 52
configuration in mapping targets 79
target update override 82

455

DD_DELETE constant
reserved word 154

DD_INSERT constant
reserved word 154

DD_REJECT constant
reserved word 154

DD_UPDATE constant
reserved word 154

Deduplicate transformations
configuring 141
group keys 139
GroupKey field 139
identity population files 138
overview 137

dynamic lookup cache
SQL overrides 296

E
elastic mappings

hierarchical data 66, 86, 100, 164, 166, 272, 355, 361, 371, 378
Email masking

masking technique 119
error handling

Machine Learning transformation 312
examples

Aggregator transformation 100
Hierarchy Processor transformation 197, 217, 219–222, 224–228,
230, 233, 235–237
Joiner transformation 273
lookup SQL override 289
Rank transformation 355
Router transformation 361

expression editor
expression transformation 151

expression macros in mappings
configuring a horizontal macro 40
configuring a vertical macro 35
horizontal expansion functions 39
horizontal macro configuration 39
hybrid macro configuration 43
macro input field 34
macro input field configuration for incoming fields in a horizontal
macro 40
macro input field configuration for vertical macros 36
macro output field configuration for vertical macros 36
macro types 34
output field inclusion for vertical macros 37
overview 34
transformation output field for horizontal macros 42
using constants in horizontal macros 41
vertical macro configuration 35

Expression transformation
advanced properties 163
variable fields 31
window functions 155

Expression transformations
expression fields 148
in mappings 148

:EXT reference qualifier
reserved word 154

F
failSession

Java transformation API method 264

FALSE constant
reserved word 154

field expression 151
field expressions

comments, adding 153
components 152
literals 153
reserved words 154
syntax 153

field mapping
Output transformation 328

field mappings
for web service connections in Source transformations 60
for web service connections in Target transformations 84
in Mapplet transformations 316
in Target transformations 88
in the Normalizer transformation 322

field name conflicts
resolving in mappings 27
transformations 25

field rules
field selection criteria 26
in mappings 25

field selection criteria 26
file lists

batch files 45
command sample file 46
commands 45
in Lookup transformations 47
in Source transformations 46
manually created 44
overview 44
rules and guidelines 44
shell scripts 45
text file format 44

Filter transformation
advanced properties 166

Filter transformations
filter condition 165
in mappings 165

flat file time stamps
in Target transformations 77

flat files
command sample file 46
configuration in mapping sources 50
file lists 44
parsing with a Java transformation 254

FTP/SFTP
configuration in mapping sources 50

functions
definition 152

G
generateRow

Java transformation API method 264
getInRowType

Java transformation API method 265
group by fields

Aggregator transformation 96
group filter condition

configuring 360
Router transformation 359

groups
Router transformation 359

groups in deduplicate analysis 139

456 Index

H
hierarchical data and multibyte characters 47, 66, 86, 170, 181, 188,
454
hierarchical schema

overview 177
Hierarchical Schema

creating 178
hierarchical schemas

creating 177
Hierarchy Builder transformation

intelligent structure model 167
advanced properties 170
example 171
field mapping 169
hierarchical schema 167
output format 167
output precision 167
output settings 167
overview 167
select schema elements 170

Hierarchy Parser transformation
example 182
field mapping 180
input field selection 179
output fields 181
select output group 181
select schema elements 180
selecting hierarchical schema 178
selecting input settings 178

Hierarchy Parser transformations
hierarchical schema 177
overview 175

Hierarchy Processor transformation
adding all descendants 192
adding an array as a struct 204
adding incoming fields to flattened output 231
adding incoming fields to hierarchical output 200
adding incoming fields to relational output 190
adding primitive single occurring children 201
adding single occurring children 191
aggregating values in an output field array 207
configuring data sources 212
configuring filter conditions 193, 213
configuring group by fields 215
configuring join conditions 213
configuring order by fields 215
configuring output groups and fields 192, 206, 231
data processing strategies 185
data source configuration example 210
data source conflicts 211
data sources 196, 208, 216
data sources for relational output 193
defining 189, 199, 230
expression configuration 195, 216, 232
field limitations 188
field threshold exceeded 188
flatten hierarchical data 231
flattened output 230
flattening the selected array 203
hierarchical output 199
hierarchical to flattened example 233, 235–237
hierarchical to hierarchical example 225–228, 230
hierarchical to relational example 197
inheriting parent's data sources 208
JSON configuration 196, 217, 233
order of operations 200, 213
output data configuration 200, 213

Hierarchy Processor transformation (continued)
overview 185
port threshold exceeded 188
preserving the incoming field 202, 210
reading a JSON input file 196, 217, 233
relational output 189
relational to hierarchical example 217, 219–222, 224
renaming and deleting output groups 200
steps to create 189, 199, 230
writing to a single JSON output file 196, 217, 233

I
Incoming Fields are Sorted

Aggregator transformation 97
incrementErrorCount

Java transformation API method 265
index cache 32
:INFA reference qualifier

reserved word 154
Informatica Global Customer Support

contact information 17
Informatica Intelligent Cloud Services

web site 16
input fields 239
Input transformation

input fields 239
invokeJExpression

Java transformation API method 266
IP address masking

masking technique 120
isNull

Java transformation API method 267

J
Java transformation

active and passive transformations 248
advanced properties 246
API methods 263
checking for nulls 267
classpath configuration 241
compiling Java code 255
configuring design time classpath 244
configuring the CLASSPATH environment variable 243
configuring the Java Classpath session property 244
configuring the JVMClassPath agent property 243
creating code snippets 251
data type conversion 245
defining 241
defining end of data behavior 253
defining helper code 252
defining input row behavior 253
defining transaction notification behavior 254
enabling high precision 249
example 257
failing sessions 264
finding compilation errors 256
generating output rows 264
getting input row type 265
group by fields 246
importing packages 252
incoming fields 244
incrementing the error count 265
invoking an expression 266
Java editor sections 250

Index 457

Java transformation (continued)
logging errors 267
logging messages 268
non-user code errors 256
output fields 244
overview 240
parsing flat files 254
setting nulls 268
setting update strategy 269
sort conditions 246
steps to create 241
subsecond processing 249
troubleshooting 256
update strategy 248
user code errors 256
viewing full class code 255

Java transformation API methods
failSession 264
generateRow 264
getInRowType 265
incrementErrorCount 265
invokeJExpression 266
isNull 267
logError 267
logInfo 268
overview 263
setNull 268
setOutRowType 269

Joiner transformation
advanced properties 271

Joiner transformations
comparison with Union 418
creating 273
example 273
in mappings 270
join condition 270
join types 271

L
Labeler transformations

configuring 276
in mappings 276
overview 276

literals
definition 152
single quotation mark requirement 153
string and numeric 153

:LKP reference qualifier
reserved word 154

logError
Java transformation API method 267

logInfo
Java transformation API method 268

lookup caches
dynamic 292

lookup source filter
Lookup transformation 292

lookup SQL overrides
examples 289
Lookup transformation 289, 290
query guidelines 291

Lookup transformation
advanced properties 286
dynamic cache 292
dynamic cache inserts and updates 294
field mapping 295

Lookup transformation (continued)
file name prefix 297
generated key fields 295
ignore fields in comparison 296
insert else update 294
lookup return fields 285
lookup source filter 292
lookup SQL override guidelines 291
lookup SQL overrides 289, 290
NewLookupRow 293
non-persistent lookup cache 297
persistent lookup cache 297
re-cache from lookup source 297
rebuilding the lookup cache 297
Sequence-ID field 295
synchronizing lookup source with dynamic cache 294

Lookup transformations
:LKP expression syntax 299
calling unconnected lookups 299
configuring file lists 47
configuring unconnected lookups 299
custom lookup source queries 283
data preview 30
in mappings 280
lookup condition 284
lookup object 281
lookup object configuration 281
lookup object properties 282
multiple match policy restrictions 283
unconnected lookup example 301
unconnected lookups 298

M
machine learning model

Machine Learning transformation 305
Machine Learning transformation

API proxy 310
bulk requests 309
error handling 312
machine learning model 305
request mapping 305
response fields 308
troubleshooting 311

macro input fields
in mappings 34

maintenance outages 17
mapping designer

transformations 18
mapping tasks

configuring the Java Classpath session property 244
mappings

Access Policy transformations 91
adding cleanse assets 107
adding mapplets 315
adding rule specifications 276, 363
Cleanse transformations 107
configuring aggregate calculations with the Aggregator
transformation 96
custom lookup source queries 283
custom source queries 56
example of using a Union transformation 421
file target properties 72
filtering data with a Filter transformation 165
filtering source data 57
joining heterogenous sources with a Joiner transformation 270
Labeler transformations 276

458 Index

mappings (continued)
look up data with a Lookup transformation 280
lookup object configuration 281
Mapplet transformations 315
normalizing data with the Normalizer transformation 320
output fields in a Union transformation 420
Parse transformations 330
performing calculations with an Expression transformation 148
planning to use a Union transformation 419
Rule Specification transformations 363
sorting source data 57
source configuration 48
Source transformations 48
SQL transformation 382
target configuration 71, 72
Target transformations 70
Union transformation 418
using expression macros 34
Verifier transformations 436

mapplet
parameters 317

Mapplet transformations
configuring 315
field mappings 316
in mappings 315
output fields 318
purpose 315
selecting a mapplet 316

mapplets
selecting in Mapplet transformations 316

mask format
blurring 117
key masking 115
random masking 115
range 117
source filter characters 116
target filter characters 117

masking
advanced email 119

masking technique
credit card masking 118
custom substitution 122
dictionary 125
Email masking 119
IP address masking 120
Key 120
phone number masking 121
Random 121
Social Insurance number masking 121
Social Security number masking 122
substitution 125
URL masking 125

:MCR reference qualifier
reserved word 154

metadata override
editing native data types 68
editing transformation data types 69
source fields 67
target fields 87

Microsoft SQL Server
configuration in mapping sources 52
configuration in mapping targets 79

multibyte data configuration 47, 66, 86, 170, 181, 188, 454
MySQL

configuration in mapping sources 52
configuration in mapping targets 79

N
NEXTVAL 368
normalized fields

Normalizer transformation 320
Normalizer transformation

advanced properties 323
Normalizer transformations

example in mapping 324
field mapping 322
field mapping options 322
field rule for parameterized sources 324
generated keys 321
handling unmatched groups of multiple-occurring fields 321
normalized fields 320
occurs configuration 320
overview 320
target configuration 323

NOT
reserved word 154

NULL constant
reserved word 154

O
operations

for source web service connections 58
for target web service connections 84

operators
definition 152

OR
reserved word 154

Oracle
configuration in mapping sources 52
configuration in mapping targets 79

output fields
Output transformation 328

Output transformation
field mapping 328
output fields 328

P
Parameters

Data Masking transformation 126
mask rule 126

Parse transformations
configuring 330
overview 330

partitioning
source 63
target 85

partitions
examples 65
rules and guidelines 64

pass-through fields 449
passive transformations

Java 248
phone number masking

masking technique 121
PROC_RESULT variable

reserved word 154

Index 459

Q
quotation marks

inserting single using CHR function 153

R
Rank transformation

advanced properties 354
caches 350
case-sensitive string comparison 354
configuring as optional 354
configuring cache directory 354
configuring cache sizes 354
defining 351
example 355
fields 351
overview 349
rank groups 353
rank index 351
rank order 352
RANKINDEX field 351
ranking string values 349
selecting rows to rank 352
steps to create 351
tracing level 354
transformation scope 354

request mapping
Machine Learning transformation 305

request messages
for web service connections 59

reserved words
list 154

response fields
Machine Learning transformation 308

Router transformation
advanced properties 361
configuring a filter condition 360
examples 361
group filter condition 359
groups 359
output group guidelines 359
overview 358

routing rows
transformation for 358

Rule Specification transformations
configuring 363
in mappings 363
overview 363

S
:SD reference qualifier

reserved word 154
Secure Agent

configuring CLASSPATH 243
configuring the JVMClassPath 243

:SEQ reference qualifier
reserved word 154

Sequence Generator transformation 367
Sequence transformation

disable incoming fields 370
output fields 368
properties 369
rules and guidelines 371

Sequencer transformation
example 372

setNull
Java transformation API method 268

setOutRowType
Java transformation API method 269

SOAP messages
for Web Service transformations 441

Social Insurance number masking
masking technique 121

Social Security number masking
masking technique 122

sorter cache
description 377

Sorter transformation
advanced properties 377
cache size 377
caches 377
overview 376
sort conditions 376
work directory 377

Source transformations
advanced relationships 56
configuring file lists 46
custom source queries 56
data preview 30
database sources 52
editing native data types 68
editing transformation data types 69
field mapping for web service connections 60
filtering data 57
in mappings 48
joining related objects 53
partitioning 63
sorting data 57
source configuration 48
source fields 67
web service connections 57

:SP reference qualifier
reserved word 154

SPOUTPUT
reserved word 154

SQL overrides
dynamic lookup cache 296

SQL queries
SQL transformations 389

SQL transformation
advanced properties 400
call from an expression 385
unconnected 384–386
unconnected SQL transformation 384

SQL transformations
configuration 394
configuring the SQL type 395
dynamic queries 390
entering a query 396
field mapping 397
NumRowsAffected field 398
output fields 398
overview 382
parameterizing a query 396
passing the full query 390
passive mode 392
query guidelines 393
query processing 389
selecting a saved query 396
selecting a stored procedure or function 395
selecting multiple rows 390

460 Index

SQL transformations (continued)
SQL statements for queries 392
SQLError field 398
static queries 389
stored function processing 382
stored procedure processing 382, 384–386
substituting the table name 391

status
Informatica Intelligent Cloud Services 17

stored functions
SQL transformation 382

stored procedures
SQL transformation 382, 384

string literals
single quotation mark requirement 153

strings
ranking string values 349

Structure Parser transformation
advanced properties 406
configuration 406
configuring 407
example 409
field mapping 404
output fields 405
output type 406
overview 402
rules and guidelines 408
select output group 408
selecting 407

subseconds
Java transformation 249

synchronization
source fields 67
target fields 87

syntax
for field expressions 153

system status 17

T
Target transformation

file target properties 72
Target transformations

creating a database target at run time 81
creating a flat file target at run time 79
data preview 30
database targets 79
database targets created at run time 81
dynamic names for flat file targets 78
field mapping for web services 84
field mappings 88
file targets 72
flat file targets created at run time 76
flat file time stamps 77
in mappings 70
partitioning 85
specifying targets 89
static names for flat file targets 76
target configuration 71, 72
target fields 87
target update override 82
target update override guidelines 83
update columns 81
web service connections 83

:TD reference qualifier
reserved word 154

Transaction Control transformation
advanced properties 417
effective and ineffective 414
in mappings with multiple targets 415
mapping guidelines 416
overview 412
transaction control condition 413
using in mappings 414

transformation cache
tuning 33

transformation caches 32
transformations

active and passive 18
connecting 18
field name conflicts 25
field rules 25, 26
incoming fields 24
Java 240
licensed 23
overview 18
previewing fields 24
Rank 349
renaming fields 27
Router 358
Transaction Control 412
types 19
Velocity 425

troubleshooting
Machine Learning transformation 311

TRUE constant
reserved word 154

trust site
description 17

U
Union transformation

advanced properties 421
example 421
field mappings 420
output fields 420
overview 418

Union transformations
comparison with Joiner 418
guidelines 419
input group guidelines 419

update columns
configuring 82
in Target transformations 81

upgrade notifications 17
URL masking

masking technique 125

V
variable fields

in Expression transformations 31
Velocity transformation

configuring file sources 426
configuring file targets 429
examples 429
input format 426
JSON example 432
output 429
output field precision 429
overview 425

Index 461

Velocity transformation (continued)
parsers 429
testing 428
Velocity template 427
XML example 430

Verifier transformations
configuring 437
overview 436

W
web service connections

operations for Source transformations 58
operations for Target transformations 84
request messages 59
Source transformations 57
Target transformations 83

Web Services transformations
advanced properties 444

Web Services transformations (continued)
configuring 444
creating a Web Services Consumer connection 442
defining a business service 443
filtering fields 448
mapping incoming and outgoing fields 444
operations 443
overview 441

web site 16
work directory

Sorter Transformation 377
WORKFLOWSTARTTIME variable

reserved word 154
WSConsumer

Web Services Consumer 442
WSDL URL

Web Services transformations 441

462 Index

	Table of Contents
	Preface
	Informatica Resources
	Informatica Documentation
	Informatica Intelligent Cloud Services web site
	Informatica Intelligent Cloud Services Communities
	Informatica Intelligent Cloud Services Marketplace
	Data Integration connector documentation
	Informatica Knowledge Base
	Informatica Intelligent Cloud Services Trust Center
	Informatica Global Customer Support

	Chapter 1: Transformations
	Active and passive transformations
	Transformation types
	Transformations available in mappings
	Transformations available in advanced mode
	Transformations available in SQL ELT mode

	Licensed transformations
	Incoming fields
	Field name conflicts
	Field rules

	Data object preview
	Variable fields
	Transformation caches
	Cache types
	Cache files
	Cache size
	Optimizing the cache size

	Expression macros
	Macro types
	Macro input fields
	Vertical macros
	Horizontal macros
	Hybrid macros

	File lists
	Manually created file lists
	File list commands
	Using a file list in a Source transformation
	Using a file list in a Lookup transformation

	Configuration for multibyte hierarchical data

	Chapter 2: Source transformation
	Source object
	File sources
	Database sources
	Database source properties
	Related objects
	Advanced relationships
	Custom queries
	Source filtering and sorting

	Web service sources
	Web service operations for sources
	Request messages
	Field mapping for web service sources

	Partitions
	Partitioning rules and guidelines
	Partitioning examples

	Reading hierarchical data in advanced mode
	Configuration for multibyte hierarchical data
	Source fields
	Editing native data types in complex file sources
	Editing transformation data types

	Chapter 3: Target transformation
	Target object
	Target file creation on advanced clusters

	File targets
	File target properties
	Flat file targets created at run time
	Flat file targets with static file names
	Flat file targets with dynamic file names
	Creating a flat file target at run time

	Database targets
	Database target properties
	Database targets created at run time
	Update columns for relational targets
	Target update override

	Web service targets
	Web service operations for targets
	Field mapping for web service targets

	Partitions
	Writing hierarchical data in advanced mode
	Configuration for multibyte hierarchical data
	Target fields
	Target transformation field mappings
	Configuring a Target transformation

	Chapter 4: Access Policy transformation
	Access Policy transformation configuration
	Access Policy transformation example

	Chapter 5: Aggregator transformation
	Group by fields
	Sorted data
	Aggregate fields
	Aggregate functions
	Nested aggregate functions
	Conditional clauses

	Advanced properties
	Hierarchical data in advanced mode
	Aggregator transformation example

	Chapter 6: B2B transformation
	B2B Incoming Fields
	B2B settings
	Output fields
	Field mapping
	Advanced settings

	Chapter 7: Cleanse transformation
	Cleanse transformation configuration
	Cleanse asset considerations
	Synchronizing data quality assets

	Cleanse transformation field mappings
	Cleanse transformation output fields
	Advanced properties

	Chapter 8: Data Masking transformation
	Masking techniques
	Configuration properties for masking techniques
	Repeatable output
	Optimize dictionary usage
	Seed
	Unique substitution
	Mask format
	Source filter characters
	Target filter characters
	Range
	Blurring
	Connections in a Data Masking transformation

	Credit card masking
	Email masking
	Advanced email masking

	IP address masking
	Key masking
	Phone number masking
	Random masking
	Social Insurance number masking
	Social Security number masking
	Custom substitution masking
	Dependent masking
	Dependent masking parameters

	Substitution masking
	URL address masking
	Mask rule parameter
	Creating a Data Masking transformation
	Consistent masked output
	Rules and guidelines
	Example

	Data Masking transformation example

	Chapter 9: Data Services transformation
	Dynamic service name
	Status tracing messages
	Data Services properties
	Data Services transformation input fields
	Data Services transformation output fields
	Data Services transformation field mapping

	Chapter 10: Deduplicate transformation
	Deduplication and consolidation operations
	Identity population data
	Groups in duplicate analysis
	Example: Selecting a group key column

	Deduplicate transformation configuration
	Deduplicate transformation field mappings
	Metadata fields on the Deduplicate transformation
	Link scores and driver scores
	Deduplicate transformation output fields
	Advanced properties

	Chapter 11: Expression transformation
	Expression fields
	Output fields
	Variable fields
	Input macro field
	Output macro field

	Expression editor
	Transformation language components for expressions
	Expression syntax
	String and numeric literals
	Adding comments to expressions
	Reserved words
	Window functions
	Frame
	Partition and order keys

	Example: Use a window to calculate expiration dates
	Example: Use a window to flag GPS pings
	Example: Run an aggregate function on a window
	Advanced properties
	Hierarchical data in advanced mode

	Chapter 12: Filter transformation
	Filter conditions
	Advanced properties
	Hierarchical data in advanced mode

	Chapter 13: Hierarchy Builder transformation
	Configure output settings
	Rules and guidelines for hierarchical schemas
	Single output example

	Join and map fields for data conversion
	Joining incoming data
	Mapping relational fields to hierarchy fields

	Configure advanced properties
	Configuration for multibyte hierarchical data
	Hierarchy Builder transformation example

	Chapter 14: Hierarchy Parser transformation
	Using a Hierarchy Parser transformation
	Hierarchy Parser rules and guidelines
	Choosing a sample or schema file
	Hierarchical schemas
	Rules and guidelines for hierarchical schemas
	Creating a hierarchical schema

	Input settings
	Selecting a hierarchical schema
	Creating a hierarchical schema from sample

	Input field selection
	Field mapping
	Selecting the elements to convert

	Output fields
	Selecting an output group
	Configuration for multibyte hierarchical data
	Hierarchy Parser transformation example

	Chapter 15: Hierarchy Processor transformation
	Hierarchy Processor transformation overview
	Hierarchical to relational data processing
	Relational to hierarchical data processing
	Hierarchical to hierarchical data processing
	Hierarchical to flattened data processing
	Configuration for multibyte hierarchical data
	Field restrictions

	Processing relational output
	Defining relational output with the Hierarchy Processor transformation
	Adding incoming fields to relational output groups
	Configuring relational output groups and fields
	Configuring data sources
	Configuring filter conditions
	Expression configuration
	Running a mapping with JSON data
	Hierarchical to relational example

	Processing hierarchical output
	Defining hierarchical output with the Hierarchy Processor transformation
	Adding incoming fields to hierarchical output groups
	Configuring hierarchical output group and fields
	Configuring data sources
	Configuring output data
	Expression configuration
	Running a mapping with JSON data
	Relational to hierarchical example
	Hierarchical to hierarchical example

	Processing flattened output
	Defining flattened output with the Hierarchy Processor transformation
	Adding incoming fields to flattened output groups
	Renaming flattened output group and fields
	Expression format
	Running a mapping with JSON data
	Hierarchical to flattened example

	Chapter 16: Input transformation
	Input fields

	Chapter 17: Java transformation
	Defining a Java transformation
	Classpath configuration
	JAR or class files on an advanced cluster
	Classpath values
	Configuring the JVM Classpath for the Secure Agent
	Configuring the CLASSPATH environment variable
	Configuring the design time classpath
	Configuring the Java Classpath session property

	Java transformation fields
	Data type conversion
	Sort conditions
	Group by fields

	Configuring Java transformation properties
	Active and passive Java transformations
	Defining the update strategy
	Using high precision
	Processing subseconds

	Developing the Java code
	Creating Java code snippets
	Importing Java packages
	Defining helper code
	Defining input row behavior
	Defining end of data behavior
	Defining transaction notification behavior
	Using Java code to parse a flat file

	Compiling the code
	Viewing the full class code

	Troubleshooting a Java transformation
	Finding the source of compilation errors
	Identifying the error type

	Java transformation example
	Create the source file
	Configure the mapping
	Configure the Java code snippets
	Compile the code and run the mapping

	Chapter 18: Java transformation API reference
	failSession
	generateRow
	getInRowType
	incrementErrorCount
	invokeJExpression
	isNull
	logError
	logInfo
	setNull
	setOutRowType

	Chapter 19: Joiner transformation
	Join condition
	Join type
	Advanced properties
	Hierarchical data in advanced mode
	Creating a Joiner transformation
	Joiner transformation example

	Chapter 20: Labeler transformation
	Labeler transformation configuration
	Labeler transformation field mappings
	Labeler transformation output fields

	Chapter 21: Lookup transformation
	Lookup object
	Lookup object properties
	Custom queries

	Lookup condition
	Lookup return fields
	Advanced properties
	Lookup SQL overrides
	Lookup SQL overrides for cached lookups
	Lookup SQL override for uncached lookups
	Guidelines for overriding the lookup query

	Lookup source filter
	Dynamic lookup cache
	Static and dynamic lookup comparison
	Dynamic cache updates
	Inserts and updates for insert rows
	Dynamic cache and lookup source synchronization
	Dynamic cache and target synchronization
	Field mapping
	Ignore fields in comparison
	Dynamic lookup query overrides

	Persistent lookup cache
	Rebuilding the lookup cache

	Unconnected lookups
	Configuring an unconnected Lookup transformation
	Calling an unconnected lookup from another transformation

	Connected Lookup example
	Dynamic Lookup example
	Unconnected Lookup example

	Chapter 22: Machine Learning transformation
	Deploying the model as a REST endpoint
	Accessing the machine learning model
	Mapping fields to the request schema
	Mapping hierarchical fields
	Request mapping options

	Viewing response fields
	Configuring bulk requests
	Bulk request options

	Configuring an API proxy
	Bypassing the proxy server
	Configuring a Spark proxy
	Configuring a custom proxy

	Troubleshooting
	Error handling
	Machine Learning transformation example

	Chapter 23: Mapplet transformation
	Mapplet transformation configuration
	Selecting a mapplet
	Mapplet transformation field mappings
	Mapplet parameters
	Mapplet transformation output fields
	Mapplet transformation names
	Synchronizing a mapplet

	Chapter 24: Normalizer transformation
	Normalized fields
	Occurs configuration
	Unmatched groups of multiple-occurring fields
	Generated keys

	Normalizer field mapping
	Normalizer field mapping options

	Advanced properties
	Target configuration for Normalizer transformations
	Normalizer field rule for parameterized sources
	Mapping example with a Normalizer and Aggregator

	Chapter 25: Output transformation
	Output fields
	Field mapping

	Chapter 26: Parse transformation
	Parse transformation configuration
	Parse transformation field mappings
	Parse transformation output fields
	Advanced properties

	Chapter 27: Python transformation
	Install and configure Python
	Step 1. Enable access to third-party libraries
	Step 2. Install prerequisite packages
	Step 3. Download the Python distribution
	Step 4. Prepare a directory to install Python
	Step 5. Install Python
	Step 6. Set environment variables
	Step 7. Verify the Python installation
	Step 8. Install str2bool library
	Step 9. Optionally, install third-party libraries
	Step 10. Copy Python to the Secure Agent machine
	Step 11. Optionally, verify third-party library installations

	Python transformation fields
	Data type conversion
	Data types in input and output fields
	Partition keys

	Active and passive Python transformations
	Resource files
	Developing the Python code
	Creating Python code snippets
	Referencing a resource file

	Example: Add an ID column to nonpartitioned data
	Example: Use partitions to find the highest salary
	Example: Operationalize a pre-trained model

	Chapter 28: Rank transformation
	Ranking string values
	Rank caches
	Defining a Rank transformation
	Rank transformation fields
	Defining rank properties
	Defining rank groups
	Advanced properties
	Hierarchical data in advanced mode
	Rank transformation example

	Chapter 29: Router transformation
	Working with groups
	Guidelines for connecting output groups

	Group filter conditions
	Configuring a group filter condition

	Advanced properties
	Hierarchical data in advanced mode
	Router transformation examples

	Chapter 30: Rule Specification transformation
	Rule Specification transformation configuration
	Rule Specification transformation field mappings
	Rule Specification transformation output fields
	Advanced properties

	Chapter 31: Sequence transformation
	Sequence transformation uses
	Sequence output fields
	Sequence properties
	Disabling incoming fields

	Hierarchical data in advanced mode
	Sequence transformation rules and guidelines
	Sequence transformation example

	Chapter 32: Sorter transformation
	Sort conditions
	Sorter caches
	Advanced properties
	Hierarchical data in advanced mode
	Sorter transformation example

	Chapter 33: SQL transformation
	Stored procedure or function processing
	Connected or unconnected SQL transformation for stored procedure processing
	Unconnected SQL transformations
	Calling an unconnected SQL transformation from an expression
	Invoking a stored procedure before or after a mapping run
	Unconnected SQL transformation example

	Query processing
	Static SQL queries
	Dynamic SQL queries
	Passive mode configuration
	SQL statements that you can use in queries
	Rules and guidelines for query processing

	SQL transformation configuration
	Configuring the SQL type
	SQL transformation field mapping
	SQL transformation output fields
	Advanced properties

	Chapter 34: Structure Parser transformation
	Processing input from a Hadoop Files source
	Processing input from a flat file source
	Configuring the flat file source
	Configuring the Structure Parser transformation to access flat files

	Structure Parser field mapping
	Output fields
	Advanced properties
	Structure Parser transformation configuration
	Configuring a Structure Parser transformation
	Selecting an intelligent structure model
	Selecting an output group

	Rules and guidelines for the Structure Parser transformation
	Structure Parser transformation example

	Chapter 35: Transaction Control transformation
	Transaction control condition
	Using Transaction Control transformations in mappings
	Sample transaction control mappings with multiple targets

	Guidelines for using Transaction Control transformations in mappings
	Advanced properties

	Chapter 36: Union transformation
	Comparison to Joiner transformation
	Planning to use a Union transformation
	Input groups
	Output fields
	Field mappings
	Advanced properties
	Union Transformation example

	Chapter 37: Velocity transformation
	Velocity transformation input format
	Source configuration for file sources

	Velocity template
	Testing the template
	Velocity transformation output
	Target configuration for file targets

	Velocity transformation parsers
	Examples
	XML conversion example
	JSON conversion example

	Chapter 38: Verifier transformation
	Address Reference Data
	Verifier transformation configuration
	Verifier transformation field mappings
	Understanding input and output mappings

	Verifier transformation output fields
	Advanced properties

	Chapter 39: Web Services transformation
	Create a Web Services consumer connection
	Define a business service
	Configure the Web Services transformation
	Configuring the transformation
	Transaction commit control
	Viewing incoming and request fields
	Pass-through fields

	Web Services transformation example
	Configuration for multibyte hierarchical data

	Index

