
Informatica® ActiveVOS
9.2.6

Designer

Informatica ActiveVOS Designer
9.2.6
December 2024

© Copyright Informatica LLC 1993, 2024

This software and documentation contain proprietary information of Informatica LLC and are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright law. Reverse engineering of the software is prohibited. No part of this document may be reproduced or transmitted in any
form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC. This Software may be protected by U.S. and/or
international Patents and other Patents Pending.

Use, duplication, or disclosure of the Software by the U.S. Government is subject to the restrictions set forth in the applicable software license agreement and as
provided in DFARS 227.7202-1(a) and 227.7702-3(a) (1995), DFARS 252.227-7013©(1)(ii) (OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14 (ALT III),
as applicable.

The information in this product or documentation is subject to change without notice. If you find any problems in this product or documentation, please report them to
us in writing.

Informatica, Informatica Platform, Informatica Data Services, PowerCenter, PowerCenterRT, PowerCenter Connect, PowerCenter Data Analyzer, PowerExchange,
PowerMart, Metadata Manager, Informatica Data Quality, Informatica Data Explorer, Informatica B2B Data Transformation, Informatica B2B Data Exchange Informatica
On Demand, Informatica Identity Resolution, Informatica Application Information Lifecycle Management, Informatica Complex Event Processing, Ultra Messaging,
Informatica Master Data Management, and Live Data Map are trademarks or registered trademarks of Informatica LLC in the United States and in jurisdictions
throughout the world. All other company and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © OSS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright © University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright© MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/
Consortium/Legal/2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http://forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/faq.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/
EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://
jdbc.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/lz4/; https://github.com/jedisct1/libsodium/blob/master/
LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe WaInes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

Publication Date: 2024-12-12

https://www.informatica.com/legal/patents.html

Table of Contents

Preface . 19

Chapter 1: Welcome to Informatica Process Developer. 20
About Informatica Process Developer. 20

Working in the Eclipse Environment. 22

Migrating from Earlier Versions. 22

Required Reset for Process Developer Perspectives. 22

Migrating from Process Developer Versions Prior to 9.0. 23

Migrating from Process Developer Versions Prior to 8.0.x. 23

Opening and Using BPEL4WS 1.1 Processes. 24

Migrating Processes from BPEL4WS 1.1 to WS-BPEL 2.0. 24

Taking Advantage of SOAP 1.2 Port Binding Version 7.x. 25

Saving From One Editing Style to Another (BPMN and Classic). 26

Converting Legacy Deployments to Contributions. 26

Chapter 2: Using Guide Developer for the First Time. 27
Launching Process Developer. 27

Using the Workspace to Store Projects. 28

Creating an Orchestration Project. 29

Changing the Default Location of a Workspace Project. 30

Orchestration Project Templates. 30

Adding or Removing a Project Orchestration Nature. 31

About Project Orchestration and Validation Builders. 32

Using Project References. 33

Creating a New Process. 33

Beginning a New Process. 34

Selecting the BPMN-Centric or BPEL-Centric Palette. 36

Importing an Existing BPEL Process. 37

Importing a Visio XML Drawing File. 37

Begin Your First Project with Process Developer Assistance. 38

Setting Up the Embedded Process Server. 38

Process Developer Orchestration File Resources. 41

Chapter 3: Getting Started with Informatica Process Developer. 42
Using Source Control Systems. 42

Navigating Through Process Developer. 43

Windows Perspectives Views and Editors. 43

Process Developer Perspective. 43

Project Explorer. 44

Participants. 45

4 Table of Contents

Interfaces. 45

Outline View. 45

Problems View. 46

Tasks View. 46

Thumbnail View. 47

Bookmarks View. 48

Relationships View. 48

Servers and Console Views. 48

Status Bar. 48

Guide Developer Debug Perspective. 49

BPMN-Centric and BPEL-Centric Edit Styles. 49

What is BPMN-Centric Style. 50

What is BPEL-Centric Style. 51

Comparing the BPMN-Centric and BPEL-Centric Tool Palettes. 52

Which Edit Style to Choose BPMN-Centric or BPEL-Centric. 53

Using Swimlanes. 54

What is Guide Developer Classic Style. 56

Using the Process Developer Process Editor. 59

Process Editor Process Activities Tab. 60

Process Editor Fault Handlers Tab. 60

Process Editor Event Handlers Tab. 61

Process Editor Compensation and Termination Handler Tabs. 61

Process Editor Source Tab. 61

Process Editor Source Tab. 61

Setting Visual Properties and Using Your Own Library of Images. 61

Adding Tasks and Bookmarks to the Process. 64

Adding Comments to a Process. 64

Adding Documentation to a Process. 65

Tips for Designing on the Process Editor Canvas. 66

Showing and Hiding Activities. 66

Process Editor Keyboard Shortcuts. 67

Process Developer Function Keys. 69

Customizing the Process Developer Perspective. 69

Process Developer Menus and Toolbars. 69

Refactor. 70

Go To Activity (Ctrl + l). 70

Open Operation (Ctrl + Shift + t o). 71

Open Port Type (Ctrl + Shift + t p). 71

Open Web Type (Ctrl + Shift + t w). 71

Optimize Parameters. 71

Validate Process. 72

Generate Process Report. 72

Table of Contents 5

Generate Process Image. 72

Generate Deployment Image. 72

Process Developer Preferences. 73

B-Unit Preference. 74

Cache and Timeout Preference. 74

Colors and Fonts Preferences. 75

Contribution Preference. 75

Layout Preferences. 75

Relationships View Preferences. 77

Tasks and Problems Preferences. 78

Identity Chooser Preference. 78

Additional Preferences. 79

Accessing Process Developer Help. 80

Chapter 4: About Interfaces Service References and Local WSDL 81
Importing a Local WSDL . 81

Viewing Key Elements of a WSDL Tree. 82

Editing a WSDL in the WSDL Editor. 82

Deleting a WSDL from Your Project. 82

Importing a Service Reference. 83

Creating a New Interface. 84

Creating a Java Interface. 85

Setting up Your Java Project in Process Developer. 85

Constraints for your Java Project. 86

Generating WSDL and Schema from a Java Interface. 86

Generating Argument Names for Schema Elements. 88

Updating Your Java Project and Your BPEL Process Concurrently. 89

Deployment Requirements for a Java (POJO) Endpoint. 89

Deployment Requirements for Java (EJB) Endpoint. 90

Running a BPEL Process with a POJO EJB Endpoint. 90

Comparing the POJO EJB Interface to a Custom Java Invoke Handler. 91

Using the Interfaces View to Create Activities. 91

Interfaces Toolbar Options. 91

Filtering the Interfaces View. 92

System Services Interfaces. 92

Creating a WSDL File with Extensions for BPEL. 93

Using Sample Data for WSDL Messages. 93

Adding or Editing a Sample Data Value for a Simple Type Message Part. 93

Generating a Sample Data File. 94

Adding a Sample Data File to a WSDL Message. 95

Selecting a Default Sample Data File. 95

Viewing the XML Structure of a Sample Data File. 95

Removing a Sample Data File. 95

6 Table of Contents

Finding Where a WSDL Component is Used. 95

Using Process Search. 96

Chapter 5: Planning Your BPEL Process. 99
Using Top-Down or Bottom-Up Process Design. 99

Using WSDL References for Efficient Design. 99

Creating WSDL Extensions for BPEL. 100

Starting a Process by Dropping an Operation onto the Process Editor. 100

Importing WSDL Schema and Other Resources. 100

Automatically Importing WSDL and Schema Locations. 101

Manually Importing WSDL Schema and Other Resources. 101

Refreshing Imports. 102

Deleting an Import. 102

Namespace Prefix and Declaration. 102

Declaring Extensions. 103

Using the Process Developer Create XPath Extension. 104

Using the Process Developer Disable Selection Failure Fault Extension. 104

Declaring Extension Elements and Attributes. 105

Understanding BPEL Process Structure and Properties. 107

Process Element and Properties. 108

Partner Links. 110

Variables. 110

Activities. 111

Fault Handlers. 111

Compensation Handlers. 111

BPEL XML Source and Implicitly Added Activities. 111

Understanding BPEL Process Lifecycle. 111

Creating an Executable vs. an Abstract Process. 112

Creating an Abstract Process. 112

Tips for Working with Abstract Processes. 112

Creating a BPEL Process as a Service for Another BPEL Process. 113

Message Exchange Declaration. 114

Chapter 6: Participants. 116
What are Participants. 116

Using the Participants View. 117

Creating a New Process Service Consumer Interface. 118

Creating a New Partner Service Interface. 118

Creating a New Callback Interface. 118

Clearing a Service Interface from a Participant. 119

Creating New Activities from the Participants View. 119

Creating a New Variable From an Activities Property View. 120

What are Partner Link Types and Partner Links. 120

Table of Contents 7

Partner Link Type. 121

Adding a new Partner Link Type from a WSDL in Project Explorer. 122

Adding a new Partner Link Type to a new WSDL using a Service Reference WSDL. 123

Add a new Partner Link Type from Interfaces View. 123

Partner Link. 124

Using Scoped Partner Links. 126

Partner Links and Endpoint References. 126

Chapter 7: Implementing a BPMN Task or Event in BPEL. 127
BPMN-to-BPEL Implementation of Tasks and Events. 127

Overview of BPEL Activities. 129

Defining an Activity and Its Properties. 130

Selecting Values for Activity Properties. 131

Selecting Activity Labels. 132

Standard Properties for Activities. 133

Adding a Background Color to a Task Scope People Activity and Handlers. 133

Understanding and Using Activity Sequences and Flows. 133

Receive. 134

Reply. 136

Throw. 140

Rethrow. 141

Signal. 143

Exit. 144

Wait. 145

Compensate. 147

Compensate Scope. 149

Break. 151

Continue. 153

Start End None. 154

Invoke. 154

From Part to Variable. 156

From Variable to Part. 157

Input Variable. 157

Output Variable. 159

Assign. 160

Tips for Copy Operations. 163

Copy Operation Query and Expression Examples. 164

Copy Operation Literal Contents Examples. 164

Copy Operation Dynamic Endpoint Reference Example. 167

Element to Element Copy Operation with Keep Source Element Name Attribute. 168

Copy Operation with Ignore Missing From Data Attribute. 169

Empty. 171

Suspend. 172

8 Table of Contents

Validate. 173

Opaque. 175

Creating a Custom Activity. 176

Creating an Activity by Starting with a WSDL Interface. 176

Chapter 8: Implementing a BPMN Gateway or Control Flow. 182
BPMN-to-BPEL Implementation of Gateways and Control Flow. 182

Different Ways of Structuring Activities. 183

Overview of Control Flow Items. 183

Ungrouping Selected Structured Activities. 184

Gateway. 184

About Gateway Types. 184

Building a Gateway. 186

Mutually Exclusive Transitions. 186

Pick. 186

Fork Join. 188

If. 189

While. 191

Repeat Until. 192

Scope. 193

Setting Isolated to Yes in a Scope. 196

Using a Termination Handler for a Scope. 196

Lifecycle of a Scope. 196

For Each. 197

Sequence. 201

Flow. 202

Chapter 9: Using Variables. 204
Overview of Variables. 204

Adding a Variable. 206

WSDL Message Types. 206

XML Schema Type. 207

XML Schema Element. 207

Adding Variable Properties and Property Aliases. 208

Initializing a Variable. 209

Viewing Variables. 209

Quick View of Variables Used in Activities. 210

Using the Process Variables View Options. 210

Opening a Variable to View its Definition. 210

Viewing Variable Properties. 211

Understanding Icons Symbols and Descriptions of Variable Parts. 211

Deleting a Variable. 212

Using Sample Data in Process Variables View. 212

Table of Contents 9

Editing a Single Sample Data Value for a Simple Type Message Part. 213

Loading a Sample Data File in Process Variables View. 213

Saving and Viewing Sample Data in Process Variables View. 214

Using the XML Data Wizard. 214

Finding Where Variables are Used. 218

Using Variables in a Copy Operation. 220

Creating a Copy Operation Using a Context Menu. 221

Creating a Copy Operation Using Drag and Drop. 221

Selecting a Copy Operation to Edit. 222

Using Variables Based on WSDL Fault Messages. 222

Mapping WSDL Message Parts in Web Service Interaction Activities. 222

Validating Variables. 222

Working with Variable Attachments. 223

Chapter 10: Attachments. 224
Adding an Attachment. 224

Adding an Attachment for Simulation. 224

Remote Debugging with Variable Attachments. 225

Custom Functions for Manipulating Attachments. 226

Attachment Custom Function Examples. 229

Chapter 11: Using Links. 230
What is a Link. 230

Process Developer Extension for Links. 231

Adding a Link Between Activities. 232

Adding a Link with no Transition. 232

Adding a Link with a Transition Condition. 233

Link Examples. 234

Execution Rules for Links. 235

Designing With Links vs. Structured Activities. 236

Links and the Join Condition. 236

Link Properties. 236

Chapter 12: Data Manipulation. 237
Overview of Data Manipulation in BPEL. 237

Selecting XPath or XQuery for Expression Building . 237

Example XQuery Expressions . 238

Example XPath Expressions . 239

Using the Expression Builder . 240

Using Content Assist . 241

BPEL Functions . 242

Process Developer Custom Functions General . 244

Attachment Functions . 246

10 Table of Contents

Boolean Functions . 246

Catalog Functions . 247

Fault Functions . 248

I18N Functions . 249

JSON Functions . 249

Node Set Functions . 250

Number Functions . 251

String Functions . 252

Expected Expressions for Conditions Counters and Other Values. 254

Using the Query Builder . 254

Creating a Join Condition for an Incoming Link. 256

Deadline and Duration Expressions . 257

Chapter 13: Compensation. 258
Compensation Handlers and Compensate Activities. 258

Default-Order Compensation Example. 259

Specified Compensation Example. 260

Adding a Compensation Handler to a Scope. 260

Compensating an Invoke Activity. 261

Chapter 14: Correlation. 262

Chapter 15: What is Correlation. 263

Chapter 16: What is a Correlation Set. 265
Properties. 265

Property Aliases. 265

WSDL Syntax and Example for Property Names and Aliases. 266

Global and Local Correlation Sets. 267

Chapter 17: Creating Message Properties and Property Aliases. 268
Creating a Property Definition. 269

Creating a Property Alias. 271

Chapter 18: Adding a Correlation Set. 274
XML Syntax. 275

Example. 275

Correlation Sets: Required and Optional Properties. 276

Chapter 19: Deleting a Correlation Set. 277

Chapter 20: Adding Correlations to an Activity. 278

Chapter 21: Rules for Declaring and Using Correlation Sets. 279

Table of Contents 11

Chapter 22: Correlation Sets and Engine-Managed Correlation. 280

Chapter 23: Event Handling. 281
What is Event Handling. 281

Adding Event Handlers. 282

Adding an onEvent Event Handler. 282

Adding an onAlarm Event Handler. 284

Processing Rules for Events. 287

Adding Boundary Events. 287

Catch and Catch All Boundary Events and Compensate Compensate Scope and Rethrow. . . . 291

Using a Variable from a Catch or Interrupting OnEvent Boundary Event. 291

Chapter 24: Fault Handling. 293
What is BPEL Fault Handling. 293

Defining Catch and CatchAll Fault Handlers. 294

Fault Handling for Service Invocations. 296

Adding a Fault Handler. 297

Adding a Fault Handler for the Process. 297

Adding a Fault Handler for a Scope. 298

Adding a Fault Handler as a Boundary Event for an Invoke Activity. 299

Selecting a Fault Name. 300

Adding a Fault Variable Definition. 300

Fault Handling Processing Rules. 300

Rules for Catching Faults in a Catch Activity. 302

Tips on Fault Handling. 303

Catching Undeclared and SOAP Faults. 303

Chapter 25: Simulating and Debugging . 306
What is the Process Developer Debug Perspective . 306

Opening the Process Developer Debug Perspective . 306

Switching Between Process Developer Perspectives . 307

Process Developer Debug Perspective Views and Menus . 307

Using the Process Developer Debug View . 308

Using Breakpoints in BPEL Process Simulation . 310

Using the Process Developer Debug Console . 312

Simulating Execution of a BPEL Process . 313

Prerequisites for Simulation . 314

Starting and Ending Simulation of a BPEL Process . 314

Running to a Breakpoint in a BPEL Process . 315

Stepping to the Next Activity in a BPEL Simulation . 316

Viewing the Execution State of an Activity or Link . 316

Modifying a BPEL Process During Simulation . 317

12 Table of Contents

Terminating and Removing BPEL Process Simulations . 317

Clearing the Process Execution State . 317

Supplying and Inspecting Sample Variable Data During Simulation . 318

Setting up Sample Data Values for Input Output and Fault Messages 318

Inspecting Process Variables during Simulation . 320

Selecting Simulation Paths and Properties . 321

Selecting an Invoke Subprocess for Simulation . 322

Simulating Event Handlers . 323

Simulating Fault Handlers . 323

Inspecting Standard Faults During Simulation . 324

Simulation Preferences . 324

Disable bpel selectionFailure Fault Example . 325

Auto Create Target Path for Copy To Example . 326

Disable bpel selectionFailure Fault and Auto Create Target Path for Copy To Example. 327

Setting Debug Preferences . 328

Debugging Remote Processes Running on the Server . 329

Configuring a Remote Process Connection . 329

Selecting Processes for Remote Debugging . 331

Setting Breakpoints on a Process for Remote Debugging . 332

Using the Debug View Process Editor and Variable View for Remote Debugging. 333

Remote Debugging Preferences . 334

Selecting a Launch Configuration from the Toolbar . 335

Checking for an Out of Sync Process . 335

Server Interactions During a Remote Debugging Session . 336

Setting Options for Console Output . 336

Correcting Retrying or Completing Activities . 336

Updating Variable Data in the Process Variables View . 338

Updating Correlation Property Data . 340

Updating Partner Link Address Information . 341

Monitoring Client Message Traffic with TCP IP Monitor . 342

Chapter 26: Deploying Your Processes . 343
Preparing for Deployment . 343

Preparing BPEL Files for Deployment . 344

Selecting a Server Platform for Deployed Processes . 344

Endpoint Reference Addressing Considerations . 344

Endpoint References and WS-Addressing Considerations . 344

Endpoint References Requiring Credentials for Access . 345

Specifying a Replaceable URN URL for an Endpoint Reference . 345

Endpoint References and WS-Policy . 346

Overview of Process Deployment Steps . 346

Creating a Process Deployment Descriptor File . 347

General Deployment Options . 348

Table of Contents 13

Partner Role Invoke Handlers . 351

Partner Role Endpoint Types . 352

My Role Binding Service Name and Allowed Roles Options . 353

Selecting a Service for a Deployment Descriptor Partner Link . 354

Using SOAP 1.1 or 1.2 Port Binding . 356

Adding Policy Assertions . 357

Adding Indexed Properties . 370

Eventing tab of the PDD . 371

People tab of the PDD . 371

Using the PDD Editor Source View . 371

Creating and Deploying a Business Process Archive Contribution . 372

Deploying Project Dependencies and Viewing Excluded Dependencies 374

Deploying Additional Resources . 376

Managing Deployment Contributions . 377

Using a BPRD Script to Regenerate and Deploy a BPR Contribution . 378

Running a BPRD Ant Script from within Process Developer . 378

Running a BPRD Ant Script from the Command Line . 379

Deployment Complete . 379

Starting the Server and Running a Process . 380

How a BPEL Process is Instantiated . 381

What is Process Versioning . 381

Chapter 27: BPEL Unit Testing. 383
What is BPEL Unit Testing. 383

Creating a BPEL Unit Test File. 384

Running a BPEL Unit Test in Process Developer. 385

Creating and Running a B-unit Ant Script. 386

Prerequisite. 387

Creating a B-unit Ant Script . 387

Notes on Modifying a B-Unit Ant Script . 387

Adding Multiple B-unit and B-suite to an Ant Script . 388

Running a B-Unit Ant Script . 388

Generating a Code Coverage Report . 388

Editing a B-unit File . 389

BPEL Unit (Root) . 390

Extensions and Extension Activities . 391

Invokes . 392

Alarms . 392

Commands . 393

Debugging a B-unit Test . 394

Creating and Running BPEL Unit Test Suites . 394

Tips on Using Assertions . 396

Tips on Using Parameterized XSL for Input and Assert Data . 397

14 Table of Contents

Tips on Providing Partner Link Data . 397

Example B-unit File . 398

Chapter 28: Creating POJO and XQuery Custom Functions. 400
Custom Functions Overview . 400

Implementing the Function Context and Adding Annotations . 401

Implementing: Step 1 . 401

Implementing: Step 2 . 402

Implementing: Step3 . 403

Sample Custom Function. 403

Adding Global Custom Functions to the Process Server . 404

Writing XQuery Functions . 404

Using the XQuery Editor . 405

Tips on Writing XQuery Functions . 406

Testing XQuery Functions in the XQuery Editor . 406

Chapter 29: Custom Service Interactions . 408
Using a REST-based Service . 408

Creating a REST-based Receive or Invoke . 409

BPEL REST Messages. 411

Handling of Multipart HTTP Messages. 411

Specifying Deployment Details for a REST-based Process . 412

Using an OAuth REST-Based System Service . 413

Creating an OAuth Service . 414

Specifying Deployment Details for an OAuth Service Provider. 415

Using a Java Messaging Service Invoke Handler . 416

Chapter 30: Process Exception Management. 420
What is Process Exception Management . 420

Suspending a Process on Uncaught Faults . 420

Making all Processes Eligible for Suspension on Uncaught Faults 421

Making Individual Processes Eligible for Suspension on Uncaught Faults 421

Suspending a Process Programmatically with a Suspend Activity. 421

Chapter 31: Creating Reports for Process Server and Central. 422
Creating the User Reports Orchestration Project . 423

Using the Process Developer Report Template . 423

Using the Process Developer Data Source . 425

Creating a Data Set from the Process Developer Data Source . 428

Understanding the Process Developer Data Model . 429

Deploying a Process Developer Report. 429

Updating or Deleting a Deployed Report . 430

Reporting Service . 430

Table of Contents 15

Chapter 32: Business Event Processing . 433
Defining an Event in the Process Deployment Descriptor . 433

Using System-Defined Events . 434

Creating an Event-Action BPEL Process . 436

Activity States Event Properties Task States and Task Event Types . 437

Chapter 33: Process Central Forms and Configuration . 441
What is Process Central . 441

Creating a Process Central Process Form . 442

Understanding the Process Request Form Template. 443

Editing HTML in Process Central Forms. 444

Adding a New Service Operation for a Form or a Task . 445

Customizing Task and Form Scripts An Introduction . 446

Using the Process Developer SDK for Customizing Forms . 448

Testing and Debugging Process Central Forms . 449

Creating a Process Central Configuration File . 449

Configuring Form Filters . 451

Configuring Reports Filters . 452

Including Your Own Styles Scripts and Meta Data for Process Central. 452

Configuring Task Role Filters . 453

Basic Task Roles Filter Configuration . 454

Configuring Custom Columns for Task Roles Filtering . 456

Configuring a GetMyTasks Filter with a WhereClause . 457

Using a getMyTasks orderBy Element . 459

Configuring an RSS or Atom Feed Filter . 459

Deploying Forms Reports and Configuration Files. 460

Adding Multilingual Support to Process Central. 461

Displaying Process Central in a Web Browsers Preferred Language 462

Adding Multilingual Support for Forms and Tasks . 462

Adding Multilingual Support for an .avcconfig File. 463

Adding Multilingual Support for Reports . 464

Naming Conventions for .properties File . 464

Process Central Advanced Configuration . 465

Chapter 34: Building a Process with a System Service . 467
Using a BPEL Template for a System Service-Based Process. 467

Alert Service . 468

Data Access Service . 469

Creating a BPEL Process that Executes Statements on a Data Source. 469

Parameter-Based Request . 471

Simulating the Data Access Invoke Output . 472

Example-Response from an Insert Update or Delete Statement . 475

16 Table of Contents

Handling Binary Data. 476

Fault Handling . 476

Mapping Data Returned in the Data Access Response . 478

Simulating the Data Access Service . 478

Email Service . 479

Identity Service . 481

Migration Service . 482

Input and Output for Create Map . 483

Input and Output for Migrate . 483

Creating a BPEL Process That Migrates Process Instances to a New Version 484

Testing Your Migration Process . 484

Using the Process Server Migration Web Service . 485

Monitoring Alert Service . 485

Retry-Policy Service . 486

Server Log Service. 486

Shell Command Invoke Service . 487

Chapter 35: Human Tasks. 488
Getting Started with Human Tasks. 488

About the BPEL4People Specification. 488

Introducing Human Workflow into a BPEL Process. 489

Routing Tasks to People at Run Time. 489

About Task Life Cycle. 490

Creating the Artifacts Needed for the People Activity. 490

Participants and Tasks. 490

Creating a Human Task Participant. 491

Using or Mapping Users or Groups From the Identity Service. 491

Creating a Task for a Participant. 492

Using BPEL4People Extension Elements and Activities. 492

Human Interactions Extension Element. 493

About Logical People Groups . 493

Using Logical People Groups for Role Assignments. 496

Using Literal Values for Role Assignments. 497

Using Expressions for Role Assignments. 497

About Tasks. 499

About Task Deadlines and Escalations. 506

About Notifications . 512

Using the People Activity. 514

What is a People Activity. 514

Conceptual Overview of the People Activity. 516

Adding a People Activity. 516

Required and Optional Properties of a People Activity. 519

Creating an Inline Task or Notification. 520

Table of Contents 17

Selecting a Local Task or Notification. 521

Selecting Overrides for Priority and People Assignments. 521

Selecting Variables. 522

Adding Scheduled Actions for Tasks. 522

Sending and Receiving Attachments. 523

Catching a Fault Thrown by the People Activity. 524

Simulating Debugging Deploying. 525

Simulating a Process with a People Activity. 525

Selecting a Logical People Group Handler During Deployment. 526

Using the Identity Chooser During Deployment. 528

Running Your Process from the Process Server. 529

Providing Renderings for Task Clients. 530

About Task Presentation in Process Central. 530

Rendering a Task Interface into a User Interface. 530

Creating an Process Central Task Form. 530

Working in Development Mode or Production Mode. 532

Understanding the Task Form Template. 532

Examples of Task Forms for End Users. 533

Adding a New Service Operation to a Task Form. 533

Providing Multilingual Support for Task Forms. 534

Deploying a Task Form and Properties Files. 534

Creating an Process Central Configuration File for Tasks. 534

Creating a Custom Rendering. 535

Contributing a Custom Task Rendering Hint Editor. 535

Custom Functions. 536

Human Tasks Custom Functions. 536

WS-HT (Human Task) Custom Functions. 537

Using Customized Task Clients. 539

What is the Informatica Business Process Manager WS-HumanTask API. 540

Using the WS-HT and Identity Service SDK. 540

Creating Custom Task Properties. 540

WS-HT Task Property List. 541

Creating a Custom Task Property. 542

Configuring Process Central Task Columns and Task Filters Using Properties. 543

Creating Custom Escalation Actions. 544

Chapter 36: BPEL Faults and Reports. 545
BPEL Standard Faults. 545

User Reports Sample. 546

18 Table of Contents

Preface
This module contains information about how to create assets in Informatica ActiveVOS.

19

C h a p t e r 1

Welcome to Informatica Process
Developer

This chapter includes the following topics:

• About Informatica Process Developer, 20

• Working in the Eclipse Environment, 22

• Migrating from Earlier Versions, 22

• Saving From One Editing Style to Another (BPMN and Classic), 26

• Converting Legacy Deployments to Contributions, 26

About Informatica Process Developer
Process Developer automates many of the requirements to create a valid BPEL process. This makes it easy
to build a process.

As you build a process, by defining the participants and their activities, Process Developer generates
executable BPEL code.

Here is a typical picture of a Process Developer process.

20

Note that this process is easy to understand for non-technical and technical people alike.

Here is a snippet of the BPEL code corresponding to the illustration above, as generated by Process
Developer.

About Informatica Process Developer 21

When your process is complete, you can deploy it to a server that can be started and run from Process
Developer. This allows easy testing of your process before you put it into production.

Process Developer incorporates many technologies, including:

• XPath and XQuery expressions for data manipulation

• REST or Java interfaces

• BPMN diagramming

Working in the Eclipse Environment
The Process Developer is a series of plugins to the Eclipse integrated development environment. Eclipse is
an open platform for tool integration built by an open community of tool providers. Process Developer takes
advantage of the Eclipse Workbench features to provide BPEL building and orchestration capabilities.

You can install Process Developer in the following ways.

• Install Process Developer as a stand-alone application
The installation archive extracts Process Developer as an Eclipse application. Start the application by
launching te Process Developer executable.

• Install Process Developer plugins into your Eclipse environment.
In the installation archive that you downloaded, use the Process Developer_plugins.zip (or Process
Developer_plugins.tar.gz) to extract and then copy the required features and plugins into your Eclipse
installation. In Eclipse, open the Process Developer perspective.

For installation details, see the readme file in the root of folder where you extracted your Process Developer
installation files.

For more information about the Eclipse community, see http://www.eclipse.org.

Migrating from Earlier Versions

Required Reset for Process Developer Perspectives
If you maintain your existing Workspace when you upgrade Process Developer, we recommend the following
best practices so that you can take advantage of new features:

• Reset both of the Process Developer perspectives. From the Window menu, select Reset Perspective for
the perspective in focus.

• Delete the current server configuration and add a new server. The Process Developer embedded server
runs from a plug-in that includes version details. Each time you upgrade to a new version, you must delete
the old server configuration by navigating to Window > Preferences > Server > Runtime Environments and
select Remove to delete Process Developer Embedded Server. Then select Add from this same dialog to
install a new server runtime environment.

22 Chapter 1: Welcome to Informatica Process Developer

http://www.eclipse.org

Migrating from Process Developer Versions Prior to 9.0
There are a few changes to be aware of for new versions of Process Developer.

• Existing BPEL processes have an associated visual layout file that includes all layout and annotation
information (.vbpel files). New BPEL files contain this information, eliminating the vbpel file and making
it easier to move BPEL files to another location without losing annotations. To delete the vbpel file for
existing processes, open and save your older processes. This is not required. This feature does not apply
to BPEL 1.1 processes or processes designed in the Classic style.

• The Process Editor palette offers a choice of BPMN-Centric (the default) or the existing BPEL-Centric
stylesheet. Existing processes can be opened with either stylesheet with the exact same results. To use
the BPEL-Centric palette, change the Layout Preference.

• You can add an XQuery nature to existing projects to take advantage of the XQuery editing and runtime
tools. Right-mouse click on a project and select Add XQuery Nature.

• POJO (and XQuery) custom functions can be listed in the Expression Builder and deployed in your
deployment contribution. There is no longer any function context set up required for new POJO custom
functions.

• If you have existing XQuery functions, be sure to read the Release Notes (elsewher in this help) for
possible changes you may need to make to your functions.

• A newly generated B-unit ant script contains targets and parameters for code coverage. You can manually
add these ant tasks to your existing B-unit ant scripts. You can also add XQuery modules as B-unit
resources.

• You can migrate running process instances to run against a new process version. As a first step, open
your existing process, modify it slightly by moving an activity a bit (mark the process as dirty), and save
the process without making any other changes. Update the PDD to enable the Migrate Version option.
Then deploy the contribution that contains the unchanged process structure and updated PDD. After you
have deployed the Version 9 contribution, you can then make structural changes to your process and
migrate running process instances to the new version.

• Version 9 uses a newer version of the Saxon XSL parser that does not support the undocumented and
non-standard @value attribute for the <xsl:param> element. If your older B-unit tests or other XSL
functions contained this attribute, they cannot be parsed by Saxon. To correct this problem, use an
expression such as select= instead of value=.

Migrating from Process Developer Versions Prior to 8.0.x
There are a few changes to be aware of for new versions of Process Developer.

• Deployments from prior versions are shown as legacy contributions on the server. Although there is no
change in how your processes run on the server, we highly recommend that you delete old BPRs and
redeploy your processes and resources to take advantage of contribution features. See Converting Legacy
Deployments to Contributions.

• In the PDD, there are wording changes for Process Version details to match the new contribution states.
Effective date is now Online date and Expiration date is now Offline date.

• There is a new Swimlane annotation in the Process Editor's tool palette (BPMN style only). To view this
new Palette item, be sure to create a new workspace or delete your current Palette customization file.

• You can no longer import a WSDL declaration into your BPEL from the file system. You must import the
WSDL into your project or set project references to include another project. Existing file system
declarations are converted to URLs.

• The .avcconfig file for Process Central has been updated, but older files are compatible with Process
Central. The new file allows for custom columns in Process Central.

Migrating from Earlier Versions 23

Opening and Using BPEL4WS 1.1 Processes
If you have BPEL processes created in earlier versions of Process Developer, they conform to the BPEL4WS
1.1 specification. You can open and work with BPEL 1.1 processes. Process Developer recognizes the
version of BPEL in a process and opens in the appropriate mode: BPEL4WS 1.1 or WS-BPEL 2.0.

In BPEL4WS 1.1 mode, Process Developer displays the palette and menu options that support the BPEL4WS
1.1 specification.

By default, Process Developer is set to launch in WS-BPEL 2.0 mode. You can set a preference to open
Process Developer in BPEL4WS 1.1 mode, if desired. For details, see Process Developer Preferences.

Migrating Processes from BPEL4WS 1.1 to WS-BPEL 2.0
You can migrate any BPEL process you created in earlier versions of Process Developer, or any BPEL4WS 1.1
process, to a WS-BPEL 2.0 process. Doing so gives you access to all the new and updated activities, data
manipulation, and handlers supported.

You can migrate your BPEL 1.1 processes as follows:

1. From the Project Explorer, double-click a BPEL file to open it in the Process Editor.

2. Select File > Save As.

3. In the Save As dialog, select another file location, if desired, and rename your BPEL 2.0 file if you do not
want to overwrite the BPEL 1.1 file.

4. Select the checkbox next to Convert to WS-BPEL 2.0 format, as shown in the example, and select OK.

24 Chapter 1: Welcome to Informatica Process Developer

Your BPEL 2.0 process opens in the Process Editor, and Process Developer changes to WS-BPEL 2.0 mode.

All of your preference settings are preserved.

Conversion issues:

• Fault variable. The variable used in a catch activity is accessible only in the catch activity. In BPEL 1.1 the
variable was declared in the enclosing scope. It is no longer available anywhere except within the catch. If
a 1.1 process was using the fault var outside of the catch, the static analysis will report an error.

• OnEvent variable. Same issue as above. The variable is now declared within the OnEvent activity, not in
the enclosing scope. The variable is accessible only to the OnEvent and not to the scope.

• Queries in copy operations. The absolute path used in 1.1 processes is now a relative path. However, a
query using an XPath expression beyond a simple path to data may not get converted. A query that cannot
correctly convert is left in get Variable Data() syntax. Process Developer warns you that the expression
is not WS-BPEL 2.0 compliant.

Custom Function Pick Lists

The XML format for custom function pick lists has changed for Process Developer, for all process versions.
You must update expression builder pick list files as follows.

The old syntax is:

<pickList xmlns="http://active-endpoints.com/FunctionBuilderSchema">
 <pickHeader ...>
 <pickItem pickDisplay="ncname"
 syntax="namespace:ncname"
 caretOffset="colnum-expr"
 hoverHelp="prefix|namespace:ncname Description:ncname"/>*
 </pickHeader>
</pickList>

The new syntax is:

<pickList xmlns="http://schemas.active-endpoints.com/picklist/
 2006/08/ExpressionBuilder_FunctionsPickList_Schema.xsd">
 <pickHeader ...>
 <pickItem pickDisplay="NCName"
 syntax="${prefix}:NCName(${caret})"
 hoverHelp="prefix|namespace:NCName Description: NCName"/>*
 </pickHeader>
</pickList>

If your Process Developer installation uses an existing workspace, your already-loaded custom function
picklist will continue to work. However, you can not reload it without receiving a validation error.

Taking Advantage of SOAP 1.2 Port Binding Version 7.x
Process Developer Version 7 and later supports endpoint reference port bindings for SOAP 1.1 and SOAP 1.2.
All processes prior to Version 7 supported only SOAP 1.1. If you want to take advantage of the SOAP
specification upgrade, SOAP 1.2 clients should use the new SOAP 1.2 URL when addressing My Role
endpoints, namely:

http://host:port/active-bpel/services/soap12/MyRoleService
Partner role services can be invoked with SOAP 1.2 bindings too.

Migrating from Earlier Versions 25

Saving From One Editing Style to Another (BPMN and
Classic)

Process Developer Version 7.0 introduces the BPMN editing style. This style is based on common icons and
symbols from the Business Process Modeling Notation specification. You and your business partners may be
familiar with the workflow-style icons and symbols widely used by business analysts and developers.

You can convert a process from one editing style to another if desired. A process that is created in Process
Developer Classic editing style can be saved as a BPMN style and vice versa.

To convert from one editing style to another, open a process in the Process Editor and select File > Save As.
In the Save As dialog, select the Editing Style you want: BPMN or Classic. For details, see BPMN-Centric and
BPEL-Centric Edit Styles.

Converting Legacy Deployments to Contributions
Process Developer Version 8.0 introduces contributions. A contribution is a deployed business process
archive (BPR), managed as a unit of files. Rather than deploy and replace individual BPEL processes and
resources, you deploy both current and updated as a unit that is easily managed on the server. For details,
see Managing Deployment Contributions.

If you are upgrading to a new version of Process Developer, note that all BPR deployments prior to Version 8
are preserved as legacy contributions. On the Contributions page of the Process Console, you will see one or
more entries named legacy:/bpr.deployment The newest deployment has the status of online. Previous
deployments have the status of offline pending.

We highly recommend that you delete old BPRs and redeploy your processes and resources to take
advantage of contribution features.

Here are some recommendations for converting your old deployments:

• Delete old BPRs and BPRDs from a project. You will create just one new BPR/BPRD per project. The BPR
treats all deployable project files as a unit that is easily managed on the server.

• (Recommended). In your project, create a folder to hold all non-deployment files, such documentation
files and unused resources. This is recommended, but is not required. You can add this folder to a list of
excluded folders for deployment. See Contribution Preference for details.

• (Recommended). If your project is using WSDLs from another workspace project, you can specify that
project as a project reference to manage those WSDLs in a separate contribution. For advantages to this
approach, see Using Project References.

• Create and export a new project-based business process archive. Notice that the new Export Wizard
automatically includes all deployable resources in your project and excludes test and sample data files.

• Be sure to deploy all deployable files each time you redeploy, even if you have only updated one or two
files. Deploying an updated individual resource creates an undesirable version of a contribution.

Note that as you redeploy your BPEL processes and associated resources, they are removed from the
legacy:bpr.deployment and added as contributions.

26 Chapter 1: Welcome to Informatica Process Developer

C h a p t e r 2

Using Guide Developer for the
First Time

This chapter includes the following topics:

• Launching Process Developer, 27

• Using the Workspace to Store Projects, 28

• Creating an Orchestration Project, 29

• Adding or Removing a Project Orchestration Nature, 31

• About Project Orchestration and Validation Builders, 32

• Using Project References, 33

• Creating a New Process, 33

• Importing an Existing BPEL Process, 37

• Importing a Visio XML Drawing File, 37

• Begin Your First Project with Process Developer Assistance, 38

• Setting Up the Embedded Process Server, 38

• Process Developer Orchestration File Resources, 41

Launching Process Developer
To launch Process Developer, use the shortcut button added during installation. Alternately, open your
Process Developer installation folder, and in the Process Developer folder, locate developer.exe (Windows)
or designer (Linux).

If you installed Process Developer as Eclipse plug-ins, start Eclipse and from the Window menu, select Open
Perspective > Process Developer.

When you launch Process Developer for the first time, your workspace looks similar to the following:

27

To get started, you can create the Tutorial Orchestration project or create a new orchestration project or
import an existing project. It is recommended that you create a new project in the workspace folder that is
the default location.

For more information, see Orchestration Project Templates and Using the Workspace to Store Projects.

Using the Workspace to Store Projects
The workspace is the folder on disk that contains all of your projects files, as well as meta-data such as
preferences you may have customized. During installation you are asked where you want your workspace
created.

All of the projects and files you create are added to the workspace folder and are displayed in the Process
Developer Project Explorer view. If you make a change to a file outside of Process Developer, the change is
reflected in Project Explorer.

For more information, see:

• Creating an Orchestration Project

• Importing an Existing BPEL Process

28 Chapter 2: Using Guide Developer for the First Time

Creating an Orchestration Project
You must create a project folder to store BPEL process and related files. A project maps to a folder in the file
system. A default orchestration project includes the following in support of BPEL orchestrations:

• Service References. For details, see About Interfaces, Service References, and Local WSDL.

• Folders. Several folders are added for an organized and convenient registry of the resources that support
orchestrations.

• Builders. For details, see About Project Orchestration and Validation Builders.

In addition, there are several templates available to help you get started on your projects. See Orchestration
Project Templates.

To create a new orchestration project:

1. Select File > New > Orchestration Project, and click Next.

2. Type in a project name.

3. Do one of the following:

• Click Finish to create the new project.

• If desired, deselect the Use default location check box. For details, see Changing the Default Location
of a Workspace Project.

• Click Next to select a template for a special type of orchestration project. For details, see
Orchestration Project Templates.

4. Notice that by default, several folders can be created to store process files and related resources. These
folders are provided by the orchestration project's nature.

5. Your new project appears in the Project Explorer, and the folder in the file system contains a .project file.

You can now create new BPEL process files, as described in Creating a New Process.

Creating an Orchestration Project 29

See also, Adding or Removing a Project Orchestration Nature.

Changing the Default Location of a Workspace Project
When you are creating a new orchestration project, you can deselect the check box next to Use default
location and browse to a file system location to create a project.

When selecting a non-default location:

• If the file system folder you select contains subfolders, all subfolders become part of the project. Be sure
to select Make New Folder and type in a folder name if you want an empty project, as the illustration
shows.

• You cannot create nested projects. Be sure that your projects do not overlap.

Orchestration Project Templates
The Orchestration Project templates provide built-in resources and natures to choose a starting point for your
project.

When you select File > New > Orchestration Project, and name a new project, you can click Next to select a
specialized orchestration project template.

30 Chapter 2: Using Guide Developer for the First Time

The templates contain files, resources, and orchestration natures (see Adding or Removing a Project
Orchestration Nature for information) to help you get started on special projects. For example:

• Java Enabled Orchestration. For details, see Creating a Java Interface.

• Tutorial. The tutorial contains WSDL and samples. It is the starting point for creating your first BPEL
process.

• Tutorial Completed. A complete BPEL process plus all related resources for simulation and deployment

Other project templates help you discover ways to use Process Developer.

Adding or Removing a Project Orchestration Nature
If you import or create a project in the Project Explorer, you can add an orchestration nature to the project. An
orchestration nature provides enhanced creation and validation of orchestrations.

Adding or Removing a Project Orchestration Nature 31

With an orchestration nature, you can:

• Import service references and view WSDL port types, partner link types, messages, and sample data. For
details, see Importing a Service Reference.

• Use automatically created project folders for all of your required resources.

• Validate your files, as described in About Project Orchestration and Validation Builders.

To add an orchestration nature, right-mouse click on a project and select Add Orchestration Nature.

If the orchestration nature already exists, you can select Remove Orchestration Nature. The project is
converted to an Eclipse project.

About Project Orchestration and Validation Builders
As you add and modify BPEL processes, a background validation builder works to ensure locate errors and
problems in your process, imported WSDLs, and other resources. Errors, warnings, and information are
reported in the Problems tab.

Each orchestration project has two builders:

• The orchestration builder performs validation on BPEL, B-unit, PDD and PDEF files. This builder also
tracks dependencies between files. For example, if a WSDL file changes, the BPEL file importing it is
automatically validated.

• The validation builder is part of the Eclipse Web Tools Project that ships with Process Developer. This
builder validates WSDL and schema files and checks for WS-I conformance.

To disable or enable builders for an orchestration project:

1. In the Project Explorer, right-mouse click on an orchestration project, and select Properties.

2. In the Properties dialog, select Builders.

Notice that the Orchestration and Validation builders are enabled, and you can disable them if desired.

You can set a preference for WSDL cache and time out values to make building faster or slower, depending
on the speed of your computer or network. See Cache and Timeout Preference.

32 Chapter 2: Using Guide Developer for the First Time

Using Project References
As you create a project, you can keep common WSDL and schema files in another workspace project. Using
this technique allows you to maintain and deploy commonly used WSDLs separately. It allows for the best
reuse of common resources.

Many resources can be shared between multiple processes. The most efficient practice is to separate them
out and place them in one or more resource-only projects. These can then be deployed independently as their
own contributions. The process projects can declare dependencies on these resource projects, and are
deployed after the resource-only projects they depend on.

You can define another project as a dependency for your current project using Project References.

1. Before beginning a new BPEL process, create a new orchestration project to store common WSDL and
schema.

2. In the Project Explorer, right-mouse click on the project name of a project that will contain BPEL files,
and select Properties.

3. Select Project References.

4. Select a project from the list that contains resources you want to reference. The example shows a
project named "Common WSDLs":

5. When you create a new participant, the WSDLs are available, and are displayed in a Project References
folder. For details, see Using the Participants View.

See also Deploying Project Dependencies and Viewing Excluded Dependencies.

Creating a New Process
When you create a new process, you add the BPEL file to a workspace project.

Ensure that at least one orchestration project is displayed in the Project Explorer before creating a new BPEL
process. For details, see Creating an Orchestration Project.

Using Project References 33

Beginning a New Process
The following procedure shows how to begin a a new process:

1. Select File > New > BPEL Process.

2. For organization and convenience, select the bpel folder in your orchestration project folder, and in the
File name field, type in a name for your BPEL file. The .bpel extension is automatically added.

3. Select Advanced to view properties that you can set for this process. These properties display below this
Advanced button.

34 Chapter 2: Using Guide Developer for the First Time

The default values (for the check box properties) are shown and can be set for all processes within the
Process Developer Preferences. In addition, you can set the process name, target namespace and other
properties for this process later. See Process Element and Properties for more information.

Click Next after filling in this dialog.

4. Select the BPEL Templates page to create a special purpose process. For details, see Using a BPEL
Template for a System Service-Based Process.

Creating a New Process 35

5. Click Finish.

Your BPEL file opens on the Process Activities tab of the Process Editor.

Notice that an error icon appears next to your folder. This icon indicates validation of your BPEL file has
occurred, and that your process is not currently valid. This icon disappears as you add the necessary
activities to the process.

For details on validation, see About Project Orchestration and Validation Builders.

Selecting the BPMN-Centric or BPEL-Centric Palette
A BPMN palette contains standard icons familiar to Business Process Modeling Notation users. A BPEL
palette uses many BPMN icons within a BPEL terminology context. The same BPEL source code is generated
no matter which palette you use.

A BPMN palette contains standard icons familiar to Business Process Modeling Notation users. A BPEL
palette uses many BPMN icons within a BPEL terminology context. The same BPEL source code is generated
no matter which palette you use.

You can select the set of icons to display on the editor palette:

• BPMN-Centric
Uses standard Business Process Model and Notation elements

• BPEL Centric
Uses BPMN notation within a BPEL naming context

Set the way Process Developer displays icons within the Editing Style area within the New BPEL Process
dialog. You can also set a workspace-wide preference for a palette style in Layout Preferences.

For details, see BPMN-Centric and BPEL-Centric Edit Styles and Which Edit Style to Choose: BPMN-Centric or
BPEL-Centric?.

36 Chapter 2: Using Guide Developer for the First Time

Importing an Existing BPEL Process
If you have created a BPEL process outside of Process Developer, you can import the BPEL and related files
into our orchestration project. If your BPEL process in already in an Eclipse project, see Adding or Removing a
Project Orchestration Nature.

Here how you do this:

1. Select File > New > Orchestration Project, and click Next.

2. Type in a project name, and click Finish.

3. If you have XSD files, select the schema folder, and right-mouse click to select Import.

4. Select General > File System.

5. Browse to the directory where your XSD files reside. Import your XSD files into the schema folder.

6. Import your WSDL into the wsdl folder, or alternately use Service References, as described in Importing a
Service Reference.

7. Import your BPEL files into the bpel folder.

8. Double-click the BPEL file to open it in the Process Editor.
The file opens in the mode associated with the BPEL version: WS-BPEL 2.0 or BPEL4WS 1.1. It is opened
in the modeling style, either BPMN, BPEL, or Process Developer classic, associated with the style sheet it
was created with.

For details on saving your file with a different style sheet, see BPMN-Centric and BPEL-Centric Edit Styles.

9. Use the Problems view to correct any validation errors that occurred.

If you import your BPEL process before you add the referenced WSDL and schemas, Process Developer
reports validation errors until it locates a namespace for your process.

If your WS-BPEL 2.0 process contains elements and attributes that are extensions to the WS-BPEL 2.0
specification, they are automatically declared. See Declaring Extension Elements and Attributes for details.

Importing a Visio XML Drawing File
The Visio drawing used in your workspace can be based on BPMN shapes. You import it into a workspace
project.

You can import a Visio XML drawing from Visio 2010 Premium (or later) that is created with the BPMN
template or flowchart using BPMN shapes. Other types of Visio drawings cannot be converted to BPEL.

To import the file:

1. Save it as an XML drawing with the .vdx extension.

2. Select File > Import > Orchestration > Visio XML Drawing

3. Select a Visio file from your workspace or the file system. The file must have the .vdx extension.

4. Select a project folder location for the file. For example, select the "bpel" folder of an orchestration
project.

5. If needed, type in a name (or keep the default) for the files being converted to BPEL. You may need to
supply a name if the file includes multiple pools. If a Visio file contains multiple pools, each pool is
converted to one BPEL file. Multiple pools are not supported in one BPEL file. Process Developer
automatically adds the .bpel extension.

6. If needed, you can overwrite an existing BPEL file.

Importing an Existing BPEL Process 37

Tips on converting Visio files:

• The Visio file is not imported into your project. The import wizard converts the Visio file to BPEL.

• The Scale factor creates the BPEL process with a default amount of space between activities. The scale
factor is a Visio measure unit (by default in inches) to convert to pixels in Process Developer. If the
default of 150 creates a BPEL process that displays too much space between activities, try setting the
value to 100. Alternately, in Process Developer, select Auto Layout to improve the placement of activities
on the canvas.

• Messaging data that exists between pools is not supported. In Process Developer, you must create a
process-to-process or process-to-subprocess invoke handler in the Process Deployment Descriptor.

• Be sure to view the Errors and Problems views to see messages generated from the conversion

Begin Your First Project with Process Developer
Assistance

Process Developer offers many entry points into building your first process. Here are some pointers to help
you decide how to begin.

My Knowledge, My Resources Start Here

I'm a newbie Use the Hello World examples in the Process Developer
Developer's Education Center on http://www.activevos.com

I want to learn how to use Process Developer end-
to-end

Walk through the Process Developer Tutorial.

I don't have any WSDL but I know what I want the
process to do

See Using the Participants View to generate the process and
service roles and participants

I have sample data files (XML files) that represent
the input and output of the process I need to build

See Using the Participants View to generate a service and service
participant

I have WSDL Import your WSDL and use the Participants view to build the
service participants and activities

Setting Up the Embedded Process Server
The Process Server consists of the server engine running under Apache Tomcat. Tomcat is the servlet
container that is used in the official reference implementation for the Java Servlet and JavaServer Pages
technologies.

When you create a BPEL process and its deployment descriptor, you can deploy process resources directly to
a running server. This allows you to execute and remotely debug your processes.

To set up the server:

1. Select the Servers view in the lower right of the workspace.

2. Right-mouse click within the Servers view and select New > Server.

38 Chapter 2: Using Guide Developer for the First Time

3. In the Server type list, select Process Server, and select Next.

4. If the default HTTP and connector ports are already in use on your computer, you can change them on
the Ports page and then click Finish.

The Console shows the Tomcat start-up activity. At the end of start-up, you'll see a "server started" message
for Tomcat.

To start the server:

After Tomcat is started, select the Start the Server icon in the Servers view for the Process Server, as shown.

To view the Process Console, select the Process Console icon in the Process Developer toolbar.

You can also view the console in a browser. Do this be going to the Console's URL. The default URL is
http://localhost:8080/activevos.

To configure https for the Embedded Process Server, follow the steps below:

• Manually add the connector for https port in the server.xml of the embedded tomcat in the following
location: org.activebpel.enginep_9.2.5 under the installation_dir/designer/plugins

• Follow the steps below to add the port details in the Tomcat launch configuration:

1. Create Tomcat Embedded server.

2. Open configuration page and doubleclick ActiveVOS Server at localhost.

Setting Up the Embedded Process Server 39

3. Click Open launch configuration from the Overview page as shown below:

4. Add the following environment variable in the Arguments tab: Dae.web.filter.https.port=8443, as
shown below:

40 Chapter 2: Using Guide Developer for the First Time

Process Developer Orchestration File Resources
As you develop orchestration projects, you accumulate many types of files, including BPEL, WSDL, XSD,
HTML, XML, and others. In addition to these, Process Developer generates some project files that are hidden
by default. The following is a list of resources that Process Developer can add to your project. Based on the
descriptions of these files, you can decide if you want to add them to your source control repository.

Process Developer Resource Description

.image When you save a process, a screenshot of your process is automatically
saved as multiple images in a folder named .image. When you deploy,
Process Console uses these images to display the Detail Graph View of the
process. Without this information, a default process graph is displayed that
may not match the look of your process. We recommend that you preserve
the .image folder and all files in it.

.archive_settings.properties In the BPR Export wizard, you can make selections for the Web Service URL
and other settings. These settings are stored
in .archive_settings.properties. During subsequent uses of the BPR
Export wizard in a project, the Process Developer uses information in this
file.

merge_mappings.xml (Human Tasks) When you create a task form for a People activity, you can
map task input data to output data fields so that a consolidated list of fields
are displayed in the form for the input and output fields that could be
merged. The input-output mapping is stored in this XML file. Typically a
mapping is created only through a one-time use; however, we recommend you
preserve this file with your project.

.BPR, .BPRD,.project, .classpat
h

Business process archive files (BPRs) can be regenerated by using the Export
wizard. However, if preserved, they are easily shared among team members
because they are self-contained. An Ant file that you generate (.BPRD file),
on the other hand, can contain a Web URL that points to a local host and port
that other team members may need to modify.
The Eclipse files created, including .project and .classpath (if used),
should be preserved with your project.

Process Developer Orchestration File Resources 41

C h a p t e r 3

Getting Started with Informatica
Process Developer

This chapter includes the following topics:

• Using Source Control Systems, 42

• Navigating Through Process Developer, 43

• Windows Perspectives Views and Editors, 43

• Process Developer Perspective, 43

• Guide Developer Debug Perspective, 49

• BPMN-Centric and BPEL-Centric Edit Styles, 49

• Using the Process Developer Process Editor, 59

• Customizing the Process Developer Perspective, 69

• Process Developer Menus and Toolbars, 69

• Process Developer Preferences, 73

• Accessing Process Developer Help, 80

Using Source Control Systems
Process Developer can be used with source control management systems. CVS is built into the Process
Developer installation package. If you would like to use the Subversion source code management, here's how
to install it:

1. Click Help > Install New Software.

2. Click Add.
Enter a Name, which is Subclipse Update Site.

Enter the Location, which is http://subclipse.tigris.org/update_1.6.x

3. Click OK.

4. Select all items in the list.

5. Click Next.

6. Click Next again.

7. Select the I accept radio button.

8. Click Finish.

42

http://subclipse.tigris.org/update_1.6.x

Eclipse will now install SVN.

If warnings appear, just accept them. You should also restart Process Developer if your are prompted to.

Navigating Through Process Developer
The Process Developer user interface consists of various perspectives, with associated views, editors, and
menus.

Windows Perspectives Views and Editors
The Process Developer uses the basic Eclipse Workbench user interface components: windows, perspectives,
views, and editors.

Each time you launch Process Developer, the Workbench window opens and displays a default perspective. A
perspective consists of views, editors, menus and toolbars that support a set of tasks.

Each perspective has several views. A view is a unique window, designed for one task, such as displaying an
XML tree, listing tasks, or showing object properties. Each view has its own toolbar.

Each perspective also has an editing area where files are opened. An editor is associated with a file type and
provides the appropriate file actions. The most common file type is a document that can be edited, but some
file types require special actions, such as automatically generating BPEL XML code. Editors share the same
real estate, and are stacked on top of each other when several files are open. Many editors have a marker bar
where you can add bookmarks, tasks, and breakpoints, as needed.

Here are some tips for customizing your work environment:

Editor Tips View Tips Perspective Tips

Double-click the titlebar to
make the editor full screen

Hide a view by right-mouse clicking on the view
titlebar and selecting Fast View. The view is
moved to the shortcut bar as an icon. Click the
icon to open the view.

Select Window > Customize
Perspective to show and hide
views.

Tile two or more editors by
dragging one titlebar to the left
edge of the editing area

Rearrange views by moving and docking them
and by rearranging their tabs.

Open the same perspective in
two windows by selecting
Window > New Window.

Process Developer Perspective
The Process Developer perspective is the default product perspective and contains the views, editor, menus,
and toolbars that support the tasks for designing and generating a BPEL process definition.

When you first launch Process Developer, you see its default window layout, called a perspective. A
perspective consists of views, editors, menus and toolbars that support a set of tasks.

Navigating Through Process Developer 43

A view is a unique window within a perspective, designed for one task, such as displaying an XML tree view of
a file, listing errors or tasks, or showing object properties.

Process Developer contains two default perspectives:

• Process Developer Perspective

• Process Developer Debug Perspective

Perspectives are versatile layouts that you can customize. See Customizing the Process Developer
Perspective for details.

You can open and close perspectives using their icons on the Perspective Fast /View bar. The default
position for the perspective bar is top right. As the following illustration shows, you can dock the bar in
another location, shown here on the top left.

Project Explorer
The Project Explorer displays projects, folders, and files located in the Process Developer workspace folder.
You must create a project before creating a BPEL process. An enhanced project type for BPEL is the
orchestration project. For details, see Creating an Orchestration Project.

The Project Explorer's orchestration projects contain rich details and builders for working on BPEL processes
and related WSDL, schema, sample data, test, and deployment files.

The Project Explorer is a mirror of the file system's Workspace folder.

We recommend you store all files within orchestration projects.

44 Chapter 3: Getting Started with Informatica Process Developer

Tips for using the Project Explorer:

• Add projects and files to the Project Explorer by dragging them in from the file system and adding an
orchestration nature, which is described in Adding or Removing a Project Orchestration Nature.

• Import projects and files. For more information, see Importing existing projects and Importing resources
from the file system in the Workbench User Guide Help.

• Copy and paste files from the file system.

• Add files to the project workspace in the file system and then use the Refresh command to update the
Project Explorer. For more information, see Workbench and Editing files outside the Workbench in the
Workbench User Guide Help.

• Use the many tools in the Project Explorer to filter, show, hide, and navigate through files. For more
information, see Project Explorer view in the Workbench User Guide Help.

Participants
For details, see What are Participants?

Interfaces
By default, this view is not displayed. Instead, Participants view is displayed. You can display Interfaces by
selecting Window > Show View > Interfaces. For details, see Interfaces, Service References, and Local WSDL.

Outline View
The Outline view displays all major components of a BPEL process, as shown.

The nodes in the outline synchronize with the Process Editor and the Properties view. For example, select an
activity in the Process Activities node to display the highlighted activity on the Process Editor canvas.

Tips for using the Outline view:

• Right-mouse click on an item to add new items of the same type.

• Reorder items by moving them up and down.

• Reorder variables to reorder them in the Process Variables view.

Process Developer Perspective 45

• Delete items you are not using.

• Double-click variables and other components to open the main property, such as the Definition dialog.

Activities are added to the Outline in the order they are created, and the BPEL XML code reflects this order.
You may find it helpful to reorder the Process Activities node into activity execution order.

Problems View
The Problems view displays errors, warnings, and information related to the validation of your BPEL process.
When you save your file, Process Developer performs static analysis on the BPEL file. This analysis validates
the BPEL definition, expression language syntax, and WSDL references of the process, and adds items for
invalid activities to the Problems view. Before testing your process, you can correct invalid activities.

As you correct errors and warnings, the related items in the Problems view disappear. You can also set a
preference for levels of information you want to see in the Problems view.

The following illustration shows several errors and one warning for BPEL processes in Process Developer.

Tips for using the Problems view:

• Double-click an item to go to the associated resource.

• Right-mouse click an item to view property details or to select Go To resource.

• Group problems by type or severity.

• Use the extensive Configure Contents feature.

Tasks View
The Tasks view displays to do items you add. Add an item from this view, or right-mouse click on an activity
on the Process Editor canvas.

The following illustration shows an example of the Tasks view.

46 Chapter 3: Getting Started with Informatica Process Developer

1 Check box for a to do item, indicating complete or incomplete. Check the box when the item is complete. Click the
column header to sort by completion.

2 Priority for a to do task, including high, normal, and low. Click the column header to sort by priority.

3 Select display, sort, and filter criteria

Tips for using the Tasks view:

• Double-click a task to go to the associated resource.

• Right-mouse click a task to view property details or to select Go To resource.

Thumbnail View
If you design a complex process, it can outgrow the canvas display quickly. You can display the Thumbnail
view to make navigation in a large process easier.

The Thumbnail view shows a miniature representation of your process. The section of the process currently
showing in the Process Editor is shaded by a blue box. When a complex process cannot be fully displayed,
move the blue box in Thumbnail view to display a selected area.

To display the Thumbnail view, select Window > Show View > Thumbnail.

To view another section of the process, click on the Thumbnail view shaded box, and move the box. The
corresponding section of the process on the canvas moves into view. The following image shows this shaded
box:

Process Developer Perspective 47

Bookmarks View
The Bookmarks view displays a list of bookmarks that you added to a BPEL process or a service file.

Add a bookmark to a BPEL activity or a service file to create an easy way to link back to the information. You
can select a bookmark from the list and go to the place where you added the bookmark.

In the default perspective, Bookmarks view is not shown. To open this view, select Window > Show View >
Bookmarks.

The following illustration shows an example of the Bookmarks view.

Double-click a bookmark to highlight its location on the Process Editorcanvas. For more details on
bookmarks, see the Workbench User Guide help.

Relationships View
Open this view by selecting Windows > Show Views > Relationship View.

This view shows you a graphical representation of dependencies and references of BPEL, WSDL, XSD, and
other artifacts in relation to the file open in the editor. Using this view, you can track the location of WSDL
and XSD imports and other artifacts that are in the workspace.

For example, if a BPEL file is open, you'll see a relationship diagram of the files that the BPEL file depends on,
such as WSDL, XSD, and HTML. You can select another file to see its dependencies and references.

You can toggle the view by using the toolbar buttons, Show Dependencies and Show References.

Servers and Console Views
The Servers view allows you to configure and start up the Process Server that is part of the Process
Developer installation. You can deploy processes to the server and then execute them and remote debug
them.

When you select Start the Server in this view, you can see the start up messages in the Console. The Console
view shows messages from the Tomcat servlet under which Process Server runs.

For details of starting up and using the embedded engine, see Setting Up the Embedded Process Server.

Status Bar
The Status Bar shows the information about current actions and error messages. The following illustration
shows an example of an error message in the Status Bar.

48 Chapter 3: Getting Started with Informatica Process Developer

Guide Developer Debug Perspective
The Process Developer Debug Perspective contains the views, editors, menus, and toolbars that support
simulated execution, B-unit testing, and remote debugging of BPEL processes.

The Process Developer Debug Perspective contains the views, editors, menus, and toolbars that support
simulated execution.

For more information, see Simulating and Debugging.

BPMN-Centric and BPEL-Centric Edit Styles
Process Developer offers two edit styles for designing BPEL processes: Business Process Model and
Notation (BPMN) and a BPEL-centric version of BPMN.

You can select the Process Editor Canvas edit style in Layout Preferences.

• BPMN-Centric edit style includes the graphical notation elements described in the Business Process
Model and Notation V2.0 standard.

• BPEL-Centric edit style includes all BPEL constructs as well as some, but not all, graphic elements
commonly used in BPMN modeling.

In both edit styles, every BPMN construct is serialized into a BPEL construct so that your process is 100%
executable in BPEL.

New processes are associated with the edit style specified in Layout Preferences. Legacy processes are
opened in the style they were created in.

Guide Developer Debug Perspective 49

For legacy processes, the original Process Developer Classic edit style is supported. For details, see What is
Process Developer Classic Style?

What is BPMN-Centric Style
Business Process Model and Notation (BPMN) is a graph-oriented notation standard favored by business
analysts and designers to model the flow of activities for analysis, documentation, and execution. According
to the standard, BPMN creates a standardized bridge for the gap between business process design and
process implementation. Also, BPMN aims to ensure that BPEL can be visualized with a business-oriented
notation.

The BPMN 2.0 standard is governed by the Object Management Group (OMG).

Usage Rules for Shapes and Symbols

BPMN uses shapes, symbols, and connectors to represent constructs. The shapes, symbols, and connectors
have standard usage rules and standardized operational semantics. BPMN also includes extensive
annotation and documentation capabilities.

The main shapes are:

• Rounded rectangle (activities)

• Diamond (gateways)

• Circle (events) with event-driven border styles (solid, thin, thick, dotted)

For a complete description of BPMN elements, see BPMN-to-BPEL Implementation of Tasks and Events and
BPMN-to-BPEL Implementation of Gateways and Control Flow.

50 Chapter 3: Getting Started with Informatica Process Developer

What is BPEL-Centric Style
BPEL-Centric style includes BPMN graphical notation to represent BPEL constructs. The BPEL palette
contains the following notation:

• Each BPEL construct is in the palette, except flow and sequence. These constructs are represented
implicitly on the canvas for efficient process design. For example, if you drag a receive to the canvas, it is
automatically enclosed in a sequence. When you add the next activity, it is automatically linked.

• Some BPMN elements are included. To add visual clarity to a process, you can use the start, end, and
none events and the fork-join and gateway control flows.

• Some BPEL activities, such as a receive, can be shown in more than one BPMN construct. For example, a
receive can be shown as a message catch event or a receive task. In the receive's Properties view, from
the Show As list, select the BPMN display style.

Special Usage of BPEL and BPMN Constructs

The following table shows the BPEL constructs hidden and BPMN constructs used in BPEL edit style.

BPEL Construct Hidden in BPMN BPMN Construct (not part of BPEL terminology)

Flow
(automatically embedded in a process design as applicable)

Fork Join

Sequence
(automatically embedded to structure a group of activities)

Gateway

Opaque (not used) Start/End/None

See also:

• Comparing the BPMN-Centric and BPEL-Centric Tool Palettes

• Which Edit Style to Choose: BPMN-Centric or BPEL-Centric?

BPMN-Centric and BPEL-Centric Edit Styles 51

Comparing the BPMN-Centric and BPEL-Centric Tool Palettes
The following illustration shows the two palettes, followed by a discussion.

BPMN BPEL

The following tables describe palette differences.

BPMN-Centric Palette

The BPMN-Centric palette is organized into the following groups:

Edges and
selections

An edge connects two activities to make them run in sequence. Use the other selection tools to
select a set of items on the canvas.

Task Basic process activities to build a process. For example, select a service task to represent a Web
service endpoint.

Throw Event Events that have an impact (a result), such as a reply, invoke, throw, rethrow, compensate, exit,
and break. These are outbound events.

Catch Event Events caused by a trigger, including wait, receive, and scope handlers, which include fault,
termination, event, and compensation. These are inbound events.

Gateway Controls the divergence and convergence of sequence flows, including branching, forking,
merging, and joining of paths. Includes the BPEL pick activity as an event-based gateway.

Control Flow Containers to structure a group of activities.

52 Chapter 3: Getting Started with Informatica Process Developer

Annotation/Data
Objects

Add labels, shapes, and swimlanes to the canvas. They are ignored in the XML code, but they
print. You can anchor a label to an activity.

Custom Save any activity or set of activities from a BPEL drawing as a custom activity. You can reuse the
custom activity in other BPEL drawings. By default, the custom palette is hidden when empty. For
details, see Creating a Custom Activity.

BPEL-Centric Palette

The BPEL-Centric palette is organized into the following groups:

Links and
selections

Use a link to connect two activities to make them run in sequence. Use the other selection tools to
select a set of items on the canvas.

Activity Basic process activities to build a process. For example, select an invoke to represent a Web
service endpoint.

Event Select an activity that triggers an event, such as a receive, to start a process.

Control Flow Select a container or gateway to structure a group of activities.

Handlers Select a fault or event handler for a scope.

Annotation Add labels, shapes, and swimlanes to the canvas. They are ignored in the XML code, but they print.
You can anchor a label to an activity.

Custom Save any activity or set of activities from a BPEL drawing as a custom activity. You can reuse the
custom activity in other BPEL drawings. By default, the custom palette is hidden when empty. For
details, see Creating a Custom Activity.

See also: Which Edit Style to Choose: BPMN-Centric or BPEL-Centric?

Tips for using the palette:

• By default, the palette is in auto-hide mode. Rest your mouse on the palette to open it.

• Select the Show Palette or Hide Palette arrow to remove the auto-hide feature of the palette.

• Right-mouse click on a palette group title to view a list of customization options.

• Click on a palette group title to open or close the group.

• Use drawing objects to annotate your BPEL processes.

• Customize the palettes to view small icons or icons only. To view icons only, right-mouse click on any
palette entry and select Layout > Icons Only.

Which Edit Style to Choose BPMN-Centric or BPEL-Centric
Which Edit Style to Choose: BPMN-Centric or BPEL-Centric?

Both BPMN and BPEL edit styles generate 100% validated, executable BPEL XML code. Both styles are
diagramming notations for process descriptions. You can choose which visual style is easier for you and your
team.

Highlights of BPMN-Centric

• The edit style uses standard BPMN terminology.

BPMN-Centric and BPEL-Centric Edit Styles 53

• The Process Developer break extension activity can be implemented with a terminate activity within a
scope, for Each or while structured activity. The break implementation allows breaking out of the
closest scope or loop.

• The Process Developer continueextension activity is not supported because no notation in BPMN has the
exact Continue semantics.

• The error catch event is used for the catch and catch all fault handlers.

• The error throw event is used for the throw and rethrow activities.

• Annotations include icons for data objects, collections and stores.

• An annotation can be linked to an activity.

• A control flow structure, like a Conditional Pattern or Repeat Pattern, can be ungrouped into separate
activities.

Highlights of BPEL-Centric

• The style uses BPEL terminology for constructs and includes some common BPMN constructs. Not all
BPEL constructs are visible. Some are hidden in order to produce a cleaner, clearer diagram.

• The style includes the Process Developer extension activities break and continue

• Catch and catch all fault handlers are represented separately

• Throw and rethrow activities are represented separately

Using Swimlanes
You can provide a graphical representation of the participants in your process by adding a pool with
swimlanes. The concept of a pool and swimlane is part of the BPMN specification. A pool represents a
process and a swimlane represents a participant.

In Process Developer, you add swimlanes to the Process Editor canvas, typically to show each participant's
activities. However, you can drag and drop activities into different lanes, using links to show the relationship
between swimlane activities. There is only one pool for the process as a whole.

The following illustration shows an example of a process pool with four swimlanes, one for each process
participant.

54 Chapter 3: Getting Started with Informatica Process Developer

To add and use swimlanes:

1. Right-mouse click on the BPMN Editor canvas and select Add > Annotation > Swimlane.

2. Notice that a pool and one swimlane is created. The pool name is the process name, and the swimlane is
untitled.

3. Do one of the following:

• To add an additional swimlane to the left (or top) of the first one, right-mouse click on the left (or top)
side of the process, and select Add > Annotation > Swimlane.

• To add a swimlane to the right (or bottom) of the first one, right-mouse click to the right (or bottom)
of the first one and select Add > Annotation > Swimlane.

4. To name a swimlane, select the swimlane titlebar and display Properties view. In the Text field, replace
Untitled with your text.

If you want to change swimlane colors, you must first turn off zebra stripping.

BPMN-Centric and BPEL-Centric Edit Styles 55

Tips on working with swimlanes:

• By default, swimlanes are displayed in bands of white and gray, called zebra striping. To disable zebra
striping and enable individual colors for each swimlane, select the title bar of the pool and open the
Properties view. Set properties as desired:

• To delete a swimlane, right-mouse click on the swimlane and select Delete. Delete all swimlanes to delete
the pool.

• Swimlanes have only visual properties: You must manually arrange all activities within swimlanes.

• You can add a swimlane from the Annotation drawer of the palette

• Swimlanes can be used on the main canvas, not on the drill-down view of a collapsed container, nor on the
fault or event handler tabs

Resizing Swimlanes

To make a swimlane grow or shrink, to accommodate the activities you add or delete, move a swimlane
border either left or right in horizontal orientation (up or down in vertical orientation). By default, a resizing
restriction is set on swimlanes to disallow a swimlane from being too small to accommodate an activity. The
Restrict Swimlane Resizing property in the Pool is set to Yes. For flexibility in resizing a swimlane, set this
property to No.

What is Guide Developer Classic Style
Process Developer Classic style is supported primarily for legacy processes.

Process Developer Classic uses the same palette of icons that has been in use since Version 1.0 of Process
Developer. Each BPEL construct, as specified in the WS-BPEL 2.0 specification, is represented by an icon
designed by Informatica. Because the BPEL specification does not include any requirements for graphical
representation, each vendor who implements the specification creates their own look and feel.

56 Chapter 3: Getting Started with Informatica Process Developer

In Process Developer Classic, the palette drawers are named Activity, Container, and Other.

BPMN vs. Process Developer Classic Style Examples

The following examples show some main differences between BPMN and Process Developer Classic styles.

Example One: Shapes and Symbols

BPMN shapes have meanings. Circles indicate events, as shown with the receive and reply on the left below.
Start events and end events have solid borders, while intermediate events have outlined borders. In Process
Developer Classic, activities are categorized as basic and structured. Receives and replies are basic
activities, represented by Informatica proprietary icons shown on the right.

Example Two: Start, End, and Exception Events

BPMN uses event icons to indicate the start and end of a workflow (in BPMN terms a subprocess), as shown
in the scope below on the left. The start and end events are within a hidden sequence container. You add
activities between start and end. When you add a catch fault handler to the scope, the fault handler is

BPMN-Centric and BPEL-Centric Edit Styles 57

displayed as a dotted rectangle within the scope. In Process Developer Classic, a scope starts out as an
empty container. You display a fault handler with the Show Fault Handler option. Then you add a catch to it.

Example Three: Control Flow vs. Containers

BPEL often requires nested activities, such as those in a forEach, if, while, or repeatUntil. BPMN (on the left
below) represents nesting with control flow arrows. In the forEach example, note also that the control flow
contains an embedded (hidden) sequence. The sequence contains start and end events, and you can add
activities in between. The start and end events are considered good style in BPMN, but are not strictly
required, so they can be deleted if desired. Process Developer Classic displays a forEach container with an
embedded, visible scope into which you add all activities manually.

Example Four: Nested Activities

In BPMN, arrows represent control flow. Representing control flow using arrows can be easier to read than
using containers, as shown in the example of nested repeatUntil activities. In this diagram, the parent

58 Chapter 3: Getting Started with Informatica Process Developer

repeatUntil has two children: a repeatUntil and an invoke. The child repeatUntil has one child: an invoke.
The BPMN diagram is easier for many people to understand.

Using the Process Developer Process Editor
The Process Editor consists of a canvas and palette for creating a visual representation of a BPEL process.
When you create a BPEL file, as described in Creating a New Process, the file opens in the Process Activities
tab of the editor, and you have a canvas on which to create a process.

Using the Process Developer Process Editor 59

The following illustration shows the parts of the Process Editor.

1 Palette. Select constructs to create a process definition. Annotate your process with drawing labels and shapes.
Create custom activities to reuse in other processes.

2 Tabs. Select a tab to design a specific component of a process on its own page or to view the generated XML
code in the Source tab. You can print the contents of each page.

3 Canvas. Drag palette items to the canvas. Set visual properties for the items and the canvas.

Process Editor Process Activities Tab
From the Project Explorer you open a process file (a .bpel file), and the graphical representation of the
process is displayed in the Process Activities tab of the Process Editor.

Some common activities using this tab are:

• Use the Process Activities tab to design your process, including all activities, links, and structures. Select
objects from the palette to design and annotate your process.

• Use the Fault Handlers and Event Handlers tabs to design handling of exceptional events at a process
level.

• You can open as many .bpel files as you wish. Click on a file name in the Process Editor titlebar to
display a specific process.

• You can print the graphical elements on this page.

See also Tips for Designing on the Process Editor Canvas.

Process Editor Fault Handlers Tab
Use the Fault Handlers tab of the Process Editor to design process-level fault handling. You can add catch
and catchAll containers and activities on this tab. These fault handlers are added to the <faultHandlers>
section of the BPEL file.

60 Chapter 3: Getting Started with Informatica Process Developer

Typical activities when using this tab are:

• Adding scope-level fault handlers, see Adding a Fault Handler for a Scope.

• Adding drawing labels to fault handlers.

• Printing the graphical elements on this page.

Process Editor Event Handlers Tab
Use the Event Handlers tab of the Process Editor to design process-level message and time-out events. For
more information, see Event Handling.

Typical activities using this tab are:

• You can add drawing labels to Event Handlers.

• You can print the graphical elements on this page.

Process Editor Compensation and Termination Handler Tabs
One BPEL process can invoke another BPEL process. In this case, the invoked process is referred to as a
subprocess, and can be handled specially. The subprocess is eligible for compensation and termination
handling in the same way as a process scope. For details, see Creating a BPEL Process as a Service for
Another BPEL Process

These tabs are as follows:

• Compensation Handler tab. Use this tab when you enable instance compensation for the process. For
more information, see Process Element and Properties.

• Termination Handler tab. Use this tab when you enable termination handling for the process. For more
information, see Process Element and Properties.

Process Editor Source Tab
Use the Source tab of the Process Editor to view the generated XML code for your process. The code you see
is validated against the WS-BPEL 2.0 specification. For details, see BPEL XML Source and Implicitly Added
Activities.

Process Editor Source Tab
Use the Source tab of the Process Editor to view the generated XML code for your process. The code you see
is validated against the WS-BPEL 2.0 specification. For details, see BPEL XML Source and Implicitly Added
Activities.

Setting Visual Properties and Using Your Own Library of Images
For all of Process Developer's activity icons, you can change the font size, colors, borders, and other visual
properties.

In addition, you can change the activity icons to impart more meaningful visual representation for the type of
process you are building.

You can set defaults for all processes, as described in Layout Preferences, or you can modify visual
properties for individual processes and activities.

Here are some examples:

Using the Process Developer Process Editor 61

Example 1: Add a border, change font size for an activity

Example 2: Select your own images for activities by setting the Image Location property for each activity

Example 3: Change the link router style from Manhattan to Manual

The manual style draws a straight link, rather than a stair-step style link, and allows you to set the angle for a
link transition. A Shortest Path style link travels around the border of objects to link two activities.

62 Chapter 3: Getting Started with Informatica Process Developer

The following table lists the visual properties you can set for various activities. Not all properties apply to all
activities.

Property Description

Background Color Fill color if the Transparent property is No

Border Yes/No selection to display a border on a drawing item

Border Color Opens a dialog for you to choose a basic or custom color for the border of a drawing item.

Expanded For a container, such as a Scope, a Yes/No display indicating whether the container's contents
are displayed or hidden. This setting changes when you select Expand or Collapse from the
container's right-mouse menu.

Font Sets the font to use for label.

Font Color Sets the color for labels.

Image Display The image to draw if any

Image Location Sets the file system location and name of the image file. See the Tips section below for
multi-selecting activities to change their images.

Image Text Gap Select the size for the gap between an activity icon and the label.

Label Select the display format for an activity label. See Selecting Activity Labels.

Label Alignment Sets the align text property: left, right, center, top, bottom

Label Placement For a drawing object, sets the placement of text label relative to image.

Location Sets the the XY location on the canvas of the object

Orientation For a container, sets the vertical or horizontal orientation for activities within the sequence.

Primary Alignment For a Sequence activity, sets the alignment for the group of activities.

Secondary Alignment For a Sequence activity, sets the alignment position of the activities within the sequence.

Size Sets the the current size on canvas

Size to Fit Set to Yes to restrict resizing of the selected drawing object. Select No to permit resizing of
the drawing object.

Text For a drawing object, text label

Transparency Level For a drawing object, sets the value of transparency. A larger value decreases the
transparency.

Transparent Yes/No setting. If you select No, you can set the Background color.

Tips for setting visual properties:

• Set default values in a visual properties file. For details, see Layout Preferences.

• For a particular process, to change the image for a group of activities, multi-select the activities and then
select the Image Location. For example, select all receives to change the icon for that activity type.

Using the Process Developer Process Editor 63

• To resize a container activity, such as an if activity, set the Size to Fit option to No.

Adding Tasks and Bookmarks to the Process
You can add a bookmark to a graphical element on the Process Editor canvas and create a link to easily jump
back to that spot in the process. You can also add a task, which is similar to a bookmark. To add a task,
highlight a graphical element and create a link to easily jump back to it.

A task is not related to the human interactions or people activity task element for a Human Tasks (BPEL for
People) activity.

The difference between a task and bookmark is in the intent of the link. A task usually indicates something
that needs to be done at that spot as opposed to just an easy link back to it. A task also has a priority to let
you easily sort tasks by importance.

To add a task or bookmark to a graphical element, select the element and right-click. Select Add Bookmark or
Add Task. Name the task or bookmark.

The following illustration shows a graphical element with a task or bookmark added.

1 Receive activity with a task added

2 Receive activity with a bookmark added

For more information, see Bookmarks View.

Adding Comments to a Process
Process Developer offers two ways to add annotations to a process: comments and documentation.

Comments are useful for design-time annotations because you can add tasks and to do items to them. They
appear as HTML-formatted comments in the BPEL source code. You can also add a documentation element
to a BPEL process, activity, and links. For details, see Adding Documentation to a Process.

You can add a comment to any element of the process, such as an activity, link, variable, or the process itself.

1. Select an item from the Outline view or the Process Editor canvas. For example:

• Select Process or a partner link, variable, or copy operation from the Outline view

• Select an activity or link on the Process Editor canvas

2. In the Properties view, at the end of the Comment row, click Dialog.

3. Type in a comment in the Comment dialog and click OK.
Tip: You can add a Task tag to the beginning of the comment and the comment appears in Tasks view.
For details, see Tasks and Problems Preferences.

The comments for activities and links appear when your mouse hovers over them on the Process Editor
canvas, as shown.

64 Chapter 3: Getting Started with Informatica Process Developer

Comments appear as formatted tags in the Source view of your process.

If you want to add a comment about a namespace, add the comment to the process itself.

Adding Documentation to a Process
You can add one or more documentation items to the process or to an activity. If desired for language
support, add a language identifier. The source field is for application-specific reference.

Process Developer offers two ways to add annotations to a process: Comments and Documentation. You can
add a <documentation> element to a BPEL process, activities, and links. For design-time, comments are
useful because you can add tasks and to do items to them. For details, see Adding Comments to a Process.

You can add documentation to any element of the process, such as an activity, link, variable, or the process
itself.

If you generate a process report, the documentation is very useful. For details, see Generate Process Report.

1. Select an item from the Outline view or the Process Editor canvas. For example:

• Select Process or a partner link, variable, or copy operation from the Outline view

• Select an activity or link on the Process Editor canvas

2. In the Properties view, do one of the following:

• Type text directly into the Documentation tab.

• In the All view, at the end of the Documentation row, click Dialog (..). Complete the dialog as shown
below.

To fill in the Documentation Details:

1. Select New to open the Documentation Details dialog, as the example shows.

Using the Process Developer Process Editor 65

2. Fill in the dialog as follows:

• Documentation. Enter the content in your chosen format, such as plain text, HTML, or XHTML.

• Language (optional). Type in the language identifier of the natural or formal language that the
content is written in. Refer to the XML 1.0 specification for language identifier reference details.

• Source (optional). This attribute indicates the source of application information, in the form of a URI.
(The attribute is described in the XSD schema and is generally included with the documentation
element.)

3. Click OK, and select New to add additional documentation elements.

4. In the Documentation entries list, you can reorganize entries by selecting the Up or Down buttons. The
first entry in the list is displayed in the Properties view of the activity, link, or partner link.

Documentation appears as formatted tags in the Source view of your process and also in a report that you
can generate.

Tips for Designing on the Process Editor Canvas
Use the Process Editor canvas to create a graphical representation of a BPEL process.

Here are some tips for designing your process:

• Double-click the Process Editor title bar to enlarge the canvas to full view.

• Change the font size and color, borders, images and other properties for activities and links. See Setting
Visual Properties and Using Your Own Library of Images.

• Use the Auto Layout toolbar button to arrange process activities according to the settings in Layout
Preferences. Use the Auto Layout option on the right mouse menu of any container or selection.

• Use Make Vertical and Make Horizontal to change the orientation of your process.

• When moving any activity or container, the object snaps to a grid. Use the Alt + mouse button to move an
object one pixel at a time.

• Use Zoom In and Zoom Out on the Process menu to change magnification of the canvas.

• Select a Zoom percentage or Fit Page from the toolbar Zoom drop-down.

• Use Expand or collapse containers to show or hide them. Drill down into a collapsed container to
temporarily view its contents. See Showing and Hiding Activities.

• Select two or more activities and link them using the Link toolbar button.

• Use the Thumbnail View to view different parts of your process if it is large and complex.

• Select two or more graphical elements and align them using the toolbar Align list.

• Anchor a drawing label to an activity by selecting both and then selecting Anchor Annotation from the
right mouse menu.

Showing and Hiding Activities
You can preserve Process Editor real estate in the following ways:

• Expand and collapse container activities

• Drill down into a collapsed container to temporarily see its contents

Expanding, Collapsing, and Drilling Down into Container Activities

You can collapse the display of container and control flow activities. These activities include sequence and
flow (Process Developer Classic only), fork join (BPMN only), if, while, pick, scope, repeat until, and for each.

66 Chapter 3: Getting Started with Informatica Process Developer

When an activity is collapsed, select the plus icon to temporarily drill down into the activity to view its
contents. Use the bread crumb display or the Navigate > Back command to collapse the activity.

To collapse an activity, such as a scope, select Collapse Container (or Control Flow) from the right-mouse
menu. The small icon, illustrated in the collapsed scope below, indicates the container is collapsed. To
expand a container, select Expand Container (or Control Flow) from the right-mouse menu.

Tips for using Expand, Collapse, and Drill Down:

• When an activity is collapsed, select the plus icon to drill down into the contents. Alternately, from the
right-mouse menu, select Go Into Activity (Ctrl + Alt + L).

• By default, the link style changes to a dotted line for a link with one or more targets in a collapsed
container, as the example above shows

• You can Expand All Containers and Collapse All Containers from the Process menu or from a blank spot
on the Process Editor. Right-mouse select these options from the Process Editor.

• You can set a preference to control the positioning of expanded and collapsed containers in relation to
other activities. The setting affects the overall look of the process design. For details, see Layout
Preferences.

• You can Undo expand/collapse moves if you do not like the results

Process Editor Keyboard Shortcuts
The following tables describe how to select and move objects on the Process Editor canvas without using a
mouse.

Navigation Keys

• Navigate to a BPEL file in the Process Editor: CTRL + F6.

• Navigate to a selected activity with the Go to Activity shortcut: CTRL + L.

See also Process Developer Menus and Toolbars.

Selecting an object

When an activity or container is selected, you can navigate to another object using the following keys.

Key Action

Space Select

Left arrow Navigate to the object on the left

Right arrow Navigate to the object on the right

Up arrow Navigate to the object above

Down arrow Navigate to the object below

Using the Process Developer Process Editor 67

Key Action

/ or ? Navigate to the next link

\ or | Navigate to the previous link

Alt + Down arrow Navigate into a container

Alt + Up arrow Navigate out of a container

Pressing the CTRL key causes the focus, rather than the selection, to move. Pressing the SHIFT key while
using one of the navigation keys extends the selection.

Moving an object

When an object is selected, you can move it using the following keys. Note that you can move an object
diagonally by selecting two adjacent arrow keys simultaneously.

Key Action

Alt + mouse Move the selected object one pixel at a time

Period Select next handle

> Select previous handle

Left arrow Drag left

Right arrow Drag right

Up arrow Drag up

Down arrow Drag down

Enter Commit the drag operation

Esc Abort the drag operation

Palette Keyboard Actions

Key Action

Left arrow If focus is on an expanded palette group, such as the Activity group, then collapse it. Otherwise set
focus on the group.

Right arrow If focus is on a collapsed palette group, then expand it. If the group is expanded, then the focus moves
into the group.

Up arrow If the focus is inside a group, then it moves to the group title.

Down arrow Moves to the next item

68 Chapter 3: Getting Started with Informatica Process Developer

Process Developer Function Keys
The following function keys are available.

Location Key Function

Debug View F6 Step Over

Debug View F8 Resume

Customizing the Process Developer Perspective
As you work on various parts of your BPEL process, you may need to hide some views, enlarge others, and
change the tab order of others. The workbench environment that Process Developer is built upon is very
flexible and lets you do all of these things.

For details, see Windows, Perspectives, Views, and Editors.

Process Developer Menus and Toolbars
In addition to the Eclipse basic menus and toolbars, the following menu items and toolbar buttons are part of
Process Developer:

File menu

• “Refactor” on page 70

Navigate menu

• “Go To Activity (Ctrl + l)” on page 70

• Open Declaration (F3). Goes to the WSDL or XSD file associated with the BPEL construct in focus on the
canvas. For example, select an invoke and press F3 to open the WSDL and see the highlighted operation.

• “Open Operation (Ctrl + Shift + t o)” on page 71

• “Open Port Type (Ctrl + Shift + t p)” on page 71

• “Open Web Type (Ctrl + Shift + t w)” on page 71

Process menu

Items on the Process menu are associated with the process in focus on the Process Editor canvas. For
details, see the following topics.

• “Using the Process Developer Process Editor” on page 59

• “Generate Process Report” on page 72

• “Generate Process Image” on page 72

• “Generate Deployment Image” on page 72

• “Validate Process” on page 72

• “Optimize Parameters” on page 71

Toolbar buttons

Customizing the Process Developer Perspective 69

In addition to standard toolbar buttons, the following groups of buttons are specific to BPEL processes:

• Process Viewing aids: Auto Layout (see details below), Align, Magnify

• Simulation: Start Simulation, Clear Execution State

• Remote Debugging: Process Console, Launch Web Services Explorer

• Process Validation (without saving): Validate Process

Auto Layout Methods

Select a Layout Method as follows:

Method Explanation

Grid (default) Objects can branch both to the right/left (or top/bottom) but the layout does not optimize for
available slack space. A row or column is the maximum width of any object in that row or column.

Tree Objects can branch both to the right/left (or top/bottom) and the layout tries to use available slack
space.

Hierarchy Objects align in an outline with one main trunk and branches extend to the right

A simple process may not show any difference among the layout methods.

Refactor
Select a resource to rename it, and the files that import the resource or depend on it are also updated. For
example, rename a process name and the related B-unit tests and process deployment descriptor references
are automatically updated.

When you select Refactor, a Rename Resource dialog opens and you can select Preview to view the changes
that will be made.

You can also move a resource. For example, if you move a WSDL, all other WSDL, BPEL, BPRD and PDD's are
updated to point at the moved WSDL.

Rename (or move) the following resources:

• Process name. Note that the rename does not change the .bpel file name. It changes the <process
name> element in the BPEL process.

• WSDL file name

• Schema file name

• Schema element or type

• Target namespace

In the WSDL editor, you can refactor the target namespace. This action triggers a global refactoring of
namespaces for all resources that reference the WSDL or XSD. In a WSDL, if you highlight a port type, you can
right-mouse click and select Refactor > Rename to update resources that reference this element. Similar
behavior exists in the Schema editor for complex types.

Go To Activity (Ctrl + l)
Use the Go to Activity dialog to select any named activity for the BPEL process in focus.

You can select Navigate > Go to Activity to select any named activity for the BPEL process in focus on the
Process Editor canvas. Start typing in the Find a BPEL activity text box to filter the activity list to matching
names. The enclosing scope and process location for the selected activity are displayed.

70 Chapter 3: Getting Started with Informatica Process Developer

Open Operation (Ctrl + Shift + t o)
Use the Open Operation dialog to locate an operation within a WSDL.

An operation is the command that is run when a Web service activity executes. A set of related operations is
bundled in a port type in a WSDL. BPEL activities such as receive, reply, and invoke include operations.

You can select Navigate > Open Operation and use the Open Operation dialog to locate an operation within a
WSDL. Start typing the name of an operation from a workspace WSDL to display a list of auto-completed
names. The target namespace of the WSDL is displayed in the dialog. Double-click an operation to open the
WSDL and highlight the operation.

Open Port Type (Ctrl + Shift + t p)
Use the Open Port Type dialog to locate a port type within a WSDL.

A port type in WSDL is a set of related operations. BPEL activities such as receive, reply, and invoke include
operations.

You can select Navigate > Open Port Type, and use the Open Port Type dialog to locate a port type within a
WSDL. Start typing the name of a port type from a workspace WSDL to display a list of auto-completed
names. The target namespace of the WSDL is displayed in the dialog. Double-click a port type to open the
WSDL and highlight the port type.

Open Web Type (Ctrl + Shift + t w)
You can select Navigate > Open Web Type and use the Open Web Type dialog to locate a WSDL message,
schema element, or schema type. Start typing the name of any web type from a workspace WSDL or XSD to
display a list of auto-completed names. The target namespace of the WSDL or XSD is displayed in the dialog.
Double-click a message, element or type to open the WSDL or XSD and highlight the item.

Optimize Parameters
The Optimize Parameters command makes changes to your process based on the following conditions:

• The variable is only assigned within a single assign activity and possibly has an initialization expression.

• The assign immediately precedes the main activity that uses the variable as input (either in a sequence or
through a link).

• The assign qualifies to be converted into an XQuery assignment type: There is only one copy expression,
the copy has a from expression, which uses XQuery, and there is no initialization expression for the
variable.

The assign qualifies to be converted into an XQuery assignment type if the from clause is: an expression
using XPath, a literal, a variable with a property, a variable, optionally with a part or a query.

Changes made

The changes that can be made are as follows:

• If the variable is an element type, it is changed to a message type, and all copies that set it get a new
"part" attribute.

• If the variable was an element type and had an initialization expression, the initialization expression is
moved to become the first "copy" in the assign activity.

Process Developer Menus and Toolbars 71

• If the variable is the only thing assigned in the assign statement that sets it, move the entire assign to be
in the implicit scope and move all the inbound and outbound links for the assign to the implicit scope
(adding to the inbound or outbound links that are already there). Otherwise, move just the copies from the
assign to a new assign activity inside the implicit scope.

The actions you can perform are:

• Move the variable into the implicit scope and rename it (and all of its uses) to "parameters.".

• Convert copy "from" constructs to use expressions (unless they are from a literal). from variable.part
with query="/foo/bar" becomes $parameters.part/foo/bar, from variable with property="ns:foo"
becomes abx.getVariableProperty('parameters','ns:foo'), copy from variable.part (query?) to
copy from an expression.

Validate Process
Select this command to validate your process using the Eclipse Validation Builder. Process validation
automatically occurs when you save your process. However, for large processes, saving may take a long
time. You can validate without saving with this command. Note that there is a toolbar button for Validate
Process and a shortcut key sequence: Ctrl + Shift + V.

For details on validation, see About Project Orchestration and Validation Builderson page 32.

Generate Process Report
You can use the Generate Process Report to create and export a file that summarizes the business
participants and activities in a process

To generate the report:

1. From the Process menu, select Generate Process Report.

2. In the dialog, type in a filename and location where you want your file saved.

Tip: Before generating the report, add documentation to the process Properties view and to the Properties
view of any process construct, especially activities. For details, see Adding Documentation to a Process.

Generate Process Image
Use the Generate Process Image command from the Process menu to create a single JPG image of the
process in focus on the canvas. The file is saved to the file system location you select.

Generate Deployment Image
When you save a process, behind the scenes a screen shot of your process is automatically saved. When you
deploy the project, Process Console uses this image to display the Detail Graph View of the process. The
process you see on the Process Console matches that of the Process Editor canvas.

You can disable automatic saves of a process image and manually generate an image. To enable the
Generate Deployment Image option, go to the process' Properties view, select the All tab, and change the
Image Generation option to Manual (from Automatic). Then you must select Generate Deployment Image
before you deploy if you want an exact layout match on the server.

If you do not generate the image, a default layout of the BPEL process is used that does not necessarily
match the exact layout in your canvas.

The purpose of the manual option is to allow for better performance of file saves for large processes. If you
experience long file saves, you can set the process' Image Generation property to Manual. Also, you may

72 Chapter 3: Getting Started with Informatica Process Developer

want to disable automatic image generation for a process that is deployed as non-persistent (no process
information is stored when a process terminates). Non-persistent processes are not displayed in the Process
Console.

Process Developer Preferences
You can set default preferences for all processes, and then override a preference for individual processes.

To set Process Developer preferences, select Window > Preferences > Process Developer.

Preferences on the main page include:

Default settings for new process files:

Target Namespace
preamble

Every BPEL process needs a target namespace. Type in a default namespace preamble, if
desired. You can change the namespace and add additional ones for each new process you
create.

Expression
Language (URI)

Process Developer supports a variety of expression languages. The default expression
language is XPath 1.0. Two other expression languages are built-in. These are XQuery 1.0 and
JavaScript 1.5. You can select any of these languages as the default. The default language
refers to the expression language that is used (both for validation and simulation) for a given
process when that process does not explicitly declare the expression language.
Select Dialog (...) to view the configured expression languages.

Suppress join
failure

Enabled by default. For a description of this setting, see Process Element and Properties.

Abstract process Create all new processes as abstract, as opposed to executable, processes. Disabled by
default. For a description of this setting, see Creating an Abstract Process.

BPEL Version Select the BPEL specification version to use when launching Process Developer and when
creating new BPEL processes. The versions supported are WS-BPEL 2.0 (current version) or
BPEL4WS 1.1. The version you select sets the correct menu items, palette, and other details for
new processes. Any new process you create conforms to the version chosen. Any process you
open conforms to the correct BPEL version.

BPEL Extensions

Create XPath A Process Developer extension for WS-BPEL 2.0 processes. For a description of this setting,
see Using the Process Developer Create XPath Extension. To use this setting during simulation
of BPEL4WS 1.1 processes, see Simulation Preferences.

Disable Selection
Failure

A Process Developer extension for WS-BPEL 2.0 processes. For a description of this setting,
see Using the Process Developer Disable Selection Failure Fault Extension. To use this setting
during simulation of BPEL4WS 1.1 processes, see Simulation Preferences.

Links are
Transitions

A Process Developer extension for WS-BPEL 2.0 processes. Allows links that target completed
activities. See Process Developer Extension for Links.

Add object option

Process Developer Preferences 73

Launch primary
property dialog
after add

In Outline view, you can right mouse click on a node, such as Imports, Partner Links, or
Variables and add a new item. If you enable this option, you can right mouse click on the item
to edit the primary property.
You can disable this option if you prefer to edit all the properties (not just the primary property)
in the Properties view.

New deployment options

Addressing Version The default WS Addressing specification is W3C 1.0. This specification is referenced in the
preamble of a new Process Deployment Descriptor file.
You can select one of the earlier specifications if applicable for your new deployment
descriptors.

These settings take effect the next time you start Process Developer. You can set additional preferences for
the following:

• BUnit Preference

• Cache and Timeout Preference

• Colors and Fonts Preferences

• Contribution Preference

• Layout Preferences

• Relationships View Preferences

• Identity Chooser Preference

• Remote Debugging Preferences

• Simulation Preferences

• Tasks and Problems Preferences

• Editing HTML in Process Central Forms

B-Unit Preference
BPEL unit (B-unit) testing is a framework that tests BPEL processes in the Process Developer engine. The
easiest way to create a B-unit test is to simulate a process and save the simulation as a B-unit test.

To simulate a process, you add sample data for receives and invokes.

Set the default sample data generation method for B-unit tests: inline data or imported data file. By default,
the data is imported as a sample data file. This setting can make it easier for you to maintain B-unit tests. If
you select inline, the data from the simulation is shown as an XML document.

In the B-unit Editor, select Invoke > Simulated Response > Message > Part, you can set the data to be inline
or to be imported from the workspace.

For details, see BPEL Unit Testing.

Cache and Timeout Preference
You can set cache and timeout values for process validation if you experience problems when waiting for
workspace builds to finish.

There are various scenarios in which WSDL and schema files are loaded, such as when opening a BPEL
process that uses such WSDLs and schemas or during validation. For a process with many, large, or remote

74 Chapter 3: Getting Started with Informatica Process Developer

WSDLs and schemas, load and build times can get slow. This is especially the case when you have
references that do not exist or take a long time to load.

Select Window > Preferences > Process Developer > Cache and Timeout to view these preferences.

• Bad WSDL Cache Timeout. This value is set to 120 seconds. If a connection cannot be made to a WSDL
URL during process validation, the WSDL location is cached so that a later attempt to connect can be
made.

• Resource Load Timeout. This timeout controls the amount of time spent waiting to read external WSDL
files. This timeout also controls how long it takes to read the WSDL (and all its imports). By default, it is
set to five seconds. You can increase this value if your machine or network is slow.

For details on validation builders, see About Project Orchestration and Validation Builders.

Colors and Fonts Preferences
Select Window > Preferences > Process Developer > Colors and Fonts to view these preferences.

The Expression Builder for creating data manipulation expressions is available for several activities,
transition conditions, and queries. You can set the font properties for the Process Developer Expression Text
within the Expression Builder.

The BPEL Unit Testing (B-unit) view contains a toolbar button that opens a B-unit XML Compare window. You
can set a preference for the text color and font that appear in this window.

For details on B-unit Testing, see BPEL Unit Testing.

Contribution Preference
A contribution should include all process resources to be managed as a unit of files on the server.

To view contribution preferences, select Window > Preferences > Process Developer > Contribution.

When you deploy a process to the Process Server, it is recommended that you include all process resources
within the contributed deployment. By default, the Export Wizard selects all resources in all project folders
except sample-data and test. However, you can exclude the resources if you disable Auto-select all non-
excluded project artifacts.

You can list the project sub-folders that should be selected or excluded within Export BPR Contribution
Deployment Wizard. Create a list of relevant folders to start the export wizard with.

You can also add your own folder names to the list of folders that the Export wizard should exclude. For
example, if you created a backup folder, you can add it to the list.

For details, see Managing Deployment Contributions.

Layout Preferences
Set the default values for laying out graphical elements on the Process Editor canvas.

Select Window > Preferences > Process Developer > Layout to view these preferences.

The Layout preferences page allows you to do the following:

• Select an editing style defining default visual process properties.

• Define defaults for Auto Layout mode.

• Define defaults for Expand/Collapse Containers layout.

Editing Style and Stylesheets

Process Developer Preferences 75

This panel specifies the default visual properties for new BPEL processes. The default editing style is BPMN
for modeling BPEL processes in the Business Process Model and Notation language. BPEL processes
visually resemble BPMN diagrams.

Select Classic for legacy Process Developer visual representations of activities. See What is Process
Developer Classic Style?

If you select BPMN for the editing style, you can also set BPMN or BPEL. In this panel, you can set whether
you want to use the standard BPMN notation or the BPEL-centric version of BPMN. That is, the icons are
mostly standard BPMN, consistent with the palette in older Process Developer versions.

For details, see Comparing the BPMN-Centric and BPEL-Centric Tool Palettes and Which Edit Style to Choose:
BPMN-Centric or BPEL-Centric?.

Under Stylesheets, you can select Other for a stylesheet and edit the stylesheet file in a text editor to change
a default value. The change applies to all processes. For example, you can set a border for the receive
activity icon. In any BPEL process, you can remove the border for an individual receive activity, if desired.
Note that the Classic stylesheet contains some properties that apply to only one version of BPEL, either WS-
BPEL 2.0 or BPEL4WS 1.1. The BPMN stylesheet applies only to WS-BPEL 2.0.

For a description of visual properties, see Setting Visual Properties and Using Your Own Library of Images.

Auto Layout

The main Process Developer toolbar contains an Auto Layout button that organizes graphical elements on
the process canvas into a grid that best fits the display area.

In this panel, set the default values for laying out the graphical elements (for example, activities and
containers).

The Auto Layout Methods are available from the Auto Layout toolbar button. For details, see Process
Developer Menus and Toolbars.

Make additional Auto Layout preferences as follows:

Orientation: Horizontal or vertical Select the primary axis for your process diagrams.

Size of margins for containers Set the size, in pixels, for interior margins for scopes, sequences, and other
containers.

Spacing between levels and nodes Set the size, in pixels, for vertical (level) and horizontal (node) spacing between
activities.

Expand/Collapse Containers

In this panel, set the default values for object movement and link style of the container activities: Sequence,
If, While, Pick, Flow, Scope, For Each and Repeat Until. For details, see Showing and Hiding Activities.

Auto Move When a container is collapsed, objects fill in the empty space. When a container is expanded,
objects move out of the way.

Auto Move Expand When a container is expanded, objects move out of the way

Auto Layout After a container is collapsed or expanded, objects are laid out along an invisible grid

76 Chapter 3: Getting Started with Informatica Process Developer

No Move No objects move when a container is collapsed or expanded

Collapsed Link Style Sets the solid, dashed or dotted style for links to and from activities within a collapsed
container. A style that differs from other link styles provides a visual cue for a hidden activity
or container.

Activity Context Menu

By default, all relevant Eclipse context items are displayed in the right-mouse button menu of an activity on
the Process Editor canvas.

To hide these items, uncheck Show Non-Process Developer Context Menu Items.

You can hide:

• Compare with

• Debug as

• Profile as

• Replace with

• Run as

• Team

• Validate

• Wikitext

Process Editor Tabs

You can hide the Fault Handlers, Event Handlers, and Source tabs of the Process Editor. Hide these items by
removing the check mark from Show tabs other than Process Activities.

Relationships View Preferences
Set the default layout for Relationships view, which shows you a graphical representation of dependencies
and references of BPEL, WSDL, XSD, and other artifacts in relation to the file open in the editor.

The Relationships view shows you a graphical representation of dependencies and references of BPEL,
WSDL, XSD, and other artifacts in relation to the file open in the editor.

Set the preferences as follows:

• Depth Limit. If a file has imports and the import has imports, you can see these different levels. The
default depth limit is two, for one file importing another.

• Layout Options. Several graphical layout styles are available. Select the one that works best for the file
that is open in the editor. The default is a Directed graph, which is like a tree, but with better horizontal
control.

Process Developer Preferences 77

Tasks and Problems Preferences
You can enable and create your own tags for tasks.

Select Window > Preferences > Process Developer > Tasks and Problems to view these preferences.

Enable user-
defined task
tags

Select the check box to use your own tags for creating tasks.

Add a task tag Add a tag, and then use the tag in an activity's Comment dialog. The text is added as a Task in
Tasks view. It is also part of hover help for the activity. For details, see Add Task Tag. Process
Developer provides two default tags: @todo, with a Normal priority and TODO with a High priority.

Enable error
problems

Select this check box to display all validation errors when you save your file. A validation error
refers to an invalid BPEL element definition. For example, if you drag a Receive activity to the
canvas without specifying the partner link, operation, and variable, error problems are generated for
each missing attribute. If you do not want to be reminded of problems, deselect this check box.
Before simulating execution, be sure to enable error problems and make corrections.

Enable warning
problems

Select this check box to display all validation warnings when you save your file. A validation warning
can refer to unused resources, such as variables and partner links, unsupported expression
languages, or other potential errors. If you do not want to be reminded of warnings, deselect this
check box.
If your processes use Correlation Sets, it is highly recommended that you enable warning problems.
A warning problem appears if correlation is missing from activities that handle correlated
messages.

Enable info
problems

Select this check box to display all information messages when you save your file. If you do not
want to be reminded of information messages, you can deselect this check box.

Identity Chooser Preference
Select a group from your enterprise's directory. Fill in the details for the service that identifies your
organization's group names. Process Developer communicates with the service to present Group Names in
certain activities

Select Window > Preferences > Process Developer > Identity Chooser to view the settings page.

This preference, which allows you to specify the location of an identity service, is currently used only with the
People activity, an activity that incorporates human interaction within the process. For details, refer to Human
Tasks within the Process Developer Help.

You can set an endpoint and credential for two identity services: the Identity Chooser used for group member
selection and the Admin Service used for creating a people query in the Process Deployment Descriptor
Editor.

Identity Chooser

When the Process Server is running, you can open the Process Deployment Descriptor Editor, and on the
People tab, there is a selection for the Identity Chooser dialog. When you select Refresh, this action submits
a request to the Identity Service enabled in Process Server. The list of group names from your organization's
directory, or from your file-based identity service, is retrieved. The group names can be selected for a Logical
People Group during deployment.

78 Chapter 3: Getting Started with Informatica Process Developer

On the Identity Chooser page of Process Developer Preferences, you can define communication details for
accessing the identity service needed for the Identity Chooser as follows:

Endpoint Modify the default host:port section of the Endpoint URL for the Process Server. The default URL points
to a server running on localhost:8080. Modify only the host and port values to point to your server.

Username Type in the user name credential, if needed, to access the Process Developer aeIdentityService. Your
Process Server administrator can provide the user name and password associated with the
abIdentityListConsumer role that enables security for the identity service from Process Developer.
Information about this role is included in the Server, Installation, Configuration, and Deployment sections
of this help.
Note that the user name and password may be the same one you type in when deploying a BPR file as a
Web Service, as described in Creating and Deploying a Business Process Archive Contribution.

Password Type in the Password for the above user name

Using the Identity Chooser

Use the Identity Chooser to return a list of groups in your organization for selecting Logical People Groups in
a People activity.

Before selecting the Identity Chooser, you must do the following:

• Ensure that the Process Server is running, described in Setting Up the Embedded Process Server.

• Ensure that the Informatica Process Identity Service Preference page is filled in correctly on the server

For details on the Identity Chooser, refer to the Human Tasks (Process Developer) Guide.

Admin Service

The Admin Service communicates with the server to retrieve configuration settings for creating a people
query for a Logical People Group. Refer to the descriptions above for Identity Chooser for adding
communication details.

Your Process Server administrator can provide the username and password associated with the abAdmin
role needed for the ActiveBpelAdmin service.

Additional Preferences
In addition to the general workspace preferences described in Process Developer Preferences, refer to the
following preference pages, described in other sections:

• Remote Debugging Preferences

• Simulation Preferences

Process Developer Preferences 79

Accessing Process Developer Help
Process Developer has many online help features:

Help Feature Description

Help menu Select the Help menu to view the Welcome page, Tips and Tricks, and Help Contents

Welcome page Provides getting started help for new users

Help Contents From the Help menu, displays all help topics in an expandable/collapsible list

Cheat sheets From the Help menu, opens a view containing common, self-guided, getting-started tasks in a step-
by-step format

F1 Help Press F1 on any view or dialog box to view a context-sensitive help topic

Hover Help Rest your mouse on an item in a list, toolbar button, or graphical display to view property details

Help Search Search for help topics by selecting the Search menu or toolbar icon

80 Chapter 3: Getting Started with Informatica Process Developer

C h a p t e r 4

About Interfaces Service
References and Local WSDL

Every BPEL process requires an interface for Web interaction activities, such as receives and invokes. The
interface is a Web Services Description Language (WSDL) file that describes the services and messages to
be exchanged in an orchestration. Process Developer provides easy ways for you to add, import, create, or
use built-in WSDL files, namely through:

• Importing a local WSDL file into your project.

• Importing a reference to a remote WSDL.

• Creating a new WSDL file based on a new participant.

• Creating a new WSDL file based on sample data, schema, or Java interface.

• Using a system service.

When you add a new WSDL file to an orchestration project, it is available to all processes.

By adding WSDL files and schemas, you have a convenient registry of namespaces, messages, type
definitions, sample data, and other elements to use across BPEL processes. To make your work quick and
easy, wizards help you jump-start process design by automatically including the WSDL elements needed.

In addition, when you add a WSDL, you can add sample data files for message variables and make the data
available for testing and debugging your process.

To display WSDL interfaces, you can select Participants or Interfaces view.

WSDL files are XML-based files that contain the namespace declarations, type declarations, messages, and
other element definitions that you can use to create business processes. WSDL files conform to the Web
Services Description Language standard authored by a World Wide Web Consortium committee.

Process Developer supports Web Services Description Language (WSDL) 1.1, a W3C Note dated 15 March
2001. For more information about this standard, see http://www.w3.org/TR/wsdl.

Importing a Local WSDL
As described in Creating an Orchestration Project, you can add folders for managing process resources to
your project in the Project Explorer. One of these folders is for WSDL. You can import WSDL to this folder, or
anywhere in the Project Explorer, to have a locally available WSDL for use in your processes.

Once you import a WSDL and its schema into Project Explorer, the port types are added to Participants and
Interfaces views.

81

To import a WSDL:

1. In Project Explorer, right-mouse click on a wsdl folder (or select a project).
If the WSDL imports a schema or other WSDLs, import the files first to avoid seeing validation warning
messages.

2. Select Import.

3. In the Import dialog, select File System for the Import source.

4. Browse to your WSDL and select it.

5. Note that the WSDL port types are added to the Participants view.

You can manage WSDL files as follows:

• Viewing Key Elements of a WSDL Tree

• Deleting a WSDL from Your Project

Viewing Key Elements of a WSDL Tree
The Project Explorer displays the names of imported WSDL files. Because a WSDL file is an XML file, you can
expand or collapse the file view in a tree structure to see elements.

To display the WSDL file as an XML tree structure, click the plus sign next to the file name to show the
elements in the file:

• Bindings and operations

• Messages

• Partner link types, roles, and operations

• Port types and operations

• Properties and property aliases

• Service names and ports

Editing a WSDL in the WSDL Editor
You can double-click a WSDL file in the Project Explorer to view and edit it in the WSDL Editor. Double-click an
operation or port type to highlight it in the editor.

Your WSDL changes can affect the references in BPEL files, and you may need to resolve them. For example,
if your BPEL process refers to a partner link role name that you change, the role name is marked as
Unresolved Reference, and you must select a new name from the Properties view to ensure your process is
valid.

Deleting a WSDL from Your Project
You can delete a WSDL you no longer need. Select the WSDL file from the Project Explorer, right-mouse click,
and select Delete. Any processes using the WSDL become invalid, since the project location is no longer
valid. The partner link type and port type entries are removed from the Interfaces view.

82 Chapter 4: About Interfaces Service References and Local WSDL

Importing a Service Reference
Import a remote WSDL from your server or repository. Keep your local copy in synch with it.

A service reference is a project-based catalog of external WSDL services. You can import external services to
a project, while still maintaining a connection to the external location. A service reference is treated as the
original location, but resolved locally.

Using a service reference lets you maintain your local copy of WSDL and schema while maintaining an
awareness of changes being made to the original files. This technique allows you to decide how best to
handle updates within your local copy.

By importing a service reference, you can:

• Compare the local WSDL file with the original source.

• Update from the original source by manually editing your local copy if the changes do not adversely affect
the processes that import the WSDL file.

• Use the WSDL just as you use a WSDL imported into the WSDL folder.

To import a locally-connected copy of an external WSDL:

1. Right-mouse click on the Service Reference folder in your orchestration project and select Import.

2. Paste in the URL of a WSDL file that is on your network server, intranet, or Internet.

3. Associate imported services with a Service Group folder. A Service Group folder contains the imported
service and all of its imports, such as WSDL and XSD files. The suggested service group name indicates
the location and name of the original WSDL. When you select Finish on the Import dialog, you will see
the service group within the Service References folder.

4. Enable the checkbox for Format file after import to make the XML more readable. The import wizard
tries to indent child elements and create line breaks.

To compare a Service Reference with its Original Source:

To compare a local WSDL file with its original source, right-mouse click on the Service Group folder and
select Compare with > Import Source. If the files are not in sync, a WSDL file appears in a Compare window.
Click on the file to view the differences between the local and the original copies. You can only view the
differences. Editing is not allowed.

Tips on Using Service References:

• If the original file is updated with new or changed port types or schema changes, and you edit your local
copy to match the original, a process importing the WSDL will contain errors

• If the original file becomes unavailable, you should copy the WSDL or schema into your project and then
change the import location to point to the project location. This avoids the potentially long waits for
remote validation to occur. You change the import location in the Properties view of the import. Imports
are listed in the Outline view.

• For details on setting timeout values for WSDL validation, see Cache and Timeout Preference.

Importing a Service Reference 83

Creating a New Interface
You can use the New Interface wizard as a quick start to generate a basic WSDL file if you do not already
have one.

If you do not have a WSDL file, you can use the New Interface wizard to generating the basics of a WSDL file.
The starting point for generating a WSDL file is to have one or more of the following as a basis for input and
output messages of a port type and operation:

• XML schema

• Sample XML data

• Java interface

To create a new interface:

1. Do one of the following:

• Add an XSD or XML file to a project folder within an orchestration project. These files should describe
data types, and must include a namespace definition.

• Follow the steps described in Creating a Java Interface.

2. Display the New Interface wizard, either by creating an interface for a participant (Participants view) or
by selecting the New Interface icon from the Interfaces view toolbar.

3. In the New Interface wizard, select whether the new operation is synchronous or asynchronous:

• Request-response operation

• One-way operation

4. Select the data type you want to use to describe each of the operation's messages:

• XML schema

• Sample XML

5. Browse to the schema or sample and select it. For a schema, select the element to use for the message.
If the wizard reports errors, verify that your data file contains valid definitions, declarations, and syntax.
For examples, see the sample data files and schema that are in the tutorial project.

6. View the message in the preview.

7. Based on the names you selected for input and output, the wizard creates the required WSDL elements.
You should change the Port Type, Operation, and Target Namespace elements to more meaningful
names.
The target namespace is a convention of XML Schema that enables the WSDL document to refer to
itself. It is a value that is unique, and is different from all other namespaces that are defined.

8. Save the new WSDL file with the suggested name, or type in a new name and save the file to a project
location.

9. View the generated WSDL in the WSDL editor to make corrections and additions.

The generated WSDL is a good starting point for a process interface. You can to modify the WSDL as follows:

• Correct or add a schema location.

• Add fault names and messages.

• Add another operation and add to the participant (or partner link type) generated. (A partner link type can
have two roles. They represent two different services that communicate asynchronously.) Alternatively, in
the Participants view add a callback interface. See Creating a New Callback Interface.

• Replace the tns prefix with a meaningful one. When you use the operation wizard to create activities, the
prefix is automatically added to the process.

84 Chapter 4: About Interfaces Service References and Local WSDL

Creating a Java Interface
Process Developer provides an easy way for Java developers to use existing Java projects to build Java
endpoints in a BPEL process. Your project can include a POJO (plain old Java object) or EJB. (A JavaBean
can be used for all application servers except for Apache Tomcat). You can either start with or build a
package that includes an interface and a Java class that implements the interface.

Using one of the techniques that Process Developer provides, you can automatically generate a WSDL and
schema from your Java interface. The WSDL includes the port type, operation, and messages to create
receives, replies, and invokes.

Process Developer also provides built-in features to automatically include all the JAR and other files required
for deployment to the server.

Stateless or Stateful Invokes

Using the Java Interface, you can easily create invoke activities in BPEL. These invokes can be stateless or
stateful.

• A stateless invoke means that each time the Java code is called from the BPEL process, a new instance
of the Java class is instantiated.

• A stateful invoke is based on a Java class that is marked implementing the java.io.Serializable
marker interface. With a stateful invoke, the process uses the same Java instance throughout the lifetime
of the partnerLink useing it. Multiple invokes on the same POJO partner link result in method calls on the
same POJO instance.

Setting up Your Java Project in Process Developer
To create a Java interface for a BPEL process, you can start with an existing Java project or create a new
Java-enabled orchestration project.

Setup a Java project a Java Project:

1. Select File > New > Orchestration Project.

2. Name your project and click Next.

3. Select Java Enabled Orchestration.

4. In the orchestration project, import or create a new Java Project. The Java project must contain:

• A Java interface with at least one method.

• Concrete implementation of the Java interface.

Tip: If you have a Java project open in Eclipse, you can switch perspectives from the Eclipse Java
Perspective to Process Developer. Then in the Project Explorer, right-mouse click on the project, and select
Add Orchestration Nature.

When you add an orchestration nature to your Java project, a background validation builder ensures that you
are aware of errors and problems in your process, imported WSDLs, and its other resources. Also, the
builders automatically synchronize the generated WSDL with changes that might be made to the source Java.

After adding the Java project to Process Developer, you can generate a WSDL that is the BPEL-oriented
interface needed to create activities. For details, see Generating WSDL and Schema from a Java Interface.

See also:

• Constraints for your Java Project

• Creating a Java Interface

Creating a Java Interface 85

Constraints for your Java Project
The following requirements exist for Java classes used in a Java Interface implementation:

• The Java interface's method parameter types are limited to JavaBeans and the following primitive Java
types:

- byte, short, int, long, float, double, boolean, char

- Byte, Short, Integer, Long, Float, Double, Boolean, Character

- String

- BigInteger

- Date

• Java checked exceptions are modeled as faults, but the Java method must throw the same exception at
runtime for the fault to be properly thrown.

• The Java interface to the WSDL generator is performed by JAXB, and support for JavaBeans is inherited
from JAXB.

• Arrays and Collections are not currently supported as arguments to Java methods; however, Collections
are suwpported if they are wrapped in JavaBeans.

• The class that implements the interface must have a default constructor.

• The class that implements the interface can be stateless or stateful. A stateful class is one that is marked
implementing the java.io.Serializable marker interface.

See also Creating a Java Interface.

Generating WSDL and Schema from a Java Interface
No WSDL? You can use the New Interface wizard as a quick start to generating the basics of a WSDL.

Generating WSDL and Schema from a Java Interface

Once you have set up your Java project in Process Developer's Project Explorer, you can generate WSDL and
schema. A BPEL process requires a WSDL interface, and Process Developer automatically generates it from
your Java interface.

Additionally, Process Developer automatically synchronizes the generated WSDL with any changes that you
might make to the source Java.

To generate WSDL and schema:

1. In your Java orchestration project, create a new BPEL process in the bpel folder.

2. In Participants view, right-mouse click on Partner Service Provider and select New Partner Service
Provider.

3. In the Partner Service Provider dialog, select Generate Interface.

4. In the New Interface wizard, select From a Java Interface.

5. Browse to your Java interface and select it.

6. Notice that the new WSDL is generated in the wsdl folder of your project.

7. Select Finish, and then select OK in the Partner Service Provider dialog.

WSDL Generation

The following actions occur when you generate a WSDL and schema from a Java interface:

• All methods in the Java interface manifest as WSDL operations.

86 Chapter 4: About Interfaces Service References and Local WSDL

• All method arguments manifest as top-level XML schema element declarations. The arguments are
generated with generic names, such as "argl_string". To generate actual argument names, see Generating
Argument Names for Schema Elements.

• The method return type manifests as a top-level XML schema element declaration.

• All declared exceptions on the method manifest as WSDL faults.

• The WSDL is commented with "Do Not Edit" since it is a derived file that can be automatically updated.

The resulting WSDL contains the following constructs:

• One Partner Link Type named [JavaInterfaceName]PLT
• One Port Type named [JavaInterfaceName]

• One Operation within the port type for each method in the Java Interface

• Two messages for each Java interface method:

- One message for the method's arguments named [methodName] with a single part of the same name.

- One message for the method's return value named [methodName]Response with a single part of the
same name.

• Two embedded schema elements for each Java interface method:

- One element to model the Java interface method's arguments named methodName.

- One element to model the Java interface method's return value named [methodName]Response.

• A schema complexType and a schema element for each Java class used by the interface.

Schema Generation

• Top-level element declarations are created for each of the explicit class references.

• The implicit declarations manifest as top-level complexTypes and are reused throughout other parts of
the schema (if applicable).

More Ways to Generate WSDL and schema:

Technique to Generate WSDL Result

In the Interfaces View, select the New Interface toolbar
button.

The New Interface Wizard opens for you to select a Java
Interface

In the Project Explorer, select the interface from your
Java project. From the right-mouse menu, select
Generate WSDL

WSDL and schema are generated in the location you
select

From your Java project, drag and drop a Java interface
method to the Process Editor canvas

The Create Activity wizard opens so that you not only
generate WSDL and schema, you also create a new Web
Services activity (such as a receive).

See also:

• Updating Your Java Project and Your BPEL Process Concurrently

• Creating a Java Interface

Creating a Java Interface 87

Generating Argument Names for Schema Elements
When you generate a WSDL file, as described in Generating WSDL and Schema from a Java Interface, a
method’s argument are generated as schema elements. The elements have generic names, such as
arg1_string, as shown:

<xs:element form="unqualified" name="arg1_string" type="xs:string"/>
You can generate schema elements with the actual argument names by adding a JAR file called ae_rt.jar
to the project's Java build path list of external jars and adding annotations to your interface prior to
generating the WSDL.

To generate argument names:

1. In the Project Explorer, right-mouse click on your project, and select Properties > Java Build Path.

2. Select the Libraries tab.

3. Select Add External JARs.

4. Browse to [Designer Installation]\designer\plugins\org.activebpel.enginep_[version_number]
\server\shared\lib

5. Select ae_rt.jar, as shown:

6. Open your Java interface file and add the @AeWsdlParam annotation to each argument. For example:

Public interface IMyInterface {
 public void execute(
 @AeWsdlParam("someValue") String someValue);
}

7. Generate (or regenerate) a WSDL by right-mouse clicking on a Java interface, and selecting Generate
WSDL.

Process Developer generates the schema element with the argument name; for example:

<xs:element form="unqualified" name="someValue" type="xs:string"/>

88 Chapter 4: About Interfaces Service References and Local WSDL

Notes:

• You should not edit the generated WSDL. If you update the Java interface, you must regenerate the WSDL.

• You do not need to deploy ae_rt.jar. It is already on the server's classpath.

• If you upgrade Process Developer to a new version, you must remove the older version of ae_rt.jar and
re-add the new one.

Updating Your Java Project and Your BPEL Process Concurrently
You can actively develop both the Java code that is being invoked and the BPEL that is invoking it. Process
Developer regenerates the WSDL and schemas whenever the source Java interface or classes change. For
example, if you add a new method to the Java interface, Process Developer automatically regenerates the
generated WSDL and all generated schemas.

If the WSDL changes, you will see unresolved WSDL references indicators in your BPEL process. Error
messages indicate the fixes you need to make for each activity using the WSDL.

See also Creating a Java Interface.

Deployment Requirements for a Java (POJO) Endpoint
Select the Java class that will be created and invoked at runtime.

For details on EJB Service, see Deployment Requirements for Java (EJB) Endpoint.

After you develop a BPEL process with a WSDL based on a Java interface, you're ready to deploy by creating
JAR files. You will then provide deployment details specific to the Java interface. When you create the
Process Deployment Descriptor (PDD) file for the process, you must provide details for the Java class that is
created and invoked at runtime.

To provide required POJO deployment details:

1. Open the PDD Editor, as described in Creating a Process Deployment Descriptor File.

2. On the Partner Links tab, select the partner role that invokes the Java interface.
Notice that the selection is set to Java Service for the invoke handler.

3. In the Java Invoke Handler Properties dialog, select the Java class that is created and invoked at
runtime.

4. Select the Java classpath to be used when instantiating and invoking the Java class. The classpath
includes not only the JAR (or local "src" workspace directory) that contains the class being invoked, but
also any JARs that contain classes referenced directly or indirectly by that class.
Note that the Inherit server classloader checkbox is selected by default. If you disable this option, you
will only have access to the JARs on your classpath, not the JARs that are deployed to the server. You
can also select Parent classloader last when inheriting Process Server classloader.

Deployment Details

When you select a Java invoke handler for the partner role implementing the Java interface, the Java
resources are added to the resource catalog and deployed with the process. This includes all of the JARs
included in the classpath.

Also, there is no endpoint reference information needed for a Java service.

See also Creating a Java Interface.

Creating a Java Interface 89

Deployment Requirements for Java (EJB) Endpoint
Select the Java class that will be created and invoked at runtime.

For details on setting up and designing a BPEL process with an EJB service, see Creating a Java Interface.

If you have developed a Web service implemented as an EJB, you can deploy the JAR files and other
resources using the partner role invoke handler called EJB Service. Note that in the PDD Editor, the invoke
handler detects your EJB project as a POJO and automatically selects Java Service. Be sure to select EJB
Service.

Also note that an EJB Service cannot be used on Apache Tomcat. It is supported on other application
servers.

The EJB Service handler performs a JNDI lookup to obtain the EJB home to instantiate the object used to call
the method.

Note: Effective in version 9.2.6, support for WebLogic and WebSphere in ActiveVOS is deferred and is
unavailable.

Deferred functionality is either not available or not supported in the current release. Informatica intends to
reinstate it in an upcoming release, but might choose not to in accordance with changing market or technical
circumstances.

To fill in the EJB Service Invoke Handler Properties Dialog:

1. For a JNDI Name, specify the JNDI name as defined in your application server's EJB file, such as the
JBOSS ejb-jar.xml file, the WebLogic weblogic-ejb-jar.xml file, or the WebSphere ibm-ejb-jar-bnd.xml file.

2. For EJB Home, specify the home interface as defined in application server's ejb-jar.xml file.
This property is required for WebSphere, but is optional for JBoss and WebLogic.

3. In the Classpath box, select the Java classpath that is used when instantiating and invoking the Java
class. The classpath includes not only the JAR (or local "src" workspace directory) that contains the
class being invoked, but also any JARs that contain classes referenced directly or indirectly by that
class.
Note that the Inherit server classloader checkbox is selected by default. If you disable this option, you
will only have access to the JARs on your classpath, not the JARs that are deployed to the server.

When you select an EJB invoke handler for the partner role implementing the EJB interface, the Java
resources are added to the resource catalog and deployed with the process. This includes all of the JARs
included in the classpath.

Also, there is no endpoint reference information needed for an EJB service.

Running a BPEL Process with a POJO EJB Endpoint
At runtime, when an invoke activity based on a Java endpoint executes, Process Developer invokes the Java
method as follows:

• Unmarshalls the WSDL message into Java objects. (For a POJO, reflection is used. For an EJB, a JNDI
lookup is used.)

• Instantiates the concrete Java class.

• Invokes the appropriate method, based on the WSDL operation name.

• Marshalls the method return value into a WSDL message (or marshalls the Java exception into a WSDL
fault).

90 Chapter 4: About Interfaces Service References and Local WSDL

Comparing the POJO EJB Interface to a Custom Java Invoke
Handler

The Java Interface is designed for ease-of-use. A WSDL is generated for you and the JARs and other
resources are automatically deployed in a BPR file. However, you must keep the Java project simple by
following the requirements outlined in Constraints for your Java Project.

If your BPEL process requires custom Java code that handles asynchronous call-backs, policy assertions,
and other details, you can use the Java wrapper custom invoke handler, as described in EJB/Java Invoke
Handler Properties Dialog.

Using the Interfaces View to Create Activities
For an easy starting point for creating activities, see Participants, where you can use options instead of using
Interfaces view. If you are not familiar with BPEL requirements for partner link types, you can begin in the
Participants view.

One of the key productivity features of Interfaces view is accessing WSDL operations for use in your process
designs. You can begin by creating an orchestration project, import your WSDL, and then from Interfaces,
drag a port type operation to the Process Editor canvas. For details, see Creating an Activity by Starting with a
WSDL Interface.

• If no WSDL elements exist in Interfaces view for an activity you need to create, select New Interface from
the Interfaces toolbar. A wizard appears that helps you create a new WSDL. For details, see Creating a
New Interface.

• For system service activities, such as sending an email or retrieving a user from an identity service, use an
operation from a built-in WSDL. For details, see System Services Interfaces.

• To use a Java interface, see Creating a Java Interface

Interfaces Toolbar Options
Use the toolbar options to add a new interface or filter interfaces to show only the ones you are currently
interested in.

1 Creating a New Interface

2 Filtering the Interfaces View

Using the Interfaces View to Create Activities 91

Filtering the Interfaces View
Create or edit a Reference Set. Also, select a Reference Set to filter Web Interfaces view.

By default, Process Developer shows all interfaces for all projects in the workspace. If you have several BPEL
files open at the same time, you can filter the Interfaces view to display only the interfaces relevant to the
BPEL file in focus or the project in focus.

You can use a filter in the following places:

• Workspace. All interfaces.

• Project. Interfaces from the currently open project.

• Process. Interfaces from the BPEL file in focus.

• System Services. Interfaces for invoke activities.

System Services Interfaces
When you select System Services in the new Participant dialog or in the filter in Interfaces view, you see
interfaces that are defined within Process Developer WSDLs. These WSDLs are exposed so that you can
create activities that can communicate with the Process Server.

The following is a description of system services you can use in receives, replies, invokes, and People
activities.

The following is a description of system services you can use in receives, replies, and invokes.

Partner Link Type/Operation Description

Process Consumer Services

Alert Service

Event Action

Monitoring Alert Service

REST Service For details, see Using a REST-based Service

Retry Invoked Servic For details, see

Guide Designer Service Call Step Service For details, see the Process Developer Guide Designer documentation.

Task Custom Notification Creates a custom process to execute for a People activity's notification
deadline. For details, see Process Developer Human Tasks Help.

Partner Service Provider Services

Process Developer Admin Operations The operations provide an API to Process Developer administration
functions

REST Service For details, see Using a REST-based Service

Send Email For details, see Email Service

92 Chapter 4: About Interfaces Service References and Local WSDL

Partner Link Type/Operation Description

Server Log Commen

Shell Command Execute

Creating a WSDL File with Extensions for BPEL
Not all WSDL files include the extensions required to create executable BPEL processes. The extensions are
partner link types, properties, and property aliases.

Tip: Use the Participants view for automatic creation of partner link types.

You can use a Process Developer wizard to create partner link type definitions that are required for creating
executable BPEL processes.

When you create new partner link types, Process Developer asks if you want to add them to an existing WSDL
or create a new WSDL. If you create a new WSDL, it is automatically added to the project and catalogued in
Interfaces. The WSDL contains only the partner link type definitions.

In addition, a wizard helps you create property and property aliases to be used for correlation sets. These
extensions can be added to an existing WSDL or to a new WSDL.

For details, see Partner Link Type and Adding Variable Properties and Property Aliases.

Using Sample Data for WSDL Messages
Select the source location for the sample you want to add. Select a workspace resource, such as sample
data, WSDL, or XSL file.

WSDL files define operations that receive an input message and, optionally, return an output message and a
fault message. In the Participants or Interfaces view, you can add sample data values for message parts.
When you are ready to test your process, you can load the sample message part values into your variables to
simulate the actual messages exchanged by Web services. As you execute and debug your process, you can
inspect the input, output, and fault data values as they are processed.

By adding sample data values to WSDL messages, you have a default set of data across all projects. The
Project Explorer keeps track of all sample files and their locations and presents them to you when you are
loading values into message variables.

Adding or Editing a Sample Data Value for a Simple Type Message
Part

You can manage WSDL, schema, and XML data files in the Interfaces view to make your design work faster
and easier. Use this dialog to add sample data to a WSDL simple-type message or edit sample data for the
simple type variable.

In the Participants or Interfaces view, you can add a sample data value for a simple type message part. When
you are ready to test your process, the sample message part value is automatically loaded into your variable.

Creating a WSDL File with Extensions for BPEL 93

You can also modify the value in Process Variables view as well as override the value during process
simulation.

To add a single sample data value:

1. In the Participants or Interfaces view, expand a message with a part that is a simple type, such as
xsd:int.

2. Double-click the variable to open the Add Sample Data dialog, as shown.

3. Type in a value and click OK. Notice that the value is displayed as a child node beneath the message
part.

4. As needed, double-click the sample to edit it.

You can add multiple data values and then select one as the default by right-clicking on the sample data
value. You can remove any values you do not want.

Generating a Sample Data File
Select the source location for the sample you want to add. This is a workspace resource such a sample data,
WSDL, or an XSL file.

When you want to simulate process execution for a process with complex messages, you can generate
sample data files for the messages. A sample data file is an XML file structured with message part elements
or types that were defined in the schema declared in the WSDL namespace. The following is an example of a
partial sample data file for a purchase order output message. Code similar to this example is automatically
generated for you, based on the schema type or element.

<purchaseOrders
 xmlns="http://samples.cxdn.com/po"
 xmlns:tns="http://samples.cxdn.com/po">
 <purchaseOrder tns:orderDate="2005-09-05">
 <shipTo tns:country="US">
 <name>Jay Lor Jr.</name>
 <street>100 My Street</street>
 <city>My City</city>
 <state>CT</state>
 <zip>06484</zip>
 </shipTo>
 ...
 </purchaseOrder>
</purchaseOrders>

To generate sample data:

1. In Participants or Interfaces view, expand a message with a complex part, and select a message part for
which you want to generate a sample XML data file.

2. Right-click on the message part and select Generate Sample.

94 Chapter 4: About Interfaces Service References and Local WSDL

3. In the XML Data Wizard, fill in your preferences for generating the sample data. For details, see Using the
XML Data Wizard. Click Next.

4. Name the file, and save it to the sample-data folder in your orchestration project.

You can generate multiple sample data files for the same message part. You can name the files uniquely, or
you can use the same filename and store the files in different folders. Process Developer keeps track of file
locations.

Adding a Sample Data File to a WSDL Message
Select a workspace resource, such as sample data, WSDL, or XSL file.

You can add sample data files to your orchestration project and then add sample data files to WSDL
messages that are complex types. You can select a default sample for all processes you create in Process
Developer. On a process by process basis, you can add sample data to process variables in addition to or
instead of using the samples added to a project or Interfaces view.

To add a sample data file to a message variable:

1. In Participants or Interfaces view, expand a message with a complex part, and select a message part for
which you want to add a sample XML data file.

2. Double-click the complex part to open the Project dialog.

3. Select the source project location for the file.

4. Browse to the file, select it, and click OK.

The first file you add is set as the default sample, but you can add additional files and select one of them as
the default.

Selecting a Default Sample Data File
You can add several sample data files for each message part in Participants or Interfaces view. You can
select one sample file as the default file loaded into process variables.

In Participants or Interfaces view, expand a WSDL message. To select a default sample data file, right-mouse
click on a sample file and select Default Sample.

Viewing the XML Structure of a Sample Data File
To view the XML text of a sample data file that added to a WSDL message in Interfaces view, right-mouse
click on the data file name and select Open.

Removing a Sample Data File
To remove a sample data file from a WSDL message in Participants or Interfaces view, right-mouse click on
the data file and select Remove Sample.

If you remove the file set as the default file, the first file in the list becomes the default.

Finding Where a WSDL Component is Used
In Process Developer, you can search for a WSDL component with the Find Where Used option.

Finding Where a WSDL Component is Used 95

The Find Where Used search helps you quickly locate a WSDL component reference in a Process Developer
project file.

When you build BPEL processes in Process Developer, you reference the components of the WSDL files. You
can search for a particular WSDL component to find the BPEL files that are referencing the component. This
search is useful if a WSDL file changes because you can search for and update the references.

To Use Find Where Used:

1. Select a WSDL component, right-mouse click, and select Find Where Used.

2. Select the scope of the search:

• Workspace: all project files in the workspace folder

• Working Set: a named, customized group of files and folders

3. A list of project files matching the search criteria appears in the Search view. If this view is not visible
(it's usually in the group of tabs in the bottom-right corner of the Process Developer window), select it
from the Window > Show View menu.

4. Double-click a file to open it.

In the Search view, you can perform more search functions, such as search again, use a previous search, and
search within search results. For more information, press F1 in the Search view.

Using Process Search
Process search helps you locate a WSDL component referenced in an ActiveVOS project file.

In Process Developer, you can search for the use of WSDL components within your BPEL files.

You can perform two kinds of searches:

• Search for a string or pattern using the Process Search tab in the Search dialog.

• Quick search for a WSDL component with the Find Where Used option. For more information, see Finding
Where a WSDL Component is Used.

Process search helps you locate a WSDL component referenced in a BPEL file. If you do not remember the
full name of the component, you can search using wildcards.

96 Chapter 4: About Interfaces Service References and Local WSDL

To perform a Process Search in the entire Workspace or in a Working set:

1. Select Process Search from the Search menu.

2. In the Search for panel, select the type of WSDL component:

• Message

• Partner Link Type

• Namespace

3. For a message or partner link type search, do the following:

• If desired, type in a search string, optionally with wildcards.

• If desired, further refine the search by providing namespace information.

4. For a namespace search, if desired, type in a search string, optionally with wildcards.

5. Select the scope of the search:

• Workspace, namely all BPEL files in the Project Explorer that were not imported from outside the
workspace.

• Working set, which is a named, customized group of project files and folders.

• For details on using Selected Resources, refer to the next procedure.
6. Select Search.

7. A list of project files appears in the Search results view. If the Search view is not visible, select it from
the Window > Show View menu.
In the following example, the search criteria had "messages starting with the string "a" in all namespaces
in the entire workspace," as indicated in the Search title bar.

Using Process Search 97

8. Double-click a file to open it.

To perform a Process Search with Selected Resources:

1. Display the Project Explorer view.

2. Select one or more files. When you open the Search dialog, the Select Resources option is selected.

3. Follow the procedure above, starting with Step 1.

In the following example, two files were selected in the Project Explorer before the Search dialog was
opened. The search criteria was for all messages in all namespaces.

98 Chapter 4: About Interfaces Service References and Local WSDL

C h a p t e r 5

Planning Your BPEL Process
To create a BPEL process, you need:

• An idea for an automated data exchange.

• A business partner with data to exchange with you.

• A flowchart type of plan that describes how you want to receive data, map data in assignments, invoke
operations, and reply to your business partner.

• WSDL files describing messages, operations, and properties that are referenced by the process.

• WSDL definitions for each partner in the process that are in existence or that you’ll create for your
process.

Using Top-Down or Bottom-Up Process Design
You can use Process Developer to design a process using top-down, bottom-up, or a combination of
techniques.

In the top-down technique, you sketch out your process by dropping down activities onto a canvas and
creating links between them. You then add the information that binds the activities to an implementation and
add decision-making to make your sketch a working process.

In the bottom-up technique, you use the definitions of the implementation that are available when you begin
creating a process. The bottom-up technique requires complete and valid Web Services Description
Language (WSDL) files. See Using WSDL References for Efficient Design for details.

In the combination technique, you can start a process with WSDL files already imported into your project. If
you need additional WSDL files, you add them using the Interface Wizard. See Creating a New Interface for
details.

Using WSDL References for Efficient Design
A BPEL process uses the definitions from Web Services Description Language (WSDL) files. WSDL files
contain the namespace, partner link types, operations, and messages needed to define process activities, and
WSDL files are required in order to create a valid, executable BPEL definition.

99

You can generate WSDL files in Process Developer or you can add them to the Project Explorer view of
Process Developer before you begin creating a process definition.

• WSDL files provide several key productivity features:

• You can drop a WSDL operation onto the Process Editor to automatically create an Web Service
interaction activity (Receive, Receive/Reply, Invoke, OnMessage, or OnEvent).

• You can automatically create the WSDL extensions required for a BPEL process if they do not already
exist (partner link types, properties, property aliases).

• You can use the WSDL definitions across processes.

Creating WSDL Extensions for BPEL
A BPEL process depends upon WSDL extensions that are unique to BPEL. Process Developer can create
these extensions automatically if they do not exist in your WSDL files. The extensions are partner link types,
properties, and property aliases.

• A partner link type defines the roles played by a service and the port type provided by the service. For
details, see Partner Link Type.

• Properties and property aliases are significant for correlating a group of messages in a process and can
also be used for any process variable. For more information, see Adding Variable Properties and Property
Aliases.

Starting a Process by Dropping an Operation onto the Process
Editor

You can begin designing a BPEL process by using the key productivity features in Process Developer. Using
either of the following starting points, you expose WSDL operations that can be dragged to the Process Editor
canvas to automatically create activities:

• Add the Web services and partners used by the process, with BPEL extensions automatically generated.
See Participants.

• Use your existing WSDL to create BPEL extensions. See Interfaces, Service References, and Local WSDL.

Importing WSDL Schema and Other Resources
Define the location of the resource file containing the target namespace.

A BPEL process must contain namespaces that point to WSDL and schema locations. Because one
namespace can have many WSDL or schema files associated with it, Process Developer identifies the correct
file by importing it.

You can import other resources you need for BPEL processes, such as XSL style sheets for use in creating
expressions and XML files used in resource catalog custom functions.

You can add imports manually or automatically.

100 Chapter 5: Planning Your BPEL Process

Automatically Importing WSDL and Schema Locations
Your WSDL and schema files can be located in many places and can share the same namespace. When you
specify a WSDL or schema location, Process Developer adds the namespace declaration to the BPEL process
and ensures that the namespace points to the correct reference.

Process Developer takes care of WSDL location and namespace declarations for you when you add a WSDL
file to Project Explorer and then create a Receive or Invoke activity by starting with an existing operation or a
new operation. For basic information on using the convenience of interfaces, see Participants and Interfaces,
Service References, and Local WSDL.

See also Creating an Activity by Starting with a WSDL Interface.

Manually Importing WSDL Schema and Other Resources
Define the location of the resource file containing the target namespace. Select a workspace resource, such
as sample data, WSDL, or XSL file.

If you import and open a BPEL process into Process Developer before adding a WSDL file to Project Explorer,
Process Developer reports unresolved references to port types because the WSDL is unknown.

The recommended practice for adding WSDL is to use Participants. For details, see Using the Participants
View.

You can add WSDL location and namespace manually. You can also add schema and other resources as
follows.

1. From Outline view, select Imports.

2. Right-mouse click and select Add > Declaration > Import.

3. From the Import Types list, select a type.

4. If you select XSL, the Type URI of the file is added. This type identifies the encoding language used in the
file as shown:
http://www.w3.org/1999/XSL/Transform

5. In the Location group, do one of the following:

• Select Project and browse to the Project Explorer folder containing the file.

• Select URL and type in a Web location of a file, such as:
http://www.tempuri.org/myFile.wsdl
or

http://www.tempuri.com/service.asmx?WSDL
Note that when the process is deployed and running, this URL must be available.

Notice that the target namespace is displayed for the WSDL or schema file. If you paste a pathname or
URL into the WSDL (or Schema) file location field, you can press the Tab key to see the target
namespace. Click OK when you are through.

6. In the Outline view, right-mouse click the Imports node, and select Refresh Imports.

To modify an import, double-click it, or in Properties view, click the Dialog (...) Button next to Location.

Process Developer adds the target namespace to the BPEL process and associates the namespace with a
default prefix. Also, the port types, operations, and partner link types defined in the WSDL are available for
use in the process.

The following illustration shows how the Process Developer displays a WSDL location and namespace. Note
that Process Developer adds a new namespace prefix with a default name ns1. See Namespace Prefix and
Declaration for more information.

Importing WSDL Schema and Other Resources 101

See also Refreshing Imports.

Refreshing Imports
The Imports node in Outline view displays the location of all WSDL, schema, and other resources referenced
in your process. If you modify an import or create a new resource, you can refresh Imports to update the
reference.

Refreshing Interfaces does not refresh the imports information.

Tip: If you import and open a BPEL process in Process Developer before adding a WSDL file to Project
Explorer, Process Developer reports unresolved references to port types, operations, and variables because
the WSDL is unknown. You can fix these errors as follows:

1. Add the WSDL files to Project Explorer, as described in Importing a Local WSDL, Creating a New Interface,
or Importing a Service Reference.

2. In the Outline view, right-mouse click on Imports, and select Refresh Imports.

Deleting an Import
Delete imports from this BPEL process. The associated namespace prefix and URI are not deleted. You can
manually delete the namespace, if desired.

You can delete an imported WSDL, schema or other resource locations by right-mouse clicking an import in
Outline view and selecting Delete. From the menu bar, you can also select Process > Delete > Import.

The associated namespace prefix and URI are not deleted. You can manually delete the namespace, if
desired.

Namespace Prefix and Declaration
A BPEL process must contain namespaces that point to WSDL locations. To add WSDL locations, you use the
Imports function, as described in Importing WSDL, Schema, and Other Resources.

After adding an import, you can rename the default prefix for the namespace, as follows.

1. In Outline View, select a Namespace.

2. In the Properties view, type in a prefix to use as a shortcut definition for the namespace. The prefix is
mapped to the URI reference displayed.

If you delete an import, you must manually delete the namespace associated with it.

102 Chapter 5: Planning Your BPEL Process

Declaring Extensions
An extension declaration allows you to add a new construct to a BPEL process. Process Developer ignores it,
since it can not understand it.

You can extend the definition of the BPEL language by declaring an extension. An extension declaration
allows you to add constructs such as a new activity type or new processing instructions that are outside of
the WS-BPEL 2.0 specification.

Process Developer and the Process Server use extensions. The Process Developer extensions are:

• Query handling for automatically creating XPath for Copy To targets and for disabling the
bpel:selectionFailure fault. (See Using the Process Developer Create XPath Extension and Using the
Process Developer Disable Selection Failure Fault Extension.)

• Suspend, break, and continue activities. (See Overview of BPEL Activities.)

• Process level compensation/termination .(See Creating a BPEL Process as a Service for Another BPEL
Process.)

• Implicit scope variables.

• Loopback links. (See Using Links.)

When you use one of these extensions, the extension namespace is automatically added to the Outline view.
However, you can add the extension namespace manually before you use the extension, if desired.

To add your own extension definition:

1. From the Outline view, select Extensions, and right-click to select Add > Declaration > Extension.

2. In the Extension Definition dialog, select User Defined Extension Namespace.

3. Type in a namespace referencing your BPEL extension.

4. Check Must understand if required. Note that when this is selected and you use the extension in your
process, Process Developer reports an error when you save the process. The process cannot be
simulated or deployed. If you do not select Must understand, your extensions are ignored by the Process
Server.

Declaring Extensions 103

Using the Process Developer Create XPath Extension
The Process Developer Create XPath extension allows an executing process to automatically create a
location path for a non-existent node in a complex variable. You can use this extension on a process-by-
process basis or set a preference to include it in all processes. When you use the extension, an extension
namespace and process attribute are added to the process as follows:

<bpel:process ...
 xmlns:ext=
 "http://www.activebpel.org/2006/09/bpel/extension/query_handling" ...
 ext:createTargetXPath="yes" ...>
 <bpel:extensions>
 <bpel:extension mustUnderstand="yes" namespace=
 "http://www.activebpel.org/2006/09/bpel/
 extension/query_handling"/>
 </bpel:extensions>
...

The process extension is enabled during simulation in Process Developer and enabled for execution on the
Process Server.

To enable or disable this extension for an individual process:

1. In the process Properties view, select the All tab.

2. In the Create XPath row, select Yes or No from the pick arrow.

The extension is added to the Outline view, and its elements and attributes are added to the BPEL source
code.

Using the Process Developer Disable Selection Failure Fault
Extension

The Process Developer Disable Selection Failure extension allows an XPath query in the From clause of an
assignment Copy operation to return an empty node set. If it does, the target node for the assignment is
deleted. You can use this extension on a process-by-process basis or set a preference to include it in all
processes. When you use the extension, an extension namespace and process attribute are added to the
process as follows:

<bpel:process ...
 xmlns:ext=
 "http://www.activebpel.org/2006/09/bpel/extension/query_handling" ...
 ext:disableSelectionFailure="yes" ...>
 <bpel:extensions>
 <bpel:extension mustUnderstand="yes" namespace=
 "http://www.activebpel.org/2006/09/bpel/
 extension/query_handling"/>
 </bpel:extensions>
...

The process extension is enabled during simulation in Process Developer and enabled for execution on the
Process Server.

To enable or disable this extension for an individual process:

1. In the process' Properties view, select the All tab.

2. In the Disable Selection Failure row, select Yes or No from the pick arrow.

The extension is added to the Outline view, and its elements and attributes are added to the BPEL source
code.

104 Chapter 5: Planning Your BPEL Process

Declaring Extension Elements and Attributes
An extension element declaration allows you to add a new attribute to a BPEL construct. Process Developer
ignores it, since it can not understand it.

The WS-BPEL 2.0 specification allows for extensions to the basic BPEL language in several ways, including
extension elements and extension attributes for BPEL constructs.

For example, if you open a process containing elements and attributes that are not defined in the
specification, its extension details are preserved by Process Developer.

If the extension details include a Must Understand attribute set to Yes, you cannot simulate or remote debug
your process since Process Developer does not understand how to execute the process. In this case, Process
Developer declares an unknown extension as an error.

If the Must Understand attribute is set to No, the extensions are ignored when you simulate and debug your
process.

You can add extension elements and attributes to any WS-BPEL 2.0 process; however, if you enable the Must
Understand attribute, you cannot simulate or deploy the process to A Process Server.

To add or modify an extension attribute:

1. From the Outline view, select the BPEL construct that uses an extension attribute. Note that almost every
construct, including the process element, partner links, activities, correlation sets, fault and event
handlers, contain the Extension Attributes property in the Properties view.

2. In the Properties view, select the Show Advanced Properties button in the toolbar to display all
properties.

3. Select the Dialog (...) Button at the end of the Extension Attributes row.

4. If your imported process contains extension attributes, they are displayed in the Extension Attributes
dialog. Do one of the following:

• Select an attribute from the list and select Edit.

• Select Add to create a new attribute.

5. In the Extension Attribute dialog, do the following:

• Type in a namespace or select from a list of existing extension namespaces.

• Add or edit the attribute Name.

• Add or edit the attribute Value.

• Select the Declare this extension check box if the extension namespace is new.

• Check Must understand if a BPEL engine must understand the attribute value in order to correctly
execute the process. Note that the Process Developer engine cannot understand the attribute
definition or value, and you cannot simulate or deploy the process to a Process Server.

• Check Must understand if a BPEL engine must understand the attribute value in order to correctly
execute the process. Note that the Process Developer engine cannot understand the attribute
definition or value, and you cannot simulate or deploy the process to a Process Server.

The following illustration shows an example.

Declaring Extension Elements and Attributes 105

6. Click OK, and notice that the attribute is listed in the Extension Attributes dialog where you can edit and
remove attributes from the list.

Tips:

• After you add an extension attribute, Process Developer adds a prefix for the namespace. If desired,
select Namespaces from the Outline view and rename the prefix to something more meaningful.

• The extension attributes are displayed in the Properties view of the BPEL construct, in the order they were
created.

• To reset the Must Understand attribute, select the Extensions namespace declaration from the Outline
view and change the value in the Properties view

To add or modify an extension element:

1. From the Process Editor or Outline view, select the BPEL construct that uses an extension element. Note
that almost every construct, including the process element, partner links, activities, correlation sets, fault
and event handlers, contain the Extension Elements property in the Properties view.

2. In the Properties view, select the Show Advanced Properties button in the toolbar to display all
properties.

3. Select Dialog (...) at the end of the Extension Elements row.

4. If your imported process contains extension elements, they are displayed in the Extension Elements
dialog. Do one of the following:

• Select an element from the list and select Edit.

• Select Add to create a new element.

5. In the Extension Element dialog, do the following:

• Type in fully qualified valid XML syntax in the Element text box. Process Developer validates the XML
before enabling the OK button.

• Select the Declare this extension check box if the extension namespace is new.

106 Chapter 5: Planning Your BPEL Process

• Check Must understand if a BPEL engine must understand the element value in order to execute the
process. Note that the Process Developer engine cannot understand the element definition or value,
and you cannot simulate or deploy the process to A Process Server.
The following illustration shows an example:

6. Click OK, and notice that the element is listed in the Extension Elements dialog where you can reorganize
the list and remove elements from the list.

Tips:

• Reorganize the extension element entries to reflect the order in which they should be executed

• To reset the Must Understand attribute, select the Extensions namespace declaration from the Outline
view and change the value in the Properties view

Understanding BPEL Process Structure and
Properties

A BPEL process has the following structural parts:

• Process Element and Properties

• Variables

• Partner Links

• Activities

Understanding BPEL Process Structure and Properties 107

• Fault Handlers

• Compensation Handlers

• Message Exchange Declaration

• Importing WSDL, Schema, and Other Resources

• Declaring Extensions

• Correlation

A BPEL process is represented graphically in the Process Editor, as described in Using the Process Developer
Process Editor. In addition, you can view BPEL source code, as described in BPEL XML Source and Implicitly
Added Activities.

Process Element and Properties
After you create a new BPEL file in Process Developer, add an activity to the Process Editor canvas, and save
your file, Process Developer creates the underlying XML source file. The XML source begins with the
<process> element.

The XML Syntax for an executable process element looks like this:

<process name="NCName" targetNamespace="anyURI"
 queryLanguage="anyURI"?
 expressionLanguage="anyURI"?
 suppressJoinFailure="yes|no"?
 exitOnStandardFault="yes|no"?
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

If you use Process Developer extensions, other namespaces and process attributes can be added, as
described in Declaring Extensions.

Click on a blank part of the Process Editor canvas to put the process as a whole in focus. In the Properties
view, set the Process properties as desired.

Property Description Default Value

Generate Prefixed
Source

Specifies that BPEL XML source code elements are
generated with the <bpel:...> prefix. Enabling this
property ensures that the attribute xmlns:bpel will not
be null.

yes

Write Port Type Add port type attribute to activity definition for receives,
replies, onEvents, onMessages, and invokes.

no

Abstract Process Specifies whether the process is abstract or executable.
For more information, see Creating an Executable vs. an
Abstract Process. This setting can be specified as a
preference for all new processes. See Process Developer
Preferences.

no

Abstract Process
Profile

List of default profiles referenced in the WS-BPEL 2.0
specification

http://docs.oasis-open.org/
wsbpel/2.0/process/
abstract/simple-template/
2006/08

BPEL Namespace Specifies the BPEL language namespace for an
executable or abstract process. The default is for
executable processes.

http://docs.oasis-open.org/
wsbpel/2.0/process/
executable

108 Chapter 5: Planning Your BPEL Process

Property Description Default Value

Comment Optional property for adding an HTML-tagged annotation
to the <process> element. You can also add a comment
to any activity, link, or container.

none

Create XPath This property is a Process Developer extension to WS-
BPEL 2.0, described in Declaring Extensions.

yes

Disable Selection
Failure

This property is a Process Developer extension to WS-
BPEL 2.0, described in Declaring Extensions.

yes

Documentation Optional property for adding annotation to the
<process> element. You can also add documentation to
any activity, link, or container. See Adding Documentation
to a Process.

none

Exit on Standard
Fault

If this property is set to yes, then the process exits
immediately as if an exit activity has been reached, when
a WS-BPEL standard fault other than
bpel:joinFailure is encountered. If this property is
set to no, the process can handle a standard fault using a
fault handler.
Processes can be suspended on an uncaught fault. This
behavior takes precedence over the Exit on Standard
Fault setting.

no

Expression
Language

Specifies the language used in building variable and other
expressions. The default is XPath 1.0. There is also built
in support for XQuery 1.0 and Javas-Script 1.5 Other
languages can also be added.

urn:oasis:names:tc:wsbpel:2
.0:sublang:xpath1.0

Extensions Indicates element and attribute extensions to the WS-
BPEL 2.0 specification that are not understood by
Process Developer exist in the process. Extensions can
also exist in most other BPEL constructs, such as partner
links and activities. For details, see Declaring Extension
Elements and Attributes.

none

Links are
Transitions

By default, allows links to completed activities. For
details, see Process Developer Extension for Links.

yes

Message
Exchanges

A process or scope property that can be selected as an
attribute of a receive or onMessage and its matching
replies

(none)

Process Level
Compensation/
Termination

This is a Process Developer extension to WS-BPEL 2.0.
Specifies whether the process as a whole can be
compensated and terminated by platform-specific means.
The process instance can be compensated after normal
completion. For details, see Creating a BPEL Process as a
Service for Another BPEL Process.
If you set this to yes, the Process Editor displays new
tabs. For details, see Process Editor Compensation and
Termination Handler Tabs.

no

Understanding BPEL Process Structure and Properties 109

Property Description Default Value

Process Name You can specify a process name that differs from the
BPEL file name. This is useful if you create different or
updated versions of the same process. You can name the
BPEL file with meaningful version information, but can
use the same internal process name. The process name
property, not the BPEL filename, is known to the server
engine.

name of the BPEL file

Query Language Specifies the XML query language. The default is XPath
1.0. Also available for future standards as they evolve.

urn:oasis:names:tc:wsbpel:2.0:subl
ang:xpath1.0

Suppress Join
Failure

A join condition is a property of all activity types and
provides status about an incoming link. A join failure
indicates that link execution failed. At the process level,
this attribute specifies whether a join failure is
suppressed for the whole process. Can be overridden at
the activity level and can be specified as a preference for
all new processes. See Process Developer Preferences.

yes

Target
Namespace

The XML namespace that refers to the required WSDL
information. This is a required property.

none

Image Generation See Generate Deployment Image Automatic

Partner Links
A BPEL process describes a flow of interactions between the process and services. Each interaction
describes what role the process and services play at that step in the flow and what data can be manipulated
by the parties in those roles.

The constructs used to define roles are:

• Partner link type

• Partner link

You can define and add these roles in Process Developer. For more information, see Participants.

Variables
The BPEL process receives, manipulates, and sends data through XML variables. For example, the process
receives a purchase order message from a buyer and puts the message in an input XML variable, and from
there it can be copied to another operation.

Variables are defined in one of the following ways:

• WSDL message types

• XML schema types

• XML schema elements

Variables allow processes to maintain state data, (such as time outs) and process history based on
messages exchanged.

110 Chapter 5: Planning Your BPEL Process

Activities
Activities are the processing steps, performed in the order described by the flow diagram you design in
Process Developer.

In Process Developer, there are several types of activities:

• Basic activities to exchange and assign data and define execution steps

• Containers to structure activities and handle faults and compensation

• Event Handlers

For more information, see Implementing a BPMN Task or Event in BPEL.

Fault Handlers
A fault handler defines the activity that the process must perform in response to an error condition. For more
information, see Fault Handling.

A fault handler defines the activity that the process must perform in response to an error condition.

Compensation Handlers
Compensation is the process of reversing or providing an alternative for a successfully completed activity,
especially when a fault occurs. For more information, see Compensation.

BPEL XML Source and Implicitly Added Activities
Process Developer generates BPEL XML source code for each construct you add to the Process Editor. You
do not need to save your file to see the source. Select the Source tab of the Process Editor to view or edit the
source code.

You may notice that Process Developer automatically wraps process-level activities in a flow container if you
do not and if a sequence or other container is not present. If Process Developer adds a top-level container for
you, it does not appear on the Process Editor canvas or in the Outline view.

Understanding BPEL Process Lifecycle
A BPEL process instance has a beginning, middle, and end, which are all defined by activities. The process
must begin with one of the following:

• Receive activity

• Pick activity (with an onMessage event)

• Flow or Sequence activity containing one or more Receive or Pick activities

In a Receive or Pick, the Create Instance property must be set to Yes. The middle of the process consists of
activities, running in sequence or concurrently.

The process instance ends in one of the following ways:

• An activity defines that the process is complete

• A fault reaches a process scope, and the process exits

Understanding BPEL Process Lifecycle 111

Creating an Executable vs. an Abstract Process
In Process Developer, you can build two kinds of business processes:

• An executable process contains all the actual message data, operations, and partner information required
for a running process. It uses the full power of data assignment and selection. Process Developer creates
executable processes by default. You can simulate, deploy, remote debug, and execute an executable
process.

• An executable process contains all the actual message data, operations, and partner information required
for a running process. It uses the full power of data assignment and selection. Process Developer creates
executable processes by default. You can simulate, deploy, and execute an executable process.

• An abstract process is a business protocol description document that tells your business partners what a
process will look like when it runs. It outlines the steps of a process without actually filling in all the
actions and data required for a running process.

An abstract process lets you share information with your partners without exposing how you intend to use
data from your service. It gives your partners a way to understand how to create their WSDL files to work in
your process and to tell them what information you plan to send them when the process runs. An abstract
process outlines the type of data to be exchanged, as well as activities, time limits, error handling, and other
meaningful pieces of information for the process.

You cannot simulate, deploy, remote debug, or execute an abstract process.

You cannot simulate, deploy, or execute an abstract process.

See also Creating an Abstract Process and Tips for Working with Abstract Processes.

Creating an Abstract Process
To create a process that is not immediately intended for simulation, remote debugging, or deployment, you
can define the process as abstract.

To create a process that is not immediately intended for simulation or deployment, you can define the
process as abstract..

To create an abstract process:

1. Select File > New > BPEL Process.

2. Select your project folder, and in the File name field, type in a name for your BPEL file. The .bpel
extension is automatically added.

3. Select Advanced to view properties that you can set for this process.

4. Select Create as Abstract Process.

5. Click Finish.

You can make an executable process into an abstract one, and vice versa, by changing the process's Abstract
Process property from No to Yes.

See also Tips for Working with Abstract Processes.

Tips for Working with Abstract Processes
As described in Creating an Executable vs. an Abstract Process, you can create a process not immediately
intended for execution. When working with abstract processes, consider the following tips:

• For an abstract process, the namespace is: http://docs.oasis-open.org/wsbpel/2.0/process/
abstract

112 Chapter 5: Planning Your BPEL Process

• You can set an Abstract Process Profile in the process Properties view. The default profiles listed are
referenced in the WS-BPEL 2.0 specification.

• You can use an activity unique to abstract processes. For details, see Opaque.

• You can use an opaque from-spec assignment in a copy operation. For details, see Assign.

• You can make an abstract process into an executable one by changing the process's Abstract Process
property from Yes to No. If your process contains an opaque activity, you are warned to replace it with a
different activity.

• If desired, you can follow the guidance in the WS-BPEL 2.0 specification for hiding syntactic elements in
your process. See the examples below.

WS-BPEL XML Fragment Examples

Example 1 - Variable Declaration

<variable name="commonRequestVar" element="##opaque" />
Example 2 - Use of Invoke Activity

<invoke partnerLink="homeInfoVerifier"
 operation="##opaque" inputVariable="##opaque"
 ext:uniqueUserFriendlyName="request verification" />

Example 3 - Use of Opaque Activity

<opaqueActivity template:createInstance="yes">
 <documentation>...</documentation>
</opaqueActivity>

Creating a BPEL Process as a Service for Another
BPEL Process

A BPEL process uses an invoke activity to call out to a Web service to perform a task. You can create a BPEL
process for this purpose.

You can choose between two different invocations of a process:

• Standard process that behaves like a normal endpoint reference
When you create a process deployment descriptor, you can select any process as a static endpoint
reference for a partner role. This avoids the overhead of the server composing a SOAP message for
dispatch through the standard invocation layer. The message is sent directly to the engine instead.

• Subprocess of the calling process that is eligible for process-level compensation and termination
handling
When you create a process deployment descriptor, you can select any process:subprocess as a static
endpoint reference for a partner role. This lets the subprocess participate in process-level compensation
and termination handling.

More about Subprocesses

A subprocess is subject to the fault and compensation handling rules of the enclosing scope of the parent
process from which it is invoked. A subprocess is compensated whenever either the fault handler or the
compensation handler for the scope enclosing the invoke activity is run. This work is performed implicitly.
However, you can enable process-level compensation and termination for the subprocess to select what
compensation and termination tasks to do. For a discussion of compensation, see Compensation.

Creating a BPEL Process as a Service for Another BPEL Process 113

The enclosing scope for the invoke activity does not complete until the subprocess completes. If the
subprocess is compensatable when it completes, the enclosing scope compensates the subprocess during
its compensation.

If the subprocess throws a fault, the invoke activity of the parent process faults.

Creating a Process as a Service

To create a BPEL process as a service, you must do the following:

1. Add a WSDL file to Project Explorer for the BPEL process. There are many ways to create a WSDL file.
See Interfaces, Service References, and Local WSDL.

2. Create the BPEL process to be used as a service.

3. If desired, set the process property Process Level Compensation/Termination to Yes. Two additional
tabs are added to the Process Editor, and you can add compensation and termination activities to them.
The following illustration shows the tabs that are added to Process Developer.

4. In the Process Deployment Wizard, identify a service name for the My Role partner link, just as you would
for any process.

5. Create a business process archive (.BPR), as described in Deploying Your Processes.

6. Deploy the process to the server.

7. Create the main process that invokes the BPEL process using an invoke activity.

8. In the Process Deployment Wizard for the main process, do the following for the Partner Role partner
link:

a. Select process or sub-process as the invoke handler.

b. Select static as the endpoint reference.

c. Select the Dialog button to fill in the sub-process information.

9. Deploy the main process.

When the main BPEL process is running, and it invokes another BPEL process, the invoked process has the
status of a subprocess, with its own state information. The main process awaits the completion of the
subprocess before continuing its own execution. For more information on actively running processes, see the
Process Console Help.

Message Exchange Declaration
Use the Message Exchange Declaration dialog to add, edit, or remove message exchange declarations for the
process as a whole or for the current scope.

A message exchange value binds a synchronous receive with its reply. A message exchange value makes an
explicit match between a receive and a reply, eliminating any ambiguity among concurrent execution of
synchronous receives with the same partner link, port type and operation.

A message exchange is a process or scope property that you can select as an attribute of a receive,
onMessage, or onEvent and their matching replies. Declare the message exchange value in this dialog. Then
select the value, as needed, in the appropriate receive/reply pairs, onEvent/reply pairs, or onMessage/reply
pairs.

114 Chapter 5: Planning Your BPEL Process

When to Use This Declaration

The process and the child scope for a parallel forEach activity implicitly declare a default message exchange
value. If a receive or a reply activity does not have a message exchange value explicitly declared on it, it has
the default value that is provided by either the process or the parallel forEach's scope, depending on where
the receive or reply is nested. You can still use explicit message exchange values on receives, replies, and
onMessages within a parallel forEach.

The message exchange value can also be useful in multiple receive/reply, onEvent/reply or onMessage/reply
pairs in a flow that have the same partner link, port type, and operation. By adding a message exchange value
to the pairs, you can avoid receiving the bpel:conflictingRequest fault.

A process is required to reply to any synchronous message exchanges (receives or onMessage) it receives
during execution. If there isn't one, the process faults has a bpel:missingReply fault. Each scope that declares
a message exchange value tracks its active message exchanges to ensure that a reply executes prior to the
scope completing.

When you add a new message exchange value, the default name is MessageExchange_1. You can edit this
value, if desired.

If a message exchange declared in an inner scope has the same value as one declared an outer scope, or in
the process, the inner scope's declaration overrides the outer scope's or process' declaration. Receives,
onEvents, onMessages, and replies in different scopes can be matched only by using the outermost scope's
message exchange declaration.

Message Exchange Declaration 115

C h a p t e r 6

Participants
This chapter includes the following topics:

• What are Participants, 116

• What are Partner Link Types and Partner Links, 120

• Partner Link Type, 121

• Partner Link, 124

• Using Scoped Partner Links, 126

• Partner Links and Endpoint References, 126

What are Participants
Participants are the people and services that the process interacts with over the course of its execution.
Communication to or from a participant is always through a Web service interface.

Participants simplify the BPEL details you need to provide for an interface. By creating participants, you can
skip over some technical details in BPEL as Process Developer generates details for you.

Here are the participant types:

• Process service consumers
Each process interacts with at least one participant: the participant that sends the service request
message that starts the process. This participant is the first process service consumer. You can also
create additional consumers if there are additional participants that use services provided by a process.
Consumers can also provide callback service. These allow a process to request that the consumer
perform operations. In BPEL, the process service consumer is equivalent to a partner link whose myRole
property has been set.

• Partner service providers
If the process needs to invoke a service to do some work for the process, it calls a service that is provided
by a partner service provider. The process can also make callback services available to a partner service
provider. The interface for such a callback is listed with the partner service provider that can use it. In
BPEL, this participant is the equivalent to a partner link whose partnerRole property has been set.

116

• Human task participants (on-premises only)
If the process needs people to accomplish some of its steps, it uses people activities. A human task
participant represents the role of the person who will complete some of the activities of the process. Each
human task participant lists the tasks that its role works on. In BPEL4People, a Logical People Group is
created for each human task participant.

For details, see Using the Participants View.

For details on using the Participants view in conjunction with HTML form development, see Adding a New
Service Operation for a Form or a Task.

Using the Participants View
The Participants view is the key starting point for developing a BPEL process. It guides you to provide the key
ingredients for a process: the roles that the process and partner services play and the interface for each role.
Further, once you define an interface, you can drag its operation to the Process Editor canvas to create
process activities. For example, a receive activity is created from the interface operation associated with a
process service consumer.

The following illustration shows an example of participants and their interfaces:

The Participants view is empty unless a process is open. The view is process-based; that is, it shows
participants only for the process in focus.

What are Participants 117

In this view, you can do the following (on-premises only):

• Create new process and service interfaces. See Creating a New Process Service Consumer Interface and
Creating a New Partner Service Interface

• Create new human task participants and their tasks for use in people activities.

• Drag an operation (or task) to the Process Editor to create appropriate activities. See Creating New
Activities from the Participants View.

Creating a New Process Service Consumer Interface
A Process Service Consumer is a participant Web service that is used in building a receive and/or reply
activity. It consists of a name and an interface.

You can create a service consumer in stages:

• Enter a name or accept the default name, Process_Consumer.

• If interface resources are available, you can define the interface. If they are not, you can add them later, in
the Properties view.

• By completing the participant details, you are essentially creating all the required elements needed for a
process' receive and reply activities.

Creating a New Partner Service Interface
A Partner Service Provider is a participant Web service that is used in building an invoke activity. It consists
of a name and an interface.

You can create a partner service provider in stages:

1. Enter a name or accept the default name, Provider.

2. If interface resources are available, you can select the interface. If they are not, you can add them later,
in the Properties view

When you complete the participant details, you are essentially creating all the elements needed for a process'
invoke activity.

Creating a New Callback Interface
Select or create the port type and operation for a participant to call back.

Each Web service in a process, represented by receive, reply, and invoke activities, must have a service
interface. The interface describes the operations provided by the service.

You can choose to add a callback interface, which allows the service provider to invoke operations on the
service consumer. For example, in a service interface, the process sends an order and the partner replies with
an order ID. In a callback interface, the partner can send an order shipment notice.

When you add a callback interface, Process Developer generates a standard BPEL partner link type for that
participant and stores it in a WSDL. This makes the participant relationship clear for future users of the WSDL
and allows new processes that use the service interface to automatically see the callback interface.

The details for creating a callback interface are the same as creating a service interface. See:

• Creating a New Process Service Consumer Interface

• Creating a New Partner Service Interface

118 Chapter 6: Participants

Tips:

• Process Developer adds the BPEL-required details, namely partner link type definitions, to a new WSDL. It
adds definitions that need to be seen by clients of the process in a file named [process].public.wsdl. It
places definitions that are private to the process (that is, partner link types for partner services) in a file
named [process].public.wsdl.

• The Callback participant displays as a child participant in the Participants view.

See also Creating New Activities from the Participants View

Clearing a Service Interface from a Participant
Remove a service interface from a participant.

You can clear a service interface from a participant from the Properties view.

• From the Participants view or the Outline, select a participant.

• In the Properties view. select the Dialog button in the Service Interface row.

• In the Service Interface dialog, select the Clear button in the Interface row.

Creating New Activities from the Participants View
After creating participants and their interfaces, you can drag an operation or task to the Process Editor to
create activities. These activities contain the required participant name and operation. You can then use the
activity's Properties view to provide data assignments.

The following table shows the activities that the Process Developer creates when you drop an operation onto
the Process Editor canvas.

Drag an operation from this participant's
interface

To create this activity or activity pair

Process Service Consumer one-way operation Receive, onMessage (if Pick is selected), or onEvent (if event
handler is selected)

Process Service Consumer two-way operation Receive-Reply, onMessage-Reply, onEvent-Reply

Process Service Consumer Callback Invoke

Partner Service Provider Invoke

Partner Service Provider Callback Same activities as process service consumer for one-way and
two-way operations

See also:

• Creating a New Process Service Consumer Interface

• Creating a New Partner Service Interface

• Creating a New Callback Interface

• Creating a new Human Task Participant in the Human Tasks section of this help

What are Participants 119

Creating a New Variable From an Activities Property View
Create a new process variable for a receive or other activities.

Create a new process variable for a receive onMessage, onEvent, reply, or invoke activity as follows:

1. Select the Properties view of an activity.

2. Open the Data, Input or Output tab of the activity.

3. For the Assignment Type, select Single Variable.

4. In the Variable list, select New Variable.

The variable name suggested is one of the following:

• The qualified name of the schema element for a single-part element WSDL message

• The local name of the message if the single-part element is an XSD type, such as string

• For a multi-part WSDL message, the local name of the message

In the Scope field, select the process or a scope to make the variable global or local.

The Variable Type is derived from the WSDL message definition.

What are Partner Link Types and Partner Links
Select partner links to include in a partner definition. A partner link can be used in only one partner definition.

For an easy way to create and use partner link types and partner links, see What are Participants?

A BPEL process describes a flow of interactions between the process and services. Each interaction
describes what role the process and services play at that step in the flow and what data can be manipulated
by the parties in those roles.

BPEL defines constructs to identify roles and relationships used in interactions.

The constructs are partner link and partner link type. A partner link describes the roles that a process and
service play as well as what data they can manipulate in that role. A partner link is defined by its partner link,
as shown in the following diagram.

The partner definitions and usage in a BPEL process do not refer to the specifics of Web services. Since a
BPEL process is a reusable definition that can be deployed in different ways, the definitions are abstract. The
addressing, security, and other specifics of Web services are taken care of at deployment time. When a
process is deployed, every partner role in a partner link for a BPEL process instance is assigned a unique
endpoint reference.

120 Chapter 6: Participants

For more details on each concept, see the following:

• Partner Link Type

• Partner Link

Partner Link Type
Create a standard BPEL activity, such as a receive, reply, or invoke. Add a partner link type definition to a new
WSDL file or to an existing WSDL file.

A partner link type describes the kind of message exchange that two WSDL services intend to carry out. A
partner link type characterizes this exchange by defining the roles played by each service and by specifying
the port type provided by the service to receive messages appropriate to the exchange.

For an easy way to create and use partner link types and partner links, see What are Participants?.

A partner link type can include one role or two roles.

• If a partner link type contains two roles, each of the services must implement its role by providing the
specified port type. Using two roles indicates that there is a requirement for the calling service to receive
some type of callback from the target service in the course of the conversation. For example, a service is
invoked with a one-way operation (input message only). When it is ready to reply, it must send back a
message to the process' receive activity.

• If a partner link type contains only one role, no restriction exists on the calling web service regarding roles.
The service described by the single role can complete the conversation simply by having its operation
invoked without the need for issuing a callback.

The following illustration shows an example of a partner link type defining two roles.

Partner Link Type 121

For example, a partner link type named AuctionHouse_Seller describes two roles: AuctionHouse and Seller.
The AuctionHouse role supports a port type of Seller that expects an input message of an item for sale. The
Seller role supports a port type Seller_Answer that expects an input message from the auction house,
regarding whether or not the item has sold. The output message is the name of the item for sale.

In this example, the port types are from the same service; however, port types can be from different services.

The partner link type is a WSDL extension. It can specify one or two roles. The port types can be from the
same or from different WSDL files.

A partner link type definition can come from the following sources:

• From a WSDL file where it is already defined, or where you can add a new definition.

• From a separate WSDL file with its own namespace for the case where there are two port types, and they
are from different services.

• From a Process Developer BPEL process, where you create can a new definition and add it to a WSDL file.

You can add a new partner link type to a WSDL in the following ways:

• From a Project Explorer WSDL

• From a Service Reference

• From an Interfaces View WSDL

These techniques are described in:

• Adding a new Partner Link Type from a WSDL in Project Explorer

• Adding a new Partner Link Type to a new WSDL using a Service Reference WSDL

• Add a new Partner Link Type from Interfaces View

Adding a new Partner Link Type from a WSDL in Project Explorer
Use the following procedure to add a new partner link type from a WSDL in the project explorer:

1. Be sure that you have already imported a WSDL into an orchestration project. Typically, you import WSDL
files into the standard wsdl folder.

2. Expand the WSDL to show the port type.

3. Right-mouse click on the port type and select Add to PartnerLink Type.

4. Complete the wizard that appears. For details, see Step 6 in Add a new Partner Link Type from Interfaces
View.

122 Chapter 6: Participants

Adding a new Partner Link Type to a new WSDL using a Service
Reference WSDL

Use the following procedure to add a new parner link type to a new WSDL using a service reference WSDL:

1. Be sure that you have already imported a WSDL into the Service References folder of an orchestration
project. This WSDL is a reference to a service already running on a server.

2. Expand the WSDL to show the port type.

3. Right-mouse click on the port type and select Add to PartnerLink Type.

4. Complete the wizard that appears. Note that you cannot add a partner link type to the existing remote
WSDL. The wizard allows you to create a new WSDL that imports the service reference.

Add a new Partner Link Type from Interfaces View
Use the following procedure to add a new partner link type from Interfaces view:

1. Display the Interfaces view. This view is not part of the default perspective. To open it, select Window >
Show View > Interfaces.

2. Ensure that the port type from the WSDL file you want to refer to is displayed in the list.

3. Expand a Port Type to display an operation you want to use, but does not have an associated Partner
Link Type yet.

4. BPEL activity should be selected.

5. Drag the operation to the Process Editor canvas to open the Partner Link Type wizard, as shown.

Partner Link Type 123

6. Do one of the following

• Select Use an existing Partner Link Type to select from the list, and then click Finish.

• Select a Partner Link Type definition from Add to Partner Link Type, and add a second role (with its
associated port type) to the current partner link type. A partner link type can have two roles; they
represent two different services that communicate asynchronously. The picklist includes partner link
types from Interfaces that currently have only one role. Type in a new role name in the Role text box,
then click Finish.

• Select Create Partner Link Type for a new Partner Link Type name and Role name, and then click Next.

7. If you created a new Partner Link Type in Step 5, you can add it to an existing WSDL file or create a new
file for the definition. Do one of the following:

• Type in an URL in the Create new WSDL file field to qualify all names and message types for this
Partner Link Type definition. Then enter the WSDL filename and pathname in the Location field, as the
example shows in the following illustration, or click Browse to create a new filename and location.
Type the file name in the File name field of the Open dialog.

• Select a WSDL file from Add to WSDL file to add your new Partner Link Type definition.

8. Click Finish.

If you add the Partner Link Type definitions to a new WSDL, Process Developer automatically adds the WSDL
to Project Explorer and to the Imports node in Outline view.

Partner Link
For an easy way to create and use partner link types and partner links, see the key Process Developer feature,
What are Participants?.

124 Chapter 6: Participants

A partner link is a communication exchange between two partners. In the most basic form, the process is a
partner link of an external service, receiving a request from it. A partner link defines the role that the process
plays (if any) and the role that the partner service plays (if any) in the particular exchange. A partner link can
be declared globally or within a scope.

A partner link definition consists of:

• A name

• A partner link type

• At least one role and can include two roles

• Role names of MyRole, which is the process role, and PartnerRole

• Optional property called Initialize Partner Role

• Optional properties for Adding Comments to a Process and Adding Documentation to a Process

• Optional properties for Declaring Extension Elements and Attributes

In a BPEL process, you use the partner link when defining Web service interaction activities. For example, a
receive activity specifies a partner link, its port type and operation. The port type comes from the associated
partner link type. This means that the process can accept incoming message data from the service playing
the partner role defined in the partner link.

At a minimum, a process must have one partner link for each particular communication exchange it is
engaged in. BPEL allows for multiple partner links of the same partner link type to exist within a process.

By default, a partner link is declared at the process level. You can declare a partner link at a scope level. The
partner link name must be unique among the set of partner links defined by the process or scope.

TheInitialize Partner Role property is provided as a hint to the deployer of a process. This property does not
affect the runtime behavior of the process. If the process contains logic to initialize its partner links then it
should set this property to No. This type of initialization would occur through the use of an assign activity. If
the process requires its deployment environment to initialize its partner links, either through a static endpoint
at deployment or perhaps through an endpoint reference scheme like WS-Addressing, then it should set this
property to Yes. If the property is missing, then there is no information conveyed to the deployer as to how
the partner links are initialized.

Add a partner link automatically to the process:

Partner links are automatically added to the process when you drop a WSDL operation onto the Process
Editor canvas and complete a wizard to create a receive, invoke, reply, onMessage, or onEvent. If you must
create a new operation, you can use the Operation Wizard. These are the recommended techniques for
creating partner links. For more information, see Creating an Activity by Starting with a WSDL Interface.

Add a new partner link manually to the process:

1. From the Outline view, right-mouse click on Participant Partner Link and select Add Process Service
Consumer or Partner Service Provider.

2. For further details, see Creating a New Partner Service Interface.

XML Syntax

<partnerLinks>
 <partnerLink name="NCName" partnerLinkType="QName"
 myRole="NCName"? partnerRole="NCName"?
 initializePartnerRole="yes|no"?>+
 </partnerLink>
</partnerLinks>

Example

<partnerLink name="seller"
 partnerLinkType="AuctionHouse_SellerLT"

Partner Link 125

 myRole="AuctionHouse" partnerRole="Seller"
</partnerLink>

Using Scoped Partner Links
You can declare a partner link at the process level or at a scope level. While the partner link names may be
identical, they are considered unique. Declaring partner links at the process level makes them globally
available, except where there is an identically named partner link at the scope level. Scope-level partner links
are only available in the scope where they are declared. For details, see Scope.

Declaring a partner link at the scope level is useful for a parallel forEach activity, in which multiple instances
of a scope execute at the same time.

Scoped partner links are also useful for code modularization and reuse. For more information on reusing
code in different BPEL processes, see Creating a Custom Activity.

Partner Links and Endpoint References
In a BPEL process, interactions between business partners are defined by partner links. The definitions are
abstract and do not contain any access information about actual running services. The reason you would
omit real access information is to allow the process definition to be reused for many services.

How do the actual services get accessed? A service is identified in two ways: outside of the process at
deployment time or within the process in an assign activity.

When a process is deployed, each role defined in a partner link is assigned an endpoint reference. An
endpoint indicates a specific location for accessing a Web service using a specific protocol and data format.
An endpoint reference conveys the information needed to access a Web service endpoint. Using endpoint
references in deployment makes possible the dynamic selection of a service partner.

Within a process, you can invoke a service by setting a target endpoint reference in an assign activity. For
more information, see Assign. Also, a partner link can be declared within the process or within a scope
activity. For more information, see Scope.

126 Chapter 6: Participants

C h a p t e r 7

Implementing a BPMN Task or
Event in BPEL

An activity is a step in a BPEL process. It can describe an interaction with a Web service or it can perform
internal process functions. The process must contain at least one activity.

In BPMN, you implement both tasks and events as BPEL activities. However, there is a distinction between a
task and the event in which a task performs work and an event is a trigger or result.

BPMN-to-BPEL Implementation of Tasks and Events
In many cases, a BPMN element can be implemented as one or more BPEL activities, described in the tables
below, which are the following BPMN types: tasks, throw events, and catch events.

For additional implementations, see BPMN-to-BPEL Implementation of Gateways and Control Flow.

Tasks

BPMN Task BPEL Implementations

Service Invoke

User People activity, task type

Script Assign

Rule Invoke

Suspend Suspend

Validate Validate

Abstract Empty

Manual - Empty
- People activity, task type

127

BPMN Task BPEL Implementations

Send - Invoke
- Reply
- People activity, notification type

Receive Receive

Throw Events

BPMN Throw Event BPEL Implementation

None/Start/End - Empty
- Assign

Message - Reply
- Invoke
- People activity, notification type

Error - Throw
- Rethrow

Compensate - Compensate
- Compensate Scope

Terminate - Exit
- Break, implemented in a forEach

Catch Events

Any catch event can be dropped onto an activity's boundary to create a boundary event, or into a scope (event
subprocess) to create a handler.

BPMN Catch Event BPEL Implementation

Timer - Wait
- OnAlarm for pick or event handler

Message - Receive
- OnMessage for pick
- OnEvent for event handler

Error - Catch
- Catch all

Compensation Scope compensation handler

Cancel Scope termination handler

128 Chapter 7: Implementing a BPMN Task or Event in BPEL

Overview of BPEL Activities
In the default (BPMN) Process Developer editing style, basic activities are organized according to BPMN
types: activities and events. In BPEL, there is no distinction: both activities and events are considered
activities.

The following table provides brief definitions and links to more details.

Activity Name Description

Invoke Directs a Web service to perform an operation

Assign Manipulates process variables and partner link endpoint references by creating Copy From/To
operations for them

Empty An activity that does nothing when it executes. Useful for situations where you need an activity
but do not want anything to really happen, for example, suppressing a fault by having the empty
be the child of the catch.

Suspen Suspends the process. Useful in a catch or catchAll event to catch unexpected errors.

Validate Validates the values of variables against their associated XML and WSDL data definition

Opaque (For Process Developer Classic only). For abstract processes. Stands as a placeholder for an
activity that would be used in an executable process.

Receive Accepts message data from a service partner. Optionally begins a process by creating an
instance of the process.

Reply Sends a response to a partner identified in a matching Receive activity

Signal Signals are similar to a throw, differing in that there isn't a fault. A signal throws information that
is received by a signal that waits for this information.

Throw Signals a fault. Specifies a standard or custom fault

Rethrow Passes the fault that was originally caught by the immediately enclosing fault handler to the
parent scope

Exit Stops an executable process immediately, resulting in a faulted process.

Wait Stops process execution for a specified amount of time or until a deadline is reached

Compensate
Scope

Starts compensation on a specified inner scope that has already completed successfully

Compensate Executes the compensation handler on a named scope or executes the default compensation if
no scope is named

Break Breaks out of a scope or a loop in a while or for each activity. Processing continues normally with
the next activity.

Continue For BPEL-Centric palette only.) Continues with the next iteration in a loop (while, repeat until, or
for each). A convenience activity that simplifies processing without the need of specifying all the
conditions that may be required to continue normal processing when a certain condition is met.

Start/End/None Equivalent to the BPEL empty or assign activity, described above.

Overview of BPEL Activities 129

For information on structured activities, see Different Ways of Structuring Activities.

Defining an Activity and Its Properties
You can select and drag any palette item to the Process Editor canvas.

With the activity in focus on the Process Editor canvas, you can set property values in the Properties view. Be
sure to select the activity, as shown on the right, and not the bordered sequence, as shown on the left.

This illustration shows an example of the basic activity properties. The example activity is a reply.

Note that the BPMN construct selected is a Message throw event implemented as a Reply.

Select the All tab in the Properties view to display all the properties for an activity. The All tab contains the
standard properties for all activities. In the illustration below, basic and advanced properties are displayed.

130 Chapter 7: Implementing a BPMN Task or Event in BPEL

When your mouse hovers over an activity icon, you see property details for the activity. The following
illustration shows an example.

For more information, see:

• Selecting Values for Activity Properties

• Selecting Activity Label

• Standard Properties for Activities

Selecting Values for Activity Properties
When you add an activity to the Process Editor canvas, the Properties view displays all of the valid properties
for it. Some properties are activity-specific, and some are standard for all activities.

Defining an Activity and Its Properties 131

For example, the Create Instance property is valid only for a receive or pick activity. The Copy Operation is
valid only for the assign activity.

You assign values to properties as follows:

• For Activity Name, there are several choices. See Selecting Activity Labels.

• For list-valued properties, such as Variable, select from the list.

• For building a complex property, such as for Correlation Sets, click the Dialog (...) Button.

Selecting Activity Labels
When you add an activity to the Process Editor canvas, it is labeled with the activity type. For example, a
receive activity is labeled Receive. You can make the label more meaningful by adding a name or description.
You can also add a name but display only the type to preserve screen real estate.

The following examples show some labeling choices. Notice that you can keep the label short, if desired, and
then use hover help to display details.

Activity Type: Name Activity Type Custom Label

Create a label in one of the following ways:

• Edit the activity label directly on the Process Editor canvas or fill in Activity Name in the Properties view

• Select a label type from the Label property

To edit the activity label:

1. In the Process Editor canvas, click in the activity label. The label field changes to an edit field, as shown.

2. Type in a label that is the same as an activity name. You can include spaces or special characters.

Select the label type from the Label field in Properties view as follows:

Activity Name or
Type

By default, the type is displayed. If you add a name, the name is displayed and is editable on
the canvas.

Activity Name This is for display purposes only. It can include spaces and special characters, and is editable
on the canvas. It does not export with the BPEL XML.

Activity Type The best choice to preserve screen real estate. The Type is not editable on the canvas.

132 Chapter 7: Implementing a BPMN Task or Event in BPEL

Activity Type:
Name

Meaningful label, but is not editable on the canvas.

Custom Type text in the Custom Label field

Standard Properties for Activities
The following table shows standard properties for all activities. The table does not include activity-specific
properties, which are discussed under each activity.

Attribute Description

Suppress Join Failure See Process Properties

Join Condition See Creating a Join Condition for an Incoming Link

Comment See Adding Comments to a Process

Documentation See Adding Documentation to a Process

Execution State See Viewing the Execution State of an Activity or Link

Extension Attributes and Elements See Declaring Extension Elements and Attributes

The Suppress Join Failure, Join Condition, and Extension properties appear in the Properties view when you
select the All tab on the Properties view.

Adding a Background Color to a Task Scope People Activity and
Handlers

To enhance a diagram's meaning, you can add color to the following activities:

• Any bordered activity. Bordered activities are in the Tasks drawer of the BPMN palette.

• Collapsed Scope. Collapse a scope by right-mouse clicking on it and selecting Collapse Container. A
scope is referred to as an embedded subprocess in the BPMN palette, in the Control Flow drawer.

• Collapsed fault, event or compensation handlers

Understanding and Using Activity Sequences and
Flows

Each activity that you add to the Process Editor canvas is contained by a hidden sequence activity. The
sequence is represented as a blue border when your mouse hovers near it, as shown.

Understanding and Using Activity Sequences and Flows 133

The purpose of hidden sequences is to make it easier for you to link activities together. Activities are
automatically linked in sequence when you place one activity near the top, bottom, left, or right of another
activity.

Receive
BPMN Implementation: Receive task, Message catch event

When a BPEL processing engine gets a message, it searches for a receive (or pick) activity with a matching
partner link and operation. For an executable process, the receive must specify an input variable or variable
part for the message data received. See Participants for descriptions of concepts important to this activity.

The receive activity can begin a business process instance by including a Create Instance property set to Yes.
A receive activity can be associated with a reply activity if the operation is a request-response. Additionally,
the receive can include a message exchange attribute.

You can create a set of concurrent initial receives. This case allows for any one message of a set to initialize
a BPEL process. To create a multiple-activity starting point, add the receives to a flow container. Also, you
must provide a correlation set for all concurrent receives that initiate a process, as described in Adding
Correlations to an Activity.

134 Chapter 7: Implementing a BPMN Task or Event in BPEL

Two other activities are similar to a receive: an onMessage clause in a pick activity or and onEvent event
handler. For more information, refer to Pick and Event Handling.

Required Properties Optional Properties

Participant (Partner Link) Name. See Selecting Activity Labels

Operation Port Type

Variable (required only for
executable process, not abstract
process)
or
From Part to Variable. See From
Part to Variable.

Correlations. See Correlation

 Create Instance. Required if this is the start activity.

 Join Condition. See Creating a Join Condition for an Incoming Link

 Suppress Join Failure. See Process Propertieson page 108

 Comment. See Adding Comments to a Processon page 64

 Documentation. See Adding Documentation to a Processon page 65

 Setting Visual Properties and Using Your Own Library of Imageson page 61

 Execution State. Viewing the Execution State of an Activity or Link

 Message Exchange. Message Exchange Declaration

 Extension Attributes and Extension Elements. See Declaring Extension Elements
and Attributes.

To add a receive activity to the process manually:

For a shortcut and recommended technique, see Creating an Activity by Starting with a WSDL Interface.

1. Drag a Receive task or Message catch event activity to the Process Editor canvas.
You can add a background color to the receive task, but not the message catch event.

2. In the Properties view, select the following values:

a. Optionally type in a Name.

b. In the Participant drop-down, select New Process Service Consumer.

c. Select an Operation from the picklist.

3. In the Data tab, do one of the following:

• Select Single Variable from the Assignment Type and create a new variable or select a process
variable.

• Create a Parts to Variables specification. For details, see From Part to Variable.

• Create an XPaths specification. For details, see Input Variable.

4. Select other optional properties as desired.

Receive 135

A receive activity is actually two activities: a Receive followed by an Assign in a Scope. These two activities
are not atomic and if you, for example, initialize onAlarm in an event handler, you cannot use the variable until
the assign has completed.

Usage Examples

One receive can
start a process

In a pick (event-driven gateway) with onMessage
activities, one of many can start a process; the
rest are ignored

Any one starts a process; all are
required to complete the fork join
(flow)

XML Syntax

<receive partnerLink="NCName" portType="QName"?
 operation="NCName"
 variable="BPELVariableName"? createInstance="yes|no"?
 messageExchange="NCName"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="NCName" initiate="yes|join|no"?>+
 </correlations>
 <fromParts>?
 <fromPart part="NCName" toVariable="BPELVariableName"/>+
 </fromParts>
</receive>

XML Example:

<receive name="ReceiveCustomerRequest"
 partnerLink="customer"
 portType="lns:loanServicePT"
 operation="request"
 variable="request"
 createInstance="yes"/>

Reply
BPMN Implementation: Send task, Message throw event

136 Chapter 7: Implementing a BPMN Task or Event in BPEL

A reply activity sends a message back to a Web service in response to a message received or through fault
handling. The received message is in a receive activity, an onMessage handler, an onEvent handler, or an
invoke. For a request-response operation, a reply activity has the same partner link and operation as its
matching receive, onMessage, or onEvent.

A receive may have multiple reply activities referencing it but only one of them is allowed to execute. For
example, there may be a normal reply and a fault-handling reply. Both replies share a partner link and
operation with receive, but only one of them is allowed to execute.

For an executable process, a reply activity must specify a variable for the message data being sent.

A reply activity can return a fault response. You can select a reply to handle a fault by adding it to a catch
container and specifying the fault name and variable properties. See Adding a Fault Handler for more
information.

A reply activity can return a fault response. You can select a reply to handle a fault by adding it to a catch
container and specifying the fault name and variable properties.

Required Properties Optional Properties

Participant (Partner Link) Name. See Selecting Activity Labels

Operation Port Type

Variable
See Input Variable
or
toPart fromVariable
See From Variable to Part.

Correlation

 Fault Name

 Join Condition. See Creating a Join Condition for an Incoming Link

 Suppress Join Failure. See Process Properties

 Comment. See Adding Comments to a Process

 Documentation. Adding Documentation to a Process

 Setting Visual Properties and Using Your Own Library of Images

 Execution State. See Viewing the Execution State of an Activity or Link

 Message Exchange. See Message Exchange Declaration

 Extension Attributes and Extension Elements. See Declaring Extension Elements and
Attributes.

To add a reply activity to the process manually:

For a shortcut and recommended technique, see Creating an Activity by Starting with a WSDL Interface.

1. Drag a Send task or Message throw event to the Process Editor canvas.
You can add a background color to the send task, but not the message throw event.

Reply 137

2. In the Properties view, select the following values:

a. Optionally type in a Name.

b. In the Participant drop-down, select New Process Service Consumer. See Creating a New Process
Service Consumer Interface.

c. Select an Operation from the picklist.

3. In the Data tab, do one of the following:

• Select Single Variable from the Assignment Type and select a variable, or select New Variable.

• Select XPaths or XQuery. For details, see Input Variable and From Part to Variable.

4. Select other optional properties as desired.

A simple example of using a reply activity in a process is shown in the following illustration.

To add a reply activity with a fault response:

1. Create a catch container for the appropriate scope or the process as a whole. For more information, see
Defining Catch and CatchAll Fault Handlers.

2. Create a catch container for the appropriate scope or the process as a whole.

3. Add a reply to the catch container.

4. Select the properties and name, as described in the procedure above.

5. Select a Fault Name from the list. The fault name is defined in a WSDL file.

6. Select the fault variable from the Variable list.

The following illustration shows an example of a reply with fault. The fault name is shown in the main tab.
The variable is specified in the Data tab.

138 Chapter 7: Implementing a BPMN Task or Event in BPEL

The following illustration shows a simple example of using a reply with a fault in a catch handler.

XML Syntax

<reply partnerLink="NCName" portType="QName"?
 operation="NCName"
 variable="BPELVariableName"? faultName="QName"?
 messageExchange="NCName"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="NCName" initiate="yes|join|no"?>+
 </correlations>
 <toParts>?
 <toPart part="NCName" fromVariable="BPELVariableName"/>+
 <toParts>
</reply>

Example 1 Normal Response:

<reply name="reply" partnerLink="customer"
 portType="lns:loanServicePT" operation="request"
 variable="approval">

Example 2 Fault Handling:

<reply name="reply" partnerLink="customer"
 portType="lns:loanServicePT" operation="request"
 variable="error" faultName="unableToHandleRequest">

Reply 139

Throw
BPMN Implementation: Error throw event

The throw activity provides one way to handle errors in a BPEL process by generating a fault. You can set link
conditions from an activity and then connect one link to a throw. For a discussion of error handling, see Fault
Handling.

The throw activity provides one way to handle errors in a BPEL process by generating a fault. You can set link
conditions from an activity and then connect one link to a throw.

For a list of faults described in the BPEL specification, see BPEL Standard Faults elsewhere in this help.

Required Properties Optional Properties

Fault Name Name. See Selecting Activity Labels

 Fault Variable

 Join Condition. See Creating a Join Condition for an Incoming Link

 Suppress Join Failure. See Process Properties

 Comment. See Adding Comments to a Process

 Documentation. See Adding Documentation to a Process

 Setting Visual Properties and Using Your Own Library of Images

 Execution State. See Viewing the Execution State of an Activity or Link

 Extension Attributes and Extension Elements. See Declaring Extension Elements and
Attributes.

To build a throw activity:

1. Drag an Error throw event to the Process Editor canvas.

2. In Properties view, specify a fault to throw.

The following illustration shows an example of using a throw activity.

140 Chapter 7: Implementing a BPMN Task or Event in BPEL

XML Syntax

<throw faultName="QName"
 faultVariable="BPELVariableName"? standard-attributes
 standard-elements
</throw>

Example:

<throw xmlns:FLT="http://example.com/faults"
 faultName="FLT:OutofStock"/>

Rethrow
BPMN Implementation: Error throw event

The rethrow activity passes to the parent scope the fault that is originally caught by the immediately
enclosing fault handler. The rethrow activity can be used only within a fault handler's catch and catch all
elements. The activity always throws the original fault data and preserves its type.

A rethrow activity is part of a default catch all fault handler. See Fault Handling for more information.

Rethrow 141

A rethrow activity is part of a default catch all fault handler.

Required Properties Optional Properties

none Name. See Selecting Activity Labels

 Join Condition. See Creating a Join Condition for an Incoming Link

 Suppress Join Failure. See Process Properties

 Comment. See Adding Comments to a Process

 Documentation. See Adding Documentation to a Process

 Setting Visual Properties and Using Your Own Library of Images

 Execution State. See Viewing the Execution State of an Activity or Link

 Extension Attributes and Extension Elements. See Declaring Extension Elements and
Attributes.

To add a rethrow activity to the process:

1. On the Process Editor's Fault Handler tab or a scope fault handler, add a catch or catch all container.

2. Drag an Error throw event to a catch or catch all container.

The following illustration shows a simple example of using a rethrow activity within a catchAll fault handler
of a scope.

142 Chapter 7: Implementing a BPMN Task or Event in BPEL

Tip: if you collapse fault handler, you can add a background color to it in the Properties view.

XML Syntax

<rethrow standard-attributes
 standard-elements
</rethrow>

Example:

<rethrow/>

Signal
A signal is an event that you create that throws information within a process and which can be received
anywhere within the process. Catching a signal event is equivalent to catching a message or alarm event
except that only the name of the signal needs to be specified. This means it could be caught inline (like a
wait), as an alternative in a pick (like onAlarm), as a handler (like onAlarm), or using a boundary event.

Note: This is a Process Developer extension activity.

Unlike a message (which a signal resembles), a signal can be received by more than one activity. It also
differs in that a message must know the activity to which the message is directed. In contrast, a catch signal
is broadcast and the signal decides which of the signals being broadcast it should process.

To add signals to your process, drag a Signal icon to the Process Editor canvas. Signal resides in the Throw
and Catch event palettes.

After dragging a throw signal to the canvas, you must assign it a Signal Name. Do not confuse this with an
Activity Name. When you define the properties of the catch signal, you will identify the signal it catches by
this name. It needs this name because a process can have more than one signal.

When a signal is thrown, all signal handlers that are active and waiting a signal of that name execute and they
do this before the end of the current transaction.

Signal 143

For information on defining a signal's properties, see Defining an Activity and Its Properties.

If you are using an existing workspace and have customized your palette, signal events may not show in it. If
you run into this problem, copy the signal events entries over into the workspace or remove the workspace's
customized palette. This does not occur when you create a new workspace signal events show in the palette.

Exit
BPMN Implementation: Terminate throw event

The exit activity stops a business process. It is designed for an executable process, not an abstract process.
All currently running activities must be terminated immediately without any fault handling or compensation.

Termination of a process with an exit activity is an abnormal completion. The process ends with a Process
Developer system fault, processTerminated.

Required Properties Optional Properties

none Name.

Join Condition.

Suppress Join Failure.

Comment.

Documentation.

Setting Visual Properties and Using Your Own Library of Images

Execution State.

Extension Attributes and Extension Elements.

To build an exit activity:

1. Drag a Terminate throw event to the Process Editor canvas.

2. Add the activity to an appropriate container or link another activity to it.

The following illustration shows an example of using an exit activity.

144 Chapter 7: Implementing a BPMN Task or Event in BPEL

XML Syntax

<exit standard-attributes
 standard-elements
</exit>

Wait
BPMN Implementation: Timer catch event

The wait activity tells the business process to wait for a given time period or until a certain time has passed.

The wait expression conforms to an expression, where the value is an XML schema type of dateTime, date, or
duration.

Required Properties Optional Properties

Wait Expression Name

Wait Type Join Condition

Suppress Join Failure

Comment

Documentation

Setting Visual Properties and Using Your Own Library of Images

Execution State

Extension Elements and Attributes.

To build a wait activity

1. Drag a Timer catch event to the Process Editor canvas.

Wait 145

2. In the Properties view, select a Wait Type: Duration or Deadline. You can select a static duration or
deadline or create an expression.

3. Select the duration or deadline static control or click the Dialog (...) Button next to Deadline or
Duration Expression.

4. In the Expression box, specify one of the following:

• For a deadline, specify a date and time, such as '2010-12-12T12:00'. Be sure to include the single
quotes.

• For a duration, specify a time, such as 'P1DT10S'. Be sure to include the single quotes.

In addition to the few examples below for deadline and duration expressions, you can see the examples given
in the XML schema specification.

The following illustration shows an example of using a wait activity.

See the following:

• http://www.w3.org/TR/xmlschema-2/#duration
• http://www.w3.org/TR/xmlschema-2/#datetime
• http://www.w3.org/TR/xmlschema-2/#date

XML Syntax
<wait (for="duration-expr" |
 until="deadline-expr")standard-attributes>
 standard-elements
</wait>

Examples:

• A duration of one second:

<wait for="'PT1S'"/>
• A duration of 1 year, 2 months, 3 days, 10 hours, and 30 minutes:

<wait for= "‘P1Y2M3DT10H30M' "/>
• A deadline with a date and time:

<wait until="'2010-12-12T12:00'"/>

146 Chapter 7: Implementing a BPMN Task or Event in BPEL

Compensate
BPMN Implementation: Compensate throw event

The compensate activity triggers the start of compensation on all inner scopes that have already completed
successfully. See Compensation for a discussion of compensation handlers.

The compensate activity specifies no scope name, thus providing explicit default-order compensation that
executes the compensation handler on all eligible scopes in the reverse order of their completion.

The compensate activity is defined within a compensation handler, fault handler, or termination handler. It
can also be the target of a compensation boundary event.

The compensate activity is one of two compensation activities. The Compensate Scope activity names an
enclosed scope for compensation.

Required Properties Optional Properties

none Name. See Selecting Activity Labels

 Join Condition. See Creating a Join Condition for an Incoming Link

 Suppress Join Failure. See Process Properties

 Comment. See Adding Comments to a Process

 Documentation. See Adding Documentation to a Process

 Setting Visual Properties and Using Your Own Library of Images

 Execution State. See Viewing the Execution State of an Activity or Link

 Extension Attributes and Extension Elements. See Declaring Extension Elements and
Attributes.

To build a compensate activity:

1. On the Process Editor canvas, select a scope that has a compensation, fault, or termination handler
container.
For a fault handler, ensure that the fault handler contains a catch container.

2. Drag a Compensate throw event to the container, as shown in the following example.

Compensate 147

Alternately, use a BPMN compensation boundary event and make the compensate activity a target of it. For
details, see Adding Boundary Events and Catch and Catch All Boundary Events and Compensate, Compensate
Scope and Rethrow.

XML Syntax

<compensate standard-attributes>
 standard-elements
</compensate>

Example

<compensate/>

148 Chapter 7: Implementing a BPMN Task or Event in BPEL

Compensate Scope
BPMN Implementation: Compensate throw event

The compensate scope activity names an enclosed scope for compensation and triggers the start of the
scope's compensation handler. See Compensation for a discussion of compensation handlers.

The compensate scope activity is one of two compensation activities. The compensate activity does not
name an enclosed scope, but rather executes the compensation handler on all eligible enclosed scopes in the
reverse order of their completion.

Required Properties Optional Properties

Target Name. Se

 Join Condition.

 Suppress Join Failure.

 Comment.

 Documentation.

 Setting Visual Properties and Using Your Own Library of Images

 Execution State

 Extension Attributes and Extension Elements.

To build a compensate scope activity:

1. On the Process Editor canvas, select a scope that has a compensation, fault, or termination handler.
For a fault handler, ensure that the fault handler contains a catch or catch all container.

2. Drag a Compensate throw event to a catch, catch all, compensation handler, or termination handler, as
shown in the following example.

Compensate Scope 149

In the Properties view, select the arrow in the Target row, and select a scope name from the list. The scope
must be an inner scope in relation to the compensate scope activity.

If no scope names are available, you can not add a compensate scope activity to the current scope.

XML Syntax

<compensateScope target="NCName" standard-attributes>
 standard-elements
</compensateScope>

Example

<compensateScope target="assessorScope"/>

150 Chapter 7: Implementing a BPMN Task or Event in BPEL

Break
BPMN Implementation: Terminate throw event

This is a Process Developer extension activity. When you save the process, a message appears informing you
that the process contains an activity that is not in the BPEL specification.

By default, the break activity exits the nearest enclosing scope, while, or forEach activity. You can use a
break inside a container to break out of processing.

When a break executes, control is transferred to the target of the break activity. The target does not execute
any further iterations and completes normally. When multiple scope, while, or forEach activities are nested
within each other, a break activity applies only to the innermost activity. In the case of a parallel forEach, the
break activity causes all of the executing iterations to terminate all of their executing child activities and
complete normally. The break activity allows the root scope of a forEach to complete normally so that it is
compensatable. Early termination through a break activity is not considered a faulting state, and therefore
does not prevent compensation.

Note that you can set the BPMN Terminate property to No to change the behavior of the break to break out of
loops (while, for Each and repeat until), but not scopes.

You can use a break to exit normally instead of throwing a fault and forcing termination of the process.

Required
Properties

Optional Properties

none Name. See Selecting Activity Labels

 Join Condition.

 Suppress Join Failure. See Process Properties

 Comment. See Adding Comments to a Process

 Documentation. See Adding Documentation to a Process

 Setting Visual Properties and Using Your Own Library of Images

 Execution State. See Viewing the Execution State of an Activity or Link

 Extension Attributes and Extension Elements. See Declaring Extension Elements and Attributes.

 BPMN Terminate. If set to Yes (the default), stops execution out to the nearest scope, while loop
or for-each loop, whichever comes first. Repeat-until loops are skipped, since they are not
represented with a boundary (like a scope) and BPMN terminate does not see it as a loop. The
scope or loop is considered to have completed successfully (same as throwing a fault and then
catching it).
If set to No, breaks out of loops (while, for Each and repeat until), but not scopes.

To add a break activity:

1. On the Process Editor canvas, select a scope, while, or forEach container.

2. Drag a Terminate throw event to it.

The following illustration shows an example.

Break 151

XML Syntax

<break standard-attributes>
 standard-elements
</break>

Example

<while>
 <targets><target linkName="Link2"/></targets>
 <sources><source linkName="Link5"/></sources>
 <condition>($counter < 5)</condition>
 <flow>
 <links>
 <link name="Link5"/>
 </links>
 <if>
 <sources><source linkName="Link5"/></sources>
 <condition>($counter = 3)</condition>
 <extensionActivity>
 ext:break name="Break"/>
 </extensionActivity>
 </if>
 <assign>
 <targets><target linkName="Link5"/></targets>
 <copy>
 <from>($counter + 1)</from>
 <to variable="counter"/>
 </copy>
 </assign>
 </flow>
</while>

152 Chapter 7: Implementing a BPMN Task or Event in BPEL

Continue
BPMN Implementation: None

This is a Process Developer extension activity. When you save the process, a message appears informing you
that the process contains an activity that is not in the BPEL specification.

You can use the continue activity inside a while, repeat until, or forEach container. The continue activity
causes its immediately enclosed looping activity to stop the execution of the current iteration and move on to
the next iteration. In the case of a while, the while's condition expression is evaluated to see if another
iteration is possible. In the case of a serial forEach, the next iteration in the sequence executes or the loop
completes if the current iteration is the final one. In the case of a parallel forEach, the continue only affects
its enclosed iteration, allowing any parallel iterations to complete normally.

The continue activity allows the root scope of a forEach to complete normally so that it is compensatable.
Early termination through a continue activity is not considered a faulting state, and therefore does not
prevent compensation.

Required Properties Optional Properties

none Name. See Selecting Activity Labels

 Join Condition. See Creating a Join Condition for an Incoming Link

 Suppress Join Failure. See Process Properties

 Comment. See Adding Comments to a Process

 Documentation. See Adding Documentation to a Process

 Setting Visual Properties and Using Your Own Library of Images

 Execution State. See Viewing the Execution State of an Activity or Link

 Extension Attributes and Extension Elements. See Declaring Extension Elements and
Attributes.

To add a continue activity:

You must use the BPEL-Centric palette to use the continue activity.

1. On the Process Editor canvas, select a while, repeat until, or forEach container.

2. From the Event palette, drag a continue activity to it.

The following illustration shows an example.

Continue 153

XML Syntax

<continue standard-attributes>
 standard-elements
</continue>

Start End None
BPEL Implementation: Empty or Assign

The none events are useful at the beginning and end of a control flow to indicate the boundary of the flow.
The start event does not have a trigger. The end event does not have a result.

The intermediate event can be added within a control flow, such as the else if branch of an If activity.

Invoke
BPMN Implementation: Send task, Service task, Rule task, Message throw event

The invoke activity directs a Web service to perform a one-way or request-response operation. It specifies the
participant that provides the service and the operation to invoke. The invoke activity must specify the data for
the message transmitted and may specify an output variable or variable part in the case of a synchronous
request-response Web service invocation. See Participants for descriptions of concepts important to this
activity.

An invoke activity can be compensated, or reversed. For more information, see Compensation.

An invoke activity can also include fault handling when the invoke is added to a scope. Alternately, any faults
associated with the invoked service can be handled at the process level, if desired.

154 Chapter 7: Implementing a BPMN Task or Event in BPEL

An invoke activity can also include fault handling when the invoke is added to a scope. Alternately, any faults
associated with the invoked service can be handled at the process level, if desired. For more information, see
Fault Handling.

Required Properties Optional Properties

Participant (Partner Link) Name. See Selecting Activity Labels

Operation Port Type

Input Variable
See Input Variable.
or
toPart fromVariable
See From Variable to Part.

Correlations. See Correlation.

 Output Variable
See Output Variable and From Part to Variable.

 Input and Output assignments

 Join Condition. See Creating a Join Condition for an Incoming Link

 Suppress Join Failure. See Process Properties

 Comment. See Adding Comments to a Process

 Documentation. See Adding Documentation to a Process

 Setting Visual Properties and Using Your Own Library of Images

 Execution State. See Viewing the Execution State of an Activity or Link

 Extension Attributes and Extension Elements. See Declaring Extension Elements and
Attributes.

To add an invoke activity to the process manually:

1. Drag a Send task (or other BPMN implementation mentioned above) to the Process Editor canvas.

2. You can add a background color to the send, service, and rule tasks.
In the Properties view, select the following values:

a. Optionally type in a Name.

b. In the Participant drop-down, select New Partner Service Provider. See Creating a New Partner
Service Interface.

c. Select a participant's Operation from the picklist.

3. In the Input tab, do one of the following:

• Select Single Variable from the Assignment Type and select a variable.

• Select a XPaths or XQuery. For details, see From Part to Variable.

4. Optionally, select an output variable or a to part. For details, see From Variable to Part.

5. Select other optional properties as desired.

A simple example of using an invoke activity in a process is shown in the following illustration.

Invoke 155

For another shortcut for creating an invoke activity, see Creating an Activity by Starting with a WSDL Interface.

XML Syntax

<invoke partnerLink="NCName" portType="QName"? operation="NCName"
 inputVariable="NCName"? outputVariable="NCName"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="NCName" initiate="yes|join|no"?
 pattern="request|response|request-response"/>+
 </correlations>
 <catch faultName="QName"? faultVariable="NCName"?
 faultMessageType="QName"? faultElement="QName"?>*
 activity
 </catch>
 <catchAll>?
 activity
 </catchAll>
 <compensationHandler>?
 activity
 </compensationHandler>
 <toParts>?
 <toPart part="NCName" fromVariable="BPELVariableName"/>+
 </toParts>
 <fromParts>?
 <fromPart part="NCName" toVariable="BPELVariableName"/>+
 </fromParts>
</invoke>

Example:

 <invoke name="invokeapprover" partnerLink="approver"
 portType="lns:loanApprovalPT" operation="approve"
 inputVariable="request" outputVariable="approval">

From Part to Variable
Select a variable part and assign it to a process variable. Select New to create a From Part or To Part
specification to add to the list.

Receive, onMessage (pick activity), onEvent (event handler), invoke, and people activities can copy message
parts to process variables, eliminating the need to create an assign activity to do the copy. You can specify a
from pan instead of a variable for a receive, onMessage, and onEvent activity. You can also specify a from pan
in place of the output variable for an invoke or people activity.

If the WSDL operation uses a message containing exactly one part which itself is defined using an element,
then the Web service interaction activity can use the fromPart element for the activity's variable. The
fromPart declarations are used in place of the activity's variable declaration. In the case of an invoke or
people activity, the fromPart declaration replaces the output variable.

156 Chapter 7: Implementing a BPMN Task or Event in BPEL

Select the part and variable from the list of in-scope variables. For an onEvent activity, specify a variable
name, and the variable is created implicitly.

The following example show the XML source for a From Part assignment.

<onEvent operation="asyncOp" partnerLink="requestPLT">
 <fromParts>
 <fromPart part="one" toVariable="myNewVariable"/>
 </fromParts>
 <scope/>
</onEvent>

From Variable to Part
Select New to create a From Part or To Part specification to add to the list. Or select a process variable and
assign it to a variable part

Reply and invoke activities can copy a process variable to a message part, eliminating the need to create an
assign activity to do the copy. For the invoke, you can specify a to part instead of an input variable, and for
the reply, you can specify a to part instead of the variable.

If the WSDL operation uses a message containing exactly one part which itself is defined using an element,
then the Web service interaction activity can use the toPart element for the output variable. The toPart
declarations are used in place of the activity's output variable declaration.

The following example shows the XML source for a To Part assignment.

<invoke outputVariable="twoWayRequest"
 name="InvokeWithManagedCorrelation" operation="asyncOp"
 partnerLink="requestPLT" portType="ns1:asyncRequestPT">
 <toParts>
 <toPart fromVariable="V1" part="one"/>
 </toParts>
</invoke>

Input Variable
The input for an invoke, reply, or people activity can be constructed within the Input (or Data) tab of the
activity's Properties view. Use the Input (or Data) tab of the invoke, reply or people activity as follows:

The input for an invoke or reply activity can be constructed within the Input (or Data) tab of the activity's
Properties view. Use the Input (or Data) tab of the invoke or reply as follows:

Assignment Type

• Single Variable. Select a variable if no input preparation is desired via an assign activity. Select an
existing process variable or select New Variable. The variable must be of the operation's input message
type, or, if the operation requires only one part, the variable's type can be the element type of the one part.

• XPaths. Select XPaths if you want to use a table to map from data within existing variables or a literal to
the contents of the input message. The table uses XPath expressions that allow you to select nodes from
a variable to assign to the input variable as well as compute values (strings, numbers, or Boolean values)
from the content of variable. See Adding XPaths below.

• XQuery. Select XQuery if you want to fill each input message part with a single query written in the XQuery
expression language. This language allows you to create a query that looks like an XML document, but
where pieces of the document are constructed using a superset of the XPath expression syntax. It
supplements XPath with a SQL-like "FLWOR expression" (FOR, LET, WHERE, ORDER BY, and RETURN) for
performing joins. See Adding XQuery below.

For example XPath and XQuery expressions, see Selecting XPath or XQuery for Expression Building.

Invoke 157

Tip: If you want to use Javascript to prepare some or all of an input message, create an assign activity
instead of using the Input tab. Each copy operation in an assign can use a different expression language.

Adding XPaths

1. On the Input (or Data) tab of an invoke, reply, or people activity, ensure that the Assignment Type is
XPaths.

2. On the Input (or Data) tab of an invoke or reply activity, ensure that the Assignment Type is XPaths.

3. In the table, select Add to populate the b column.

4. In the To Path column, select the child node of the part, if needed.

5. In the E/L column, select the From type: Expression or Literal.

6. In the From column, select the Dialog (...) Button at the end of the table cell. For a literal, select
Generate and notice that the literal XML document is generated for you based on the type needed for the
chosen To Part and To Path. To add an expression, fill in the Expression text box. For a shortcut, see
Using Content Assist.
For more information on expression languages, see Using the Expression Builder.

The following is an example of a literal mapping:

7. Optionally, in Copy Attachments, select a variable that can have attachments that you want to copy to or
from. Note that you must copy all attachments. If you want only some attachments, you can add an
Assign activity before the activity. See Adding an Attachment for details.

8. When you use XPaths, a temporary variable called parameters is created to contain the parts. For details,
see Viewing Container Variables below.

Adding XQuery

For easy XQuery development, see Writing XQuery Functions.

1. On the Input (or Data) tab of an invoke, reply, or people activity, ensure that the Assignment Type is
XQuery.
Notice that a XML template is generated for the message part. If desired, after editing the document, you
can regenerate the template.

2. Fill in the XQuery expressions as desired for each element. Optionally, select Builder to open the Query
Builder to insert expressions or functions into the query.
The following is an example of an XQuery mapping.

158 Chapter 7: Implementing a BPMN Task or Event in BPEL

3. Optionally, copy attachments, as described above in the XPaths discussion.

Viewing Container Variables

Iif you use XPaths or XQuery, a container variable is added to the Process Variables view, called parameters.
Similarly, if you are copying attachments to the input variable, you will see the container variable,
attachmentCopyResult. These variables are hidden by default since they are used only temporarily at runtime
to process parts of a full variable. Select Show Internal Variables to make them visible.

Output Variable
The output from a receive, invoke (for a request-response operation) or people activity (containing a task)
can require that data is mapped to a process variable.

The output from a receive or invoke (for a request-response operation) can require that data is mapped to a
process variable.

Assignment Type

• Single Variable. Select a variable from the list to put the output of the activity into that variable. The
variable must be of the operation's output message type, or, if the operation reply has only one part, the
variable's type can be the element type of the one part. Select an existing process variable or select New
Variable.

• Parts To Variables. Select Parts To Variables if you want each reply message part to map to a different
variable. For details, see From Part to Variable.

• XPaths. Select XPaths if you want to use a table to map from data within existing variables to the
contents of the input message. The table uses XPath expressions that allow you to select nodes from a
variable to assign to the input variable as well as compute values (strings, numbers, or Boolean values)
from the content of variable. See Adding XPaths in the Input Variable topic.

Viewing Container Variables

If you use XPaths, a container variable is added to the Process Variables view, called result. Similarly, if you
add are copying attachments to the input variable, you will see the container variable,
attachmentCopyResult. These variables are hidden by default since they are used only temporarily at runtime
to process parts of a full variable. Select Show Internal Variables to make them visible.

Invoke 159

Assign
Select a FROM Type and then complete the Copy operation by making other appropriate selections. Add, edit,
copy, delete, and reorganize Copy operations and scripts for the selected Assign activity.

BPMN Implementation: Script task, None/Start/End throw event

The assign activity updates the content of variables. It updates variables in several ways:

• Copies data from one variable to another for a Copy operation

• Executes a script with a Script operation without the need for specifying a copy from/to definition

• Constructs new data using XPath (or other language) expressions and functions

• Constructs new data using WS-BPEL and other extension functions

You can also use assign to copy endpoint references to and from partner links for dynamic selection of
service partners.

If desired, you can validate the value of variables against their XML or WSDL definitions.

Tip: You can take a shortcut to creating an assign by creating data assignments within a receive, invoke,
reply, and people activity. For details, see Output Variable.

Required Properties Optional Properties

Copy
optional attributes:
Keep Source Element Name. See
Validating Variables
Ignore Missing From Data. See Copy
Operation with Ignore Missing From
Data Attribute.

Name. See Selecting Activity Labels

 Join Condition. See Creating a Join Condition for an Incoming Link

 Suppress Join Failure. See Process Properties

 Comment. See Adding Comments to a Process

 Documentation. See Adding Documentation to a Process

 Setting Visual Properties and Using Your Own Library of Images

 Execution State. See Viewing the Execution State of an Activity or Link

 Validate. See Validating Variables

 Extension Attributes and Extension Elements. See Declaring Extension
Elements and Attributes.

To add an assign activity to the process:

1. From the Task palette, drag a script task to the Process Editor canvas.
You can add a background color to the script task.

2. Double-click the assign to open the Operations dialog.
Alternately, in the Properties view, click in the Value field of the Copy Operations and select the Dialog
(...) Button.

160 Chapter 7: Implementing a BPMN Task or Event in BPEL

3. Select New Copy or New Script.

4. For a New Script, the Script Builder opens where you can create an expression to execute. The script
operation avoids the need for defining a from/to specification that a copy operation uses.

5. For a New Copy, in the From section, select a Type.

From Type Description Upon Selection of this Type...

Expression An XPath (or other language) expression
to perform computations on variables and
properties. Must return a string, number or
Boolean.

You can create the expression with an Expression
Builder. For more information, see Using the
Expression Builder

Literal A constant that conforms to an XML
schema definition. The type can be
indicated inline using xsi:type

Do one of the following:
Type in literal value (for example, 100)
Select the Literal Contents Dialog (...)
Button to open a larger editing area
Generate literal contents for a complex variable,
described in Using the XML Data Wizard and Copy
Operation Literal Contents Examples.
Assign a dynamic endpoint reference. See Copy
Operation Dynamic Endpoint Reference Example.

Opaque Name representing private application
data. Use this option only for an abstract
process. For more information, see
Creating an Executable vs. an Abstract
Process.

No other choices are allowed

Partner This selection generates a list of partner
links and roles

Select a partner link and role defining an endpoint
reference

Variable A WSDL message variable and optional
part name
A WSDL message property
XML schema simple type or element

Select a variable name, and optionally, a part name
and query. For more information, see Using the
Query Builder. Queries are allowed only in
executable processes.

Variable
Property

A WSDL message property Select a variable name and property

6. In the To section, select a Type. The To type must be compatible with the From type, as shown.

This From type Must match this To type

Message-type variable Message-type variable with matching type

XML schema type variable A variable containing a schema type

XML element type variable A variable containing the same element

Literal Must have a matching XML schema type

Assign 161

This From type Must match this To type

Expression Expression or Variable

Partnerlink partner role

7. If desired, enable the Keep Source Element Name check box, applicable only for element-based
variables. The source element name is used as the name of the resulting destination element. See
Element to Element Copy Operation with Keep Source Element Name Attribute.

8. If desired, enable the Ignore Missing From Datacheck box to avoid a selection failure if the source
variable is missing optional data. See Copy Operation with Ignore Missing From Data Attribute.

9. Click OK. You can add multiple operations to an Assign. They are executed in the order shown in the
Operations dialog and also in the Outline view.

10. If desired, in the Properties view, set the Validate property to yes to validate all variables used in the
assign's Copy operations.

For a shortcut to creating new assigns or adding Copy operations to an existing assign, you can use drag-
and-drop features in the Process Variables view. For more information, see Using Variables in a Copy
Operation.

Copy Operation XML Syntax

<assign validate="yes|no"? standard-attributes>
 standard-elements
 (<copy keepSrcElementName="yes|no"?
 ignoreMissingFromData="yes|no"?>
 from-spec (see below)
 to-spec (see below)
 </copy> |
 <extensionAssignOperation>
 ...assign-element-of-other-namespace...
 </extensionAssignOperation>) +
</assign>

From-Spec XML Syntax

The From element can be in one of these forms:

<from variable="BPELVariableName" part="NCName"?
 <query queryLanguage="anyURI"?>?
 queryContent
 </query>
/from>
<from partnerLink="NCName"
 endpointReference="myRole|partnerRole"/>
<from variable="BPELVariableName" property="QName"/>
<from expressionLanguage="anyURI"?>expression</from>
<from><literal>literal value</literal></from>

In an abstract process, you can also use:

<from opaque="yes">
Opaque data is private application data that you do not want to expose to your business partners. It is
effectively an abstract process placeholder for some real data that you intend to use in an executable
process.

To-Spec XML Syntax

The To element can be in one of these forms:

<to variable="BPELVariableName" part="NCName"?
 <query queryLanguage="anyURI"?>?
 queryContent

162 Chapter 7: Implementing a BPMN Task or Event in BPEL

 </query>
/to>
<to partnerLink="NCName"/>
<to variable="BPELVariableName" property="QName"/>
<to expressionLanguage="anyURI"?>expression</to>

Examples:

Example 1

<assign>
 <copy>
 <from>'yes'</from>
 <to part="accept" variable="approval"/>
 </copy>
</assign>
<assign>
 <copy>
 <from>$po.lineItem[@prodCode=$myProd]/amt * $exchangeRate
 </from>
 <to>$convertedPO.lineItem[@prodCode=$myProd]/amt</to>
 </copy>
</assign>

Example 2: XML for a Script Operation

<bpel:assign>
 <bpel:extensionAssignOperation>
 <bpel:documentation>new script operation
 </bpel:documentation>
 <ext3:script>abx:createAttachment('request',
 'text/plain',
 abx:base64Encode("Test attachment"))</ext3:script>
 </bpel:extensionAssignOperation>
</bpel:assign>

See also:

• Tips for Copy Operations

• Copy Operation Query and Expression Examples

• Copy Operation Literal Contents Examples

• Copy Operation Dynamic Endpoint Reference Example

• Element to Element Copy Operation with Keep Source Element Name Attribute

• Copy Operation with Ignore Missing From Data Attribute

Tips for Copy Operations
Select a FROM Type and then complete the Copy operation by making other appropriate selections. Add, edit,
copy, delete, and reorganize Copy operations and scripts for the selected Assign activity.

Here are a few types when using a Copy operation:

• Copy operations in Assign activities are executed in the order listed in the Operations dialog. The order is
also shown in the Outline view.

• You can re-order the operations in either the Operations dialog or in the Outline view.

• You can also add a comment or documentation for each copy operation. Select an operation from the
Outline view. The properties for it are displayed, and you can add a comment and documentation for it.
For more information, see Adding Comments to a Process.

Assign 163

Copy Operation Query and Expression Examples
Add, edit, copy, delete, and reorganize Copy operations and scripts for the selected Assign activity. Select a
FROM Type and then complete the Copy operation by making other appropriate selections.

Example 1: Query selection

Example 2: Expression using built-in BPEL function

See “Using the Expression Builder ” on page 240 for more information.

Copy Operation Literal Contents Examples
Select a FROM Type and then complete the Copy operation by making other appropriate selections. Add, edit,
copy, delete, and reorganize Copy operations and scripts for the selected Assign activity. For a complex type
or element, you can generate an XML data file. If the Generate button is greyed out, the variable selected is

164 Chapter 7: Implementing a BPMN Task or Event in BPEL

not of a compatible type. For any variable, use this editor to type in appropriate literal values. Select any
matching type or element from the drop-down list to create a XML data file for the root element.

Copy Operation Literal Contents Examples

Type in a literal value for copying to a simple variable, variable property, expression, or partner link, as shown
in Example 1. Generate XML data for a complex variable, as shown in Example 2.

Example 1: Literal value

The expression above assigns a string to variable part that is a string. If the variable part were an integer,
Process Developer would not report an error, rather it would generate a zero value. Process Developer
converts any illegal values to zero for numeric type conversions.

Example 2: Literal contents generation used to initialize a complex variable

Do the following:

1. In the TO panel, select a complex variable (and optionally one of its parts) that you want to generate XML
data for.
If you do not select a TO target first, an unfiltered list of top-level schema elements or complex types
that the process is importing are available. If no elements or types are available, the Generate button is
unavailable.

2. Select the Dialog (...) Button below the Literal Contents text box to open a larger edit box.

Assign 165

3. Select Generate. The Generate button is available only if there are top-level schema elements or
complex types in the imported WSDL. The list is filtered if you have selected a known type or element in
the TO panel.

4. Fill in the details for generating data, as described in Using the XML Data Wizard.

5. Edit details of the generated data in the Literal Contents edit box, if desired, as shown in the example.

6. Click OK to view the copy operation, as shown in the example.

166 Chapter 7: Implementing a BPMN Task or Event in BPEL

Copy Operation Dynamic Endpoint Reference Example
Select a FROM Type and then complete the Copy operation by making other appropriate selections. Add, edit,
copy, delete, and reorganize Copy operations and scripts for the selected Assign activity.

Here is an example of how to specify a copy operation for dynamic assignment of a service. The service
name would be supplied as an input to the Assign activity.

Be sure to declare the WS-Addressing namespace when you refer to endpoint references. Process Developer
supports several versions of the WS-Addressing specification, as described in Endpoint References and WS-
Addressing Considerations.

To implement this assignment, type in a valid endpoint reference in the Literal Contents text box. Click the
Dialog (...) Button below the text box to open a larger edit box, if desired. Copy from a Literal to a Partner
Link, as shown:

Example:

<assign>
 <copy>
 <from>
 <wsa:EndpointReference
 xmlns:s="http://www.active-endpoints.com/wsdl/bpr-epr"
 xmlns:wsa=
 "xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsa:Address>anyURI</wsa:Address>
 <wsa:ServiceName>tns:Service</wsa:ServiceName>
 </wsa:EndpointReference>
 </from>
 <to partnerLink="mypartnerLink"/>

Assign 167

 </copy>
</assign>

Element to Element Copy Operation with Keep Source Element
Name Attribute

Select a FROM Type and then complete the Copy operation by making other appropriate selections. Add, edit,
copy, delete, and reorganize Copy operations and scripts for the selected Assign activity.

Use Keep Source Element Name to replace the element at the destination with a copy of the entire element at
the source, including children and attribute properties. This attribute supports XSD substitution groups and
choice.

If Keep Source Element Name is disabled, then the resulting value for element-based variable in the
destination (that is, the TO side) has its original namespace and local name properties.

If Keep Source Element Name is enabled, then the resulting value for the element-based variable in the
destination uses the name of the element-based variable in the source (that is, the FROM side).

Given the following schema snippet:

<xsd:element name="poHeader">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="shippingAddr"
 type="tns:AddressType" />
 <xsd:element name="USshippingAddr"

168 Chapter 7: Implementing a BPMN Task or Event in BPEL

 type="tns:USAddressType" />
 </xsd:choice>
 <xsd:element name="billingAddr"
 type="tns:AddressType" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Given the following process variable values prior to the copy operation:

poHeaderVar1 poHeaderVar2

<tns:poHeader> <tns:poHeader>

<tns:USshippingAddr verified="true">

<tns:street>123 Main Street</tns:street>

<tns:city>SomeWhere City</tns:city> <tns:shippingAddr pobox="true" />

<tns:country>USA</tns:country>

<tns:zipcode>98765</tns:zipcode>

</tns:USshippingAddr>

</tns:poHeader> </tns:poHeader>

Given the following copy operation:

<assign>
 <copy keepSrcElementName="yes">
 <from>$poHeaderVar1/tns:USshippingAddr</from>
 <to>$poHeaderVar2/tns:shippingAddr</to>
 </copy>
</assign>

The resulting value of poHeaderVar2 is:

<tns:poHeader>
 <tns:USshippingAddr verified="true">
 <tns:street>123 Main Street</tns:street>
 <tns:city>SomeWhere City</tns:city>
 <tns:country>USA</tns:country>
 <tns:zipcode>98765</tns:zipcode>
 </tns:USshippingAddr>
</tns:poHeader>

Copy Operation with Ignore Missing From Data Attribute
Select a FROM Type and then complete the Copy operation by making other appropriate selections. Add, edit,
copy, delete, and reorganize Copy operations and scripts for the selected Assign activity.

Use Ignore Missing From Data to avoid a selection failure when copying data that can not exist in the source
variable. If enabled for a copy operation, then any from-spec that selects zero elements, attributes, or text
items causes the copy operation to have no effect. The to-spec for the copy operation is not evaluated and
nothing changes in the target variable. If this attribute is not enabled, then the regular bpel:selectionFailure
fault is raised if the from-spec selects zero items.

Assign 169

Consider the sample below where a customer record could contain special instructions for package delivery.
If these instructions exist in the record then they should be copied over to the data sent to the shipping
service. If they do not exist, then the default instruction of "NONE" remains in place.

Case 1: Optional Data is Present

Sample data before the copy operation:

<CustomerRecord>
 <Id>100256</Id>
 <ShippingAddress>... </ShippingAddress>
 <DeliveryInstructions>
 Please leave at the back door
 </DeliveryInstructions>
</CustomerRecord>
<ShippingRecord>
 ...
 <SpecialHandling>NONE</SpecialHandling>
</ShippingRecord>

Copy Operation:

<copy ignoreMissingFromData="yes">
 <from>$customerRecord/DeliveryInstructions/text()</from>
 <to>$shippingRecord/SpecialHandling</to>
</copy>

Result after copy operation:

<ShippingRecord>
 ...
 <SpecialHandling>Please leave at the back door
 </SpecialHandling>
</ShippingRecord>

Case 2: Optional Data is Missing

Sample data before the copy operation:

<CustomerRecord>
 <Id>100256</Id>
 <ShippingAddress...>... </ShippingAddress>
</CustomerRecord>
<ShippingRecord>
 ...
 <SpecialHandling>NONE</SpecialHandling>
</ShippingRecord>

Copy Operation:

<copy ignoreMissingFromData="yes">
 <from>$customerRecord/DeliveryInstructions/text()</from>
 <to>$shippingRecord/SpecialHandling</to>
</copy>

Result after copy operation:

<ShippingRecord>
 ...
 <SpecialHandling>NONE
 </SpecialHandling>
</ShippingRecord>

For further details on selection failure settings, see: Using the Process Developer Disable Selection Failure
Fault Extension.

170 Chapter 7: Implementing a BPMN Task or Event in BPEL

Empty
BPMN Implementation: Abstract task, Start/End/None throw event

The empty activity is a "no op" instruction in the business process. This activity is useful for synchronization
of concurrent activities. For example, you can use an empty activity to show how links are affected, whether
or not a fault is caught, and at what scope level it is caught.

Required Properties Optional Properties

none Name.

 Join Condition.

 Suppress Join Failure.

 Comment.

 Documentation.

 Setting Visual Properties and Using Your Own Library of Images

 Execution State.

 Extension Attributes and Extension Elements.

To build an empty activity:

1. Drag an Abstract task (or Start/End/None throw event) to the Process Editor canvas.
You can add a background color to the abstract task, but not the throw event.

2. Add the activity to an appropriate container or link another activity to it.

The following illustration shows an example of using the empty activity, implemented as an abstract task.

XML Syntax

<empty standard-attributes>
 standard-elements
</empty>

Empty 171

Suspend
This is a Process Developer extension activity. When you save the process, a message appears informing you
that the process contains an activity that is not in the BPEL specification.

The suspend activity suspends a running process. This activity is useful for catching unexpected faults to
allow manual intervention for viewing and correcting errors. The optional variable attribute can be used to
attach data to an alert which both automatic and programmatic suspends can trigger.

You can perform process exception management on a suspended process. Using the Process Console, you
can conveniently view the location of a faulting activity.

Required Properties Optional Properties

none Name. See Selecting Activity Labels

 Variable

 Join Condition. See Creating a Join Condition for an Incoming Link

 Suppress Join Failure. See Process Properties

 Comment. See Adding Comments to a Process

 Documentation. See Adding Documentation to a Process

 Setting Visual Properties and Using Your Own Library of Images

 Execution State. See Viewing the Execution State of an Activity or Link

 Extension Attributes and Extension Elements. See Declaring Extension Elements and
Attributes.

To build a suspend activity:

1. Drag a Suspend task to the Process Editor canvas.
You can add a background color to the suspend task.

2. Add the activity to an appropriate container, such as a fault handler's catch or catchAll activity, or link
another activity to it.

The following illustration shows an example of using the suspend activity.

172 Chapter 7: Implementing a BPMN Task or Event in BPEL

XML Syntax

<suspend variable="NCName"? standard-attributes>
 standard-elements
</suspend>

Example

<catchAll>
 <extensionActivity>
 <ext:suspend/>
 </extensionActivity>
</catchAll>

Validate
Select variables for the validate activity's variable list.

The validate activity validates the values of process variables against their associated XML and WSDL data
definitions. You can add a list of variables to this activity for validation, regardless of whether or how they are
used within a BPEL process.

During simulation, if a variable is found to contain an invalid value, the process terminates with a
bpel:invalidVariables fault.

Note that you can also validate the specific variables used within an assign activity. See Assign for details.

Note also that if the Keep Source Element Name attribute is enabled on a copy operation, it can cause the
target variable to be invalid.

Validate 173

For an overview of WS-BPEL validation features, see Validating Variables.

Required Properties Optional Properties

Variables Name. See Selecting Activity Labels

 Join Condition. See Creating a Join Condition for an Incoming Link

 Suppress Join Failure. See Process Properties

 Comment. See Adding Comments to a Process

 Documentation. See Adding Documentation to a Process

 Setting Visual Properties and Using Your Own Library of Images

 Execution State. See Viewing the Execution State of an Activity or Link

To add a validate activity to the process:

1. Drag a Validate task to the Process Editor canvas.
You can add a background color to the validate task.

2. Double-click the validate to open the Select Variable dialog.
Alternately, in the Properties view, click in the Variables field and click Dialog (...).

3. In the Select Variable dialog, select one or more process variables for validation against their XML or
WSDL definition.

The following illustration shows a simple example of using a validate activity to check the values of variables
after an assign activity.

174 Chapter 7: Implementing a BPMN Task or Event in BPEL

XML Syntax

<validate variables="BPELVariableName-list"
 standard-attributes>
 standard-elements
</validate>

Opaque
Process Developer Classic only

This activity is for use only in abstract processes. For details on creating an abstract process, see Creating an
Abstract Process.

This activity stands in for an activity that would be used in an executable process.

Required Properties Optional Properties

none Name. See Selecting Activity Labels

 Join Condition. See Creating a Join Condition for an Incoming Link

 Suppress Join Failure. See Process Properties

 Comment. See Adding Comments to a Process

 Documentation. See Adding Documentation to a Process

 Setting Visual Properties and Using Your Own Library of Images

 Execution State. See Viewing the Execution State of an Activity or Link

 Extension Attributes and Extension Elements. See Declaring Extension Elements and
Attributes.

To build an opaque activity:

1. Ensure that your BPEL process references a namespace for an abstract process. By default, a BPEL
process is executable. See Tips for Working with Abstract Processes.

2. From the Activity palette, drag an opaque to the Process Editor canvas.

3. Add the activity to an appropriate container, if desired, or link another activity to it.

The following illustration shows an example of using an opaque activity.

Opaque 175

XML Syntax

<opaqueActivity standard-attributes>
 standard-elements
</opaqueActivity>

Example:

<opaqueActivity/>

Creating a Custom Activity
Select an activity or activity group previously saved in the Custom palette.

You can save any activity or set of activities from a BPEL file as a custom activity. You can shorten design
time by reusing the custom activity in other BPEL files.

To create a custom activity:

1. Select one or more activities or containers on the Process Editor canvas.

2. Right-mouse click and select Add to Palette.
The Custom palette appears, if it was previously empty. The selection is added to the Custom palette as
Custom1.

3. Right-click the custom icon and select Customize.

4. Rename the custom icon by typing in the Name field.

5. You can use either Small (20 x 20 max.) or Large (32 x 32 max.) images for the item's icon.

6. Click OK.

Creating an Activity by Starting with a WSDL
Interface

Select the activity type to create. Select Receive-Reply to create a matching Reply for the Receive. To activate
the OnMessage activity, drop the Operation Wizard icon onto a Pick activity. For an OnEvent, drop the Wizard
onto a process or scope Event handler. Select a fault name declared in the referenced WSDL file. Select an
existing fault variable or create a new one. Select No Variable to use a message part for the activity.

176 Chapter 7: Implementing a BPMN Task or Event in BPEL

Process Developer has a shortcut for you to create activities for an executable process. You can create a
Web interaction activity by selecting an operation from the Participants or Interfaces view and completing a
wizard.

For a key productivity starting point, see Using the Participants View.

Starting with a Partner Link Type Definition

If your WSDL file does not yet include partner link type definitions, you can select an operation from a port
type.

1. Display the Partner Link Type element from a WSDL. The illustration shows an example of the
loanProcess port type prior to the partner link type creation.

2. Select an operation to receive from, reply to, or invoke.

3. Drag the operation to one of the following locations:

• Anywhere on Process Editor canvas to create a receive, reply, reply with fault, or invoke

• Inside a scope on the Process Editor canvas if you want to create scope-level partner links or
variables

• Pick activity to create an onMessage and/or Reply

Creating an Activity by Starting with a WSDL Interface 177

• Event handler to create an onEvent and/or Reply
The list that appears on the Activity Type page varies depending on the location on which you
dropped the operation. The following illustration shows the activities for a process or scope-level
location, not for a pick activity or event handler. The Receive-Reply combination is listed because the
WSDL operation has both input and output messages. Similarly, a Reply with Fault is listed because a
fault is declared for the WSDL operation.

4. Select the activity type. As a shortcut, you can select Receive-Reply to set up matching activities at the
same time. Click Next.
If you are creating a Reply with Fault, see Creating a Reply with Fault.

5. Accept an existing process-level or ancestor scope partner link you have already defined in your process,
if available, or type in a new one. A partner link identifies the roles played by the process and service. If
you are creating a new partner link inside a scope, you can select Enclosing Scope for the declaration of
the Location, making the partner link locally available only, instead of globally available to the process.
Click Next.

178 Chapter 7: Implementing a BPMN Task or Event in BPEL

You can edit the partner link and other wizard information after you have finished the wizard.

6. Choose one of the following for the input variable, and then click Next:

• Use an existing variable name associated with the operation's input message

• Type in a new name for the input variable in your process. Select the Location for the declaration:
Process or Enclosing Scope. Specify the variable type: Message or Element. If the variable is a
message type with a single part defined by an element, you can select Element.

• Select No Variable if the variable is for an empty message or you want to create a fromPart or toPart
for the activity. See From Variable to Part for details.

Creating an Activity by Starting with a WSDL Interface 179

7. For an invoke or reply activity, repeat step 6 for the output variable name. Click Finish.

Creating a Reply with Fault

If you select Reply with Fault from the Operation Wizard, complete the following steps.

1. Select a fault declared for the operation, and click Next.

2. Make one of the following selections for the fault variable:

• Use an existing variable name associated with the operation fault variable

180 Chapter 7: Implementing a BPMN Task or Event in BPEL

• Type in a new name for the fault variable in your process. Select the Location for the declaration:
Process or Enclosing Scope. Specify the variable type: Message or Element. If the variable is a
message type with a single part defined by an element, you can select Element.

• Select No Variable if the variable is for an empty message or you want to create a fromPart or toPart
for the activity. See From Variable to Part for details.

Starting without a Partner Link Type Definition

If the selected operation is not yet associated with a partner link type, you can select an operation from a port
type. A wizard appears so you can create a partner link type definition and add it to an existing WSDL file or
create a new WSDL file. For more information, see Partner Link Type.

Creating an Activity by Starting with a WSDL Interface 181

C h a p t e r 8

Implementing a BPMN Gateway or
Control Flow

Process Developer provides containers to structure activities. Each container has its own rules for how its
child activities are executed.

The following illustration shows an example of a process using the several nested structures to give you a
glance at how to use them.

BPMN-to-BPEL Implementation of Gateways and
Control Flow

BPMN-to-BPEL Implementation of Gateways and Control Flow

In many cases, a BPMN element can be implemented as one or more BPEL activities, described in the tables
below.

The following tables are divided into BPMN types: gateways and control flow

For additional implementations, BPMN-to-BPEL Implementation of Tasks and Events.

182

Gateways

BPMN Gateway BPEL Implementations

Exclusive For details, see Exclusive.

Parallel For details, see Parallel.

Inclusive For details, see Inclusive

Complex For details, see Complex.

Event-based For details, see Pick

Control Flows

BPMN Control Flow BPEL Implementations

Conditional Pattern If

Fork Pattern Two empty activities (parallel gateways) joined by links (equivalent of a BPEL flow activity)

Repeat Pattern Repeat Until

Loop While

Multi-Instance For Each

Embedded subprocess Scope

Different Ways of Structuring Activities
The BPEL language provides ways to structure and nest activities. Process Developer groups the structured
activities in the Gateway and Control Flow palette of the Process Editor. Basic activities execute based on
rules and conditions set by a parent container.

In addition to using structured containers, you can also structure activities by linking them with the edge tool.
For more information, see Using Links.

Overview of Control Flow Items
The following table provides brief definitions of control flow activities.

Container Name Description

Gateway Allows incoming and outgoing links and various conditions for them, depending on the type.
Equivalent to the BPEL empty activity.

Pick Executes a selected activity based on an incoming message or a time-out event. Includes the
Create Instance property to start a process.

Different Ways of Structuring Activities 183

Container Name Description

Fork Join BPMN equivalent of a BPEL flow activity, described above.

If Executes a selected activity based on branch conditions

While Executes an activity repeatedly until its condition evaluates to false

Repeat Until Executes an activity at least once and repeats until its condition evaluates to true

Scope Provides a context for set of activities, with correlation, compensation, fault handling, event
handling, termination handling, and local partner links and variables

For Each Iterates over a list of document elements

Sequence (Process Developer Classic only). Executes activities in an ordered list

Flow (Process Developer Classic only). Executes all activities in parallel

Ungrouping Selected Structured Activities
You can ungroup an If or Repeat Until activity, if they are not contained within a sequence. Right-mouse click
on the activity and select Ungroup. Ungroup breaks the structured container and all of its contents into
individual activities, links and gateways, shown in the same position. You can also select Ungroup for a
sequence, which is the blue border enclosing activities.

Ungrouping an If or Repeat Until allows you to link to an activity that was contained. Without ungrouping, you
can only link to the If or Repeat Until.

Gateway
The notation for a gateway control flow is BPMN only. This control flow is equivalent to a BPEL Empty
activity.

A gateway represents a control point in a process. It plays two roles: join sequence flows together and split
them apart. A gateway can play either role or both roles at the same time. The joins and splits are
accomplished by incoming and outgoing links.

About Gateway Types
There are four types of gateways, discussed below. When you select a type, in the Properties view of a
gateway, the join conditions of the incoming and outgoing links are automatically generated for that type. For
a complex gateway, you can add the join condition manually. The default gateway type is Exclusive.

184 Chapter 8: Implementing a BPMN Gateway or Control Flow

Based on the join conditions of the incoming or outgoing links, a gateway can be classified as one of the
following:

• Inclusive (diamond with O)

The activity waits for at least one of the incoming links to evaluate to true and for the rest of the incoming
links to be set with transition conditions. Any of the outbound links can have transition conditions, and
any number of them can evaluate to true.

• Exclusive

The default type. The activity waits for at least one of the incoming links to evaluate to true and for the
rest of the incoming links to be set with transition conditions. At most, one of the outbound links must
evaluate to true. If, at run-time, more than one outbound link evaluates to true, the first link executes.

• Parallel (diamond with +)

The activity waits for all incoming links to evaluate to true. All outbound links are true (no transition
condition is allowed out of a parallel gateway).

• Complex (diamond with asterisk)

The activity waits for all incoming links to be set (either true or false) and for the join condition specified
within the complex gateway to evaluate to true. Any of the outbound links can have transition conditions,
and any number of them can evaluate to true.

• Event-based. See Pick.

The BPEL structured activities, such as if, while, repeat until or for each easy-to-use alternatives to building
decision-making with a gateway.

An exclusive gateway is a good choice as the source or target of a loop-back links. For details, see Mutually
Exclusive Transitions.

Required Properties Optional Properties

Gateway Type Name.

 Join Condition.

Suppress Join Failure.

Gateway 185

Required Properties Optional Properties

Comment.

Documentation.

Setting Visual Properties and Using Your Own Library of Images

Execution State.

Extension Attributes and Extension Elements.

Mutually Exclusive Transitions

Building a Gateway
Use the following procedure to build a gateway:

1. From the Gateway palette, drag a gateway to the Process Editor canvas.

2. Drag an activity, such as invoke, either below or above the gateway to automatically link it into a
sequence.

3. If desired, add another activity to the canvas and link the two activities.

4. For tips on designing with links, see Adding a Link with a Transition Condition.

5. As desired, add transitions conditions to links, and then select the corresponding Gateway Type from the
Properties view.

Mutually Exclusive Transitions
"Mutually Exclusive Transitions" is a property of all activities, but we recommend that you do not set this
property directly. The exclusive gateway automatically sets this property to Yes.

This property, when set to Yes, declares that outbound links are mutually exclusive. This allows you to create
loop-back links and create links that break out of a structured activity. Since there is no way to validate that
two or more link conditions will not cause simultaneous execution of a target activity, you must set this
property. For details, see Process Developer Extension for Links.

The Mutually Exclusive Transitions property is set to No as a default on all activities except the exclusive
gateway, where it is set to Yes.

Pick
BPMN Implementation: Event-based gateway

The Pick activity has at least one message or message part and can optionally contain one or more alarms.
When the Pick executes, it blocks until one of its messages is received or until one of its alarms go off. Only a
single message or alarm ever executes in a Pick since the receipt of the message or the firing of the alarm
immediately causes all of the other branches to go dead.

186 Chapter 8: Implementing a BPMN Gateway or Control Flow

For example, a service can implement the process of waiting for a response to a quote by using a Pick with
an accept message, reject message, and a timeout. If the accept or reject message is not received within the
timeout period, the alarm activity executes.

A Pick activity is a good choice for asynchronous activities.

You can also use a Pick activity to start a process with a set of messages and no alarm. This special form of
Pick sets the Create Instance property to Yes and executes when the first message arrives.

Required Properties Optional Properties

For onMessage:
Partner Link
Operation
Variable or From Part
See From Part to Variable

Name. See Selecting Activity Label
Create Instance
Correlations. Correlation
Join Condition. See Creating a Join Condition for an Incoming Link
Suppress Join Failure. See Process Properties
Message Exchange. See Message Exchange Declaration.

Comment. See Adding Comments to a Process

Documentation. See Adding Documentation to a Process

For onAlarm:
Alarm Expression
Alarm Type

Setting Visual Properties and Using Your Own Library of Images

Execution State. See Viewing the Execution State of an Activity or Link.

To build an onAlarm branch of a Pick

1. From the Gateway palette, drag an Event-based gateway activity to the Process Editor canvas.

2. Select the onAlarm branch.

3. In the Properties view, select an Alarm Type: Duration or Deadline.

4. Click the Dialog (...) Button next to Alarm Expression.

5. In the Expression box, specify one of the following:

a. For a deadline, enter an xsd:datetime expression, such as '2010-12-12T12:00'
b. For a duration, enter an xsd:duration expression, such as 'PT1S'
c. For details and examples, see Deadline and Duration Expressions.

6. Drag an activity, such as a start, end, or none, to the On Alarm icon, and optionally select activity
properties to reflect the actions to take when the alarm goes off.

To build an onMessage branch of a Pick

1. From the Gateway palette, drag an Event-based gateway activity to the Process Editor canvas.

2. Select the OnMessage branch.

3. In the Properties view of the OnMessage, create a new participant, if needed, or select one from the list.

4. Drag an activity, such as a Script Task (an assign), to the On Message branch, and select activity
properties to reflect the actions to take when the message arrives.

The following illustration shows an example of a Pick activity.

Pick 187

XML Syntax
<pick createInstance="yes|no"? standard-attributes>
 standard-elements
 <onMessage partnerLink="NCName"
 portType="QName"? operation="NCName"
 variable="BPELVariableName"?>+
 messageExchange="NCName"?>+
 <correlations>?
 <correlation set="NCName" initiate="yes|join|no"?>+
 </correlations>
 <fromParts>?
 <fromPart part="NCName" toVariable="BPELVariableName" />+
 </fromParts>
 activity
 </onMessage>
 <onAlarm>*
 (
 <for expressionLanguage="anyURI"?>duration-expr</for>
 |
 <until expressionLanguage="anyURI"?>deadline-expr>
 </until>
)
 activity
 </onAlarm>
</pick>

Example:

<pick name="pick1" createInstance="yes">
 <onAlarm> <for>‘PT30S'</for>
 </empty>
 </onAlarm>
 <onMessage partnerLink="customer"
 portType="lns:loanServicePT" operation="request"
 variable="request" >
 <reply activity>
 </onMessage>
</pick>

Fork Join
The notation for a fork join container is BPMN only. This control flow is equivalent to a BPEL Flow activity.

188 Chapter 8: Implementing a BPMN Gateway or Control Flow

When you drag a fork join to the canvas, it contains two paths by default. You can add additional paths as
needed. Each path contains one or more activities. Each path executes in parallel.

Required Properties Optional Properties

none Name.

Join Condition.

Suppress Join Failure.

Comment.

Documentation.

Setting Visual Properties and Using Your Own Library of Images

Execution State.

Extension Attributes and Extension Elements.

To build a Fork Join:

1. From the Control Flow palette, drag a fork join to the Process Editor canvas.

2. Drag an activity, such as Receive task, to one path.

3. Continue dragging the other activities to the same or other path.

4. Add a new path by right mouse clicking the Fork Join and selecting Add Path.

The following illustration shows an example of a Fork Join activity containing two invokes executing in
parallel.

If
BPMN Implementation: Conditional Pattern

An If container executes an activity based on one or more conditions defined by the If and optional Else If
elements, followed by an optional else element. The conditions are evaluated in order, and the first one to

If 189

evaluate to true has its activity executed. The if container is a good choice if all conditionals can be
evaluated to a true or false condition.

If you do not define a branch, an implied Else executes an empty activity.

See also Ungrouping Selected Structured Activities.

Required Properties Optional Properties

If Condition Name. See Selecting Activity Labels

Join Condition. See Creating a Join Condition for an Incoming Link

Suppress Join Failure. See Process Properties

Comment. See Adding Comments to a Process

Documentation. See Adding Documentation to a Process

See Setting Visual Properties and Using Your Own Library of Images.

Execution State. See Viewing the Execution State of an Activity or Link

Extension Attributes and Extension Elements. See Declaring Extension Elements and
Attributes.

To build an If:

1. From the Control Flow palette, drag a Conditional Pattern activity to the Process Editor canvas.

2. Double-click the If Condition container to open the Expression Builder.
Alternately, in the Properties view, click the Dialog (...) Button next to If Expression.

3. Select the variables, functions and operators to build a Boolean expression. For details, see Using the
Expression Builder.

4. From the Activity palette, drag an activity to the If Condition container, and select activity properties.

5. Repeat Steps 2 through 5 for the Else If or Else branches, if desired.

The following illustration shows an example of an If activity.

190 Chapter 8: Implementing a BPMN Gateway or Control Flow

XML Syntax

<if standard-attributes>
 standard-elements
 <condition expressionlanguage="anyURI"?>
 bool-expr
 </condition>
 activity
 <elseif>*
 <condition expressionlanguage="anyURI"?>
 bool-expr
 </condition>
 activity
 </elseif>
 <else>?
 activity
 </else>
</if>

Example:

<if xmlns:inventory="http://supply-chain.org/inventory"
 xmlns:FLT="http://example.com/faults">
 <condition>
 bpel:getVariableProperty('stockResult',
 'inventory:level') > 100
 </condition>
 <flow>
 <!-- perform fulfillment work -->
 </flow>
 <elseif>
 <condition>
 <bpel:getVariableProperty('stockResult',
 'inventory:level') >= 0
 </condition>
 <throw faultName="FLT:OutOfStock"
 variable="RestockEstimate" />
 </elseif>
 <else>
 <throw faultName="FLT:ItemDiscontinued" />
 </else>
 </if>

While
BPMN Implementation: Loop

The While activity executes an activity repeatedly until its condition evaluates to false.

In contrast to the Repeat Until activity, the While loop may not execute the contained activity at all.

Required Properties Optional Properties

Condition Name. See Selecting Activity Labels

Join Condition. See Creating a Join Condition for an Incoming Link

Suppress Join Failure. See Process Properties

Comment. See Adding Comments to a Process

Documentation. See Adding Documentation to a Process

While 191

Required Properties Optional Properties

See Setting Visual Properties and Using Your Own Library of Images.

Execution State. See Viewing the Execution State of an Activity or Link

Extension Attributes and Extension Elements. See Declaring Extension Elements and
Attributes.

To build a While:

1. From the Control Flow palette, drag a Loop activity to the Process Editor canvas.

2. Double-click the Qhile to open the Condition Builder. For details, see Using the Expression Builder.

3. Drag an activity, such as a Scope or Invoke, inside the While.

4. Specify all the properties for each activity in the while.

XML Syntax

<while standard-attributes>
 <condition expressionLanguage="anyURI"?>
 bool-expr
 </condition>
 standard-elements
 activity
</while>

Example:

<while>
 <condition>
 $orderDetails > 100
 </condition>
 <scope>
 ...
 </scope>
</while>

Repeat Until
BPMN Implementation: Repeat Pattern

The Repeat Until activity executes an activity repeatedly until its condition evaluates to true. In contrast to the
While activity, the Repeat Until loop executes the contained activity at least once.

See also Ungrouping Selected Structured Activities.

Required Properties Optional Properties

Condition Name. See Selecting Activity Labels

Join Condition. See Creating a Join Condition for an Incoming Link

Suppress Join Failure. See Process Properties

Comment. See Adding Comments to a Process

192 Chapter 8: Implementing a BPMN Gateway or Control Flow

Required Properties Optional Properties

Documentation. See Adding Documentation to a Process

See Setting Visual Properties and Using Your Own Library of Images.

Execution State. See Viewing the Execution State of an Activity or Link

Extension Attributes and Extension Elements. See Declaring Extension Elements and
Attributes.

To build a Repeat Until:

1. From the Control Flow palette, drag a Repeat Pattern activity to the Process Editor canvas.

2. Double-click the Repeat Until to open the Condition Builder and build a Boolean expression. For details,
see Using the Expression Builder.

3. Drag an activity, such as a Scope or Invoke, inside the Repeat Until.

4. Specify all the properties for each activity in the Repeat Until.

XML Syntax

<repeatUntil standard-attributes>
 standard-elements
 activity
 <condition expressionLanguage="anyURI"?>
 bool-expr
 </condition>
</repeatUntil>

Example:

<repeatUntil>
 <condition
 expressionLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:
 xpath1.0">$counter > 0
 </condition>
 <sequence>
 <assign name="IncrementCounter">
 <copy>
 <from>$counter + 1</from>
 <to variable="counter"/>
 </copy>
 </assign>
 <wait name="WaitTwoSeconds">
 <for expressionLanguage=
 "urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
 'PT2S'
 </for>
 </wait>
 </sequence>
</repeatUntil>

Scope
BPMN Implementation: Embedded Subprocess

The Scope activity provides a context for a subset of activities. It can contain ault, event, and compensation
handling for activities nested within it and can also have a set of defined variables and a correlation set.

Scope 193

A Scope can encompass a logical unit of work, making it manageable to execute, and then, if need be, reverse
an activity. For example, if a customer cancels a paid travel reservation, the money must be returned, and the
reservation must be canceled without affecting other reservations. By enclosing activities in a Scope, you can
create the structure and conditions in which to manage activities as a unit.

Each Scope has a primary activity that can be a complex structured activity.

Required Properties Optional Properties

Isolated. Refer to Setting Isolated to "Yes" in a Scope Name. See Selecting Activity Labels

Join Condition. See Creating a Join Condition for an Incoming
Link

Suppress Join Failure. See Process Properties

Comment. See Adding Comments to a Process

Documentation. See Adding Documentation to a Process

See Setting Visual Properties and Using Your Own Library of
Images

Execution State. See Viewing the Execution State of an Activity
or Link

Extension Attributes and Extension Elements. See Declaring
Extension Elements and Attributes.

To build a Scope:

1. From the Control Flow palette, drag an Embedded Subprocess activity to the Process Editor canvas.
You can add a background color to the embedded subprocess if it is collapsed. Right-mouse click on the
embedded subprocess and select Collapse Container. The color property will appear in the Properties
view.

2. In the Properties view, set Isolated to Yes or No.

3. On the Process Editor canvas, right-mouse click the Scope activity to add declarations, including:

• Correlation Set. For more information, see Correlation.

• Variable. For more information, see Using Variables.

• Participants. For more information, see Using the Participants View.

4. From the Handlers palette, add event fault and compensation handlers:

• Compensation Handler. For more information, see Compensate and Compensation.

• Event Handlers. For more information, see Event Handling.

• Fault Handlers. For more information, see Fault Handling.

• Termination Handler. For more information, see Using a Termination Handler for a Scope

5. From the Task palette, drag activities to the Scope container, and select activity properties.

The following illustration shows a sample scope activity with all handlers displayed.

194 Chapter 8: Implementing a BPMN Gateway or Control Flow

You can save an activity, or group of activities to the Custom palette for reuse. Because a Scope can be
complex, it is a good candidate for reuse. For more information, see Creating a Custom Activity.

XML Syntax

<scope isolated="yes|no"? exitOnStandardFault="yes|no"?
 standard-attributes>
 standard-elements
 <variables>?
 ...
 </variables>
 <partnerLinks>?
 ...
 </partnerLinks>
 <correlationSets>?
 ...
 </correlationSets>
 <messageExchanges>?
 ...
 </messageExchanges>
 <faultHandlers>?
 ...
 </faultHandlers>
 <compensationHandler>?
 ...
 </compensationHandler>
 <eventHandlers>?
 ...
 </eventHandlers>
 <terminationHandler>?
 ...
 </terminationHandler>
 activity
</scope>

Example:

<scope isolated="no">
 <faultHandler>
 <reply>...</reply>
 </faultHandler>
 <flow>
 <invoke partnerLink="Seller" portType="Sell:Purchasing"
 operation="SyncPurchase"

Scope 195

 inputVariable="sendPO"
 outputVariable="getResponse"/>
 <invoke partnerLink="Shipper" portType="Ship:Orders"
 operation="OrderShipment"
 inputVariable="sendShipOrder"
 outputVariable="shipAck"/>
 </flow>
</scope>

See also:

• Setting Isolated to "Yes" in a Scope

• Lifecycle of a Scope

Setting Isolated to Yes in a Scope
Two scopes can run at the same time. For example, at the end of the year, a bank executes two activities for
each account: add interest and charge credit card costs. These activities can be executed in any order.
However, since they both update the account, they cannot execute at the same time.

To ensure that variables referred to within each scope do not conflict, you can enable the isolated property.
This property enables serialized access to variables, so that one scope has access to the shared variables
and must finish using them before the concurrently running scope can use them.

Isolation is not enabled during compensation. For more information, see Compensation.

Using a Termination Handler for a Scope
BPMN Implementation: Cancel catch event

Activities can be terminated in a process through fault handling, early termination via a completion condition
on a parallel forEach or through the execution of a Process Developer extension break activity. The Scope is
the only activity that provides a means to control what happens when an activity is terminated. The
termination handler for a scope is enabled while the scope is executing its main activity or its event handlers.
The termination handler is disabled as soon as the scope completes its execution or if the scope's fault
handlers execute. If a scope is eligible for termination, the termination of a scope begins by terminating its
primary activity and all running event handler instances. Following this, the custom <terminationHandler>
for the scope runs. If there is no termination handler for the scope, the default termination handler executes.

The default termination handler is:

<terminationHandler>
 <compensate/>
</terminationHandler>

For the main discussion of a scope's properties, see Scope.

Lifecycle of a Scope
When a Scope activity executes, it immediately registers any event messages or alarms with the engine prior
to the execution of its child activity. Once registered, these messages and alarms are eligible to execute until
the scope's child activity completes.

• If a fault occurs during execution of the child activity or one of the scope's events, the scope's fault
handler attempts to catch the fault.

• If the fault cannot be caught by the scope, then it is rethrown. The scope is said to have faulted and is not
eligible for compensation.

196 Chapter 8: Implementing a BPMN Gateway or Control Flow

• If the child activity completes successfully, then the scope completes after uninstalling its event
messages and timers, allowing them to complete if they are in the middle of executing.

A Scope is said to complete normally when it completes without a fault having been caught or rethrown. If a
Scope completes normally, it is eligible for compensation.

For Each
BPMN Implementation: Multi-Instance control flow

The For Each activity contains a scope activity and executes it for a specified count. The execution iterations
can occur in parallel or in sequence. The number of iterations to execute is determined by evaluating
expressions for a start and final value. These values are inclusive, so a start of one and a final of 10 causes
the enclosed scope to execute 10 times.

The expressions for the start and final values must evaluate to an xs:unsignedint. If it doesn't, a runtime
exception of bpel:forEachCounterError occurs. If the final value is greater than the start value then the for
each will not execute.

The counter name of the For Each is manifested as an implicit variable within the child scope. The initial
value of the variable is set to the current value of the For Each's iteration, which ranges from the start value
to the final value. This variable is accessible to all activities nested within the For Each's scope and appears
as a variable within the child scope.

Using a Completion Condition for Processing N of M Branches

A For Each activity can include an optional Completion Condition Expression property that can in turn include
an optional Count Successful Branches Only property.

The completion condition expression can be used to process at least N out of M branches. The expression
evaluates to an xs:unsignedint value that is used to define condition of N out of M. It is evaluated once,
when the for each begins its execution. If the completionCondition is not an xs:unsignedint, or it is
determined that it cannot be met prior to executing, the For Each faults with a
bpel:invalidBranchCondition. An example of this would be a completionCondition value of five when
there are only three iterations of the for each.

The property Count Successful Branches Only can be set to Yes or No. If set to Yes, it means the Process
Developer engine counts branches towards it completion condition that have completed normally (meaning
the child scope of the for each iteration did not catch a fault and is eligible for compensation). The default
value of No results in the For Each counting the completion of any child iteration towards its completion
condition.

At the completion of each iteration, the For Each tests the number of completed scopes versus its
completion condition (taking into account the Count Successful Branches Only setting as described above).
If it there are not enough iterations remaining to fulfill its completion condition, the For Each faults with a
bpel:completionConditionFailure and any remaining iterations do not execute, or are terminated in the
case of the parallel for each.

A common use of the completion condition is to process only the minimum number of items necessary to
complete a scope of work. For example, a BPEL process can call out to many partners in parallel, asking for
approvals on an item. The process can require that only three approvals be needed to continue processing
the item. Even though the process requested many approvals, it can break off the approval scope of work
when only three approvals are received. It can then continue with further processing.

For Each 197

Parallel For Each

You can create a parallel or sequential For Each. In a parallel For Each, instances of the enclosed activity
occur simultaneously. Each counter variable is initialized to one of the integer values in the count.

Use a parallel For Each for simultaneous processing of document parts. For example, you can process parts
of a complex message variable, such as line items in a purchase order.

A default Message Exchange property that keeps together the correct pair of receive/replies or onMessage/
replies, is automatically and implicitly declared in the scope. For details, see Message Exchange Declaration.

Sequential For Each

In a sequential For Each, instances of the enclosed activity execute one at a time.

Required Properties Optional Properties

Counter Name Name. See Selecting Activity Labels

Start Counter Value Completion Condition Expression

Final Counter Value Count Successful Branches Only

Parallel Execution Flag Join Condition. See Creating a Join Condition for an Incoming Link

 Suppress Join Failure. See Process Properties

 Comment. See Adding Comments to a Process

 Documentation. See Adding Documentation to a Process

 See Setting Visual Properties and Using Your Own Library of Images

 Execution State. See Viewing the Execution State of an Activity or Link

 Extension Attributes and Extension Elements. See Declaring Extension Elements and
Attributes.

To build a For Each

1. From the Control Flow palette, drag a Multi-Instance activity to the Process Editor canvas.

2. In the Properties view of the For Each, fill in the required properties:

• Parallel Execution Flag. Enable this setting to execute all instances of the activity concurrently. Be
sure to read the Parallel For Each discussion above to learn the requirements for this type of
execution. Disable this setting to execute the scope's activities sequentially.

• Add a Counter Name that identifies the enclosed scope's local variable. The default name is counter.

• Start Counter Value. Add an unsigned integer for the value. Type in a value or select the Dialog
(...) Button at the end of the row to open the Expression Builder. For details, see Using the
Expression Builder.

• Final Counter Value. See Start Counter Value above.

• If desired, add values for the optional property Completion Condition and enable Count Successful
Branches to count only successful branches, as described above.

3. Fill in the properties for the Scope container.

198 Chapter 8: Implementing a BPMN Gateway or Control Flow

4. Specify all the properties for each activity in the scope container. Be sure to set a message exchange
property for matching receive/replies and onMessage/replies within the scope if parallel execution is
enabled.

XML Syntax
<forEach counterName="NCName" parallel="yes|no">
 standard-attributes>
 standard-elements
 <startCounterValue expressionLanguage="anyURI">
 </startCounterValue>
 <finalCounterValue expressionLanguage="anyURI">
 </finalCounterValue>
 <completionCondition extension-attribute
 extension-element
 <branches expressionLanguage="URI"?
 countSuccessfulBranchesOnly="yes|no"?>
 an-integer-expression
 </branches>
 </completionCondition>
 activity
</forEach>

Example 1: 100 Executions, Executing if 10 Succeed

<forEach counterName="counter" parallel="no">
 <startCounterValue>1</startCounterValue>
 <finalCounterValue>100</finalCounterValue>
 <completionCondition>
 <branches countSuccessfulBranchesOnly="yes">
 10</branches>
 </completionCondition>
 <scope>...</scope>
</forEach>

Example 2: Serial For Each with Completion Condition

For Each 199

Example 3: Execution Thread of a Parallel For Each Activity

200 Chapter 8: Implementing a BPMN Gateway or Control Flow

The following illustration shows the execution thread of a parallel For Each that has a counter value of 10.
Notice that 10 instances of the enclosed scope are running in parallel.

Faults Associated with a For Each Activity

The following faults can occur with a For Each activity:

• If a running process encounters an error with the counter variable, it throws a bpel:forEachCounterError
fault.

• In a For Each activity, if a completion condition can never be true, the bpel:completionConditionFailure
is thrown.

• If the integer value evaluated from the Count Completed Branches Only expression is larger than the
Counter, the bpel:invalidBranchCondition fault is thrown.

Sequence
The Sequence container is displayed in Process Developer Classic layout style. If the BPMN style is in effect,
there is no Sequence container in the palette. Every activity is contained within a hidden sequence to simplify
designing on the canvas.

A Sequence container arranges and executes activities in an ordered list. This means that the first activity in
a sequence executes, and when it is finished, the second activity begins.

Required Properties Optional Properties

none Name. See Selecting Activity Labels

Join Condition. See Creating a Join Condition for an Incoming Link

Suppress Join Failure. See Process Properties

Sequence 201

Required Properties Optional Properties

Comment. See Adding Comments to a Process

Documentation. See Adding Documentation to a Process

See Setting Visual Properties and Using Your Own Library of Images

Execution State. See Viewing the Execution State of an Activity or Link

Extension Attributes and Extension Elements. See Declaring Extension Elements and
Attributes.

To build a Sequence:

Ensure that the layout style preference is set to Process Developer Classic.

1. From the Container palette, drag a Sequence activity to the Process Editor canvas.

2. Drag other activities into the sequence, organizing them from top to bottom or left to right.
Tip: You can select activities on the Process Editor canvas and then right-mouse click to select Create
Container > Sequence.

3. Set the properties for each activity in the sequence.

XML Syntax

<sequence standard-attributes>
 standard-elements
 activity+
</sequence>

Example;

<sequence name="SequenceExample">
 <receive name="receive1" partnerLink="customer"
 portType="lns:loanServicePT" operation="request"
 variable="request" createInstance="yes"/>
 <reply name="reply" partnerLink="customer"
 portType="lns:loanServicePT" operation="request"
 variable="approval"/>
</sequence>

Flow
The Flow container is displayed in Process Developer Classic layout style. If the BPMN style is in effect, there
is no Flow container in the palette. The equivalent container is called Fork Join.

A Flow container executes all activities in parallel. This means you can define two or more activities, such as
two Receive activities, to start at the same time. The activities start when the flow starts. The flow completes
when all the activities in the container have completed.

For example, you can receive approval from both a seller and a buyer by adding the seller and buyer receive
activities to a flow. Both receives must complete before the process executes another activity, such as
invoking an order shipment service.

Flows can also contain links that allow you to introduce dependencies between activities to control the order
in which they are executed. Refer to Using Links for more information.

202 Chapter 8: Implementing a BPMN Gateway or Control Flow

The Flow is most useful for concurrent execution of activities.

Required Properties Optional Properties

none Name. See Selecting Activity Labels

Join Condition. See Creating a Join Condition for an Incoming Link

Suppress Join Failure. See Process Properties

Comment. See Adding Comments to a Process

Documentation. See Adding Documentation to a Process

Setting Visual Properties and Using Your Own Library of Images

Execution State. See Viewing the Execution State of an Activity or Link

Extension Attributes and Extension Elements. See Declaring Extension Elements and
Attributes.

To build a flow:

1. Ensure that the layout style preference is set to Process Developer Classic.

2. From the Container palette, drag a Flow to the Process Editor canvas.

3. Drag an activity, such as Receive, inside the Flow.

4. Continue dragging the other activities into the Flow to execute concurrently.

5. Specify all the properties for each activity in the Flow.

The following illustration shows an example of a Flow activity.

XML Syntax

<flow atandard-attributes>
 standard-elements
 <links>?
 <link name="ncname">+
 </links>
 activity+
</flow>

Example:

<flow name="MarketplaceFlow">
 <receive name="SellerReceive" partnerLink="seller"
 portType="tns:sellerPT" operation="submit"
 variable="sellerInfo" createInstance="yes">
 </receive>
 <receive name="BuyerReceive" partnerLink="buyer"
 portType="tns:buyerPT" operation="submit"
 variable="buyerInfo" createInstance="yes">
 </receive>
</flow>

Flow 203

C h a p t e r 9

Using Variables
Process Developer provides several tools and shortcuts to define and use variables within a BPEL process,
and to handle sample data.

Overview of Variables
A BPEL process receives, manipulates, and sends data through XML variables. Variables hold the messages
exchanged between business partners and data used within the process.

For example, a process that receives a purchase order message from a buyer puts the message in an input
variable. From there the variable content can be accessed by other operations. The following illustration
shows an example.

204

Variables are defined in one of the following ways:

• WSDL Message Types

• XML Schema Type

• XML Schema Element

Tips for using variables:

• You can initialize a variable when you declare it. For details, see Initializing a Variable.

• You can validate the value of variables against their definitions by adding a validate activity or a validate
attribute in an assign activity. For details, see Validate and Assign.

• Variables can have attachments, and you can manipulate the attachments, as described in Attachments.

XML Syntax

<variable name="BPELVariableName"
 messageType="QName"? type=QName? element=QName?>+ from-spec?
</variable>

A variable name cannot contain the "." character. This character is reserved for use as a delimiter in WS-
BPEL's default binding to XPath 1.0.

Overview of Variables 205

Adding a Variable
Define a new process variable based on a type.

You can add message type variables to your process automatically when you create a receive, pick, invoke,
event handler, or reply activity from a WSDL. For details, see Creating an Activity by Starting with a WSDL
Interface.

You can also add variables to your process manually. Before manually adding a variable, ensure that an
appropriate WSDL namespace is defined. For more information, see Importing WSDL, Schema, and Other
Resources.

You can declare global variables, accessible by the process as a whole, and you can declare local variables
for use within a scope. A local variable can have the same name as a global variable, and if it has the same
name, only the local variable is accessible within the scope.

To define a global variable:

1. In Outline view, right mouse click on Variables and select Add > Declaration > Variable.

2. Double-click the new variable, or in the Properties view, click Dialog (...) to open the Definition dialog.

3. In the dialog, select the variable type:

• WSDL message

• Schema type

• Schema element

4. Select the name you need from the list that appears, and click OK.

To add an initial value to a variable, see Initializing a Variable.

To define a local variable:

1. Select a Scope from Outline view.

2. Complete Steps 2 - 4 above.

Variables are listed in the order they are created. To re-order the list, move a variable up or down in the
Outline view.

WSDL Message Types
A WSDL message type variable uses a message type declared in a WSDL namespace that is referenced in
your process.

The following illustration shows an example of a variable defined as a WSDL message type. The message
type namespace is declared in the BPEL process.

206 Chapter 9: Using Variables

XML Schema Type
An XML schema type variable uses a simple or complex type of element built into the schema of the currently
defined namespaces. For example:

<variable xmlns:props="http://example.com/shipProps"
 name="itemsShipped" type="props:itemCountType"/>

XML Schema Element
An XML schema element variable uses an element defined in the schema of the currently defined
namespaces, as shown in the following example.

Adding a Variable 207

Adding Variable Properties and Property Aliases
Select properties defined in a WSDL to use in a correlation set.

Properties are useful on non-message variables as a way to isolate a process's logic from the details of a
particular variable's definition. Using properties, a process can isolate its variable initialization logic in one
place and then set and get properties on that variable in order to manipulate it. If the variable's definition is
later changed, the rest of the process definition that manipulates that variable can remain unchanged.

A variable can have several properties, each defined as a property alias.

Properties

A property can be one of the following:

• Schema type like an xsd:int or an xsd:string

• Element

For example, a property might be a purchase order number or a customer Id. A property exists within a WSDL
message transmitted during a Web service interaction or in any process variable. A single variable can
contain multiple properties and a single property might exist in several variables.

Property Aliases

For each pairing of a variable and a property there exists a property alias that identifies how to extract the
value of a property from the given variable, whether the variable part is a simple type, schema element, or
complex type. If the part is an element or a complex type, an XPath (or other language) query is required to
identify the location of the property within the element or type.

208 Chapter 9: Using Variables

For details, see the following topics:

• WSDL Syntax and Example for Property Names and Aliases

• Creating a Property Definition

• Creating a Property Alias

Initializing a Variable
All variables must be initialized before use. A variable, or part of a variable, can be initialized in several ways,
including receiving a message in an activity, assigning data in an assign or input mapping, or adding an initial
value to the variable definition.

Variables in receive, onMessage, onEvent, and inbound invoke activities are automatically initialized. You can
initialize other process variables when you declare them. Doing so allows you to skip an assign activity that
would initialize a variable.

The initial value of a variable is validated against the schema or WSDL definition during process execution.
You can also validate the variable by adding it to a validate activity. For details, see Validating Variables.

To add an initial value to a variable:

1. Add a new process variable, as described in Adding a Variable.

2. From the Outline or Process Variables View, select a variable.

3. In the Properties view, select the Dialog (...)) Button next to Initial Value.

4. In the Variable Initialization dialog, select the details for assigning a value to the variable. The selections
are the same as those in the From side of a copy operation. For explanations of the From Type and
related attributes, see Assign.

For a variable that is declared in a scope that contains a start activity, such as a Receive, you must not
initialize the variable with a value that can change, such as a date-time function. This restriction allows for a
pre-computed value for all process instances.

Viewing Variables
The Process Variables view has several features to help you easily define and use variables, such as:

• Quickly view variables in use by selecting an activity in Outline or Process Editor canvas. See Quick View
of Variables Used in Activities.

• Search for all uses of a variable using Find Where Used. See Finding Variables Where Used.

• View a complete variable definition (message and parts, path, properties, elements and their attributes,
and simple types). See Understanding Icons, Symbols, and Descriptions of Variable Parts.

• Drag and drop variables to create Copy operations for new or current assigns. See Using the Process
Variables View Options and Using Variables in a Copy Operation.

• Add, load, generate, and edit sample data for message and element variables. See Using Sample Data in
Process Variables View.

The following illustration shows an example of Process Variables list.

Initializing a Variable 209

Quick View of Variables Used in Activities
When you select an activity on the Process Editor canvas or Outline view, the variables used in the activity
appear selected in the Process Variables view.

Using the Process Variables View Options
Use the picklist of options on the Process Variables toolbar for convenience. The following table lists the
options.

Option Description

View Variable Shows the variable list and lets you open a variable. Useful if the list is hidden. See Opening
a Variable to View its Definition.

Show Variable List Selected by default. If deselected, makes more room for open variables in the view by hiding
the list of variables

Show Internal
Variables

Deselected by default. If selected, displays the container variables associated with the
implicit scopes created for data mapping within invokes, receives, and replies activities.
Container variables are named parameters and attachmentCopyResult. For details, see
Input Variable.

Show Variable Data Displays variables in sample data view

Show Variable
Definition

Displays variables in definition view

Layout Horizontal Opens variables from left to right

Layout Vertical Opens variables from top to bottom

Reload Variable Data Displays last saved version of sample data

Tip: To rearrange the list of variables in Process Variables view, go to the Outline view and move variables up
or down.

Opening a Variable to View its Definition
In the Process Variables view, you can open one or a selection of variables.

• To open one variable, double-click it

• To open a selection of variables, select them, and then select Open All from the right-mouse menu

210 Chapter 9: Using Variables

• Select Open All to open all variables in the list

The following illustration shows an example of the BuyerPO variable opened.

Viewing Variable Properties
Select a variable from Process Variables view or Outline to put the Properties view in focus.

The following table shows the required and optional properties for a variable.

Required Properties Optional Properties

Name Documentation.

Definition Comment.

Initial Value.

Extension Attributes and Extension Elements.

Understanding Icons Symbols and Descriptions of Variable Parts
To understand each part of a variable, rest your mouse over it to view a description, as shown.

Viewing Variables 211

A variable definition can include:

• Message parts and properties

• WSDL schema types

• WSDL schema elements and attributes

An icon appears to the left of a variable part, property, element, or attribute. The icon, such as a pair of
brackets (< >), is associated with a structural entity, such as an element.

Variables used in copy operations have additional visual information, as described in Creating a Copy
Operation Using Drag and Drop.

In addition, to the right of a part, a symbol can appear, including:

• Asterisk, indicating a required field

• Ellipsis, indicating a repeating element

Deleting a Variable
You can delete a variable from your process.

1. Select Process from the Process Developer main menu.

2. Select Delete > Variable.

3. Select a variable from the Delete Variable dialog, and click OK.

Using Sample Data in Process Variables View
Select the source location for the sample you want to add. Select a workspace resource, such as sample
data, WSDL, or XSL file.

The sample data values and files you add to WSDL messages are automatically loaded into Process
Variables. For use during simulation, you can load sample data for message variables in the Process
Variables view. A sample value serves to initialize an input, output, or fault variable for process simulation.
These variables must be initialized prior to simulating execution of a process.

There are several ways to add sample values to variables:

• Adding a Sample Data File to a WSDL Message
If you have added samples to WSDL messages in Participants or Interfaces view, the default sample value
from the messages is automatically loaded into message type variables.

• Editing a Single Sample Data Value for a Simple Type Message Part
If you have added sample data values to simple type message parts in WSDL messages, the default
sample value from the messages is automatically loaded into message type variables. You can edit that
value, or add a new value in Process Variables view.

• Generating a Sample Data File
For complex variables, you can generate an XML document based on the root part or element of the
variable.

212 Chapter 9: Using Variables

• Loading a Sample Data File in Process Variables View
For complex variables, you can select an XML document to load. You can edit data from the sample file
and then save it or save it as a new file.

Each time you open a variable in the Data view, Process Developer displays the previously loaded data
values.

Editing a Single Sample Data Value for a Simple Type Message
Part

In the Process Variables view, you can add a sample data value for a simple type message part. When you
are ready to test your process, the sample message part value is automatically loaded into your variable. You
can also add additional values in Participants or Interfaces view as well as override the value during process
simulation. For details, see Adding or Editing a Sample Data Value for a Simple Type Message Part.

To add a single sample data value:

1. Open a variable in the Process Variables list.

2. Right-mouse click on the variable name or part name, and select Variable > View Data.

3. Double-click the variable to open the Edit Sample Data dialog, as shown.

4. Type in a value and click OK. Notice that the value is displayed in the Data column of the open variable.

Loading a Sample Data File in Process Variables View
For convenience, you can prepare an XML data file for complex variables and then add the sample in
Interfaces view. For details on sample data, see Using Sample Data for WSDL Messages.

To load a sample data file:

1. Create an XML file of sample data to represent a message or element structure from a WSDL
namespace. The XML file must conform to the schema for the message type or element.

2. For convenience, add the sample data to your orchestration project. Samples can be used across BPEL
processes. See Generating a Sample Data File and Adding a Sample Data File to a WSDL Message for
more information.

3. Open a complex variable in the Process Variables list.

4. Right-mouse click on the variable name or part name, and select View Data.

5. Right-mouse click on a variable part and select Load Data.

Using Sample Data in Process Variables View 213

6. Select one of the following:

• Registered Samples Default. Select this if you have added a sample data file to re-load the default
file, if multiple data files exist, and you have changed the default.

• From Project File. Select this if you have sample XML files in a Project Explorer project.

• From Registered Samples. Select this if you have sample XML files for messages in Interfaces view.

7. After you select a file, you can expand the complex part to view data values.

Saving and Viewing Sample Data in Process Variables View
Once you have loaded or generated sample data for a complex process variable, you can right-click on the
variable part and then save the data into a file or view it in a dialog.

On the variable part context menu, select Save Data As to create a new XML file.

Select View XML Data to open a dialog where you can easily view the variable contents.

Using the XML Data Wizard
For details on the Preferences page, see below.

Overview

The XML Data Wizard automatically generates the following types of data:

• Sample data file for a WSDL message that is a complex type
Open the XML Data Wizard as described in Generating a Sample Data File

• Literal contents of a complex variable in the From side of a copy operation
Open the XML Data Wizard as described in Copy Operation Literal Contents Examples.

• Literal contents of a complex variable when literal is selected as the type of initial value of a variable
Open the XML Data Wizard as described in Initializing a Variable. The following dialog displays:

214 Chapter 9: Using Variables

Make selections on the Preferences page as follows:

Selection Description

Select Root Element

Complex Type or
Element

Complex type or element is pre-selected based on the variable selected. You can select any
matching type or element from the picklist.

Generate optional
attributes and
elements

If the schema definition includes optional attributes (that is, use="optional"), and elements
(that is, minOccurs="0"), you can include them in the data file, if desired.
If you do not include them, you can experience a selection failure fault when you run the
process, depending on the query used in selecting elements.

Using the XML Data Wizard 215

Selection Description

Generate data for
attributes and
elements

Select this to generate appropriate values for elements and attributes. In some cases, such as
derived simple types with regular expression patterns, the values are not schema valid. In
most cases, the values provide a reasonable starting point for you to edit as necessary.
If the element or attribute contains a fixed or default value it is automatically used. If a
referenced type contains an enumerated restriction then the first value is selected from this
restriction.
Deselect this to generate empty elements and attributes. Generating elements without data
does not produce a schema-valid sample. For variable initialization and copy operations, you
can add your own values in the Literal Contents edit box after generating the data. For
Interfaces and Process Variables sample data, you can open the generated XML file and edit
it.

Repeating Elements For variables with repeating elements, such as a purchase order with multiple items, you can
specify how many items to generate for that element. The default is one.

Maximum Recursion
Depth

Sets the recursion depth for a schema type that is recursive. The default depth is two, and the
data generated is similar to the following:

<foo>
 <child />
 <foo>
 <child />
 <foo/>
 </foo>
</foo>

Choices, Abstract Elements and Abstract Types

Generate first
available only

A Schema type can contain a choice construct that specifies that only one of the available
choices can appear in the resulting document. The first available element is the first child
element.
A Schema element can contain one or more abstract elements. These elements cannot be
created directly since they are abstract. Instead, the first available element is selected from
its substitution group. The first available element is the first one encountered within any
imported schemas.

Generate first
available with others
commented out

Select this to generate all available elements, with all but the first generated within <!-- ---
> tags.

Example One: Repeating Elements

Given the following schema definitions for element=ns:items:

<xs:element name="items" type="imp:ItemsType" />
 <xs:complexType name="ItemsType">
 <xs:sequence>
 <xs:element ref="imp:product" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 <xs:element name="product" type="imp:ProductType" />
 <xs:complexType name="ProductType">
 <xs:sequence>
 <xs:element name="number" type="xs:integer" />
 <xs:element name="name" type="xs:string" />
 </xs:sequence>
 </xs:complexType>

The following literal contents (or sample data file) is generated when Repeating Elements is set to three:

216 Chapter 9: Using Variables

Example Two: Generate first available with others commented out

Given the following schema definitions for element=ns6:productList:

<xs:element name="productList">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:product"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="product" type="tns:ProductType"
 abstract="true"/>
 <xs:element name="hat" substitutionGroup="tns:product"
 type="tns:ProductType"/>
 <xs:element name="glove" substitutionGroup="tns:product"
 type="tns:SubProductType"/>
 <xs:complexType name="ProductType">
 <xs:sequence>
 <xs:element name="color" type="xs:string"/>
 <xs:element name="style" type="xs:string"/>
 <xs:element name="price" type="xs:decimal"/>
 <xs:element name="quantity" type="xs:positiveInteger"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="SubProductType">
 <xs:complexContent>
 <xs:extension base="tns:ProductType">
 <xs:sequence>
 <xs:element name="size" type="xs:int" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

The following literal contents (or sample data file) is generated :

Using the XML Data Wizard 217

Finding Where Variables are Used
You can search for all occurrences of a variable in activities and links by using the Find Where Used option.

To search for occurrences of a variable from the Process Variable list, perform the following steps:

1. Open the project in Project Explorer.

2. From the menu bar, select Window > Show View > Process Variables.
The Process Variables section appears with a list of process variables used in the project.

218 Chapter 9: Using Variables

3. Select the variable that you want to find, right-click, and then select Find Where Used as shown in the
following image:

A list of activities and links where the variable is used appears on the Search tab.

You can also search for a variable that is used in Copy operations.

To search for occurrences of a variable in Copy operations, perform the following steps:

1. Open the project in Project Explorer.

2. From the menu bar, select Window > Show View > Process Variables.
The Process Variables section appears with a list of process variables used in the project.

3. Select the variable name from the Process Variables section.
The variable section appears with the variable parts and properties.

Finding Where Variables are Used 219

4. Right-click the variable and select Copy > Find Where Used as shown in the following image:

A list of occurrences of the variable in Copy operations appears on the Search tab.

Process Developer displays the search results and highlights the first result in the Process Editor canvas and
Outline view. From the Outline view, you can select an activity, link, or Copy operation for editing.

Using Variables in a Copy Operation
Select a FROM Type and then complete the Copy operation by making other appropriate selections. Add, edit,
copy, delete, and reorganize Copy operations and scripts for the selected Assign activity.

Within the Process Variables view, you can create and edit Copy operations for a current Assign or create a
new Assign automatically.

You can create a Copy operation by using a variable's context menu or by dragging and dropping a variable
part to another variable part.

Select a FROM Type and then complete the Copy operation by making other appropriate selections. Add, edit,
copy, delete, and reorganize Copy operations and scripts for the selected Assign activity.

For more information, see:

• Creating a Copy Operation Using a Context Menu

• Creating a Copy Operation Using Drag and Drop

• Selecting a Copy Operation to Edit

220 Chapter 9: Using Variables

Creating a Copy Operation Using a Context Menu
Tip: Use this procedure to create any type of Copy operation. For a quicker way to create a variable-to-
variable Copy operation, see Creating a Copy Operation Using Drag and Drop.

1. Do one of the following:

• Select an assign activity from the Process Editor canvas, if you want to add a Copy operation to it.
The Copy is added after any current Copy operations.

• Go to Step 2 if you want to create a new assign activity automatically.

2. In the Process Variables list, open a variable for either the From or To clause of the Copy operation.

3. Right-mouse click and select Copy > From to create the From clause or Copy > To to create the To
clause.

4. In the Copy Operations dialog, complete the remaining clause, and click OK.

In the Process Editor canvas and Outline view, the current or new assign activity is selected.

Creating a Copy Operation Using Drag and Drop
You can create the following types of Copy operations by dragging and dropping:

From Variable [Part] To Variable [Part]
From Variable Property To Variable Property

For details, see Assign.

To create a Copy operation by drag and drop:

1. Do one of the following:

• Select an assign activity from the Process Editor canvas, if you want to add a Copy operation to it.
The Copy is added after any current Copy operations.

• Go to Step 2 if you want to create a new assign activity automatically in the currently selected Scope.

2. In the Process Variables list, open the two variables for the From and To clauses of the Copy operation.

3. Drag the variable, part, or property of the From variable to the appropriate variable, part, or property of
the To variable.
Tip: Before you release the mouse button, you can view the Copy specification in the Process Developer
status bar.

After you release the mouse button, Process Developer shows the results by highlighting the parts in use.
Also, the From part icon has an outward arrow and the To part icon has an inward arrow, as shown.

In the Process Editor canvas and Outline view, the current or new Assign activity is selected.

Using Variables in a Copy Operation 221

Selecting a Copy Operation to Edit
You can edit a Copy operation by selecting Copy > Edit from a variable's right mouse menu.

If a variable has multiple Copy operations, the Copy Operations dialog opens so that you can select an
operation to edit.

Using Variables Based on WSDL Fault Messages
Fault names and variables based on WSDL fault messages are used within BPEL fault handling constructs.
For details on defining and using fault names and variables within a scope or within the process as a whole,
see Fault Handling.

Fault names and variables based on WSDL fault messages are used within BPEL fault handling constructs.

Mapping WSDL Message Parts in Web Service
Interaction Activities

In a Web service interaction activity, such as a receive, onMessage, onEvent, invoke, or reply activity, you
usually select a WSDL message type variable for the input or output variable. However, if the WSDL operation
uses a message containing exactly one part that itself is defined using an element, the Web service
interaction activity can use the <fromPart> element for an input variable and a <toPart> element for the
output variable. The fromPart or toPart declarations are used in place of the activity's input or output variable
declaration.

Validating Variables
Process Developer provides several explicit ways to validate the value of variables during simulation or
runtime. These are as follows:

• Validate activity
The validate activity contains a list of process variables and validates the value of each one against its
associated XML or WSDL data definition. For details, see Validate.

• Validate attribute in an assign activity
This attribute works the same way as the validate activity. When validate is enabled in an assign activity,
Process Developer validates all variables used in all of the assign's copy operations.

• Keep Source Element Name attribute in a copy operation for validating the value of an element-based
variable in the To side of a copy operation .
The Keep Source Element Name attribute works specifically on an element-to element copy operation, and
is not applicable for any other type of copy operation. Process Developer validates that the root elements
are valid against their XML schema or WSDL definition, without performing validation on an entire
variable, since the destination element may be only one of many elements in the variable. This type of
copy operation requires that the source and destination elements be part of the same schema

222 Chapter 9: Using Variables

substitution group. A substitution group allows elements to be substituted for other elements. For an
example, see Copy Operation Query and Expression Examples.

• Preference setting for validating input/output message variables
For details, see Simulation Preferences.

If a variable value is invalid, the bpel:invalidVariables fault is thrown.

Working with Variable Attachments
Variables can have unstructured data that come into the process as attachments. For details in adding,
removing, simulating and debugging with variable attachments, see Attachments.

Working with Variable Attachments 223

C h a p t e r 1 0

Attachments
Many messages used in business processes contain references to unstructured data. For example, an
insurance business process executing a claim request can reference a picture of a damaged vehicle. To
include such unstructured data in Process Developer, you can attach a picture, document, spreadsheet, or
other file type to a variable in a BPEL process.

You can receive, send, and copy attachments from one variable to another. You can also copy the contents of
an attachment or attachment property to a process variable by using custom functions.

Adding an Attachment
You can add attachments to any process variable, as well as manipulate attachments with a set of functions,
described in Custom Functions for Manipulating Attachments.

Currently, to view attachments in Process Developer, you can add them as a simulation property, described in
Adding an Attachment for Simulation.

Be sure to initialize a process variable, if it has not been initialized, before copying attachments to it. See
Initializing a Variable for details.

Adding an Attachment for Simulation
You can add an attachment to a variable to simulate the attachment that a running process would normally
receive and send. You can also add properties to the attachment and then manipulate properties with the
getAttachmentProperty function. For details, see Custom Functions for Manipulating Attachments.

For a discussion of simulation, see Simulating Execution of a BPEL Process.

To add attachments to a variable for simulation:

1. From the Process Editor canvas, select a receive, invoke, onMessage, or onEvent activity.

2. In the Properties view, under Simulation, do one of the following:

• For a receive, onMessage, onEvent, click the Dialog (...) Button at the end of the Input
Attachments row

• For an Invoke, click the Dialog (...) Button at the end of the Output Attachments or Fault Attachments
row

3. In the Input/Output/Fault Attachments dialog, select Add.

224

4. In the Attachment dialog, select either File System or Project for an attachment location, and browse to
select an attachment.

5. Notice that known content properties are identified. For example, if you attach a GIF image, the Content
Type is image/gif.
Note that the X-Size property that is added to indicate the size of the attachment in bytes.

6. If desired, edit the known properties, or add a new property as follows:

a. Select Add to open the Attachment Properties dialog.

b. Type in a Property Name and Value. Note that the property must be a known property of the
attachment.

c. Click OK.

7. Click OK to close the Attachments dialog.

8. To add another attachment, select Add on the Input/Output/Fault dialog, and continue adding an
attachment.

After adding attachments, start simulation, as described in Starting and Ending Simulation of a BPEL Process.

During simulation, open the process variables that have attachments. As the process receives, sends, or
copies attachments, you can view the results in the Process Variables view.

Attachment properties must conform to known properties. For details, see abx:getAttachmentProperty in
Custom Functions for Manipulating Attachments.

Remote Debugging with Variable Attachments
You can deploy a BPR file to the Process Server and debug it. For details on remote debugging, see
Debugging Remote Processes Running on the Server.

To send a message to the process that includes attachments, you need a SOAP tool that has this capability.
Refer to the Informatica support forums and Samples page for a discussion of SOAP tools.

You can also add, remove, and download attachments from variables during remote debugging.

To add an attachment during remote debugging:

1. Start a remote debug session.

2. In the Process Variables view, open a variable in Data view.

3. Right-click on the variable or variable part, and select Add Attachments.

4. In the Attachment dialog, select one or more files.

The variable with attachments looks like the following example.

Remote Debugging with Variable Attachments 225

In the Process Console of your Process Developer engine, you can open the Active Process Detail View to
view the new attachment.

To remove an attachment:

1. Start a simulation or remote debugging session.

2. In Process Variables view, open a variable that has attachments.

3. Expand Attachments.

4. Right-click on an attachment and select Remove Attachment.

To download an attachment:

1. Start a simulation or remote debugging session.

2. In Process Variables view, open a variable that has attachments.

3. Expand Attachments.

4. Right-click on an attachment and select Download Attachment.

5. Select a location for the file.

Custom Functions for Manipulating Attachments
In the Expression, Query, and other Builders you can select the following functions to work with attachments.
These functions are under the BPEL > Process Developer > Attachments category.

Note: Using a SOAP message to send nested attachments is not supported. if the you are sending SOAP
messages with multiple attachments that we do not support nested attachments. While testing, you may
want to set the SoapUI Disable multiparts property false.

To view usage of the functions, see Attachment Custom Function Examples.

abx:base64EncodeAttachment(variableName, attachmentNumber)

Returns the Base64 encoded attachment of the named variable. Base64 refers to a MIME content transfer
encoding.

Parameters:

• variableName: Name of the variable containing the attachment

226 Chapter 10: Attachments

• attachmentNumber: The source variable attachment item number starting at one

abx:getAttachmentCount(variableName)

Returns an integer that is the number of attachment items associated with a named variable.

abx:copyAttachment(fromVariableName, fromItemNumber, toVariableName)

Copies one of the attachments from the source variable to the target variable. The return type is xs:boolean.
If the copy fails, an attachment fault is thrown.

Parameters

• fromVariableName: Name of the source variable

• fromItemNumber: Source variable attachment item number, starting at one

• toVariableName: Name of the target variable

abx:replaceAttachment(fromVariableName, fromItemNumber, toVariableName, toItemNumber)

Replaces one of the attachments of the target variable with an attachment from the source variable. The
return type is xs:boolean. If the replacement fails, or an item number is out of range, an attachment fault is
thrown.

Parameters:

• fromVariableName: Name of the source variable

• fromItemNumber: Source variable attachment item number, starting at one

• toVariableName: Name of the target variable

• toItemNumber: Target variable attachment item, starting at one

abx:removeAttachment(variableName, itemNumber)

Deletes the attachment of the named variable identified by the toItemNumber. The return type is xs:boolean.
If the removal fails, or an item number is out of range, an attachment fault is thrown.

Parameters:

• variableName: Name of the variable containing the attachment

• itemNumber: Item number of attachment starting at one

abx:createAttachment(variableName, contentType, encodedContent [, contentId])

Adds the attachment to the named variable specifying the content type and content. The return type is
xs:boolean. If the creation fails, an attachment fault is thrown.

Parameters:

• variableName: Name of the variable to add the attachment

• contentType:MIME type of the attachment, such as text/xml or image/jpg

• encodedContent: String that contains Base64 encoded attachment data content

• contentId: (Optional). A sting that refers to the content of the attachment. This parameter can be helpful
in accessing a particular attachment when a message has multiple attachments.

abx:copyAllAttachments(fromVariableNames, toVariableName)

Copies all attachments from the list of variables identified by the fromVariableNames(xsd:string list) to the
variable identified by the toVariableName. The return type is xs:integer. If the copy fails, an attachment fault
is thrown.

Custom Functions for Manipulating Attachments 227

Parameters:

• fromVariableNames: Names of the variables to copy from. You can enter a single name or multiple name
separated with a space. Use * to indicate all in-scope variables.

• toVariableName: Name of the variable to copy to

abx:removeAllAttachments(variableNames)

Deletes all attachments from the list of variables. The return type is xs:integer.

Parameter:

• fromVariableNames: Names of the variables to copy from. You can enter a single name or multiple name
separated with a space. Use * to indicate all in-scope variables.

abx:getAttachmentType(variableName, itemNumber)

Returns the MIME type of the attachment associated with the named variable.

Parameters:

• variableName: Name of the variable containing the attachment

• itemNumber: Item number of attachment starting at one

abx:getAttachmentProperty(variableName, itemNumber, propertyName)

Returns the value associated with the attachment property.

Parameters:

• variableName: Name of the variable containing the attachment

• itemNumber: Item number of attachment starting at one

• propertyName: Name of the attachment's property

Attachment properties include those specified by the W3C SOAP Messages with Attachments Specification
(http://www.w3.org/TR/SOAP-attachments), Multipart/Related MIME media type (RFC 2387), and
Informatica.

SOAP with Attachments properties include Content-Type, Content-Transfer-Encoding, Content-ID, and Content-
Location.

Informatica-specified attachment properties include Attached-By (the authenticated user who sent the
attachment), X-Size (size of attachment in bytes), and Attachment-Created-At (a server-generated time-value
(in milliseconds) of when the attachment was received by the Process Server).

abx:getAttachmentSize(variableName, itemNumber)

Returns the content size for the variable attachment item of the named variable.

Parameters:

• variableName: Name of the variable containing the attachment

• itemNumber: Item number of attachment starting at one

abx:setAttachmentProperty(variableName, itemNumber, propertyName, propertyValue)

Sets and returns the named property of the attachment associated with the named variable.

Parameters:

• variableName: Name of the variable containing the attachment

• itemNumber: Item number of attachment starting at one

• propertyName: Name of the attachment's property

• propertyValue: Value of the attachment's property

228 Chapter 10: Attachments

This function is particularly useful for giving a BIRT report a meaningful name when the report is a PDF
attached to an email.

abx:xmlAttachmentToElement(variableName, attachmentNumber)

Returns an attachment and converts the attachment to an element style variable. The attachment must be an
XML document.

Parameter:

• variableName: Name of the variable containing the attachment

• attachmentNumber: The source variable attachment item number starting at one

Attachment Custom Function Examples
The following examples of using custom functions show the manipulation of attachments in copy operations
of assign activities. For a detailed description of each function, see Custom Functions for Manipulating
Attachments.

Example 1:

Copies the first attachment from the incomingMessage variable to the resultMessage variable. The return
value of copyAttachment is copied to the unused tempVar.

<copy>
 <from>abx:copyAttachment
 ("incomingMessage",1,"resultMessage")
 </from>
 <to variable="tempVar"/>
</copy>

Example 2:

Removes the (N - 1) attachment; that is, removes the second-to-last attachment from the resultMessage
variable, where N is the count of attachments on resultMessage.The return value of removeAttachment is
copied to the unused tempVar.

<copy>
 <from>abx:removeAttachment("resultMessage",
 abx:getAttachmentCount("resultMessage") - 1)
 </from>
 <to variable="tempVar"/>
</copy>

Example 3:

Copies the value of the Content-Transfer-Encoding property of the first attachment to the resultMessage
variable.

<copy>
 <from>abx:getAttachmentProperty("resultMessage" , 1 ,
 "Content-Transfer-Encoding")
 </from>
 <to part="propResult" variable="resultMessage"/>
</copy>

Attachment Custom Function Examples 229

C h a p t e r 1 1

Using Links
This chapter includes the following topics:

• What is a Link, 230

• Process Developer Extension for Links, 231

• Adding a Link Between Activities, 232

• Execution Rules for Links, 235

• Designing With Links vs. Structured Activities, 236

• Links and the Join Condition, 236

• Link Properties, 236

What is a Link
A link is a structure that connects two activities and controls the order of execution of the two activities. In
the BPMN-Centric palette, a link is called edge.

A link can include a condition, further controlling when, or if, an activity executes. The condition is an XPath
(or other language) expression.

You can add multiple links between basic activities and between structured activities. You can also add links
to a basic activity contained by a structured activity.

A link works inside of a flow. When you add a link between two activities, Process Developer creates a flow
activity including a link definition, as shown.

Link XML Syntax

<flow>
 <link name="L1" />
 activity1
 <source linkName="L1" />
 ...
 activity2
 <target linkName="L1" />
 ...
</flow>

For more information about when to use links vs. using sequence, scope and other structured activities, see
Designing With Links vs. Structured Activities.

230

Process Developer Extension for Links
According to the WS-BPEL 2.0 execution rules for links, a link cannot create a control cycle by linking to a
completed activity. In addition, a link cannot cross the boundary of a structured activity, such as a while
activity. However, Process Developer includes an extension that allows these behaviors under certain
conditions.

The following illustration shows two cases of using loop-back links to a completed activity. On the left is an
example of a valid use of a loop-back link. On the right is a case that will cause an error in static analysis
because it violates the fork join restriction described below.

By default, the link extension is turned on, allowing you to use loop-back links. You can turn off the extension
on a process-by-process basis by setting the Links are Transitions property in the All tab of a process.

Execution Rules for Extension to Links

The basic execution rules for Process Developer extension to links are the following.

• When the source of a link completes, then if the transition condition evaluates to true or there is no
condition, the transition fires; if the target of the link is an activity with no other incoming transitions, the
activity executes.

• BPEL's constraints regarding how links can cross the boundaries of containers continue to hold except
that a Process Developer extension link can cross out of a Repeat Until activity if the source of the link

Process Developer Extension for Links 231

has the Mutually Exclusive Transitions property is set to Yes in an activity's Properties view. By default,
this property is set to Yes for an exclusive gateway, and No for all else.

• When an activity has Mutually Exclusive Transitions set to Yes, the normal control flow of any container
that contains the activity is continued only if none of the outbound links from the activity can execute. The
behavior should be obvious based on the process diagram since it follows standard BPMN semantics.

BPMN disallows links from crossing the border of any bordered activity. However, BPEL allows links to cross
scope boundaries, so Process Developer also allows this behavior, even though it is not valid BPMN.

Usage Restriction for Activities in Parallel Execution

If two or more activities execute in parallel, and you want to create a link that loops back to before the
parallelism, the parallelism must be encapsulated within a Fork Join container. This restriction ensures that
there will not be concurrent execution of looping activities since the fork join ensures that all activities on
parallel paths complete and join together before the next execution of the loop.

We recommend that you use mutually exclusive links as the source links of a gateway activity that is an
exclusive type. Drawing links out of an exclusive gateway clarifies the intended behavior of outbound links.
Note that using Process Developer extension links as loop-back links is similar to using a While or Repeat
Until activity that is already structured for you.

Process Developer Extension Namespace for Links

You may notice that your processes include the Process Developer extension for links in the Extensions node
of the Outline.

Adding a Link Between Activities
Add a link between two activities to control the order of execution of the activities. You can add a link with a
transition condition or without one.

Adding a Link with no Transition
Add a simple link from a source activity to a target activity to require the source to finish successfully before
the target executes.

1. Ensure that two activities are on the Process Editor canvas that you want to link.

2. Select the source activity and then use Shift + selectto select the target activity.

3. Select the Link toolbar button or select Link Activities from the right mouse menu of one of the
activities.

4. Process Developer names the link L1. You can double-click the link to open the Transition Builder dialog.

5. In the Properties view, you can rename the link, if desired.

Tip: You can use the BPMN Edge tool in the Palette, if desired. To do so, select the tool and then select the
source activity. Connect the link to the target, as shown on the left in the illustration. Select the Select tool to
turn off the Edge tool.

232 Chapter 11: Using Links

Adding a Link with a Transition Condition
Add a link with a transition condition based on the completion of the source activity. The condition must
evaluate to a Boolean true before the target activity can begin.

1. Complete the steps for drawing a link, described in Adding a Link with no Transition.

2. Select a link and double-click it. Alternately, in the Properties view, click the Dialog (...) Button next
to Transition Condition.

3. Build an XPath (or other language) expression, as described in Using the Expression Builder.
The following illustration shows an example of condition that prevents an activity from executing if an
amount is too large.

In this example, the parameters refer to a BPEL process variable holding data from a WSDL message. For
more information, see Using Variables.

Linking Activities

You can link any two activities; however, you should use a gateway to clarify the intended purpose of linking.
In the following illustration, the construct on the left shows using a gateway and adding a label to describe
the transition condition on the link.

On the right side, is a receive linked to two activities. Note that a transition condition is indicated by a mini-
gateway diamond; however, you can add a label here as well.

Adding a Link Between Activities 233

Link Examples
The following illustrations show some ways you can use links.

You can also consider Designing With Links vs. Structured Activities.

Example 1

In the first example, the second sequence executes if the link evaluates to true; otherwise, the reply executes.

Example 2

In the following example, a scope is running in parallel with a sequence. An activity in one sequence has a
link to an activity in the other sequence.

234 Chapter 11: Using Links

Execution Rules for Links
Once an activity completes, it evaluates any condition on the outgoing links. If no condition is defined and the
activity has completed normally, all conditions evaluate to true so that the next activity can start. However, an
activity can have a join condition set that further constrains execution. For more information, see Links and
the Join Condition.

If an activity has faulted or could not be run, all conditions evaluate to false.

An activity can have multiple incoming links. The activity must wait to run until at least one of its incoming
links evaluates to true.

If all incoming links are false, the activity cannot run unless a supressJoinFailure property is true.

A link can cross the boundary of a structured activity, except for the following:

• While activity

• Isolated scope

• Event handler

• Compensation handler

A link that crosses the boundary of a fault handler must have its source within the fault handler and its target
within a scope that encloses the fault handler scope.

In WS-BPEL, a link cannot create a control cycle by linking to a completed activity. However, in Process
Developer, this behavior is allowed, as described in Process Developer Extension for Links.

Execution Rules for Links 235

Designing With Links vs. Structured Activities
You can often set up the same execution order for activities using either links or a sequence. The following
example shows two execution designs that are identical.

There are many cases when you can design an execution path only with links. For example, you can link an
activity from within a container to another activity in a different container.

Links and the Join Condition
You can control the start of an link-targeted activity by writing an expression for a join condition property. For
more information, see Creating a Join Condition for an Incoming Link.

Link Properties
Select a link on the Process Editor canvas or Outline view to see the Properties view.

The following table shows the required and optional properties for a link.

Required Properties Optional Properties

Link Name Comment.

Documentation.

Setting Visual Properties and Using Your Own Library of Images.

Execution State.

Extension Attributes and Extension Elements..

236 Chapter 11: Using Links

C h a p t e r 1 2

Data Manipulation
The following topics tell you how to manipulate XML data in BPEL using literal expressions, XPath, and
XQuery.

Overview of Data Manipulation in BPEL
There are many ways to manipulate data in a BPEL process, but it is not always obvious how to perform the
data copying tasks easily or efficiently.

Also, you can select an expression language to use on a expression-by-expression basis, depending on your
data structure and the selections from it you want to make. For details, see Selecting XPath or XQuery for
Expression Building.

Selecting XPath or XQuery for Expression Building
The default language is XQuery, which is a superset of XPath. Process Developer projects contain an XQuery
nature, including an XQuery editor for writing custom function XQuery modules.

The following table provides a brief comparison between XPath and XQuery as used in BPEL data mapping:

XPath XQuery

Recommended if portability is an issue. Language is
supported by WS-BPEL 2.0

Process Developer extension for BPEL

May be more suitable for multiple-part message
variables

Builds large documents easily from a single-part variable

Limited to expression evaluation of one document
node at a time

Allows manipulation of data from an entire XML document

Better at date handling, with many date functions

237

XPath XQuery

Location path expressions resolve to a string Queries generate an XML result

Similar to a SQL-like query language. Easier to iterate over
repeating elements with "FLWOR expressions" (FOR, LET,
WHERE, ORDER BY, and RETURN) for performing joins

See also:

• “Example XQuery Expressions ” on page 238

• “Example XPath Expressions ” on page 239

Example XQuery Expressions
If you select the XQuery expression language, you can use the many functions that are supported by XQuery
in addition to all XPath expression building. The additional XQuery function categories include Date, QName,
Misc, and Constructor.

You can then create expressions for the document, as the following example shows:

238 Chapter 12: Data Manipulation

Note the syntax used to generate the contents of an element, such as the following from the example above:

<aem:replyTo>{$runtimeParameters/param:emailAddress/text()}</aem:replyTo>
You must add the text() function to the end of the path. Any time an XQuery expression results in an
element, you must add text() to get the contents of the element.

The path without /text() would result in the following:

<aem:replyTo>
 <emailAddress>reply@example.org</emailAddress>
</aem:replyTo>

instead of the desired result:

<aem:replyTo>reply@example.org</aem:replyTo>
If the expression contains just a simple value and not an XML element, the expression results to the
contents. For example, the following expression results in a string:

Please use the Claim #: {$refNumber}

Example XPath Expressions
The following are example expressions for message, element and complex schema type variables.

• Element type variable:
Example: $AStatus/e:statusDescription
Selects the statusDescription child node of AStatus element

• Message type variable:
Example: $StatusVariable.StatusPart2/e:statusDescription
Selects the statusDescription child node of the StatusPart2 part of StatusVariable

• Schema complex type variable:
Example: $Results/e:AuctionResult[2]/@AuctionID
Selects the AuctionID attribute of the second AuctionResult child node

• Expression statement itemsShipped = itemsShipped + itemsCount:
$itemsShipped + $shipnotice.props/itemsCount

Selecting XPath or XQuery for Expression Building 239

• Convert a variable and part to a string:
string($input.parameters)

• Referencing a child node by localname only
This can be useful when a schema has an xsd:any element in it, such as:

<xs:any minOccurs="0" maxOccurs="unbounded" namespace="##other"
processContents="lax"/>

The Expression Builder doesn't show the structure in the variable tree view. To use the element, the
namespace prefix can be ignored as in this example:

$creditInformation/*[local-name()=
 "previousLoanApplicationAttempts"][1]
 /*[local-name()="applicationDate"]

Selects the date of the first previous loan application, if information about previous loan applications is
supplied as additional content for the creditInformation message.

Using the Expression Builder
Select from the Variables, Functions, and Operators pick lists to create an expression in the Expression/
Condition text box.

You can select among the many function types to create an expression for Copy Operations, link transitions,
and other BPEL constructs. See the procedure below for details on building an expression.

See also Selecting XPath or XQuery for Expression Building.

Examples

• Expected Expressions for Conditions, Counters, and Other Values

• Example XPath Expressions

• Example XQuery Expressions

Functions

• Boolean Functions

• BPEL Functions

• Node Set Functions

• Number Functions

• Process Developer Custom Functions: General

• String Functions

See also the BPEL for People Functions in Process Developer Human Tasks Help

Customization

• Custom Functions Overview

• Writing XQuery Functions

• Select Expression Language

For Copy Operations in the Assign activity as well as for links and other constructs, you can create XPath (or
another selected language) expressions that result in a string, number, or Boolean.

For details, see the XPath 1.0 specification at http://www.w3.org/TR/xpath.

240 Chapter 12: Data Manipulation

To build an expression:

1. Select an activity that uses expressions, such as the assign, wait, or on alarm branch of a pick activity.

2. In the Properties view for the activity, select the appropriate property. For example, in an assign activity,
select Copy Operations, and select Expression as a Copy/From type to display the following dialog:

3. Select the variables, functions and operators from the three boxes to build an expression, following
these tips:

• Build expressions faster with shortcuts. See Using Content Assist.

• Expand a variable to see and use the parts and properties. For detailed descriptions of variables, see
Using Variables.

• Select a variable, part, function, or operator and select Insert

• For working with variable attachments, see Custom Functions for Manipulating Attachments.

• Add your own custom functions, as described in Creating POJO and XQuery Custom Functions.

4. Select Evaluate to substitute a sample value for a variable part and simplify the expression to view its
value.

Using Content Assist
Select from the Variables, Functions, and Operators pick lists to create an expression in the Expression/
Condition text box.

Content assist is a shortcut for making selections from the variables and functions available for building an
expression. Instead of expanding a variable to drill-down to a part to insert into the expression text box, you
can select the part within the expression text box.

Using the Expression Builder 241

To use content assist:

1. In the builder (expression, query, or other), place your cursor in the expression text box, located below
the Insert button.

2. To select a function, select Ctrl + spacebar. A list of functions appears that you can select from.

3. To select a variable, part or element, select Ctrl + spacebar as follows:

a. If the cursor is after a $, a list of available variables appears, if applicable.

b. If the cursor is after a period (.), and if the context is in an XPath expression, a list of valid part
names appears, if applicable.

c. If the cursor is after a slash (/), and if the context is in an XPath expression, a list of valid element
names appears, if applicable.

BPEL Functions
This section describes the following functions:

• “bpel doXslTransform(style-sheet-uri node-set) ” on page 242

• “bpel getVariableProperty(VariableName propertyName) ” on page 244

bpel doXslTransform(style-sheet-uri node-set)
Returns the result of an XSL transformation of a single element node set using the specified style sheet.

Parameters:

• style-sheet-uri: URI for the XSL file.

• node-set: XPath node set providing the source document for the transformation.

Example syntax:

bpel:doXslTransform("project:/myStylesheets/A2B.xsl", $A)
Optional parameters (must appear in pairs if specified)

• string: XPath string parameter providing the qualified name of an XSLT parameter.

• object: XPath object parameter providing the value for the named XSLT parameter.

Examples

The following examples show complex document transformation and iterative document construction.

Example 1. Complex Document Transformation.

A common pattern in a WS-BPEL process involves receiving an XML document from one service, converting it
to a different schema to form a new request message, and sending the new request to another service. Such
document conversion can be accomplished using XSLT via the bpel:doXslTransform function, as shown in
the following example.

<variables>
 <variable name="A" element="foo:AElement" />
 <variable name="B" element="bar:BElement" />
</variables>
...
<sequence>
 <invoke ... inputVariable="..." outputVariable="A" />
 <assign>
 <from>
 bpel:doXslTransform("urn:stylesheets:A2B.xsl", $A)
 </from>
 <to variable="B" />
 </assign>

242 Chapter 12: Data Manipulation

 <invoke ... inputVariable="B" ... />
</sequence>

In the sequence, a service is invoked, and the result (foo:AElement) copied to variable A. The assign activity
transforms the contents of variable A to bar:BElement, and copies the result to variable B. Variable B is used
to invoke another service. The style sheet, A2B.xsl, contains the XSL rules for converting documents of
schema foo:AElement to schema bar:BElement.

Example 2. Iterative Document Construction.

Suppose that a document is constructed by repeatedly calling a service and accumulating the result in a
variable, as shown in the following example:

<variables>
 <variable name="PO" element="foo:POElement" />
 <variable name="OutVar" element="foo:ItemElement" />
</variables>
<!-- ... PO is initialized ... -->
<!-- Iteratively add more items to PO until complete -->
<while>
 <condition>...</condition>
 <sequence>
 <!-- Fetch next chunk into OutVar -->
 <invoke ... inputVariable="..." outputVariable="OutVar"/>
 <assign>
 <copy>
 <from>
 <expression>
 bpel:doXslTransform
 ("urn:stylesheets:AddToPO.xsl",
 $PO, "NewItem", $OutVar)
 </expression>
 </from>
 <to variable="PO" />
 </copy>
 </assign>
 </sequence>
</while>

The optional parameters given in the doXslTransform call specify that the XSLT parameter named NewItem is
set with the value of the process variable OutVar. To allow the XSLT style sheet access to this value, it
contains a global (top-level) parameter with a name matching that given in the third parameter of the function
call shown above.

<xsl:transform version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" ...>
 <!-- NewItem variable set by WS-BPEL process;
 defaults to empty item -->
 <xsl:param name="NewItem">
 <foo:itemElement />
 </xsl:param>
 ...
</xsl:transform>

The style sheet contains a template that appends the value of global parameter NewItem (the value of OutVar
from the process instance) to the existing list of items in the PO variable.

<!-- line 1 --> <xsl:template match="foo:itemElement">
<!-- line 2 --> <xsl:copy-of select="." />
<!-- line 3 --> <xsl:if test="position()=last()">
<!-- line 4 --> <xsl:copy-of select="$NewItem" />
<!-- line 5 --> </xsl:if>
<!-- line 6 --> </xsl:template>

This template copies all existing items in the source document (lines 1 & 2) and appends the contents of the
XSLT parameter NewItem to the list of items (lines 3 & 4). It tests to see if the current node is at the end of the
item list (line 3) and copies the result-tree fragment from the XSLT parameter NewItem to follow the last
item (line 4).

Using the Expression Builder 243

If PO has a value of:

<foo:poElement>
 <foo:itemElement>item 1</foo:itemElement>
</foo:poElement>

at the beginning of an iteration of the while loop and the invoke activity returns a value of
<foo:itemElement>item 2</foo:itemElement>, evaluation of the from expression will result in a value of:

<foo:poElement>
 <foo:itemElement>item 1</foo:itemElement>
 <foo:itemElement>item 2</foo:itemElement>
</foo:poElement>

When the copy operation completes, it becomes the new value of the PO variable.

Adding an XSL Style Sheet to Process Server

A style sheet that you reference in a doXslTransform function is automatically recognized by Process
Developer and is added to a BPR archive for deployment.

bpel getVariableProperty(VariableName propertyName)
Returns property data from a selected variable in a BPEL process.

Parameters:

• VariableName: The name of the variable to retrieve data from

• propertyName: the name of the property in the variable that contains the data

Process Developer Custom Functions General
The following topics describe Process Developer custom functions:

• “abx base64Encode(stringValue charSet) ” on page 244

• “abx elementToXMLString(element) ” on page 245

• “abx getAllHTTPHeaders(partnerLinkName) ” on page 245

• “abx getHTTPHeader(partnerLinkName headerName) ” on page 245

• “abx getInboundSOAPHeader(partnerLinkName) ” on page 245

• “abx getProcessId() ” on page 245

• “abx getProcessInitiator() (1)” on page 245

• “abx getProcessName() ” on page 245

• “abx isVariableInitialized(variable) ” on page 245

• “abx resolveURN(string) ” on page 245

• “abx setProcessTitle(titleString) ” on page 246

• “abx xmlStringToElement(string) ” on page 246

abx base64Encode(stringValue charSet)
Returns the Base64 encoded string.

Parameters:

• stringValue: The string to be encoded

• charSet: The optional named character set to use for encoding. The default is UTF-8.

244 Chapter 12: Data Manipulation

abx elementToXMLString(element)
Returns an XML string given an element.

abx getAllHTTPHeaders(partnerLinkName)
Returns a map of HTTP header values from the last message received on the PartnerLink in the business
process. Applies to any type of inbound HTTP request without regard to whether the payload is SOAP, XML,
or JSON.

Parameter:

• partnerLinkName: The name of the PartnerLink to retrieve data from

abx getHTTPHeader(partnerLinkName headerName)
Returns the value of any HTTP header from the last message received on the PartnerLink in the business
process. Applies to any type of inbound HTTP request without regard to whether the payload is SOAP, XML,
or JSON.

Parameters:

• partnerLinkName: The name of the PartnerLink to retrieve data from.

• headerName: The name of the header

abx getInboundSOAPHeader(partnerLinkName)
Returns SOAP message header block from the last message received on the PartnerLink in the business
process.

Parameter:

• partnerLinkName: The name of the partner link to retrieve data from

abx getProcessId()
Returns the process Id of the currently executing or completed process on the Process Server.

abx getProcessInitiator() (1)
Returns the principal attached to the createInstance message or anonymous if there are no credentials or
principal associated with the message.

abx getProcessName()
Returns the process name (local part only) of the currently executing process.

abx isVariableInitialized(variable)
Returns true if variable is initialized.

abx resolveURN(string)
Returns the resolved location of the URN using the URN/URL mapping facility of the server. Takes a single
string parameter as input. For example, abx:resolveURN('urn:localhost:AssessRisk')

Using the Expression Builder 245

abx setProcessTitle(titleString)
Set the display title of an active process on the Active Processes page of the Process Console. Does not
replace the process name.

abx xmlStringToElement(string)
Returns the Element given an XML string.

Attachment Functions
These functions are described in “Custom Functions for Manipulating Attachments” on page 226.

Boolean Functions
You can use the following Boolean functions:

• “boolean(object) ” on page 246

• “not(boolean) ” on page 246

• “true() ” on page 246

• “false() ” on page 246

• “lang(string) ” on page 246

boolean(object)
The Boolean function converts its argument to a Boolean as follows:

• A number is true if and only if it is neither positive or negative zero nor NaN

• A node-set is true if and only if it is non-empty

• A string is true if and only if its length is non-zero

Parameter:

• object: An object of a type other than the four basic types is converted to a Boolean in a way that is
dependent on that type.

not(boolean)
Returns true if its argument is false, and false otherwise.

true()
Returns true.

false()
Returns false.

lang(string)
The lang function returns true or false depending on whether the language of the context node as specified
by xml:lang attributes is the same as or is a sub-language of the language specified by the argument string.
The language of the context node is determined by the value of the xml:lang attribute on the context node,

246 Chapter 12: Data Manipulation

or, if the context node has no xml:lang attribute, by the value of the xml:lang attribute on the nearest
ancestor of the context node that has an xml:lang attribute. If there is no such attribute, then lang returns
false. If there is such an attribute, then lang returns true if the attribute value is equal to the argument
ignoring case, or if there is some suffix starting with - such that the attribute value is equal to the argument
ignoring that suffix of the attribute value and ignoring case.

Catalog Functions
These custom functions are capable of loading any resource out of the Process Server catalog and updating
a resource in the catalog. The loaded resource is returned to the expression language as an XML document.
For example, you can extract configuration information from process definition, such as alarms or endpoint
references, and keep it in the catalog where it can be changed and shared across process definitions. The
use of the catalog also enables a process to have different configuration information based on its
deployment environment. For example, a development environment can have one type of configuration
information while a production environment can have another. The configuration information is in XML
format. Be sure to import the resource XML files into the project to make them available for simulation and
for automatic export to a BPR archive. For details, see “Importing WSDL Schema and Other Resources” on
page 100 and “Creating and Deploying a Business Process Archive Contribution ” on page 372.

The catalog functions you can use are:

• “abx getCatalogResource(location) ” on page 247

• “abx putCatalogResource(location typeURI document) ” on page 248

abx getCatalogResource(location)
Returns the document containing the resource content. The location is the string containing the catalog
location URL. The example below returns the element or document that was stored using
putCatalogResource(), by the location. You can use this function in a copy operation to assign the element
back to a variable, for example.

If the request header uses application/json or the resources ends with .tojson (for example, /
avccatalog/project:/path/mydoc.xml.tojson), you do not have to write a process to proxy the request if
the endpoint is /avccatalog. Also, if the request header has application/json, you do not have to write a
proxy if the endpoint is /catalog.

Example:

abx:getCatalogResource("project:/myProject/resources/resource.xml")
In a copy operation, an example of copying From this function (to a variable) is as follows. Note that the
expression language is XQuery.

<ns1:catalogEntry xmlns:ns1='http://activevos/samples/catalog/functions'>
 <ns1:catalogLocation>
 <ns1:location>{data(
 $requestOperation.catalogOp/
 ns1:catalogLocation/ns1:location)
 }</ns1:location>
 <ns1:typeURI>{data($requestOperation.catalogOp/
 ns1:catalogLocation/ns1:typeURI)}</ns1:typeURI>
 </ns1:catalogLocation>
 <ns1:content>{abx:getCatalogResource(data(
 $requestOperation.catalogOp/ns1:
 catalogLocation/ns1:location))}</ns1:content>
</ns1:catalogEntry>

Using the Expression Builder 247

abx putCatalogResource(location typeURI document)
Updates or adds the catalog resource at the passed location. This function returns a Boolean so you can use
it in the From side of a copy operation and copy it to a variable of type Boolean. The example below puts the
document or element in variable $V1 in the catalog with the identifier project:/myProject/resources/
resource.xml and defined as type http://www.example.org/2009/03/. If the type is a WSDL, you can use
the WSDL namespace. If you do not specify the type, then the namespace of the element for $V1 is
automatically used.

Example:

abx:putCatalogResource("project:/myProject/resources/resource.xml" , "http://
www.example.org/2009/03/", $V1)

In a copy operation, an example of copying from this function (to a Boolean variable) is:

From:

abx:putCatalogResource(string($requestOperation.catalogOp/ns1:catalogLocation/
ns1:location/text()), $requestOperation.catalogOp/ns1:content/*)

To:

funcResponse
Parameters:

• location: The string containing the catalog location url. The location is a hint

• typeURI: Optional string containing the resource namespace type (element namespace used if not
passed).

• document: The xml content (document or element) to be put in the catalog resource.

The function returns a Boolean true or false value.

Fault Functions
The Fault custom functions are useful in cases where partner services have not properly implemented their
interfaces by declaring fault messages. Some WSDL operations do not declare a fault message, and when
the service throws a fault, it cannot be caught in a normal way, by a catch or catchAll handler. Use these
functions to catch undeclared faults. Use the functions within a process variable within an activity triggered
by a catch or catchAll fault handler. For example: via an XPath expression $soapFault/faultstring/text().

See example of a returned value below the following faults.

The fault functions you can use are:

• “getFaultCode() ” on page 248

• “getFaultDetail() ” on page 248

• “getFaultString() ” on page 249

• “getSOAPFault() ” on page 249

getFaultCode()
Returns Fault Code QName, if any, from the event that triggered the fault handler

getFaultDetail()
Returns Fault Detail element, if any, from the event that triggered the fault handler

248 Chapter 12: Data Manipulation

getFaultString()
Returns Fault message string, if any, from the event that triggered the fault handler.

Here is an example of a returned fault message:

<SOAP-ENV:Fault xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>the_fault_string</faultstring>
 <detail/>
</SOAP-ENV:Fault>

getSOAPFault()
Returns SOAP Fault element, if any, from the event that triggered the fault handler

I18N Functions
getLocalizedMessage(key, locationHint, locale, [arg1, argN]

Returns the value of a key for an externalized string in a specified locale. The key is from a message
properties file, created for Process Central process request forms. Use this function in a REST-based process
to send localized data back to the output message of a process request form. In a REST process, the browser
locale is available, allowing you to localize returned data.

Parameters:

• key: required string - the key name from the message properties file created in Process Developer. The
value for the key is returned by the function.

• locationHint: required string - The catalog location URL for the default properties file. The location is a
hint.

• locale: required string - the locale for the message, such as en_US or fr_CA or fr. Empty string for the
default locale. The locale is based on the browser locale.

• arg1: optional string or object - Argument to replace text within the key value string

• argN: optional string or object - Same as arg1, the number of args will vary depending on how many
placeholders are in the key value

Example:

abx:getLocalizedMessage('loan.description','project:/myLoanApprovalProject/deploy/
messages.properties', 'fr', $loanAmount)

Note that the arg1, argN object syntax is based on Java messageformat.

JSON Functions
Use these JavaScript Object Notation (JSON) functions in conjunction with REST endpoints, where the
request and or the response can be JSON. For details see “Using a REST-based Service ” on page 408.

The JSON functions you can use are:

• “jsonToXml(jsonString) ” on page 249

• “xmlToJson(element) ” on page 250

jsonToXml(jsonString)
Convert the JSON string to an XML element. This string can represent for an array.

Using the Expression Builder 249

The following examples show how four different array representations are transformed into XML:

• The root element and the value is a JSON object.
JSON:

{"foo":{"name":"foo","desc":"foo desc"}}
XML:

<foo desc="foo desc" name="foo"/>
• The root element and the value is an array. A wrapper object element containing a sequence of elements

representing the values of the array is created.
JSON:

{"foo":[{"name":"foo","desc":"foo desc"},{"name":"foo2","desc":"foo2 desc"}]}
XML:

<json:object xmlns:json="http://schemas.activebpel.org/JSON/2013/10/10/aeJSON.xsd">
 <foo desc="foo desc" name="foo"/>
 <foo desc="foo2 desc" name="foo2"/>
</json:object>

• A root object exists but there is no root element. The JSON object is wrapped into an object element.
JSON:

{"name":"foo","desc":"foo desc"}
XML:

<json:object xmlns:json="http://schemas.activebpel.org/JSON/2013/10/10/aeJSON.xsd"
 desc="foo desc"
 name="foo"/>

• A root array exists but there is no root element. The array is wrapped in an array element and each object
becomes a sequence of object elements.
JSON:

[{"name":"foo","desc":"foo desc"},{"name":"foo2","desc":"foo2 desc"}]
XML:

<json:array xmlns:json="http://schemas.activebpel.org/JSON/2013/10/10/aeJSON.xsd">
 <json:object desc="foo desc" name="foo" />
 <json:object desc="foo2 desc" name="foo2" />
</json:array>

xmlToJson(element)
Returns the element as a JSON string. The element is the XML document or element to convert.

Node Set Functions
You can use the following node set functions:

• “count(node-set) ” on page 251

• “id(object) ” on page 251

• “last() ” on page 251

• “local-name(node-set) ” on page 251

• “name(node-set) ” on page 251

• “namespace-uri(node-set) ” on page 251

• “position() ” on page 251

250 Chapter 12: Data Manipulation

count(node-set)
Returns the number of nodes in the argument node-set.

id(object)
The id function selects elements by their unique ID. When the argument to id is of type node-set, then the
result is the union of the result of applying id to the string-value of each of the nodes in the argument node-
set. When the argument to id is of any other type, the argument is converted to a string as if by a call to the
string function; the string is split into a whitespace-separated list of tokens (whitespace is any sequence of
characters matching the production S); the result is a node-set containing the elements in the same
document as the context node that have a unique id equal to any of the tokens in the list.

last()
Returns a number equal to the context size from the expression evaluation context.

local-name(node-set)
The local-name function returns the local part of the expanded-name of the node in the argument node-set
that is first in document order. If the argument node-set is empty or the first node has no expanded-name,
an empty string is returned. If the argument is omitted, it defaults to a node-set with the context node as its
only member.

name(node-set)
The name function returns a string containing a QName representing the expanded name of the node in the
argument node-set that is first in document order. The QName must represent the expanded-name with
respect to the namespace declarations in effect on the node whose expanded-name is being represented.
Typically, this is the QName that occurred in the XML source. This need not be the case if there are
namespace declarations in effect on the node that associate multiple prefixes with the same namespace.
However, an implementation can include information about the original prefix in its representation of nodes;
in this case, an implementation can ensure that the returned string is always the same as the QName used in
the XML source. If the argument node-set is empty or the first node has no expanded name, an empty string
is returned. If the argument is omitted, it defaults to a node-set with the context node as its only member.

namespace-uri(node-set)
The namespace-uri function returns the namespace URI of the expanded-name of the node in the argument
node-set that is first in document order. If the argument node-set is empty, the first node has no expanded-
name, or the namespace URI of the expanded name is null, an empty string is returned. If the argument is
omitted, it defaults to a node-set with the context node as its only member.

position()
Returns a number equal to the context position from the expression evaluation context.

Number Functions
The number functions that you can use are:

• “ceiling(number) ” on page 252

• “number(object) ” on page 252

Using the Expression Builder 251

• “sum(node-set) ” on page 252

• “round(number) ” on page 252

ceiling(number)
Returns the smallest (closest to negative infinity) number that is not less than the argument and that is an
integer.

floor(number)
Returns the largest (closest to positive infinity) number that is not greater than the argument and that is an
integer.

number(object)
Converts object to a number.

round(number)
Returns the number that is closest to the argument and that is an integer.

• If there are two such numbers, then the one that is closest to positive infinity is returned.

• If the argument is NaN, then NaN is returned.

• If the argument is positive infinity, then positive infinity is returned.

• If the argument is positive zero, then positive zero is returned.

• If the argument is negative infinity, then negative infinity is returned.

• If the argument is negative zero, then negative zero is returned.

• If the argument is less than zero, but greater than or equal to -0.5, then negative zero is returned.

sum(node-set)
Returns the sum, for each node in the argument node set, of the result of converting the string-values of the
node to a number.

String Functions
The string functions that you can use are:

• “concat(string1 string2 string3...) ” on page 253

• “contains(string string) ” on page 253

• “normalize-space(string) ” on page 253

• “starts-with(mainString lookForString) ” on page 253

• “string(object) ” on page 253

• “string-length(string) ” on page 253

• “substring(string number number) ” on page 253

• “substring-after(string string) ” on page 253

• “substring-before(string string) ” on page 253

• “translate(string string string) ” on page 253

252 Chapter 12: Data Manipulation

concat(string1 string2 string3...)
Concatenates the passed strings. Can be passed any number of strings to concatenate.

normalize-space(string)
Returns the passed string with the leading and trailing spaces trimmed off.

contains(string string)

Returns true if the first string contains the second string.

starts-with(mainString lookForString)
Returns true if the first string starts with the second string.

string(object)
Converts the passed object to a string.

string-length(string)
Returns the length of the passed string.

substring(string number number)
Returns the part of the string starting at the first number (the first character being 1) and optionally for the
length indicated by the second number.

substring-after(string string)
Returns the first part of the string that occurs after the first occurrence of the second string

substring-before(string string)
Returns the part of the first string that is before the first occurrence of the second string.

translate(string string string)
Returns the first argument string with occurrences of characters in the second argument string replaced by
the character at the corresponding position in the third argument string. For example,
translate("bar","abc","ABC") returns the string BAr. If there is a character in the second argument string
with no character at a corresponding position in the third argument string (because the second argument
string is longer than the third argument string), then occurrences of that character in the first argument string
are removed. For example, translate("--aaa--","abc-","ABC") returns "AAA". If a character occurs more
than once in the second argument string, then the first occurrence determines the replacement character. If
the third argument string is longer than the second argument string, then excess characters are ignored.

Using the Expression Builder 253

Expected Expressions for Conditions Counters and
Other Values

The following table shows expected expressions for conditions, counters, and other values.

Expression Type Expected Value

Assign Copy From/To Expression Any valid from-spec expression

Assign Copy From/To Query Any valid from-spec expression containing a message part and location

For Each Completion Condition Expression unsigned integer used to define condition of N out of M

For Each Start Counter Value unsigned integer

For Each Final Counter Value unsigned integer

If Condition If Expression Boolean

Else If Condition Else If Expression Boolean

Link Transition Condition Link status (Boolean)

Event Handler On Alarm Deadline For correctly formatted values, see “Deadline and Duration
Expressions ” on page 257

Event Handler On Alarm Duration For correctly formatted values, see “Deadline and Duration
Expressions ” on page 257

Join Condition Boolean

Repeat Until Condition Boolean

Wait Deadline For correctly formatted values, see “Deadline and Duration
Expressions ” on page 257

Wait Duration For correctly formatted values, see “Deadline and Duration
Expressions ” on page 257

While Condition Boolean

Variable initialization expression or query Any valid from-spec expression

Using the Query Builder
Select from the Part, Variables, Functions, and Operators pick lists to create a query in the Query text box.
Select an expression language to use for the current expression.

A copy operation in an assign activity can contain an XPath (or other selected language) query attribute that
results in a string, number, or Boolean. The value of the query attribute is a query string that identifies a
single value within a source or target variable part.

254 Chapter 12: Data Manipulation

The Query Builder dialog is similar to the Expression Builder dialog, with the addition of a Variable Part tree
for easy selection of parts.

For details on XPath syntax, see the XPath specification at http://www.w3.org/TR/xpath.

To build a query:

1. In the Properties view for an assign activity, select Copy operations.

2. In the Copy Operations dialog, select Variable from the Type field.

3. If desired, for easier query building, select a Part.

4. Click Query Builder.

5. If needed, select the Dialog (...) Button in the Query Language field to select a different query
language URI that non-Process Developer engines support. Do the following:

• In the Query Language dialog (or in the Properties view of the BPEL process), type in a different URI
for a non-Process Developer configured language. The URI is ignored by Process Developer.

• To restore the default, clear the URI and click OK.

6. Select the variable parts, functions and operators from the boxes to build a query, following these tips:

• For a shortcut, use content assist, as described in “Using Content Assist ” on page 241

• Select a variable, part, function, or operator and select Insert

• Double-click a variable part to generate the location information for the query

• Double-click a variable to paste the $variableReference function into the Query box

• Double-click on a branch under a part to paste the location into the Query box

Using the Query Builder 255

• Add custom functions, as described in “Process Developer Custom Functions General ” on page 244

• Add your own custom functions, as described in Chapter 28, “Creating POJO and XQuery Custom
Functions” on page 400

7. Select Evaluate to substitute a sample value for a variable part and simplify the expression to view its
value.

Creating a Join Condition for an Incoming Link
Set a join condition to evaluate the success or failure of incoming links. A join condition is a Boolean
expression indicating the status of a link targeting an activity.

When one or more links are connected to an activity, you can set a join condition to evaluate the success or
failure of the incoming links. A join condition is a property of all activity types and allows you to construct
complex execution conditions based on link status. For more information, see Using Links.

When the join condition evaluates to true, the process continues normally. When a join condition evaluates to
false, the process can throw a joinFailure fault.

If you set the suppressJoinFailure property to yes for an activity that has a join condition, it means that a
false join condition will not throw a joinFailure fault.

To create a join condition:

1. Display the Properties view of an activity with an incoming link.

2. Select the Show Advanced Properties button to display all properties of the activity.

3. Click the Dialog (...) Button next to Join Condition to display the following dialog.

4. Double-click a link to paste the BPEL link status function into the Join Condition box.

256 Chapter 12: Data Manipulation

This function returns a Boolean indicating the status of the passed link.

5. Click OK.

Deadline and Duration Expressions
Several activities contain properties to set a deadline or duration. For deadline and duration expressions, you
can see the examples given in the XML schema specification.

Be sure to enclose deadline and duration values in single quotes, as shown in the examples below.

Refer to the following:

• http://www.w3.org/TR/xmlschema-2/#duration
• http://www.w3.org/TR/xmlschema-2/#datetime
• http://www.w3.org/TR/xmlschema-2/#date
Also see the format options described in “Tips on Writing XQuery Functions ” on page 406.

Examples:

• A duration of one second:
<wait for="'PT1S'"/>

• A duration of 1 year, 2 months, 3 days, 10 hours, and 30 minutes:
<wait for= " 'P1Y2M3DT10H30M' "/>

• A deadline with a date and time:
<wait until=" '2010-12-12T12:00'"/>

Deadline and Duration Expressions 257

C h a p t e r 1 3

Compensation
This chapter includes the following topics:

• Compensation Handlers and Compensate Activities, 258

• Adding a Compensation Handler to a Scope, 260

• Compensating an Invoke Activity, 261

Compensation Handlers and Compensate Activities
Compensation Handlers and Compensate Activities

You can add compensation handling as follows:

• Define a compensation handler for a scope. The compensation handler can only have a single child
activity, but this activity can be a structured activity like a sequence that has child activities. The contents
of the compensation handler depend on your application logic.

• Use a compensate activity within a fault handler, compensation handler, or termination handler to specify
compensation on all inner scopes that have already completed successfully, in default order.

• Use a compensate scope activity within a fault handler, compensation handler, or termination handler to
specify compensation for a named, inner scope. This method provides control over the order and
selection of compensation activities in a scope.

XML Syntax

<compensationHandler>
 activity
</compensationHandler>

258

The following illustration compares default and specified compensation.

Default-order compensation Specified compensation

Implicit Compensation

In the case where a scope does not define a compensation handler, the execution engine provides an implicit
compensation handler. This handler contains a single <compensate> activity at compensates all of the
enclosed scopes that have completed and are eligible for compensation. In general, you should only provide
a compensation handler when you have some application-specific logic to execute in order to undo some
previously executed logic.

Default-Order Compensation Example
Default compensation processing is available from the compensate activity with the form <compensate/>.
The activity invokes the compensation handlers on all of the enclosed scopes that are eligible for
compensation. The scope's compensation handlers are invoked in the reverse order of completion. If a scope
executed multiple times in a <while> loop, it is eligible for each execution instance where it completed
without having a fault generated.

The following example shows how a confirmed purchase order is canceled. The CancelPurchaseoperation
compensates the SyncPurchase operation in an already completed Invoke activity.

<scope>
 <compensationHandler>
 <invoke partnerLink="Seller" portType="SP:Purchasing"
 operation="CancelPurchase"
 inputVariable="getResponse"
 outputVariable="getConfirmation">
 <correlations>
 <correlation set="PurchaseOrder" pattern="request"/>
 </correlations>
 </invoke>
 </compensationHandler>
 <invoke partnerLink="Seller" portType="Sell:Purchasing"
 operation="SyncPurchase"
 inputVariable="sendPO"
 outputVariable="getResponse">
 <correlations>
 <correlation set="PurchaseOrder" initiate="yes"
 pattern="request"/>
 </correlations>
 </invoke>
</scope>

Compensation Handlers and Compensate Activities 259

Specified Compensation Example
The following example shows how a Compensate activity is incorporated into a fault handler. For more
information, see Fault Handling.

The following example shows how a Compensate activity is incorporated into a fault handler.

<faultHandlers>
 <catch faultName="lns:loanProcessFault"
 faultVariable="error">
 <sequence name="fault-sequence">
 <compensate scope="assessor-scope"/>
 ...
 </sequence>
 </catch>
</faultHandlers>

Adding a Compensation Handler to a Scope
A scope's activities can be compensated, or reversed when the scope is completed and when another activity
causes compensation to begin.

To add a compensation handler to a scope:

1. From the Process Editor canvas, select a scope.

2. Drag a Compensation catch event into the scope or near the border of a collapsed scope, as the
illustration shows.

3. Drag activities into the compensation handler that will reverse the work of the scope's main activity. For
a boundary event, you must link the handler to an activity to execute. The activity must be a downstream
activity that has not yet executed.

4. From another scope, create an activity that triggers the compensation handler for the completed scope.

The following illustration shows a parent scope, children scopes, and their compensation handlers.

260 Chapter 13: Compensation

Compensating an Invoke Activity
The WS-BPEL 2.0 specification provides a shorthand construct for adding an optional compensation handler
and fault handler to an invoke. You can add these handlers as boundary events.

Compensating an Invoke Activity 261

C h a p t e r 1 4

Correlation

262

C h a p t e r 1 5

What is Correlation
Correlation is a construct for keeping track of a group of messages that belong together in one particular
business partner interaction. Correlation matches messages and interactions with the business process
instances they are intended for.

When a BPEL engine receives a message, it determines if it should create either a process instance or match
an already-running process. The data within a correlation set is the signature that lets the engine match the
message to the process expecting that message. You can add correlation to receive, pick, reply, invoke, and
coordinate event handler activities for this purpose.

To use correlation, consider the following:

• Determine what activities need to be correlated. These activities should share one or more pieces of
common data.

• Define one property that identifies the piece of common data.

• Define property aliases, a different one for each piece of common data in each activity that needs to be
correlated.

• Create a correlation set that contains the property and property aliases.

• Add the correlation set to the activities being correlated.

As an example, for each correlation set, create a data property, such as customerId. For each message being
correlated, create a property alias for a message part, such as a Receive's message part named CustID, an
Invoke's input message part named customerNum, and so on.

Alternately, you can use an engine-managed correlation policy assertion, described in Engine-Managed
Correlation.

The steps for adding correlation to a process are shown in the following illustration.

263

264 Chapter 15: What is Correlation

C h a p t e r 1 6

What is a Correlation Set
Select properties defined in a WSDL to use in a correlation set.

A correlation set is a set of properties shared by messages. A correlated message data that is the same as
that in all other messages in the set. Since the element names of each message can be different, you need a
mechanism to match up the same piece of data among the messages.

How does the mechanism work? For each correlation set, you create a data property, such as customerID.
For each message being correlated, you create a property alias for a message part, such as a Receive's
message part named custID, an invoke's input message part named CustomerNumber, and so on.

Properties
A message property to be used for message correlation must be a schema simple type like an xsd:int or an
xsd:string.

Property Aliases
Properties can exist in WSDL messages, schema elements, and schema types. The property alias specifies
the message part or query.

For example, a purchase ordering process might have an OrderId. property. Messages can store the value of
OrderId in different parts with different names. A property alias identifies the part. A specific process
instance is identified by a unique OrderId such that no two processes will ever have the same value for
OrderId. This ensures that when a message arrives, it is dispatched to the correct process instance.

The following illustration shows how a message property alias is mapped to a property name. The property
name is mapped to a correlation set. You can create as many correlation sets as you need.

265

For more information, see:

• Creating Message Properties and Property Aliases

• WSDL Syntax and Example for Property Names and Aliases

• Global and Local Correlation Sets

WSDL Syntax and Example for Property Names and
Aliases

Use a Process Developer wizard to automatically create variable properties and property aliases. (This is
described in Adding Variable Properties and Property Aliases). The wizard generates WSDL code, as the
following examples show.

The WSDL syntax for a property name is:

<wsdl:definitions name="NCName"
 xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop">
 <vprop:property name="NCName"
 type="QName"?
 element="QName"?/>
 ...
</wsdl:definitions>

The WSDL syntax for a property alias is:

<wsdl:definitions name="NCName"
 xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop">
 <vprop:propertyAlias propertyName="QName"
 messageType="QName"?
 part="NCName"?
 type="QName"?
 element="QName"?>
 <vprop:query queryLanguage="anyURI"?>?
 queryContent
 </vprop:query>
 </vprop:propertyAlias>
...
</wsdl:definitions>

Property and Property Alias Example

266 Chapter 16: What is a Correlation Set

Consider the following message definition:

<wsdl:definitions name="messages"
 targetNamespace="http://example.com/taxMessages.wsdl"
 xmlns:txtyp="http://example.com/taxTypes.xsd"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <!-- define a WSDL application message -->
 <wsdl:message name="taxpayerInfoMsg">
 <wsdl:part name="identification"
 element="txtyp:taxPayerInfoElem" />
 </wsdl:message>
 ...
</wsdl:definitions>

The following WSDL fragment shows the definition of a property and its location in a particular field of the
message:

<wsdl:definitions name="properties"
 targetNamespace="http://example.com/properties.wsdl"
 xmlns:tns="http://example.com/properties.wsdl"
 xmlns:txtyp="http://example.com/taxTypes.xsd"
 xmlns:txmsg="http://example.com/taxMessages.wsdl" ...>
 <!-- define a correlation property -->
 <vprop:property name="taxpayerNumber" type="txtyp:SSN" />
 ...
 <vprop:propertyAlias propertyName="tns:taxpayerNumber"
 messageType="txmsg:taxpayerInfoMsg"
 part="identification">
 <vprop:query>txtyp:socialsecnumber</vprop:query>
 </vprop:propertyAlias>
 <vprop:propertyAlias propertyName="tns:taxpayerNumber"
 element="txtyp:taxPayerInfoElem">
 <vprop:query>txtyp:socialsecnumber</vprop:query>
 </vprop:propertyAlias>
</wsdl:definitions>

The first <vprop:propertyAlias> defines a named property tns:taxpayerNumber as an alias for a location in
the identification part of the message type txmsg:taxpayerInfoMsg.

The second <vprop:propertyAlias> provides a second definition for the same named property
tns:taxpayerNumber but this time as an alias for a location inside of the element txtyp:taxPayerInfoElem.

The presence of both aliases means that it is possible to retrieve the social security number from both a
variable holding a message of messageType txmsg:taxpayerInfo as well as an element defined using
txtyp:taxPayerInfoElem.

Global and Local Correlation Sets
You can declare a correlation set for the process as a whole or for a scope. If you declare the correlation set
locally for a scope, it is applicable only to the activities in the scope. You can hide a global correlation set by
declaring a correlation set of the identical name in a scope.

Global and Local Correlation Sets 267

C h a p t e r 1 7

Creating Message Properties and
Property Aliases

Create a property definition, and add it to an existing WSDL. Create a new WSDL, if desired, for a property
based on a schema simple type. Select properties defined in a WSDL to use in a correlation set.

If your WSDL file does not include message property definitions, you can add them automatically to an
existing WSDL or create a new WSDL for them. The property is automatically added to the corresponding
process variables.

You use message properties and property aliases to create a correlation set. For an overview, see What is
Correlation? and What is a Correlation Set?

In preparation for creating message properties and property aliases, consider the following:

• Which activities need to be correlated?

• Do these activities contain messages with a piece of common data?

If your WSDL file does not include message property definitions, you can add them automatically to an
existing WSDL or create a new WSDL for them. The property is automatically added to the corresponding
process variables.

Before you create message properties, ensure that your BPEL process references a WSDL file in the Imports
section of the Outline view. See Importing WSDL, Schema, and Other Resources for details.

To add message properties and aliases, see:

• Creating a Property Definition

• Creating a Property Alias

268

Creating a Property Definition
Create a property definition, and add it to an existing WSDL. Create a new WSDL, if desired, for a property
based on a schema simple type. You can create a property as follows:

1. From the Outline view, right-mouse click on Correlation Sets, and select Add Correlation Set.

2. In the Correlation Set Properties dialog, select New.

3. In the Property Definition dialog, select a Name for the property (for example, OrderId).

Creating a Property Definition 269

4. Select the property type: schema type or schema element.
The property must be a schema simple type.

5. Select whether to add the property definition to an existing WSDL or to create a new WSDL. If the WSDL
referenced in your process is a URL or otherwise shared by many partners, it is best to create a new
WSDL.

6. To create a new WSDL, do the following:

a. Type in a Target Namespace for the WSDL (for example urn:MyNewNamespace).

b. Select Browse, and in the Open dialog, browse to a Project Explorer project or file system location.

c. Type in a filename for the WSDL file, and click Open.

d. Click OK and skip to Step 8.

7. To add to an existing WSDL, select a WSDL from the picklist. The list consists of WSDLs that were added
to your process. Click OK.

8. In the Available Properties list of the Correlation Set Properties dialog, notice that the new property is
listed.

270 Chapter 17: Creating Message Properties and Property Aliases

9. Do one of the following:

• Continue to Creating a Property Alias.

• Click OK to close the dialog. You can add property aliases later. They are required before you can add
a message correlation set.

If you create a new WSDL, Process Developer does the following:

• Adds the WSDL to the Imports section of the Outline view.

• Adds the new namespace to the process.

• Adds an <import> element to the new WSDL to reference the process' WSDL file. This allows you to select
appropriate messages, types or elements for property aliases.

• Adds the new WSDL to Project Explorer, Participants, and Interfaces views.

Creating a Property Alias
Add, edit or delete a property alias for the selected property. Select the message part for the property alias.
For a complex type, include the query.

1. Select a property from the Available Properties list in the Add Correlation Set dialog.

2. Select Property Aliases.

3. In the Property Aliases dialog, select New.

4. In the Define Property Alias Details dialog, select Dialog Button (...) next to the Type field to open the
Definition dialog. The dialog contains messages, schema types and elements from namespaces
imported into the process, as shown in the example.

Creating a Property Alias 271

5. Select the variable definition: WSDL Message, Schema type, or Schema element. The list of available
types appears, depending on the definition type you select.

6. Select an item in the list and click OK.

7. On the Define Property Alias Details dialog, select a variable Part for the property alias, as shown in the
example.

272 Chapter 17: Creating Message Properties and Property Aliases

8. If the part is a complex type, type in a Query or select the Dialog button (...) to open the Query Builder
and add the selection node from the part.

9. Click OK.

10. Repeat these steps to add property aliases for all messages, schema types, and schema elements that
are included for the property. Your selections can depend on how you want to group messages for
correlation.

After you add a property alias, Process Developer displays the property for the process variable, as the
example shows.

Process Developer also adds the property and property alias to the WSDL folder of your project.

Tips for creating property aliases:

• You can add property aliases one at a time.

• You can edit and remove property aliases as needed. The WSDL file and relevant process variables get
updated correctly.

Creating a Property Alias 273

C h a p t e r 1 8

Adding a Correlation Set
Add a correlation set to an activity.

Before adding correlation to an activity, you must create the correlation set.

To create the correlation set, you identify message, element, or schema properties from a WDSL file that map
to correlation properties, as described below.

You can add a correlation set to process activities or to a scope. For more information, see Global and Local
Correlation Sets.

To add a correlation set:

1. Ensure that a WSDL file is available that contains defined properties and property aliases. For more
information, see What is a Correlation Set?

2. Do one of the following:

• To add a correlation set for the process, from the Outline view, right-mouse click on Correlation Sets,
and select Add > Declaration > Correlation Set

• To add a correlation set to a scope, right-mouse click on the scope, and select Add > Declaration >
Correlation Set

3. Select a property from the Available Properties list and move it to the Selected Correlation Set Properties
list.

274

4. If you need more properties, move them to the right list as well.

Correlation Sets: Required and Optional Properties

The following table shows the required and optional properties for a correlation set.

Required Properties Optional Properties

Set Name Documentation.

Properties. Comment.

Extension Attributes and Extension Elements.

XML Syntax

Here is the XML syntax for a correlation set:

<correlationSets>?
 <correlationSet name="NCName" properties="QName-list"/>+
</correlationSets>

Example

Here is an example declaration for a correlation set:

<correlationSet name="PurchaseOrder"
 properties="cor:customerID cor:orderNumber"/>

XML Syntax
Here is the XML syntax for a correlation set:

<correlationSets>?
 <correlationSet name="NCName" properties="QName-
list"/>+
 </correlationSets>

Example
Here is an example declaration for a correlation set:

<correlationSet name="PurchaseOrder"
 properties="cor:customerID cor:orderNumber"/>

XML Syntax 275

Correlation Sets: Required and Optional Properties
The following table shows the required and optional properties for a correlation set:

Required Properties Optional Properties

Set Name Documentation. See Adding Documentation to a Process.

Properties. See Creating Message
Properties and Property Aliases.

Comment. See Adding Comments to a Process.

Extension Attributes and Extension Elements. See Declaring Extension
Elements and Attributes.

276 Chapter 18: Adding a Correlation Set

C h a p t e r 1 9

Deleting a Correlation Set
Delete correlation sets from this BPEL process.

You can delete a correlation set from the process or from a scope.

To delete a correlation set from the process:

1. Click on a blank spot in the Process Editor canvas.

2. Select Process from the Process Developer main menu.

3. Select Delete > Correlation Set.

4. Select a correlation set and click OK.

To delete a correlation set from a scope:

1. In Outline view, expand a Scope node to view correlation sets.

2. Right-mouse-click on a correlation set, and select Delete.

277

C h a p t e r 2 0

Adding Correlations to an Activity
For a discussion of using engine-managed correlation versus correlation sets, see Correlation Sets and
Engine-Managed Correlation.

You can add correlations to the following kinds of Web service interaction activities:

• Receive

• Pick (onMessage branch)

• Event handler (onEvent variant)

• Invoke

• Reply

After you add correlation to an activity and save your process file, the Problems view shows warning
messages for the related activities that should be correlated.

For a discussion of correlation attributes that you must set, see Initiating and Setting Patterns for Correlation.

To add correlation, see Adding Correlation to a Receive, OnMessage, OnEvent, or Reply and Adding Correlation
to an Invoke Activity.

278

C h a p t e r 2 1

Rules for Declaring and Using
Correlation Sets

Here are some rules for declaring and using correlation sets:

• A correlation set is declared within a scope, similar to a variable declaration. You can declare both global
and local correlation sets.

• You can hide a correlation set in an outer scope by declaring a correlation set with an identical name in an
inner scope. If you declare the correlation set locally for a scope, it is applicable only to the activities in
the scope.

• A correlation set can be initiated only once during the lifetime of the scope it belongs to.

• A correlation set must be initiated.

• After a correlation set is initiated, the values of the properties for a correlation set must be identical for all
messages in all operations in the scope.

279

C h a p t e r 2 2

Correlation Sets and Engine-
Managed Correlation

To correlate inbound messages, you have two choices. You can:

• Create and use correlation sets or you can allow the Process Developer engine to automatically manage
message correlation.

• Direct the Process Developer engine to automatically correlate inbound messages targeted for a receive,
onMessage, or onEvent by adding a policy to the My Role partner link in the Process Deployment
Descriptor file.

For details, see Engine-Managed Correlation.

280

C h a p t e r 2 3

Event Handling
This chapter includes the following topics:

• What is Event Handling, 281

• Adding Event Handlers, 282

• Processing Rules for Events, 287

• Adding Boundary Events, 287

What is Event Handling
Event handling is an activity that runs concurrently with a scope. Events can be one of two types: a message
event or an alarm. When a message event or alarm occurs, the event handler associated with it invokes an
activity.

Event handlers are especially helpful for events and requests that cannot be scheduled relative to the main
activity, but may occur at unpredictable times. For example, a customer can cancel an order that is being
processed.

Event handlers are considered part of the normal behavior of the scope, unlike fault and compensation
handlers that take over normal processing.

An event handler can be attached to the process as a whole or to a scope. One or more events can occur and
be handled at any time while the corresponding scope is active.

An event handler cannot be enabled until a process instance is created, meaning it cannot create the process
instance itself.

Event Types

An event can be an incoming message that corresponds to a request/response or one-way operation in a
WSDL. For example, a status query is likely to be a request/response operation, whereas a cancellation can
be a one-way operation.

An event can also be an alarm that goes off after a set time or lasts for a specified time, and optionally
repeats.

Examples of Event Handler Activities

When a message that triggers an event is received, one of the following can be the likely response by an
event handler:

• Send a reply.

281

• Terminate the process instance. For example, an order is cancelled, so the process instance should be
cancelled, and there is no ongoing work to be undone and compensated.

• Throw a fault to cause the ongoing work to be undone and compensated.

Adding Event Handlers
You can add event handlers to the process as a whole or to a scope. You can add two types of event
handlers:

• onEvent Event Handler

• an onAlarm Event Handler

For conceptual information, see What is Event Handling?

XML Syntax

<eventHandlers>?
 <!-- there must be at least one onEvent
 or onAlarm handler -->
 <onEvent partnerLink="NCName" portType="QName"?
 operation="NCName"
 (messageType="QName" | element="QName")?
 variable="BPELVariableName"?
 messageExchange="NCName"?>*
 <correlations>?
 <correlation set="NCName" initiate="yes|join|no"/>+
 </correlations>
 <fromParts>?
 <fromPart part="NCName" toVariable="BPELVariableName"/>
 </fromParts>
 <scope...>...</scope>
 </onEvent>
 <onAlarm>*
 (
 <for expressionLanguage="anyURI"?>duration-expr</for>
 |
 <until expressionLanguage="anyURI"?>deadline-expr</until>
)
 <repeatEvery expressionLanguage="anyURI"?>?
 duration-expr
 </repeatEvery>
 <scope...>...</scope>
 </onAlarm>
</eventHandlers>

Adding an onEvent Event Handler
The onEvent element indicates that the event specified waits for a message to arrive. This element is very
similar to a receive activity, except that a message event cannot create a new process instance. Also, an
onEvent must contain a scope activity and optionally uses a variable local to the event handler that contains
the message received from a partner.

282 Chapter 23: Event Handling

An incoming message can correspond to a request/response or one-way operation in a WSDL. When the
operation is a request/response type, the event handler is expected to use a reply to send back the response.

Required Properties Optional Properties

Participant Variable

Operation Port Type

Correlations.

Comment.

Documentation.

Setting Visual Properties and Using Your Own Library of Images.

Execution State

Message Exchange.

Extension Attributes and Extension Elements.

To add an onEvent event handler for the process:

Ensure that you have added a participant for the event handler before you can complete the properties for it.

1. Click on the Event Handlers tab of the Process Editor.

2. Drag a Message catch event to the Event Handlers canvas.

3. From the Properties view, select a participant, operation, and optionally select a Variable Definition and
type in a Variable name. This variable is an implicit scope variable that can be used by other activities.

4. Drag an activity into the onEvent's scope to respond to the event, such as a reply or exit.

5. Fill in the properties for the activity that handles the event.

The following illustration shows an example of an onEvent event handler added for the process. If you
collapse the event handler, you can add a background color in the Properties view.

To add an onEvent event handler for a scope:

1. Ensure that you have added a WSDL file to Project Explorer containing the participant information
needed.

2. Display a BPEL file in the Process Editor, and select a scope.

Adding Event Handlers 283

3. Drag a Message catch event to the scope.

4. Fill in the properties of the onEvent, including the participant, operation and optionally type in a variable.
This variable is an implicit scope variable that can be used by other activities.

5. Drag an activity into the onEvent's scope to respond to the event, such as a reply or exit.

6. Fill in the properties for the activity that handles the event.

The following illustration shows an example of an onEvent and an onAlarm event handler added for a scope.
The activity responding to each event is a reply.

Adding an onAlarm Event Handler
The onAlarm element defines a timeout event, using either the duration (for) or deadline (until) attribute. The
duration attribute specifies the amount of time after which the event is signaled. The clock for the duration
starts when the associated scope starts. The alternative deadline attribute sets the specific point in time
when the alarm is fired. Optionally a repeat every attribute can be set to fire an alarm repeatedly each time
the interval period expires. The repeat every attribute can be used alone or with an deadline or duration
attribute.

For example, you might set an alarm to go off in five minutes and then repeat the alarm every 30 seconds.

An alarm time can be set for the process using the data provided within the message that creates a process
instance, as shown in the following example.

In the WSDL file, a complex message is defined with a part specifying processDuration.

<wsdl:definitions
 targetNamespace="http://www.example.com/wsdl/exmple"

284 Chapter 23: Event Handling

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 ...>
 <wsdl:message name="orderDetails">
 <part name="processDuration"
 type="xsd:duration"/>
 </wsdl:message>
</wsdl:definitions>

The message type above is used in the onAlarm value in the BPEL process:

<process name="orderCar"
 xmlns:def="http://www.example.com/wsdl/example" ...>
 ...
 <eventHandlers>
 <onAlarm
 <for>$orderDetails.processDuration</for>
 </onAlarm>
 </eventHandlers>
 ...
 <variable name="orderDetails"
 messageType="def:orderDetails"/>
 </variable>
 ...
 <receive name="getOrder"
 partnerLink="buyer"
 operation="order"
 variable="orderDetails"
 createInstance="yes"/>
 ...
</process>

In the above example, the onAlarm element specifies a timer event that is fired when the duration specified in
the processDuration field in the orderDetails variable is exceeded. The value of the field is provided via the
getOrder activity that receives a message containing the order details and causes the creation of a process
instance for that order.

Required Properties Optional Properties

Alarm Expression Repeat Every (can be used with Alarm Type)

Alarm Type or Repeat Every Comment.

 Documentation.

 Setting Visual Properties and Using Your Own Library of Images.

 Execution State.

 Extension Attributes and Extension Elements.

To add an onAlarm event handler for the process:

1. Click on the Event Handlers tab of the Process Editor.

2. Drag a Timer catch event to the Event Handler canvas.

3. In the Properties view, optionally select the Dialog button at the end of the Repeat Every row. Type in or
compose an expression for the interval. Use this attribute alone or in conjunction with a Wait Type.

4. Set the Wait Type as one of the following:

a. Select Deadline Expression to type in or compose an expression representing the deadline (wait
until) for the alarm.

Adding Event Handlers 285

b. Duration Expression to type in or compose an expression representing the duration (wait for) for the
alarm.

c. Duration to select the number of days, hours, minutes, or seconds to wait.

d. T time in X days to set a deadline that is X days plus T hours. The expression resolves to an
expression such as:
xsd:dateTime(current-date()) + xsd:dayTimeDuration("P3DT15H20S")

5. Drag an activity into the event handler to respond to the event, such as a reply or exit.

6. Fill in the properties for the activity that handles the event.

The following illustration shows an example of an onAlarm event handler added for the process.

Tip: If you collapse the event handler, you can add a background color in the Properties view.

To add an onAlarm event handler for a scope:

1. Display a BPEL file in the Process Editor, and select a scope.

2. Drag a Timer catch event to the scope.

3. In the Properties view, fill in properties as described above for the process.

4. Drag an activity into the event handler to respond to the event, such as a reply or terminate.

5. Fill in the properties for the activity that handles the event.

The following illustration shows an example of an onAlarm and an onEvent event handler added for a scope.
The activity responding to each event is a reply.

286 Chapter 23: Event Handling

Processing Rules for Events
An alarm event occur only once, unless it is modified by a repeat every attribute.

A message event can occur multiple times. For example, while an order is being processed inside a scope,
changes for the order can be accepted via a message event.

Multiple message and alarm events can occur concurrently. If your process contains two concurrent scopes
with shared variables and event handlers, be sure to enable isolated for the scopes. Enabling this ensures
consistent access to shared variables.

Adding Boundary Events
The Business Process Model and Notation (BPMN) 2.0 specification includes the concept of a boundary
event. In Process Developer, a BPMN boundary event is a BPEL scope handler (event, fault, or compensation)
that is dropped onto the boundary of a bordered activity. You can use a boundary event as a shortcut to
creating a scope and its interior scope handler, providing a cleaner-appearing design. The event handling is
shown at the same level as the main activity. Behind the scenes, Process Developer creates the BPEL code to
wrap the activity in a scope for valid execution.

The following illustration shows a normal event handler compared to a boundary event on a scope.

Processing Rules for Events 287

You can add a boundary event to any bordered activity. The following example shows an invoke with an
onEvent handler that escalates a repair request from Standard to Premium.

288 Chapter 23: Event Handling

The properties of a boundary event are:

• Must be one of onEvent, onAlarm, Catch, Catch All, or Compensation.
• Must be dropped only onto the boundary (border) of any rounded border activity, such as a scope or

invoke.

• Must use outbound links to activities that have not yet executed (downstream activities) or are not already
dead path (branches of an if container).

• Outbound links cannot have conditions.

• Can be defined as interrupting or non-interrupting (discussed below).

• Interrupting boundary event is a Process Developer extension to BPEL.

• Only available in the BPMN editor, not the Classic editor.

Here are some examples of boundary events.

Non-interrupting onAlarm or onEvent

In the following illustration, the collapsed scope displays an onAlarm handler on its boundary. The handler
can execute in parallel with the activities in the scope. A boundary event does not have a container like the
onAlarm or onEvent handler that is dropped into a scope. Rather, the boundary event links to one or more
activities to execute. The links cannot have conditions.

In the example above, the onAlarm boundary event behaves exactly like a scope onAlarm handler. The same
processing rule applies: activities in the main scope execute in parallel with the onAlarm activity, if the alarm
is triggered. This makes the boundary event non-interrupting. The linked activity (the reply in the above
example) cannot be not part of the main process.

The Interrupting Boundary Event property is disabled by default, as the illustration shows:

Adding Boundary Events 289

Interrupting onAlarm or onEvent

If desired, you can add a new processing rule to an onAlarm or onEvent by enabling the Interrupting property,
shown above. In this case, the main scope terminates when the event is triggered.

Some use cases for an interrupting boundary event are as follows:

• onEvent: cancel an order

• onAlarm: request is no longer relevant, don't bother

An interrupting boundary event can be connected back to a downstream activity in the main process. Note
that this behavior is an extension to WS-BPEL 2.0. Process Developer uses the Mutually Exclusive Transitions
extension to execute an interrupting boundary event.

In the following illustration, the collapsed scope contains an interrupting onAlarm that, when triggered,
terminates the main scope. Only one path is executed.

Note the difference in icon appearance for non-interrupting and interrupting boundary events.

290 Chapter 23: Event Handling

You can also add a boundary event for a fault or compensation handler. There are some minor exceptions as
described in Catch and Catch All Boundary Events and Compensate, Compensate Scope and Rethrow.

See also:

• Adding a Fault Handler for a Scope

• Adding a Fault Handler as a Boundary Event for an Invoke Activity

• Adding a Compensation Handler to a Scope

• Compensating an Invoke Activity

• Using a Variable from a Catch or Interrupting OnEvent Boundary Event

Catch and Catch All Boundary Events and Compensate
Compensate Scope and Rethrow

There are some BPEL activities that cannot be used as the target of a catch or catch all boundary event.

You cannot add a compensate, compensate scope, or rethrow activity as a linked target of a catch or catch
all. The catch and catch all events are interrupting events, triggered by the termination of the scope they are
attached to. As such, they get executed outside of the scope. The work of the compensate, compensate
scope, and rethrow activities is to execute within a scope. These activities must be added inside a scope's
catch or catch all handler.

Using a Variable from a Catch or Interrupting OnEvent Boundary
Event

An interrupting onEvent boundary event as well as a catch boundary event are Process Developer extensions.
As such, the variable handling for these events differs from normal BPEL fault and event handling.

Catch Boundary Event Variable Handling

If you want to define a variable for a catch boundary event, you must select an existing process variable or
create a new process variable in the Fault Variable picklist.

This differs from defining a variable in a normal scope catch handler, where you can type in a special fault
variable name.

This difference arises because in a normal catch handler, the fault variable is used within an activity that is
enclosed by the scope. In an interrupting boundary event, there is no activity within the event handler.
Instead, the boundary event links to an activity in the process or another scope.

Behind the scenes, Process Developer generates the activities needed in order to use boundary event
variables. Process Developer creates an implicit parameters variable for the catch that is available only
within a hidden scope containing the catch boundary event. Therefore, to define a variable for use in another
part of the process, such as a reply with fault, you must select a process variable or create a new process
variable. Process Developer maps the implicit parameters variable to the process variable. See the example
below.

Interrupting OnEvent Boundary Event

The variable handling is essentially the same as for a catch boundary event. In the Properties view of an
interrupting OnEvent boundary event, you can select an existing process variable or create a new variable in
the Variable drop-down.

Example

The following illustration shows the Properties for an interrupting OnEvent boundary event.

Adding Boundary Events 291

In the BPEL source code, notice that a scope with an assign is added. The assign copies the implicit scope
variable, parameters, to the process variable, customerComplaint.

<bpel:eventHandlers>
 <bpel:onEvent aei:boundaryEvent="interrupting"
element="ns6:customerComplaint"
 ext1:handleIMAInEnclosingScope="true"
 operation="getComplaint"
 partnerLink="RepairServices"
 variable="parameters">
 <bpel:scope>
 <bpel:assign ext1:mutexTransitions="yes">
 <bpel:sources>
 <bpel:source linkName="L5"/>
 </bpel:sources>
 <bpel:copy>
 <bpel:from variable="parameters"/>
 <bpel:to variable="customerComplaint"/>
 </bpel:copy>
 </bpel:assign>
 </bpel:scope>
 </bpel:onEvent>
</bpel:eventHandlers>

292 Chapter 23: Event Handling

C h a p t e r 2 4

Fault Handling
This chapter includes the following topics:

• What is BPEL Fault Handling, 293

• Defining Catch and CatchAll Fault Handlers, 294

• Fault Handling for Service Invocations, 296

• Adding a Fault Handler, 297

• Fault Handling Processing Rules, 300

• Rules for Catching Faults in a Catch Activity, 302

• Tips on Fault Handling, 303

• Catching Undeclared and SOAP Faults, 303

What is BPEL Fault Handling
Fault handling in a BPEL process refers to the procedures performed when an exception or unanticipated
condition occurs during normal processing. The work performed restores state so that predictable results
always occur. Fault handling differs from compensation handling in that fault handling happens when a fault
occurs within a scope whereas compensation reverses the work of a successfully completed scope. This
means that the fault handler has access to information contained within the scope.

A fault can occur for the following reasons:

• A web service operation cannot complete successfully, and the service returns a fault

• An internal process error occurs, and a standard BPEL fault is thrown. Refer to the list of BPEL Standard
Faults in the Process Developer Help for more information.

• A <throw> or <rethrow> activity throws a fault

• A platform-specific fault, such as a communication failure, occurs in a BPEL process instance

Fault handling can be global or local: you can add fault handlers to the process as a whole or to a scope
within the process.

When a fault occurs, normal processing is terminated, and control is transferred to the corresponding fault
handler, as defined in the <faultHandlers> section of the process or scope.

Note that the process does not enable compensation for a scope in which a fault handler is invoked.

Fault handlers do not rely on state to determine which nested scopes have completed successfully.

For a discussion of fault handling and compensation handling for a scope, see Lifecycle of a Scope.

293

Defining Catch and CatchAll Fault Handlers
You can define two types of fault handlers:

• A <catch> fault handler that defines a set of custom fault-handling activities that execute based on an
optional fault name and/or fault variable. If the fault name is missing, then the catch intercepts all faults
with the same type of fault data.

• A <catchAll> fault handler that executes if a thrown fault is not caught by a <catch> fault handler. Catch
all is a variant of catch. It does not specify a fault name or variable to catch.

You can define <catch> and <catchAll> handlers for the process on the Process Editor Fault Handlers tab,
as described in Adding a Fault Handler.

The following illustration shows an example of fault handlers created on the Process Editor canvas.

You can also define fault handlers for a scope, as the error catch event, labeled Catch All, shows in the
following illustration.

You can define each catch activity to intercept a specific kind of fault, defined by a globally unique fault name
and a variable associated with the fault. Optionally, you can have a defined type associated with the fault
variable, either a message type or an element type.

294 Chapter 24: Fault Handling

XML Syntax

<faultHandlers>?
 <catch faultName="QName"?
 faultVariable="BPELVariablename"?
 (faultMessageType="QName" | faultElement="QName")?>*
 activity
 </catch>
 <catchAll>?
 activity
 </catchAll>
</faultHandlers>

Required Properties Optional Properties

Catch only:
Fault name only or fault variable only or fault name plus fault
variable

Catch only:
Fault name, Fault variable definition, Fault variable

Comment. See Adding Comments to a Process

Documentation. See Adding Documentation to a
Process

See Setting Visual Properties and Using Your Own
Library of Images.

Execution State. See Viewing the Execution State
of an Activity or Link

Extension Attributes and Extension Elements. See
Declaring Extension Elements and Attributes.

Catch Fault Name and Fault Variable

The fault name and fault variable/variable definition are optional attributes, but you must provide at least one
of them for a <catch>. These attributes determine which catch in a fault handler executes when a fault is
thrown.

If you do not define either a fault name or variable, the catch is executed as a <catchAll>.

In most cases, the values for these attributes are from the WSDL for a service being invoked. The name of the
fault is typically the name of fault on an operation with the target namespace as the qualifying namespace
value. The variable for a fault is typically the message sent when an operation in WSDL throws a fault. In the
case where a catch includes a fault variable, that variable must be defined within the catch. This variable gets
populated with the data from the fault when the catch executes. In addition, Process Developer provides
special handling for undeclared faults.

For more details about the use of fault names and variables, see the following topics:

• Fault Handling Processing Rules

• Tips on Fault Handling

• Catching Undeclared and SOAP Faults

CatchAll Handler Examples

The <catchAll> catches any faults that were not caught by an existing catch block. The benefit of this
construct is that you can be sure that your fault handler has an opportunity to execute your fault handling
code in the event a fault is thrown. One drawback is that you will not have any details regarding the type of
fault that was thrown since there is no fault name or fault variable available to a <catchAll>, per se.
However, Process Developer provides custom functions to handle undeclared faults in a <catchAll>. This

Defining Catch and CatchAll Fault Handlers 295

construct is best used in cases where you do not care what fault is thrown or in cases where you want to be
sure that no faults get past your existing fault handler logic.

The default <catchAll> fault handler is as follows:

<catchAll>
 <sequence>
 <compensate/>
 <rethrow/>
 </sequence>
</catchAll>

Fault Handling for Service Invocations
A fault response to an invoke activity uses the definition of the fault in the WSDL operation. A WSDL fault is
defined by using the target namespace of the port type and the fault name.

Example: Purchase Order BPEL Process

In a normal purchase order BPEL process, the following steps occur:

1. A customer sends in a purchase order.

2. The BPEL process receives a purchase order and performs tasks for calculating shipping and production
costs.

3. The BPEL process returns an invoice to the customer.

If something goes wrong, the process returns an error. Fault messages are defined in the WSDL file and used
in the BPEL process as described in the following example:

WSDL Fault Definition BPEL Fault Handling for Service Invocation

<portType name="POrderPT">
 <operation name="sendPOrder">
 <input message="..."/>
 <output message="..."/>
 <fault name="cannotCompletePO"
 message="pos:orderFaultType"/>
 </operation>
</portType>

<faultHandlers>
 <catch
 faultMessageType="ns1:errorMessage"
 faultName=="lns:cannotCompletePO"
 faultVariable="POFault">
 <reply partnerLink="purchasing"
 operation="sendPOrder"
 variable="POFault"
 faultName="lns:cannotCompletePO"/>
 </catch>
</faultHandlers>

In the WSDL definition above, the operation called sendPOrder specifies the fault named cannotCompletePO
that is used by the BPEL process if the purchase order cannot be completed. In the BPEL process fault
handlers section, the catch activity contains a reply defined to return a message in the POFault variable in
the event that a fault is received.

When an invoke operation returns a fault message, it causes a fault in the current scope. The fault variable in
the corresponding <catch> is initialized with the fault message received.

If a Web service operation is not defined with a fault message, you can use the Process Developer custom
functions to catch undeclared faults.

For more information, see Adding a Fault Handler as a Boundary Event for an Invoke Activity and Catching
Undeclared and SOAP Faults.

296 Chapter 24: Fault Handling

Adding a Fault Handler
Select the variable definition, either message type or element. Then select a variable from the list.

Your BPEL process can catch standard faults as well as faults from a throw or re-throw activity or service
invocation. Once caught, a fault is handled by a catch activity you specify, such as a reply containing an error
message or a compensate activity. While a <catch> or <catchAll> can have only a single child activity, this
activity can be a structured activity that can have its own children.

There are several ways to add fault handlers, including:

• Adding a Fault Handler for the Process

• Adding a Fault Handler for a Scope

• Adding a Fault Handler as a Boundary Event for an Invoke Activity

For background information, see Fault Handling.

Adding a Fault Handler for the Process
You can add multiple catch handlers and one catch-all handler for the process.

For explanations of these handlers, see Defining Catch and CatchAll Fault Handlers and Catching Undeclared
and SOAP Faults.

To add a catch handler for the process:

1. Click on the Fault Handlers tab of the Process Editor canvas.

2. Drag an Error catch event to the canvas.
A catch handler is added and is selected.

3. In the Properties view, select the following optional values:

a. Fault Name. See Fault Handling Processing Rules.

b. Fault Variable. Type in name for the variable described by the variable definition. For a discussion
on whether or not to add a fault variable, see Rules for Catching Faults in a Catch Activity. If you
have selected a Fault Name, the fault variables picklist displays only compatible variables.

c. Variable Definition. Select the Dialog (...) Button at the end of the row to open the Variable
Definition dialog. See Fault Handling Processing Rules.

4. Drag an activity into the catch handler, such as a reply or compensate. For an example, see Fault
Handling for Service Invocations.

5. Fill in the properties for the activity to handle the fault.

To add the catch all handler for the process:

1. Click on the Fault Handlers tab of the Process Editor canvas.

2. Drag an Error catch event to the canvas.

3. Select the Catch All Faults checkbox.

4. Do not select any fault name or variable in the Properties view of the Catch.

5. Drag an activity into the catch all handler, such as an assign or compensate.

6. Fill in the properties for the activity to handle the fault.

The following illustration shown an example of a fault handler added for the process.

Adding a Fault Handler 297

Tip: If you collapse the fault handler, you can add a background color from the Properties view. Right-mouse-
click the handler and select Collapse Container.

Adding a Fault Handler for a Scope
You can add multiple catch handlers and one catch all handler for each scope in your process.

For explanations of these handlers, see Defining Catch and CatchAll Fault Handlers and Catching Undeclared
and SOAP Faults.

To add a catch handler to a scope:

1. Select a scope container on the Process Activities tab of the Process Editor canvas.

2. Drag an Error catch event into the scope or near the border of a collapsed scope, as the illustration
shows.

3. In the Properties view, select the following optional values:

a. Select the Catch All Faults checkbox and leave the other properties blank.

b. Fault Name. See Selecting a Fault Name for details. For a discussion on whether or not to add a
fault name, see Fault Handling Processing Rules and Rules for Catching Faults in a Catch Activity.

c. Fault Variable. Type in name for the variable described by the variable definition. For a discussion
on whether or not to add a fault variable, see Fault Handling Processing Rules and Rules for

298 Chapter 24: Fault Handling

Catching Faults in a Catch Activity. If you have selected a Fault Name, the fault variables picklist
displays only compatible variables.

d. Variable Definition. Select the Dialog (...) Button at the end of the row to open the Variable
Definition dialog. See Adding a Fault Variable Definition for details. For a discussion on whether or
not to add a a fault variable, see Fault Handling Processing Rules and Rules for Catching Faults in a
Catch Activity.

4. Drag an activity into the catch handler, such as a reply. For a boundary event, you must link the handler
to an activity to execute. The activity must be an activity that has not yet executed.

5. If you are using a boundary event, you cannot use certain activities. See Catch and Catch All Boundary
Events and Compensate, Compensate Scope and Rethrow.

6. Fill in the properties for the activity to handle the fault.

To add the catch all handler for a scope:

1. Select a scope on the Process Activities tab of the Process Editor canvas.

2. Drag an Error catch event into the scope or near its border.

3. In the Properties view, select the Catch All Faults checkbox.

4. Drag an activity into the catch all handler, such as an assign or compensate.
If you are using a boundary event, you cannot use certain activities. See Catch and Catch All Boundary
Events and Compensate, Compensate Scope and Rethrow.

5. Fill in the properties for the activity to handle the fault.

The following illustration shows an example of Catch All fault handler added for a scope.

Tip: If you collapse the fault handler, you can add a background color from the Properties view. Right-mouse-
click the handler and select Collapse Container.

Adding a Fault Handler as a Boundary Event for an Invoke Activity
When an invoke activity contains both an input and an output message, you can add a fault handler to catch
any output message errors.

Adding a Fault Handler 299

To add a fault handler to an invoke activity:

1. Display the Process Activities tab of the Process Editor canvas. You must be using the BPMN Process
Editor in order to use boundary events.

2. Drag a Service task to the drawing canvas.

3. Add a fault handler (or event or compensation handler) to the border of the activity.

4. Follow the steps in Adding a Fault Handler for a Scope.

Selecting a Fault Name
Define a fault name based on a fault type and variable.

A catch or throw activity has a fault name property that you can open in Properties view. In the Fault Name
dialog you can make the following selections:

• Scope Faults
A scope fault name is typically from the WSDL for a service being invoked. The name of the fault is
typically the name of fault on an operation with the target namespace as the qualifying namespace value.
If your process uses a People activity (on-premises only), there are some standard Human Task faults
included. Select a fault from the list.

• Standard Faults
A standard fault is a one defined in the WS-BPEL 2.0 specification. Select a fault from the list. See also
BPEL Standard Faults else where in this help.

• Custom Faults
A custom fault is one you create and can include a prefix or namespace, if desired. You must use a
custom fault name when catching undeclared faults.

The fault name is a required property of a throw activity and an optional property of a catch activity.

Adding a Fault Variable Definition
Select the variable definition, either message type or element. Then select a variable from the list.

Open the Fault Variable Definition dialog from the Properties view of a catch container.

1. Select Message Type for a list of all available messages.

2. Select Element if the message has a single part and that part is defined with an element type.

3. After you select a variable definition, return to the Properties view of the catch to type in a Variable name
for the local catch variable.

After receiving an inbound fault message, the fault handler assigns the inbound fault message to the variable
before proceeding to perform the activity enclosed by the catch. Since the variable is declared within a fault
handler, it is not accessible outside of the fault handler much like a local variable is not accessible outside of
its declaring scope.

Fault Handling Processing Rules
Fault Handling Processing Rules

When a fault occurs in a process, the flow of execution moves from the activity that generated the fault (for
example, the invoke that faulted during execution or a throw activity) to the immediately enclosing scope's
fault handler. If there is no immediately enclosing scope, the execution moves to the process's fault handler.

300 Chapter 24: Fault Handling

Once at the fault handler, a single <catch> or <catchAll> is matched in order to execute. The rules for
matching a fault are as follows.

• There are several rules and a catch-matching priority scheme for executing a <catch>. For details, see
Rules for Catching Faults in a Catch Activity.

• If fault cannot be matched to a <catch> using the rules referenced above, then it executes the
<catchAll>.

• If there is no <catchAll> within the fault handlers, then the implicit fault handling logic executes. This
logic acts like there is a <catchAll> present that contains a single compensate activity that executes the
default compensation routine for all enclosed scopes. Once executed, the original fault is rethrown to the
next enclosing scope or the process if none is available. If the handler is already at the process level, then
the process terminates with the fault.

Prior to the execution of the matched <catch> or <catchAll>, all of the activities within the scope are
terminated. Once a scope catches a fault, it is considered to have not completed normally and as such is not
eligible for compensation for that execution. If the scope catches the fault without rethrowing the fault, then
normal process execution can resume from the point of the scope on. If this happens at the process level,
then the process completes normally but would not be eligible for process instance compensation.

In the following example, notice that the fault name and fault variable are not unique across catch activities.

Example

<faultHandlers>
 <!-- catch all faults with a matching name, but no data -->
 <catch faultName="x:foo">
 <empty/>
 </catch>
 <!-- catch all faults with the matching variable type,
 whose name is not "x:foo"-->
 <catch faultVariable="bar"
 faultMessageType="tns:barType>
 <empty/>
 </catch>
 <!-- catch the fault specified by the name
 and variable type -->
 <catch faultName="x:foo" faultVariable="bar"
 faultMessageType="tns:barType>
 <empty/>
 </catch>
<!-- catch all faults not caught by a specific handler -->
 <catchAll>
 <empty/>
 </catchAll>
</faultHandlers>

The Rethrow Activity and Fault Handling

A BPEL process can rethrow an original fault caught by the nearest enclosing fault handler with a <rethrow>
activity. A <rethrow> activity can be used within any fault handler. Regardless of how a fault is caught and
whether a fault handler modifies the fault data, a <rethrow> activity always throws the original fault data and
preserves its type.

Links and Fault Handling

A link that crosses a fault handler boundary must be outbound; that is, it must have its source activity within
the fault handler and its target within a scope that encloses the scope associated with the fault handler.

Fault Handling Processing Rules 301

Rules for Catching Faults in a Catch Activity
A catch activity can include a fault name and/or a fault variable. The fault variable can be defined as a WSDL
message type or a schema element. The schema element can be a member of a substitution group defined in
a WSDL's schema, or it can be a single-part message defined as an element.

The fault matching logic for WS-BPEL is a best match strategy. This means that the available catch elements
are analyzed to determine which catch is the best match for the given fault. Contrast this with the fault
matching logic for a language like Java which has a first match strategy. Because of the best match strategy,
the order of the elements within the fault handlers does not affect which catch element is matched.

It is possible that more than one catch will match to a given fault. In this case, the catch that is matched with
the higher priority rule is selected. In the case where two catch elements are selected by the same rule, then
the best match is determined by whichever catch element declares an element variable that is closer to the
fault element in terms of its substitution group hierarchy.

The priority system first considers whether a catch has a only a fault name or a fault name with data. The
highest priority is for a catch with only a fault name and no data.

For catches with fault data, Process Developer executes catches, in the order described in the following
table.

Catch Order Fault handler option
selected

Variable Type
Definition

Data from the Fault Variable

Catching a fault with a fault name, but no variable data:

1 Fault Name only none none

Catching a fault with variable data:

2 Fault Name and Variable message or element message or element

3 Fault Name and Variable element element (substitution group)

4 Fault Name and Variable element single part element message

5 Fault Name and Variable element single part element message
(substitution group)

6 Fault Name only none message or element is ignored but is
rethrown to enclosing scope

7 Variable only message or element message or element

8 Variable only element element

9 Variable only element single part element message

10 Variable only element single part element message
(substitution group)

For details on execution rules for catch/catch all, see Fault Handling Processing Rules.

302 Chapter 24: Fault Handling

Tips on Fault Handling
Note the following tips:

• The name of a declared WSDL fault and its associated data are unavailable to a <catchAll>. If you need
access to this information, be sure to provide a specific <catch> with the fault name and fault variable.

• You can rethrow the fault that matched your <catch> or <catchAll> using the <rethrow> activity. The
original fault data is rethrown, including the fault name and unmodified fault data.

• You are not limited to working with faults defined in a service's WSDL. You can define a <throw> activity
to use a fault name and variable of your own creation.

• The standard runtime BPEL faults can occur due to errors in the design of a process (for example, having
two receives executing concurrently on the same partner link and operation results in a
bpel:conflictingReceive) as well as standard runtime errors. In general, it is not good design practice
to catch these faults since they mostly represent errors that should be caught during simulation or testing
of the process. There are some exceptions to this. For example, bpel:joinFailure is useful for
identifying a situation where an activity does not execute due to its inbound links resulting to false.

Catching Undeclared and SOAP Faults
In standard fault handling, a fault message is declared as part of a WSDL operation. This declaration is a best
practice and is expected behavior for BPEL fault handling. However, best practices do not always exist for
Web services, and fault messages can be missing. When a service faults, the process faults with no
information about the cause. To improve upon this behavior, Process Developer provides fault handling for
undeclared faults.

To catch undeclared faults as well as SOAP faults, you can declare your own faults and then use the Process
Developer fault custom functions to handle non-WSDL faults.

Using the Process Developer custom functions, you can prevent a process from terminating and can get
access to the following fault information:

• getFaultCode(): Returns the category of the fault

• getFaultString(): Returns a short description related to the fault code

• getFaultDetail(): Returns information about what caused the fault. You can catch a specific Java fault,
including the class name, message, and stack trace. As described below in Example 4, implement this
feature by using a custom fault name in a catch. Note the required namespace for the qualified custom
fault name for a Java fault.

• getSOAPFault(): Returns the entire soap:Fault element (if fault was due to a SOAP invoke that resulted in
a fault).

Here are some examples of how to create fault handling of undeclared faults.

Example 1: Add a CatchAll handler for undeclared faults and SOAP faults

1. Add a catchAll to a scope or to the process, as described in Defining Catch and CatchAll Fault Handlers.
(Or add the handler as a BPMN boundary event).

2. Add an assign activity as the target activity of the handler.

3. Copy an expression to a process variable using the fault custom functions, as shown in the following
example:

Tips on Fault Handling 303

4. The copy operation you create would look like the following XQuery example:
Copy From:

<ns1:myFaultInfo xmlns:ns1="urn:faults:undeclared"
xmlns:ns2="urn:faults:undeclared:result">
 <ns2:result>
 <ns2:FaultCode>{abx:getFaultCode()}</ns2:FaultCode>
 <ns2:FaultString>{ abx:getFaultString() }</ns2:FaultString>
 <ns2:FaultDetail>{ abx:getFaultDetail() }</ns2:FaultDetail>
 <ns2:SOAPFault>{ abx:getSOAPFault() }</ns2:SOAPFault>
 </ns2:result>
</ns1:myFaultInfo>

Copy To:

myFaultInfo
Example 2: Declare a process variable to add to a catch

1. Add a schema element to a project WSDL. This is used in a catch or throw fault variable definition. For
example:

<xs:element name="undeclaredFaultElement" type="tns:undeclaredFaultType"/>
 <xs:complexType name="undeclaredFaultType">
 <xs:sequence>
 <xs:element name="faultMessage" type="xs:string" />
 </xs:sequence>
 </xs:complexType>

304 Chapter 24: Fault Handling

2. Add a catch and use the schema element as a Fault Variable Definition:

Element = ns1:undeclaredFaultElement
3. Add a catch Fault Variable Name, such as myFault

4. Add an assign activity to the catch, and complete it as in Example 1.

Example 3: Declare a process variable to add to a throw activity

1. Add a schema element to a project WSDL, as in Example 2.

2. Add a new process variable, such as myFault, defined as the schema element.

3. Add an Initial Value to the variable as a literal, such as the following example:

<ns1:undeclaredFaultElement xmlns:ns1="urn:faults:undeclared">
 <faultMessage>string</faultMessage>
</ns1:undeclaredFaultElement>

4. Add a throw to the process.

5. Select myFault as the Fault Variable.

6. Create a Custom Fault Name for the throw, such as ns1:myFault.

Example 4: Catch a Java fault by name

1. Add the required namespace to the process, as follows:

aex="http://www.active-endpoints.com/2004/06/bpel/extensions/"
This is the Process Developer namespace used for catching system errors.

2. Add a catch to the process.

3. Define a custom Fault Name as follows:

• Prefix of aex or some other prefix that points to the required namespace shown in Step 1.

• Unqualified class name of a Java exception. The name is the NCName of the class, without the
package details. For example: UnknownHostException.
Example: aex:UnknownHostException.

4. Complete the catch by adding an assign. See Example 1.

5. For example, if the java.net.UnknownHostException is thrown by an invoke due to an invalid URL, the
fault detail element will appear as follows:

<ext:UnknownHostException xmlns:ext="http://www.active-endpoints.com/2004/06/bpel/
extensions/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <Class xmlns="http://www.active-endpoints.com/2004/06/bpel/
extensions/">java.net.UnknownHostException</Class>
 <Message xmlns="http://www.active-endpoints.com/2004/06/bpel/
extensions/">unknown-host</Message>
 <StackTrace xmlns="http://www.active-endpoints.com/2004/06/bpel/
extensions/">java.net.UnknownHostException: unknown-host
 at java.net.PlainSocketImpl.connect(PlainSocketImpl.java:177)
 at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:366)
 at java.net.Socket.connect(Socket.java:525)
 at java.net.Socket.connect(Socket.java:475)
 at java.net.Socket.<init>(Socket.java:372)
 ...
 at org.activebpel.work.AeDelegatingWork.run(AeDelegatingWork.java:62)
 at
org.activebpel.work.AeExceptionReportingWork.run(AeExceptionReportingWork.java:58)
 at org.activebpel.work.AeWorkerThread.run(AeWorkerThread.java:142)
 </StackTrace>
</ext:UnknownHostException>

Catching Undeclared and SOAP Faults 305

C h a p t e r 2 5

Simulating and Debugging
Simulating and debugging topics are as follows:

• “Process Developer Debug Perspective Views and Menus ” on page 307

• “Process Developer Debug Perspective Views and Menus ” on page 307

• “Simulating Execution of a BPEL Process ” on page 313

• “Supplying and Inspecting Sample Variable Data During Simulation ” on page 318

• “Selecting Simulation Paths and Properties ” on page 321

• “Inspecting Standard Faults During Simulation ” on page 324

• “Simulation Preferences ” on page 324

• “Setting Debug Preferences ” on page 328

What is the Process Developer Debug Perspective
The Process Developer Debug perspective contains the views, editors, menus, and toolbars that support the
execution of a BPEL process that you create or import into Process Developer.

During simulation, you can debug your process by using breakpoints or stepping. In simulate/run mode, the
process executes but the execution cannot be suspended or examined. In simulate/step mode, execution can
be suspended and resumed and variables can be inspected and modified.

For concepts and tips on using perspectives, see “Windows Perspectives Views and Editors” on page 43

For Debug perspective details, see:

• “Opening the Process Developer Debug Perspective ” on page 306

• “Switching Between Process Developer Perspectives ” on page 307

Opening the Process Developer Debug Perspective
Process Developer automatically switches to the Debug perspective when you begin simulation or remote
debugging. However, you can manually display the perspective in one of the following ways:

• From the Perspective bar on the top right of the Project Explorer, select the Process Developer Debug
Perspective icon.

• From the Window menu, select Open Perspective > Other > Process Developer Debug.

Tip: You can open a perspective in the same window or in a new window. Open a perspective in a new
window from the Window > New Window menu. There is also a Workbench preference for always opening a
new perspective in a new window.

306

Switching Between Process Developer Perspectives
There are two Process Developer perspectives: Design and Debug. Each perspective has a set of views and
menus supporting a set of related tasks.

Use one of the following ways to switch between perspectives:

• Click the icons on the Perspective bar.

• Select Window > Open Perspective and select a Perspective.

• If both perspectives are open, use the keyboard shortcuts for Next Perspective (Ctrl +F8) and Previous
Perspective (Ctrl +Shift + F8).

Tips for displaying perspectives:

• The window titlebar displays the name of the currently active perspective, helping you manage open
perspectives.

• If you have closed or rearranged views, you can reset the perspective to its default display by selecting
Window > Reset Perspective.

• Select color and font preferences for the Debug perspective. See “Switching Between Process Developer
Perspectives ” on page 307.

Process Developer Debug Perspective Views and
Menus

The following illustration shows the views and menus that make up the Debug perspective:

Process Developer Debug Perspective Views and Menus 307

1 Simulate Process and Clear Execution State toolbar icons. See “Starting and Ending Simulation of a BPEL
Process ” on page 314 and “Clearing the Process Execution State ” on page 317

2 Debug view. See “Using the Process Developer Debug View ” on page 308

3 Breakpoints view. See “Using Breakpoints in BPEL Process Simulation ” on page 310

4 Console. See “Using the Process Developer Debug Console ” on page 312

Using the Process Developer Debug View
The Process Developer Debug perspective contains a Debug view that lets you manage the running or
stepping through of a BPEL process that you have created or imported into Process Developer. It displays an
execution tree associated with the process you are debugging.

The Process Developer Debug view is based on the Eclipse Debug view, and not all functions apply to
Process Developer. You will notice that some icons, options, and preferences are unavailable in Process
Developer.

The following illustration shows a sample Debug view. The table describes function keys available.

308 Chapter 25: Simulating and Debugging

1 Resume (F8 key) Resumes a suspended thread. Allow the process to run until the next breakpoint is
encountered or until the process is completed.

2 Terminate Terminates the selected debug target

3 Step Into (F5 Key) The process executes until the next activity in the process is reached. If the activity is a
container, such as a scope, if, while or for each, the execution of each activity in the
container takes place.
Tip: You can also step into an invoke activity that is a subprocess. For details, see
“Selecting an Invoke Subprocess for Simulation ” on page 322.

4 Step Over (F6 Key) The process executes until the next activity in the process is reached. If a breakpoint is
encountered, the execution suspends at the breakpoint.

5 Step Return (F7
Key)

Use this to return from a container that has been stepped into. Even though the step returns
from the container, the remainder of the activities in the container are still executed.

In addition to the toolbar options, there are more options on the right mouse menu of a simulation thread
item. The following illustration shows only the additional options, not all the options available on the right
mouse menu.

Process Developer Debug Perspective Views and Menus 309

Copy Stack Copies the selected stack of suspended threads as well as the state of the running threads
to the clipboard

Terminate and Remove Terminates the selected debug target and removes it from the view

Relaunch Start a new simulation

Terminate All Terminates all active simulations in the view

Using Breakpoints in BPEL Process Simulation
The Breakpoints view lists all the breakpoints you have set in BPEL processes. You can double-click a
breakpoint to display its location in the Process Editor. In the Breakpoints view, you can also enable, disable,
skip, or remove breakpoints.

The following illustration shows a sample Breakpoints view and process. The breakpoints were added next to
an activity, and the list of breakpoints appears in the Breakpoints view.

310 Chapter 25: Simulating and Debugging

1 Removes selected breakpoints

2 Removes all breakpoints for all targets

3 Shows breakpoints supported by selected target

4 Goes to file for breakpoint

5 Ties the view to always show the current file being debugged

6 Skips all breakpoints

Adding a breakpoint:

1. From the Project Explorer, open a BPEL file.

2. Right-mouse click on an activity where you want to set a breakpoint and select Add Breakpoint.

A red circle appears next to the activity to indicate the breakpoint, as shown.

Process Developer Debug Perspective Views and Menus 311

Tips for working in the Breakpoints view

• Select Remove All Breakpoints from the toolbar to delete all breakpoints displayed.

• Double-click a breakpoint to highlight its location in the Process Editor.

• Right-click a breakpoint and select Go to File to go to the activity in the Process Editor where the
breakpoint is set. If the file is not already open, this option opens the file and finds the breakpoint.

• Each breakpoint shows the name of the BPEL file and activity where the breakpoint is set. All breakpoints
are listed for all files you are debugging.

• You can Enable and Disable breakpoints by selecting/deselecting the check mark in the box next to the
breakpoint. A disabled breakpoint appears as a grey circle next to an activity icon.

See also “Running to a Breakpoint in a BPEL Process ” on page 315.

Using the Process Developer Debug Console
The Console view is part of the Process Developer Debug perspective.

This view shows execution events and provides a view into the evaluation of expressions and results.

The following illustration shows a sample of the Console.

1 Terminate. Stops the current simulation

2 Removes all terminated launches

3 Scroll Lock. Automatically wraps long lines to avoid horizontal scrolling.

4 Clears console

5 Pin Console. Not applicable.

312 Chapter 25: Simulating and Debugging

As your process executes, the following types of events are displayed:

Activity type, name, and
path

Executing, completed normally, or completed with a fault
Example:
Receive:Executing </process/flow/receive>

Link name, link transition
condition, and path

Status and evaluation of expression
Example:
Link receive-to-assess Condition true :
bpws:getVariableData('request','amount') < 10000 </process/flow/
links/link[@name='receive-to-assess']>

On Alarm Duration or deadline

Wait Wait value and simulated Wait value

Join Condition Evaluation of expression

While, If, Repeat Until
Condition

Evaluation of expression

Unhandled events Ancillary event information

Tips for using the Console:

• Use the right-mouse menu to go to an activity that has already executed.

• Use the right-mouse menu to find a simulation event in the Console.

Simulating Execution of a BPEL Process
After designing but before deploying a BPEL process to a server, you can simulate execution in the Process
Developer.

To simulate, you must have a valid process, and you must supply certain input and output sample data values
to simulate data that a running process would normally receive and send.

Ensure you are ready to simulate execution of your process. See “Prerequisites for Simulation ” on page 314.
You can start simulation from either the Process Developer or the Debug perspective.

Select a topic for more information:

• “Starting and Ending Simulation of a BPEL Process ” on page 314

• “Running to a Breakpoint in a BPEL Process ” on page 315

• “Stepping to the Next Activity in a BPEL Simulation ” on page 316

• “Viewing the Execution State of an Activity or Link ” on page 316

• “Modifying a BPEL Process During Simulation ” on page 317

• “Terminating and Removing BPEL Process Simulations ” on page 317

• “Clearing the Process Execution State ” on page 317

Simulating Execution of a BPEL Process 313

Prerequisites for Simulation
Before starting simulation, do the following:

• Ensure that you have filled in all the required properties for each activity, such as partner link, operation
and variable (or fromPart) for receives, picks, invokes (or toPart), and replies

• Ensure that the Abstract Process property is set to No for the process. The default is No.

• Make sample data available for the input, fault, and output variables that a running process would receive
and send. For more information, see “Supplying and Inspecting Sample Variable Data During
Simulation ” on page 318.

• If your process contains a Pick activity, you can select a branch to execute. For more information, see
“Selecting Simulation Paths and Properties ” on page 321.

Starting and Ending Simulation of a BPEL Process
To simulate your process:

1. Open your BPEL file.

2. Click your mouse in the Process Editor canvas to activate the editor toolbar.

3. Select the Simulate Process icon on the toolbar, as shown.

The simulation target stops at the first activity in the process and suspends execution. If you have not
added sample data you are prompted to add it.

4. In the Debug view, do one of the following:

• Click the Resume icon to run to completion or to a breakpoint

• Click the Step Over icon (F6 key) to step to the next activity or breakpoint

• Click the Step Into icon (F5 key) to step into a container such as a while, if, or for each

As the process executes, the following events occur:

• Each activity is highlighted as it prepares to execute

• If necessary, messages appear to instruct you to add missing sample data

• In Process Variables view, sample data is cleared at the beginning of simulation and then is displayed as
the corresponding activities execute

• The Console view shows simulation events

• The Outline view shows execution of all activities, some of which can be hidden on the canvas

314 Chapter 25: Simulating and Debugging

• If an error occurs, an error message pops up, the simulation terminates, and the activity is marked with an
X, as shown in the following illustration. For more information, see “Inspecting Standard Faults During
Simulation ” on page 324.

You can end a simulation thread by stepping to the end or by terminating it.

You can select Terminate from the context menu of the process's thread in the Debug view to terminate the
simulation.

When a simulation terminates, the process diagram shows the simulation path. The illustration above shows
both the path taken (highlighted) and not taken (grayed out).

Running to a Breakpoint in a BPEL Process
When you are debugging a BPEL process, the simulation suspends before the first activity is executed.

You can resume execution and run to a breakpoint that you have set next to an activity in a process. See
“Using Breakpoints in BPEL Process Simulation ” on page 310 for information on setting breakpoints.

To run to a breakpoint:

1. Select a process in the Debug view.

2. Click the Resume button in the Debug view toolbar (or press the F8 key). The process resumes its
execution.

Simulating Execution of a BPEL Process 315

Stepping to the Next Activity in a BPEL Simulation
You can step through the execution of a BPEL process one activity at a time. While you are stepping through
the simulation, you can see execution results in the Console. You can also follow the execution path on the
canvas as well as the Outline.

Click the Step Over button in the Debug view toolbar, or press the F6 key. The currently-selected activity is
executed and suspends on the next executable activity. Alternately, click Step Into (F5 key), which steps into
a container, such as a while, if, or for each.

The following illustration shows one step at a time of an execution path.

Tips:

• If a breakpoint is encountered during a step operation, the execution suspends at the breakpoint, and the
step operation ends.

• If you have used the input, output, or data tab of the Receive, Invoke, Reply activities to map data, use the
Outline view to view the progress of step into. These activities have generated scopes with assign
activities that are not shown on the canvas, only on the Outline.

Viewing the Execution State of an Activity or Link
• Inactive

• Active

• Ready to execute

• Executing

• Dead Path (will not run because of links or conditional execution)

• Execution Completed (activity only)

• Execution Faulted (activity only)

316 Chapter 25: Simulating and Debugging

You can view the execution state in the Properties view for the activity or link.

Modifying a BPEL Process During Simulation
It is possible for you to make changes to the BPEL process during simulation. For example, you can change
sample data values, expressions, correlation property values, and partner link addresses.

For details, see:

• “Supplying and Inspecting Sample Variable Data During Simulation ” on page 318

• “Updating Correlation Property Data ” on page 340

• “Updating Partner Link Address Information ” on page 341

• “Correcting Retrying or Completing Activities ” on page 336

The simulator determines whether or not the change causes the process model to be out-of-sync with the
process currently being executed.

Terminating and Removing BPEL Process Simulations
Use one of the following options to stop a simulation and to remove a simulation from the Debug view.

Option Location Description

Terminate Debug view toolbar and Run menu
Right mouse menu of simulation thread
Console toolbar

Terminates the simulation of the associated
process

Terminate All Right mouse menu of simulation thread Terminates all active simulations

Terminate and
Relaunch

Right mouse menu of simulation thread Terminates the simulation of the associated
process and relaunches it

Terminate and
Remove

Right mouse menu of simulation thread Terminates the simulation of the associated
process and removes it from the view

Remove All
Terminated

Debug view toolbar
Right mouse menu of simulation thread

Clears all terminated simulations from the view

Clearing the Process Execution State
When you terminate a BPEL process simulation, the highlighting that had been added to activities and links
remains in view in the Process Editor and the simulation state of each activity and link is displayed in
Properties view.

To remove highlighting and simulation states, click the Clear Execution State icon, as shown.

Simulating Execution of a BPEL Process 317

Supplying and Inspecting Sample Variable Data
During Simulation

Before beginning simulation, you must initialize certain input and output variables with sample data values.
The idea is to simulate the actual data that a running process would normally receive and send. Namely, you
add sample data values for the following variables:

• Variable in the receive or onMessage activity that starts the process

• Output variable in the invoke activities. This is the data sent back to the process from an invoked Web
service.

• OnEvent variable in an event handler

• Fault variables that you want to simulate

Process Developer offers several ways for you to supply sample data values for process variables. When you
simulate process execution, you can use different data values to test different execution paths in your
process.

Add, load, and change sample data as follows:

Add sample data files for
message data

In Participants view, you can view WSDL messages and then add one or more sample
data files per message. One data file per message defines default values for the
message parts. For a discussion of adding sample data, see “Using Sample Data for
WSDL Messages” on page 93.

Select default values for
message data

If you add multiple data files to messages, you can specify one file as the default.
See “Selecting a Default Sample Data File” on page 95.

Change default values for
process variables used in
receive, invoke, onMessage,
and onEvent activities

As you simulate execution of a process, you can override the default data values for
input, output, and fault messages. For more information, see “Setting up Sample Data
Values for Input Output and Fault Messages ” on page 318.

Load sample data values to
initialize process variables

For a specific BPEL process, you can type in data values or load a data file for each
process variable. For more information, see “Using Sample Data in Process Variables
View” on page 212.

During process simulation, you can view variable assignments. For more information, see “Inspecting
Process Variables during Simulation ” on page 320.

Setting up Sample Data Values for Input Output and Fault
Messages

Select the source location for the sample you want to add.

You can simulate execution with different data values that might be received by the process from receive,
invoke, onMessage, and onEvent activities. You can load sample values from either the Participants or
Process Variables view or the Properties view of an activity.

If you have created sample data files in the Project Explorer, in the sample-data folder, you can select a data
file during simulation. For a message that is missing sample data, a Sample Data dialog displays appropriate
selection, as shown in the example.

318 Chapter 25: Simulating and Debugging

You can load sample data before you begin simulation. For information on loading and saving sample data in
the Participants or Process Variables view, see “Using Sample Data in Process Variables View” on page 212.

During simulation, you can override data values on-the-fly for any activity that has not yet executed.

To override loaded sample data for an input and output messages:

1. From the Process Editor canvas, select a Receive, Invoke, onMessage, or onEvent activity.

2. In the Properties view, select the All tab and do one of the following:

• For a receive, onMessage, or onEvent, click Dialog (...) for the Input Message or From Part row

• For an invoke, click Dialog (...) for the Output Message or To Part row

3. In the Set Simulation Data dialog, do the following:

• Select the checkbox next to Override sample data for simulation

• Select the Dialog Button at the end of a row, as shown.

Supplying and Inspecting Sample Variable Data During Simulation 319

4. For simple data types, edit the data value in the Sample dialog and click OK. For complex message types,
load a data file.

5. Edit any additional values for other message parts and click OK.

To override loaded sample data for an invoke fault message:

1. From the Process Editor canvas, select an Invoke activity that has an output and a fault message
defined.

2. In the Properties view, set the Result property to Fault.

3. Select a Fault Name from the list.

4. Select a Fault Message, and click Dialog (...) .

5. In the Set Sample Data dialog, type in a value for the fault message.

Inspecting Process Variables during Simulation
During simulation, as each activity executes, you can inspect variable values in the Process Variables view.
The values are those you loaded into Process Variables or into the simulation properties for receives,
invokes, onMessage branches of picks and onEvent branches of event handlers. For information on loading
and changing data values, see “Supplying and Inspecting Sample Variable Data During Simulation ” on page
318.

Here is a recommended way to inspect variable values, by opening and closing variables as you need to.

1. Display the Process Variables view.
Tip: Display the list of variables with all variables closed. To close all variables, select a variable from the
list, and select Close All from the right-mouse menu.

2. Start simulation. For details, see “Simulating Execution of a BPEL Process ” on page 313.

3. Step to the first receive or onMessage branch of a pick activity. For more information, see “Stepping to
the Next Activity in a BPEL Simulation ” on page 316.

4. In Process Variables view, double-click the highlighted variable to open it.

5. Right-mouse click the variable and select View Data.

6. Notice that the data view of open variable that is in use shows the current data.

320 Chapter 25: Simulating and Debugging

7. Step to the next activity to execute the current activity. As you step through, open variables in data view
to inspect the current value.

Selecting Simulation Paths and Properties
Add an endpoint reference address to simulate with.

You can modify certain BPEL elements to cause different simulation events to occur.

For example, you can change a data value in a receive message variable to cause a link transition to be true
or false. You can also change sample data values for output and fault messages.

Similarly, you can update the value of correlation properties, if needed, and also update the address
information for a partner link.

The following table lists the simulation property for each BPEL element that you can modify.

Activity Simulation Property Description

Receive Input Message
Input attachments

Set the instance data for the simulated message to receive

Pick Execute Select the onMessage or onAlarm branch to execute for simulation.
You must select an option before you simulate a Pick.

onMessage
branch of pick or
onEvent Event
Handler

Input Message Set the instance data for the simulated message to receive

Selecting Simulation Paths and Properties 321

Activity Simulation Property Description

Invoke Output Message
Output attachments

Set the instance data for the simulated message to return

 Result Set the result of the output message to Normal or Fault

 Fault Name When the Result is set to Fault, you can select a Fault Name from the
list. Fault names are defined in the associated WSDL file.

 Fault Message
Fault Attachments

Set the instance data for the simulated Fault message.

 Subprocess For details, see “Selecting an Invoke Subprocess for Simulation ” on page
322.

Wait Wait in Seconds Actual wait time in seconds for simulation. The activity wait time can
be longer than you want to wait during simulation. This is a way to
shorten that time.

Partner Link My Role and Partner
Role

Endpoint reference address that is used in a dynamic assignment
within a Copy operation

The following table lists the execution property for each BPEL element that you can modify. Note that the
Execution properties are only available during simulation or remote debugging and do not normally appear in
the Properties view.

Element Execution Property Description

Correlation Set Correlation Set Data Update the current value of the correlation property

Partner link Address Add or update address information for the partner link

For details on scenarios using correlation sets, see Chapter 30, “Process Exception Management” on page
420.

Selecting an Invoke Subprocess for Simulation
Select a different process to synchronize with the process deployed to the server. If this invoke activity is
defined with a BPEL process, you can step into it during simulation.

A subprocess is a BPEL process that is invoked by another BPEL process. You can create one BPEL process,
deploy it, and then use the resulting service's operation to create an invoke activity.

During simulation, you can use the invoke activity's simulation property, subprocess, to select a BPEL
process. By making this selection, you can step into the subprocess and simulate it when you step to the
invoke activity. For details on creating a subprocess, see Creating a BPEL Process as a Service for Another
BPEL Process.

To select an invoke subprocess for simulation:

1. Select an invoke activity that calls a BPEL process.

2. In the Properties view, select All.

3. In the Simulation category, select Subprocess.

322 Chapter 25: Simulating and Debugging

4. At the end of the row, click the Dialog button to open the Process Selection dialog.

5. Select a process from the workspace.

If the sub-process has a process-level compensation handler, be sure to set a breakpoint on an activity in the
compensation handler. If you do not have a breakpoint set on the compensation handler, simulation steps
over it rather than into it.

Note that during simulation, depending on your process logic, you can go back and forth for execution steps
between the main process and the subprocess. In the Debug view, select the execution thread that you wish
to execute next.

Simulating Event Handlers
During simulation, there are different debug targets for the main process and for event handlers. You can
step into an event handler at any point in the simulation of its scope, and then select the main target to
continue simulating the scope in the main process.

The following illustration shows the simulation targets:

Simulating Fault Handlers
During simulation, you can execute a fault handler by setting a simulation property for the relevant invoke
activity.

In the Properties view, set the Result property to Fault and then select the appropriate fault name and
variable.

For more information, see “Setting up Sample Data Values for Input Output and Fault Messages ” on page
318.

Selecting Simulation Paths and Properties 323

Inspecting Standard Faults During Simulation
The WS-BPEL specification defines several standard faults. If one of these faults is encountered during
simulation, the simulation terminates and shows a red X next to the activity where the fault occurred. Also,
you see a listing for the fault in the Console. An example is:

Assign AssignYestoAccept:
 Completed with fault: mismatchedAssignmentFailure :
 </process/flow/assign[@name='AssignYestoAccept']>

Simulation Preferences
Set preferences for variable handling during simulation.

When you simulate execution of a process in Process Developer, the simulation engine behaves identically to
the server engine, where your deployed processes run. You can set preferences to modify the server engine
behavior, and you can set the same preferences for the simulation engine.

To learn more about setting server engine behavior, refer to the Process Server documentation.

324 Chapter 25: Simulating and Debugging

Select Window > Preferences > Process Developer > Simulation to view simulation preferences, described in
the following table.

Simulation Preference Description

Validate input/output messages
against schema

Validates the sample data loaded into process variables against the WSDL
schema. If you add a sample data file to a complex message, and the data file is
not valid, Process Developer warns you and allows you to add it with errors.
Enable this option to validate data before simulation starts. Disable this option for
faster simulation. This option is enabled by default.

Disable
bpws:selectionFailurefault
BPEL Version 1.1 only

Enabling this option allows a null value to be returned from a function or
assignment that contains an XPath (or other language) query string. You can
enable this to override behavior, for cases that handle data samples with optional
elements.
By default, this option is not enabled, and if the query string returns an empty
selection from an assign copy FROM, the process throws a bpws:selectionFailure
fault, which is the standard response described in the BPEL4WS specification.
To set a preference to include this option as a process extension for all WS-BPEL
2.0 processes, see Process Developer Preferences.
See Disable bpel:selectionFailure Fault Example and Disable bpel:selectionFailure
Fault and Auto Create Target Path for Copy/To Example for more information.

Auto create target path for
Copy/To
BPEL Version 1.1 only

Determines if Process Developer is allowed to create a location path for a non-
existent node in a complex variable in a process instance document. When an
assignment refers to a non-existent node (or to more than one node), the standard
BPEL fault, bpws:selectionFailure, must be thrown, according to the BPEL
specification.
Enabling this option allows selections to be created on-the-fly. This means an
assign copy TO operation can refer to a non-existent node and assign a value to it.
This option is disabled by default.
To set a preference to include this option as a process extension for WS-BPEL 2.0
processes, see Process Developer Preferences.
See Auto Create Target Path for Copy/To Example and Disable bpel:selectionFailure
Fault and Auto Create Target Path for Copy/To Example for more information see
Disable bpel:selectionFailure Fault and Auto Create Target Path for Copy/To
Example

Disable bpel selectionFailure Fault Example
The following example shows the effect of enabling and disabling the Disable bpel:selectionFailure
Fault (BPEL4WS 1.1 processes: bpws:selectionFailure) option.

For details on WS-BPEL 2.0 processes, see Using the Process Developer Disable Selection Failure Fault
Extension.

For a description of this BPEL4WS 1.1 preference, see Simulation Preferences.

Code sample:

<assign>
 <copy>
 <from part="OrderInfo" query="/ns1:OrderInfo
 /ns1:OrderHeader/ns1:BillToInfo/ns1:Addr1"
 variable="var1"/>
 <to part="OrderInfo" query="/ns1::Addr1"
 variable="var2"/>
 </copy>
</assign>

Simulation Preferences 325

In the code sample, the Assign From/To query is for an optional element, as shown in the schema snippet
below.

Schema Snippet for Var1 and Var2:

<xs:complexType
 name="AddressInfoType">
 <xs:sequence>
 <xs:element ref="ord:Name"/>
 <xs:element ref="ord:Addr1" minOccurs="0"/>
 <xs:element ref="ord:Addr2"
 />
 <xs:element ref="ord:City"/>
 <xs:element ref="ord:St"/>
 <xs:element ref="ord:Zip"/>
 <xs:element ref="ord:Cntry"
 />
 </xs:sequence>
 </xs:complexType>
<xs:element name="BillToInfo"
 type="ord:AddressInfoType"/>

Var1 Sample Data Var2 Initialization

<ns1:OrderInfo
 xmlns:ns1="http://temp.com">
 <ns1:OrderHeader>
 <ns1:OrdId>78</ns1:OrdId>
 <ns1:BillToInfo>
 <ns1:Name>Name1</ns1:Name>
 (Addr1 is missing)
 <ns1:Addr2>1 Main St
 </ns1:Addr2>
 <ns1:City>Albany</ns1:City>
 <ns1:St>NY</ns1:St>
 <ns1:Zip>12012</ns1:Zip>
 <ns1:Cntry>USA</ns1:Cntry>
 </ns1:BillToInfo>
...

<ns1:OrderInfo
 xmlns:ns1="http://temp.com">
 <ns1:OrderHeader>
 <ns1:OrdId/>
 <ns1:BillToInfo>
 <ns1:Name/>
 <ns1:Addr1/>
 <ns1:Addr2/
 <ns1:City/>
 <ns1:St/>
 <ns1:Zip/>
 <ns1:Cntry/>
 </ns1:BillToInfo>
...

With Disable bpel:selectionFailure Faultdisabled, the simulation ends in a Selection Failure fault
because Var1 is missing the query selection node, and it cannot be assigned to the Var2 query selection
node.

With Disable bpel:selectionFailure Faultenabled, the process terminates normally because the empty
selection node is allowed. A null value is added to Addr1 during the assignment.

Auto Create Target Path for Copy To Example
The following example shows the effect of enabling and disabling the Auto Create Target Path for Copy/To
option.

For details on WS-BPEL 2.0 processes, see “Using the Process Developer Create XPath Extension” on page
104.

For a description of this BPEL4WS 1.1 preference, see “Simulation Preferences ” on page 324.

Code sample:

<assign>
 <copy>
 <from part="OrderInfo" query="/ns1:OrderInfo
 /ns1:OrderHeader/ns1:BillToInfo/ns1:Addr1"
 variable="var1"/>
 <to part="OrderInfo" query="/ns1:OrderInfo

326 Chapter 25: Simulating and Debugging

 /ns1:OrderHeader/ns1:BillToInfo/ns1:Addr1"
 variable="var2"/>
 </copy>
</assign>

In the code sample, the Assign From/To query is for an optional element, as shown in the schema snippet
below.

Schema Snippet for Var1 and Var2:

<xs:complexType name="AddressInfoType">
 <xs:sequence>
 <xs:element ref="ord:Name"/>
 <xs:element ref="ord:Addr1" minOccurs="0"/>
 <xs:element ref="ord:Addr2"/>
 <xs:element ref="ord:City"/>
 <xs:element ref="ord:St"/>
 <xs:element ref="ord:Zip"/>
 <xs:element ref="ord:Cntry"/>
 </xs:sequence>
 </xs:complexType>
<xs:element name="BillToInfo" type="ord:AddressInfoType"/>

Var1 Sample Data Var2 Initialization

<ns1:OrderInfo
 xmlns:ns1="http://
 temp.com">
 <ns1:OrderHeader>
 <ns1:OrdId>78</ns1:OrdId>
 <ns1:BillToInfo>
 <ns1:Name>Name1</ns1:Name>
 <ns1:Addr1>Apt 12</ns1:Addr1>
 <ns1:Addr2>1 Main St
 </ns1:Addr2>
 <ns1:City>Albany</ns1:City>
 <ns1:St>NY</ns1:St>
 <ns1:Zip>12012</ns1:Zip>
 <ns1:Cntry>USA</ns1:Cntry>
 </ns1:BillToInfo>
...

<ns1:OrderInfo
 xmlns:ns1="http:/
 /temp.com">
 <ns1:OrderHeader>
 <ns1:OrdId/>
 <ns1:BillToInfo>
 <ns1:Name/>
 (Addr1 is missing)
 <ns1:Addr2/>
 <ns1:City/>
 <ns1:St/>
 <ns1:Zip/>
 <ns1:Cntry/>
 </ns1:BillToInfo>
...

With Auto Create Target Path for Copy/To disabled, the simulation ends in a fault because Var1 contains the
query selection node, but it cannot be assigned to theVar2 query selection node because the location path is
missing.

With Auto Create Target Path for Copy/To enabled, the process terminates normally because the location
path for Addr1 is built, and the value is added to Addr1 during the assignment.

Disable bpel selectionFailure Fault and Auto Create Target Path for
Copy To Example

The following example shows the effect of enabling both Disable bpel:selectionFailure Fault (BPEL4WS 1.1
processes: bpws:selectionFailure) and Auto Create Target Path for Copy/To options.

For details on WS-BPEL 2.0 processes, see Using the Process Developer Create XPath Extension and Using the
Process Developer Disable Selection Failure Fault Extension.

For a description of these BPEL4WS 1.1 preferences, see Simulation Preferences.

Code sample:

<assign>
 <copy>

Simulation Preferences 327

 <from part="OrderInfo" query="/ns1:OrderInfo
 /ns1:OrderHeader/ns1:BillToInfo/ns1:Addr1"
 variable="var1"/>
 <to part="OrderInfo" query="/ns1:OrderInfo
 /ns1:OrderHeader/ns1:BillToInfo/ns1:Addr1"
 variable="var2"/>
 </copy>
</assign>

In the code sample, the Assign From/To query is for an optional element, as shown in the schema snippet
below.

Var1 Sample Data Var1 and Var2 Schema Snippet

<ns1:OrderInfo
 xmlns:ns1="http://
 temp.com">
 <ns1:OrderHeader>
 <ns1:OrdId>78</ns1:OrdId>
 <ns1:BillToInfo>
 <ns1:Name>Name1</ns1:Name>
 (Addr1 is missing)
 <ns1:Addr2>1 Main St
 </ns1:Addr2>
 <ns1:City>Albany</ns1:City>
 <ns1:St>NY</ns1:St>
 <ns1:Zip>12012</ns1:Zip>
 <ns1:Cntry>USA</ns1:Cntry>
 </ns1:BillToInfo>
...

<xs:complexType
 name="AddressInfoType">
 <xs:sequence>
 <xs:element ref="ord:Name"/>
 <xs:elementref="ord:Addr1"minOccurs="0"/>
 <xs:element ref="ord:Addr2"
 />
 <xs:element ref="ord:City"/>
 <xs:element ref="ord:St"/>
 <xs:element ref="ord:Zip"/>
 <xs:element ref="ord:Cntry"
 />
 </xs:sequence>
 </xs:complexType>
<xs:element name="BillToInfo"
 type="ord:AddressInfoType"/>

With Disable bpws:selectionFailure Fault and Auto Create Target Path for Copy/To enabled, the process
terminates normally because the empty selection node is allowed, and the location path to the empty
selection is built. A null value is added to Addr1 during the assignment.

Setting Debug Preferences
You will find several pages of preference settings for the Debug perspective when you select Window >
Preferences from the main toolbar.

Most of the settings are default Eclipse settings and are not applicable for Process Developer.

The following settings are applicable for Process Developer.

Run/Debug Preference Page Applicable Setting

Console All settings on this page apply to the Process Console

External Tools not applicable

Launching Remove terminated launches when a new launch is created

String substitution not applicable

View Management not applicable

328 Chapter 25: Simulating and Debugging

Debugging Remote Processes Running on the Server
As described in Chapter 26, “Deploying Your Processes ” on page 343, you can run your BPEL processes on A
Process Server. You can connect to a running, suspended, completed, or faulted process from within Process
Developer for remote debugging.

When the process instance is opened in Process Developer, you have full access to the debug features you
use during simulation, such as setting a breakpoint, stepping or running to a breakpoint, following highlights
along the execution path, and inspecting process variables. You can also modify data values and retry
activities.

Before you can debug a process remotely, you must complete the following:

• Create and validate a BPEL process

• Create a process deployment descriptor file

• Create a business process archive

• Deploy the business process archive to the Process Server

• Keep a copy of the BPEL and WSDL files in your workspace project

• Start the server

• Instantiate the process by sending an appropriate message to it

Select the following topics for remote debugging details.

• “Setting Up the Embedded Process Server” on page 38

• “Configuring a Remote Process Connection ” on page 329

• “Selecting Processes for Remote Debugging ” on page 331

• “Setting Breakpoints on a Process for Remote Debugging ” on page 332

• “Using the Debug View Process Editor and Variable View for Remote Debugging” on page 333

• “Remote Debugging Preferences ” on page 334

• “Selecting a Launch Configuration from the Toolbar ” on page 335

• “Checking for an Out of Sync Process ” on page 335

• “Server Interactions During a Remote Debugging Session ” on page 336

• “Setting Options for Console Output ” on page 336

• “Correcting Retrying or Completing Activities ” on page 336

• Chapter 30, “Process Exception Management” on page 420

Configuring a Remote Process Connection
Set up a configuration to indicate where processes are running and how you want to attach to them.

As a first step in remote debugging, you must set up a configuration to indicate where processes are running
and how you want to attach to them.

1. From the Run menu, select Debug Configurations.

2. In the Debug Configurations dialog, select Remote Process, and then select New.

3. In the Name field, you can change the default configuration name, if desired, to make it more
meaningful. This is useful if you set up multiple configurations to various servers or for various
authenticated users.

Debugging Remote Processes Running on the Server 329

4. In the Main tab, the default Server URL is displayed for the Process Developer engine embedded with
Process Developer. Modify this URL if you want to point to the Process Developer engine in another
location or to a different Process Server.

5. In the Process Selection panel, select what processes you want to debug, and refer to “Selecting
Processes for Remote Debugging ” on page 331 for details.

Manual process
selection or
breakpoints

A list of attached processes appears in the Debug view, and you can right-mouse click
on the process to connect to it.

Prompt for process
selection from list

When you select Debug, a dialog box appears displaying running or completed
processes available for debugging

Stop on next process
instance creation

When you select Debug, a "Waiting" message appears until a process instance is
created for any deployed process. Once the process is instantiated, the local copy of
the process opens in the Process Editor for debugging. Refer to Options Tab below to
hide the waiting message for the current debug configuration and to “Remote
Debugging Preferences ” on page 334 to hide the waiting message for all processes.

6. In the Process location field, type in a process name, if desired. Only processes of this name are
attached to during instance creation and are used as the default filter for process lists.
If desired, you can type in the qualified name, enclosing the namespace in curly braces, as shown in the
example. By using the qualified name, you can pinpoint processes of similar names using different
namespaces.

7. Enable the option Attach to any process on breakpoint, if desired, to indicate that any local copy of a
process containing a breakpoint is attached to, if not already attached, when a breakpoint is hit.
Do not enable this option for processes running on a high volume server. Remote debugging can impact
performance.

Authentication Tab

1. Select one of the following:

• No credentials required. No username and password are required to access the Process Server.

• Always prompt for credentials when connecting. Prompt for username and password when beginning
a remote debug session for a running process on Process Server.

• Use supplied credentials when connecting. Use the Username and Password filled in below when
connecting to the Process Server.

2. Enter a Username and Password, if required, for the Server URL.

Options Tab

You can select options for a particular debug configuration that override the default settings listed in
Preferences. Preferences are located in Window > Preferences > Process Developer > Remote Debug. For
details on the default settings, see “Remote Debugging Preferences ” on page 334.

Common Tab

1. Select the Common tab.

330 Chapter 25: Simulating and Debugging

2. Modify the following defaults, if desired:

• Local or Shared File. You can select Shared and then save the currently named configuration to a
workspace folder to share it. The configuration settings are added to an XML file named
configuration_name.launch.

• Display in Favorites menu. By default the Debug and Run icons are displayed on the Process
Developer toolbar.

• Standard Input and Output. By default, input is displayed on the Console, and you can also send
output to a file.

Starting a Debug Session

Select one of the following to start or delay a remote debug session.

• Select Apply to save this configuration and continue creating another configuration

• If the server is running, select Debug to save and begin remote debugging for the current configuration

• If the server is not running, select Close. The configuration is saved, and you can run it from the Debug As
list in the main toolbar.

Selecting Processes for Remote Debugging
Select a process by picking from the list, typing in an ID, or typing in a name. The list shows running
processes. You can select All, Completed, or Faulted from the drop-down list.

When you create a configuration for attaching to remote processes, as described in “Configuring a Remote
Process Connection ” on page 329, you can select how you want to attach to a process.

Here are some details on each selection type.

Manual process selection or breakpoints

You can set up a launch configuration and then connect to a process to debug it. As the example shows,
select Connect to Process from the launch configuration, or from the Debug toolbar (the launch configuration
must be selected to add focus to the toolbar). The Select Process dialog displays.

Select process by Id or from a list

When you start up debugging, by selecting Debug in the Debug dialog, the Select Process dialog appears, as
shown in the example.

Debugging Remote Processes Running on the Server 331

By default, the Process List displays running processes. To make other selections, do one of the following:

• Select a process from the list or type an ID in the Connect to ID box.

• Select process instances of a process by typing a name in the Name field and selecting Refresh.

• Select All, Running, Complete, Faulted, Suspended, or Compensatable from the State menu

The Select Process dialog can display the namespace plus the process name, if desired. For details, see
“Remote Debugging Preferences ” on page 334.

Stop on next process instance creation

When you start up debugging, the following dialog can appear, if you set a preference to show it.

When any deployed process is instantiated, the local copy of it in your workspace is opened in the Process
Editor. The process is suspended at the initial activity. You can run through or step through the process.

You can set a preference to show/hide the Waiting to Start dialog. For details, see “Remote Debugging
Preferences ” on page 334.

Setting Breakpoints on a Process for Remote Debugging
You can set a breakpoint on any process. Set the breakpoint on your workspace copy of the process. You do
not need to deploy a process with breakpoints set. For more information, see “Running to a Breakpoint in a
BPEL Process ” on page 315.

You can attach to any running process on breakpoint by enabling an option in the Debug dialog. With this
option enabled, all workspace copies of your processes are scanned to see if any breakpoints are set.

332 Chapter 25: Simulating and Debugging

Process Developer connects to any running process when a breakpoint is hit and begins a remote debug
session.

Using the Debug View Process Editor and Variable View for
Remote Debugging

Using the Debug View, Process Editor, and Variable View for Remote Debugging

In remote debugging, the debug target is the remote process engine. The debug target contains multiple
processes that were attached to for debugging.

When you attach to a process, it is suspended by the debug target until you resume or step the process.

In the Debug View, you can suspend, disconnect, and terminate all threads. In addition, you can use tools to
make corrections in faulting activities, as shown in the illustration.

1 Suspend Suspends the selected running process

2 Disconnect Disconnects from the remote server resuming any processes that were suspended

3 Remove All Removes all terminated processes

4 Connect to Process Set up a launch configuration and then connect to a process

5 Complete Activity Complete an activity without executing it. For details see “Correcting Retrying or Completing
Activities ” on page 336.

6 Retry Activity Retry execution of an activity. For details see “Correcting Retrying or Completing
Activities ” on page 336.

Once a process is attached, Process Developer automatically opens the workspace copy of it in the Process
Editor. The Process Editor shows the state of the attached process instance, in the same way as it does for
simulation as the example shows.

Debugging Remote Processes Running on the Server 333

The Process Variables view is automatically updated to follow the instance data of the selected process.

Remote Debugging Preferences
Set remote debugging preferences for process selection.

You can set remote debugging preferences as follows:

1. From the Window menu, select Preferences.

2. Select Process Developer > Remote Debug.

3. Set preferences for:

• Process List Limit. Set the number of processes to view in the Select Process dialog. This dialog
appears when you want to be prompted for a process to debug.

334 Chapter 25: Simulating and Debugging

• Show qualified process names. Enable this setting to view the process name qualified by a
namespace. The process name is displayed in the Select Process dialog. If you have two similar
process names from different namespaces, this option helps you select the correct process.

• Show Waiting to Start dialog. When you want to debug the next process instance that occurs, the
Waiting for Process dialog appears. Enable this setting to show the dialog. When the next process is
instantiated, the local copy of the process appears in the Process Editor and is suspended in the
Debug view.

• Disconnect launch when last connected process terminates. Enable this checkbox to automatically
disconnect the launch and server when the last executing process terminates. If you leave the
checkbox blank, you can select the Disconnect icon on the Debug view toolbar for each launch.

• Check for out of sync process definition when connecting. Enable this setting to check that the BPEL
process definition on the server matches the BPEL process definition in your Project Explorer view.
The process you want to debug remotely can be an older or newer version than the process in your
workspace. During remote debugging, Process Developer uses your workspace copy of the process
and the actual instance data from the server to perform debugging. This means the workspace copy
of the process should be identical to what is running on the server. It is recommended that you leave
this option checked. If a process is out of sync, Process Developer displays an error message during
remote debugging.

• On disconnect of suspended process. Select whether you want to be prompted, resume running the
process, or take no action.

Selecting a Launch Configuration from the Toolbar
You can select a named debug configuration from the toolbar. You can use this shortcut to start a remote
debugging session. The Debug picklist shows connection configurations, as the example shows.

See “Configuring a Remote Process Connection ” on page 329 for more information.

Checking for an Out of Sync Process
If this invoke activity is defined with a BPEL process, you can step into it during simulation. Select a different
process to synchronize with the process deployed to the server.

You can set a Remote Debug preference to check for an out of sync process definition. This means that
Process Developer checks that your local copy of the process matches the server copy when connecting to
the server.

During remote debugging, Process Developer uses your workspace copy of the process and the actual
instance data from the server to perform debugging. The workspace copy of the process should be identical
to what is running on the server.

However, if the process definitions do not match, you can perform remote debugging anyway, and Process
Developer does its best to step through the activities.

With the preference enabled, if the server copy and the local copy of your process are out of sync, Process
Developer give you an option to choose another process, cancel, or continue to starting remote debugging, as
the illustration shows.

Debugging Remote Processes Running on the Server 335

You can ignore the warning and continue to debug or select another process definition.

If you disable the out of sync option, remote debugging begins, but an error messages is displayed when the
mismatch is reached.

Server Interactions During a Remote Debugging Session
During remote debugging, the following occurs:

• When you suspend a process, the process is suspended on the server

• When you step the process, the process resumes on the server

• When you terminate the process, the process terminates on the server

• When you change data values, they are changed on the server

• The Console shows processing steps

For more information about Console output, see “Setting Options for Console Output ” on page 336.

Setting Options for Console Output
When a remote debug session attaches to a process manually, or by connecting on a breakpoint, some event
logging for that process may have already taken place in the Process Server. If so, that log is sent to the
remote debug target and displayed in the Console view. If logging is turned off in the engine, no log exists,
and the message "Preceding events for this process are not available" appears, followed by individual events,
logged as they are received by the debugger from the engine.

For more information regarding setting logging options, refer to the Process Server documentation.

Correcting Retrying or Completing Activities
You can make changes to a simulated or running process and then use the Debug view toolbar actions to
retry or complete activities.

The following illustration shows the Debug toolbar actions.

336 Chapter 25: Simulating and Debugging

1 Complete the activity in focus, effectively stepping over it without executing it.

2 Retry the execution of the activity in focus .

See Also:

• “Updating Variable Data in the Process Variables View ” on page 338

• “Updating Correlation Property Data ” on page 340

Correcting Retrying or Completing Activities 337

Updating Variable Data in the Process Variables View
When you are remote debugging a process, you can update the values in your variable data. This allows you
to fix data that may be causing faults or undesired execution. You update a variable in the same way as in
simulation.

1. Begin a remote debugging session. For details, see “Debugging Remote Processes Running on the
Server ” on page 329.

Begin a remote debugging session. For details, see “Debugging Remote Processes Running on the
Server ” on page 329.

The following illustration shows an example of a process that receives an invalid message (missing
<data2> element). The assign activity is faulting as a result.

2. Correct a data value by editing a simple type or by loading a valid sample data file for a complex type.
Right-mouse click on the message part and select Edit Data or Load Data. The following example shows
a complex message for which you can load a sample data file.

338 Chapter 25: Simulating and Debugging

3. After you have updated the value of the variable, you can retry an activity by selecting the Retry button in
the Debug view.

Correcting Retrying or Completing Activities 339

Updating Correlation Property Data
If the Console indicates a correlation violation, you can update the value of the correlation proprieties.

To update correlation properties:

1. Begin a simulation or remote debugging session. For details, see “Debugging Remote Processes
Running on the Server ” on page 329.

The following image shows a faulting activity caused by a correlation violation, where the correlation
property of the Request and Receive variables does not have a matching value:

2. To correct the correlation violation, navigate to the Outline view and select the correlation set.

3. In the Properties view, under the Execution category, select the Correlation Set Data dialog button. The
example shows the dialog button at the end of the row. Note that the Execution property is only available
during simulation or if you are using remote debugging. It does not normally appear in the Properties
view.

4. Type in the expected value for the correlation property. The following image shows an example.

340 Chapter 25: Simulating and Debugging

5. Select OK, and navigate to the Debug view.

6. You can retry an activity by selecting the Retry button on the Debug view.

Updating Partner Link Address Information
During simulation or debugging, you may need to modify the partner link address, which may be specified in
the Process Deployment Descriptor (PDD) file or dynamically assign in the process.

By updating the partner link execution state data, you enable copying endpoint reference information into
other variables. For example, you can be working with WS Addressing properties in message headers that
you are copying to a process variable. You can set this type of information in a partner link address during
simulation or in a remote debugging session.

1. Start a simulation or remote debug session.

2. Navigate to the Outline view and select a partner link.

3. In the Properties view, under the Simulation category, select the My Role or Partner Role partner link, as
needed. The following illustration shows an example.

4. Select the Dialog button at the end of the row to open the Partner Link Execution State dialog, as the
example shows.

Correcting Retrying or Completing Activities 341

5. Modify the address as needed.

6. If you are remote debugging (on-premises only), you can retry an activity associated with an endpoint
reference by selecting the Retry button on the Debug toolbar.

Monitoring Client Message Traffic with TCP IP
Monitor

The Eclipse Web Tools Project, included with Process Developer, contains a view that allows you to monitor
SOAP messages as they are sent and received from custom client applications your process is
communicating with. Process Developer includes this project and view for your testing convenience. Follow
the instructions in the Web Tools Platform User Guide to configure the TCP/IP Monitor.

342 Chapter 25: Simulating and Debugging

C h a p t e r 2 6

Deploying Your Processes
Deployment is the act of publishing your BPEL process to A Process Server where it can run.

In Process Developer, you create the BPEL process and associated resources required for the Process
Server. You then create a process deployment descriptor. You package the deployment descriptor and all
associated resources in a business process archive and export it to the server.

When your process runs, the Process Server ensures that the correct partner services and messages interact
with your process.

The Process Server uses the WS Addressing protocol to identify the partner endpoints that the process
communicates with.

The following topics discuss deploying your processes.

• “Preparing for Deployment ” on page 343

• “Endpoint Reference Addressing Considerations ” on page 344

• “Overview of Process Deployment Steps ” on page 346

• “Creating a Process Deployment Descriptor File ” on page 347

• “Creating and Deploying a Business Process Archive Contribution ” on page 372

• “Managing Deployment Contributions ” on page 377

• “Using a BPRD Script to Regenerate and Deploy a BPR Contribution ” on page 378

• “How a BPEL Process is Instantiated ” on page 381

• “What is Process Versioning ” on page 381

Preparing for Deployment
Preparing your BPEL process for deployment to the Process Server requires two tasks:

• “Preparing BPEL Files for Deployment ” on page 344

• “Selecting a Server Platform for Deployed Processes ” on page 344

In addition, you may wish to read “Endpoint Reference Addressing Considerations ” on page 344 before
creating the process deployment descriptor file. This topic describes the details you may need for providing
necessary deployment information.

If your partner's service requires authenticated access, see “Endpoint References Requiring Credentials for
Access ” on page 345.

343

Preparing BPEL Files for Deployment
A BPEL file is ready for deployment to the Process Server when there are no errors in the Problems view and
when a simulated execution of the process terminates normally.

To ensure your process is deployment-ready, complete this checklist:

• Ensure that you have filled in all the required properties for each activity, such as partner link, operation
and variable for receives (picks and event handlers), invokes, and replies.

• Ensure that at least one receive or pick activity's Create Instance property is set to Yes.

• Ensure that the Abstract Process property is set to No for the process.

• Step through a simulated execution of the process, as described in Chapter 25, “Simulating and
Debugging ” on page 306.

Selecting a Server Platform for Deployed Processes
Your BPEL process can run on any BPEL server. However, to deploy it to A Process Server, make a package of
files (.bpel, .wsdl,.pdd) for deployment as described in “Creating and Deploying a Business Process
Archive Contribution ” on page 372.

Process Developer includes the Process Server in your installation folder. You can deploy processes to this
development server as you design and test processes. Instructions for deploying to this server are included in
“Creating and Deploying a Business Process Archive Contribution ” on page 372.

Endpoint Reference Addressing Considerations
Process Server supports a variety of addressing options to specify how, when, and where to reach the Web
services invoked in a BPEL process. During the creation of the process deployment descriptor (PDD) file, you
can add many address details.

Endpoint References and WS-Addressing Considerations
At deployment time, you need to specify the location information for each partner link endpoint reference.
Also, you can assign an endpoint reference dynamically, detailed in the Copy Operation Dynamic Endpoint
Reference Example.

One of the main protocols to specify location information for an endpoint reference is based on the Web
Services Addressing (WS-Addressing) specification.

The WS-Addressing specification standardizes the format for referencing a Web service allowing you to
create uniquely identified Web services and Web service instances that are not bound to a specific transport
mechanism, such as HTTP. Using WS-Addressing, the endpoint information is added to the header of a SOAP
request and not to the URL specified in the SOAP body.

Having endpoint reference information in a SOAP header means that you can do the following:

• Specify Web service instance IDs

• Select Reply To and Fault To addressees

• Select From endpoint references in the case where an acknowledgement needs to be sent back to the
sender

344 Chapter 26: Deploying Your Processes

Note that in Process Server, you can specify other mechanisms besides SOAP over HTTP. For details, see
Custom Service Interactions.

The basic WS-Addressing syntax is as follows:

<wsa:EndpointReference>
 <wsa:Address>anyURI</wsa:Address>
 <wsa:ServiceName PortName="portname">Service QName
 </wsa:ServiceName>
</wsa:EndpointReference>

where:

• Address is a mandatory element that identifies an endpoint. It can be a network address or a logical
address.

• ServiceName is the qualified name, or QName, for the service being invoked. This service must be defined
in a WSDL file that is deployed with the process or one that is available in Process Server's resource
catalog.

• PortName identifies the service port being invoked. Note that you can specify a port binding of SOAP 1.1 or
SOAP 1.2.

You can add credential details to the endpoint reference, described in Endpoint References Requiring
Credentials for Access.

Note: For information on setting and endpoint reference when deploying to Informatica Cloud, see .

The following versions of the WS-Addressing specification are supported:

• http://www.w3.org/2005/08/addressing
This is the default version that the PDD uses. For changing the default, see Process Developer
Preferences.

• http://schemas.xmlsoap.org/ws/2004/03/addressing
• http://schemas.xmlsoap.org/ws/2004/08/addressing
• http://schemas.xmlsoap.org/ws/2003/03/addressing
You can review the WS-Addressing specification at http://www.w3.org/2005/08/addressing/.

Endpoint References Requiring Credentials for Access
At deployment time, you must specify the location information for each partner link endpoint reference. If a
partner's service requires authentication for access, you can add credential details to the partner link
definition in the process deployment descriptor file. For details, see “Adding Policy Assertions ” on page 357.

Specifying a Replaceable URN URL for an Endpoint Reference
You can specify a logical or physical address for a static endpoint reference in the PDD file. If you specify a
logical address, or URN, you can then map the URN to the physical address in the URN Mappings page of the
Process Console. If you specify a URL for the static endpoint address, you can replace the URL by mapping it
to a different URL on the server.

For example, in the PDD editor, you can specify the following address:

<wsa:Address>urn:localhost:AssessRisk</wsa:Address>
In the Process Console, after you deploy the process, you can map the URN to a URL as follows:

urn:localhost:AssessRisk = http://localhost:8080/active-bpel/services/AssessRisk
For more examples of URN syntax, see the URN Mappings topic in the Process Console Help.

Endpoint Reference Addressing Considerations 345

Endpoint References and WS-Policy
The Process Server supports the Web Services Policy Framework (WS-Policy). A policy can describe a broad
range of service requirements, preferences, and capabilities. You can add policy information to the endpoint
reference section of a process deployment descriptor file. For details, see Adding Policy Assertions.

Overview of Process Deployment Steps
The following illustration shows how you can take your BPEL process from design to deployment.

1. In Process Developer, import WSDL or service references to your project as needed, create the BPEL file
and the Process Deployment Descriptor (.pdd) file. See “Creating a Process Deployment Descriptor
File ” on page 347 for details.

2. In Process Developer, create and export the process deployment package (.bpr) file. See “Creating and
Deploying a Business Process Archive Contribution ” on page 372 for details.

Once the process is deployed, it becomes active when an initial receive activity (or pick or event) receives a
message.

346 Chapter 26: Deploying Your Processes

Creating a Process Deployment Descriptor File
A Process Deployment Descriptor (.pdd) file describes the information required for a process to execute in
the Process Server environment. If you are deploying a process to a production server, you can specify
process version and other details to override the server defaults.

A Process Deployment Descriptor (.ppd) file describes the information required for a process to execute in
the Process Server. This information includes partner link details, persistence and versioning information,
process directives and indexed properties as well as other details. In each step of the procedure below, there
are links to the relevant help topics for the deployment details to add.

To create the process deployment descriptor file:

1. In Process Developer, select File > New > Deployment Descriptor.

2. Select a folder and a process deployment descriptor filename, if you want to change the defaults.

3. Select a BPEL file to be described, and select Finish to open the PDD Editor.

4. Select General options. For details see General Deployment Options.

5. Fill in the Partner Links tab for each partner link as follows.

a. Select a partner link from the list.

b. If the partner link has a Partner Role defined, select the Endpoint Type for the partner link, and
optionally, select an Invoke Handler. For explanations and examples of Endpoint Types, see Partner
Role Endpoint Types. For explanations of Invoke Handlers, see Partner Role Invoke Handlers. For WS-
Policy details, see Endpoint References and WS-Policy.

c. If the Endpoint Type is Static, see the notes below.

d. If the partner link has a My Role defined, select the Binding style and Service Name. Optionally, you
can specify Allowed Roles. For explanations of these properties, see My Role Binding, Service Name,
and Allowed Roles Options. To add WS Policy assertions to a My Role partner link, see Adding Policy
Assertions.

6. For Process Server, define Indexed Properties, if desired. An indexed property is a variable property that
is populated with the variable (or variable part) value during process execution. In the Process Console,
you can select indexed properties as a search filter for process instances. In addition, you can use
indexed properties for the event tracking. For details, see Adding Indexed Properties.

For details on adding Human Tasks Logical People Groups, refer to Human Tasks elsewhere in this help.

Notes for Static Endpoint Type:

• For flexibility, you can specify the address as a URN rather than a URL, supplying WSA Address for the
Invoke Handler. For details, see Specifying a Replaceable URN/URL for an Endpoint Reference.

• If the WSDL does not include bindings, WS Addressing elements are added with placeholders, as the
following example shows. You can edit the placeholders on the Partner Links tab. For more information,
see Using the PDD Editor Source View.

• If you want to select a different service, you can. See Selecting a Service for a Deployment Descriptor
Partner Link for details.

• To add WS-Policy policy assertions, see Adding Policy Assertions.

Creating a Process Deployment Descriptor File 347

General Deployment Options
If you are deploying a process to a production server, you can specify process version and other details to
override the server defaults.

During the creation of the Process Deployment Descriptor file, you can select deployment options for new
and running versions. If you do not change any settings, the server uses the defaults, as described below.

Process Logging

By default the Process Server generates an execution log for running processes. You can enable this setting
to override the engine default, and then view or download an execution log for a running or completed
process. An execution log provides start/end times for activity execution and other details, and helps you
troubleshoot faulted processes. The logging levels are:

• System Default. Setting that is enabled in the Process Console that applies to all processes without a
Process Logging override. The server is set to Execution by default.

• None. No logging occurs as processes run. Performance is enhanced with logging disabled.

• Full. All execution statements are logged, including the Will Not Execute statements for deadpath
activities. For example, all fault handling statements that are not executed are logged.

• Execution (default). All execution statements are logged, except for Will Not Execute statements. Using
this setting instead of Full can greatly decrease the size of the log file.

• Execution with Data. All execution statements are logged, except for Will Not Execute statements,
including variable, expression, and partner link data. Using this setting can greatly increase the size of the
log file.

Process Persistence

Persistence refers to storage of active processes deployed to a server. When a process runs on the Process
Server, all state and variable data is stored in the server database by default. However, for performance
reasons and database size considerations, you may want to set a lower level of persistence.

If your process uses a wait activity or a retry policy, you must select the Persist or Full level.

You can make persistence setting selections as follows. Your selection is validated when you save the PDD.

Setting Description Restrictions

Full The default setting. For each process instance, all state
information is stored for a running, faulted, and completed
process. In the event of a server failure, a running process
can be fully recovered. The recovery is possible because
Process Server maintains journaling (a journal of the changes
intended for the database) for this setting.

If the process uses a WS-RM invoke
handler for a partner role or a WS-Reliable
Messaging policy assertion on a my role,
you must select this setting. For details,
see “Partner Role Invoke Handlers ” on page
351 and “WS-Reliable Messaging ” on page
369.

Persist Same storage setting as Full, but without journaling. A
running process is suspended. The process is recoverable if
the system goes down, but needs to be looked at since no
journaling was done, so recovery marks this type as
suspended. This is the minimum persistence level to support
Suspend on Uncaught Fault (see “Suspending a Process on
Uncaught Faults ” on page 420).

Cannot select this setting if the process
uses WS-Reliable Messaging.
If you reach the Activity Execution Limit
set in the Tenant Detail and persistence is
not set to this minimum level, the Suspend
on Uncaught Fault flag is ignored and the
process is terminated.

348 Chapter 26: Deploying Your Processes

Setting Description Restrictions

Final Stores only the final state of the process (completed or
faulted) and process variables. On a server failure, a running
process is terminated. This setting makes fewer database
writes than the settings above, but allows you to view a graph
of the process on the Active Processes detail page in the
Process Console, where you can see the execution path and
final values of process variables. A process runs only in
memory, and the server property called Process Idle Timeout
has no effect on this persistence level.

For Final, Brief, and None, the process
cannot contain the following constructs:
- Wait activity
- Multiple receive activities
- People activity (on-premises only)
- Process event handler
- Process:Subprocess invoke handler
- WS-RM invokes

Brief This is the minimum level for process logging (described in
the section above), but does not allow for viewing a graph of
the active process. Stores only the start and completion
times as well as final state (completed or faulted). Stores
state and process variables only if the process faults. A
process runs only in memory, and the server property called
Process Idle Timeout has no effect on this persistence level.

See Final.

None No process information is stored in the server database when
a process terminates. The process instance is not listed in
the Process Console's Active Processes page.

See Final.

Group

You can assign a group name to one or more processes. The group name is a selection filter for viewing a list
of deployed or active processes in the Process Console.

Suspend on Uncaught Fault

According to the WS-BPEL 2.0 specification, a process with an uncaught fault must exit. However, you can
suspend this process on an uncaught fault to perform process exception management, if desired.

You can make selections as follows:

System
Default

The current engine setting for all processes. The default engine setting is to disable suspension on
uncaught fault.

False Do not allow this process to suspend on an uncaught fault. The process will terminate abnormally. This
setting overrides the engine setting.

True Suspend this process on an uncaught fault to put it in a suspended-faulting state. You can then perform
process exception management on the faulting process, followed by retrying or completing the faulting
activity or scope. This setting overrides the engine setting. For details, see Chapter 30, “Process
Exception Management” on page 420.

Suspend on Invoke Recovery

For invoke activities that do not complete due to the node failure, you can suspend the process upon
recovery. The process is suspended at the pending invoke, and you can perform process exception
management, is desired.

Creating a Process Deployment Descriptor File 349

You can make selections as follows:

System
Default

The current engine setting for all processes. The default engine setting is to disable suspension upon
process recovery when there is a pending invoke.

False Do not allow this process to suspend at a pending invoke after process recovery. The process will
terminate abnormally.

True Suspend this process on recovery when there is a pending invoke to put it in a suspended state. You
can then perform process exception management on the process, followed by retrying or completing
the invoke. This setting overrides the engine setting.

Process Instance Retention

Once you deploy a process to the Process Server, and begin to execute it, the completed and faulted process
instances are stored in the Informatica Business Process Developer database. Process Server administrators
can delete old processes from the database on an automatic schedule, based on the number of days, hours
or minutes you want to retain old processes before deleting them.

You can specify how many days (or hours or minutes) to retain a completed or faulted process in the
Informatica Business Process Developer database by adding a retention number in the PDD. This number can
be modified for the process in the Process Console.

If you don't specify a value for retention, the default engine value is applied to the process. This value is
relevant only if automated database maintenance is enabled.

Versioning

Note that only one version of a process can create new process instances.

Process
Version

By default, the Process Server auto-increments the version number for new versions. Auto-
incrementing is based dropping the minor version number and incrementing the major version number
by one. For example, 1.5 becomes 2.0.
To define your own version number for this process, type in a number, such as 1.5.

Online Date If the online (effective) date is blank or in the past, then the process immediately becomes the online
(current) version. The online version for a given process is the one capable of creating new process
instances. If the date is in the future, the server makes this version the online version when the
effective date arrives.
If you intend to deploy your process to a server in a different time zone, be sure to edit the
deployment descriptor file to include a time zone expression. For details, see “What is Process
Versioning ” on page 381.

350 Chapter 26: Deploying Your Processes

Offline Date If the offline (expiration) date is blank, then the process will not go offline.
Providing an offline date is useful if you want the process to run for a limited period of time. An
offline process version cannot create new process instances, but running process instances complete
normally.
You can specify an offline date. If you intend to deploy your process to a server in a different time
zone, be sure to edit the deployment descriptor file to include a time zone expression. For details, see
“What is Process Versioning ” on page 381.

Running
Process
Disposition

By default, the all process instances are maintained. The default value of Maintain Version allows
process instances created under previous versions to run to completion when this version becomes
online.
You can select Migrate Version to convert process instances running against an earlier version to use
the new version. Be sure to check the Server Log for warnings that are generated if an incompatibility
occurs.
Select Terminate to terminate processes running under previous versions on the offline date of the
new version, regardless of whether or not the process instances are complete.
For details, see “What is Process Versioning ” on page 381

If you do not change the defaults, the .pdd file does not include any version details. To add or change version
details, see “Using the PDD Editor Source View ” on page 371.

Partner Role Invoke Handlers
A Process Deployment Descriptor (.pdd) file describes the information required for a process to execute in
the Process Server environment.

By default, the Process Server invokes an endpoint by looking up the service name in the WSDL to find the
endpoint (for example, the <soap:address>) and using the standard engine invocation framework. You can
select a different invocation method by making one of the following selections:

Invoke handler Invokes an endpoint based on:

WSA Address URL in the <wsa.Address> field of the PDD file. For details, see Selecting a Service for a
Deployment Descriptor Partner Link. Note that you can provide a URN and then map the
URN to a URL in the Process Console. For details, see Specifying a Replaceable URN/URL
for an Endpoint Reference.

WSDL Service Port URL in the Service's port section of the WSDL file. Select this to use the service address
as is; that is, the engine only looks at the WSDL's service port at runtime. No changes are
allowed to the service address. See Selecting a Service for a Deployment Descriptor
Partner Link.

WSRM:Address Same as address above, except that the messages are sent using the WS-Reliable
Messaging protocol. Select this handler if you will attach the reliable messaging policy
assertion, described in WS-Reliable Messaging. An addressable ReplyTo endpoint is
required.

EJB Service (on-
premises only)

Deployed JARs, WSDL, and other resources created from an EJB Interface. Note that an
EJB Service cannot be used on Apache Tomcat. It is supported on other application
servers. For details, see Creating a Java Interface.

Java Service Deployed JARs, WSDL, and other resources created from a Java Interface. For details, see
Creating a Java Interface.

Creating a Process Deployment Descriptor File 351

Invoke handler Invokes an endpoint based on:

JMS Service For details, see Using a Java Messaging Service Invoke Handler. Note that an addressable
ReplyTo endpoint is required.

REST Service For details, see Using a REST-based Service.

System Service Partner role based on one of the System Services, such as Server Log Service, Email
Service, Identity Service, Reporting Service, Shell Command Invoke Service, Data Access
Service and Using a REST-based Service.

Process BPEL process and PDD located in a workspace project and deployed to the same server as
the calling process. For details, see Creating a BPEL Process as a Service for Another BPEL
Process.
To select a process, see Select Process Service.
Note: Select this option when deploying to Informatica Cloud.

Process:Subprocess BPEL process and PDD located in a workspace project and deployed to the same server as
the calling process. The process is a subprocess; that is, it is eligible for compensation
within the enclosing scope of the calling process. For details, see Creating a BPEL Process
as a Service for Another BPEL Process.
To select a process, see Select Process Service.

EJB Wrapper Custom EJB you have written, packaged and deployed to A Process Server that supports
EJBs. You can specify the JNDI location of the EJB as well as the query string required to
invoke the endpoint. For details, see EJB/Java Invoke Handler Properties Dialog.

Java Wrapper Custom Java class you have written, packaged and deployed to the server. You can
specify the fully qualified class name for the Java class as well as the query string
required to invoke the endpoint. For details, see EJB/Java Invoke Handler Properties
Dialog.

Partner Role Endpoint Types
A Process Deployment Descriptor (.pdd) file describes the information required for a process to execute in
the Process Server environment. When creating the .pdd file, you must select an endpoint type for each
partner role defined in a partner link.

During the creation of the Process Deployment Descriptor file, you must select an endpoint type for each
partner role defined in a partner link. An endpoint type is a binding property that indicates how to
communicate with the Web service the process interacts with. The different types give you control over
specifying services you work with now and in the future. For example, you can "hard-code" a service binding
by making it static, or you can select more versatile options for changing and adding new service partners
dynamically without redeploying the process.

352 Chapter 26: Deploying Your Processes

The endpoint types are defined in the following table.

Endpoint
Type

Description

Dynamic Indicates that the service location (that is, the endpoint reference) is provided dynamically within the
BPEL process. The location must be assigned dynamically within a Copy Operation of an Assign
activity.

Principal This selection is deprecated as of Version 9. The selection remains in place for legacy processes that
use a partner definition file.
Indicates the endpoint reference is determined based on the value of the authenticated principal that
sends the request to the BPEL process. In this configuration, it is assumed that service endpoints for
the BPEL process are secured. When a message arrives on one of these endpoints, the authenticated
user's principal (typically their username) is used as a lookup in Process Server. The server determines
the proper endpoint to use based on the principal and the partner link type being invoked.
The principal endpoint type provides the security of knowing whom you are dealing with and the
flexibility of being able to configure the endpoints independently from the process and its deployment.
The use of principal implies an asynchronous conversation since it is used to populate the partner role
used for a callback. The pattern is a Receive-Invoke where the partner link is the same for both
activities. The process declares both the myRole and partnerRole attributes for the partner link. The
receipt of the data for the Receive activity result in the partner link's partner endpoint reference being
initialized with the callback from the partner definition file.

Static Indicates the endpoint information is defined in the deployment descriptor file and is used for all
invocations of the partner link.
Note: Select this option when deploying to Informatica Cloud.

If the partner service requires authenticated access, see “Endpoint References Requiring Credentials for
Access ” on page 345.

My Role Binding Service Name and Allowed Roles Options
A Process Deployment Descriptor (.pdd) file describes the information required for a process to execute in
the ActiveVOS server environment. When creating the .pdd file, you must select a binding style and service
name for each service partner link of my_role type.

During the creation of the Process Deployment Descriptor file, you must select a binding style and service
name for each service partner link of my_role type.

The binding styles are the standard SOAP styles of RPC (remote procedure call) and Document, and there are
custom styles called Unpublished and Policy Driven.

Select the style that is appropriate for the simple, schema, or complex message variable manipulated by your
service's operation:

• A Document Literal invocation means the entire SOAP message consists simply of a single entity that is
an XML document. This invocation is equivalent to a binding style of document/literal.

• An RPC Encoded invocation means that the body of a SOAP request has an outer element that matches
the operation name and contains inner elements each of which maps to a parameter of the operation.

• An RPC Literal invocation means that the body of a SOAP request has an outer element that matches the
operation name and each inner part points to a schema type definition that describes the content of that
part. RPC is the binding style and literal is the use.

• An Unpublished invocation bypasses the standard invocation framework. The primary reason for
deploying with the unpublished binding is to take advantage of facilities offered by the application server
with regard to securing or managing the Web service. Instead of using the built-in mechanism provided by

Creating a Process Deployment Descriptor File 353

Process Developer for service publication, you can control the publication of your services through an
invocation such as J2EE for Web Services (WS4EE). Also, Process Developer system services are
specified as unpublished.

• A Policy Driven invocation means that the specific facilities used for handling SOAP requests are
determined at deployment by the policy assertions attached to the myRole endpoint. For example, services
that support WS-Reliable Messaging protocol can select Policy Driven as the binding style and include an
WS-Reliable Messaging policy. At deployment, if the service cannot determine the binding style from the
policy assertions, an error is thrown.

• The Service Name is the name of the endpoint that Process Server creates for the BPEL process. This
name can match the address in the binding section of the WSDL file, or any name desired. By default, the
service name is based on the port type associated the partner link.

• Allowed Roles is optional and specifies one or more security roles that an authenticated user must have
in order to communicate with the BPEL process. If the application server is not configured with security.
the allowed roles field is ignored. Refer to your application server documentation on how to secure
individual web applications.

Note: You must complete this field when deploying a process to Informatica Cloud. if you do not specify
at least one role, no one will be able to access the process.

You can also add policy assertions to the my role partner link, as described in “Adding Policy Assertions ” on
page 357.

Selecting a Service for a Deployment Descriptor Partner Link
Select a service containing the binding information for the endpoint reference. Select the Policy Assertions
tab to add one or more policy assertions for the endpoint reference.

Selecting a Service for a Deployment Descriptor Partner Link

During the creation of the Process Deployment Descriptor file, you must select an endpoint type for each
partner role defined in a partner link. If you select a static type, to "hard-code" a service binding, you can
select the service to use.

By default, the binding information from the imported WSDL is used, if only one matching service binding
exists. However, if you want to bind to a different service, click (...) to choose another service.

354 Chapter 26: Deploying Your Processes

The WSDL you select must be in the workspace registry and must contain binding information.

Creating a Process Deployment Descriptor File 355

In the Endpoint Reference dialog that appears, do one of the following:

• Select a WSDL from the picklist. When a matching service appears, select it to fill in the namespace,
address, service, and port in the text boxes above. The following example shows a selected service:

• Manually fill in the namespace, address, service, and port for the service if the binding information does
not exist

• If you selected WSDL Service Port for the Invoke Handler, you cannot edit the service information. At
runtime, the WSDL Service definition is always used.

See also “Using SOAP 1.1 or 1.2 Port Binding ” on page 356.

See “Creating a Process Deployment Descriptor File ” on page 347 for details on opening the New
Deployment Descriptor dialog.

Using SOAP 1.1 or 1.2 Port Binding
As of version 7 of Process Server, support for both SOAP 1.1 and SOAP 1.2 is enabled. You can select a
service containing a port binding of SOAP 1.2. If no port is specified in the service, the binding defaults to
document literal and SOAP 1.1.

Note that all My Role services are deployed with both SOAP 1.1 and SOAP 1.2 bindings. Clients that want to
take advantage of SOAP 1.2 can address http://[host:port]/active-bpel/services/soap12/
[myRoleService.wsdl].

356 Chapter 26: Deploying Your Processes

Adding Policy Assertions
Select a service containing the binding information for the endpoint reference. Select the Policy Assertions
tab to add one or more policy assertions for the endpoint reference.

The WS-Policy specification allows Web service providers and clients to express a broad range of
capabilities, requirements, and preferences in a standard way through policy assertions. If desired, you can
add one or more policy assertions to the partner link's endpoint reference section of a process deployment
descriptor file.

You can add a policy assertion to both the Partner Role partner link and the My Role partner link in the
Deployment Descriptor wizard.

Many policy assertions specify both an inbound and outbound direction.

• An inbound assertion governs messages received by the BPEL process, such as messages for receives
and replies from invoked services.

• An outbound assertion governs messages sent by the process, such as requests to an invoked service
and replies matching receives.

Policy assertions apply to static endpoint references for partner roles in the PDD wizard. For a dynamic
endpoint reference, you can manually add the details to the appropriate copy operation in an assign activity.

The supported policy assertions are described in the following table:

Policy Description

WS-Security Policy Assertions

“Authentication ” on page 359 Credentials required for access to a serve

“Encryption ” on page 360 Describes the parts of a SOAP message to encrypt

“Signature ” on page 367 Describes the parts of a SOAP message to sign with an XML Signature,
using an X.509 Certificate token

“Timestamp ” on page 368 Adds a <Timestamp> element to the SOAP header of a message

Other Policy Assertions:

“Retry ” on page 365 (Partner Role) Describes when and how many times to retry an invoked service that does
not reply

“Engine-Managed Correlation ” on page
361 (My Role)

A My Role policy assertion that directs the Process Server to use WS-
Addressing to transmit replyTo endpoint references during transmissions
to the Partner Role partner link

“WS-Reliable Messaging ” on page 369 Specifies that a partner link participates in an industry-standard protocol
that supports guaranteed delivery of messages

“JMS Delivery Options ” on page 364
(Partner Role--Informatica Process
Developer only)

For details, see “Using a Java Messaging Service Invoke Handler ” on page 416

“HTTP Transport ” on page 363 Used for REST-based invocations

“REST Enabled ” on page 364 (My Role) Used for REST-based invocations

Creating a Process Deployment Descriptor File 357

Policy Description

WS-Security Policy Assertions

“SAML ” on page 366 The Security Assertions Markup Language (SAML) is an OASIS standard
that enables loosely coupled and federated identity integration.

“Message Validation ” on page 364 Provide fine-grained validation of WSDL messages for a partner link to
enable faster processing

“Web Service Timeout ” on page 369 Set an amount of time to wait for a specific Web service to time out

“Invoke Recovery ” on page 363 (Partner
Role)

Select whether to suspend a process with a pending invoke when the
process recovers from a failed server

“Send WS-Addressing Headers ” on page
367 (Partner Role)

Explicitly add addressing to invokes

“WSDL Binding Reference ” on page 370
(My Role)

Applicable for a my role partnerlink to refer to a WSDL binding instead of
RPC or Document

“Suppress xsi type ” on page 368 A workaround for suppressing schema validation in SOAP messages, useful
for dealing with legacy services that cannot handle xsi:type attributes

“Run As User ” on page 366 For subprocess invoke only. Add a user name to stand for the process
initiator. Useful for a subprocess that contains a People activity that can
request the name of the process initiator.

To add one or more policies to a partner link

1. In the Deployment Descriptor wizard, navigate to the Partner Links page. See “Creating a Process
Deployment Descriptor File ” on page 347 for details on opening the New Deployment Descriptor dialog.

2. For a partner role partner link, select static as the Endpoint Reference Type.

3. Select the Dialog button at the end of the Endpoint Reference text box.

4. Select the Policy Assertions tab, as shown here.

358 Chapter 26: Deploying Your Processes

5. Select the Add button to open the Policy Assertion dialog.

6. From the Policy Template list, select the policy you wish to add, and fill in all the required information.
For details, select a name from the supported policies listed at the top of this topic.

7. Select OK.

8. Select Add again to add additional policies.

9. Add My Role policy assertions by doing the following:

a. Select a My Role partner link.

b. Select the My Role Policy tab.

c. Select applicable policies, as described above, for the My Role service.

Authentication
Select this policy assertion as described in “Adding Policy Assertions ” on page 357.

This policy describes the HTTP credentials required for access to a service.

Inbound authentication is for messages received for My Role services and for replies from invoked Partner
Role services. Outbound authentication is for replies from My Role services and messages sent to invoked
Partner Role services.

Set the following parameters:

Outbound Authentication Policy

Username Name of the user authorized to access the service

Password Password for the authorized user

Creating a Process Deployment Descriptor File 359

Preemptive HTTP Credentials Preemptive authentication sends basic authentication credentials without being
challenged by the remote host. Care must be taken to ensure that this option is only
used to communicate over secure channels to prevent unnecessary disclosure of
user credentials

Send wsse:UsernameToken in
Header

If checked, credentials are sent as a OASIS WS-Security UsernameToken element
in the SOAP Header. To include a Nonce (a nonce is an arbitrary number used only
once in a cryptographic communication) with the UsernameToken, add a
<abp:HashPassword/> child element to the PDD file in the PDD editor after
finishing the wizard. A Nonce is used to increase the authentication security by
disallowing a string to be repeated. See the example below.
A wsse:UsernameToken header can be sent unencrypted and unsigned, provided
that it is the only security policy in effect for the invoke. Otherwise, the
UsernameToken header is signed and encrypted, which requires that you have a
certificate keystore configured.

Use Cleartext Password Select this option to store the authorized user's password in clear text in the PDD.
The password is visible and readable in the PDD file.

Inbound Authentication Policy

Require UsernameToken
when receiving messages

Select this to require authentication on messages received by a My Role or Partner
Role service

Example:

<wsa:EndpointReference xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns5="http://www.example.org/Hello/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <wsa:Address>http://localhost:8081/active-bpel/services/Hello</wsa:Address>
 <wsa:Metadata>
 <wsa:ServiceName PortName="HelloSOAP">ns5:Hello</wsa:ServiceName>
 <wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:abp="http://schemas.active-endpoints.com/ws/2005/12/policy">
 <abp:Authentication direction="out">
 <abp:User>aeadmin</abp:User>
 <abp:Password>yH6CJei+D+s=</abp:Password>
 <abp:HashPassword/>
 </abp:Authentication>
 </wsp:Policy>
 </wsa:Metadata>
</wsa:EndpointReference>

Encryption
Select this policy assertion as described in “Adding Policy Assertions ” on page 357.

An encryption policy describes the parts of a SOAP message to encrypt, in compliance with the processing
rules of the XML Encryption specification [XMLENC].

Each specified original element or element content in the message is removed and replaced by the resulting
encrypted element.

• Inbound encryption is for messages received for My Role services and for replies from invoked Partner
Role services. It indicates that the My Role partner role accepts encryption and will de-encrypt messages
received.

• Outbound encryption is for replies from My Role services and messages sent to invoked Partner Role
services.

360 Chapter 26: Deploying Your Processes

Set the following parameters:

Encryption Parts Attributes

alias Optional keystore alias used to retrieve the key for encryption. The default is the alias specified
in the crypto properties file.

Content Name Message part or element to be encrypted

Content Namespace Target namespace of the message part or element

Example

<abp:EncryptionParts alias="keystore_alias">
 <abp:Element
 namespace="http://docs.oasis-open.org/wss/2004/01/
 oasis-200401-wss-wssecurity-secext-1.0.xsd"
 name="UsernameToken"/>
</abp:EncryptionParts>

As a message consumer, Process Server service endpoints accept and consume messages that conform to
options deemed allowable under WS-I guidelines. As a message producer, Process Server supports only the
recommended algorithms, references and identifiers.

The following algorithms are used within the data encryption of SOAP messages. Additional algorithms will
likely be added and supported in future releases, based on WS-I recommendations and customer demand.

The supported token types are as follows:

• X.509 Token
Direct Binary Reference (send and receive): Preferred method, used where possible.

Issuer Serial (send and receive): Preferred external reference method if direct not possible.

X509 Identifier (receive only)

Subject Key Identifier (receive only)

Embedded Token References (receive only)

• Symmetric Data Encryption Algorithms:
http://www.w3.org/2001/04/xmlenc#tripledes-cbc (send and receive)

http://www.w3.org/2001/04/xmlenc#aes128-cbc (receive only)

http://www.w3.org/2001/04/xmlenc#aes256-cbc (receive only)

• Asymmetric Key Transport Algorithms:
http://www.w3.org/2001/04/xmlenc#rsa-1_5 (send and receive)

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p (receive only)

• Signature Digest Algorithm:
http://www.w3.org/2000/09/xmldsig#sha1 (send and receive)

• Signature Algorithm:
http://www.w3.org/2000/09/xmldsig#rsa-sha1 (send and receive)

• Cannonical XML Transform Algorithm:
http://www.w3.org/2001/10/xml-exc-c14n# (send and receive)

Engine-Managed Correlation
Select this policy assertion as described in “Adding Policy Assertions ” on page 357.

Creating a Process Deployment Descriptor File 361

There are two ways that Process Server can correlate messages that are received by a BPEL process:
correlation sets and engine-managed correlation policy assertions. A correlation set uses message
properties defined within a WSDL and BPEL process. Engine-managed correlation relies on WS-Addressing
references in the SOAP header of a message to correlate a received message with the correct process
instance.

If you use engine-manage correlation, you need only specify a policy assertion on a My Role partner link.
Select a My Role partner link that is associated with a Partner Role in the same partner link. The engine-
managed correlation policy assertion directs the Process Server to use WS-Addressing to transmit replyTo
endpoint references during transmissions to the partner.

Policy Assertion Example

<myRole allowedRoles="" binding="RPC"
 service="ManagedCorrelationServiceA">
 <wsa:Metadata>
 <wsp:Policy xmlns:abp="http://schemas.
 active-endpoints.com/ws/2005/12/policy"
 xmlns:wsp="http://schemas.xmlsoap.org
 /ws/2004/09/policy">
 <abp:engineManagedCorrelationPolicy/>
 </wsp:Policy>
 </wsa:Metadata>
</myRole>

How Partner Services Handle Engine Managed Correlation Messages

Often a partner service implemented the WSA SOAP Binding details to automatically handle engine managed
correlation messages. The service extracts information from the SOAP header and uses it to reply back to
Process Server.

The message Process Server sends to the service is constructed similarly to the following example. Note that
the SOAP header contains a <wsa:ReplyTo> element including a <wsa:ReferenceProperties> element
containing the conversation Id for the correlation:

Outbound Message from Process Server

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org
 /soap/envelope/" xmlns:xsd="http://www.w3.org/2001
 /XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 ...
 <wsa:ReplyTo xmlns:abx="http://www.activebpel.org/bpel/extension"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing">
 <wsa:Address>http://localhost:8080/active-bpel/services
 /ManagedCorrelationServiceA</wsa:Address>
 <wsa:ReferenceProperties>
 <abx:conversationId>1:/process/partnerLinks
 /partnerLink[@name='requestPLT']
 </abx:conversationId>
 </wsa:ReferenceProperties>
 </wsa:ReplyTo>
 ...
 </soapenv:Header>
 <soapenv:Body>
 ...
 </soapenv:Body>
</soapenv:Envelope>

When a service receives a message, it should extract the SOAP header <wsa:ReferenceProperties> and
reply with a similarly formatted SOAP header. If the service you are calling is not replying as expected, use
the following example to understand the expectations of Process Server for receiving an engine managed
correlation message.

362 Chapter 26: Deploying Your Processes

Inbound Message Process Server Expects

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org
 /soap/envelope/" xmlns:xsd="http://www.w3.org/2001
 /XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 ...
 <abx:conversationID
 xmlns:abx="http://www.activebpel.org/bpel/extension">
 1:/process/partnerLinks/partnerLink[@name='requestPLT']
 </abx:conversationId>
 ...
 </soapenv:Header>
 <soapenv:Body>
 ...
 </soapenv:Body>
</soapenv:Envelope>

For details on correlation sets, see Correlation.

HTTP Transport
HTTP Transport

Select this policy assertion as described in “Adding Policy Assertions ” on page 357.

You can add this policy to a Partner Role. It is not applicable for a My Role. Depending on the REST service
requests from the process, you may wish to set one or more of the HTTP transport sender timeout values.

Note: This policy currently works only in conjunction with REST-enabled processes.

Client Connection
Timeout

The timeout until a connection is established. A value of zero means the timeout is not used.
Zero is the default.

Connection Pool
Manager Timeout

Set the connection acquisition timeout value. The default is not defined.

Socket Timeout The default socket timeout (SO_TIMEOUT) in milliseconds that is the timeout for waiting for
data. A timeout value of zero is interpreted as an infinite timeout. This value is used when no
socket timeout is set in the HTTP method parameters.

TCP no delay Enable, if used.
The TCP no delay parameter controls TCP (Transmission Control Protocol) packet batching. The
default value is 1, which means that TCP packets are not batched.
Determines whether Nagle's algorithm is to be used. (The Nagle's algorithm tries to conserve
bandwidth by minimizing the number of segments that are sent.) To decrease network latency
and increase performance, Process Server disables Nagle's algorithm (by enabling
TCP_NODELAY). Data is sent earlier, at the cost of an increase in bandwidth consumption and
number of packets.

Redirect with GET Instruct the browser to load a different page using an HTTP GET request.

XML MIME Types To interpret data correctly, add additional MIME types, such as image/svg+xml.

Invoke Recovery
Select this policy assertion as described in “Adding Policy Assertions ” on page 357.

When a server goes down and then comes back online, Process Server recovers and resumes active
processes automatically. However, for a pending invoke activity, you may want to suspend the process to

Creating a Process Deployment Descriptor File 363

inspect whether the service partially or fully completed its operation. In the Process Console, you may wish to
manually restart the suspended process using the input message data.

If a server terminates unexpectedly, processes may be executing. Because they may not have saved process
state to the database, the server must execute parts of a process to bring it back to the state it was in.
Journal entries record the steps between process state being saved, and they are re-played during recovery.
When a failure occurs, another node in the cluster may attempt to recover the process after a designated
grace period.

You can add a policy assertion to the endpoint reference for the partner role of the partner link associated
with an invoke activity to specify whether to suspend the process if that invoke activity is in a pending
(executing) state during process recovery.

Select a setting for suspend process:

• Default. If this optional attribute is not present, then invoke recovery handling is specified by the Suspend
process on invoke recovery setting on the Engine Properties tab of the Engine Configuration page.

• True. Suspend a process when a pending invoke is found during process recovery

• False. Do not suspend a process when a pending invoke is found during process recovery.

JMS Delivery Options
Select this policy assertion as described in “Adding Policy Assertions ” on page 357.

For details on JMS Messaging, delivery options, and examples of adding attributes to delivery options, see
“Using a Java Messaging Service Invoke Handler ” on page 416.

Message Validation
Select this policy assertion as described in “Adding Policy Assertions ” on page 357.

By default, the Process Server engine validates the data loaded into process variables against the WSDL
schema prior to process execution. This validation property is a global setting that can be disabled/enabled
in the Process Console.

If desired, you can add a policy assertion to an endpoint reference for fine-grain control of message
validation. The policy assertion overrides the global setting in the engine.

By disabling message validation, you are enabling faster processing. However, be aware that there are many
cases where invalid data can be introduced into the process that will not be caught unless you provide fault
handling or validate activities. With message validation enabled, the process will throw a fault if invalid data
is detected.

Select one of the following:

• None. Message validation is disabled.

• Both. Message validation is enabled for input and output messages.

• In. Message validation is enabled for input messages.

• Out. Message validation is enabled for output messages.

REST Enabled
Select this policy assertion as described in “Adding Policy Assertions ” on page 357. You can set this policy
on a My Role partner link to provide a REST binding.

This policy provides a context path for the partner link. The context value of the REST-enabled policy is the
value used to lookup the process and partner link names registered with the deployment manager.

364 Chapter 26: Deploying Your Processes

On deployment, a My Role partner link containing a REST Enabled policy registers the mapping between the
REST path and the process and partner link names.

The Usage and Description fields are optional. You can add the BPEL process name in the Description field
and add REST service parameters in the Usage field.

If you fill in these fields for your REST-enabled processes, you can then retrieve a list of deployed REST
services, listed by BPEL process and the details you added in the Usage field.

For example, at runtime, the following request URL returns a list of services that have included a description
and optionally usage parameters:

http://localhost:8080/active-bpel/services/REST?

Retry
Select this policy assertion as described in Adding Policy Assertions.

This policy describes when and how many times to retry an invoked service that does not reply.

During process execution, an invoked service can not reply, and, assuming that the service responds with a
fault, you can specify how you want to handle the faulting execution.

You can specify the relatively simple policy that the server automatically retries the invocation a certain
number of times.

Alternately, you can create a BPEL process to handle retries. For details, see Retry-Policy Service.

Add the retry attributes as follows:

Assertion parameter Description Default

Interval Amount of time in seconds to wait between retries None. You must add a value. Ignored
if a service name is specified.

Attempts Number of times to retry the service None. You must add a value. Ignored
if a service name is specified.

Service Name of a service implemented by the process. The
service is a BPEL process based on a required WSDL
operation.

If you specify a service, the attempts
and interval values are ignored.

faultList Faults to include for retries All faults are retried

faultExclusionList Faults to exclude for retries

On Failure The state for an invoke activity when the retries are
exhausted: Faulted (the default) or Suspended.

Fault

XML Syntax

<abp:retryPolicy attempts="xsd:int"?
 interval="xsd:int"?
 service="NCName"?
 faultList="QNameList"?
 faultExclusionList="QNameList"?
 onFailure="fault"/>

Example 1: Policy with a service and fault list:

<wsa:EndpointReference
 xmlns:s="http://www.activebpel.org/services/retrytests">
 <wsa:ServiceName PortName="retrytesterServicePort">

Creating a Process Deployment Descriptor File 365

 s:retryTesterService</wsa:ServiceName>
 <wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"
 xmlns:abp="http://schemas.active-endpoints.com/ws
 /2005/12/policy">
 <abp:retry service="retryCheckerService">
 faultList="{http://xml.apache.org/axis/}*
 {http://www.active-endpoints.com/2004/06/bpel
 /extensions/}*
 {http://www.activebpel.org/services
 /retrytests}*"/>
 </wsp:Policy>
</wsa:EndpointReference>

Example 2: Policy with attempts and fault exclusion list:

<wsa:EndpointReference
 xmlns:s="http://www.activebpel.org/services/retrytests">
 <wsa:ServiceName PortName="retrytesterServicePort">
 s:retryTesterService</wsa:ServiceName>
 <wsa:Metadata>
 <wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"
 xmlns:abp="http://schemas.active-endpoints.com/ws/
 2005/12/policy">
 <abp:retry interval="1" attempts="3">
 faultExclusionList="{http://xml.apache.org/axis/}*"/>
 </wsp:Policy>
 </wsa:Metadata>
</wsa:EndpointReference>

Run As User
Select this policy assertion as described in Adding Policy Assertions.

This policy is applicable only to the process and subprocess invoke handlers, described in Partner Role Invoke
Handlers. Use this policy assertion to override the default value of process initiator.

By default, a process instance is associated with a user role called process initiator. Process Server
populates the identity of process initiator with the Process Server credentials of the calling process, if the
server is secured, or with anonymous, if the server is not secured.

The Run As user value is a string. It does not need to be an actual user from your Identity service.

SAML
Select this policy assertion as described in “Adding Policy Assertions ” on page 357.

The Security Assertions Markup Language (SAML) is an OASIS standard that enables loosely coupled and
federated identity integration. SAML standardizes how identity-related security information can be
communicated between policy domains.

SAML assertions are usually transferred from identity providers (the my role partner link) to service providers
(the partner role partner link). Assertions contain statements that service providers use to make access
control decisions.

366 Chapter 26: Deploying Your Processes

SAML 1.1 and 2.0 are the currently supported versions. For details about SAML, refer to OASIS Security
Services (SAML) TC at www.oasis-open.org.

Direction - Out. Typically selected for Partner Role partner links. Messages sent to partner service will be
trusted messages

- In. Typically selected for My Role partner links. Messages sent back to the process from
partner service are accepted as trusted messages

- Both can be needed when the transport mechanism is other than SOAP over HTTP, such as
SOAP over JMS. Send and receive trusted messages.

Version SAML Version to use

Subject Name (Optional) For outgoing messages, add a subject to indicate the the user associated with the
identity information. For example, you can enter the distinguished name from your LDAP service.

Confirmation
Method

For outgoing messages, select a method:
- sender-vouches: If trust is already established with a SSL certificate, then a digital signature is

not required, and you can use sender-vouches.
- holder of key: If trust has not been established, you can select holder of key to indicate that the

proof of trust is sent through digital signatures within the assertion itself.

Authentication
Method

For outgoing messages, select a method used to authenticate the subject (to determine if the
information in the assertion refers to the party making the current request).
The default is urn:oasis:names:tc:SAML:1.0:am:unspecified.
For details about using the other options, refer to the SAML Specification at the address given in
the introduction of this topic.

Send WS-Addressing Headers
Select this policy assertion as described in “Adding Policy Assertions ” on page 357.

You can add this policy assertion to a partner role partnerlink. The policy is an extension element to allow
endpoints to explicitly declare if addressing should be used when making requests. Addressing is
automatically added to invokes if you add this policy.

For more information, see http://www.w3.org/TR/ws-addr-metadata/#indicatinguse.

Signature
Select this policy assertion as described in “Adding Policy Assertions ” on page 357.

A signature policy describes the parts of a SOAP message to sign with an XML Signature, using an X.509
Certificate token to allow for verification and trust of the signed information.

• Inbound signature is for messages received for My Role services and for replies from invoked Partner
Role services. It indicates that the My Role partner role accepts signed message content and will verify
the signature.

• Outbound signature is for replies from My Role services and messages sent to invoked Partner Role
services.

Creating a Process Deployment Descriptor File 367

Set the following parameters:

SignatureParts alias Optional keystore alias used to retrieve the key to sign. The default is the alias specified in the
crypto properties file.

Content Name Message part or element to be signed

Content Namespace: Target namespace of the message part or element

Example

<abp:SignatureParts alias="keystore_alias">
 <abp:Element
 namespace="http://docs.oasis-open.org/wss
 /2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 name="UsernameToken"/>
</abp:SignatureParts>

As a message consumer, Process Server service endpoints accept and consume messages that conform to
options deemed allowable under WS-I guidelines. As a message producer, Process Server supports only the
recommended algorithms, references and identifiers.

The following algorithms are used for signing SOAP message parts.

• X.509 Token
Direct Binary Reference (send and receive): Preferred method, used where possible.

Issuer Serial (send and receive): Preferred external reference method, if direct not possible.

X509 Identifier (receive only)

Subject Key Identifier (receive only)

Embedded Token References (receive only)

• Signature Digest Algorithm:
http://www.w3.org/2000/09/xmldsig#sha1 (send and receive)

• Signature Algorithm:
http://www.w3.org/2000/09/xmldsig#rsa-sha1 (send and receive)

• Cannonical XML Transform Algorithm:
http://www.w3.org/2001/10/xml-exc-c14n# (send and receive)

Suppress xsi type
Select this policy assertion as described in “Adding Policy Assertions ” on page 357.

You can add this policy assertion to either a partner role partner link or a my role partner link to suppress
xsi:type attributes in SOAP messages.

Enabling this policy assertion effectively disables schema validation on messages for an invoke or receive
since they cannot be validated without the type attributes.

This policy assertion should only be used as a workaround for legacy services that cannot deal with xsi:type
attributes and cannot be fixed or upgraded.

Timestamp
Select this policy assertion as described in “Adding Policy Assertions ” on page 357.

368 Chapter 26: Deploying Your Processes

This assertion adds a <Timestamp> element to the SOAP header of a message as defined by the OASIS WS-
Security 1.0 specification. Usually, a timestamp is signed, as described in the “Signature ” on page 367 policy
assertion.

The Time To Live attribute indicates the limit on receiver side that the timestamp is validated against.

The Direction attribute indicates whether the timestamp is validated only at the invoked service, only on the
server, or both. The values can be in (server), out (invoked service), or both.

Web Service Timeout
Select this policy assertion as described in “Adding Policy Assertions ” on page 357.

For performance reasons, a reply activity matching a receive, as well as synchronous invokes, are timed out if
they do not execute on Process Server within 10 minutes. If you are receiving timeout errors, you can specify
a greater amount of time to wait before a process is timed out due to a reply or synchronous invoke activity
not executing within 10 minutes. The default is 600 seconds.

Enter a time out value in seconds. A value of zero indicated unlimited wait time.

WS-Reliable Messaging
Select this policy assertion as described in “Adding Policy Assertions ” on page 357.

The WS-Reliable Messaging policy assertion specifies that a partner link participates in an industry-standard
protocol that supports guaranteed delivery of messages.

The OASIS business standards consortium's WS-Reliable Messaging standard provides a protocol for the
guaranteed delivery of messages. Process Server supports this standard, allowing BPEL processes to use the
protocol to identify, track, and manage the reliable delivery of messages.

Process Server implementation of reliable messaging is based on the following description.

After sending a message, Process Server waits for the amount of time set in the Acknowledgement Interval
to get an acknowledgement message. If Process Server times out and has not received an acknowledgement,
the Process Server waits for the amount of time set in the Base Retransmission Interval before resending. If
the sequence has not completed within the amount of time set in the Inactivity Timeout, Process Server
considers the sequence terminated.

Add the WS-Reliable Messaging attributes as follows:

Assertion parameter Description Default

Acknowledgement
Address

Address to be used for acknowledgements http://
schemas.xmlsoap.org/ws/
2004/08/addressing/role/
anonymous
This address represents the
anonymous role as defined by WS-
Addressing and indicates that
acknowledgements are sent
synchronously.

My Role binding SOAP binding style that this partner link uses.
Specify the binding shown on the Partner Links
page of the PDD wizard.

Document Literal

Creating a Process Deployment Descriptor File 369

Assertion parameter Description Default

Inactivity timeout The amount of time the Process Server waits
before a sequence is considered terminated. This
can be set to a relatively long period of time.

240000 (In milliseconds)

Base transmission
interval

The amount of time Process Server waits before
resending an unacknowledged request.

20000 (In milliseconds)

Acknowledgement
interval

The amount of time Process Server waits before a
message is considered unacknowledged. This is
usually a relatively short value.

10000 (In milliseconds)

WSDL Binding Reference
Select this policy assertion as described in “Adding Policy Assertions ” on page 357.

You can select the binding style of Policy-Driven for a my role partner link and then select this option to refer
to a WSDL binding for service binding details.

Type in a Namespace URI and the associated binding details. Or select a WSDL located in the Workspace
with matching binding details.

Adding Indexed Properties
Add indexed properties for use in quickly finding certain processes running on the server.

An indexed property is a process variable property that is populated with the variable (or variable part) value
during process execution. If you add indexed properties to the PDD, on the Process Console, you can select
indexed properties as a search filter for process instances.

Also you can use indexed properties to define a business process event. For details, see Chapter 32,
“Business Event Processing ” on page 433.

For example, you can find all faulting processes where the customerId is 101. In this example, the indexed
property name is customerId and is based on a process variable of type string. "101" is the data value at the
time the process is suspended.

Indexed properties allow for fast searching of important data items at runtime.

Add indexed property details as follows:

Name Indexed property name. This name appears in the Indexed Property list in the Process Console.

Type Select the property type from: boolean, date, double, string. Match the type to the variable, part or
query value

Variable Path Full process variable path. Select from the picklist, or select the Dialog button to open the Find a
BPEL Variable dialog. If you have a long list of variables, the dialog is more convenient.

Part Process variable part for message type variables

Query Process variable part detail (optional)

370 Chapter 26: Deploying Your Processes

Eventing tab of the PDD
For details, see Business Event Processing.

Viewing References
The References tab of the PDD Editor displays the resources in use in the deployment descriptor. When you
deploy the PDD, the BPEL process and all resources listed on this tab are deployed to the server.

See also “Creating a Process Deployment Descriptor File ” on page 347.

People tab of the PDD
For details, see the Human Task sections in this help.

Using the PDD Editor Source View
The Process Deployment Descriptor editor validates the .pdd file against a schema. If the editor detects
errors, it generates errors in the Error Log when you save the file.

You may wish to edit the file in the Source tab, which is a text editor, for convenience. For example, you can
specify actual endpoint locations for each Web service, or you type in a URN.

To add static endpoint references:

1. For each partner link, do the following:

• Replace FILL_IN_NAMESPACE with the target namespace from the WSDL file where the partner link
type is defined.

• Replace FILL_IN_ADDRESS_URI with the URI of the service as specified in the <service> section of
the WSDL file for the service. Alternately, you can specify a URN, as described in “Specifying a
Replaceable URN URL for an Endpoint Reference ” on page 345.

• Replace FILL_IN_PORT_NAME with the service port name as specified in the <service> section of the
WSDL file for the service.

• Replace FILL_IN_SERVICE_NAME with the service name as specified in the <service> section of the
WSDL file for the service.

2. Save the file.

Tips for using the PDD Editor Source tab:

• Be sure to check the Error Log for a list of errors and warnings.

• You can display line numbers in the editor, if desired. Right-mouse click in the Source view to select
Preferences. Enable Show line numbers and other Text Editor preferences as desired.

See also “Creating a Process Deployment Descriptor File ” on page 347.

Creating a Process Deployment Descriptor File 371

Creating and Deploying a Business Process Archive
Contribution

View the selected deployment descriptor file(s) and other project resources to deploy. On the Catalog
Resources page, view the list of selected and excluded resources to ensure your contribution contains all
files to be managed as a unit. Upon export, deploy the file and save a script to redeploy the .bpr file.

To deploy your process to A Process Server, you package a contribution of processes and resources in a
business process archive file (.bpr file), which is similar to a Web archive file.

Before creating a .bpr file, you must create a .pdd file, described in Creating a Process Deployment Descriptor
File. Optionally, you can additional resources, such as Process Central forms and tasks.

We recommend that you create only one BPR file per project. The processes and resources are managed as a
unit of files on the server. For details, see Managing Deployment Contributions.

To create a .bpr file:

1. If you have created and used a project reference for the current project, be sure to deploy that
contribution first. Project dependencies must be deployed to the server first.

2. Select File > Export > Orchestration > Contribution-Business Process Archive.

3. Notice that all process deployment descriptor files (.pdd files) are pre-selected to include in the archive,
as shown in the following example.

372 Chapter 26: Deploying Your Processes

4. Select the export location and filename for the BPR file.

5. Select a Server Deployment Type:

• None. Select this option if you do not wish to deploy your BPR archive upon completion of the export.

• File. Select this option to save the archive upon export to a file system location. In the Deployment
location field, browse to any folder.

• Web Service. Select this option if your server is running and you want to automatically deploy to it. Is
your server is secured, provide the username and password for access to it.

6. If desired, type in a Group name and description for this contribution. On the Process Console you can
use the group name as a selection filter for listing files. The description appears on the Contribution
detail page of the Console.

Creating and Deploying a Business Process Archive Contribution 373

7. If desired, select the option to Save the contribution specification as an Ant script in the workspace, and
select a location for this file, such as the Orchestration Folder's deploy folder. For details on this option,
see Using a BPRD Script to Regenerate and Deploy a BPR Contribution.

8. Click Next to view a list of catalog resources. See the following topics.

• Contribution Preference

• Deploying Project Dependencies and Viewing Excluded Dependencies

• Deploying Additional Resources

9. Click Finish to create and export the .bpr file and optional .bprd file.

10. Refresh the project to view the new BPR file.

See also Managing Deployment Contributions.

Deploying Project Dependencies and Viewing Excluded
Dependencies

As described in Creating and Deploying a Business Process Archive Contribution, you begin a deployment at
the project level, by including the process deployment descriptors (PDDs) of the processes in your project.
The Export Business Process Archive Wizard then shows you all project resources pre-selected and project
references excluded from deployment, as shown in the example.

374 Chapter 26: Deploying Your Processes

The parts of this dialog are described as follows:

Project Resource Dependencies

The current project resource dependencies are deployed. They include the following types:

• WSDL and schema from this project

• WSDL and schema imported from another workspace project if you do not have project references
specified

• Human task HTML forms

• (not displayed) XSL files used in the doXSLTransform function, based on the location of the file you
specified as a parameter to the function

• Java jars specified in the PDD

Project Reference Dependencies Excluded from Archive (not deployed)

You must deploy these resources in a contribution prior to deploying this contribution.

Creating and Deploying a Business Process Archive Contribution 375

Project References specified in the project properties and used within the process are listed on the Catalog
Resources page. For example, if you create a participant based on a referenced WSDL, you will see the WSDL
listed in the excluded list. For details on the advantage of this approach, see Using Project References.

Additional Resources

Additional resources are automatically pre-selected, based on the Contribution Preference.

You can deploy more resources as described in Deploying Additional Resources.

Deploying Additional Resources
Add resources to deploy to the server. View the selected deployment descriptor files and other project
resources to deploy. On the Catalog Resources page, view the list of selected and excluded resources to
ensure your contribution contains all files to be managed as a unit. Upon export, deploy the file and save a
script to redeploy the .bpr file.

For an overview of best practices for deployment, see “Deploying Project Dependencies and Viewing
Excluded Dependencies ” on page 374.

As you develop a process, there are two kinds of resources you can add: dependent and non-dependent
resources. Dependent resources include WSDL, schema, human task forms, XSL for doXSLTransform, and
Java jars specified in the PDD. Dependent resources can be deployed in the same BPR contribution
containing the process PDD or in a referenced project.

You may want to deploy XQuery modules in a separate BPR.

The resources you may want to deploy in a separate BPR include:

• Reports. For details, see Creating Reports for Process Server and Central.

• Central Configuration. Customize the Process Central client application. For details, see What is Process
Central?.

• Binary and HTML files. For process request forms, you can export HTML, language files, images, and style
sheets. For details, see “What is Process Central ” on page 441.

• XQuery Modules. Refer to “Writing XQuery Functions ” on page 404.

To deploy additional resources to the server:

1. Ensure that the server is running, and ensure that your resource file is in a Workspace project.

2. Select File > Export > Orchestration > Contribution- Business Process Archive File.

3. If the resources are not directly imported into the process, you can skip the process deployment
descriptor files (.pdd files) to include in the .bpr archive.

4. Select the export location and filename for the .bpr archive.

5. In the Deployment section, select Web Service as the Type.

6. On the Catalog Resources page, if needed, select Add.

7. Select a Resource Type and Location. Select a resource from the Project Explorer.
For Other, add a URI. The URI can be any reference desired, preferably related to the resource type. For
example, an XML resource URI should be the root namespace of the XML document.

See also “Deploying Forms Reports and Configuration Files” on page 460.

8. In the Resources list, do the following:

• Optionally, type in a new or existing Group Name. The Server can display resources by groups.

• Optionally, type in a Description. The description is displayed in the Catalog Resources list on the
server.

9. Add additional resources as desired.

376 Chapter 26: Deploying Your Processes

Managing Deployment Contributions
Add resources to deploy to the server.

A contribution is a deployed business process archive (BPR), managed on the server as a unit of files. Rather
than deploy and replace individual BPEL processes and resources, you deploy both current and updated files
as a unit that is easily managed on the server.

If you are deploying one of the Process Developer sample projects, it should only have one sample-based
contribution.

Contribution Name

Each contribution has a project-location-based identifier. On the Contributions page of the Process Console,
you see a list of project:/myProject files. Each contribution is named according to your workspace project
name. In the .BPRD file, you can view an attribute named contributionURI that is based on the project name:
project:/myProject. This location hint is a helpful way to track deployments on the server.

Contribution States

Contributions have the following states: online, offline, and offline pending.

Your first deployment is version 1.0 and is online. As you update and redeploy your files, older contributions
go offline pending and the new one comes online.

Only one version is online. The older versions become offline when all running processes associated with the
offline pending version have completed.

Server Management of Contributions

Using contributions, it is easy to do the following tasks on the server:

• Delete all old process instances and old resources by deleting the contribution.

• Maintain your own resources that do not collide with those of other developers.

• Rollback the current (online) contribution to an earlier version and vice versa.

• Easily access the deployment log for the contribution on the Contribution detail page.

Contribution Deployment Tips

To maintain the ease of use for contributions, be sure to follow these deployment tips:

• Always deploy a project reference contribution prior to deploying the parent contribution. For details, see
Using Project References.

• Maintain one BPR per project. Include all deployable files in the BPR. Use the Export Wizard to redeploy.

• As you update project resources, re-deploy the entire project

• As you add a new resource, re-deploy the entire project.

• As you delete resources, re-deploy the entire project.

Managing Deployment Contributions 377

Using a BPRD Script to Regenerate and Deploy a BPR
Contribution

Select a workspace project to store the Ant script that you can execute for future re-deployments of the .bpr
archive.

When you create a .bpr file, as described in “Creating and Deploying a Business Process Archive
Contribution ” on page 372, you have the option to create an Ant script (a .bprd file) that you can use to
quickly regenerate and deploy a .bpr file.

Use the BPRD Ant script to:

• Update a .bpr file after modifying a BPEL or process deployment descriptor file

• Add deployment path information for automatically deploying a .bpr file

• Add appropriate entries for resources that are not in a workspace project, such as an XSL style sheet

You can execute the BPRD Ant script from within Process Developer or on the command line outside of
Process Developer.

For details, see:

• “Running a BPRD Ant Script from within Process Developer ” on page 378

• “Running a BPRD Ant Script from the Command Line ” on page 379

Running a BPRD Ant Script from within Process Developer
When you create a .bpr file, as described in “Creating and Deploying a Business Process Archive
Contribution ” on page 372, you have the option to create an Ant script (a .bprd file) that you can use to
quickly regenerate and deploy a .bpr file.

Automatically Deploying a .bpr File

If you did not select a Deployment Type when you created the .bpr archive, you can add deployment
information to the BPRD script and execute the script.

1. From the Project Explorer, double-click the .bprd file to open it.

2. Follow the comments in the script to provide File or Web Service deployment information. You must
specify a valid archive deployment location and enable the deploy target.
For example, for the archive.deployment value, type in:

http://localhost:8080/active-bpel/services/ActiveBpelDeployBPR
3. Save the file.

4. Ensure that the server is running, and then in the Project Explorer, select the right-mouse menu for
the .bprd file and select Execute.
Process Manger informs you when the new .bpr is deployed.

Regenerating a .bpr File

You must update a .bpr file after you have modified one or more files in the original archive. If your archive
contains many BPEL and .pdd files, you may find it quicker and more convenient to update the archive by
using the Ant script you created when you first created the .bpr file.

If you want to add any new processes and their resources to the archive, you must create a new .bpr using
the File > Export option or modify the .bprd file by hand to add syntactically correct references to the new
files. To modify the .bprd file by hand, you must be familiar with the Ant scripting language.

378 Chapter 26: Deploying Your Processes

To regenerate a .bpr file:

1. In the Project Explorer, select the .bprd file you created the first time you created the business process
archive (.bpr) file.

2. Right-mouse click and select Execute.
Process Developer informs you when the new .bpr is generated.

Running a BPRD Ant Script from the Command Line
When you create a .bpr file, as described in “Creating and Deploying a Business Process Archive
Contribution ” on page 372, you have the option to create an Ant script (a .bprd file). You can execute this
file within Process Developer or on the command line.

To execute the BPRD Ant script from the command line, you must set up your Ant environment and install the
Ant Runtime component of Process Developer.

There are sometimes network issues if your are using JAVA 7 and IpV6. If you experience issues with BPR
deployment or cluster communications, you should use the -Djava.net.preferIPv4Stack=true flag when
starting your server.

To set up Ant, you must make files available to your Ant environment. Choose one of the following methods.

Method One: Set up your Ant environment by copying jars to your Ant installation

Ensure that the following files are in your {$ant.home}\lib directory

• axis.jar
• bpr_tasks.jar
• jaxrpc.jar
• commons-logging.jar
• commons-discovery.jar
• saaj.jar
• wsdl4j.jar
Method Two: Install the B-unit Runtime and edit your BPRD file to make the changes described below

Change the following lines:

to this:

Deployment Complete
This dialog provides a quick look at the deployment results for your process files.

The Deployment Complete dialog displays the results of deploying a .bpr file to A Process Server.

The following illustration shows an example of this dialog.

Deployment Complete 379

This dialog provides a quick look at the deployment results for your process files. Note the following:

• Each Process Developer process and resource successfully deployed has a version number. The version
is provided by the deployment contribution.

• You can select a process definition to view a brief deployment log for it. For a complete deployment log,
check the Contribution Detail page in the Process Console.

• WSDL files are not validated and are automatically deployed

• Deployment details for all resources appear in the lower part of this dialog

Starting the Server and Running a Process
After you deploy a process, described in “Creating and Deploying a Business Process Archive
Contribution ” on page 372, you can run the process by starting the server and sending the appropriate
message to instantiate the process.

The Process Server that comes with Process Developer consists of the Process Server engine running under
Apache Tomcat. Tomcat is the servlet container that is used in the official Reference Implementation for the
Java Servlet and JavaServer Pages technologies.

380 Chapter 26: Deploying Your Processes

You must start the embedded engine before deploying your processes. When it starts, it scans for new,
updated, and deleted .bpr files.

1. If you have not already done so, set up the server, as described in “Setting Up the Embedded Process
Server” on page 38.

2. Select the Servers view in the lower right of the workspace.

3. Select the Start the Server button, as shown in the example.

As the server starts up, you see start-up tasks scroll in the Console. Several files are deployed to the
embedded server each time you start it. When the server is started, the State indicates this, as shown above.

You can use the Process Console to manage deployed and active processes. To display the Console, select
the Process Console toolbar button and notice that the following URL appears in the browser address field:

http://localhost:8080/activevos
Change the port number if port 8080 is already in use on your computer.

For more information, select Help in the Console.

How a BPEL Process is Instantiated
A BPEL process is invoked just like a Web service. The process service is deployed with a URL of http://
[machinename:port]/active-bpel/services/[service name], where [service name] is the value of the
service attribute of the my role element in the process deployment descriptor file.

The process is also deployed with a URL of http://[machinename:port]/active-bpel/services/soap12/
[service name] so that clients sending a request to a process can do so with a SOAP 1.2 binding. The
default binding is SOAP 1.1.

What is Process Versioning
Process Server manages process versioning. Versioning allows different versions for a given process to
exist. Two deployments are considered to be different versions of the same process if they have the same
target namespace and name in the BPEL file, but one deployment differs from the other in some way.

How a BPEL Process is Instantiated 381

Process versioning allows you to control when processes become online (effective) and for how long. You
can also control what happens to processes created by older versions when a new version comes online.
While multiple versions of a process can exist concurrently, only the latest online version is capable of
creating new process instances.

The latest version is in an online state. Other states include online pending, to describe versions that have an
effective date in the future, offline pending to describe versions whose expiration date has arrived or has
been set, and offline to describe expired versions that no longer have running process instances.

The process deployment descriptor provides selections for describing how a deployment is to be versioned.
These selections are all optional and have default values as described below.

If desired, you can provide version information as described in “Creating a Process Deployment Descriptor
File ” on page 347.

The following example shows the syntax for version information in the .pdd file.

<version effectiveDate="2005-12-12T00:00:00-05:00"
 expirationDate="2007-12-12T00:00:00-05:00" id="1.5"
 runningProcessDisposition="maintain"/>

where:

• online date is the effective date the new version becomes the current version and all new process
instances run against it. Depending on the disposition selected for running processes, some can continue
to run until complete using the older version. The online date is an XML schema datetime value. Time is
indicated as the midnight hour plus or minus the number of hours ahead of or behind Coordinated
Universal Time (UTC) for the computer's time zone. In the example above, the computer time zone is
eastern standard time, which is five hours behind UTC. For date/time details, refer to “Deadline and
Duration Expressions ” on page 257. If you do not provide an online date, it defaults to the date and time
the process is deployed to the server.

• offline date is the date, beyond the online date, the current version expires. An offline version is not
capable of creating new process instances. Once all of the running processes tied to an offline pending
version complete then the version becomes offline. All process instances for the online version run to
completion. The offline date is an XML schema datetime value. If you do not provide an offline date, the
version does not go offline until you manually set it in the Process Console or until a newer version is
deployed.

• id is the process version number in major.minor format. You do not need to provide a version number. The
Process Server auto-increments new versions. The server increments a version number by dropping the
minor value and adding 1 to the max number. For example, version 1.5 increments to version 2.0.

• runningProcessDisposition is the action the server takes on any other versions of the same process that
currently have processes executing once this version's effective date arrives.
If you specify Migrate, be sure to view the Server Log in the Process Console for possible warning
messages describing incompatibilities between running processes and the new version they are running
against. Refer to the Process Console Help for details.

Valid dispositions are:

• Maintain. Indicates that all process instances for the previous versions should run to completion. This is
the default value.

• Terminate. Indicates that all process instances running under previous versions should terminate on the
online date of the new version, regardless of whether or not the process instances are complete.

• Migrate. All running process instances created by previous versions will have their state information
migrated to use the newly deployed process definition once its online date arrives. If there are
incompatible changes between the versions, descriptive warning messages are generated in the Process
Console Server Log. Refer to the Process Console Help for details.

382 Chapter 26: Deploying Your Processes

C h a p t e r 2 7

BPEL Unit Testing
The follow topics discuss BPEL unit testing:

• “What is BPEL Unit Testing” on page 383

• “Creating a BPEL Unit Test File” on page 384

• “Running a BPEL Unit Test in Process Developer” on page 385

• “Creating and Running a B-unit Ant Script” on page 386

• “Editing a B-unit File ” on page 389

• “Debugging a B-unit Test ” on page 394

• “Creating and Running BPEL Unit Test Suites ” on page 394

• “Tips on Using Assertions ” on page 396

• “Tips on Using Parameterized XSL for Input and Assert Data ” on page 397

• “Tips on Providing Partner Link Data ” on page 397

• “Example B-unit File ” on page 398

What is BPEL Unit Testing
Create individual B-unit test cases manually, or save each simulation path you run as a B-unit test file.

BPEL unit (B-unit) testing is a framework that tests BPEL processes in the Process Server engine. B-unit
testing validates process execution of invokes, receives, and replies. You can use B-unit testing to perform
automated regression tests on processes.

When a B-unit test runs, the following steps occur:

• The SendMessage command sends XML data to process. You provide this data as part of editing or
generating a B-unit test.

• The response comes back from the process

• An assert expression determines what the response must have

• The result is compared to the assert

An effective test is to compare entire chunks of XML to see the parts that don't match.

You can create individual B-unit test cases manually, but it is recommended that you save each simulation
path you run as a B-unit test file. You can then rerun files as needed as you refactor your process. Readily
available B-unit tests make it easy for you to check whether a component of your process is still working
properly.

383

You can design unit tests to produce test cases that cover all paths through a process so you can test
various scenarios. You can save a group of files into a suite, or suite of suites, to rerun. You can run B-unit
tests outside of Process Developer, as part of your automated build procedures.

For details, see:

• “Creating a BPEL Unit Test File” on page 384

• “Running a BPEL Unit Test in Process Developer” on page 385

• “Creating and Running a B-unit Ant Script” on page 386

• “Editing a B-unit File ” on page 389

• “Debugging a B-unit Test ” on page 394

• “Creating and Running BPEL Unit Test Suites ” on page 394

• “Tips on Using Assertions ” on page 396

• “Tips on Using Parameterized XSL for Input and Assert Data ” on page 397

• “Tips on Providing Partner Link Data ” on page 397

Creating a BPEL Unit Test File
Use one of the following techniques to create a B-unit test file:

• (Recommended) Simulate a BPEL process. In the Debug View toolbar, select Save Simulation as B-unit
Test Case, as shown in the illustration.

384 Chapter 27: BPEL Unit Testing

• Right mouse click on a BPEL file and select New > B-unit Test Case. The B-unit Editor opens. This gives
you a starting point for manually editing the file to provide data values and element attributes to test
normal and faulting processes. For details, see “Editing a B-unit File ” on page 389.

Tip: You can save a B-unit file into the test folder within an orchestration project. Regardless of where you
save the file, after you save it, it opens in the B-unit editor.

See also “Running a BPEL Unit Test in Process Developer” on page 385and “Creating and Running BPEL Unit
Test Suites ” on page 394

Running a BPEL Unit Test in Process Developer
You can run B-unit tests from an Ant script outside of Process Developer or from the B-unit View within
Process Developer. For details on command line execution, see “Creating and Running a B-unit Ant Script” on
page 386.

You can run a B-unit test in Process Developer by using the Run As command from several locations,
including right-mouse clicking on a B-unit test or test suite in the Project Explorer and selecting Run As > B-
unit.

Running a BPEL Unit Test in Process Developer 385

The B-unit view opens and runs the test. The following examples show a B-unit with a completed test and a
failed test:

You can also run one test from a B-unit suite, as described in “Creating and Running BPEL Unit Test
Suites ” on page 394.

When you run a test the following events occur:

• The B-unit view opens to show the progress of the test.

• The Console shows the output of the test. By default, it includes the trace events and the process
execution. For details of these events, see “Editing a B-unit File ” on page 389.

• If a test fails, a failure message displays in the B-unit view. For certain test errors, you can double-click on
the test that failed, and a Text Compare Editor opens to show actual and expected results.

• In the Text Compare Editor, the differences between the expected and actual results are shown. You can
use the Toggle On/Off Normalized View to simplify looking for file differences. You can also set a color
preference for the Text Compare Editor, as described in “Colors and Fonts Preferences” on page 75.

When the test completes, you can click on an event in the B-unit view to go directly to that section of the B-
unit test in the B-unit editor.

In the B-unit view, use the toolbar icons:

• Show Failures. Select this to filter the view to show only tests that fail.

• Rerun Test. Once you run one test, you can rerun it from the B-unit view.

• Rerun All Failures. Rerun failed tests from the B-unit view.

• History. Remembers the last 15 unit tests run. You can select a test from the list based on the name of
the B-unit file.

Creating and Running a B-unit Ant Script
Create individual B-unit test cases manually, or save each simulation path you run as a B-unit test file.

If you want to include B-unit testing in an automated build environment, you can create an Ant script to run all
the B-unit tests and suites from multiple orchestration projects outside of Process Developer, on the

386 Chapter 27: BPEL Unit Testing

command line. This capability is similar to using the command line BPRD script to deploy a BPR archive to
the server.

Prerequisite
You must install the B-Unit Ant Runtime component of the Process Developer before you can run the Ant
script. The installation creates a directory containing the runtime files required to run the B-unit Ant script
from the command line, outside of Process Developer. You do not need to install Ant separately: the Apache
Ant application is installed as part of Process Developer.

Note: Version 1.7.0 of Ant (or above) is required.

Creating a B-unit Ant Script
Use the following procedure to create a B-unit Ant script:

1. Ensure your orchestration projects contains one or more B-unit tests or suites, as described in “Creating
a BPEL Unit Test File” on page 384.

2. Select one B-unit test or suite and right mouse-click to select New > BUnit Ant Script.

3. In the Export B-unit Ant Script wizard, select a folder, such as the test folder, and enter a filename. Select
Next.

4. Select the B-unit tests and suites to include. You can select multiple tests from multiple projects. Also,
after you create the script, you can edit it to add more folders of tests.

5. Select the B-unit options as desired:

• Enable Tracing. Controls console logging output for B-unit-specific execution commands.

• Enable Process Logging. Controls the amount of process execution data to log. The default is none.
Enabling the checkbox turns on execution level. If desired, you can manually edit the Ant script to
enable execution-data (execution with data) or full logging.

6. Select Finish to generate the filename.ant.xml file.

The ant script opens in an editor for you to view or edit. Follow the instructions in the ant script to set the B-
unit runtime classpath if you wish to execute this script outside of Process Developer.

You can create a code coverage report when you run a B-unit ant script on the command line. For details, see
“Generating a Code Coverage Report ” on page 388.

Notes on Modifying a B-Unit Ant Script
Within the ant script, you can override properties in the individual B-unit files.

• You can add a file to override the default-B-unit-engine config if needed, such as <config file="engine-
configuration.xml" />

• Nested element <engineProperties> accepts a file relative or absolute path to a properties file with
engine config path=value pairs in the format required by java.util.Properties. The file attribute is optional
and instead nested <engineProperty name="…" value="…"/> elements can be used to set engine
properties. If both the file attribute and the engineProperty elements are used, the elements will override
the values in the properties file if the same config path is specified twice.

• Examples of multiple engine properties:

- <engineProperty name="Logging" value="urn:ae:execution" />
- <engineProperty name="CustomFunctions/MyCustomFunction"
value="com.test.my.custom.Function" />

Creating and Running a B-unit Ant Script 387

Adding Multiple B-unit and B-suite to an Ant Script
Ant provides many ways to specify resource collections, such as a group of B-unit and B-suite files. One
example is the following.

<path>
 <fileset dir="${test.dir}" includes="**/*.bunit"/>
</path>

For examples, refer to the resource collections section of the Ant 1.7 (or later) documentation.

Running a B-Unit Ant Script
You can run the filename.ant.xml file from within Process Developer if desired. Right-mouse click on the
file and select Run As > Ant Build. In the Console you can view trace and log details.

To run the Ant script on the command line, do the following:

1. Open a command window.

2. Navigate to the file system folder where the ant script is located.

3. At the command line prompt, type ant -f filename.ant.xml

Generating a Code Coverage Report
Using a B-unit ant script, you can generate a code coverage report. The report tracks execution paths and
display which activities were executed, expressed as percentage of activities executed at least once, in
relation to all process's activities.

To generate a code coverage report:

1. Create a B-unit ant script as described in “Creating and Running a B-unit Ant Script” on page 386.

2. In the <target> named instrument, remove the comments and fill in a resource collection of bpel files.
The following example show a simple resource collection:

<target depends="init" name="instrument">
<!-- optional
<coverage activitycoverage="true" linkcoverage="true" />
-->
 <bunit-instrument>
 <filelist>
 <file name="../bpel/myFile.bpel"/>
 </filelist>
</bunit-instrument>

By default, a code coverage report is generated for activities. If you want to include links, add the
optional <coverage> element.

3. In the target named test, uncomment the <engine properties> section.

4. In the target named coverage report, do the following:

• Provide a destination directory for your report.

• Provide a report type. The types are HTML (default), XML (raw XML used to create HTML) or
CONSOLE (writes summary results to the Ant Logger that you specify on the command line)

• If you create a HTML report, you can add an xsltPath attribute.

• Rename the filePrefix, if desired. The Ant project name is the default filePrefix. When you generate a
report, the date and time are appended to the prefix.

5. Run the B-unit ant script on the command line to generate the report. For example, in a command
window, type ant -f filename.ant.xml.

388 Chapter 27: BPEL Unit Testing

What the Code Coverage Report Shows

• Activity Coverage (default coverage): the total number of activities executed at least once over the total
number of activities in the process.

• Link Coverage (optional): the total number of activities that evaluated to true plus those that evaluated to
false over the 2x total number of links with conditions.

(totalTrue + totalFalse) / (totalLinksWithConditions *2).
This ensures that the unit tests cover the execution of links completely because each link with a condition
can evaluate to true or false.

Adding Code Coverage to an Existing B-Unit Ant Script

If you have an existing B-unit ant script, you can add code coverage to it just by putting in the correct ant
tasks in the B-unit ant script.

• Register the following typedefs in your Ant script and note that the attribute loaderref is set to bunit. This
attribute must be set in order for all the Ant tasks to use the same classloader. The value of the attribute
is unimportant as long as the value for all three typedefs match:

<typedef classname="com.activee.ant.bunit.tasks.AeBUnitTask"
 loaderref="bunit" classpathref="bunit.classpath" name="bunit"/>
<typedef classname="com.activee.ant.bunit.coverage.AeBUnitInstrumentTask"
 loaderref="bunit" classpathref="bunit.classpath" name="bunit-instrument"/>
<typedef classname="com.activee.ant.bunit.coverage.AeBUnitCoverageReportTask"
 loaderref="bunit" classpathref="bunit.classpath" name="bunit-report"/>

• Instrument your processes that are part of code coverage:

<bunit-instrument>
 <coverage activitycoverage="true" linkcoverage="true" />
 <filelist>
 <file name="../bpel/myBEPL.bpel"/>
 </filelist>
</bunit-instrument>

• Add the following engine property to the B-unit task that will execute the B-unit tests as follows:

<bunit processLogging="urn:ae:full" trace="on">
 <engineProperties>
 <engineProperty name="CustomManagers/AeBUnitCoverageManager/Class"
 value="com.activee.rt.bunit.coverage.AeBUnitCoverageManager"/>
 </engineProperties>
 <filelist>
 <file name="CancelTO.bunit"/>
 <file name="CreateTO.bunit"/>
 <file name="SubmitPO_UNI.bunit"/>
 <file name="SubmitUNIPO_AIFallOut.bunit"/>
 </filelist>
</bunit>

• Finally, you will need to output the report using the bunit-report Ant task:

<bunit-report reportType="HTML"
 destdir="/Users/User1/Downloads/bunit/html" />

For details on the parameters you can use for the B-unit report task (filePrefix, xsltPath, destDir, and
reportType, see Step Four in the above procedure.

Editing a B-unit File
You can design your own B-unit tests with the help of the B-unit editor. Double-click a B-unit file in Project
Explorer to open the B-unit editor.

Editing a B-unit File 389

The B-unit editor displays the Design tab, containing an Outline pane and a Details pane. The Outline displays
different sections of a B-unit file that you can select to edit in the Details pane.

The following is a description of each node in the B-unit Outline. For more details, select the node name.

• “BPEL Unit (Root) ” on page 390
Specifies the BPEL, WSDL, Schema and other resources used in the test. The resources provide data that
creates the set of deployed processes and resources for the Process Server engine. When the B-unit test
is started, all of these resources are deployed to the engine much as they would be when the standard
engine starts up. The standard static analysis rules for Informatica Business Process Developer are run
against each BPEL process identified in the B-unit to ensure that there are no errors in the BPEL or
environment.

The Trace option controls console logging output. It is enabled by default and can be useful for tracking
down assertion failures if the B-unit view does not provide adequate debugging information.

• “Extensions and Extension Activities ” on page 391
Extensions specify Logical People Groups that are WS-HT (Human Task) Extensions. Extension Activities
specify People activities that are BPEL for People Extension activities.

• “Invokes ” on page 392
Specifies invoke activities.

• “Alarms ” on page 392
Specifies Wait activities and onAlarm handlers for picks and event handlers. The alarms and invokes
elements contain information about each alarm and invoke within the process that is expected to execute
during the test. These elements should be thought of as re-active in the sense that they react to the
execution of an alarm or invoke within the process. They do not cause an alarm or invoke to execute, but
rather wait for the engine to signal that an alarm or invoke has executed and then match that activity
within the process to a declaration within the B-unit. Once matched, the B-unit declaration will provide
assertions, simulated response/fault/alarm.

• “Commands ” on page 393
Sends messages to the B-unit test engine to execute the test logic. The commands element contains all
of the commands that are sent into the engine when the B-unit test executes. These elements should be
thought of as active in the sense that they are actions taken by B-unit when it starts the test. Each
command is executed in sequence. If the command has an asynch="true" attribute then this command is
executed on a separate thread. The B-unit test is considered completed when all commands complete.
The most common command is the sendMessage command and is the only required command for each
B-unit.

BPEL Unit (Root)
Open a B-unit file in the B-unit editor, and select BPEL Unit from the Outline view.

The detail view displays the BPEL, WSDL and other resources used in the B-unit test.

To add resources, specify name, location and type URI. If you are using an XQuery module, the type URI is:

http://modules.active-endpoints.com/2009/07/xquery
At the bottom of the panel is the Trace selection. You can turn trace on or off to control console logging
output.

The child elements of BPEL Unit are:

• Extensions

• Extension Activities

• Invokes

• Commands

390 Chapter 27: BPEL Unit Testing

• Alarms

To add a child element, right-mouse click on BPEL Unit, and select Add.

See also, “Editing a B-unit File ” on page 389.

Extensions and Extension Activities
Open a B-unit file in the B-unit editor, and select Extensions or Extension Activities from the Outline view. To
add an extension, right-mouse click on BPEL Unit.

Extensions

Extensions specify context information required to run a B-unit that are typically defined in a process
deployment description. Currently, extensions specify Logical People Groups that are WS-HT Extensions, and
can be used within People activities.

You can define the value for a Logical People Group exactly as you define it in the People tab of the Process
Deployment Descriptor Editor. For details about static, dynamic and People Query values.

Extension Activities

Extension Activities refer to People activities. You can assert what goes into a People activity and also to
specify a response from the People activity if it includes a task (and not a notification).

You can define a People activity for a B-unit test as follows:

1. Select or add an Extension Activity (a People activity). If this activity is within a loop (for example, a For
Each), you can specify a Count for the expected number of times to execute the activity.

2. Add at least one iteration that is the Default iteration. This is the default for how each iteration should
run.

3. For each iteration, add the Response type that is the outcome of a task:

• Completed. Specify the Output data returned from the task. The data can be Imported or created
Inline. By default, the data is set to be imported. You can set a preference for inline, if desired.
If the data is imported, and if desired, you can add your own XSL files to transform the XML data
returned from the task. This allows you to reuse the commonality within the data for different
iterations while changing only a few elements of the data. See “Tips on Using Parameterized XSL for
Input and Assert Data ” on page 397.

If desired, specify the context data; that is, the names of task initiator, actual task owner, and other
assignments for the task.

• Failed. Select a Fault to return.

• Expired. The task reached its expiration date, if the expiration is set.

• Skipped. The task was skipped, if the Skippable option is selected in the task.

4. Add Asserts

• Assert Match. Specify a Label that is documentation for this Assert, message part and query for the
assert, and a pattern to match on. An example might be to match on data returned from one of the
B4P custom functions.

• Assert Equals. Specify the data that should match the data returned.

• Assert Task. Asserts the task details (for example, subject, presentation, and escalations).

See also, “Editing a B-unit File ” on page 389 and “Tips on Using Parameterized XSL for Input and Assert
Data ” on page 397.

Editing a B-unit File 391

Invokes
Open a B-unit file in the B-unit editor, and select Invokes from the Outline view. To add an invoke, right-mouse
click on BPEL Unit.

A common use case for an invoke is to provide a simulated response for a service that your process is
invoking. When an invoke activity within the process executes, the B-unit engine looks for a matching invoke
element within the B-unit file. If found, this invoke element provides the ability to do assertions on the input
data passed to the invoke as well as provide a message that simulates the response from the service invoke.

B-unit invoke elements can be configured for one-way and two-way service invokes. Both styles of invokes
can have assertions on the input data but only two-way service invokes are allowed to have a response.

You can define an invoke for a B-unit test as follows:

1. Select or add an Invoke. Add an Invoke by right-mouse clicking on BPEL Unit.

2. Specify the Name or Location Path of the invoke. If this activity is within a loop (for example, a For Each),
you can specify a Count for the expected number of times to execute the activity. Specify a Delay if you
want to delay before returning the response. The delay allows for better handling of onEvent and
onAlarm events.

3. Add a default iteration.

4. Add the Response type expected:

• Simulated Response. Specify the Output data.

• Subprocess. The invoke is a BPEL process, deployed as a subprocess, making the main process
eligible for termination and compensation handling.

• Process. The invoke is a BPEL process, deployed as a "process" invoke handler.

• Simulated Fault. The invoke returns a fault.

5. Add Asserts.

• Assert Match. Specify a Label that is documentation for this Assert, message part and query for the
assert, and a Pattern to match on.

• Assert Equals. Specify the input data passed to the invoke.

About Message Part Data

Some information about a message and its associated parts are generated automatically in the B-unit editor
when you perform certain actions including:

• Fill in values for process name, partner link and operation for a Send Message.

• Select Simulated Response for an invoke assertion (or extension assertion).

• Select a fault name for a Simulated Fault.

See also, “Editing a B-unit File ” on page 389, “Tips on Using Assertions ” on page 396, and “Tips on Using
Parameterized XSL for Input and Assert Data ” on page 397.

Alarms
Open a B-unit file in the B-unit editor, and select Alarms from the Outline view. To add an alarm, right-mouse
click on BPEL Unit.

Alarms refer to the wait activity and the onAlarm events in picks and event handlers. You can assert on an
alarm deadline or duration.

You can define an alarm for a B-unit test as follows:

1. Select or add an alarm. Add an alarm by right-mouse clicking on BPEL Unit.

392 Chapter 27: BPEL Unit Testing

2. Specify the Process and Location Path of the alarm-based activity.

• Add the Simulated Duration of the alarm. This is the time the B-unit test will wait for the alarm to be
triggered.

• If this activity is within a loop (for example, a For Each), you can specify a Count for the expected
number of times to execute the activity.

3. Add a default alarm, and add the duration for the B-unit test to use.

4. Add an Assert.

• Assert Deadline. Specify the actual deadline, converted to a duration, for the B-unit test. Specify a
Precision value that is the period of time within which the deadline should fire. This value is specified
in seconds.

• Assert Duration. Same as deadline.

5. Add an assert iteration, if desired. If the alarm-based activity is within a loop, add an Index for this
iteration. The index is the nth iteration within the count, specified for the alarm.

See also “Editing a B-unit File ” on page 389 and “Tips on Using Assertions ” on page 396

Commands
Open a B-unit file in the B-unit editor, and select Commands from the Outline view. To add a command, right-
mouse click on BPEL Unit.

Commands send messages to the B-unit test engine to execute the test logic.

The commands you can add are as follows:

Command Description

Send
Message

Sends WSDL messages to the test engine.
Select an Operation for the specified partner link.
Delivery Options.
- Async. Controls whether or not two receives can execute in a row, without waiting for the reply

associated with the first receive to complete
- Delay. Wait value that the B-unit waits before starting to check the Timeout.
- Timeout. Sets a value for the how long the test engine should wait for process completion. This

setting ensures that the invokes complete with the correct count.
- Message Context. Optionally specify the meta-data for the incoming message, including the

authenticated principal, and other message header data.

Wait Until Checks for the execution completion of the process.
- Delay. Wait value that the B-unit waits before starting to check the Timeout.
- Timeout. Sets a value for the how long the test engine should wait for process completion. This

setting ensures that the invokes complete with the correct count.
- Fail on Timeout. Enable this check box to fail the test if the process does not complete within the

timeout value.

Editing a B-unit File 393

Command Description

Terminate
Process

Terminates a process instance for one of the processes in the B-unit test, if you are running more
than one process.

Assert
Process
State

Asserts the execution state of the process that you specify.
- Process State. Running, suspended, complete, faulted, final. Select final to assert completed and

faulted states.
- Process Id. Used only if you are running the test on multiple BPEL files.
- Delay. Wait value that the B-unit waits before starting to check the Timeout.
- Wait for Async. If you have Async selected in a Send Message command for the same process, this

property allows you to wait to assert the process state until all asynchronous activities have
completed.

See also, “Editing a B-unit File ” on page 389.

Debugging a B-unit Test
If your B-unit test fails, you can right-click on the test name in the B-unit view, and select Debug. The Debug
view opens and your test is run. The Console displays the logging output from the test.

In Debug mode, you can set breakpoints in the BPEL file and debug it, just like remote debugging.

Creating and Running BPEL Unit Test Suites
You can multi-select B-unit files in the Project Explorer and make a suite of tests.

For example, select two or more .bunit files from your test folder within an orchestration project. Right-
mouse click and select New > BSuite Test Suite. The BSuite dialog opens, as shown:

394 Chapter 27: BPEL Unit Testing

Type in a name for the BSuite. The .bsuite extension is automatically added.

All the tests in the suite run.

You can add BSuites to a BSuite, as shown:

Creating and Running BPEL Unit Test Suites 395

Tips on Using Assertions
A key component of the B-unit testing framework is the ability to perform assertions. An assertion describes
the expected correctness of the state of a unit of code when it runs. Assertions include:

• Input data for invoke activities

• Replies from synchronous messages sent into the engine via the B-unit Send Message command

• Values for alarm deadlines and durations

Assertions contain expected data and run against data from the process execution. The expected data for
the assertion can be a text node, an element, or an imported element. The assertion can run against the
entire message data or can use an XPath query to select a portion of the message data.

The B-unit engine validates messages for receives/replies/invokes. As such, it is unnecessary to do
assertions on a full message. Instead, you can write assertions that focus on the portion of a message that
tests logic within your process. This type of focused assertion makes your unit tests more readable and
reduces the amount of work necessary if the message definitions ever change. For example, if you want to
assert that the value of rm:ProductGroupId is 100, the following query provides you with the most flexibility:

<abu:assertEquals part="p"
 query="//rm:ProductGroupId/text()">100</abu:assertEquals>

In this example, note the use of the descendant axis in the query. This selects the ProductGroupId element
anywhere in the message. While this lack of specificity is not always a good idea, keep in mind that the B-unit
engine is already validating the structure of a message so if the element were misplaced, this is reported in
schema validation.

396 Chapter 27: BPEL Unit Testing

Here are some good uses of assertions:

• Asserting the input for an invoke when that input was produced by one or more complex data mappings
within the process

• Assertion proves that a specific path was taken within the process in the case where there is conditional
logic in the process in the form of transition conditions or if/else activities

It is probably not worth doing an assertion on something you would get with schema validation or with a
large literal assertion when there's only a small part of the message that is worth asserting.

Tips on Using Parameterized XSL for Input and Assert Data
You can build efficiency into your B-unit tests in cases where you want to assert a small difference in the
same data across multiple tests. The efficiency comes in the form of parameterized XSL.

Consider the following example.

In an XML data file, there is the following element:

<ns:status>CREATED</ns:status>
Instead of creating different XML files, each with a different status value, you can write an XSL file such as:

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:ns="http://schemas.active-endpoints.com/b4p
 /wshumantask/2007/10/aeb4p-task-rt.xsd">
 <xsl:import href="common.xsl"/>
 <xsl:param name="state"/>
 <xsl:template match="ns:status/text()" priority="2">
 <xsl:value-of select="$state" />
 </xsl:template>
</xsl:stylesheet>

In the Source view of your B-unit file, you can then add a parameter, such as:

<abu:part href="../data/getTaskInstanceResponse-minimal.xml"
 name="taskInstance"
 xsl="../xsl/change-task-instance-state.xsl">
 <abu:params>
 <abu:param name="state" value="COMPLETED"/>
 </abu:params>

For each B-unit test, you use the same imported data and the same XSL file. You need only change the
parameter value to get a different result.

Tips on Providing Partner Link Data
Some processes require the configuration of partner link data as part of the test. Partner links can be
specified along with wsa:EndpointReference information for their partnerRole or service names for their
myRole. This is only necessary if the process makes use of some data within a partner link during some
calculation.

To add partner link data to a B-unit test:

1. In Outline view, select the Partner Links node, and select a partner link.

2. In the Properties view, select the All tab, and select the Simulation category.

3. Select the appropriate partner link, My Role, or Partner Role.

4. Select the Dialog button at the end of the row to open the Partner Link Data dialog.

5. Type in an Endpoint Reference definition.

6. Simulate the process and save the simulation as a B-unit test.

Creating and Running BPEL Unit Test Suites 397

The following example shows the B-unit element that is added to your test.

<!-- Controls deployment of partner links to the test engine. -->
<abu:partnerLinks>
 <abu:partnerLink xmlns:ns="http://docs.active-
 endpoints.com/sample
 /bpel/loanprocess/2008/02/loanProcessCompleted.bpel"
 name="LoanApproval"
 processName="ns:loanProcessCompleted">
 <abu:partnerRole endpointReference="static">
 <wsa:EndpointReference
 xmlns:s="http://docs.active-endpoints.com/
 sample/wsdl/riskAssessment/2008/
 02/riskAssessment.wsdl"
 xmlns:wsa="http://www.w3.org/2005
 /08/addressing">
 <wsa:Address>urn:x-vos:loancompany:
 RiskAssessmentServiceNEW
 </wsa:Address>
 <wsa:ServiceName
 PortName="RiskAssessmentServicePort">
 s:RiskAssessmentServiceNEW
 </wsa:ServiceName>
 </wsa:EndpointReference>
 </abu:partnerRole>
 </abu:partnerLink>
</abu:partnerLinks>

Example B-unit File
Here is a B-unit source template, showing most of the sections of a B-unit file.

<?xml version="1.0" encoding="UTF-8"?>
<abu:bpelUnit xmlns:abu="http://schemas.active-endpoints.com
 /activebpelunit/2008/10/activebpelunit.xsd"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <abu:trace>on</abu:trace>
 <abu:engineProperties>
 <abu:documentation>Controls engine configuration
 options, including process logging.
 </abu:documentation>
 <abu:engineProperty path="Logging"
 value="urn:ae:execution"/>
 </abu:engineProperties>
 <abu:bpels>
 <abu:documentation>Controls deployment of the BPEL
 process to the test engine.</abu:documentation>
 <abu:bpel location="../bpel
 /loanProcessHumanCompleted.bpel"/>
 </abu:bpels>
 <abu:wsdls>
 <abu:documentation>Controls deployment of the WSDL files
 to the test engine.</abu:documentation>
 <abu:wsdl location="../wsdl/loanProcess.wsdl"/>
 </abu:wsdls>
 <abu:schemas>
 <abu:documentation>Controls deployment of the XML Schema
 files to the test engine.</abu:documentation>
 <abu:schema location="../schema/loanRequest.xsd"/>
 </abu:schemas>
 <abu:resources>
 <abu:documentation>Controls deployment of resource
 mappings to the test engine.</abu:documentation>
 <abu:resource location="../xsl-renderings/
 loan_taskdetail.xsl" locationHint=
 "project:/humantaskcompleted/xsl-renderings/

398 Chapter 27: BPEL Unit Testing

 loan_taskdetail.xsl"
 type="http://www.w3.org/1999/XSL/Transform"/>
 <abu:resource location="../xsl-renderings/
 loan_param2commands.xsl" locationHint=
 "project:/humantaskcompleted/xsl-renderings/
 loan_param2commands.xsl"
 type="http://www.w3.org/1999/XSL/Transform"/>
 </abu:resources>
 <abu:invokes>
 <abu:documentation>Defines the simulated output and
 assertions to perform on invoke activities
 </abu:documentation>
 <abu:invoke count="1" name="NotifyCRMOfExpiration">
 <abu:invokeIteration index="0"/>
 </abu:invoke>
 </abu:invokes>
 <abu:commands>
 <abu:documentation>Sends messages to the B-unit
 test engine
 to execute the test logic.</abu:documentation>
 <abu:sendMessage async="true"
 operation="request" partnerLink="LoanProcess">
 </abu:sendMessage>
 <!-- Tells the test to wait before making final assertions -->
 <abu:waitUntil xmlns:
 ns="http://docs.active-endpoints.com/sample/bpel
 /loanprocess/2008/02/loanProcessHumanCompleted.bpel"
 processName="ns:loanProcessHumanCompleted"
 timeout="5000"/>
 </abu:commands>
</abu:bpelUnit>

Example B-unit File 399

C h a p t e r 2 8

Creating POJO and XQuery
Custom Functions

In Process Developer you can write custom functions, either as POJO (Plain Old Java Object) or XQuery
functions. Built-in functionality makes creating and using custom functions in the Expression Builders easy.

Custom Functions Overview
You can create and use custom functions in BPEL processes. A custom function is a POJO that implements a
function context interface from Process Developer library. It also contains Process Developer annotations to
register and display custom functions in the Functions list of the Expression and Query Builders.

You can create and use custom functions in one or more projects. A custom function is deployed as a project
resource within a deployment contribution. Custom functions can be in the same project as your BPEL files
or in referenced project. Any JAR files that support your custom functions must be in the classpath of your
project.

For an easy way to implement the function context interface, create a new Java enabled orchestration
project, described in “Orchestration Project Templates” on page 30. The required Process Developer library is
automatically added to your project, as shown in the illustration:

400

If you have an existing Java-enabled orchestration project, add the Process Developer library as follows:

1. Right-mouse on the project name and select Properties.

2. Select Java Build Path.

3. From the Libraries tab, select Add Library.

4. Select Process Developer Library as shown in the example.

See also “Implementing the Function Context and Adding Annotations ” on page 401.

Implementing the Function Context and Adding
Annotations

The Process Server uses a Java framework that supports custom function extensions. This framework is a
set of Java interfaces and classes made available for your use. IAeFunction and IAeFunctionContext are
implemented to create the objects that are accessible to the engine at run-time. AeFunctionCallException
and AeUnresolvableException are used to signal fault conditions. These types are resolved using the
org.activebpel.rt.bpel package in ae_rtbpel.jar. Additionally, AeUnresolvableException extends
AeException provided in ae_rt.jar.

You can use custom functions in any expression language.

Implementing: Step 1
Your first task is to create a function context that is a new class that implements the IAeFunctionContext
interface.

Implementing the Function Context and Adding Annotations 401

This class exposes one public method: getFunction(String). It returns an object of a type that implements
the IAeFunction interface. The method uses the String argument to indicate the local name of the function
and then select that object.You can implement multiple custom functions via one function context class.
getFunction() throws an AeUnresolvableException if it is unable to locate the desired function by name.

Annotations

You add the @AeFunctionContext annotation to annotate the class at class level.

Add the @AeFunctionUnit annotation at the method level, for each function unit that you want to display in
the Expression Builder function list.

The following example shows the function context:

@AeFunctionContext(name="myContext", namespace="myns")
 public class CustomContext implements IAeFunctionContext
 {
 @AeFunctionUnit(
 prefix = "ld",
 display = "MyLDAP",
 hoverText = "My LDAP Functions",
 functions = {
 @AeFunction(
 syntax = "${prefix}:getOrgUnit(${caret})",
 display = "getOrgUnit(id)",
 hoverText = "Returns OU details"),
 @AeFunction(
 syntax = "${prefix}:getSiblings(${caret})",
 display = "getSiblings(id)",
 hoverText = "Returns siblings nodes"),
 }
)
 public IAeFunction getFunction(String aFunctionName)
 throws AeUnresolvableException
 {
 }
 }

where:

• @AeFunctionContext name is the display name of the function context in the Process Console Catalog

• @AeFunctionUnit represents a group of functions

- prefix is used for all functions in the unit

- display is the unit name in the Expression Builder function list

- hoverText is the unit's hover help

- functions is the list of functions

• @AeFunction represents the function

- syntax is the syntax of the function added to the Expression text box when the function is double-
clicked. Note that the syntax includes the ${prefix} and the ${caret}. The cursor appears in the
column set by the caret token.

- display is the function name in the Expression Builder function list

- hoverText is the function's hover help

Implementing: Step 2
Your second task is to create the actual custom functions, each of which implements the IAeFunction
interface. These also expose one single public method: call(IAeFunctionExecutionContext, List); it
performs the function's task that you create. The function's argument list (if any) is passed to the call method
using the List argument. This function may optionally use the function execution

402 Chapter 28: Creating POJO and XQuery Custom Functions

IAeFunctionExecutionContext as needed. Individual custom functions should throw
AeFunctionCallException, constructed to contain the root exception message, if they encounter a problem
that prevents them from finishing their task.

Implementing: Step3
Once you have created your function context and function classes, and tested the classes that do the actual
custom function work, you can create a contribution. All the function contexts in the project are automatically
packaged when you create a deployment contribution.

The custom functions are available only to the BPEL files in the contribution or in a contribution in another
project that references this project. Note that the custom functions are listed on the Catalog Resources page
of the Export Business Process Archive, either as project resource dependencies, referenced dependencies,
or if they are not referenced, they are listed as additional resources. For details, see “Deploying Project
Dependencies and Viewing Excluded Dependencies ” on page 374.

Sample Custom Function
The following shows a sample custom function:

package com.acme.functions;
import java.util.List;
import org.activebpel.rt.bpel.function.AeFunction;
import org.activebpel.rt.bpel.function.AeFunctionCallException;
import org.activebpel.rt.bpel.function.AeFunctionContext;
import org.activebpel.rt.bpel.function.AeFunctionUnit;
import org.activebpel.rt.bpel.function.AeUnresolvableException;
import org.activebpel.rt.bpel.function.IAeFunction;
import org.activebpel.rt.bpel.function.IAeFunctionContext;
import org.activebpel.rt.bpel.function.IAeFunctionExecutionContext;
@AeFunctionContext(name = "AcmeContext", namespace = "http://acme.com/functions")
public class GenericFunctionContext implements IAeFunctionContext {
 private IAeFunction echoFunction = new EchoFunction();
 private IAeFunction companyNameFunction = new CompanyNameFunction();
 @Override
 @AeFunctionUnit(prefix = "ac", display = "ACME",
 hoverText = "Acme company functions", functions = {
 @AeFunction(syntax = "${prefix}:echo(${caret})", display = "echo(param)",
hoverText = "echo function that returns the given string"),
 @AeFunction(syntax = "${prefix}:companyName()", display = "companyName()",
hoverText = "Returns company name") })
 public IAeFunction getFunction(String aFunctionName)
 throws AeUnresolvableException {
 if (aFunctionName.equals("echo"))
 return echoFunction;
 else if (aFunctionName.equals("companyName"))
 return companyNameFunction;
 return null;
 }
 private class EchoFunction implements IAeFunction {
 @Override
 public Object call(IAeFunctionExecutionContext aContext, List aArgs)
 throws AeFunctionCallException {
 if (aArgs.size() == 1)
 return aArgs.get(0);
 return null;
 }
 }
 private class CompanyNameFunction implements IAeFunction {
 @Override
 public Object call(IAeFunctionExecutionContext arg0, List arg1)

Sample Custom Function 403

 throws AeFunctionCallException {
 return "acme";
 }
 }
}

Adding Global Custom Functions to the Process
Server

You can add Java-based custom functions to the Process Developer embedded engine or Process Server to
make them available globally to all processes and not just the contribution in which they were deployed.

First, copy your jar file to the machine that hosts the server.

Next, add custom function information to make the function known to the server. Do this within the Process
Console by selecting Admin > Global Functions.

For help in adding details, select the Help link and view the Global Functions Help topic.

Writing XQuery Functions
Process Developer integrates the XQuery Development Tools (XQDT) project. Using it, you can create XQuery
custom functions in your orchestration project that are automatically included in the functions list of the
Expression Builder.

XQDT includes an XQuery editor with syntax highlighting, validation, content assistance, and execution
support. You can easily create and test XQuery functions in the editor before using them within the Process
Developer Expression Builder. Also, you can make changes to a function and save it. The updates are
automatically included in your BPEL file.

Each function must be part of a library module in order for it to be included in the Expression Builder. You can
create a module of functions in one XQuery file and then use the functions defined in that module in any
other XQuery by using the import module directive.

XQDT supports XQuery 1.0 and many XQuery 3.0 constructs.

After you double-click in the functions section of the expression builder to add an XQuery function, the
XQuery file is added as an import. You should pay attention to what XQuery files are referred to as imports in
the BPEL process and make sure that there are no duplicates between that list and what they explicitly add
as imports in the XQuery files that use the import module.

If you have an existing project (prior to version 9.0), right-mouse click on the project in the Project Explorer,
and select Add XQuery Nature.

To get started creating an XQuery function:

1. Right-mouse click on the xquery folder (or another folder) in your orchestration project, and select New
> XQuery Module.

2. Name the file with a .xq extension, such as myNewFunctionModule.xq.

404 Chapter 28: Creating POJO and XQuery Custom Functions

3. Select one of the following:

• Main module. Contains a query body to be evaluated

• Library module. Contains a module declaration but no query body. A module declaration provides a
URI that identifies the module for imports. Enter a prefix and namespace for the module declaration.

4. Select Finish, and the XQuery editor opens. Use content assist (Ctrl + spacebar) to begin a new function.

The following example shows the module declaration for a library module. This declaration is required for an
XQuery function to appear in the Functions list:

(: The version declaration in line one is optional.
 Version 1.0 does not allow any use of version 3.0 constructs. :)
xquery version "1.0" encoding "utf-8";
module namespace xqf= "TechSupportLevel1";
declare function xqf:pingModemResult ((: $param as type, ... :)) as item() {
 insert_an_expression_here
};

Once you save your XQuery file, the function is automatically available in the Expression Builder, as shown.

As you use a function, the corresponding XQuery module is automatically added to the process's Imports
node.

Tip: In the Outline view, select the function under Imports to view its properties. If you run B-unit tests, you
can add the XQuery modules as a resource and specify the Type URI as shown.

Using the XQuery Editor
The XQuery Editor opens when you create or open a file with a .xq extension. Note the following features:

• The editor contains a content assist feature, allowing you to select CTRL + Space to open a list of XQuery
constructs, system expressions, and your own functions that exist in modules imported into the open file.

• Syntax highlighting shows various elements of XQuery expressions

• Validation occurs automatically and errors are reported

Writing XQuery Functions 405

• Run As features are available for executing local scripts to test your expressions. Refer to “Testing XQuery
Functions in the XQuery Editor ” on page 406.

• You can set preferences for syntax highlighting and other features in the XQuery section of Preferences.

See also “Tips on Writing XQuery Functions ” on page 406.

Tips on Writing XQuery Functions
Process Developer supports all XQuery 1.0 constructs and some XQuery 3.0 constructs, such as:

• Group by

• Try-Catch

• Formatting functions for date, dateTime, time, and number

In order to use XQuery 3.0 constructs, be sure to add the following declaration to your files:

xquery version "3.0";
Process Developer uses Saxon as the XQuery processor. If you are in doubt about support for a particular
XQuery 3.0 construct, refer to the following at the Saxon Web site, which is at http://www.saxonica.com/
documentation9.3/changes/intro.xml.

Testing XQuery Functions in the XQuery Editor
You can write a test script for your functions and execute the script in the XQuery Editor. Process Developer
provides a default interpreter for script execution.

For example, create a new .xq file, and write a simple test script where you hard-code a function argument as
in the Kitty argument below:

xquery version "1.0" encoding "utf-8";
import module namespace xyz ="myFunctions" at "hello.xq";
xyz:sayHello('Kitty')

To run this script, right-mouse click in the editor and select Run As > XQuery.

Passing an External Value to a Test Script

If the test script has external variables defined, values for those variables can be passed as arguments from
the Run As launch configuration. The following is a simple script that takes in an external variable, followed
by a description of how to create the script argument:

xquery version "1.0" encoding "utf-8";
import module namespace xyz ="myFunctions" at "hello.xq";
declare variable $ip as xs:string external;
xyz:sayHello($ip)

Create a Run As Configuration:

1. Right-mouse click in the editor and select Run As > Run Configurations.

2. Select New, and add your project name and test script name on the first page.

3. On the Arguments page, add a Script Argument, such as ip="Kitty".

4. Run your named configuration.

Customizing the Interpreter Behavior

Process Developer includes a default Saxon interpreter. You can change the arguments to this interpreter by
selecting Preferences > XQuery > Interpreters.

406 Chapter 28: Creating POJO and XQuery Custom Functions

You can configure the default Process Developer interpreter by double-clicking it. Interpreter arguments can
be changed based on the development needs. Documentation for the arguments can be found at the
following URL: http://www.saxonica.com/documentation/using-xquery/commandline.xml

Do not change the first argument, which is the class name,
org.activebpel.rt.bpel.ext.expr.impl.xquery.AeQuery.

Writing XQuery Functions 407

http://www.saxonica.com/documentation/using-xquery/commandline.xml

C h a p t e r 2 9

Custom Service Interactions
The following topics discuss custom service Interactions:

• “Using a REST-based Service ” on page 408

• “Using an OAuth REST-Based System Service ” on page 413

• “Using a Java Messaging Service Invoke Handler ” on page 416

Using a REST-based Service
You can create web service interaction activities in BPEL that can handle messages based on the
Representational State Transfer (REST) architecture rather than WSDL operations. This means that you do
not need your own WSDL file in order to create certain types of BPEL processes. You can simply instantiate a
process with a request that looks like the following example:

http://localhost:8080/active-bpel/services/REST/lookUpWeather/mass/waltham
REST is a style of architecture for describing how resources are defined and addressed on systems such as
the World Wide Web. Using REST, you can send and receive REST-based messages over HTTP without an
additional messaging layer such as SOAP.

You can also access partner REST services from a BPEL process.

The idea of REST is that clients and services can communicate over HTTP to exchange representations of
resources. A resource is any item of interest, made accessible through some URL on the network. In BPEL, a
representation is an XML document with optional attachments of a different content type.

A BPEL process can send and receive a REST request. When a REST request is sent to the process, Process
Server converts it to a standard WSDL message. When the process invokes a REST service, a standard WSDL
message is converted into a REST request. The response is a document representing the requested resource.
The document type returned is defined by the Content-Type header of the HTTP response.

To get started with REST, you need the following:

• A BPEL project that imports aeREST.wsdl and aeREST.xsd
• For invokes you need:

- The URL of the REST resource you will address

- The HTTP method you want to invoke

- The content type of the resource representation you will return

- For XML content returned, an optional schema for the returned message (for example, atom schema,
vender specific) to address the content within the BPEL process

408

- The query parameters specified by the REST service you want to address

See Also:

• “Creating a REST-based Receive or Invoke ” on page 409.

• “BPEL REST Messages” on page 411

• “Handling of Multipart HTTP Messages” on page 411

• “Specifying Deployment Details for a REST-based Process ” on page 412

• “I18N Functions ” on page 249

Creating a REST-based Receive or Invoke
In a REST-based service, you can create a start activity (receive, pick, event handler) that executes the URL
request that is submitted through the address field of a Web browser or an HTTP client. You can also create
an invoke activity that sends a request to a web-based service via HTTP.

The receive and invoke activities must be based on a WSDL file named aeREST.wsdl. The port types and
partner link types for this WSDL are in the System Services tree in the Interfaces dialog in Participants view.

In essence, the WSDL defines the RequestResponse operation and messages for receiving and sending REST
requests. Process Developer converts an incoming REST request to a WSDL message and does the reverse
for an outgoing request.

A request that targets a REST-based process looks like the following example:

http://localhost:8080/active-bpel/services/REST/lookUpWeather/mass/waltham

REST Request Message

Process Server converts the request to an input message that would have the following parts, shown in the
example:

RestRequest example (Not all elements are shown. See the table below):

<?xml version="1.0" encoding="UTF-8"?>
 <ns2:RESTRequest xmlns:ns2="http://schemas.activebpel.org
 /REST/2007/12/01/aeREST.xsd">
 <ns2:subdomain>Search</ns2:subdomain>
 <ns2:method>GET</ns2:method>
 <ns2:pathInfo>V1</ns2:pathInfo>
 <ns2:params>
 <ns2:param name="temp" value="50"/>
 <ns2:param name="windchill" value="40"/>
 </ns2:params>
 <ns2:payload contentType="text/xml">lookUpWeather/mass/waltham?
temp=50&windchill=40</ns2:payload>
 </ns2:RESTRequest>

The message parts are defined as follows:

subdomain Optional for partner service (invoke). The part that identifies one of the REST-based services that a
domain can offer. For example Yahoo offers search, news, and other services. You can use the
subdomain part to specify the service you want to use. In the endpoint reference for the partner link,
you can add a logical subdomain value that can be replaced by the subdomain specified: <WS-
Address>nnnn.yahooapis.com</WS-Address>.

method The HTTP method to execute. See the HTTP Methods table below.

Using a REST-based Service 409

pathInfo Optional for partner service (invoke). Parts that extends the resource details defined in WS-Address.
For example, in search.yahooapis.com, you can specify the path info for the search service, version
number, and specific type of search:
NewsSearchService/V1/newsSearch

params (Optional) Query parameters specified by the REST service you want to address.

headers (Optional). HTTP headers containing connection, host, content type and other request details.

payload (Optional) The representation of the resource. This data can be character data or XML data. If it is
character data, you should include the contentType attribute.

queryString (Optional) The string shown as it is formatted in the request. Contains parameters in the order they are
specified.

authType (Optional) Value populated for inbound requests (receives). This value is equivalent to the value
returned by getAuthType() method in javax.servlet.ServletRequest.
The value can be one of the following: BASIC, FORM, CLIENT_CERT or DIGEST

ssl (Optional) Boolean. True if the request is sent as https.

contextPath (Optional) The application called in the request.

requestURI (Optional) The location of the service where the request is made.

locales (Optional). The ISO 639 Codes for country and languages. For example, <locale country="US"
lang="en">en_US </locale>

HTTP Methods:

HTTP defines eight methods indicating the action to be performed on the resource.

HEAD Asks for the response identical to the one that would correspond to a GET request, but without the
response body. This is useful for retrieving meta-information written in response headers, without having
to transport the entire content.

GET Requests a representation of the specified resource

POST Submits data to be processed (for example, from an HTML form) to the identified resource. The data is
included in the body of the request. This can result in the creation of a new resource or the updates of
existing resources or both.

PUT Uploads a representation of the specified resource

DELETE Deletes the specific resource.

TRACE (Not supported for receives) Echoes back the received request so that a client can see what intermediate
servers are adding or changing in the request.

OPTIONS Returns the HTTP methods the server supports. This can be used to check the functionality of a web
server.

CONNECT (CURRENTLY NOT SUPPORTED) Converts the request connection to a transparent TCP/IP tunnel, usually
to facilitate SSL-encrypted communication (HTTPS) through an unencrypted HTTP proxy.

REST Response Message

410 Chapter 29: Custom Service Interactions

The REST response message contains the parts shown below.

If you generate sample data for the response, be sure to change the statusCode attribute to a valid HTTP
Status Code. The standard response for a successful HTTP requests is 200. The generated integer, "1",
results in a fault being thrown.

<rest:RESTResponse
 xmlns:rest="http://schemas.activebpel.org/REST/2007/12/01/aeREST.xsd"
 statusCode="1">
<!--Optional:-->
<rest:headers>
 <!--Optional:-->
 <rest:header name="string" value="string"/>
 </rest:headers>
 <!--Optional:-->
 <rest:payload contentType="string">
 <!-- Payload information -->
 </rest:payload>
</rest:RESTResponse>

If rest:payload is not qualified, it does not inherit the aeRest.xsd namespace as it did in Process Developer
versions prior to 9.2. If you had relied on this inheritance, your XPath expressions may no longer work until
you update your process.

REST Fault Message

A sample REST fault looks like the following:

<rest:RESTFault xmlns:rest="http://schemas.activebpel.org/REST/2007/12/01/aeREST.xsd"
errorType="transport">
 <rest:errorCode>400</rest:errorCode>
 <rest:message>Bad Request</rest:message>
 <rest:messageDetails>The request cannot be fulfilled due to bad syntax</
rest:messageDetails>
</rest:RESTFault>

• The errorType, defined in the above sample as transport, can be either transport or system.

• The errorCode must be a HTTP Status Code, defined in the above sample as a 400 error.

BPEL REST Messages
The aeREST.xsd schema defines three message types:

• RESTRequest. This is the message received by the server from a My Role endpoint and the message
delivered by the server to a REST partner endpoint.

• RESTResponse. This is the success response message returned to the server from a REST partner
endpoint

• RESTFault. This is the fault returned to the server from a REST partner endpoint with the HTTP error
response or other system related faults.

For examples of each message type, see “Creating a REST-based Receive or Invoke ” on page 409.

Handling of Multipart HTTP Messages
Receives and Invokes support multipart HTTP messages.

There are two distinct classes of multipart messages, multipart/form-data and all others (for example, mixed,
related, digest, parallel). Multipart/form-data represents data from an HTML form construct that can have
parameters and files.

Receives

Using a REST-based Service 411

Multipart messages are parsed and populated in the RESTRequest message as a payload and attachments.
The first textual message part is the payload all others are attachments.

For multipart/form-data, parameters are converted to RESTRequest message parameters. The first textual
form data file becomes the payload, all others are message attachments. When there are no textual files
there is no payload only attachments.

Invokes

Multipart messages are created implicitly when there are at least two of any combination of payload and
attachments. The default Content-Type sent is multipart/mixed unless a multipart Content-Type header is
defined in the RESTRequest message. An explicit Content-Type header of type multipart/form-data changes
the behavior to emulate an HTML form submission. In this case all RESTRequest parameters in the payload
are treated as HTML INPUT parameters, and attachments are treated as files.

Specifying Deployment Details for a REST-based Process
When you create a PDD file for a REST-based process, you must add the resource details and policies for the
My Role and Partner Role endpoint references.

Partner Role

For a Partner role endpoint reference, select REST for the Invoke Handler. You can also add a HTTP Transport
Policy Assertion to specify service timeout values.

There are no service bindings in the aeREST.wsdl so you can provide the endpoint reference by supplying the
URL to the resource, such as:

 <wsa:Address>http://search.yahooapis.com:80/NewsSearchService/V1/newsSearch</
wsa:Address>

To use variable replacements for the specific service of the domain, you can use parameters in the address,
such as:

 <wsa:Address>http://nnnn.yahooapis.com:80/NewsSearchService/nn/newsSearch</wsa:Address>
The parameters can then be specified in the request message, as described in “Creating a REST-based
Receive or Invoke ” on page 409.

My Role

For a My Role endpoint reference, ff the process is receiving REST requests, you must add a policy assertion
for a REST-enabled service.

A REST service context policy example is as follows:

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:aep="http://schemas.active-endpoints.com/ws/
 2005/12/policy">
 <aep:RESTenabled
 description="short description of the service"/>
 <aep:usage>
 This demo returns search results from multiple
 search engines.
 The accepted url format is:
 http://{host[:port]}/active-bpel/services/REST/
 searchDemo?query=[keyword]
 keyword - the phrase to be searched for
 </aep:usage>
 </aep:RESTenabled>
</wsp:Policy>

412 Chapter 29: Custom Service Interactions

Using an OAuth REST-Based System Service
If your business process needs a system whose resources can be accessed using OAuth authentication, you
can use the OAuth system service to allow delegated access to private resources.

OAuth is an open protocol that allows secure API authorization in a simple and standard method. Users can
grant third-party access to their resources without sharing their passwords and can also grant limited access,
in scope or duration.

OAuth's method of delegated access to private resources uses two sets of credentials: the process
consumer (in our case, a BPEL process) identifies itself using its identifier and secret, while the resource
owner is identified by an access token and token secret. Each set can be thought of as a username-password
pair (one for the application and one for the end-user).

Here are some examples:

• A social network can pull a user's address book from their e-mail provider to make it easy for the user to
invite friends to that social network

• A photo printing service can pull a user's photos from their photo hosting service to print selected photos

• A financial aggregation service can pull a user's financial details from their banks and credit cards
companies to show a combined view of that information

The OAuth system service provides authentication, access token storage for future use, and a way to do
communication with the provider post authentication.

The supported OAuth service providers are listed in the PDD, as shown.

Using an OAuth REST-Based System Service 413

As a prerequisite, for each provider you want to access, you must register with the service provider and
obtain a client identifier key and secret. These parameters are required for the Partner Role configuration in
the PDD.

The OAuth system service is a client-side component of the OAuth protocol, and it abstracts OAuth tokens
and request tokens (which are elements of the OAuth protocol) by a user id. Each operation takes a userId as
one of the input elements to identify existing tokens. A userId can have one authorized OAuth token per
OAuth provider at any given time.

Creating an OAuth Service
Use the following procedure to create an OAuth service:

1. In the Participants view of a process, create a new Partner Service Provider.

2. Select System Services from the Interfaces tree.

3. Select OAuth.

4. From the Partner Service Provider that you created, start with the getAccessToken operation to create
an invoke activity. See the operation descriptions below.

The OAuth operations are as follows:

getAccessToken Returns an OAuth access token for the given user. An access token is persisted after
authorization is complete.

getAuthorizationURL Returns the authorization URL configured for the OAuth provider. Process Developer maintains
this URL for each OAuth provider configuration listed in the PDD. This authorizationURL is
invoked by the user (outside of Process Developer), and during this process, the OAuth
provider lets the user know that Process Developer is trying to access the account and gets
the user's content.
Once the user approves the access, the provider returns a verifier string/code to the user. In
the case of OAuth2.0, some providers require a redirect URL to which the request is redirected
along with verifier string as a request parameter. For providers (usually OAuth2.0 providers)
who require a redirect URL, it can be specified in the PDD along with other credentials.

authorize Takes the verifier string (given by the OAuth provider as a response to the authorizationURL)
and authorizes with the OAuth provider. It also stores the OAuth access token returned by
provider. This token is used further to access the protected resources on the provider.
Once this token is generated, OAuth initial setup workflow is over. This is typically a one-time
effort. However, it has to be done once the OAuth access token is expired (its lifetime is
decided by OAuth provider).

sendRequest If the OAuth token for the given OAuth provider and user is present in Process Developer, this
operation sends a request to access protected resources on OAuth provider system. This
should be preceded by an authorize call, which generates and stores token in Process
Developer.

The following illustration shows a sample implementation for an OAuth service.

414 Chapter 29: Custom Service Interactions

For deployment details, see “Specifying Deployment Details for an OAuth Service Provider” on page 415.

Specifying Deployment Details for an OAuth Service Provider
This topic discusses OAuth Invoke Handler Input Parameters.

For an overview, see “Using an OAuth REST-Based System Service ” on page 413.

When you create a PDD file for an OAuth provider, you must add the appropriate parameters for the Partner
Role endpoint reference.

For a Partner role endpoint reference, select Oauth Service for the Invoke Handler.

Fill in the following configuration parameters for the service:

OAuth Provider Select a provider from the list

Key (required) Represents the OAuth client ID, used to authorize a client. You must follow the procedure from the
provider to obtain the key. For example, LinkedIn requires you to fill in a form online to receive a
key and secret.

Secret (required) Secret text given by the OAuth provider. Used during authorization.

Scope (optional) Scope represent the subdomain of the OAuth provider that the OAuth client wants to access. Ex:
https://docs.google.com/feeds/ is a scope value to access the Google docs feed. This is
optional from the OAuth system service perspective, but can be mandatory based on the target
OAuth provider.

RedirectURL
(optional)

This is usually required by OAuth2.0 providers. The response of authorization with a verifier string
is redirected to this URL. Usually the verifier string is a query parameter (in the form url?
code=verifierString).

Adding a Custom Provider

It is possible to integrate with a custom OAuth provider (one that is not provided in the default list) and add it
to the list in the PDD. To add a custom provider, create a configuration file (.oap file) in your project's deploy
folder describing one or more endpoints for providers.

For example, to add the ACMEOAuthProvider:

<?xml version='1.0' encoding='UTF-8'?>
<oaconfig:oauthProviders xmlns:oaconfig="http://schemas.activebpel.org/OAuth/2011/08/01/
aeoauthProviderConfig.xsd"
targetNamespace="http://schemas.activebpel.org/OAuth/2011/08/01/
aeoauthProviderConfig.xsd">
 <!-- name of the provider and version. Any text and oauth
 version -->
 <oaconfig:provider name="ACMEOAuthProvider"
 oauthVersion="1.0">
 <oaconfig:requestTokenEndpoint
 verb="POST"> https://oauth.acme.com/ws/oauth/request_token
</oaconfig:requestTokenEndpoint>
 <oaconfig:accessTokenEndpoint verb="POST">
 https://oauth.acme.com/ws/oauth/access_token
 </oaconfig:accessTokenEndpoint>
 <oaconfig:authUrl verb="GET">
 https://oauth.acme.com/ws/oauth/confirm_access?oauth_token=%s
 </oaconfig:authUrl>
 </oaconfig:provider>
</oaconfig:oauthProviders>

Note that the placeholders (%s) should be given in the URL templates so that the OAuth token is substituted
by the OAuth system service.

Using an OAuth REST-Based System Service 415

Once the configuration file is part of project, it is detected, and the PDD's OAuth provider list is updated with
the local configuration. Note that the extension of the file must be .oap. The file can hold any number of
custom OAuth provider configurations.

A configuration file for out-of-the-box OAuth providers can be found in the Process Server catalog with the
location hint project:/com.activee.rt.oauth.services/config/ae-oauth-providers.oap.

Using a Java Messaging Service Invoke Handler
Process Developer supports a Java Messaging Service (JMS) invoke handler for invoking endpoints. This
means that you can bypass the standard Process Developer engine invocation framework of SOAP over
HTTP with a SOAP over JMS invocation or a plain XML message over JMS. With a JMS invocation, your
process can communicate with any of the Message-Oriented Middleware (MOM) applications that your
server supports. This means when you invoke a partner service you can:

• Connect to MOM queues

• Set the names of MOM queues on which the server should return the response

• Create the MOM message that contains the SOAP envelope

• Drop the MOM message that contains the SOAP envelope

Providing Deployment Description for JMS Invoke Handler

In the Process Deployment Descriptor file of a BPEL process, you can specify the details of a JMS invoke
handler that provides Metro with the details needed to call the JMS transport mechanism.

On the Partner Links page of the PDD editor, select jms as the Invoke Handler for the partner role.

In the Endpoint Reference text box, add the details specific to JMS transport.

The details you can provide include:

• Queue or topic look up name

• For a request/response service, the reply queue as a wsa:ReplyTo header as a ReferenceParameter for
routing responses (see example below)

• Additional JMS message properties, included as wsa:ReferenceParameters on the partner endpoint

• Optionally, you can include a JMS policy assertion on the partner role (See examples below)

Providing the Endpoint Reference Details

In Process Server, SOAP messages delivered over JMS use WS-Addressing headers to route requests to the
appropriate service.

The target queue and, optionally, the service name of a JMS invoke is specified in the Address element of the
endpoint reference, formatted as <queue JNDI name>?<service name>.

Example 1: Looking up a queue using a JNDI Name

<wsa:EndpointReference>
 <wsa:Address>queue/com.activee.jms.bpel.queue
 ?WSSReceiverService</wsa:Address>
</wsa:EndpointReference>

This translates into looking up the queue using a JNDI name of:

queue/com.activee.jms.bpel.queue
with a target service name of WSSReceiverService. The service name is used by the message receiver on the
other side to determine the target service you are invoking.

416 Chapter 29: Custom Service Interactions

Example 2: Using a <wsa:ReplyTo> for Two-Way Operation

For synchronous operations, where a durable response is not required, the JMS mechanism of a temporary
queue handles messages for an invoked service. Note that the temporary queue cannot be accessed during
recovery or on another node due to failover.

If the activity is long running, or requires failover, you can specify the response location in a <wsa:ReplyTo>
element in the Endpoint Reference definition. For example:

<wsa:EndpointReference>
 <wsa:Address>...</wsa:Address>
 <wsa:ReferenceProperties>
 <wsa:ReplyTo>
 <wsa:Address>queue/com.activee.jms.reply.queue/
 </wsa:Address>
 </wsa:ReplyTo>
 </wsa:ReferenceProperties>
</wsa:EndpointReference>

Notice that the reply address specifies only the queue name with no service. The service name is not
necessary for a two-way response message.

Example 3: Using a <wsa:ReplyTo> for CallBack Operation

If the operation is a one-way with a callback, specify the <wsa:ReplyTo> endpoint as follows:

 <wsa:ReplyTo>
 <wsa:Address>queue/com.activee.jms.reply.queue
 ?JMSCallbackService
 </wsa:Address>
 </wsa:ReplyTo>

Example 4: Adding JMS Properties to the Endpoint Reference

If you need to populate additional JMS string properties on an invoke, they should be included as
wsa:ReferenceParameters on the partner endpoint. These properties are also included as SOAP headers if
sending as a SOAP envelope.

 <wsa:ReferenceParameters>
 <wsa:ReplyTo></wsa:Address>...</wsa:Address>
 </wsa:ReplyTo>
 <abx:param name="someProperty" value="value"
 xmlns:abx="http://www.activebpel.org/bpel/extension" />
 </wsa:ReferenceParameters>

Adding a JMS Delivery Options Policy Assertion to a Partner Role

The message sender (partner role) controls the messaging options used for JMS. When Process Server
receives a two-way request, the reply is sent mirroring the options used for the request. For example, if the
request message is a bytes message formatted as plain XML, the response will likewise be a bytes message
formatted as plain XML. The options used for sending a JMS request are controlled through a WS-Policy
assertion on the endpoint. You can specify additional attributes for JMS message delivery as a partner role
policy assertion.

Using a Java Messaging Service Invoke Handler 417

The basic policy attributes are displayed in the JMS Delivery Options Policy Assertion dialog. For instructions
on using this policy assertion, see “Adding Policy Assertions ” on page 357.

Message Type:
Text (default)
or Bytes

A text message content is XML text.
A bytes message content is a byte array.

Message
Format:
SOAP (default)
or XML

SOAP the default format. SOAP refers to a SOAP envelope as message payload. For SOAP
messages, all WS-Security features are available to provide message level authentication,
encryption and signature support.
XML is either a request or response document as plain XML with no SOAP envelope. For plain XML
messages, message level security is not available and you must control access by configuring
authorization restrictions on JNDI lookups for the destinations through your application server's
administration console.

Priority
(integer)

If desired, specify a non-negative integer for a message handling priority. The default value is 0,
which means that the default for the provider is used.
JMS defines a 10-level priority value with 0 as the lowest and 9 as the highest. Clients should
consider 0-4 as gradients of normal priority and 5-9 as gradients of expedited priority. Priority is
set to 4, by default.

Persistent
Delivery Mode

This setting controls whether or not the JMS provider persists messages to storage for all
processes. The default is persistent.
Select persistent to instruct the JMS provider to ensure that a message is not lost in transit in case
of a JMS provider failure. A message sent with this delivery mode is logged to stable storage when
it is sent. Note that persistent delivery requires that your JMS provider be configured with storage.
Also, there is usually a performance hit with persisting messages.
Select non-persistent if desired. This mode does not require any knowledge of how a provider is
configured for storage.

Time to Live
(ms)

This setting allows you to specify the amount of time an unconsumed message remains on a queue
(in milliseconds). If a message will become obsolete after a certain period, you may want to set an
expiration time. The destruction of obsolete messages conserves storage and computing
resources.
The default setting is 0, which means that the default for the provider is used. Typically, this means
that messages never expire and remain on the queue forever.

JMS Manager
ID

In the Process Console, you can add multiple JMS Provider configurations. If you want to use one
other than the default, you can specify the Manager name for a JMS Provider that has been
configured.

Other attributes, such as the correlation id and expiration, can be set dynamically at runtime through a copy
operation to the partner endpoint.

A jmsCorrelationID correlates response messages for two-way operations. By default, Process Server use
the wsa:MessageID of the request as the unique correlation Id. You can use the default correlation id with an
external consumer, provided that consumer will propagate the JMSCorrelationID from the request. If you
notice a problem with invoke timeouts, a missing/incorrect correlation id can be the cause.

If the consumer will not propagate the correlation ID from the request, you can set an explicit
jmsCorrelationID as an override in this policy. Note that using a static value becomes problematic if there
could be more than one invoke waiting for a response on the same queue. If responses all use the same
correlation id, there is no way to distinguish which response goes where. A workaround for this is to use a
temporary queue for receiving responses. If using a temporary queue for responses, a correlation id is not
necessary since there will be a unique temporary queue for each request-response pair.

Expiration is time in milliseconds from its dispatch time that a produced message should be retained by the
message system.

418 Chapter 29: Custom Service Interactions

Here is an example of a policy assertion added to a partner endpoint dynamically in a copy operation:

<partnerRole endpointReference=
 "static" invokeHandler="jms:Address">
 <wsa:EndpointReference>
 <wsa:Address>queue
 /com.activee.jms.bpel.queue?JMSOneWayService
 </wsa:Address>
 <wsp:Policy xmlns:abp="http://schemas.active-endpoints.com
 /ws/2005/12/policy"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <abp:JMSDeliveryOptions
 jmsManagerID="JMSMessagingManagerName"
 jmsMessageType="bytes"
 jmsMessageFormat="xml"
 jmsPriority="1"
 jmsCorrelationID="12345678"
 jmsExpiration = "9999999999"/>
 </wsp:Policy>
 </wsa:EndpointReference>
</partnerRole>

Configuring the Messaging Service in the Process Console

To take advantage of JMS messaging, your Process Server administrator must enable the Messaging Service
within the Process Console. See the Process Console Help for details.

Using a Java Messaging Service Invoke Handler 419

C h a p t e r 3 0

Process Exception Management
Process exception management is a feature available on Process Server. Benefits of this feature include
suspending processes when uncaught faults occur as well as providing alerts of their occurrences. The
Process Developer helps you use this feature in several ways.

The following topics discuss process exception management:

• “What is Process Exception Management ” on page 420

• “Suspending a Process Programmatically with a Suspend Activity” on page 421

• “Alert Service ” on page 468

What is Process Exception Management
Process exception management involves managing exceptions that occur in running processes. The
exceptions typically manifest themselves as faults that are not caught by normal fault handlers; that is, they
were not planned for. They are the result of unexpected errors in process execution, such as bad data or
problems with external systems.

Process exception management allows the process to be suspended at the faulting activity rather than be
terminated abnormally. In addition to the automatic suspend on uncaught fault, you can check for exception
cases programmatically in BPEL and use the Suspend activity to suspend the process. In either case a user,
who could be alerted of the problem, can then correct the errors in place and resume the process.

You can perform process exception management in the Process Console. For details, see “Suspending a
Process on Uncaught Faults ” on page 420.

For details, see:

• “Suspending a Process on Uncaught Faults ” on page 420

•

• “Alert Service ” on page 468

Suspending a Process on Uncaught Faults
Suspending a process on an uncaught fault applies to processes running on Process Server.

420

Use the following techniques to suspend all or individually selected faulting processes on Process Server:

• “Making Individual Processes Eligible for Suspension on Uncaught Faults ” on page 421

• “Making Individual Processes Eligible for Suspension on Uncaught Faults ” on page 421

• “Suspending a Process Programmatically with a Suspend Activity” on page 421

The Suspend on Uncaught Fault setting requires either Full or Persist, process persistence. For information
on persistence, see the Process Persistence section within the “General Deployment Options ” on page 348
topic.

Making all Processes Eligible for Suspension on Uncaught Faults
Suspending a process on an uncaught fault applies to processes running on Process Server.

According to the WS-BPEL 2.0 specification, a process with an uncaught fault terminates with a termination
handler. However, Process Server allows processes to be suspended when an activity is faulting if the fault
does not have a corresponding catch (that is, uncaught). Before completing execution of the activity, the
server stops the process so that you can retry or complete the activity.

You can enable this setting in the Process Console. For details, see the Process Console Help.

If desired, you can override the server setting for individual processes. For details, see “Making Individual
Processes Eligible for Suspension on Uncaught Faults ” on page 421.

Making Individual Processes Eligible for Suspension on Uncaught
Faults

Suspending a process on an uncaught fault applies to processes running on Process Server.

On the server, there is a configuration setting to make all processes eligible for suspension on an uncaught
fault. However, you can override the server setting in the process deployment descriptor (PDD) file of an
individual process. For details, see “General Deployment Options ” on page 348.

See also “Making all Processes Eligible for Suspension on Uncaught Faults ” on page 421.

Suspending a Process Programmatically with a Suspend Activity
For details, see Suspend.

Suspending a Process on Uncaught Faults 421

C h a p t e r 3 1

Creating Reports for Process
Server and Central

Add resources to deploy to the server.

Many of the pages in the Process Console display information about deployed and active processes, as well
as active tasks from BPEL for People processes. Many of these pages contains reports designed in Process
Developer using the Business Intelligence and Reporting tools (BIRT) in Eclipse.

The reports are designed essentially by making queries to the database and returning the results in the layout
desired, such as tables and charts.

You can create your own reports in Process Developer and then deploy them to the server and to Process
Central. As processes execute on the server, the database is updated and so is your report.

After you design and save a report, you can deploy it to the Process Server in a BPR file. A report is a
resource that is stored on the server. The reports you create appear on the Report page of Process Console,
along with the standard reports.

If you want to also display reports in Process Central, you must create an Process Central Configuration file
for it. For details, see “Creating a Process Central Configuration File ” on page 449.

The report definitions are stored in the Process Console catalog, so you can view, update, and delete the XML
source code for each report, if desired.

A good way to get started designing reports is to look at the sample reports included with Process Developer.

Topics discussing reports are as follows:

• “Creating the User Reports Orchestration Project ” on page 423

• “Using the Process Developer Report Template ” on page 423

• “Using the Process Developer Data Source ” on page 425

• “Creating a Data Set from the Process Developer Data Source ” on page 428

• “Understanding the Process Developer Data Model ” on page 429

• “Deploying a Process Developer Report” on page 429

• “Updating or Deleting a Deployed Report ” on page 430

• “Reporting Service ” on page 430

422

Creating the User Reports Orchestration Project
To view and deploy example reports, you can create an orchestration project from a template:

1. Select File > New > Orchestration Project.

2. Name the project Sample Reports or User Reports or similar, and click Next.

3. On the New Orchestration Project From Template page, select User Reports.

In the orchestration project, you will see a folder called report. Double-click on one of the reports in the
folder to open the Report Design perspective.

The sample reports are based on the Process Developer Template. For details, see “Using the Process
Developer Report Template ” on page 423.

If you want to deploy the sample reports to the Process Developer embedded server, see “Deploying a
Process Developer Report” on page 429.

Using the Process Developer Report Template
You can create a new Process Developer report using the Process Developer Template.

1. Select File > New > Other > Business Intelligence and Reporting Tools > Report.

2. Name a new report, such as new_report.rptdesign, and click Next.

3. From the New Report page, select the Process Developer Template, as shown in the illustration.

Creating the User Reports Orchestration Project 423

4. Select Finish and accept the suggestion to open the report design perspective.

You can view the template components in the Outline view, as the illustration shows:

424 Chapter 31: Creating Reports for Process Server and Central

The template contains the following:

• Data Source Connection. This connection is pre-defined to point to the Derby database included with the
Process Server. Derby includes an embedded JDBC driver. For details on the Data Source, see “Using the
Process Developer Data Source ” on page 425.

• Master Page Header and Footer. Double-click on a header or footer to view or change its properties.

• Styles. Several table row styles are included for reports with a data column layout.

• Script. When reports are deployed and running on the Process Server, the script, which is embedded in the
report XML file, detects the Data Source connection information by using the supplied AeBirtContext
class. For details, see “Deploying a Process Developer Report” on page 429.

Using the Process Developer Data Source
Included in the Process Developer Template is a connection to the Data Source that is pre-defined to point to
the Derby database included with the Process Server. Derby includes an embedded JDBC driver.

Note that Derby accepts only one connection at a time, so you cannot run the Process Developer embedded
server while you are designing reports.

To view the connection configuration, open the Outline view, and expand Datasources. Double-click on the
Process Developer data source, as shown in the illustration.

Using the Process Developer Data Source 425

To change the configuration for a different Process Server, you must add the same Driver Class and
Database URL that were configured for that server.

For example, if you have purchased Process Server with Apache Tomcat and want to configure the MySQL
database on Apache Tomcat server, you would use the following settings:

Driver Class:

com.mysql.jdbc.Driver
Database URL:

jdbc:mysql://localhost:3306/ActiveVOS?useUnicode=true
 &characterEncoding=UTF-8&characterSetResults=utf8

If your server database connection was configured with any changes to the DDL script, or any configuration
details, such as the User Name and Password, you must also update these settings. The User Name and
Password shown are the default for all servers.

The JNDI URL for the data source is detected at runtime.

426 Chapter 31: Creating Reports for Process Server and Central

Use the three buttons as follows:

• Manage Drivers: Pressing this button displays a dialog with two tabs. The first lets you manage JAR files
used by your data source.

The second lets you manage its drivers:

• Test Connection: Pressing this button tests the connection to the data source.

Using the Process Developer Data Source 427

• Bidi Settings: (bidi stands for "bi-directinal") Pressing this buttons displays the Advanced Bidi Data Source
Settings dialog box. Use the controls within it to set metadata and content Bidi formats.

See also “Creating a Data Set from the Process Developer Data Source ” on page 428 and “Understanding the
Process Developer Data Model ” on page 429.

Creating a Data Set from the Process Developer Data
Source

To build a Process Developer report, you create a data set. A data set specifies what data to retrieve from the
data source.

You can view a sample data set from a report in the User Reports Orchestration Project. To get started, see
“Creating the User Reports Orchestration Project ” on page 423.

Open a report from the report folder of the User Reports Orchestration Project. Then double-click on the data
set to view its properties, as shown in the following example.

428 Chapter 31: Creating Reports for Process Server and Central

For details on using data, see the How to create a data set help topic in the BIRT Report Developer Guide.

To figure out what data you want to retrieve, see “Understanding the Process Developer Data Model ” on page
429.

Understanding the Process Developer Data Model
Reports you create for the Process Server can retrieve data from the Process Developer Data Source that is
included in the Process Developer report template. To create a report design based on this template, see
“Using the Process Developer Report Template ” on page 423.

To create a data set based on the data source, you need details about the Process Data Model and Human
Task Data Model.

To view discussions as well as a sample entity relationship diagrams, see Process Developer Data Source
Models elsewhere in this help.

To view and use the complete Data Source model associated with your version of Process Developer, visit
the Developers SDK page on http://www.activevos.com. Scroll to the Reporting section.

Deploying a Process Developer Report
A report is a resource you can deploy to the Process Server and also display it in Process Central, if desired.
It is deployed the same way that a BPEL/PDD or other resource is deployed by using the Contribution -
Business Process Archive export.

If you are not deploying to the Process Developer embedded server that contains the Derby database, be sure
to modify the Data Source Connection details before deployment. For more information, see “Using the
Process Developer Data Source ” on page 425.

If you want to display the report in Process Central, you must also create a configuration file, described in
“Creating a Process Central Configuration File ” on page 449

Understanding the Process Developer Data Model 429

During deployment, you can add a Group Name and Description for each report so that your reports are
grouped together on the Process Server Report page.

For instructions on deployment, see “Deploying Additional Resources ” on page 376.

A report is deployed as an XML file that you can view in the XML Source tab of the Report Process Developer.
It is possible to edit the XML file on the server, as described in “Updating or Deleting a Deployed Report ” on
page 430.

Updating or Deleting a Deployed Report
After you deploy a report to Process Server, you can view the XML source of the report from the Process
Console Catalog page.

To update or delete a deployed report definition:

1. Start up the Process Server and open the Console.

2. In the Console, go to Catalog > Resources > Report Definitions.

3. Select a report and edit it, if desired.

4. Select Update to submit your changes or select Delete, if desired.

Reporting Service
Process Server supports a reporting service. This means that you can create a BPEL process that sends a
request to the server to take a snapshot of a deployed report, save the report as PDF, MS Word, or other
format, and return it to the process. You use an invoke activity for this purpose. Within your BPEL process,
you provide programming logic to email the report, use it in a People activity, or send it to an endpoint based
on an invoked service. You can schedule the process to run daily (or other frequency) to have a daily report
emailed.

Any BPEL process that implements report-based activities imports the WSDL provided with Informatica
Business Manager. The name of the WSDL is reporting.wsdl, and its port type, reportingPT, is in the
Participants view in the New Partner Service Provider wizard under System Services. The WSDL contains a
report operation.

<invoke
 inputVariable="reportMessageInput"
 operation="report"
 outputVariable="reportMessageOutput"
 partnerLink="Provider" />

To create a BPEL process that requests a report:

1. In the Project Explorer, create a new Orchestration project.

2. Select File > New > BPEL Process.

3. Name the process and click Finish.

4. In the Participants view, select New Partner Service Provider.

5. In the wizard, select System Services.

6. Select Execute Report, and select Finish.

430 Chapter 31: Creating Reports for Process Server and Central

7. From Participants view, drag the report operation to the canvas to create an invoke activity.

8. Fill in the Input values as described below.

9. Add the additional activities and programming logic to copy the report to an email, People activity, or
other service.
Tip: Use the attachment function, setAttachmentProperty, to give the report a meaningful name when it
is attached to an email.

10. Add fault handling by using the WSDL fault message fault name reportFault and variable as desired.

On the Process Console, go to the URN Mappings page and update the URL for Internal Reports, if needed.
The default is localhost:8080.

Input Message for Reporting Service

The input message for the invoke activity has the following parts, as shown in the example.

<ns2:reportMessageInput xmlns:ns2=
 "http://schemas.active-endpoints.com/reporting/2009/05/reporting.xsd">
 <ns2:report>ServiceActivityDetail.rptdesign</ns2:report>
 <ns2:format>pdf</ns2:format>
 <ns2:parameters>
 <ns2:param name="Service_Name" value="OrderProcessSvc"/>
 </ns2:parameters>
 <ns2:otherOptions>
 <ns2:option name="BIRT Parameter" value="true"/>
 </ns2:otherOptions>
</ns2:reportMessageInput>

Specify the input parameters for the invoke activity as follows.

<report> (Required). Name of the report design template. This is a report deployed to Process Server. The
report names are visible in the Process Console Catalog

<format> (Required). Format of the generated report. Valid formats are:
- pdf (default)
- doc (Word)
- xls (Excel)
- ppt (Powerpoint)
- ps (postscript)

<parameters> Each report can have its own set of parameters that are input to the report. For example, specify the
name of a deployed service to get a report about one particular running process. Parameters for the
standard reports are described below.

<otherOptions> Options for producing the report. There are many options, and they are documented in the BIRT
documentation. For details, here is a link. http://www.birt-exchange.org/devshare/
deploying-birt-reports/492-birt-viewer-2-3-user-reference/#description

Reports and Their Parameters

You can use the reporting service to access your own custom reports or the Informatica Business Process
Manager standard reports that are displayed in the Process Console.

In the Process Console, you can view a list of Informatica Business Process Developer report designs. You
can then select a report design to name in the <report></report> element of the reportMessageInput
variable.

To view a list of report design names, do the following:

1. Ensure that the server is running.

2. Open the Process Console.

Reporting Service 431

3. Select Catalog > Resources > Report Definitions.

4. In the Filters table, disable the check box for Hide System and select Submit.

Some of the reports have parameters, and you can use them in the <ael:param name="string"
value="string"/> element of the reportMessageInput variable.

The following reports contain parameters and valid values.

Active Tasks

• RP_State - (To see a complete list of states, go to the Active Tasks page of Process Console and select
the Run Report button. In the RP_State picklist, you can view the 14 different states.)

• RP_CreatedAfter - Date

• RP_CreatedBefore - Date

• RP_CompletedAfter - Date

• RP_CompletedBefore - Date

• RP_Name - String

• RP_Owner - String

• RP_SearchBy - String

• RP_OwnerType - integer

• RP_IdentityType - integer

• RP_NamesText - String

Server Log

• RP_LogLevel VERBOSE = 1, INFO = 5, WARNING = 6, ERROR = 7 CRITICAL = 8

• RP_LogSource USER = 8, MAINTENANCE = 9 and SYSTEM = 10

• RP_LogService ENGINE = 3, ALERT = 4, MESSAGING = 5, TASK = 6, VERBOSE = 7, EVENTING = 8, EMAIL =
9, IDENTITY = 10

• RP_LogEngineId integer greater than or equal to 1

See also “Email Service ” on page 479

432 Chapter 31: Creating Reports for Process Server and Central

C h a p t e r 3 2

Business Event Processing
Business event processing allows you to monitor activity of running or completed BPEL processes. For
example, you might want to know, "What is the average time for service X to process an order?" where service
X is an invoke activity in your process, and you are evaluating a given number of completed processes over a
certain time.

Another example of a business event to process is, "Alert me if the average time it takes to claim a task
exceeds N minutes." In this case, you can send an alert when a certain business condition is met.

The basic steps required for business event processing are the following:

• Define an event. Refer to “Defining an Event in the Process Deployment Descriptor ” on page 433.

• Deploy the event-based processes

• Create an event action process that runs based on a matching business condition

• Design and deploy the event-action process to manage and monitor events

• Deploy and run the processes that have defined events

Some of the benefits of using eventing include:

• Monitor processes in action and spot abnormalities

• View reports of activity

• Perform the analysis of a process that has already completed in order to view the cause of a problem

The following topics discuss business event processing:

• “Defining an Event in the Process Deployment Descriptor ” on page 433

• “Using System-Defined Events ” on page 434

• “Creating an Event-Action BPEL Process ” on page 436

• “Activity States Event Properties Task States and Task Event Types ” on page 437

Defining an Event in the Process Deployment
Descriptor

Defining an Event in the Process Deployment Descriptor

If desired, you can define a process-specific event to be used in event processing. This type of event is based
on a specific process activity or link. An event definition includes a BPEL object plus one or more life cycle
states, such as executed or faulted, and can optionally include data from an indexed property that is available
when the event occurs.

433

You define a process event in the Eventing tab of the Process Deployment Descriptor Editor.

Defining a process-related event is optional. If desired, you can use system-defined events. For details, see
“Using System-Defined Events ” on page 434.

To define a process-related event:

1. Create a new Process Deployment Descriptor, described in “Creating a Process Deployment Descriptor
File ” on page 347.

2. If desired, define one or more indexed properties. An indexed property of a process variable can be used
in the definition of an event. For details, see “Adding Indexed Properties ” on page 370.

3. Select the Eventing tab in the PDD Editor.

4. Select Add.

5. In the Event Definition dialog, type in a Service Name for an event. This is the name of the event-action
service that responds to this event. See “Creating an Event-Action BPEL Process ” on page 436.

6. In the Location picklist, select a BPEL object, such as an activity or link. For example select an activity:

For convenience, select the Dialog button to open the Find Business Event Source dialog. This dialog
displays named activities and links; that is, activities and links for which you replaced the generic label
(such as receive or l2) with a meaningful name. Use wildcards to locate an activity or link name.

7. Select one or more activity states to trigger the event. For a description of states, see “Activity States
Event Properties Task States and Task Event Types ” on page 437. For example, select executed.

8. If desired, add a business property mapped to an existing index property. A business property allows you
to return the data value that exists in a variable at the activity state selected for the event. For example,
you can find all faulting processes where the customerId is 101. To add a business property:

a. In the Business Properties panel, select Add.

b. In the Indexed Properties column, select the pick arrow to select an indexed property created on the
Indexed Properties tab of the PDD.

c. In the Business Alias column, select Property Name and notice that the indexed property name
appears.

Using System-Defined Events
Using System-Defined Events You can select a built-in system event to be used in event processing. This type
of event is based on well-known Process Server events.

Defining a system event is different from defining an event in the PDD of a process. You do not use the
Eventing tab of the PDD for system events. Instead, you create a process based on the Event Action system
service, and in the Partner Links tab of the PDD, you specify a required service name for the My Role
partnerlink. The details are provided below.

434 Chapter 32: Business Event Processing

The following system events are available

• AeEngineEvent
See the Engine Event table below for a description of this event. In order to receive the AeEngine event,
you must deploy a process, based on the Event-Action system service. The PDD of this process must
contain the required service name AeEngineEvent (with portType EventActionPT). For details, see
“Creating an Event-Action BPEL Process ” on page 436.

When using this event, be careful using the getProcessState admin API call if another node could
suspend the event. For example, if a node tries to load a process from a second node within the default 10
second process idle timeout, the engine will suspend threads in the node running the process so that the
requesting node (node 1) can load them. Being suspended, however, triggers an engine event process that
tries to get the process state. However, trying to get the process state from the node 1 also triggers a
suspend, which again triggers the engine event process. An attempt is now made to get the process state
from node 1. These actions repeatedly suspend the parent process over and over, which means the
process will not return to a running state.

• Task-Based Engine events
See the Task-Based Engine Events table below for descriptions. In order to receive a task-based event, you
must deploy a process, based on the Event-Action system service, containing one of the following
required service names:

- AeHumanTaskCreated. Use this service name only for the AeHumanTaskCreated event

- AeHumanTaskEvent. Use this name only for the AeHumanTaskEvent event

Engine Event

Event Name Description Event Properties

AeEngineEvent Fired when an engine event is fired. Engine events
consist of the following. To filter an engine event,
refer to its integer value:
- PROCESS_CREATED (0)
- PROCESS_COMPLETED (1)
- PROCESS_SUSPENDED (2)
- PROCESS_RESUMED (3)
- PROCESS_STARTED (4)
- PROCESS_RECREATED (5)
- PROCESS_UNDER_COORD (6)
- PROCESS_FAULTED (7)
- ENGINE_STARTED (100)
- ENGINE_STOPPED (101)
- ENGINE_FAILED (102)

processId (long)
state (int). The integer values are shown to
the left.
processName (QName) (Cannot be used in a
"compare" statement)
processLocalName(string)
processTargetNamespace
timeStamp (Date)
invokerLocationPath (String)
(ProcessUnderCoordination only)
parentProcessId (long)
(ProcessUnderCoordination only)

Using System-Defined Events 435

Task-based Engine Events

Event Name Description Event Properties

AeHumanTaskCreated Fired when a WS-HT task is created.
By the time this event fires, the task is
created and available for querying.

TaskPAProcessId (Double)
TaskPALocationId (Double)
TaskId (String)
TaskStatus (String)
See also properties listed in “Activity States Event
Properties Task States and Task Event Types ” on
page 437.

AeHumanTaskEvent Fired when a WS-HT task changes
state for any reason, such as when
claimed, started, added, commented,
output is submitted, or completed.

TaskEventType (String)
TaskEventPrincipal (String)
TaskPAProcessId (Double)
TaskPALocationId (Double)
TaskId (String)
TaskStatus (String)
See also properties listed in “Activity States Event
Properties Task States and Task Event Types ” on
page 437.

Creating an Event-Action BPEL Process
An event-action process receives and handles the events you define in other processes.

To create an event-action BPEL process:

1. In the Project Explorer, select the File > New > BPEL Process.

2. Select a Workspace folder, type in a File name, and select Next.

3. Select the BPEL template called Event Action Process.

A new BPEL file opens with a receive activity that takes an event trigger as input.

The event trigger is based on one of the following:

• Events you define in the eventing tab of the PDD of another process. In this case, the process containing
event definitions must refer to the service name of the event action process.

• AeEngineEngine event. In this case, the service name you select in your PDD for My Role must be
AeEngineEvent

• AeHumanTaskCreated event. In this case, your service name must be AeHumanTaskCreated.

• AeHumanTaskEvent event. In this case, your service name must be AeHumanTaskEvent.

A system event is consumed by the event action service for all running processes. However, you can narrow
your event handling to particular processes by programmatically referring to a process, such as:

$trigger/AeEngineEvent/processLocalName/text()='myProcess'

The following is an example of an input message for the event-action process with a defined event:

<evt:trigger xmlns:evt="http://docs.active-endpoints.com/wsdl/eventing/2008/06/
eventing.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <orderitem xmlns:ext="http://dinner2">

436 Chapter 32: Business Event Processing

 <processId type="xsd:long">601</processId>
 <eventId type="xsd:string">/process/flow
 /extensionActivity
 /peopleActivity[@name='PlaceOrder']:PID_601</eventId>
 <timeStamp type="xsd:dateTime">2008-07-28T19:03:33.464Z
 </timeStamp>
 <planId type="xsd:int">19</planId>
 <nodePath type="xsd:string">/process/flow
 /extensionActivity/peopleActivity[@name='PlaceOrder']
 </nodePath>
 <processName type="xsd:QName">ext:dinner</processName>
 <state type="xsd:int">2</state>
 <sessionId type="xsd:int">2</sessionId>
 <locationId type="xsd:int">75</locationId>
 <instanceNodePath type="xsd:string">/process/flow
 /extensionActivity/peopleActivity[@name='PlaceOrder']
 </instanceNodePath>
 <myOrderItemProp type="xsd:string">sandwiches
 </myOrderItemProp>
 </orderitem>
</evt:trigger>

Activity States Event Properties Task States and
Task Event Types

Activity States, Event Properties, Task States, and Task Event Types

See the following tables for defining parameters for activity states, event properties, task states, and task
event types.

Activity States

During execution, an activity or link is associate with a processing state. If you are defining an event,
described in “Defining an Event in the Process Deployment Descriptor ” on page 433, you must select one or
more processing states to include in the definition.

The following is a description of each state that can be associated with an activity or link.

Activity State Description

inactive activity or link is not the next object to be executed and has not been executed

execute complete normal completion of activity

dead path status activity did not execute due to branch or link condition

suspended Process is suspended on this activity

ready to execute activity or link is the next object to execute

execute fault abnormal completion of activity

terminated Activity was terminated because either the process was terminated or one of the activity's
ancestor containers faulted

faulting A suspended process stopped on a faulting activity

Activity States Event Properties Task States and Task Event Types 437

Activity State Description

executing activity is executing normally

link status true, if the link was executed

Event Properties

The following table describes the available properties that are part of the input trigger message.

Event Property Type Description

processId long Process ID of the BPEL process that generated the event

state int One of the state constants found in IAeProcessEvent, such as ReadyToExecute,
Executing, ExecuteComplete.
Note: See the table below for integer values.

eventId string Unique event id that is a combination of the location path and process ID of the
activity that generated the event. This is useful, for example, to correlate a start event
and completion event fired by the same activity.

instanceNodePath string Path to the activity that generated the event. This path includes instance information
in the case that it is within a forEach or other container

nodePath string Path to the activity that generated the event. This path does not include instance
information. It could be considered as the path into the process definition rather than
the process instance.

locationId int ID of the activity that generated the event (similar to nodePath)

processName QName Name of the BPEL process that generated the event

timeStamp Date Time the event was fired

sessionId int Session ID of the process at the time the event was fired. The session ID is
incremented whenever the process leaves memory for any reason.

faultName string Name of the current process fault, if one exists

planId int ID of the process plan associated with this process instance

One of the event properties is the state property. The following table describes the states and the integer
value optionally available to use to refer to the state.

Event State Description Integer Value

READY_TO_ EXECUTE The activity is now ready to execute 0

EXECUTING The activity has begun executing 1

EXECUTE_COMPLETE The activity has completed normally 2

EXECUTE_FAULT The activity has faulted 3

438 Chapter 32: Business Event Processing

Event State Description Integer Value

LINK_STATUS A link has been evaluated 4

DEAD_PATH_STATUS The activity has gone dead path (will not execute) 5

TERMINATED The activity was terminated due to an Exit activity executing or an ancestor
container faulting

6

SUSPENDED The activity has been suspended 13

FAULTING The activity is faulting 14

INACTIVE The activity is inactive -1

Task States

The following is a description of each task state that can be used as a string in the TaskStatus event
property.

Task State
(TaskStatus(string))

Description

READY Task can be claimed by one of its potential owners

RESERVED Once a potential owner claims the task, it transitions into the Reserved state, making
that potential owner the actual owner

IN_PROGRESS Task has been claimed and is being worked on

SUSPENDED In any of its active states (Ready, Reserved, InProgress), a task can be suspended,
transitioning it into the Suspended state.

EXITED One of the final states (Completed, Failed, Error, Exited, Obsolete). The requesting
application is no longer interested in any result produced by the task.

FAILED Abnormal completion of task

COMPLETED Successful completion of the work

Task Event Types

The following list includes valid strings for task event types:

activate deleteFault resume

addAttachment deleteOutput setFault

addComment escalated setGenericHumanRole

cancel expire setOutput

claim fail setPriority

Activity States Event Properties Task States and Task Event Types 439

complete finalize skip

create forward start

delegate nominate stop

deleteAttachmentById reassign suspend

deleteAttachments release suspendUntil

deleteComment remove updateComment

440 Chapter 32: Business Event Processing

C h a p t e r 3 3

Process Central Forms and
Configuration

The following topic discuss Process Central forms and configuration:

• What is Process Central?

• “Creating a Process Central Process Form ” on page 442

• “Testing and Debugging Process Central Forms ” on page 449

• “Creating a Process Central Configuration File ” on page 449

• “Deploying Forms Reports and Configuration Files” on page 460

• “Adding Multilingual Support to Process Central” on page 461

• “Process Central Advanced Configuration ” on page 465

What is Process Central
Process Central is a client application that contains process request forms, Tasks, and Reports. Users of
Process Central can start a process, work on human tasks (from a BPEL for People process), and view
reports related to tasks. In Process Developer, you create and deploy forms, tasks, and reports.

When the server is running, you can access Process Central in Process Developer at the URL:

http://localhost:8080/activevos-central

Note that your host:port can differ if you changed it during Process Developer installation.

At the Login page (only on the server running in Process Developer), you can enter the following username
and password:

User name: manager

Password: manager

This user name is defined in the enabled Identity Service running on Process Developer's embedded server.
By default, there is a tomcat-users.xml file enabled, and you can log in with this name or another of the user
names listed that has the abTaskClient role. The tomcat-users.xml file is not enabled for Process Servers.

As a developer, you can contribute to Process Central as follows:

• Create a configuration file that customizes the navigation area of Process Central and describes the
forms, tasks, and reports that are deployed.
See “Creating a Process Central Configuration File ” on page 449.

441

• Create a process request form so that users can start a process by submitting a form.
See “Creating a Process Central Process Form ” on page 442.

• Create a report
See Creating Reports for Process Server and Central.

• Create an HTML rendering for a task in a People activity.
See Providing Renderings for Task Clients in the Human Tasks section of this help.

The following illustration shows an example of Process Central. Note that the Tasks, Forms, and Reports
bars on the left can slide up and down to change the display.

Creating a Process Central Process Form
Select an operation to create an HTML form used for sending a request message to a process. You can
accept the default request folder and default file name for the process request form, or enter new ones.

For an overview of this topic, see What is Process Central?

A process request form is an HTML file generated from the input message for a starting (create instance)
receive or pick activity. You deploy the form to the server, and users can then submit it to start a process
from Process Central.

To create a Process Request Form:

1. We recommend that you create a process deployment descriptor (PDD) before creating a process
request form so that the service you want to target is already known. If the service name (that is, the My
Role service name in the PDD) is not known, you must add it manually to the form, as described in
“Understanding the Process Request Form Template” on page 443.

442 Chapter 33: Process Central Forms and Configuration

2. Select File > New > Process Request Form.

3. Select the port type and operation defined in the starting activity of the process.

4. Accept the default location and filename for the form or modify them. The default filename is the
operation name.

5. For multilingual support of the form, select Advanced. For details, see “Adding Multilingual Support to
Process Central” on page 461.

See also:

• “Understanding the Process Request Form Template” on page 443

• “Editing HTML in Process Central Forms” on page 444

• “Adding a New Service Operation for a Form or a Task ” on page 445

• “Adding a New Service Operation for a Form or a Task ” on page 445

• “Customizing Task and Form Scripts An Introduction ” on page 446

• “Using the Process Developer SDK for Customizing Forms ” on page 448

Understanding the Process Request Form Template
When a user submits a process request form, the server must match the request to the service name in the
PDD. Be sure that the service name shown in the form matches the My Role service name in the PDD (for the
starting activity of the process).

In the generated form, find the line of code for the service name and verify the name:

<script type="text/javascript">
//<![CDATA[
 // request form to submit requests and handle response
 var AeRequestForm$ID = function() {
 // this
 var mFormInstance = this;
 // the service name
 var mServiceName = "EstimationService";

Making Additional Modifications

If you wish to make additional modifications to a process request form, it is helpful to understand the
template used to create the form and the HTML file that is generated from it.

Visual Parts of the Form

• Title
By default the title is based on the operation name of the receive activity's interface. It is in the top-most
table of the HTML page.

• Input Message Parts
If the message is a single-part element, there is one table containing one row for each child element.
There is a separate table for each element. If an element is repeating, two command buttons are added:
Add and Remove.

• Send Request command button
At the bottom of the form, a command button is added to submit the request and start the process.

To modify the form, see “Editing HTML in Process Central Forms” on page 444 and “Adding a New Service
Operation for a Form or a Task ” on page 445.

For multilingual support, see “Adding Multilingual Support to Process Central” on page 461.

Script Section of the Form

Creating a Process Central Process Form 443

The script contains the commands to format and display the form dynamically in Process Central. The script
is JavaScript, containing JavaScript Object Notation (JSON) and jQuery syntax to provide functionality in the
form as well as transport protocol. For details, see “Customizing Task and Form Scripts An Introduction ” on
page 446.

Editing HTML in Process Central Forms
Use the Eclipse Web Page Editor for creating HTML Requests and Tasks for Process Central.

Once you create an Process Central form, it is displayed in the Web Page editor. You may want to make
simple edits to the form as follows:

• Add instructions for end users.
Add HTML tags, such as <p> </p>or to include details on how to use the form.

• Improve the look and function of the form with inline styles, images, and links.
Add common HTML links such as <href> and . Images can be deployed to the Process Server as
resources within the business process archive (BPR) file. For details, see “Deploying Forms Reports and
Configuration Files” on page 460.

• Add multilingual support (internationalization) that is not added in the Web Page Editor. See “Adding
Multilingual Support to Process Central” on page 461.

• Add additional service operations to the form for multiple inputs and/or outputs. See “Adding a New
Service Operation for a Form or a Task ” on page 445.

About the Web Page Editor

Process Developer includes the Eclipse Web Page editor for editing request and task forms. Note that in
Process Developer Preferences, a setting is enabled for the Web Page editor to include a Process Central
style sheet. The style sheet includes the font and background styles for Process Central.

Editing in the Web Page Editor

The Web Page editor contains two editing panes: Design and Source. The Design pane shows the form in
graphical mode and the Source pane contains the HTML tags and JavaScript functions.

Toolbar buttons allow you to show or hide either pane or split the panes horizontally or vertically.
Additionally, you can apply simple formatting for text elements, such as bold or italics.

An Outline view is helpful for selecting a construct in the editing pane.

For a view of what the form will look like in Process Central, select the Preview tab. Preview shows the
placement and look of paragraphs, tables, control buttons and other constructs, but command buttons are
for display only.

In Design mode, use the HTML palette to add additional constructs, such as text fields, images and lines.

See also:

• “Adding a New Service Operation for a Form or a Task ” on page 445

• “Customizing Task and Form Scripts An Introduction ” on page 446

• “Using the Process Developer SDK for Customizing Forms ” on page 448

• “Testing and Debugging Process Central Forms ” on page 449

444 Chapter 33: Process Central Forms and Configuration

Adding a New Service Operation for a Form or a Task
Select an operation to create an HTML form used for sending a request message to a process. You can also
select an operation to add a new service to a process request or task form.

If desired, you can modify an existing form or task form by adding fields and functions generated from
service operations. A service operation is a WSDL operation from a Workspace WSDL that represents the
endpoint of a BPEL process running in A Process Server. The operation must have a service name associated
with it.

When a task or form is open in the Web Page editor, the Participants view, normally displaying process
participants, shows only the service operations available for forms, as shown.

There are several use cases for adding new service operations. Here are some examples:

• If you have an existing task or form, but the schema for the task or service operation has been updated,
you can modify or add the additional fields to your existing form by dragging and dropping them into the
form

• Enhance the functionality of form fields by calling a service. For example, if the form field is "Select a
Country," call a service to provide a list of country names.

If you have a deployed process that contains an operation you want to use, you must import the WSDL
service definition into your workspace.

To add a WSDL to the Workspace:

1. In the Process Console, display the Catalog Service Definitions page.

2. Select the Service Definition of a deployed process to display the WSDL for the service.

3. Copy the URL. For example, http://localhost:8080/active-bpel/services/loanservice?wsdl.

4. In your project, right-mouse click on Service References.

5. Select Import.

6. Paste the URL into the field for Enter the URL to import from, and select Finish.

To add a new service operation:

1. Open a task or form in the Web Page editor.

Creating a Process Central Process Form 445

2. In the Participants view, right-mouse click on Service Operations, and select Add Service Operation.

3. In the Select Service Operation dialog, select a Port Type and Operation.

4. Notice that the service name may be unknown, if it does not exist in the process PDD file. Ensure that
you add the service name, as described in “Understanding the Process Request Form Template” on page
443. If the name is unknown, the dialog lets you know, as shown:

Events that happen when you add a new service operation:

• A Send Request button is added to the bottom of the HTML form for the new operation

• A new JavaScript section is appended to the source file. This is the section where you must specify the
service name.

• The operation and input/output messages are added to the Participants view

To use the new service operation in your form:

1. Ensure that your form is in focus in the Web Page editor.

2. In the Participants view, expand an operation to display the input and/or output message.

3. Drag the operation's input/output message, or a message's part, or a part's element to a location in the
Design view.

If you are adding multilingual support for forms, you must manually add multilingual support to the new fields
and add the language values to properties files. For details on how to manually update the form, review
“Adding Multilingual Support to Process Central” on page 461.

See also:

• “Editing HTML in Process Central Forms” on page 444

• “Customizing Task and Form Scripts An Introduction ” on page 446

• “Using the Process Developer SDK for Customizing Forms ” on page 448

Customizing Task and Form Scripts An Introduction
The generated HTML forms for tasks and forms fulfill a basic requirement of rendering XML message data
into HTML. In addition, the form allows for powerful customization by taking advantage of several HTML-
based technologies that Process Developer uses to create the form, namely:

• JavaScript and Asynchronous JavaScript and XML (AJAX)

• JavaScript Object Notation (JSON)

• JQuery and JQuery UI

These technologies in combination provide dynamic forms and tasks. Note the following development
features for a form:

• Uses a standards-based solution

• Allows you to work in any HTML editor

446 Chapter 33: Process Central Forms and Configuration

• Provides many rendering possibilities for task and form message data, such as date pickers, tabs, check
boxes and combo boxes

• Allows rich additions, including calls to additional services, images, and most anything you can script for
a Web application project

• Provides access to large amount of technical resources, knowledge bases and web application
developers

Below are some details on each of the technologies used to create tasks and forms.

JavaScript and AJAX

JavaScript is the binding for the form and includes the subset of JSON and JQuery. AJAX calls services
asynchronously in the background without interfering with the display and behavior of forms and tasks.

JSON

JavaScript Object Notation (JSON) is a data interchange format. XML messages from the form or task are
converted to a JSON object. Process Developer's implementation of JSON is within the Google Data Protocol.
For more information on JSON, see http://code.google.com/apis/gdata/json.html.

The Google Data Protocol has the following rules:

• XML is represented as a JSON object.

• XML version and encoding attributes are converted to version and encoding attributes of the root element,
respectively.

• If an element has a namespace alias, the alias and element are concatenated using "$". For example,
ns:element becomes ns$element.

• Each nested element or attribute is represented as a name/value property of the object.

• Attributes are converted to string properties.

• Child elements are converted to object properties.

• Elements that can appear more than once are converted to array properties.

• Text values of tags are converted to $t properties.

The following is an example of a XML to JSON conversion:

XML Message:

<?xml version="1.0" encoding="UTF-8"?>
<types1:EstimationRequest
 xmlns:ns="http://example.org/QuoteRequest.xsd"
 xmlns:ns1="http://example.org/QuoteRules.xsd"
 xmlns:types1="http://example.org/Estimation.xsd">
 <ns:refNumber>1</ns:refNumber>
 <ns:quoteRequest>
 <ns:contact>
 <ns:name>JZ</ns:name>
 <ns:email>activevos@gmail.com</ns:email>
 </ns:contact>
 <ns:model>500</ns:model>
 <ns:year>1983</ns:year>
 <ns:description>a fine car</ns:description>
 </ns:quoteRequest>
</types1:EstimationRequest>

JSON Object:

 {"EstimationRequest":{"xmlns":"http:\/\/example.org\
 /Estimation.xsd",
 "refNumber":{"xmlns":"http:\/\/example.org\
 /QuoteRequest.xsd","$t":"1"},
 "quoteRequest":{"xmlns":"http:\/\/example.org\
 /QuoteRequest.xsd",

Creating a Process Central Process Form 447

 "contact":{"name":{"$t":"JZ"},
 "email":{"$t":"activevos@gmail.com"}},
 "model":{"$t":"500"},
 "year":{"$t":"1983"},
 "description":{"$t":"a fine car"}}}}

Tip: In order for forms to work with Process Central (JSON + JavaScript), the form element names must
observe the same rules used to define JavaScript variables. For example, the variables can only contain
contains letters, numbers, or underscores. Also element names should not be a reserved JavaScript keyword.

jQuery and JQuery UI

jQuery is a JavaScript library that simplifies HTML document traversing, event handling, animating, and Ajax
interactions. jQuery is built to select certain elements on a page and manipulate them. jQuery UI provides
visual controls, including core interaction plug-ins as well as many UI widgets.

For details, see http://jquery.com/

JQuery Example

The selection process in jQuery is a filter process, whereby every element on a page is put through the filter
you supply in a command, and the command returns either the single matching object or an array of
matching objects from which you can traverse.

For example, to get an array of all the matching HTML elements in a page, you pass the HTML tag into the
jQuery search field:

// Create a red background for every <p> tag in the page.
$("p").css("background", "#ff0000");

In a form, Process Server uses jQuery to select data elements. In the following example, a jQuery command
creates a table for repeating elements. If a user wants to add a new row, the following code is used:

// Handles the adding of a new repeating field
$("#processRequestForm$ID").find("table.avc_repeating_field_data_table
input[type='button'].avc_add_field_element").click(function() {
 var table = $(this).parents("table:first");
 var rows = $(table).find("tbody tr").length;
 var lastRow = $(table).find("tbody tr:last");
 var newRow = $(lastRow).clone(true);
 $(lastRow).after(newRow);

HTML element ID attributes must end with $ID suffix, such as in the example above (#processRequestForm
$ID). The $ID suffix provides a unique HTML element ID to avoid collisions with other forms.

See also:

• “Using the Process Developer SDK for Customizing Forms ” on page 448

• “Testing and Debugging Process Central Forms ” on page 449

Using the Process Developer SDK for Customizing Forms
To take full advantage of customizing forms and tasks, we recommend that you download and familiarize
yourself with the Informatica Business Process Manager SDK Package. This package includes a detailed
discussion of Process Developer XML-JSON and Process Developer XML-JSON for Process Central, showing
you form development and usage. (This discussion is also part of this help.)

Where to find the Process Developer SDK

The SDK Package and Documentation kit is available in the Informatica InfoCenter. The latest InfoCenter is
located at http://infocenter.activevos.com. Note that you must use the version of the SDK that is
available for your product version.

You can link remotely to the InfoCenter's SDK documentation from Process Developer Online Help. For
instructions on displaying remote help, refer to the Help Preference in Process Developer.

448 Chapter 33: Process Central Forms and Configuration

Testing and Debugging Process Central Forms
After you deploy one or more process request forms and task forms, you can test and debug your JavaScript
by using a browser JavaScript Debugger and enabling debugging in Process Central. You can also use the
JSON Converter utility.

To debug your JavaScript in HTML forms, do the following:

• Install or enable a JavaScript debugging tool in your browser, such as Firebug for Firefox, built-in
debugging in Internet Explorer, or the Developer JavaScript Debugger in Chrome.

• To enable debugging in Process Central, add the following command to the Process Central URL as
follows:
http://localhost:8080/activevos-central/avc/avc.jsp?debug=true

• Use the JSON Converter tool to check the conversion of JSON to XML and vice versa. Check what a JSON
request form looks like in XML or generate sample XML data and convert to JSON. Access the converter
at:
http://localhost:8080/active-bpel/jsonConverter.html

When you make changes in your form and redeploy it, you can select Reset Form in Process Central to view
the updated form.

With debug enabled, it is easier to debug jQuery functions. They get expanded into readable lines of code
instead of the one long line of code that typically shows in a debug console.

For task forms, you can also use Development Mode for testing layouts without redeploying the form.

Tips for testing forms:

• Be sure that your HTML forms are well-formed XML. Process Central validates forms and provides
warnings if there are invalid tags.

• Be sure to use lower-case element names that are schema-valid.

• Check that all tags are properly closed with end tags.

• In HTML markup, mixed types are not supported. For example, within an XML message element, you
cannot add HTML tags, such as <contactName>Georgia Jane</contactName>.

• HTML element ID attributes must end with $ID suffix, such as processRequestForm$ID. The $ID suffix
provides a unique HTML element ID to avoid collisions with other forms.

• JavaScript reserved words, such as in and out are not allowed as JSON data parts. If your schema
contains an element named as a JavaScript reserved word, you may see a blank form in some browsers.
To correct the problem, you must change the JavaScript portion of your form as shown in the example:
Incorrect: getText(parametersTaskInputPart.NewOperation.in) where in is an input message for
NewOperation.

Correction: getText(parametersTaskInputPart.NewOperation["in"])

Creating a Process Central Configuration File
The Process Central Web application contains Forms, Tasks, and Reports that you configure for navigation.

A basic configuration file resides in Process Server to provide the initial configuration for navigation filters.
You can view the file from the Catalog Resources page of the Process Console.

Testing and Debugging Process Central Forms 449

You can create additional configuration files that customize the navigation filters, on a user by user or group
by group basis, and also describe the forms and reports to be deployed.

You can also replace the basic configuration file with your own file in Process Server. All elements from the
basic configuration file are required, and by default the basic file is deployed. Your modifications override the
basic settings.

To create an Process Central Configuration (.avcconfig) file

1. Select File > New > Central Configuration.

2. Accept the default location and filename for the file or modify them. The default location is the deploy
folder, and the filename is based on the project name.
The file opens in an XML editor, and the main sections of the file are commented out. See Editing Tips
below for help in editing the file.

Overview of Configuration File Sections:

Section Configuration filters you can add

Task Role Filters: See “Configuring
Task Role Filters ” on page 453

- Items in the Role drop-down
- Items in the Show drop-down
- Folder names in the Tasks list
- Show or hide folders based on users and groups (allowed roles)
- Custom column names for tasks
- Task list filtering

Forms: See “Configuring Form
Filters ” on page 451
Reports: See “Configuring Reports
Filters ” on page 452

- Folder names in the Forms list or Reports list
- Show or hide folders based on users and groups (allowed roles)

Localization See “Adding Multilingual Support to Process Central” on page 461

Contributions to Process Central,
Forms and Tasks

Create your own scripts, CSS, and other elements. Specify them in the
<centralIncludes> section. For details, see “Including Your Own Styles Scripts and
Meta Data for Process Central” on page 452.

Editing Tips:

• Uncomment the section you want to work on, such as the Task Role Filters section.

• For readability of your file, delete the sections you do not want to deploy in this file and create separate
configuration files for each of the sections.

• Forms must be valid XML so be sure to close HTML tags.

• Use Content Assist (CTRL + spacebar) to add new elements to the file based on the Process Central
configuration schema.

• In the Outline view, right-mouse click on an element to add context-sensitive attributes and children

• You can view the avoscentral-config.xsd schema in your Process Developer installation at:
<installdir>designer\plugins\com.activee.avoscentral.services_N.N\schema

• You can view the base avcconfig file from the Catalog Resources page of the Process Console from which
you may want to copy sections to include in your file.

450 Chapter 33: Process Central Forms and Configuration

Configuring Form Filters
For an overview of form, see “Creating a Process Central Process Form ” on page 442.

The Forms section of the Process Central configuration file configures the following:

• Folder name to add under the Forms category

• Fork name to add to the folder

• Description of the form to display in the work area

• Location and name of the form to be deployed

• Restricted access to the form for named user roles

Here is an example of a configuration in Process Central showing a custom folder containing two forms.

Fill in the values as shown in the following example:

<tns:requestCategoryDefs>
 <tns:requestCategoryDef id="loans_category"
 name="Loan Approval">
 <avccom:requestDef id="loan_request"
 name="Customer Request Form">
<!-- Use this section only to restrict access to requests.
 Delete it if not used.
 <avccom:allowedRoles>
 <avccom:role>FILL_IN_ROLE_1</avccom:role>
 <avccom:role>FILL_IN_ROLE_2</avccom:role>
 </avccom:allowedRoles>
-->
 <avccom:description>
 Submit a request for loan approval.
 </avccom:description>
 <avccom:formLocation>
 project:/tutorial/form/request/loanRequest.html
 </avccom:formLocation>
 </avccom:requestDef>

Creating a Process Central Configuration File 451

 </tns:requestCategoryDef>
</tns:requestCategoryDefs>

Configuring Reports Filters
You can design Business Intelligence and Reporting Tools (BIRT) reports in Process Developer and deploy
them for display in Process Central as well as in the Process Console. For details, see Creating Reports for
Process Server and Central.

The Reports section of the Process Central configuration file configures the following:

• Folder name to add under the Reports category.

• Report name to add to the folder.

• Description of the report to display in the work area.

• Location and name of the report to be deployed.
Tip: If you want to view some standard reports, look in the Process Console.

• Location and name of an optional HTML file created for the Preview area.

• Restricted access to the report for named user roles.

Fill in the values as shown in the following example:

<tns:reportCategoryDefs>
 <tns:reportCategoryDef id="loans_category"
 name="Loan Approval">
 <avccom:reportDef id="loan_report"
 name="Loan Approval Report">
<!-- Use this section only to restrict access to reports.
 Delete it if not used.
 <avccom:allowedRoles>
 <avccom:role>FILL_IN_ROLE_1</avccom:role>
 <avccom:role>FILL_IN_ROLE_2</avccom:role>
 </avccom:allowedRoles>
-->
 <avccom:description>
 Loan Application Approvals By Month
 </avccom:description>
 <avccom:formLocation>
 project:/tutorial/reports/loansReport.rptdesign
 </avccom:formLocation>
 <avccom:formPreview>
 project:/tutorial/form/preview/loanRptPreview.html
 </avccom:formPreview>
 </avccom:reportDef>
 </tns:reportCategoryDef>
</tns:reportCategoryDefs>

Including Your Own Styles Scripts and Meta Data for Process
Central

In a new avcconfig file, there is a section where you can specify your own CSS files, scripts, and meta data
for use in Process Central.

Instead of linking in CSS, scripts, and meta data in form and tasks, you reference it from a .avcconfig file in
the <centralIncludes> section.

452 Chapter 33: Process Central Forms and Configuration

The <centralIncludes> section can include the following elements that are common <head> element in a
XHTML file:

• <script>. Add a reference to a JavaScript or other script that contains the functions you want to use in
request and task forms. The syntax in <centralIncludes> is, for example:
<script xmlns="http://www.w3.org/1999/xhtml" | type="text/javascript"
src="myJquery.script.js"/>
You can also use inline scripts, such as <script xmlns="http://www.w3.org/1999/xhtml" type="text/
javascript"> var my_String = "Hello";

• <meta>. Add meta data keywords. The syntax is, for example:
<meta xmlns="http://www.w3.org/1999/xhtml" name="keywords" content="some keyword,another
keyword" />

• <style>. Use inline styles, such as <style xmlns="http://www.w3.org/1999/xhtml" type="text/css">p
{background-color: yellow}</style>

• <link>. Style sheet link. See example below.

When you create a new avcconfig file, by default, only one section of the file is generated:

<tns:centralIncludes>
<link xmlns="http://www.w3.org/1999/xhtml" href="../example.css" rel="stylesheet"
type="text/css">
</tns:centralIncludes>

To use your own style sheet:

1. If desired, review the default Process Central CSS files. To do this, open Process Central and view the
Page Source. Find the section of the source file linking to the CSS files and select a link. The style sheet
for basic UI styles for fonts and colors is ae-avc.css.

2. If desired, copy styles from ae-avc.css or other CSS and make your own modifications.

3. In forms and tasks, use the class names from the CSS file, as desired.

4. Deploy your CSS file.

5. In an avcconfig file, add the name of the CSS in the <tns:centralIncludes> section and deploy the
config file. For example:

<link xmlns="http://www.w3.org/1999/xhtml"
 href="../example.css" rel="stylesheet" type="text/css">

Where the href path can be one of the following:

• relative path to this avcconfig file within your project

• full project:/path/to/file
• Absolute URL, such as http://domain:port/myCSS.css

Configuring Task Role Filters
The Task Role Filters section of the Process Central configuration file allows for comprehensive
configuration of the Tasks view, as shown by the circled areas on the following illustration.

Configuring Task Role Filters 453

You can add basic and advanced configuration.

Basic Configuration

• For details, see “Basic Task Roles Filter Configuration ” on page 454

• Basic configuration requires only string replacement in the .avcconfig file for the following:

• New role names to add to the Roles list in the Task list to replace the basic WS-HT names of User,
Administrator, Initiator, and Stakeholder

• New folder categories to replace or add to the list of Notifications, Open Tasks and Closed Tasks

• Users and groups from your Identity service allowed to view the new categories (not necessarily related to
role assignments in a People activity)

• New task lists to add to the Show list to replace or add to All, Claimed and Unclaimed

Advanced Configuration

Advanced configuration provides customized task display and searching, including:

• Custom columns for tasks. For details, see “Configuring Custom Columns for Task Roles Filtering ” on
page 456

• Comprehensive filtering of a task list. For details, see “Configuring a GetMyTasks Filter with a
WhereClause ” on page 457.

• RSS feed filters for a task list. See “Configuring an RSS or Atom Feed Filter ” on page 459.

Basic Task Roles Filter Configuration
For an overview of this topic, see “Configuring Task Role Filters ” on page 453.

In the Process Central configuration file (.avcconfig file), you can modify the default configuration in the
Task Role Filters section as follows.

To add a new role to the Role list:

The base set of roles include the WS-HT roles of user (potential owner), administrator (business
administrator), initiator (task initiator) and stakeholder. You may have your own role names to add, based on
the WS-HT roles.

In the following line of the file, add an id of your choosing and fill in a name attribute for the Role name to be
displayed.

454 Chapter 33: Process Central Forms and Configuration

<tns:taskRoleFilterDef id="FILL_IN_ROLE_NAME" name="FILL_IN_ROLE_NAME">

To add a new item to the Show list:

The base set of Show items displayed includes All, Unclaimed and Claimed.

In the following line of the file, add an Id and fill in a name attribute for the filter name to be displayed in the
Show list.

<avccom:taskFilterDef id="FILL_IN_TASK_FILTER_ID" name="FILL_IN_TASK_FILTER_NAME">

To add a new category folder to the Task list:

The base set of categories includes Notifications, Open tasks and Closed tasks.

In the following line of the file, add an Id and fill in a name attribute for the category name to be displayed in
the Task list.

<tns:taskFilterCategoryDef id="FILL_IN_FILTER_CATEGORY_ID"
name="FILL_IN_FILTER_CATEGORY_NAME">

To show or hide folders for specified users and groups:

You can specify which users and groups can view the new folders you add. Using the Identity Service enabled
in Process Server, copy the Role names associated with users and groups. If all users should see the new
folders, remove the <role> elements.

Do not leave a <role> element as shown in the default, and do not leave the element empty because it
means no one is allowed to see the folders.

<avccom:allowedRoles>
 <avccom:role>FILL_IN_ROLE_1</avccom:role>
 <avccom:role>FILL_IN_ROLE_2</avccom:role>
</avccom:allowedRoles>

You must delete the <roles> if you do not intend to specify user roles. The default value means that a user
must be in the FILL_IN_ROLE_1 group to view the folder.

Example Configuration:

<tns:taskRoleFilterDefs>
 <!-- for All users in the Role picklist -->
 <tns:taskRoleFilterDef id="All_Role" name="All">
 <!-- New folder -->
 <tns:taskFilterCategoryDef id="Loan_Apps" name="New Car Loans">
 <!-- Display the folder to these users and groups -->
 <avccom:allowedRoles>
 <avccom:role>group_Auto</avccom:role>
 <avccom:role>gDriver</avccom:role>
 </avccom:allowedRoles>
 <!-- Add this filter to the Show picklist -->
 <avccom:taskFilterDef id="auto_loans" name="InProgress">
 </tns:taskFilterCategoryDef>
 </tns:taskRoleFilterDef>
 </tns:taskRoleFilterDefs>

For advanced configuration, see the following:

• “Configuring Custom Columns for Task Roles Filtering ” on page 456

• “Configuring a GetMyTasks Filter with a WhereClause ” on page 457

• “Configuring an RSS or Atom Feed Filter ” on page 459

Configuring Task Role Filters 455

Configuring Custom Columns for Task Roles Filtering
In the Task Role Filters section of the .avcconfig file, you can add the task column names you want to
display for a category (folder) of tasks. There is a default configuration of column names, and you can add to
or replace the columns displayed.

• To add standard WS-HT column names, see WS-HT Task Property List elsewhere in this help

• To add custom column names see Creating Custom Task Properties elsewhere in this help

• To localize the column names, see the example below

Default Configuration

The default configuration for taskColumn uses standard WS-HT task properties (all prefixed with Task):

<avccom:taskColumns>
 <avccom:taskColumn property="Task.Id">Id</avccom:taskColumn>
 <avccom:taskColumn property="Task.Status"></avccom:taskColumn>
 <avccom:taskColumn property="Task.Priority"></avccom:taskColumn>
 <avccom:taskColumn property="Task.Name"></avccom:taskColumn>
 <avccom:taskColumn property="Task.PresSubject"></avccom:taskColumn>
 <avccom:taskColumn property="Task.CreatedOn"></avccom:taskColumn>
</avccom:taskColumns>

To replace or add to these columns, you can add your own column specification, using a custom task
property, such as:

<avccom:taskColumn property="first">First Name</avccom:taskColumn>
You must create the custom column names as part of the task definition in a People activity.

To localize the column name, you can specify a key from a message properties file that you create. For
example, the column name below is specified as ${bundle.key}:

<avccom:taskColumn property="Task.CreatedOn"
 type="dateTime">${bundle.key}</avccom:taskColumn>

For details on creating a message properties file, see “Providing Multilingual Support for Task Forms” on
page 534.

The following sample Task Role Filter section illustrates the use of custom columns for Process Central.

 <!--
 Example - adding a new category/folder called Hello Tasks.
 This folder will appear in the All role.
 -->
 <tns:taskRoleFilterDefs>
 <tns:taskRoleFilterDef
 id="ae-avc-role-all" name="${ae.avc.role.user.name}">
 <tns:taskFilterCategoryDef id="custom-cat"
 name="Hello Tasks">
 <avccom:allowedRoles>
 </avccom:allowedRoles>
 <!--
 Define custom columns that appear in Process Central
 (or remove/comment out root element to use
 default column list provided out of the box).
 -->
 <avccom:taskColumns>
 <!-- Task.Id, Task.Status and Task.Name are
 standard WS-HT columns.
 -->
 <avccom:taskColumn
 property="Task.Id">Id</avccom:taskColumn>
 <avccom:taskColumn
 property="Task.Status"></avccom:taskColumn>
 <avccom:taskColumn property="Task.Name">Task Name</avccom:taskColumn>
 <avccom:taskColumn property="Task.PresName">
 Display Name</avccom:taskColumn>
 <!-- You can also specify the column data

456 Chapter 33: Process Central Forms and Configuration

 formatting via the type attribute. Useful
 values are date, dateTime and boolean. The
 column display name can also be externalized
 via ${18n.key} method.
 -->
 <avccom:taskColumn property="Task.CreatedOn"type="dateTime">
 ${bundle.key}</avccom:taskColumn>
 <!-- The property names 'first' and 'last' are
 WSHT task presentation parameters defined in
 your tasks (custom properties).
 -->
 <avccom:taskColumn property="first">First Name</avccom:taskColumn>
 <avccom:taskColumn property="surname">Surname (Last Name)</avccom:taskColumn>
 </avccom:taskColumns>
 <avccom:taskFilterDefRef ref="ae-avc-user-open-all"/>
 <avccom:taskFilterDefRef
 ref="ae-avc-user-open-unclaimed"/>
 <avccom:taskFilterDefRef
 ref="ae-avc-user-open-claimed"/>
 <avccom:taskFilterDefRef
 ref="ae-avc-user-open-suspended"/>
 </tns:taskFilterCategoryDef>
 </tns:taskRoleFilterDef>
</tns:taskRoleFilterDefs>

Configuring a GetMyTasks Filter with a WhereClause
In the Task Role Filters section of the .avcconfig file, you can add a filter to apply to the tasks in one of
the Show pick entries. For example, you can create a filter for Unclaimed Tasks to show only Priority zero
(highest priority).

Filtering a Task List using a Show Filter
Modify the default configuration in the <avccom:filter/> section of the <avccom:taskFilterDef/> section.

The following code snippet shows the default configuration:

<avccom:filter>
 <tsst:getTasks xmlns:tsst="http://schemas.active-endpoints.com/b4p/wshumantask/
2007/10/aeb4p-task-state-wsdl.xsd">
 <htdt:getMyTasks
 xmlns:htdt="http://www.example.org/WS-HT/api/xsd">
 <htdt:taskType>TASKS</htdt:taskType
 <htdt:genericHumanRole>POTENTIAL_OWNERS</htdt:genericHumanRole>
 <htdt:status>READY</htdt:status>
 <htdt:whereClause>Task.Name =
 'ApproveLoan'</htdt:whereClause>
 <htdt:maxTasks>20</htdt:maxTasks>
 </htdt:getMyTasks>
 <tsst:taskIndexOffset>0</tsst:taskIndexOffset>
 </tsst:getTasks>
</avccom:filter>

Filtering a Task List by Parameter using a WS-HT whereClause
You can use the following operators in the whereClause:

• >

• >=

• <

• <=

• =

Configuring Task Role Filters 457

• like

• and

• or

• ()

The following examples show various whereClause syntax. Note that the Booleans and and or are case-
sensitive.

For a complete list of task column names, task types, generic human roles and other WS-HT specifications,
you can work with the Informatica Business Process Manager SDK.

Example 1

The following example shows a sample whereClause using a standard WS-HT task property name.

<htdt:whereClause>Task.Name = 'ApproveLoan'</htdtwhereClause>
Example 2

The following example combines filter properties:

Task.Priority < 3 and Task.Owner = ‘loanrep1'
Example 3

The following example also combines filter properties.

Task.PaProcessId = 10
 and(Task.Escalated = true
 or Task.Priority = 0)

Example 4: Using Presentation Parameters (Custom Task Properties)

The following example shows using presentation parameters:

Task.Name = ‘LoanApproval'
 and loanAmount > 10000
 and zipCode = '06484'

Presentation Parameters
If you query on presentation parameters, additional information is returned.

<tsst:propertyValues
 xmlns:tsst=
 "http://schemas.active-endpoints.com/b4p/wshumantask/
 2007/10/aeb4p-task-state-wsdl.xsd">
 <tsst:propertyValue
 name="parentprocessid" type="ns:string"
 xmlns:ns="http://www.w3.org/2001/XMLSchema">5013
 </tsst:propertyValue>
</tsst:propertyValues>

If no task is deployed with the presentation parameter, an error message is returned:

<htdt:illegalArgument
 xmlns:htdt="http://www.example.org/WS-HT/api/xsd">
 Task parameter property 'parentProcessId1' does not
 exist.
</htdt:illegalArgument>

However, if no task with this parameter exists but it is a valid name, the returned information is empty. Here
is an example of this kind of parameter:

<aetgt:getMyTasksResponse
 xmlns:aetgt="http://www.example.org/WS-HT/api/xsd"
 xmlns:htdt="http://www.example.org/WS-HT/api/xsd"
 xmlns:result="http://saxon.sf.net/xquery-results"

458 Chapter 33: Process Central Forms and Configuration

 xmlns:tss="http://www.activebpel.org/b4p/2007/10/wshumantask/aeb4p-task-storage.wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

This element lists tasks that a parentProcessId parameter and also returns what this value is:

<xsd:getMyTasks>
 <xsd:taskType>TASK</xsd:taskType>
 <xsd:whereClause>parentProcessId >''</xsd:whereClause>
</xsd:getMyTasks>

The following table summarized what can occur when you use a presentation parameter.

Presentation Parameter Is it Deployed Actual Values Query Result

MyString Yes "a", "b" <a where clause> <a parameter result>

MyStringB Yes No Values <a where clause> <a parameter result>

MyStringC No Not applicable <a where clause> <a parameter result>

Using a getMyTasks orderBy Element
You can sort the results returned by getTasks by using the orderBy element. The fields name you can use
are:

• Created

• Expiration

• Modified

• Name

• Owner

• PresentationName

• PresName

• PresSubject

• Priority

• State

• Summary

The following example sorts the results with the most recent first (that is, in descending order), followed by
the priority:

OrderBy orderBy = new OrderBy();
orderBy.getFieldId().add("-Created");
orderBy.getFieldId().add("-Created");

Notice the minus sign ("-") to set the order to descending.

In XML, this same example is:

<ns:orderBy>
 <ns:fieldId>-Created</ns:fieldId>
 <ns:fieldIPdriority</ns:fieldId>
</ns:orderBy>

Configuring an RSS or Atom Feed Filter
For an overview of this topic, see “Configuring Task Role Filters ” on page 453.

Configuring Task Role Filters 459

In the Task Role Filters section of the .avcconfig file, there is an element containing default URL details for a
RSS or Atom Web feed. Process Central contains a Web feed subscription service that users can select to be
notified about task updates.

In the .avcconfig file, the default query and format is shown as:

<avccom:feedQueryString format="rss" />
At runtime, the Web feed URL is automatically generated based on <getMyTasks>. For example, in Process
Central, if the Tasks list is showing open tasks, the feed will send updates when new tasks arrive.

The default Web feed format is rss, but you can change it to atom, if desired.

If you leave the Task Role Filters section commented out when you deploy the avcconfig file, the default
Web feed URL is generated from the default avoscentral.avcconfig file. You can look at this file in the
Process Console, under the Catalog section.

You can modify the Web feed query filter as follows:

• Configure the taskFilterDef section. Your configuration details are automatically used when the feed query
is generated. The following example shows that the feedQueryString is enclosed as part of the filter
definition. You do not need to modify the string.

<avccom:taskFilterDef >
 <avccom:filter>
 <tsst:getTasks ...>
 <htdt:getMyTasks>... </htdt:getMyTasks>
 </tsst:getTasks>
 <avccom:feedQueryString format="rss" />
 </avccom:filter>
</avccom:taskFilterDef>

• (Not recommended). We do not recommend that you modify the default feedQueryString. Each display in
Process Central automatically generates the Web feed URL based on the page's filters. There should not
be a need to modify this. However, you can modify the feedQueryString by adding the well-known
parameters from the WS-HT getMyTasks operation. For example:

<avccom:feedQueryString format="rss">filter=reserved</avccom:feedQueryString>
• For a detailed list of parameters, refer to Getting Task Lists As A RSS or ATOM Feed in the Process

Developer WS-HumanTask API help.

Deploying Forms Reports and Configuration Files
Files that you want to deploy to the Process Server for use in Process Central, include Process Central
Configuration files, HTML files for forms, BIRT report designs, and related resources, such as images and
multilingual properties files.

You can create a business process archive (.BPR) file that includes only these resources.

To create a BPR, select File > Export > Orchestration > Contribution-Business Process Archive. On the
Catalog Resources page, select the following Resource types:

• Central Configuration for Process Central configuration file

• HTML for forms

• Binary files for images

• Property files containing externalized strings for languages other than English. If these file are not already
displayed, add them as type Other.

460 Chapter 33: Process Central Forms and Configuration

See also:

• “Deploying Additional Resources ” on page 376.

• “Creating a Process Central Configuration File ” on page 449

• “Creating a Process Central Process Form ” on page 442

• For details about creating Human Task forms (Task Renderings), see Human Tasks within the Process
Developer Help.

Adding Multilingual Support to Process Central
You can create different language versions of Process Central as well as the forms and reports that are
deployed to it. The Process Central application user interface can display in a Web browser's preferred
language. There is also language and locale support for requests, tasks, and reports.

The basic approach for multilingual support is to externalize strings. For each supported language, you use
an existing or create a new default properties file for externalized strings. Use additional properties files, one
per language

For details on configuring multilingual support, see the following topics:

• “Displaying Process Central in a Web Browsers Preferred Language ” on page 462

• “Adding Multilingual Support for Forms and Tasks ” on page 462

Adding Multilingual Support to Process Central 461

• “Adding Multilingual Support for an .avcconfig File” on page 463

• “Adding Multilingual Support for Reports ” on page 464

• “Process Central Advanced Configuration ” on page 465

• “I18N Functions ” on page 249

Displaying Process Central in a Web Browsers Preferred Language
If desired, you can display Process Central in the language of your choice. Each text string that displays in the
Process Central application has been externalized to a file named avoscentral.properties.

This means you can provide a properties file with externalized strings for the wording of the login page, all
command buttons, titles, error messages, and other wording.

http://www.activevos.com can provide the properties files for the languages you need. You can download a
zip file and deploy the language BPRs to the Process Console, as provided in the instructions.html file in
the zip archive. For details, go to the Software Development Kits (SDK) page of http://www.activevos.com
and view the instructions in Process Central Language Pack.

For languages that http://www.activevos.com does not supply, you can provide the language values for
externalized strings. The instructions for adding your own language file are included in the language pack
archive.

To provide multilingual support for the Process Central user interface:

1. In a Web browser, go to http://www.activevos.com/developers/sdks.

2. Download Process Central Language Pack, Version 8 or later.

3. Unzip the file, and follow the instructions in instructions.html for modifying a language package.

See also “Naming Conventions for .properties File ” on page 464.

Adding Multilingual Support for Forms and Tasks
You can create request forms as well as task forms (for a People activity) that support different languages.
To do so, you create a new form, plus a default properties file and additional properties files for each
language supported. The properties file contains externalized strings for schema-based keyIdentifiers. The
steps to accomplish this support for requests are described below.

For details on task forms, see Providing Multilingual Support for Task Forms in the Human Tasks topics
elsewhere in this help.

Create a new request form and a default properties file:

1. Create a new request form, described in “Creating a Process Central Process Form ” on page 442.

2. In the Create Form dialog, select the Advanced button.

3. Select the Externalize Strings check box.

4. Accept the default name and location for the properties file, or select the dialog button next to Property
File to name and store your file. Do not use an underscore in the name.

When you externalize strings, the following events occur:

• Schema elements in the form are generated by identifier rather than by name to allow for runtime
replacement of strings found in a properties file.

• A new link is added within the form to indicate multilingual support:

<link rel="i18n" charset="UTF-8" type="text/plain"
 href="myForm.properties" />

462 Chapter 33: Process Central Forms and Configuration

• The list of schema elements is added to the properties file as a key-value pair.

• The properties file that you create is the default externalized strings file.

For each additional language you want to support, do the following:

1. Make a copy of the default properties file and paste it into the forms folder.

2. Name the copied file with the syntax described in “Naming Conventions for .properties File ” on page
464. Basically, you must use the exact same name for each file, followed by an underscore, followed by
an ISO 639 Code for the Representation of Names of Languages.

3. Open the file in a text editor and replace the existing values with another language.

To test your properties, specify a language when you login to Process Central. For example:

http://localhost:8080/activevos-central/login.jsp?lang=fr

See also “I18N Functions ” on page 249.

Adding Multilingual Support for an .avcconfig File
For an overview of this topic, see “Adding Multilingual Support to Process Central” on page 461.

You can provide externalized strings for the following attributes in an Process Central configuration file:

• Category names for the folders you add to Tasks, Forms, and Reports. For example, a Forms category
named Tutorial and Samples contains the Process Developer tutorial request and the samples request
forms.

• Descriptions for reports and forms. For example, the tutorial form contains a description that says,
"Submit loan approval request (basic tutorial)."

• Names for the TaskRole and Show picklists

To provide multilingual support:

1. Create a new avcconfig file, as described in “Creating a Process Central Configuration File ” on page
449. Store it in your deploy folder. For example, tutorial.avcconfig.

2. For each name and description attribute in the file that you want to externalize, you must modify the
place holder text to refer to a ${keyIdentifier}. For example:

<tns:requestCategoryDef id="education" name="${tutorial.and.samples}">
3. In a text editor, create a new .properties file that is the default externalized strings properties file for

the .avcconfig file. For example, tutorialConfig.properties.

4. The avcconfig file must refer to this file, so you must add the following line, indicating multilingual
support, in your avcconfig file:

<tns:i18n location="/path/to/tutorialConfig.properties" />
5. In the default properties file, add each ${keyIdentifier} and its English value. For example:

tutorial.and.samples=Tutorial and Samples
6. As you add other externalized strings, add additional lines to the properties file, such as:

tutorialRequest.description=Submit loan approval request (basic tutorial)
7. For each additional language, make a copy of the default properties file, and change the value of the

keyIdentifier for that language.

tutorial.and.samples=Tutoriel et échantillons
8. Name each file with an underscore and language name. For example:

For example, tutorialConfig_fr.properties
9. Ensure the copy is UTF-8 encoded. By default Process Developer sets the encoding to ISO-8859-1.

Adding Multilingual Support to Process Central 463

After deployment, test your properties by specifying a language when you login to Process Central. For
example:

http://localhost:8080/activevos-central/login.jsp?lang=fr

Example Configuration File Snippet:

<tns:requestCategoryDef id="education"
 name="${tutorial.and.samples}">
<avccom:description>
 ${tutorialRequest.description}
</avccom:description>
<tns:i18n location="/path/to/tutorialConfig.properties" />

Example default properties file;

tutorial.and.samples=Tutorial and Samples
tutorialRequest.description=Submit loan approval request (basic tutorial).

See also “Naming Conventions for .properties File ” on page 464.

Adding Multilingual Support for Reports
Process Central displays reports created in the Business Intelligence Reporting Tools (BIRT) Designer. Within
Process Central, the reports are displayed in the BIRT Viewer.

Process Central provides support for the following languages:

• German

• Spanish

• French

• Japanese

• Korean

• Simplified Chinese

If a browser's preferred language is set to one of the above, the BIRT Viewer automatically displays the report
in that language.

To test for a language, provide a URL that specifies a language. For example:

http://localhost:8080/activevos-central/login.jsp?lang=zh_CN

To provide multilingual support for other languages, note the following considerations:

• To create properties files for the report design, refer to http://www.birt-exchange.org/wiki/
BIRT:Internationalization/.

• To create properties for the BIRT Viewer text strings and error messages, for languages Process Central
does not support, you must manually find and change several messages.properties files. The main file
for the BIRT Viewer text strings is located in server\webapps\activevos\WEB-INF\lib
\ae_birtviewer.jar.

Naming Conventions for .properties File
When you add multilingual support for Process Central configuration, forms and tasks, you create a
properties file for each language you want to support. There is one default file and other files with language
codes:

MyPropertiesFile.properties:

464 Chapter 33: Process Central Forms and Configuration

This is typically the default file for en-US.

MyPropertiesFile_ISO639Name.properties:
For each language, you must add an underscore and a ISO 639.2 code for the representation of names of
languages. Add the _language code and optional country code to the default file name. Country codes are the
upper-case, two-letter codes as defined by ISO-3166.

Examples:

• requestFormOperation.properties
• requestFormOperation_fr.properties
• requestFormOperation_de.properties
• MyConfigFile.properties
• MyConfigFile_zh_CN.properties

Process Central Advanced Configuration
In addition to providing configuration and multilingual support for Process Central forms, tasks, and reports,
you can add more advanced configurations.

This topic covers the basics of how to implement additional configuration, including:

• Replacing the Process Central logo and icon images.

• Pointer to the Informatica Business Process Manager SDK and Documentation and Process Central
Samples.

For advanced examples, check http://www.activevos.com.

To add your own logo:

1. In your project, create a text file with a name based on the default avoscentral.properties file. For
example, avoscentral_en.properties.

2. Start the server, and open the Process Console.

3. Search for avoscentral.properties.
This file contains keyIdentifiers and values for the Process Central user interface.

4. In the Resource Detail page of the Process Console, you will see the Resource Definition for the
properties file.

5. To add your own logo to Process Central, copy the following line from avoscentral.properties:
ae.avc.header.logo.image=../avc-res/images/ActiveVOScentralTitle.png

6. Paste this line into your properties file (avoscentral_en.properties).

7. Change the identifier value to specify the location and name of your logo. For example:
ae.avc.header.logo.image=project:/myProject/images/myLogo197x35.png

8. Create a new .bprd file for the deployment of your logo and properties file.

9. In the .bprd, you see a catalog entry for your properties file. For example:
<otherentry typeURI="res:/text/plain" location="project:/myProject/deploy/
avoscentral_en.properties" classpath="resources/myProject/deploy/
avoscentral_en.properties" />

Process Central Advanced Configuration 465

10. Modify the location hint for your properties file. Your properties file must be stored in the catalog
location provided by the location hint on the Resource Detail page of avoscentral.properties, as
shown:
location="project:/com.activee.avoscentral.services/bundle/avoscentral_en.properties"

Tips:

• For a shortcut to deploying your file, you may prefer to create a project and export a file as described in
the following topic: “Displaying Process Central in a Web Browsers Preferred Language ” on page 462.

• In the Developers' How-To section of the Web site, see Process Central and Forms.

• Download the Informatica Business Process Manager SDK from the Product Documentation section of
http://www.activevos.com for complete details of creating forms.

466 Chapter 33: Process Central Forms and Configuration

C h a p t e r 3 4

Building a Process with a System
Service

Select a template to begin building a system-service-based process.

Topics discussing building a process with a system service are:

• Using a BPEL Template for a System Service-Based Process

• Alert Service

• Retry-Policy Service

• Identity Service

• Email Service

• Monitoring Alert Service

• Reporting Service

• Server Log Service

• Shell Command Invoke Service

• Data Access Service

• Migration Service

Using a BPEL Template for a System Service-Based
Process

System service-based processes interact with the Process Server in a variety of ways, such as sending an
alert when a server event is triggered. The processes are based on interfaces that include both process
consumer and partner service provider participants.

For process consumer interfaces, you can use the New BPEL Process wizard to start building your process.
When you select File > New> BPEL and click next, you see the New BPEL Process from Template page.

This wizard page shows a list of processes you can create based on system-deployed WSDLs. You do not
need to import any WSDL files to create a BPEL process. A process is started for you, with a receive activity,
based on an operation from the WSDL resource.

The template generates a BPEL process based on one of the following WSDLs:

• Alert Process. For details, see Alert Service.

467

• Retry Policy Process. For details, see Retry-Policy Service.

• Custom B4P Notification. For details, see Human Tasks with the Process Developer Help.

• REST-based process. For details, see Using a REST-based Service.

• Event Action Process. For details, see Creating an Event-Action BPEL Process.

• Monitoring Alert. For details, see Monitoring Alert Service.

Note that when you deploy one of these processes, in the BPR, there are no WSDL or XSD. They are already
deployed and available on the server.

In addition to the services listed above, there are other services you can build by starting in the Participants
view. Using the System Services in the Partner Service Provider or Process Consumer wizard, you can use the
operations for special purposes, including sending an email, or retrieving a user from an identity service. For
details, see System Services Interfaces.

Alert Service
For many reasons an activity can throw an uncaught fault. Process Server provides the ability to suspend a
process on an uncaught fault, and if desired, you can also trigger an alert.

When an uncaught fault occurs, the Process Server can instantiate an alert service that can then invoke some
action, such as resuming the process by stepping over the faulting activity, automatically correcting a data
value that is known to cause a fault, or simply notifying an administrator that a processing is faulting.

You can design a BPEL process to serve as the alert service. The process must be based on a WSDL file
named alert.wsdl. There is a BPEL process template based on this WSDL, as described in the steps below.
Also, this file is automatically loaded in Participants view as a System Service, so that you create a process
consumer participant that adds a receive and reply for the process.

In essence, the WSDL defines the alert operation that receives information from the server regarding the
process Id, namespace, name, variable location path, and status of the faulting process.

An input message sent to an alert-service BPEL process would have the following parts, shown in the
example:

<ns1:alert xmlns:ns1=
 "http://www.active-endpoints.com/services/alert"
 processId= "101"
 processNamespace="http://tempuri.org"
 processName="myProcess"
 locationPath="/process/variables
 /variable[@name='testMessage']"
 status="suspended"
 faultName="someFault"
 faultNamespace="someFaultNamespace"
</ns1:alert>

Here are some general steps to consider when creating an alert-service BPEL process.

To create an alert-service BPEL process:

1. In the Project Explorer, create a new orchestration project.

2. Select File > New > BPEL Process.

3. Name the process and click Next.

4. On the Process Template page, select the Alert process template.

468 Chapter 34: Building a Process with a System Service

A new file opens on the Process Editor canvas with a ReceiveAlert activity. The receive activity is based
on the alert operation.

5. Finish building the process, adding the programming logic that you wish to occur for your use case when
a process is faulting. For example, send an email, described in “Email Service ” on page 479.

6. Launch the Deployment Descriptor wizard and on the Partner Links tab, do the following:

a. Select the AlertPL My Role partner link.

b. Type in a Service Name for the My Role partner link.

7. Start up the Process Server and deploy the alert-service process to the server. Note that in the BPR, there
are no WSDL or XSD. They are already deployed and available on the server.

8. In the Process Console of the server, add the service to the Alert Service page. See the Process Console
Help for details.

Tip: Within http://wwww.activevos.com, refer to Handling Process Server Alerts using Email and Identity
Services for a comprehensive sample alert service that you can download.

Data Access Service
You can interact directly with a data source within a BPEL process by using the Data Access system service.
Using this service, you create an invoke activity that executes one or more SQL statements on a specified
data source and receives a result set as the response.

The Data Access service provides two operations: execSQL and execMultiSQL. These operations allow you
to execute either a single SQL statement or multiple SQL statements. You can execute any SQL statement,
whether you are selecting, inserting, updating or deleting data or stored procedures from a data source.

During deployment, you must specify the target data source.

Creating a BPEL Process that Executes Statements on a Data
Source

Use the following to create a BPEL process that executes statements on a data source:

In the Project Explorer, create a new orchestration project.

1. Select File > New > BPEL Process.

2. Name the process and click Finish.

3. In the Participants view, create a new Partner Service Provider.

4. Select System Services from the Interfaces tree.

5. Select Data Access.

6. From the Partner Service Provider that you created, drag either the execSQL or execMultiSQL operation
to the canvas to create an invoke activity.

7. Fill in the input data, with the selections shown in the examples below the table.

The following table shows the data access request message element.

Following this table are the following examples:

• Example request for a single statement and its response

• Example request including multiple statements and its response

Data Access Service 469

• Parameter-based request and responses from an insert, update, or delete statement

• Handling binary data

• An example fault response

Examples of invoking stored procedures; examples are shown for MySQL, SQL Server, and Oracle.

execSQL Input
Element

Description

sqlStatement Element containing the required <statement> and optional attributes

includeMetadata Returns a row of metadata about the query columns prior to the actual return data (the
default is false). Meta data includes data type and display size.

maxRows Maximum number of result rows to be returned. (the default is 0 or unlimited)

maxWaitSeconds Maximum time to wait for results. (The default is 0 or unlimited.)

columnCase Specifies the case formatting of the columns in the result set (the default is unchanged from
server). Schema enumerations defined for this element include lowercase, uppercase, and
unchanged.

statementId Specified as part of request to help identify results (the default is to auto generate an Id that
results in an Id such as statement-1, statement-2)

statement (Required.) SQL statement to execute

parameter Identifies the data to be inserted, updated or deleted from the data source. Parameter values
are listed in order within a <parameterBatch> element associated with a statement.

sqlType Parameter attribute. Types include string (default), byte, short, int, long, float, double, date,
binary, or clob

attachmentId Parameter attribute. Specified as part of request to help identify results attachments, if any.
S

hasResultSet Indicates that a stored procedures returns data. Only use this parameter if this is true.

Example request for a single statement:

<das:dataAccessRequest xmlns:das="http://schemas.active-endpoints.com/data-access/
2010/04/data-access.xsd">
 <das:sqlStatement includeMetadata="true" maxRows="100" maxWaitSeconds="120"
columnCase="lowercase">
 <das:statement>SELECT EngineId, Name, State FROM AeEngine ORDER BY 1</das:statement>
 </das:sqlStatement>
</das:dataAccessRequest>

Example response from the above request:

<dataAccessResponse xmlns="http://schemas.active-endpoints.com/data-access/2010/04/data-
access.xsd"
 statementId="statement-1" >
 <metadata>
 <engineid dataType="INT UNSIGNED" displaySize="10" xmlns=""/>
 <name dataType="VARCHAR" displaySize="255" xmlns=""/>
 <state dataType="TINYINT" displaySize="4" xmlns=""/>
 </metadata>
 <row>
 <engineid xmlns="">1</engineid>
 <name xmlns="">machine1</name>

470 Chapter 34: Building a Process with a System Service

 <state xmlns="">1</state>
 </row>
</dataAccessResponse>

Example request including multiple statements:

<das:multiDataAccessRequest xmlns:das="http://schemas.active-endpoints.com/data-access/
2010/04/data-access.xsd">
 <das:sqlStatement includeMetadata="false" statementId="num-processes">
 <das:statement>SELECT COUNT(*) AS ProcessCount FROM AeProcess</das:statement>
 </das:sqlStatement>
 <das:sqlStatement includeMetadata="false" statementId="num-plans" sqlcode='0'
sqlstate='0'>
 <das:statement>SELECT COUNT(*) AS PlanCount FROM AePlan</das:statement>
 </das:sqlStatement>
 <das:sqlStatement includeMetadata="false" statementId="metainfo">
 <das:statement>SELECT * FROM AeMetaInfo</das:statement>
 </das:sqlStatement>
</das:multiDataAccessRequest>

Example response from the above multiple statement request:

<multiDataAccessResponse xmlns="http://schemas.active-endpoints.com/data-access/2010/04/
data-access.xsd">
 <result statementId="num-processes">
 <row>
 <ProcessCount xmlns="">3</ProcessCount>
 </row>
 </result>
 <result statementId="num-plans">
 <row>
 <PlanCount xmlns="">18</PlanCount>
 </row>
 </result>
 <result statementId="metainfo">
 <row>
 <PropertyName xmlns="">DatabaseType</PropertyName>
 <PropertyValue xmlns="">mysql</PropertyValue>
 </row>
 <row>
 <PropertyName xmlns="">SiteId</PropertyName>
 <PropertyValue xmlns="">0</PropertyValue>
 </row>
 <row>
 <PropertyName xmlns="">SiteName</PropertyName>
 <PropertyValue xmlns="">mySite1</PropertyValue>
 </row>
 <row>
 <PropertyName xmlns="">Version</PropertyName>
 <PropertyValue xmlns="">1.2.3 ActiveVOS Enterprise</PropertyValue>
 </row>
 </result>
</multiDataAccessResponse>

Parameter-Based Request
You can create a SQL statement that modifies data rather than returns data. The statement can take the form
of a SQL INSERT, UPDATE or DELETE operation. A set of parameters for the operation describe the data to
modify. In the following example, an insert statement adds a property name and value to each row of a table.
The properties are specified in the statement, and the property values are specified as parameters:

<das:dataAccessRequest
 xmlns:das="http://schemas.active-endpoints.com/data-access/2010/04/data-
access.xsd">
 <das:sqlStatement>
 <das:statement>insert into myTable(PropertyName,
 PropertyValue) VALUES (?, ?)</das:statement>
 <das:parameterBatch>
 <das:parameter sqlType="string">Property1</das:parameter>

Data Access Service 471

 <das:parameter sqlType="string">One</das:parameter>
 </das:parameterBatch>
 <das:parameterBatch>
 <das:parameter sqlType="string">Property2</das:parameter>
 <das:parameter sqlType="string">Two</das:parameter>
 </das:parameterBatch>
 <das:parameterBatch>
 <das:parameter sqlType="string">Property3</das:parameter>
 <das:parameter sqlType="string">Three</das:parameter>
 </das:parameterBatch>
 </das:sqlStatement>
</das:dataAccessRequest>

Simulating the Data Access Invoke Output
You can test the actual Data Access request and response during simulation by performing some additional
steps prior to beginning simulation. The steps involve using the Eclipse Data Source Explorer that is bundled
with Process Developer.

Using the Data Source Explorer, you can generate sample data from an actual statement execution and
export the data to Process Developer in the correct schema format. This technique makes the actual data
returned from the result set available to a process variable to which you are mapping data.

Step 1. Set up a database connection:

1. Select Window > Show View > Other > Data Management > Data Source Explorer.

2. Right-mouse click on Database Connections and select New.

3. Select a Connection Profile Type from the list. For example, select MySQL.

4. Name the new profile, and select Next.

5. On the Driver page, select your database driver from the list. If the driver is not in the list, select New
Driver and specify a driver definition.

6. Enter the URL to connect to your database. For example, the default URL for MySQL is jdbc:mysql://
localhost:3306/[database name].

7. Select Test the Connection, and if successful, finish the wizard.

8. Notice there is a new database listed in the Data Source Explorer.

Step 2. Connect to the database and execute a statement:

1. In the Data Source Explorer, right-mouse click on your database and select Connect if needed. Expand
the tree, and you can see an outline of all the tables in your database.

2. Right-mouse-click on your database and select Open SQL Scrapbook.

3. Select your database from the Name list.

4. Your Data Source Explorer and SQL Scrapbook window should look similar to the following example:

472 Chapter 34: Building a Process with a System Service

5. If your Data Access invoke is based on the execSQL operation, copy and paste your single execution
statement into the SQL Scrapbook.

6. Right-mouse click and select Execute Selected Text. Notice that the results are returned in the SQL
Results tab.

7. For the execMultiSQL operation, copy and paste your statements into the SQL Scrapbook. Right-mouse
click and select Execute All.

Data Access Service 473

Step 3. Save the SQL Results as sample data:

1. In the SQL Results view, right-mouse click and select Save > Current Result.
You must select Current Result for a a single statement execution and All Results for multiple statement
execution. The format of the data differs depending on your selection.

2. In the Save Result dialog, browse to your Data Access project in your workspace and select the sample-
data folder. Name and save your file into this location.

3. In the File Type box, select Process Developer Data Access Sample. Then set the Output encoding to
UTF-8. The following example shows all settings:

474 Chapter 34: Building a Process with a System Service

4. Select OK.

Example-Response from an Insert Update or Delete Statement
No data is returned from a non-query statement. The response contains only the number of rows affected by
the operation, as the example shows:

<dataAccessResponse
 xmlns="http://schemas.active-endpoints.com/data-access/
 2010/04/data-access.xsd"
 statementId="statement-1">
 <row updatedRows="3"/>
</dataAccessResponse>

Data Access Service 475

Handling Binary Data
You can handle an image, document and other binary data as an attachment or a base64-encoded string. You
can include the binary data in the form of a message attachment, and then specify the attachmentId as part
of the SqlParameter in the insert specification. For details on attaching binary data to a message, see
Attachments. You can include base64-encoded strings within the request as the following examples show.

Example One: Insert a base64-encoded string

<das:sqlStatement statementId="insert-blob" columnCase="lowercase">
 <das:statement>INSERT INTO myTable (SmallNumber, SampleBlob) VALUES (?, ?)</
das:statement>
 <das:parameterBatch>
 <das:parameter sqlType="short">11</das:parameter>
 <das:parameter sqlType="binary">iVBO.../Ay...+
 fPmt..(incomplete)</das:parameter>
 </das:parameterBatch>
 </das:sqlStatement>

Example Two: Select binary data

<das:sqlStatement statementId="get-blob" columnCase="lowercase">
 <das:statement>SELECT SmallNumber, SampleBlob
 FROM AeMyTable
 WHERE SmallNumber = 11</das:statement>
 </das:sqlStatement>

Fault Handling
The Data Access operations include a fault message that returns a fault for an SQL exception. The data
returned includes an error message, sqlcode and sqlstate. All other faults are system faults.

Example fault response

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Body>
 <env:Fault>
 <env:Code>
 <env:Value>env:Receiver</env:Value>
 <env:Subcode>
 <env:Value xmlns:ns1=
 "http://docs.active-endpoints/wsdl/
 data-access/2010/04/
 data-access.wsdl">ns1:dataAccessFaultMessage
 </env:Value>
 </env:Subcode>
 </env:Code>
 <env:Reason>
 <env:Text xml:lang="en-US">Table
 'activevos.aeprocessx' doesn't exist</env:Text>
 </env:Reason>
 <env:Detail>
 <das:dataAccessFaultMessage sqlcode="1146"
 sqlstate="42S02"
 xmlns:das="http://schemas.active-endpoints.com/
 data-access/2010/04/data-access.xsd">
 <errorMessage xmlns="http://schemas.active-endpoints.com/
 data-access/2010/04/data-access.xsd">Table
 'activevos.aeprocessx' doesn't exist</errorMessage>
 </das:dataAccessFaultMessage>
 </env:Detail>
 </env:Fault>
 </env:Body>
</env:Envelope>

476 Chapter 34: Building a Process with a System Service

Examples
Example of running a stored procedure on a MySQL database

<das:multiDataAccessRequest
 xmlns:das=
 "http://schemas.active-endpoints.com/data-access
 /2010/04/data-access.xsd">
 <das:sqlStatement columnCase="uppercase"
 statementId="create-proc">
 <das:statement>CREATE PROCEDURE AeTestCount(OUT result INT)
 BEGIN
 SELECT COUNT(*) INTO result
 FROM AeJUnitTestTable;
 END
 </das:statement>
 </das:sqlStatement>
 <das:sqlStatement columnCase="uppercase" statementId="call-proc">
 <das:statement>CALL AeTestCount(@rowCount);</das:statement>
 </das:sqlStatement>
 <das:sqlStatement columnCase="uppercase"
 statementId="get-results">
 <das:statement>SELECT @rowCount;</das:statement>
 </das:sqlStatement>
 <das:sqlStatement columnCase="uppercase"
 statementId="drop-proc">
 <das:statement>DROP PROCEDURE AeTestCount</das:statement>
 </das:sqlStatement>
</das:multiDataAccessRequest>

Example of running a stored procedure on an SQL Server database

<das:multiDataAccessRequest xmlns:das=
 "http://schemas.active-endpoints.com/
 data-access/2010/04/data-access.xsd">
 <das:sqlStatement columnCase="uppercase" statementId="create-proc">
 <das:statement>CREATE PROCEDURE AeTestCount @num_rows INT OUTPUT
 AS
 BEGIN
 SELECT @num_rows = COUNT(*)
 FROM AeJUnitTestTable
 END
 </das:statement>
 </das:sqlStatement>
 <das:sqlStatement hasResultSet="true" columnCase="uppercase"
 statementId="call-proc">
 <das:statement>DECLARE @result INT
 EXEC AeTestCount @num_rows = @result OUTPUT
 SELECT @result RESULT
 </das:statement>
 </das:sqlStatement>
 <das:sqlStatement columnCase="uppercase"
 statementId="drop-proc">
 <das:statement>DROP PROCEDURE AeTestCount</das:statement>
 </das:sqlStatement>
</das:multiDataAccessRequest>

Example of running a stored procedure on an Oracle database

<das:multiDataAccessRequest
 xmlns:das="http://schemas.active-endpoints.com/
 data-access/2010/04/data-access.xsd">
 <das:sqlStatement columnCase="uppercase"
 statementId="create-proc">
 <das:statement>create or replace
 PROCEDURE AeTestCountProc
 (PROP_NAME IN VARCHAR2, PROP_VAL IN VARCHAR2,
 TOTAL OUT NUMBER)
 AS
 BEGIN
 UPDATE AeMetaInfo SET PropertyValue = PROP_VAL
 WHERE PropertyName = PROP_NAME;

Data Access Service 477

 SELECT COUNT(*) INTO TOTAL
 FROM AeJUnitTestTable;
 END;
 </das:statement>
 </das:sqlStatement>
 <das:sqlStatement columnCase="uppercase"
 statementId="call-proc">
 <das:statement>{CALL AeTestCountProc(?,?,?)}</das:statement>
 <das:procedure>
 <das:parameter name="PROP_NAME"
 sqlType="string" mode="in">BogusName</das:parameter>
 <das:parameter name="PROP_VAL" sqlType="string"
 mode="in">BogusValue</das:parameter>
 <das:parameter name="RESULT" sqlType="int" mode="out" />
 </das:procedure>
 </das:sqlStatement>
 <das:sqlStatement columnCase="uppercase"
 statementId="drop-proc">
 <das:statement>DROP PROCEDURE AeTestCountProc</das:statement>
 </das:sqlStatement>
</das:multiDataAccessRequest>

Mapping Data Returned in the Data Access Response
You can map data from a response by writing an XPath expression that selects nodes from the rows
returned. The XPath expression is used in a copy operation in an assign activity or directly in the Output data
tab of the data access invoke activity.

For example, suppose the request message contains a statement such as:

SELECT EngineId, Name, State FROM AeEngine ORDER BY 1
You can extract a value, such as the State value in the first row of the AeEngine table with the following
XPath expression:

$dataAccessResponse//ns1:row[0]/state/text()

Simulating the Data Access Service
When you create the Process Deployment Descriptor for the process containing the Data Access service, you
must specify the location of your database. Complete the deployment information as follows:

1. On the Partner Links page, notice that the Partner Service Provider's Invoke Handler for data access is
automatically set to System Service.

2. If you are using a cloud process, in the edit field, replace the text, FILL_IN_DATASOURCE_JNDI, with one
of the following:

• The JNDI Name defined in your application server that is bound to the data source. There is no need
to include the JNDI prefix. For example:

jdbc/myDatabase
• Similarly, for WebLogic and Websphere, no prefix is required:

jdbc:/myDatabase
• A URN that can be mapped to a JNDI Name or URL in the Process Console URN Mappings page. This

option gives you a way to change the database connection information without refactoring and
redeploying your process.

Note : If you are deploying on-premise, you must also include the JNDI prefix as shown in this example:

 java:comp/env/jdbc/myDatabase

478 Chapter 34: Building a Process with a System Service

For preliminary testing, if you want to set up a database connection within the server embedded in Process
Developer, follow these instructions:

1. In Process Developer, stop the embedded server, if it is running. For details, see Setting Up the
Embedded Process Server.

2. In the file system, in your Process Developer installation directory, navigate to the embedded server
plugin. For example, [designer install directory]\designer\plugins
\org.activebpel.enginep_[versionNNN] where versionNNN is the plugin version.

3. In the org.activebpel.enginep plug-in, navigate to server\conf\Catalina\localhost and make a
backup copy of the active-bpel.xml file. Then open the file.

4. In the active-bpel.xml file, add a new <Resource> element within the <Context> element, as shown in
the example:]

<Resource
 driverClassName="driver_class_name"
 maxActive="100"
 maxIdle="30"
 maxWait="10000"
 name="jdbc/anyName"
 password="password"
 type="javax.sql.DataSource"
 url="url_of_your_db"
 username="db_login_name"/>

Be sure to replace all attribute values with values for connecting to your database.

5. Save the file and restart the embedded server.

6. Be sure to add the JNDI name to the PDD of your process before deploying your BPR to the embedded
server.

Email Service
Process Server supports an email service. This means you can create a process that sends email messages
to a list of recipients via an invoke activity. Many types of processes can benefit from an email delivery
activity, including use an “Alert Service ” on page 468.

Any BPEL process that implements email-based activities imports the WSDL provided with the
ProcessServer. The name of the WSDL is email.wsdl, and in the Participants view wizards, it is a System
Service named send email. The WSDL contains a send operation that can be used in an invoke activity as
follows:

<invoke
 inputVariable="emailMessage"
 operation="send"
 outputVariable="resultMessage"
 partnerLink="emailProvider"/>

To create a BPEL process that sends an email:

1. In the Project Explorer, create a new orchestration project.

2. Select File > New > BPEL Process.

3. Name the process and click Finish.

4. In the Participants view, create a new Partner Service Provider.

5. Select System Services.

6. Select Email.

Email Service 479

7. From Participants view, drag the send operation to the canvas to create an invoke activity. This activity
sends the email message to people in your identity service enabled on the Process Server.

8. Add additional programming logic. For example:

a. Add a receive activity that receives the input to be associated with the email.

b. Use the input tab of the invoke to assign data to the variable. See the examples below.

9. Use the send operation's fault message to catch communication errors with your email service.

Example to initialize the emailMessage variable:

1. In the Input tab of the invoke, select XPaths as the Assignment Type.

2. Select Add.

3. In the E/L panel, select Literal.

4. In the From column, select the dialog button and generate literal contents. Process Developer
automatically finds the correct schema for the selected single-part element-based variable and
generates a literal template for you as shown:
Generated Template

<aem:emailMessage xmlns:aem="http://schemas.active-endpoints.com/email/2007/01/
email.xsd">
 <aem:from>string</aem:from>
 <aem:replyTo>string</aem:replyTo>
 <aem:to>string</aem:to>
 <aem:cc>string</aem:cc>
 <aem:bcc>string</aem:bcc>
 <aem:subject>string</aem:subject>
 <aem:body mimeType="string"></aem:body>
</aem:emailMessage>

To avoid errors, be sure to set the body mimeType to a valid type such as text/plain. See the example in
Step 5.

5. Use one of the following tips to populate the emailMessage elements with the appropriate strings:

• Create XPaths expressions, one per element. For example, to populate the <aem:to> element, create
an expression such as FROM$quoteRequest/quote:contact/quote:name() TO aem:to.

• Create an expression with a doXslTransform function. This solution requires that you create an XSL
file containing all the transformation details for the email elements. For example, doXslTransform
('monitorEmail.xsl', $handleAlertRequest)

• Set the Assignment Type to XQuery. Then you can add {expressions} or strings directly to each
emailMessage element.

Example

<ns:emailMessage
 xmlns:ns="http://schemas.active-endpoints.com/email/2007/01/email.xsd">
 <ns:from>Dave Verd < DVerd@mycompany.com ></ns:from>
 <ns:replyTo>sender@mycompany.org</ns:replyTo>
 <ns:to>{$quoteRequest/quote:contact/quote:name()}</ns:to>
 <ns:subject>{ $quoteRequest/quote:contact/quote:description}</ns:subject>
 <ns:body mimeType="plain/text">Message goes here.</ns:body>
</ns:emailMessage>

Deploying a Process as an Email Service

You can deploy your process and make it available as a standard document literal service for the My Role
partner link. Note that in the BPR, there are no WSDL or XSD. They are already deployed and available on the
server.

If your email list contains an invalid address, the process logs an error. Check the Server Log in the Process
Console to view email errors.

480 Chapter 34: Building a Process with a System Service

Identity Service
An identity service provides a way to look up users and groups based on a defined set of attributes. The
Process Server support for an identity service is based on Lightweight Directory Access Protocol (LDAP),
JDBC, or a file-based service.

You can create a process that includes identity-based activities. As a prerequisite, in the Process Console,
you must provide the communication details for access to your directory service. When the process runs, the
user or group specified in the process is looked up in your directory service.

Any BPEL process that implements identity-based activities imports the WSDL provided with the Process
Server. The name of the WSDL is identity.wsdl, and in the Participants view wizards, it is a System Service
named identity search.

The WSDL contains the following operations:

Operation Name Description

findRolesByPrincipal Returns a list of roles for the named principal. For example User1 is a
member of Administration and Finance.

findRoles Returns a list of roles, such as Marketing, Finance, and DnsAdmins that
are defined in the directory service.

findIdentitiesByRole Returns a list of identities for the named roles

findIdentities Returns a list of identities that includes user name and email address
Specifies which roles and principals to include and exclude from the
results
The query is comprised of include and exclude statements. The roles or
principals listed under the include element are included in the result set
while the ones listed under the exclude element are excluded.

assertPrincipalInQueryResult For a given principal, make sure the user exists in the final result of the
query.
You can use this operation for fault handling. It is good for checking
permissions.

assertPrincipalInQueryResultwithResponse Same as above with response

countIdentities Receive a count of the users and groups requested

Building an Identity-Based Activity

Use identities in an alert service, for example, to send email to a group when a process is suspended on an
uncaught fault.

You can also use identities in a BPEL process for branching, based on a group. For example, build one branch
of an activity for managers, another for customer service representatives.

Build the assign activities you need to invoke the identity service. You can generate literal contents for a
variable based on the aeid:identityQuery element.

Here is an example:

<aeid:IdentityQuery xmlns:aeid="http://schemas.active-endpoints.com/identity/2007/01/
identity.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="aeid:IdentityQuery">
<aeid:include>

Identity Service 481

<aeid:group>Development</aeid:group>
<aeid:user>user1</aeid:user>
<aeid:id>CN=Kim Pan,CN=Users,DC=aedomain,DC=active-endpoints,DC=local</aeid:id>
</aeid:include>
</aeid:IdentityQuery>

Note that the <aeid:id> element above shows an example of looking up a user in a LDAP directory by
distinguished name (DN). For JDBC, the lookup is the primary key in the database. For tomcat-users.xml, the
id is the same as the user name.

Add other programming logic, as desired.

In the PDD, for the partner role, System Service is pre-selected as a custom invoke handler. The PDD entry
looks similar to the following:

<partnerLink name="provider">
 <partnerRole endpointReference="dynamic"
 invokeHandler="system"/>
</partnerLink>

Deploying a Process as an Identity Service

You can deploy your process and make it available as a standard document literal service for the My Role
partner link. Note that in the BPR, there are no WSDL or XSD. They are already deployed and available on the
server.

Migration Service
The migration service allows fine grain control over migrating running process instances to a newer (or
different) version of a process definition. The simplest way to migrate running processes is to specify this
choice in the Process Deployment Descriptor of the newer version being deployed, on the “General
Deployment Options ” on page 348 page.

However, if the newer process version has significant changes, such as new activities, variables, or
participants, you can create a migration service to test the migration, by selecting one or a few process
instances to migrate. Then analyze the results on the Active Process Details page of the server. If errors
occur, a process is suspended and errors are reported in the server log. Please note that Process Server does
not validate changes to incoming and outgoing message structures between the existing plan and the new
plan.

Another use case for a migration service is to have fine grain control over migration. For example, you don't
have to migrate instances to the online version of the same process definition. You can migrate to any other
process definition that is on the server. And you can pinpoint only those running process instances that you
want to migrate.

The process you create for handling migration uses the Migrate system service that has two operations that
you must use in order:

• Create Map operation
This operation takes as input the Plan Id of the process definition that process instances are running
against. Each Plan Id on the server is unique and is a property of each version of a process definition. All
process instances run against a Plan Id.

The create map operation returns a migration map XML document as a string. The map contains the
migration structure between plans, which describes the transformation of the activities, links, and
variables from one process definition to the other.

482 Chapter 34: Building a Process with a System Service

• Migrate operation
This operation takes as input the migration map and the process id (pid) of the running process instance
to migrate.

The migrate operation returns the XML document that contain list of migration warnings (if any) and the
backup process Id. By default, the process instance is migrated to the Plan Id of the online version of the
same process definition, but you can specify any Plan Id on the server.

Input and Output for Create Map
The input for the create map operation looks like the following example. You must provide a Plan Id for the
running process instances to migrate. For your process request message that passes data to this operation,
you can look up the Plan Id on the Active Process Detail page or obtain it programmatically in various ways,
such as a using a database query or the appropriate Admin API call.

The following example show sample data. Note that the toPlanId is optional. If deleted, the default behavior
is to map to the online version of the same process definition.

<migration:createMapRequest xmlns:migration="http://docs.active-endpoints/wsdl/
migration/2011/04/migration.xsd">
 <migration:fromPlanId>144</migration:fromPlanId>
 <!--Optional. If not used, defaults to the online plan of the pid:-->
 <migration:toPlanId>145</migration:toPlanId>
</migration:createMapRequest>

The following example shows just the beginning of the migration map created for the response:

<createMapResponse xmlns="http://docs.active-endpoints/wsdl/migration/2011/04/
migration.xsd">
 <migrationMap><![CDATA[
 <processMigration xmlns="http://schemas.activevos.com/processMigration/2010/05/
processMigrationMapper.xsd">
 <migrationInfo>
 <locationInfo>
 <locationId>1</locationId>
 <locationPath>/process</locationPath>
 <idsToRoot />
 </locationInfo>
 <mapForVariable>false</mapForVariable>
 <migrationMapper>
 <oldLocationInfo>
 <locationId>1</locationId>
 <locationPath>/process</locationPath>
 <idsToRoot />
 </oldLocationInfo>
 <activityStrategy>
 <stateMapType>0</stateMapType>
 <defaultLocationInfo>
 <locationId>1</locationId>
 <locationPath>/process</locationPath>
 <idsToRoot />
 </defaultLocationInfo>
 </activityStrategy>
 </migrationMapper>
 </migrationInfo>
...
</createMapResponse>

Input and Output for Migrate
The input for the migrate operation requires a pid. For your process request message that passes data to this
operation, you can look up the pid on the Active Processes list or obtain it programmatically. Basically you
can use the getProcessList API call (or a report) to bring back the set of process ids matching the ones you
want to migrate. If you have a large number to migrate, you can migrate many instances in parallel.

Migration Service 483

The following example show sample data:

<migration:migrateRequest xmlns:migration="http://docs.active-endpoints/wsdl/migration/
2011/04/migration.xsd">
<!--The string comes from the Create Map operation: -->
 <migration:migrationMap>string</migration:migrationMap>
 <migration:pid>850</migration:pid>
 <!--Optional. If not used, defaults to the online plan of the pid. If used, must
match with toPlan in migrate operation:-->
 <migration:toPlanId>145</migration:toPlanId>
 <!--Optional. Defaults to false:-->
 <migration:createBackup>false</migration:createBackup>
</migration:migrateRequest>

The following is a sample migrate response message:

 <migrateResponse xmlns="http://docs.active-endpoints/wsdl/migration/2011/04/
migration.xsd">
 <response>MIGRATION_WARNING Errorcode:3001. Migration Warning: The empty
activity is being marked as Finished when it is not. This might result in invalid output
for the pid 850. (location path /process/sequence/empty)</response>
 <backupPid>851</backupPid>
 </migrateResponse>

Creating a BPEL Process That Migrates Process Instances to a
New Version

Use the following procedure:

1. In the Project Explorer, create a new orchestration project.

2. Select File > New > BPEL Process.

3. Name the process and click Finish.

4. Create a receive/reply based on a WSDL you create. The request message for the process must provide
a Plan Id and one or more process Ids of running process instances.

5. In the Participants view, create a new Partner Service Provider.

6. Select System Services.

7. Select Migration.

8. From Participants view, drag the create map operation to the canvas to create an invoke activity. This
activity takes as input the process plan Id and creates a map of the process structure.

9. From the Participants view, drag the migrate operation below the create map invoke to create a second
invoke activity. This activity takes as input the migration map and process id and migrates the running
process instance to the online version of the same plan Id, by default. You can specify any Plan Id,
depending on the structure of your process.

Testing Your Migration Process
Deploy the migration process to the server and then you can test it as follows:

1. Deploy a process and instantiate a long-running process instance.

2. Deploy a second version of the process. Do not select the migrate option in the PDD.

3. Instantiate the migration process with a request message containing a Plan Id of the original version and
the pid of the running process instance.

For doing migration programmatically outside of a BPEL process, refer to “Using the Process Server
Migration Web Service ” on page 485.

484 Chapter 34: Building a Process with a System Service

Using the Process Server Migration Web Service
For doing migration programmatically outside of a BPEL process, you can use the Process Server SOAP-
based migration Web service.

On the server, open the following page:

http://localhost:8080/active-bpel/services

On this page, scroll down to locate the AeProcessMigrationService:

http://localhost:8080/active-bpel/services/AeProcessMigrationService?wsdl

Using a tool such as SOAP UI, create a request to migrate one process instance, as shown in the following
example:

Monitoring Alert Service
Process Server provides engine monitoring, and if desired, you can trigger an alert to notify an administrator
when an engine stops running or when a monitored property has a warning or error condition.

When you configure engine monitoring properties in the Process Console, the Process Server can instantiate
a monitoring alert service. This service receives an alert from the engine, and the process can then notify an
administrator about error conditions via email. For details on sending an email, see “Email Service ” on page
479.

You can design a BPEL process to serve as the monitoring alert service. The process must be based on a
WSDL file named monitorAlert.wsdl.

In essence, the WSDL defines the handleAlert operation that receives information from the server regarding
engine status and engine properties being monitored, their monitoring level, threshold and value.

Monitoring Alert Service 485

Retry-Policy Service
At times an endpoint may not reply when it is invoked in a BPEL process. In normal circumstances, the invoke
faults. To avoid this, you can attach a policy to the endpoint reference in the PDD file to indicate that
additional retry attempts are allowed at a specified interval for the endpoint. This technique is described in
Process Developer > Part IV: Testing and Deployment > Process Deployment > Endpoint Reference Addressing
Considerations.

Alternately, you can name a service in the policy section of the PDD file whose job it is to provide a retry
interval, that you may want to calculate dynamically, and do additional work programmatically. The service
could also specify an alternate endpoint to try when the invoke is faulting or suspended.

This service, which is a retry-policy service, is a process you can create and that the Process Server
instantiates when an invoke activity is faulting (or suspended). The retry-policy process must be based on a
WSDL named retryCheck.wsdl.

In essence, the WSDL defines the retryCheck operation that receives information from the server regarding
the fault name, process Id, and other details of the faulting invoke activity. The process you write is
instantiated when the invoke activity faults (or can be suspended), and it receives an input message
identifying details of the fault.

Server Log Service
Process Server provides a Server Log that captures the details of server events, such as configuration
changes and errors in running processes. You can create a process to interact with the Server Log so that
you can add your own message to the log programmatically. This interaction provides a way to troubleshoot
your running processes.

The Server Log page is listed under the Monitor menu of Process Console.

The input for the logMessage looks like the following example:

<ns:logWriteMessage xmlns:ns="http://schemas.active-endpoints.com/logging/2009/05/
logging.xsd">
 <ns:message>My message to insert into server log
 </ns:message>
 <ns1:level>Info</ns1:level>
</ns:logWriteMessage>

The value for <level> matches one of the Server Logging Level properties on the Logging Properties page of
Process Console. Your message is inserted in the log when an event occurs that is defined by that logging
level. For example, storage exceptions are Critical level. Engine events, such as BPR deployments and server
start up, are Info level.

The values for <level> include the following (case-sensitive):

• Info (default)

• Error

• Warning

• Critical

• Verbose (includes all levels)

In the Process Console, you can view the Server Log and filter Logging Service to show the Process filter.
With the Process filter enabled, you can view all messages from all processes you create to add a server log
comment.

486 Chapter 34: Building a Process with a System Service

Related Interfaces

System Services also includes two additional interfaces related to server logging.

• ClearServerLog
• GetServerLogList

Shell Command Invoke Service
1. In the Project Explorer, create a new orchestration project.

2. Select File > New > BPEL Process.

3. Name the process and click Finish.

4. In the Participants view, create a new Partner Service Provider.

5. Select System Services from the Interfaces tree.

6. Select Shell Command.

7. From the Partner Service Provider that you created, drag the execCommand operation to the canvas to
create an invoke activity.

8. Fill in the input data, with the selections described above.

For more information, see Connectors > Shell Command Invoke Service Connector.

Shell Command Invoke Service 487

C h a p t e r 3 5

Human Tasks
This chapter includes the following topics:

• Getting Started with Human Tasks, 488

• Participants and Tasks, 490

• Using the People Activity, 514

• Simulating Debugging Deploying, 525

• Providing Renderings for Task Clients, 530

• Custom Functions, 536

• Using Customized Task Clients, 539

• Creating Custom Task Properties, 540

• Creating Custom Escalation Actions, 544

Getting Started with Human Tasks
Human Tasks is an extension to WS-BPEL 2.0 that includes human workflow activities within a BPEL process.
In addition to receiving, replying, and invoking Web services, Human Tasks "invokes" a person to handle and
complete a task. Similar to the behavior of an invoke activity, the person returns output data to the BPEL
process.

Human Tasks is also based on the WSDL 1.1, WS-HumanTask 1.0 and WS-BPEL Extension for People
(BPEL4People), Version 1.0 specifications.

Note: Human Tasks is currently available only using Process Developer with the on-premises version of
Informatica Business Process Manager (ActiveVOS).

For details about the people involved in a BPEL process, see Introducing Human Workflow into a BPEL
Process.

About the BPEL4People Specification
The WS-BPEL Extension for People (BPEL4People), Version 1.0 Specification provides extensions to the OASIS
WS-BPEL 2.0 Standard to enable human interactions and a model of human interactions that are service-
enabled. This specification is currently accepted by the OASIS WS-BPEL Extension for People (BPEL4People)
Technical Committee for discussion as adoption as an OASIS Standard.

For details, visit http://www.oasis-open.org/committees/bpel4people/charter.php.

488

Introducing Human Workflow into a BPEL Process
Human Tasks contains extension elements and an extension activity, called the People activity, which offer
the following:

• Creating a task definition.

• Selecting people for working on or managing a task.

• Creating workflow requirements, such as deadlines and escalations.

A People activity uses a task definition and contains several other properties. The People activity can be
linked to any BPEL activity or contained within a scope or other container. You can add as many People
activities to a BPEL process as needed.

See also Routing Tasks to People at Run Time.

Routing Tasks to People at Run Time
The following illustration shows what happens when a BPEL process executes a People activity.

When a BPEL process executes a people activity, the task defined by the activity is routed to all potential
owners and administrators defined by the task. Each user can claim a task to work on, making it unavailable
for other users.

When the task owner completes the task by submitting the required information into a form, the output data
is sent back to the process so that the next activity can execute.

Typically a BPEL process containing a People activity is an asynchronous, long-running process. Since the
people activity effectively "invokes" a person, the expected response time is high. For this reason, when you

Getting Started with Human Tasks 489

design a BPEL process containing a people activity, you should make the process asynchronous to avoid
probable Web service communication timeouts.

About Task Life Cycle
The following are the basic states of a task after a BPEL process begins executing a People activity:

• Unclaimed. The task is available for anyone designated as a potential owner.

• Claimed. One person reserved and started the task. If only one user is assigned to the task, it is in the
Claimed state automatically.

• Completed. The output data was submitted and the owner declared the task complete.

• Failed. The owner provided fault data and failed the task.

• Exited. An error condition occurred, such as expiration or People activity termination.

Creating the Artifacts Needed for the People Activity
The People activity must route a task to the appropriate group of people. Doing this requires the following
artifacts:

• WSDL file that contains the port type and operation to "invoke" a person. The person receives the input
data needed to make a decision in order to complete the task and reply with output data.

• An identity service, which includes the groups and users available for tasks. As an option for choosing a
task owner, you can define an identity service on the Process Developer Preferences page.

• Informatica Business Process Manager includes an application to present task details to users. You can
customize the presentation.

Participants and Tasks
To include human workflow activities in a BPEL process, you need a People activity that describes who works
on a task. The Participants view is a key starting point for creating the people and tasks to be used in People
activities. The human task participants listed in the Participants view correspond to BPEL4People's concept
of a Logical People Group, as described in About Logical People Groups. The purpose of selecting a name is
to give your Logical People Group a meaningful name. When you create a Process Deployment Descriptor for
the process, you must select the actual names from the Identity Chooser.

If desired, you can select the actual group name from your company's LDAP or other identity service for a
human task participant. Do this by selecting the button at the end of the Name field in a Logical People
Group's Properties view.

Note that you must configure and enable an Identity Service before selecting from the Identity Chooser.

Tip: You can wait until deployment to map one or more groups from your Identity Service to a Logical People
Group.

490 Chapter 35: Human Tasks

Creating a Human Task Participant
Creating a Human Task Participant

A human task participant represents the role of a person who performs tasks within the process. The
participant is a Logical People Group that is used in building a task to be used in a People activity. It consists
of a name and optional parameters.

You can add a task as a child of a participant.

To create a new human task participant:

1. In Participants view, right-mouse click on Human Task Participants and select "New Human Task
Participant."

2. The Properties view opens for the new participant, and the default Name of the Logical People Group is
"Role1".
In a Logical People Group, people are assigned to a role such as Potential Owners or Business
Administrators.

3. If desired, rename this group. Alternately, click the button at the end of the Name field to open the
Identity Chooser.

Creating a Task for a Participant

After you create a human task participant, you can create a new process-level task for the participant.

Note: To create a new Notification, see About Notifications.

To Create a New Task:

1. In Participants view, right-mouse click on a Logical People Group name (such as "Role1"), and select
New Human Task.

2. The default Task Name is "Task1". If desired, rename this to something more meaningful.

3. Do one of the following

• Click to accept the name and to finish the details later in the Properties view.

• Continue to the next step to select or create an interface.

4. To select an interface that you have already imported into the workspace, use the Interface tree. Select
the WSDL operation for this task.
The tree shows several categories: the current BPEL process and the WSDL interfaces currently in use
for other participants (if any), Project and Project Reference Services, and Other workspace
orchestration projects containing WSDLs (if any). For details on Using Project References, see the
Process Developer Online Help.

5. To create a new interface, select Generate Interface. See "Creating a New Interface" in the Process
Developer Online Help for details.

You will assign the Logical People Group is to the Potential Owners role in the task that is created.

Using or Mapping Users or Groups From the Identity Service
If desired, you can name actual users or groups from your Identity Service to the PDD Logical People Group
panel. Note that the WS-HT specification does not allow a mixture of users and groups.

If you selected a user or group name from the Identity Chooser when you created the Logical People Group,
you can use that name in the PDD.

If your Logical People Group has a generic name, such as "Role1", you can map this name to an actual user or
group in your Identity Service.

Participants and Tasks 491

Before you can select actual groups, you must ensure that your Identity Service is correctly enabled, as
described in Setting up an Identity Service.

To add individual users, select the Users radio button, and then select Add. In the Add User dialog box, type in
the name of one user, named exactly the same as in the Identity Service. For example, if you are testing, you
may have defined a user in the tomcat-users.xml file as:

<user name="testUser1" password="b4p" roles="abTaskClient,
Finance,Marketing,Accounting,NERegionReps" />

In this example, you can type in testUser1 as a User in the PDD Editor.

To add Groups, select the Groups radio button, and then select Add to add a new group name. You can also
select from an Identity Chooser, as described in Using the Identity Chooser During Deployment.

Creating a Task for a Participant
Create the interface for a new BPEL for People task.

After you create a human task participant, you can create a new process-level task for the participant.

Note: To create a new Notification, see About Notifications.

To Create a New Task:

1. In Participants view, right-mouse click on a Logical People Group name (such as "Role1"), and select
New Human Task.

2. Rename the default task name.

3. Do one of the following

• Click to accept the name and to finish the details later in the Properties view.

• Continue to the next step to select or create an interface.

4. To select an interface that you have already imported into the workspace, use the Interface tree. Select
the WSDL operation for this task.
The tree shows several categories: the current BPEL process and the WSDL interfaces currently in use
for other participants (if any), Project and Project Reference Services, and Other workspace
orchestration projects containing WSDLs (if any). For details on Using Project References, see the
Process Developer Online Help.

5. To create a new interface, select Generate Interface. See "Creating a New Interface" in the Process
Developer Online Help for details.

You will assign the Logical People Group is to the Potential Owners role in the task that is created.

Using BPEL4People Extension Elements and Activities
BPEL4People is an extension to the BPEL language and is incorporated into the Process Developer through
extension elements and activities, namely:

• Human Interactions Extension Element
This element is added to the Outline View and contains the child elements available for building a People
activity, including Logical People Groups, Tasks, and Notifications.

• People Activity

492 Chapter 35: Human Tasks

Human Interactions Extension Element
Human Interactions is an element in the BPEL4People namespace that is an extension to BPEL. This element
contains the child elements you can use to build a People activity, namely Logical People Groups, tasks and
notifications.

You can add a Human Interactions element to the process or to a scope. As you define Logical People
Groups, tasks and notifications at the process or scope level, they become available to the People activities
at that level. Using a Human Interaction is a flexible and optional choice. The benefit is that the people
assignments, tasks, and notifications within it are available to all People activities in a process.

The Human Interactions element is automatically added to the process when you use the Participants view to
create people and tasks.

To manually add a human interactions element to the process:

1. From the Outline View, right mouse click on the process name.

2. Select Add > Human Interactions.

3. The Outline View displays the BPEL4People elements you can use to build one or more People activities.

Tips:

• Use the Logical People Groups, tasks, and notifications to define generic elements that you can use in one
or more People activities. You can override some of the general settings in each People activity.

• Add a Human Interactions element to a scope to create local definitions.

• It is optional to define a human interactions element. You can define a task or notification inline within a
People activity, for use only within that activity.

About Logical People Groups
Add Logical People Group parameters.

A Logical People Group is a named list that represents users or groups defined in an Identity Service, such as
your company's LDAP directory. The Identity Service must be configured and enabled in the Process Console.
Instead of naming the actual users or groups who can manage processes and tasks, you can refer indirectly
to them from a Logical People Group.

The Logical People Group, such as customer service representatives, can have a parameter, such as regions,
that can be associated with an expression, such as region one. Parameters can be used in an assign activity
or with a people query at deployment time (for a JDBC or LDAP Identity service). At run-time, the parameters
get resolved.

You can use Logical People Groups in defining task and notification assignments.

For example, you can define a Reviewers Logical People Group as a global construct and then use that
Logical People Group within one or more tasks requiring reviewers. The users or groups are actually selected
at deployment.

Logical People Groups are global elements enclosed in a Human Interactions extension element. The XML
syntax for a Logical People Group element is:

<htd:logicalPeopleGroups>?
 <htd:logicalPeopleGroup name="NCName" reference="QName"?>+
 <htd:parameter name="NCName" type="QName" />*
 </htd:logicalPeopleGroup>
</htd:logicalPeopleGroups>

The parameter element is used to pass data needed for a dynamic assignment of a Logical People Group in
an assign activity or for a role assignment within a task. A parameter can also be resolved with a people
query evaluation at deployment for JDBC and LDAP Identity services, but not file-based services, such as

Participants and Tasks 493

tomcat-users.xml. You can define several parameters of which some, none, or all of them can be evaluated
and used in assignments or in the PDD. In addition, the parameters can be overridden in the Process
Deployment Descriptor file.

Logical People Groups can be defined either at the process level or on enclosed scopes.

Creating a Logical People From the Outline View
Add Logical People Group parameters.

You can add a Logical People Group from the Outline View, and it will automatically be added as a Human
Task Participant in the Participants View. For a key starting point to create Logical People Groups, see
Creating a Human Task Participant.

Creating a Logical People Group From the Outline View:

1. From the Outline View, right mouse click on the process name.

2. Select Add > Human Interactions.

3. Expand the Human Interactions element to see Logical People Groups.

4. Right mouse click on Logical People Groups and select Add > Logical People Group.

5. In the Properties view, fill in the definition as follows:

a. Type in a unique name, for example, "Regional Reps."

b. Add parameters as desired. A parameter can be used in an assign activity or a people query for
LDAP or JDBC Identity services in the Process Deployment Descriptor file. Its value can further be
expressed by an argument within the role assignment in a task definition. For example, potential
owners from the "Northeast Region."

Tip: You can create Logical People Groups at the scope level for use within the enclosing scope.

Logical People Group Parameters and Arguments
Add Logical People Group parameters.

A Logical People Group defined within the Human Interaction element can include parameters. They can be
evaluated for specific people queries into an Identity service.

In addition, for each Logical People Group used in a task role assignment, you can add an argument
expression for the parameter for that role assignment. When you associate the parameter with a search
attribute in your LDAP or JDBC Identity service, the argument is resolved.

When you define a parameter, you can use it as follows:

• In an assign activity, create an expression for a parameter when copying one Logical People Group to
another. For example, you can write an XPath or XQuery expression that reflects the following logic: "The
Logical People Group for the next task is the previous task owner's manager."

• In a people query in the Process Deployment Descriptor, associate the parameter with a search attribute
in your JDBC or LDAP Identity service. For example, associate the parameter country_code with an
Identity search attribute called country_code.

• In a role assignment within a task, create an expression for the parameter for a more specific people
query in a JDBC or LDAP Identity service (not a file-based Identity service). As the parameter is resolved at
runtime, the role assignment expression is also evaluated.

Example: Parameters in a Logical People Group Definition

<htd:logicalPeopleGroup name="regionalClerks">
 <htd:documentation xml:lang="en-US">
 The group of clerks responsible for the region specified.
 </htd:documentation>

494 Chapter 35: Human Tasks

 <htd:parameter name="region" type="xsd:string" />
</htd:logicalPeopleGroup>

Example: Arguments in Logical People Group Definition for a Potential Owner of a Task

<htd:potentialOwners>
 <htd:from logicalPeopleGroup="regionalClerks">
 <htd:argument name="region">
 htd:getInput("part1")/region
 </htd:argument>
 </htd:from>
</htd:potentialOwners>

Using a Logical People Group in an Assign Activity
For dynamic assignment of a Logical People Group, you can create Copy Operations in an Assign activity. A
Logical People Group can be copied as follows:

Copy from a Logical People Group to:

• Another Logical People Group

- Variable or variable property

- Copy to a Logical People Group from:

• Literal

- Expression

- Variable or variable property

XML Syntax

<wsht:from logicalPeopleGroup="NCName">
 <wsht:argument name="NCName" expressionLanguage="anyURI"?>*
 value
 </wsht:argument>
</wsht:from>
<wsht: to logicalPeopleGroup="NCName"/>

Example: From a Logical People Group Including a Parameter to a Process Variable

<bpel:assign name="getVoters">
 <bpel:copy>
 <wsht:from logicalPeopleGroup="voters">
 <wsht:argument name="region">
 $electionRequest/region
 </wsht: argument>
 </bpel:from>
 <bpel:to variable="voters" />
 </bpel:copy>
</bpel:assign>

Example: From a Literal to a Logical People Group

<bpel:assign>
 <bpel:copy>
 <bpel:from>
 <bpel:literal>
 <myns:entity xsi:type="htd:tOrganizationalEntity">
 <htd:users>
 <htd:user>Elaine Smith</htd:user>
 <htd:user>Julie Delgado</htd:user>
 </htd:users>
 </myns:entity>
 </bpel:literal>
 </bpel:from>
 <wsht:to logicalPeopleGroup="Directors" />
 </bpel:copy>
</bpel:assign>

Participants and Tasks 495

Example: From an XQuery Expression to a Logical People Group

<ns3:copy>
 <ns3:from expressionLanguage="urn:active-endpoints:expression-language:xquery1.0">
 <ht:organizationalEntity xmlns:ht='http://www.example.org/WS-HT'>
 <ht:users>
 <ht:user>{$loanOfficers/loanManager}</ht:user>
 </ht:users>
 </ht:organizationalEntity></ns3:from>
 <ns3:to b4p:logicalPeopleGroup="loanreps"/>
</ns3:copy>

Selecting Users or Groups for Logical People Groups During Deployment
Selecting Users or Groups for Logical People Groups During Deployment

During deployment, you can select list of users or groups or create a query to select users or groups for each
Logical People Group defined in the process. The users or groups are those defined in your organization’s
Identity Service, such as a Tomcat Users file (for testing) or an LDAP or JDBC directory.

The user or group assignments you make are based on the hd:organizationalEntity data type, defined in
the WS-HT specification.

Actual assignment of people to roles occurs when a process is instantiated. This runtime behavior allows
members of a role to be determined on a just-in-time basis and is beneficial when group membership
changes frequently.

Using Logical People Groups for Role Assignments
Select the value of the Role assignment: literal, expression, or Logical People Group.

A Logical People Group is a construct that represents the users or groups who perform a role related to a
task or notification. By defining one or more Logical People Groups, instead of naming actual users or
groups, you can re-use a Logical People Group in a variety of ways.

For details on creating a Logical People Group, see About Logical People Groups.

To assign a Logical People Group to a task or notification-related role:

1. From the Outline view, select a Human Interactions element or People activity containing a task or
notification.

2. Select a task or notification to put the Properties View in focus.

3. On the Assignment tab, select a role. For example, select Potential Owners. For definition of roles, see
Role Assignments for a Task or Notification.

4. In the Value column, click (...).

5. In the Role dialog, select Logical People Group as the Type.

6. Select a name from the Group list.

7. If the Logical People Group is defined with parameters, you can do the following:

a. In the Arguments panel, select a parameter.

b. Click (...) in the Expression column.

c. In the Argument Expression Builder, create an expression for the parameter. For example, if the
parameter is regions, create an expression that will resolve to region one. For related examples, see
Using Expressions for Role Assignments.

Note: You can only use parameters and arguments in an assign activity or in a people query in the Process
Deployment Descriptor file. The people query is restricted to JDBC or LDAP Identity services.

For details and examples, see Logical People Group Parameters and Arguments.

496 Chapter 35: Human Tasks

Using Literal Values for Role Assignments
Select the value of the Role assignment: literal, expression, or Logical People Group.

Use the Literal option to directly specify users or groups for task and notification-related people
assignments. Using Literal, you generate an XML document with placeholder values that you can fill in for
individual users or groups.

You cannot have a mixed list of users and groups, according to the WS-HT Human Task specification.

To Add a Literal Value for a Task or Notification Role:

1. From the Outline View, select a task or notification.

2. In the Assignment tab of the Properties view, select a role, such as a task role of potential owners.

3. In the Value column, click (...).

4. In the Role dialog, select Literal from the Source list.

5. Select Generate.

6. Notice that Process Developer generates the ht:organizationalEntity element. This element is
required when defining people assignments.

7. In the text box, modify the values to add users or groups.

The following literal contents are generated:

<ht:organizationalEntity xmlns:ht='http://www.example.org/WS-HT'>
 <ht:users>
 <ht:user>Some User</ht:user>
 </ht:users>
</ht:organizationalEntity>

Modify this XML sample as follows:

• Delete or fill in valid values for each Some User in <ht:users>. The user name must match a User Id in
your organization's directory, such as MyFirstName.MyName. Add additional <user> elements as desired.

• Replace <users> with <groups>. Add elements and valid values for <ht:group>.

• According to the WS-HT specification, you cannot mix users and groups

The following is an example of a valid XML data sample:

<htd:potentialOwners>
 <htd:from>
 <htd:literal>
 <htd:organizationalEntity>
 <ht:users>
 <ht:user>Ann.Weston</ht:user>
 <ht:user>Anu.Martin</ht:user>
 <htd:user>Deborah.Smile</ht:user>
 </ht:users>
 </ht:organizationalEntity>
 </ht:literal>
 </ht:from>
</ht:potentialOwners>

Using Expressions for Role Assignments
Select the value of the Role assignment: literal, expression, or Logical People Group.

Use the Expression option to write a conditional expression for selecting task or notification-related roles.
The expression can be based on the input data of a People activity. For example, if you are invoking a service
to retrieve identities, you can pass them into the potential owners or administrators identities.

Participants and Tasks 497

The expression can include a process variable or it can be composed using WS-HT custom XPath functions,
described in Custom Functions.

To Add an Expression for a Task or Notification Role:

1. From the Outline View, select task or notification.

2. In the Assignment tab of the Properties view, select a role, such as potential owners.

3. In the Value column, click (...).

4. Select Expression as the Source, and then select Expression Builder.

5. In the Expression Builder, select a Human Task (WS-HT) custom function or other variable in creating an
expression.

6. Select the users or groups for the role.

XML Syntax

<htd:from expressionLanguage="anyURI"?>
 expression
</htd:from>

Example: Expression for a Task’s Role Assignment

<htd:potentialOwners>
 <htd:from>$voters/users/user[i]</htd:from>
</htd:potentialOwners>

The potential owners definition is contained within a For Each activity.

Example: Using a WS-HT Custom Function:

<htd:potentialOwners>
 <htd:from>
 htd:getInput("part1")/approvers
 </htd:from>
</htd:potentialOwners>
<htd:businessAdministrators>
 <htd:from>
 htd:except(htd:getInput("part1")/admins,
 htd:getInput("part1")/globaladmins[0])
 </htd:from>
</htd:businessAdministrators>

The WS-HT custom function getInput returns a list of potential owners defined as the child element
approvers in part1 of the task's input message. The business administrators group includes globaladmins
and excludes admins.

Example: A Notification's Role Assignment

<htd:peopleAssignments>
 <htd:recipients>
 <htd:from>
 htd:getPotentialOwners("ApproveClaim")
 </htd:from>
 </htd:recipients>
</htd:peopleAssignments>

Example: XQuery

<htd:potentialOwners>
 <htd:from>
 <htd:literal>
 <ht:organizationalEntity
 xmlns:ht='http://www.example.org/WS-HT'>
 <ht:groups>
 <ht:group>{data($creditInformation/loan:loanTypeGroup)}
 </ht:group>
 </ht:groups>
 </ht:organizationalEntity>
 </ht:literal>

498 Chapter 35: Human Tasks

 </ht:from>
</ht:potentialOwners>

About Tasks
To include human participation as part of process execution, you can add a People activity and define a task
for it.

A task is a Human Task (WS-HT) construct that relies on a WSDL interface, people assignments, and other
details. By itself a task is not executable. It is designed to be used by a People activity. A special type of task
is a notification. For details, see About Notifications.

The BPEL4People specification defines several ways that People activities can incorporate tasks, as shown
in the following illustration.

Process Developer handles each of the task implementations as follows:

• Inline Task #1. Define a task within a People activity for use only within that activity
For implementation details, see Creating an Inline or Local Notification Action for a Task Deadline.

• Inline Task #2 (Local Task). Define a task within the Human Interactions element on the Outline view to
make it available to all People activities in a process. The People activity can use the task as is or create
overrides for some properties.
For implementation details, see Adding a Task or Notification to the Outline View for Process or Scope Use.

• Stand Alone Task #3. (This is a future implementation.) Import into the process a human interaction XML
document that contains a task definition and refer to the document within a People activity.

• Stand Alone Task #4. (This is a future implementation.) Refer to a remote task.

A task definition includes the following parts:

• Task Name, Interface, and Priority

• Role Assignments for a Task or Notification

• Adding Task or Notification Presentation Properties

• About Task Deadlines and Escalations

• Using Expressions for Outcome and Search By

• Adding Rendering Details for a Task or Notification

See also Required and Optional Properties for a Task and Using the All Tab of a Task.

Participants and Tasks 499

Adding a Task or Notification to the Outline View for Process or Scope Use
To make a task or notification available for all People activities within a process or scope, you can create
definitions within the Human Interactions element on the Outline view.

1. In the Outline view, right-mouse click on the process name or a scope activity.

2. Select Add Human Interaction.

3. Expand "Human Interactions" and right-mouse click on Tasks (or Notifications).

4. Select Add > Human Task.The Human Task wizard opens, where you can select a WSDL interface or
select OK to complete the WSDL details later.

5. In the Properties view for the task, fill in the details.

A task definition includes the following parts:

• Task Name, Interface, and Priority

• Role Assignments for a Task or Notification

• Adding Task or Notification Presentation Properties

• About Task Deadlines and Escalations

• Using Expressions for Outcome and Search By

• Adding Rendering Details for a Task or Notification

For required properties, see Required and Optional Properties for a Task.

A notification definition includes parts described in About Notifications.

Required and Optional Properties for a Task
The following table describes required and optional properties required to make a task valid as well as
properties you can optionally define:

Required Properties Optional Properties

Interface Outcome and Search By Expressions

Priority Task Deadlines - All

People assignments Renderings

Subject Description

Task Name Interface and Priority
In the Properties view of a task, the Task tab displays the following properties:

• Name. (Required). The name combined with the target namespace of a task element uniquely identifies
the task definition. This is not the name displayed to task users; that name is Display Name, as described
in Adding Task or Notification Presentation Properties.

• Priority (Required). You can set a default priority level as a non-negative integer, starting at zero as the
highest priority. You can create the priority as an expression. The priority is displayed in to users, and task
owners or administrators can change the level. A way to raise the priority when the task is in progress is
to set an escalation action, described in About Task Deadlines and Escalations. Note that priorities 0 and 1
are displayed with red and yellow flags, respectively. For an illustration of how a priority appears to users,
see Adding Task or Notification Presentation Properties.

500 Chapter 35: Human Tasks

• Interface. (Required). Specifies the WSDL port type and operation used to invoke the task. The WSDL
must be available in the Project Explorer. See Adding a Task Interface.

See also About Tasks.

Adding a Task Interface
Enter an interface for a callback when a task is described with a one-way operation.

A task is based on a WSDL port type definition. Essentially, a task represents a "service" that is 'invoked' by
an operation that contains input and optionally, an output and fault message. You must import a WSDL into
your process and then select the port type and operation as an interface to the task. The operation must be a
request-response type.

If your process already contains an import for the WSDL that defines the Port Type and Operation, then select
the appropriate values.

Role Assignments for a Task or Notification
Specify the constraints for task delegation.

In the Properties view of a task, select the Assignment tab to define participants for the generic roles
associated with a task or recipients for a notification.

For a task, you must select at least one user as a potential owner, business administrator, or task
stakeholder. For a notification, at least one recipient is required.

If you assign a single user to a task, the task is in auto-claim mode. When the assigned user logs into
Process Central, the task is already in the Claimed state. Normally the task is in the Ready state for a
potential owner to claim it.

The generic roles are as follows:

Role Assignment Description

Potential Owners Individuals or groups of people who receive a task. Each person receives the same task. Any
one of them can claim ownership of a task, making it unavailable for all others.

Excluded Owners Individuals or groups of people who may not become an actual or potential owner and thus they
may not reserve or start the task.

Task Stakeholders Individuals or groups of people who can influence the progress of a task, for example, by adding
attachments or simply observing the state changes of the task. They are also allowed to
perform administrative actions on the task instance and associated notifications, such as
resolving missed deadlines.

Task Initiator The person who creates the task instance. Depending on how a task is instantiated, a task
initiator may or may not be defined. A case where the initiator could be known is when the
actual owner or business administrator of Task A initiates Task B.
At runtime, a task initiator may skip the task, if it is enabled as "skippable." The task appears in
the initiator's task view with a Skip button. For details, see Required and Optional Properties for
a Task.

Participants and Tasks 501

Role Assignment Description

Business
Administrators
(Task and
notification)

Individuals or groups of people who are responsible for ensuring that the task or notification is
completed. As such, Administrators can assign a task to any user or claim a task for
themselves in order to work on it. An Administrator can also see a list of all task instances for
all potential and actual owners of a task. When you set up task deadlines, you can trigger
events, such as notifications, that can be targeted for Administrators.
Administrators have the same permissions as task stakeholders.

Delegation
(Task only)

In addition to selecting individuals or groups to receive the task, you can specify constraints
concerning delegation of the task to others. By default, there is no constraint. Potential owners,
the actual owner or a business administrator can delegate a task to any other user.
On the All tab of a task, you can select anybody, nobody or potential owners. You can also
specify individual or groups of delegatees by creating a literal, expression, or logical people
group.

Recipients
(Notification only)

Individuals or groups of people who receive notifications.

To define one of the generic roles, see:

• Using Literal Values for Role Assignments

• Using Expressions for Role Assignments

• Using Logical People Groups for Role Assignments

Adding Task or Notification Presentation Properties
Adding Task or Notification Presentation Properties

You can add information and instructions for task owners and administrators to help them work on the task.
For a notification, there is no work to do, so typically detailed information is not required.

As you are creating the presentation properties, keep in mind how they will appear to users. The following
illustration shows an example task for a user, and the list below describes the user interface elements you
can create within the Presentation tab of a task or notification.

502 Chapter 35: Human Tasks

• Priority (Default). A task or notification has a priority level, displayed as an integer, starting at zero as the
highest priority. (For details on creating a priority, see Task Name, Interface, and Priority.) In the illustration
above, the task priority of 3 is shown to the left of the task Name.

• Display Name (Optional). The property appears as the Name to users. The maximum length is 64
characters.

• Subject (Required). Short description of the task or notification. You can write this as described in
Configuring Presentation Parameters for a Task or Notification Subject or Description. The maximum
length of the resulting string is 254 characters.

• Detailed Description (Optional). Long description of the task or notification as seen in the Additional
Information section. You can write this as described in Configuring Presentation Parameters for a Task or
Notification Subject or Description and Adding a Content Type for a Task or Notification Description.

• Renderings (Optional). For details, see About Task Presentation in Process Central.

Configuring Presentation Parameters for a Task or Notification Subject or
Description
Provide presentation details for the task or notification.

The task Subject property defines the basic information for users to know what the task is all about. The
subject line is similar to an email subject line, and is displayed similarly.

The task Description property can be lengthy and is displayed in the Additional Information section of a task.

You can specify the subject and description by using presentation parameters, which are expression-based
variables that can be included in text. For example, a subject might be composed as:

Approve the insurance claim for {$lastname}, {$firstname}.

In this example the parameters, enclosed by curly braces, are configured by referring to child elements in an
input message.

Presentation parameters can be based on input data unique to a task instance, making each subject line or
description unique.

See the example in topics that follow.

Participants and Tasks 503

In addition, you can add multi-lingual (localization) support for a Subject. For details, see Adding MultiLingual
Support for Task Subject, Description, and Display Name.

You can also use Presentation Parameters to create custom task properties. For details, see Creating Custom
Task Properties.

To Configure Presentation Parameters:

1. Put the Presentation tab of a task in focus in the Properties view.

2. Select the Dialog button at the end of either the Subject or Description field.

3. In the Presentation Parameters dialog, select Add. The placeholders param and string are added to a
row.

4. Type over param with a meaningful Parameter name, such as the name of an input message part you will
use in the parameter expression. For example, type in lastname.

5. Select the parameter Type from a drop-down list. The type is a simple XSD type. The type string is
selected by default.

6. Click (...) in the Expression column.

7. Create an expression in the Expression Builder.
Tip: Use one of the BPEL4People custom functions to return data from a task input message. See the
example below.

The following illustration shows an example of presentation parameters within the Subject.

Adding MultiLingual Support for Task Subject Description and Display Name
On a task’s Presentation tab, you can externalize the text in a Subject’s expression, a Description’s
expression, and the Display Name. For an overview of how to create an expression, see Configuring
Presentation Parameters for a Task or Notification Subject or Description.

Externalizing the Text Strings for a Subject, Description, and Display Name:

1. Open the Properties view of a task and select the Presentation tab.

2. At the end of the Subject expression that you have added, append the required syntax for multilingual
support, as follows:
| [keyname, {$var}]

504 Chapter 35: Human Tasks

where:

• "|" (vertical bar) is the separator

• "[]" (brackets) contain all externalization values

• keyname is an identifier for the Subject expression

• {$var} represents a variable used in the Subject expression

These are shown in the following figure:

Here are some examples. Note that the default expression is to the left of the vertical bar and the
externalization values are to the right:

• This is my subject | [taskSubject]
• My subject is {$parameter} | [taskSubject, {$parameter}]

• My subject is {$param1} and {$param2} | [taskSubject , {$param1}, {$param2}]

3. Add the bundle key name and value to each message properties file that you create for multilingual
support. For example, in the English file:

• taskSubject=This is my subject
• taskSubject=My subject is {0}
• taskSubject=My subject is {0} and {1}
For details on creating message property files, see "Adding MultiLingual Support to Process Central" in
the Process Developer Online Help.

4. Repeat steps 2 and 3 for the task’s Description. The Description appears in the Task Details section in
Process Central.

5. Repeat steps 2 and 3 for a task Display Name. Note that only a key name is allowed.

6. Be sure that your Process Central configuration file (.avcconfig file) contains an i18n location
reference for your default properties file. For details, see "Adding MultiLingual Support for an .avcconfig
File" in the Process Developer Online Help.

Adding a Content Type for a Task or Notification Description
Add a content type for a description.

You can specify one or more content types, such as plain text, HTML, or XHTML, for the text in a task
description. You can then compose the description differently, as desired, for each content type. The default
content type is plain text.

Adding a Content Type:

1. Put the Presentation tab of a task in focus in the Properties view.

Participants and Tasks 505

2. In the Description panel, select the Add (+) button next to Type.

3. In the Content Type dialog, type in a new content-type value. For example, add "text/html".

Note: Process Developer supports plain text, HTML, and XHTML. However, you can add any content type you
wish that you may be supporting in your own client task application.

Using the All Tab of a Task
In a task's Properties view, the All tab displays the complete list of properties, including some that do not
appear on the Task, Presentation, and Assignment tabs.

You can define or modify properties on the All tab or on the other tabs as desired.

For details on properties that appear only on the All tab, see the following topics:

• Using Expressions for Outcome and Search By

• Adding Rendering Details for a Task or Notification

• Role Assignments for a Task or Notification

Using Expressions for Outcome and Search By
Create an expression for task outcome.

You can use the following two expressions:

• Outcome
This optional element identifies the field of an XSD simple type variable in the output message that
reflects the business result of a task. Using Outcome enables you to create a query to produce an
xs:string which represents the outcome of the task. This query is run against the specified part of the
output data.

This element is not displayed in an Process Developer task client, but can be useful as part of the HT API.

• Search By
This optional element lets you create an expression which produces an xs:string that can be used to
quickly locate a task within the a task client application. The expression evaluates using the input data for
the task. For example, a loan application request contains several data parts, including an application ID
customer name, and other loan details. The Search By expression may extract the application ID from the
input data. In a task client, a user can type in an application ID in the Search By field to quickly retrieve a
particular task.

The Search By expression created in Designer might be:

htd:getInput('loanPart')/@applicationId
where application Id evaluates to a five-digit number associated with the loan application request. In
the Process Developer task client, a user would enter a five-digit number in the Search By field, such as
"12345", to locate a particular task.

About Task Deadlines and Escalations
Select a deadline event (escalation) to view its definition.

You can specify one or more deadlines by which a task must be started and also one or more deadlines by
which a task must be completed. If a start date or completion date is missed, you can trigger one or more
escalation actions. For example, set a "start the task" deadline for three hours after a task is created, and if
the deadline is missed, send a notification to the task's owner. If the second deadline is missed, alert the
business administrator.

506 Chapter 35: Human Tasks

In addition to the simple example of notifying a task owner when a task is late, there are many expressions
and conditions you can apply to a task deadline.

Note the following about setting deadlines:

• Start deadlines describe when a potential owner must start working on a task. The deadlines are enabled
as soon as the task is created and are disabled after a potential owner starts the task.

• Completion deadlines describe when an owner must complete a task. The deadlines are enabled as soon
as the task is created and are disabled after an owner completes the task.

If a task is reassigned, which changes the task state to unclaimed, the original deadlines are still in effect.
For details, see About Task LifeCycle.

See the following topics for details on setting deadline alarms and escalation actions.

• Adding Start and Completion Deadlines and Alarms

• Selecting an Escalation Action to Occur When a Task Deadline is Triggered

• Defining a Condition for an Escalation Action

• Using Task Data or Mapped Data for a Notification

• Creating an Inline or Local Notification Action for a Task Deadline

• Using a Reassignment Action for a Task Deadline

• Invoking a Process When a Task Deadline Occurs

Adding Start and Completion Deadlines and Alarms
You can set deadlines for when a task must start and when a task must complete.

If desired, you can set deadlines for when a task must start and when a task must complete. For example, if a
task must start within three hours of being created, you can set a start deadline and add an escalation action
to notify the potential owners that no one has started the task. The notification is sent to all potential owners.

You can add multiple start and completion deadlines for a task. For details on the definition of start and
completion, see About Task Deadlines and Escalations.

Creating a Start (or Completion) Deadline for a Task:

1. In the Outline view, select a people activity that has a task (not a notification).

2. Select the people activity's task.

3. In the task Properties view, select the Deadlines tab, and select Add.

4. In the Deadline Specification dialog, select the deadline type: Start or Completion. A start deadline
indicates when a task must be started by. A completion deadline indicates when a task must be
completed by.

5. Select an Alarm Type: Deadline or Duration. You can fill in the expression later.

6. Select one of the escalation types to occur when the deadline occurs:

• inline notification

• local notification

• reassignment

• process invoke

• send email

7. In the table, click (...) in the Expression column to create a deadline or duration value that conforms to
the type selected.

Participants and Tasks 507

8. To complete the details for the escalation, see Selecting an Escalation Action to Occur When a Task
Deadline is Triggered.

9. Add more start and completion deadlines as desired.

Tips:

• The start time begins when the task is created; that is, when the BPEL process executes the People
activity.

• An example of a duration of six hours is PT6H. For more examples on how to express deadlines or
durations, refer to the Process Developer Online Help.

• If desired, add a condition to the expression.

• On the Deadlines tab of a task, select a deadline and then select Go To to view the properties of the
deadline.

Selecting an Escalation Action to Occur When a Task Deadline is Triggered
You can set deadlines for when a task must start and when a task must complete.

If desired, you can define start and completion deadlines for a task, and when a deadline is reached, trigger
an escalation action. For details on how to set a task deadline, see Adding Start and Completion Deadlines
and Alarms.

An escalation action is an event that ranges from a simple notification to a process invocation.

The following table describes the escalation actions available to occur when you set a task deadline.

Escalation Action Description

Inline Notification Adds a new notification available only to the current task

Local Notification Adds a notification that was defined in the process or enclosing scope

Reassign Task Removes the task from the current users and groups’ task view and reassigns it to specified
users or groups

Invoke a process Executes a BPEL process that may, for example, send an email instead of a notification

Send email Sends an email to a list of recipients; this requires that the Email and Identity services are
enabled and configured in Process Server

In addition, you can trigger an escalation action under certain conditions and with certain data. For details,
see:

• Defining a Condition for an Escalation Action

• Using Task Data or Mapped Data for a Notification

Defining a Condition for an Escalation Action
As you define deadlines for the start and completion of a task, you can add a condition for triggering an
escalation action. For example, you can check to see what the current priority of the task is, and if it is a high
priority, trigger the escalation action. Escalation actions include notifications, reassignments, and process
invocations, as described in Selecting an Escalation Action to Occur When a Task Deadline is Triggered.

If you add a condition to an escalation action, the escalation does not occur unless the condition evaluates to
true.

508 Chapter 35: Human Tasks

Adding a Condition for an Escalation:

1. Open the Properties view of an escalation, such as an inline notification under a Start Deadline of a task.

2. Select the Dialog (...) Button at the end of the Condition text box.

3. In the Condition Builder, select the functions and variables for your condition. For example:
htd:getInput("ClaimApprovalRequest")/amount < 10000

In this example, the amount part of the ClaimApprovalRequest variable must be less than $10,000 in order for
the condition to evaluate to true.

As you write conditions, you can take advantage of the Human Task functions, in particular the getInput
function shown in the example. This function returns data from a running task instance.

Using Task Data or Mapped Data for a Notification
Notification data. Use task data or specify how to map data to another variable part.

Like a task, a notification has input data based on a WSDL interface. The interface for a notification serving
as a task deadline's escalation action may be the same or different from the interface for the task.

The Properties view of an inline or local notification has a Data section:

• Use Task Data. If the notification's input data is the same as the enclosing task's, then this option is
available for selection. The input message of the task is passed to the notification.

• Map Data. If the notification's data is a different type, then you can assign appropriate data to the
notification to create a multi-part WSDL message from the data. The part attribute refers to a part of the
WSDL message. You must map each part for every part in the WSDL message definition to avoid
uninitialized parts in the target WSDL message.

To Map Data:

1. In the Properties view of a notification used as an escalation, select the Map Data radio button.

2. Select the Dialog button in the Expression row for the first message part.

3. Create an expression for the data mapping, as shown in the following illustration:

Example

Participants and Tasks 509

This example comes from the WS-HT specification:

<htd:toParts>
 <htd:toPart name="firstname">
 htd:getInput("ClaimApprovalRequest","ApproveClaim")
 /firstname
 </htd:toPart>
 <htd:toPart name="lastname">
 htd:getInput("ClaimApprovalRequest","ApproveClaim")
 /lastname
 </htd:toPart>
 <htd:toPart name="taskId">
 htd:getTaskID("ApproveClaim")
 </htd:toPart>
</htd:toParts>

Creating an Inline or Local Notification Action for a Task Deadline
A common escalation action associated with a task deadline is a notification. When a deadline is reached, a
notification can alert a task owner about a late task. For a discussion of escalations, see About Task
Deadlines and Escalations.

Two of the escalation actions you can select are inline notification and local notification.

• An inline notification is a new notification, defined exclusively, in this case, as an escalation action. For
details on defining a notification, see About Notifications.

• A local notification is defined at the process or scope level, within a Human Interaction element. You can
customize the notification for a particular escalation by providing overrides for the existing people
assignments and the existing priority.

Creating an Inline Notification:

1. In the Outline view, right mouse click on Task > Start (or Completion) Deadline > Inline Notification.

2. In the Properties view, fill in all the required details for the notification, including interface, assignments,
priority, and presentation Subject.

Creating a Local Notification:

1. In the Outline view, right mouse click on Task > Start (or Completion) Deadline > Local Notification.

2. In the Local Notification Properties view, select a Notification from the picklist.

3. If desired, add a new priority.

4. If desired, add new assignments on the Assignments tab.

For details on setting a condition and using task data, see Defining a Condition for an Escalation Action and
Using Task Data or Mapped Data for a Notification.

Using a Reassignment Action for a Task Deadline
Reassignments are used to replace the potential owners of a task when an escalation is triggered. For a
discussion of escalations, see About Task Deadlines and Escalations.

To Create a Reassignment:

1. In the Outline view, right mouse click on Task > Start (or Completion) Deadline > Reassignment.

2. In the Properties view, select potential owners for the task.

For details on adding a condition, see Defining a Condition for an Escalation Action.

510 Chapter 35: Human Tasks

Invoking a Process When a Task Deadline Occurs
The Invoke Process action is an extension escalation provided by Informatica. This action is based on
Informatica-provided WSDL, "Custom B4P Notification", as described in Creating Custom Escalation Actions.

You can deploy a BPEL process to your server and then specify the service name as an escalation action. You
might want to invoke a process to send an email to a user, rather than send a notification to a task client
application.

To Create an Invoke Process Action:

1. Ensure that you have deployed your BPEL process that serves as a custom escalation action. This
process must be based on the special template, Custom B4P Notification.

2. In the Outline view, right mouse click on Task > Start (or Completion) Deadline>Process Invoke.

3. In the Properties view, add the Service name of a BPEL file deployed to the same server where your
current process will run. You can copy the service name from the Process Console's Service Definitions
page.
Note: You must use the special BPEL template, Custom B4P Notification, designed for a custom
notification, as described in Creating Custom Escalation Actions.

4. If desired, create a Data expression for task or other data you wish to pass to the called service. For
example, create an expression to determine the task priority or list of potential owners.

For details on adding a condition, see Defining a Condition for an Escalation Action.

Sending Email When a Task Deadline Occurs
The Send Email action is an extension escalation provided by Informatica. When a deadline is reached, an
email can alert a task owner or administrator about a late task. For a discussion of escalations, see About
Task Deadlines and Escalations.

Sending email requires that you set up the Email Service in Process Server. The Email service provides a
default sender's email address, which you can configure. For details, see the Process Server Online Help.

To Create a Send Email Action:s

1. In the Outline view, right mouse click on Task > Start (or Completion) Deadline > Send Email.

2. In the Email tab, add an expression for one or more recipients. The assignment you make to recipients
must evaluate to the hd:organizationalEntity data type, defined in the WS-HT specification. Typing
the name of a Logical People Group or a user name is not a valid value. To create a valid expression, use
a Human Task custom function from the Expression Builder, such as:
htd:getPotentialOwners("reviewTask")

3. Add an expression for the Subject and for the Body of the email. To write these expressions, see the
example below. Also, see Email Service in the Process Developer Online Help for some tips on creating
the Subject and Body using expressions.

4. Optionally, add a condition, as described in Defining a Condition for an Escalation Action.

Here are examples of valid email values:

• Recipients: htd:getLogicalPeopleGroup('loanreps')
• Subject: 'New task in Central'
• Body: concat('Please review new loan for ', htd:getInput('Document')/loan:lastName, 'which

has just arrived in Process Central.')

Participants and Tasks 511

About Notifications
A notification is a WS-HT construct that relies on a WSDL interface, people assignments, and other details
that are incorporated into a People activity.

In BPMN, a notification is implemented within a Send Task or Message Send Event.

By itself a notification is not executable. It is designed to be used as an escalation action within a task or as
the main construct of a People activity.

Unlike a task, a notification does not have an outcome. It relies on a one-way operation in a WSDL, serving to
inform users of an event such as missed deadline or product ship date. Notifications usually are displayed in
users’ task client application along with tasks. They could also be used in other forms, like email or text
message, if you choose to create your own client applications.

The BPEL4People specification defines several ways that a People activity can incorporate a notification, as
follows:

• An inline notification declared within the People activity. The notification can be used only by that People
activity. For details, see Creating an Inline Task or Notification.

• A local notification declared within either the scope containing the People activity or the process scope. In
this case, the notification can be reused as an implementation of multiple People activities enclosed
within the scope containing the notification declaration. For details, see Adding a Task or Notification to
the Outline View for Process or Scope Use.

• An escalation action for a task deadline. For details, see About Task Deadlines and Escalations

• (For future release.) A standalone notification identified using a QName. In this case the notification can
be reused across multiple BPEL4People processes within the same environment.

A notification definition contains the following parts:

• Notification Name, Priority, and Interface

• Role Assignments for a Task or Notification

• Adding Task or Notification Presentation Properties

• Adding Rendering Details for a Task or Notification

512 Chapter 35: Human Tasks

Required and Optional Properties for a Notification
The following table describes properties required to make a notification valid as well as properties you can
optionally define:

Required Properties O
p
t
i
o
n
a
l
P
r
o
p
e
r
t
i
e
s

Interface D
e
s
c
r
i
p
t
i
o
n

Priority R
e
n
d
e
r
i
n
g
s

People Assignments

Subject

Participants and Tasks 513

Notification Name Priority and Interface
Enter the port type and operation from the WSDL you want to use for the notification interface.

In the Properties view of a notification, the Notification tab displays the following properties:

• Name. (Required). The name combined with the target namespace of a notification element is used to
uniquely identify the notification definition. Note that this is not the name displayed in users’ task area in
Process Central. That name is Display Name, as described in Adding Task or Notification Presentation
Properties.

• Priority (Optional). You can set a default priority level as a non-negative integer, starting at zero as the
highest priority. You can create the priority as an expression. The priority is displayed in users’ Task
Details view. Note that priority zero (0) is displayed with red flag. For an illustration of how a priority
appears in a user’s Task Details view, see Adding Task or Notification Presentation Properties.

• Interface. (Required). Specifies the WSDL port type and one-way operation that is the interface to the
notification. The WSDL must be available in the Project Explorer.

If your process already contains an import for the WSDL that defines the Port Type and Operation then select
the appropriate values.

Using the All Tab of a Notification
In a notification's Properties view, the All tab displays all available properties, including some that do not
appear on the Notification, Presentation, and Assignment tabs.

You can define properties on the All tab or on the other tabs as desired.

For details on properties that appear only on the All tab, see Adding Rendering Details for a Task or
Notification.

Using the People Activity
This chapter begins by discussing people activities. While these topics mention Guide Designer, you will need
to read Using Guide Designer User Tasks for information. However, many of the following topics also relate to
Guide Designer user tasks.

What is a People Activity
A people activity contains the instructions and data a person needs in order to complete a task. When a
business process requires a decision from a person, rather than an invoked service, use a people activity.
Within the Process Developer, this is represented as a User Task:

514 Chapter 35: Human Tasks

In BPMN, a people activity is implemented as one of the following, depending on whether the activity
contains a task or notification:

• People Activity Containing a Task:

- User Task

- Manual Task

• People Activity Containing a Notification:

- Send Task

- Message Send Event

The People activity starts when a task is sent to potential task owners and is complete when the task’s owner
returns data to the process. Once the process receives the data, it can continue to the next execution step.

The following illustration shows a basic People activity, using a custom name, within a BPEL process.

The people activity is built with a task definition and other details through the activity’s Properties view or it
can be built using Guide Designer. (See Using Guide Designer User Tasks for more information.)

When a BPEL process is deployed to the server and is instantiated, the task is sent to all potential owners and
administrators. Anyone of these can claim ownership, work on, and complete the task.

For more details, see Conceptual Overview of the People Activity.

Using the People Activity 515

Conceptual Overview of the People Activity
A People activity is an extension activity that is a construct from the BPEL4-People specification. It contains
a task or notification construct from the Human Task (WS-HT) specification.

A People activity can have one task or notification (plus overrides) and uses process variables to send data
to the task or notification. It receives data into a process variable from a task. In addition to using a task or
notification, a People activity has its own properties, including scheduled actions, attachments, and other
attributes. If you are using Guide Designer, these are defined within the guide.

The following illustration shows the building blocks for a people activity:

A People activity includes a task or notification with additional built-in workflow actions. The building blocks
are divided into several properties including:

• Scheduled Actions. You can define a deferred time to start the activity and define an expiration time for
the activity.

• Task or Notification. A People activity uses either a local or inline activity. For details on local activities,
see Human Interactions Extension Element.

• Input and Output Variables. The task's interface, and optional call back interface, are used to provide the
input and output data for the task. The notification's interface provides input data.

• Optional Assignment and Priority Overrides. For a People activity using a local task or notification, you
can define new people assignments and priority level.

See also Adding a People Activity.

Adding a People Activity
Add a people activity in one of the following ways from the BPMN palette:

• To Create a People Activity Containing a Task, select:

- User Task

- Manual Task

• To Create a People Activity Containing a Notification, select:

- Send Task

- Message Send Event

516 Chapter 35: Human Tasks

Alternately, use the Participants view to automate some of the requirements for a task-based People activity.

Adding a People Activity from the BPMN Palette
Add a People activity to the process or a scope from the BPMN palette, as shown in the example. The
activities in red squares are for task-type People activities and the ones in blue circles are for notification
types.

Fill in the required properties from the People Activity's Properties view. Note that you must create an inline
task (or notification) or select a local task (or notification). For details, see Required and Optional Properties
of a People Activity.

You may create either a People Activity of Guide Designer User task:

The left tabs are the same for both kinds of activities. However, the contents of the People Activity and
Assignment tabs differ slightly. If you choose Guide Designer, the Input and Output tabs may have values set
when you associate a guide with this user task. (See Using Guide Designer User Tasks for more information.)

Using the People Activity 517

Adding a People Activity Using the Participants View
You can use a shortcut for creating a People activity defined with a local task. The shortcut involves using
the Participants view to create a Logical People Group and a local task for the group.

1. Create a new Human Task Participant and new Human Task.

2. From the Participants view, drag a human task to the Process Editor canvas.
Notice that the People activity is created using the task interface and assignments definition.

3. In the Input tab, do one of the following:

• Select Single Variable from the Assignment Type and select a variable.

• Select an XPaths or XQuery. For details, see the Process Developer Designer Online Help topics, Input
Variable and From Part to Variable.

4. Optionally, select an output variable or a to part. For details, see the Process Developer Designer Online
Help topics, Output Variable and From Variable to Part.

5. Select other optional properties as desired.

Adding a People Activity Using the Create Activity Wizard
Use the Create Activity wizard to create a People activity with a local task. You must use a two-way operation
for a task in this wizard. If you have a one-way operation for the task, create a People activity manually. Then
add the interface and required callback.

1. Display the Interfaces View. It is not shown by default.

2. From the Interfaces Port Types elements, expand a Port Type, and drag an operation to the Process
Editor.
If you select from Partner Link Type, the wizard assumes you do not want to create a People Activity,
since the People Activity does not require a partner link type. The Create Activity wizard appears.

3. Select a task, if the operation contains both input and output messages, or a notification for a one-way
operation, as described.
If you want to create a task with a one-way operation and a callback, create the task manually.

4. Type in a task name.

518 Chapter 35: Human Tasks

5. Select the input and output variable names.

When you finish the wizard, a new People activity is created and a new local task appears within the Human
Interactions element on the Outline view.

Add values for the properties of both the task and the People activity.

Adding a People Activity by Dragging a Guide
If guides already exist, you an create a people activity by dragging the guide onto the Process Editor canvas.

For more information, see Using Guide Designer User Tasks.

Required and Optional Properties of a People Activity
The following table shows the required and optional properties of a people activity.

Required Properties Optional Properties

One of the following is required:
- Inline task
- Inline notification
- Local task
- Local notification
For details, see Creating an Inline Task or Notification and Selecting a Local Task
or Notification.

Scheduled Actions

Input variable or toPart. For details see, Selecting Variables. Is skippable. See the topic below
this table.

Output variable or fromPart (Only if task is selected. Not applicable for a
notification.). For details, see Selecting Variables.

People assignment and priority
overrides

 Attachments

Using the People Activity 519

Using the Is Skippable Attribute

This attribute indicates whether the task associated with the activity can be skipped at runtime. A person
working on a human task or a business administrator may skip a task. A skipped task becomes obsolete, and
no result is returned to the process. This attribute is optional. The default for this attribute is "no".

This attribute does not apply to a notification.

Creating an Inline Task or Notification
You can create a new, inline, task or notification for use only by the people activity. Alternately, you can select
a task or notification created at the process or enclosing scope level, as described in Selecting a Local Task
or Notification.

A people activity uses a task or notification definition, as described in See Conceptual Overview of the People
Activity.

To Create an Inline Task or Notification:

1. From the Activity palette, drag the activity to the Process Editor.
People Activity Containing a Task:

• User Task

• Manual Task

People Activity Containing a Notification:

• Send Task

• Message Send Event

2. Select the activity to put the Properties view in focus.

3. Implement the activity as a people activity.

4. On the people activity main tab, select either Inline Task or Inline Notification from the Type picklist. A
new task named T1 (or new notification named N1) is added to the people activity.

5. Select the Definition link. The Properties view of the new task is displayed.

6. At the end of the Task Interface field within the Task tab, select the Dialog (...) button.

7. Fill in the Interface details for the task.

8. In the Task or Notification Properties view, add values for the required properties.

Note: Be sure to define all required properties for the new task or notification. For details, see Required and
Optional Properties for a Task and Required and Optional Properties for a Notification.

520 Chapter 35: Human Tasks

Selecting a Local Task or Notification
A people activity uses a task or notification definition. You can select a local task or notification that has
been declared at the process or enclosing scope level. Alternately, you can create a task or notification inline
for use only by one people activity, as described in Creating an Inline Task or Notification.

Note: Be sure to create local tasks and notifications first, in order to select from them in a people activity. For
details, see Adding a Task or Notification to the Outline View for Process or Scope Use.

To Select a Local Task or Notification:

1. Add a new people activity as described in Adding a People Activity.

2. In the Properties view, from the Type picklist, select Local Task or, if appropriate, Local Notification.
(These selections will not appear in the same drop-down list.)

3. From the Definition picklist, select the name of the task or notification that you want to use or select
New Task or (if appropriate) New Notification.

If you want to override the people assignments and priority level specified in the local task or notification, see
Selecting Overrides for Priority and People Assignments.

Selecting Overrides for Priority and People Assignments
You can create a task or notification definition at the process or scope level and then use the task or
notification in many People activities. Within each people activity, you can modify the priority and people
assignments that were originally defined.

To Override Original Assignments and Priority:

1. Select a people activity to put the Properties view in focus.

2. On the main People Activity tab, create a new expression for the priority.

3. On the Assignment tab, create new assignments for this activity.

The Assignment tab differs slightly between a People Activity and a Guide Designer.

Using the People Activity 521

The above snapshot has an Override column. This column does not appear if you are creating a Guide
Designer. It is not there for Guide Designer because you do not need to override or go to the associated task.

Selecting Variables
In a people activity, you select or map to an input and an output process variable associated with a task's
interface. The input variable contains the data displayed in a user's task client application. For a task, the
data is what a user needs in order to complete the task. For a notification, it is the data that informs a user.
The input variable copies data from the BPEL process into the task or notification input parts.

Rather than creating a variable, you can map variable parts using XPaths or XQuery. For details, see the
Process Developer Designer Online Help topics, Input Variable and From Part to Variable.

The output variable, available only for a task, contains the data the user sends back to the process. The
variable copies data to the BPEL process from the task's output parts, which represents the task's result
data.

For details, see the Process Developer Designer Online Help topics, Output Variable and From Variable to Part.

Adding Scheduled Actions for Tasks
You can schedule activation and expiration times for tasks. These properties do not apply to notifications.

522 Chapter 35: Human Tasks

• Deferred Activation for a Task
You can specify an alarm for when a task should become active. The alarm is defined as either the period
of time after which the task reaches the Ready state (in case of explicit claim) or Reserved state (in case
of implicit claim), or the point in time when the task reaches Ready or Reserved.

For example, you can specify, "Activation of this task is deferred until the time specified in its input data."

• Task Expiration
You can add a task expiration duration or date, if desired. The expiration indicates the date/time a task
becomes obsolete, and the expiration date/time is displayed in users’ task client application. When the
expiration occurs, all task instances are listed as exited, and a fault is thrown in the BPEL process. A user
cannot complete the task, and the output data, if sent back by a user, will not be used.

For example, you can specify, "This task expires when not completed within 14 days after having been
activated".

To Specify a Deferred Activation:

1. Select the Properties view of a people activity.

2. Put the All tab in focus.

3. In the Defer Activation Alarm row, select Deadline or Duration.

4. In the Defer Activation Expression row, select the Dialog (...) button to open the Expression Builder.

5. Create either a deadline or duration expression. For examples, see "Deadline and Duration Expressions"
in the Process Developer Designer Online Help.

Repeat the steps above to create an Expiration Alarm and Expiration Expression.

Sending and Receiving Attachments
An attachment is data that is relevant to a task but is not defined as one of the input or output parts. This
data can be of any type. For example, you can attach a picture, document, spreadsheet, or other file type to a
variable in a BPEL process. The people activity can receive attachments from the BPEL process. If
attachments exist, the people activity can then make them part of the task, and the attachments are
displayed in users’ task client application.

Users can download and update the original attachments, or they can remove or add new attachments when
they complete the task. When the people activity completes, it can copy all, none, or new attachments
returned with the task to another process variable. If no attachments exist, the setting is ignored.

Using the _peopleActivityAttachments Variable to Copy Attachments

Using the People Activity 523

When you add a people activity to the process, a special variable is added to the Process Variables view for
holding attachments.

For data attachments, you can create an assign activity with a copy operation that uses an attachment
function to copy attachments from or to _peopleActivityAttachments. The attachment functions are listed
in the Functions panel of the Query Builder, as shown in the illustration:

Setting the Attachment Propagation Property

In a people activity, on the All tab of the Properties view, you can make selections for copying attachments
from the process to the people activity and from the people activity to the process:

• From Process. Select All or None to indicate whether to copy attachments to the
_peopleActivityAttachments. The default is All.

• To Process. Select All, None, or New Only (but not those that were modified) to indicate which
attachments to copy to a process variable from _peopleActivityAttachments. The default is New Only.

Catching a Fault Thrown by the People Activity
If an error occurs or a task expires, and the people activity cannot complete normally, the activity throws one
of the following faults:

• b4p:nonRecoverableError
• b4p:taskExpired
If desired, you can catch one of these faults in a fault handler of an enclosing scope of a people activity.

524 Chapter 35: Human Tasks

Simulating Debugging Deploying
Simulation is an Process Developer feature, described in the Process Developer Help. This discussion
focusses on all aspects.

Simulating a Process with a People Activity
Add sample values to the Logical People Group or other assignment role for testing.

Simulation is an Process Developer feature, described in more detail in the Process Developer Guide.

You can simulate the execution of a BPEL process that includes a People activity.

To Set Simulation Properties for a People activity:

1. Before you begin simulation, put the All tab of the People activity in focus.

2. Under the Simulation category, select values for fault and output messages and their attachments, as
you normally do for a Web interaction activity, such as a reply.

3. Enter an optional value for an actual owner, if desired. See the information below on simulating with
Logical People Groups.

4. Add comments, if desired, as described in Simulating Comments Returned from a Task.

5. Select an outcome from the Status list:

• Completed. This is the task state for a normal completion.

• Failed. Select this to simulate fault handling, and select the fault to simulate.

• Expired. If you set a task expiration deadline, you can simulate the outcome. For fault handling
details, see Catching a Fault Thrown by the People Activity

• Skipped. If you selected the IsSkippable attribute for the task, you can simulate the process by
skipping the People activity.

6. During or after simulation, you can view the data that is sent to the task client application. For details,
see Viewing Task Input Data While Simulating.

To Simulate Logical People Groups:

You can select users or groups to simulate with if your task, assignment activity, transition condition, or other
construct is using a Logical People Group.

1. On the Outline view, select a Logical People Group.

2. In the All tab, under the Simulation category, click (...).

3. In the Organizational Entity Definition dialog, select Generate User or Generate Group.

4. In the resulting literal definition, fill in the <user> or <group> elements with sample values.

Note: If you do not specify an Organizational Entity Definition, a default sample value of one group, named as
the Logical People Group is automatically added as a simulation value.

To Simulate a Process Initiator:

If your People activity uses the B4P custom function getProcessInitiator, you can simulate the returned
value by selecting a Process Initiator in the All tab of the process’ Properties view.

Simulating Debugging Deploying 525

Simulating Comments Returned from a Task
Generate comments for simulating comments that are returned by the task owner when the task is
completed.

A task owner can add comments to the output data when returning the task to the process. You can simulate
this behavior by adding simulated comments for the task output.

Also, note that you can use the getComments() function in your process to copy the comments from a People
activity.

To Add Simulated Comments Returned From a Task:

1. Before you begin simulation, put the All tab of the People activity in focus.

2. Under the Simulation category, select Task Simulation Comments, and select the Dialog button in the
Value column.

3. In the Task Comments Definition dialog, select Generate Comments.

4. Change or add values as desired, depending on how you intend to use the comments in the activities
following the People activity.

Viewing Task Input Data While Simulating
View task data.

A People activity contains a large amount of data, much more than other activities. Given the number of
expressions used in defining properties, such as task subject, description, deadlines, and escalation events,
there is a special viewer provided to view task input data during simulation.

During or after simulation, this view shows how each expression used in the task definition is evaluated. For
each task and People activity property defined by expression, you can see the evaluation.

To View Simulated Task Expression Results for Input to the Task:

1. Put the All tab of the People activity in focus. The People activity should have an associated task.

2. In the Execution category, select Simulated Task Expressions.

3. Select the Dialog (...) button to open the Simulated Task Expressions Result window.

The expression results include the following:

• Namespaces

• Input message sample data

• Presentation elements

• Assignments

• Deadlines

• Comments attached to the task input (but not comments attached to the output)

Selecting a Logical People Group Handler During Deployment
Add a new group in PDD for static assignment of a logical people group.

If your process defines a one or more Logical People Groups, you can use the PDD Editor to specify how to
resolve the members of the group. The PDD Editor adds a People tab if it detects Logical People Groups.

To define logical people group handling:

1. Open the PDD Editor, as described in Creating a Process Deployment Descriptor File in Process
Developer Online Guide.

526 Chapter 35: Human Tasks

2. On the People tab of the Editor, select the name of a Logical People Group.

3. From the Type list, select how to resolve the members of the Logical People Group:

• Use LPG Name as Identity Service Name. For details see Using or Mapping Users or Groups From the
Identity Service.

• Map to Identity Service For details, see Using or Mapping Users or Groups From the Identity Service

• Dynamic. You have assigned users or groups to a Logical People Group by using a copy operation in
an assign activity. For details, see Using a Logical People Group in an Assign Activity.

• People Query. For details, see Adding a People Query.

Using or Mapping Users or Groups From the Identity Service
If desired, you can name actual users or groups from your Identity Service to the PDD Logical People Group
panel. Note that the WS-HT specification does not allow a mixture of users and groups.

If you selected a user or group name from the Identity Chooser when you created the Logical People Group,
you can use that name in the PDD.

If your Logical People Group has a generic name, such as "Role1", you can map this name to an actual user or
group in your Identity Service.

Before you can select actual groups, you must ensure that your Identity Service is correctly enabled, as
described in Setting up an Identity Service.

To add individual users, select the Users radio button, and then select Add. In the Add User dialog box, type in
the name of one user, named exactly the same as in the Identity Service. For example, if you are testing, you
may have defined a user in the tomcat-users.xml file as:

<user name="testUser1" password="b4p" roles="abTaskClient,
Finance,Marketing,Accounting,NERegionReps" />

In this example, you can type in testUser1 as a User in the PDD Editor.

To add Groups, select the Groups radio button, and then select Add to add a new group name. You can also
select from an Identity Chooser, as described in Using the Identity Chooser During Deployment.

Adding a People Query
The most flexible way to specify actual users to work on tasks or to receive notifications is with a Logical
People Group query. You can create a query that searches your enabled JDBC or LDAP Identity service for the
users or groups that meet the search criteria.

Note: A People Query is not applicable for a file-based Identity service.

For example, you can create a query that performs the following search in a JDBC or LDAP Identity service:
"Select the manager of the task owner to receive an email notification for an overdue task."

To Load the Identity Configuration:

The query you write is based on the users and groups and their attributes that are configured in your LDAP or
JDBC Identity service. The Identity service is configured in the Process Console, and then you must set up
communication with the server from within Designer, as described in Setting up an Identity Service.

After the set up is complete, select Load Identity Configuration. A message informs you if the configuration
was successfully loaded. If the configuration is updated on the server, the updates are automatically loaded
into Designer.

Select either the Users or Groups radio button, and then select Query Builder to create an expression for
retrieving users.

Simulating Debugging Deploying 527

To Use the People Query Builder:

When the People Query opens, you see the following items:

• The Expression Language is SPARQL, a language well-suited for retrieving identities from a data store.
This is the required language for people queries.

• The Attributes column lists the Identity service’s parameters that are currently available for queries. For
example, users' attributes always include userName and memberOf, and may include many other attributes
configured in Process Server.

• The LPG Parameters column lists any parameters defined for the currently selected Logical People Group.
For details on adding LPG parameters, see Creating a Logical People From the Outline View and Logical
People Group Parameters and Arguments.

• The Query text box contains the FILTER() keyword from a SPARQL query. The Filter clause is the only part
of a SPARQL query that you need to complete. The fully qualified query is automatically generated by
Process Developer.

To create a valid SPARQL query, you must complete the FILTER clause, as shown in the examples.

• FILTER($userName="Jani Mani")
Select the user Jani Mani.

• FILTER (($memberOf = "NE_Reps") || ($memberOf="NW_Reps"))
Select users from either NE Reps or NW Reps.

• FILTER ((($memberOf = "NE_Reps") || ($memberOf="NW_Reps")) && BOUND(?email))
Select users from either NE Reps or NW Reps who have email addresses.

• FILTER ($countryCode = "${country_code}")
Select users in a certain country, where the Logical People Group parameter is country_code and the
Identity Service search attribute is countryCode.

For details on writing SPARQL queries, see http://www.w3.org/TR/rdf-sparql-query/.

Using the Identity Chooser During Deployment
Use the Identity Chooser option to return a list of groups in your organization for selecting Logical People
Groups during deployment.

Before selecting the Identity Chooser, you must do the following:

• Ensure that the Process Server is running

• Ensure that you have set up an Identity Service on the server, as described in Setting up an Identity
Service.

• Ensure that the Process Developer Identity Service Preference page is filled in correctly. Select Window >
Preferences > Process Developer > Identity Service to view and update this page.

To Access the Identity Chooser:

1. In the People tab of the PDD Editor, select Map to Identity Service User/Group Name(s) as the
deployment type.

2. Select Groups.

3. Under Groups, select Select to open the Identity Chooser.

4. Select Refresh to view the current list of groups.
A list of all the groups named in your Identity Service appears, as the example shows:

528 Chapter 35: Human Tasks

5. Select the checkbox next to each group that you want to include in your Logical People Group.

Running Your Process from the Process Server
There are a variety of Web services tools you can use to instantiate a BPEL process, including the Eclipse
Web Tools Project that is included in the Process Developer installation.

Once your process is running, you can open Process Central by selecting the Process Central icon on the
Process Developer toolbar. You can also point to the following URL in your Web browser:

http://[host:port]/activevos-central

where you point to the server where Process Central is deployed.

Be sure that the abTaskClient security role is mapped to each group member in the Identity Service who will
login to Process Central.

You can sign into to work on the task routed there when the process executes the People activity.

For the older Process Central inbox application, use the following:

http://[host:port]/activevos-central/inbox

Setting Up Test Groups

For testing, you may want to set up a set of users or groups. Using your Process Server Identity Service, you
can set up an XML file with user and group information that is helpful for testing the People activity. This
means you do not have to set up all the details for connecting to your organization's LDAP or JDBC data
store for testing. For details, refer to Setting up an Identity Service.

Simulating Debugging Deploying 529

Providing Renderings for Task Clients

About Task Presentation in Process Central
Select a rendering.

Process Central is a client application that contains tasks and notifications, as well as Process Request
Forms and Reports.

In Process Central, tasks and notifications are shown in a list, and users can select an item to work on and
you can configure both the task list presentation as well as individual task presentation.

Here is an overview of the presentation properties you can configure.

Process Central Task List Presentation

All configuration of the task list is provided in a configuration file that you deploy. The basics include the
following:

• Show or hide standard categories of tasks, such as open or closed tasks.

• Add your own folder names for tasks, based on different tasks in different People activities.

• Show or hide standard columns of a list item, such as Task Name, Subject, or Status.

• Add your own custom columns based on a task’s Presentation Parameters. The columns are searchable.
For details, see Creating Custom Task Properties.

Process Central Individual Task Presentation

Process Developer provides a comprehensive design environment for presenting a task to users. For details,
see Rendering a Task Interface into a User Interface.

Rendering a Task Interface into a User Interface
Rendering is the application of a friendly user interface for the task’s interface input and output messages.
When a user views a task in a task client application, the details are displayed in an HTML form. A user reads
the input message data and uses a variety of controls to enter and submit a response for the output
message.

Informatica Business Process Manager has different rendering mechanisms for different task client
applications.

• Process Central
Generate HTML forms and edit them as desired. For details, see Creating an Process Central Task Form.

• Customized client application
In addition to, or in place of the Informatica Business Process Manager renderings, you can provide
completely customized client applications for sending tasks to telephones, computers, and other devices.
For details, see Creating a Custom Rendering.

Creating an Process Central Task Form
Create an HTML form to render a task's input and output messages for ActiveVOS Central task client. The
form opens in a Web Page Editor.

In the Renderings tab of a task’s properties, you can create a new task form or browse to a file that is already
available in the workspace.

530 Chapter 35: Human Tasks

Creating a Task Form
To Create a Task Form:

1. Display the Properties view for a task that you have defined.

2. In the Renderings tab of a Task’s Properties view, select the Process Central Form tab, if needed.

3. Select Create Form.

4. In the Create Form dialog, select the default folder and filename for the form. The default filename is the
task interface operation name.

5. Select Advanced to do the following:
Select Merge input and output fields if you want to use the input fields to format the output. This
selection is appropriate for some tasks, but not all. It is most useful for task forms in which the input
data is very similar to the output. For example, if the task input is a work item, and the task output is the
same work item that is being updated, you can generate much of the format for the output by merging
input and output. For details, see Merging Input and Output Fields in a Task Form.

Select the checkbox to Externalize Strings for multilingual support. For details, see Providing Multilingual
Support for Task Forms.

6. Select OK to open the HTML form in the Web Page Editor.

See also:

• Working in Development Mode or Production Mode

• Understanding the Task Form Template

• Examples of Task Forms for End Users

• Adding a New Service Operation to a Task Form

• Adding Styles, Scripts, and Meta Data to .avcconfig for use in a task form in the Process Developer Online
Help.

Merging Input and Output Fields in a Task Form
Create an HTML form to render a task's input and output messages for Process Central task client. The form
opens in a Web Page Editor.

Use the Input to Output Merge Mappings dialog to map a task input message element to a task output
element of the same type.

When a task form is generated, the form's input and output sections are generated as separate sections. In
cases where the task's input and output messages have the same or similar elements, this leads to a lot of
redundancy in the form that is generated. For example, in the case where the input and output messages are
exactly the same, the input section provides a read-only view of the data, and the output section provides an
editable view of the same fields. Also, initially, when the form is loaded, the output section would be empty
and the task owner would have to reenter data from the input fields to the output fields. The use of merge
mappings in these scenarios makes the form simpler and easier to use.

Merge mappings is a way to specify that certain sections of the input and output are the same, and are to be
treated as such. When such a mapping is specified, the generated task form shows a consolidated view of
those mapped elements. The fields contain initial values from the task's input data, and when the task form
is saved, the values are saved to the task's output elements.

When you create a new task form, be sure to select the checkbox for Merge input and output fields. The task
form wizard presents a dialog for you to add individual mappings between input fields and output fields.

For each element in input that needs to be mapped to an output element, create a new entry in the mappings
table. Select Add to open the Merge Mapping dialog and select an input element and an output element.
Validation messages in this dialog assist you in selecting compatible entries.

Providing Renderings for Task Clients 531

Working in Development Mode or Production Mode
Generate task details forms that are easy for Inbox users to use.

You can view and update the rendered task details layout in an Process Developer task client without
redeploying the BPEL process or even creating a new instance of the process.

In the Renderings tab of the Task Properties view, you can enable Development Mode for testing your
renderings. In this mode, when you deploy the process, the rendering files are read from the file system.

Rendering files must be on the same machine as Process Developer when in Development Mode.

Development Mode works as follows:

• You can edit the files, refresh the Process Developer task client, and see your results immediately.

• The file location is displayed as project-based. Behind the scenes, the files are treated as file system-
based, readily available for editing.

• The rendering files are added to the deployment archive.

• The rendering files are not cached.

Note: If you do not enable Development Mode, you can logout and login to Process Central to view changes
to your forms and configuration files.

When you enable the Development Mode, you can test your rendering files as follows:

1. Deploy the process, start it, and sign in to the Process Developer task client. Sign in as one of the users
you specified in the people activity assignments.

2. In Designer, open a rendering file in an editor and make updates, as desired.

3. Refresh the task client to see your changes.

To Remove Development Mode:

When you are done editing the rendering files, you can do the following:

• Disable Development Mode by removing the check mark in the Task Renderings tab.

• In the Rendering tab, leave the file locations as project-based or edit the locations to make them Web-
based.

• Redeploy the process via a BRPD file or by creating a new PDD and BPR.

• Deploy the rendering files as described in Deploying a Task Form and Properties Files.

Understanding the Task Form Template
During creation of a task form, Process Developer does the following:

• Creates an HTML document that is displayed in the Web Page Editor. The HTML document has several
parts:

- Task header

- Task Request

- Task Response

- Additional Information

- Save button

• Reads the schema of the task interface's input message and transforms the message definition into the
Task Request area of the form. Each part of a message is rendered in a simple table. If the input message
has two parts, then there are two tables that display.

532 Chapter 35: Human Tasks

• Reads the schema of the task interface's output message and transforms the message definition into the
Task Response area. For details, see Examples of Task Forms for End Users.

• The Additional Information section is populated at runtime with details for the task subject, presentation,
and priority as well as any comments or attachments that are added to the task.

• The Save button is added to the Task Response area allowing task owners to complete the task.

For details on modifying a task form, see "Editing HTML in Process Central Forms" in the Process Designer
help.

Examples of Task Forms for End Users
As you generate task forms, you can view the HTML rendering.

Each part of a message is rendered in simple table, with each row occupying the HTML input field. For
example, if the input message has two parts, then there are two tables that display.

Repeating elements are supported by repeating the UI pattern for each input element. Two command buttons
are added: Add and Remove so that users can add or remove items such as parts for a purchase order.

Simple data types are rendered as HTML controls as follows:

Data Type/Attribute HTML Control

boolean radio button

numeric text input

date text input (includes a date chooser)

string text input

xsi mixed text input

xsi any text input (User must enter well formed XML content to pass validation)

enumeration selection box

maxOccurs="unbounded" Add/Remove buttons

minOccurs="1" asterisk added to the label to indicate “required field”

Adding a New Service Operation to a Task Form
If desired, you can modify an existing task form by adding or changing fields and functions generated from
service operations. A service operation is a WSDL operation from a Workspace WSDL that represents the
endpoint of a BPEL process running in an Process Server. The operation must have a service name
associated with it.

For details, refer to Adding a New Service Operation for a Request or Task Form in the Process Developer
Online Help.

Providing Renderings for Task Clients 533

Providing Multilingual Support for Task Forms
You can create task forms that support different languages. To do so, you create a new task form, plus a
default properties file and additional properties files for each language supported. The steps to accomplish
this support are described below.

To Create a New Task Form and a Default Properties File:

1. Create a new task form, described in Creating an Process Central Task Form.

2. In the Create Form dialog, select the Externalize Strings check box.

3. Select the dialog button next to Property File.

4. Name the new properties file. Do not include an underscore in the name.

5. Browse to the forms folder to store the file.

When you select to externalize strings, the following events occur:

• Schema elements in the form are generated by identifier rather than by name to allow for runtime
replacement of strings found in a properties file

• A new link is added within the task form to indicate multilingual support:
<link rel="i18n" charset="UTF-8" type="text/plain" href="../myTaskForm.properties" />

• The list of schema elements is added to the properties file as a key-value pair. The value of each key is
the English wording.

• The properties file that you create is the default externalized strings file. It is for the en_US language.

For Each Additional Supported Language:

1. Make a copy of the default properties file and paste it into the project form folder.

2. Name the copied file with the syntax shown below. Note that you must use the exact same name for
each file, followed by an underscore, followed by an ISO 639 Code for the Representation of Names of
Languages.
Syntax

myFile_[ISO639Code]_{optional locale code}.properties
Examples

myTaskForm_fr.properties
myTaskForm_fr_CA.properties

3. Open the file in a text editor and replace the English values with another language.

Note: You can also add multilingual support for a task's presentation elements, namely the Subject and
Description. For details, see Adding MultiLingual Support for Task Subject, Description, and Display Name.

See also Deploying a Task Form and Properties Files.

Deploying a Task Form and Properties Files
A task form and multilingual properties file are resources that must be included in a deployment package.

All forms in the project forms folder are automatically added to a BPR export archive in the Additional
Resources section.

Creating an Process Central Configuration File for Tasks
For details of this topic, see "Configuring Task Role Filters" in yjr Process Developer Online Help.

534 Chapter 35: Human Tasks

The Task Role Filters section of the .avcconfig file configures the following:

• New role names to add to the Roles list in the Task list or replace the basic names of User, Administrator,
Initiator, and Stakeholder

• New items to add to the Show list to replace or add to Claimed and Unclaimed

• New categories to replace or add to the Task list names of Notifications, Open and Closed

• Users and groups allowed to view the new categories

• Custom columns for the task list; for details, see Creating Custom Task Properties.

Here is an illustration showing the Task categories you can customize:

Creating a Custom Rendering
Type in the XML and other details for a custom rendering of a task or notification.

The Custom Rendering dialog is available when you want to provide your own custom client application for
rendering task details. Use this dialog to provide XML rendering hints for your application.

In addition, you can add a custom rendering to the Renderings list. For details, see Contributing a Custom
Task Rendering Hint Editor.

For an overview of this topic, see Rendering a Task Interface into a User Interface.

Contributing a Custom Task Rendering Hint Editor
Refer to the files to be used to provide rendering hints for this task or notification.

If desired, you can add a custom rendering to the rendering selection list. The rendering selection list
includes custom. You can add to this list by contributing a custom rendering hint editor to Process
Developer.

Your application can use the com.activee.bpel4peopleep plugin, which provides an extension point allowing
you to contribute your own custom rendering hint editors. This extension point appears in the plugin.xml file.

You can contribute to the Task Rendering Hint Editor Extension Point.

The plugin.xml file already contains extension points for the JSP and XSL editors. You can use these as
examples to contribute your own editor.

Providing Renderings for Task Clients 535

Custom Functions
Java custom functions cannot be used within a presentation parameter or in an expression editor when
defining human tasks. This is not the same as the way in which you use other Java custom functions. If you
wanted to use one, you would need to declare the function as being global in the Server Console; you could
not refer to them in a contribution. While this works, it can be a problem as users would need to deploy and
manage them independently from the package deployment process. Restated, unlike other functions, human
task custom functions cannot be just included in a contribution so that a human task process can access it.

While using custom functions within a contribution appears to be a simple way of using them, this limitation
prevents them from being easily used within a human task context.

This limitation exists because at runtime, the server expects the task state process to have references for
custom function contributions, and this is not possible.

Human Tasks Custom Functions
b4p:getProcessStakeholders()

Description: Returns the stakeholders of the process.

b4p:getBusinessAdministrators()

Description: Returns the business administrators of the process.

b4p:getProcessInitiator()

Description: Returns the initiator of the process.

b4p:getLogicalPeopleGroup(Logical People Group Name)

Description: Returns the value of a logical people group

Parameter:

• LogicalPeopleGroupName: The name of the logical people group (xsd:string).

b4p:getActualOwner(People Activity Name)

Description: Returns the actual owner of the task associated with the people activity.

Parameter:

PeopleActivityName: The people activity name (xsd:string).

b4p:getTaskInitiator(People Activity Name)

Description: Returns the initiator of the task. Evaluates to an empty b4p:user in case there is no initiator.

Parameter:

• PeopleActivityName: The people activity name (xsd:string).

b4p:getTaskStakeholders(People Activity Name)

Description: Returns the stakeholders of the task. Evaluates to an empty b4p:organizationalEntity in case of
an error.

Parameter:

• PeopleActivityName: The people activity name (xsd:string).

b4p:getPotentialOwners(People Activity Name)

Description: Returns the potential owners of the task associated with the people activity.

536 Chapter 35: Human Tasks

Parameter:

• PeopleActivityName: The people activity name (xsd:string).

b4p:getAdministrators(People Activity Name)

Description: Returns the administrators of the task associated with the people activity.

Parameter:

• PeopleActivityName: The people activity name (xsd:string).

b4p:getTaskPriority(People Activity Name)

Description: Returns the priority of the task associated with the people activity.

Parameter:

• PeopleActivityName: The people activity name (xsd:string).

abxb4p:getComments(People Activity Name)

Description: Returns the comments of given people activity.

Parameter:

• PeopleActivityName: The people activity name (xsd:string).

abxb4p:getTaskId([peopleActivityName])

Description: Returns the id of the WS-HT task given the people activity name.

Parameters:

• peopleActivityName: The people activity name (xsd:string).

abxb4p:getTaskUrl([peopleActivityName])

Description: Returns the URL to task service given the people activity name.

Parameters:

• peopleActivityName: The people activity name (xsd:string).

abxb4p:getInboxUrl()

Description: Returns the base URL to the task service application. Useful when sending email containing an
Process Central link.

WS-HT (Human Task) Custom Functions
htd:getPotentialOwners([Task Name])

Description: Returns the potential owners of the task.Evaluates to an empty htd:organizationalEntity in case
of an error. If the task name is not present the current task is considered.

Parameter:

• TaskName: The optional name of the Task to retrieve data from.

htd:getActualOwner([Task Name])

Description: Returns the actual owner of the task. Evaluates to an empty htd:user in case there is no actual
owner. If the task name is not present the current task is considered.

Parameter:

• TaskName: The optional name of the Task to retrieve data from.

htd:getTaskInitiator([Task Name])

Custom Functions 537

Description: Returns the initiator of the task. Evaluates to an empty htd:user in case there is no initiator. If the
task name is not present the current task is considered.

Parameter:

• TaskName: The optional name of the Task to retrieve data from.

htd:getTaskStakeholders([Task Name])

Description: Returns the stakeholders of the task. Evaluates to an empty htd:organizationalEntity in case of
an error. If the task name is not present the current task is considered.

Parameters:

• TaskName: The optional name of the Task to retrieve data from.

htd:getBusinessAdministrators([Task Name])

Description: Returns the business administrators of the task. Evaluates to an empty htd:organizationalEntity
in case of an error. If the task name is not present the current task is considered.

Parameters:

• TaskName: The optional name of the Task to retrieve data from.

htd:getExcludedOwners([Task Name])

Description: Returns the excluded owners. Evaluates to an empty htd:organizationalEntity in case of an error.
If the task name is not present the current task is considered.

Parameters:

• TaskName: The optional name of the Task to retrieve data from.

htd:getTaskPriority([Task Name])

Description: Returns the priority of the task. Evaluates to '-1' in case of an error. If the task name is not
present the current task is considered.

Parameters:

• TaskName: The optional name of the Task to retrieve data from.

htd:getInput(Part Name, [Task Name])

Description: Returns the part of the task's input message. If the task name is not present the current task is
considered.

Parameters:

• PartName: The name of the part within the task's input message.

• TaskName: The optional name of the Task to retrieve data from.

htd:getLogicalPeopleGroup(Logical People Group Name, [Task Name])

Description: Returns the value of a logical people group. In case of an error (e.g., when referencing a non
existing logical people group) the htd:organizationalEntity contains an empty user list. If the task name is not
present the current task is considered.

Parameters:

• LogicalPeopleGroupName: The name of an in-scope logical people group.

• TaskName: The optional name of the Task to retrieve data from.

htd:union(Set 1, Set 2)

Description: Constructs an organizationalEntity containing every user that occurs in either set1 or set2,
eliminating duplicate users.

538 Chapter 35: Human Tasks

Parameters:

• Set1: The first set - one of htd:organizationalEntity, htd:users, or htd:user.

• Set2: The second set - one of htd:organizationalEntity, htd:users, or htd:user

htd:intersect(Set 1, Set 2)

Description: Constructs an organizationalEntity containing every user that occurs in both set1 or set2,
eliminating duplicate users.

Parameters:

• Set1: The first set - one of htd:organizationalEntity, htd:users, or htd:user.

• Set2: The second set - one of htd:organizationalEntity, htd:users, or htd:user

htd:except(Set 1, Set 2)

Description: Constructs an organizationalEntity containing every user that occurs in set1 but not in set2.

Parameters:

• Set1: The first set - one of htd:organizationalEntity, htd:users, or htd:user.

• Set2: The second set - one of htd:organizationalEntity, htd:users, or htd:user.

Process Developer Extensions

abxht:getTaskId([taskName])

Description: Returns the id of the WS-HT task given the people activity name. If the task name is not present
the current task is considered.

Parameter:

• TaskName: The optional name of the task to retrieve data from.

abxht:getTaskUrl([taskName])

Description: Returns the URL to task service. If the task name is not present the current task is considered.

Parameter:

• TaskName: The optional name of the task to retrieve data from.

abxht:getInboxUrl()

Description: Returns the base URL to the task service application.

abxht:getOutput([Part Name, [Task Name]])

Description: Returns the task’s output message. If the part name is omitted, then the first part is used. If the
task name is not present, then the current task is considered.

Parameters:

• PartName: The optional name of the part within the task’s output message.

• TaskName: The optional name of the task to retrieve data from.

Using Customized Task Clients
Process Server implements the operations described by the OASIS WS-HumanTask (WS-HT) API task client
specifications to manage human tasks as well as interact with specific tasks. In addition to WS-HT API, iy
provides an extension API to the OASIS WS-HT API with enhanced functionality.

Using Customized Task Clients 539

What is the Informatica Business Process Manager WS-
HumanTask API

Process Server implements the operations described by the OASIS WS-HumanTask (WS-HT) API task client
specifications to manage human tasks as well as interact with specific tasks. In addition to WS-HT API,
Process Server provides an extension API to the OASIS WS-HT API with enhanced functionality.

You can download the Informatica Business Process Manager SDK from http:/www.activevos.com. This
SDK contains the WS-HumanTask API to interact with tasks and to build a custom task client.

See also Using the WS-HT and Identity Service SDK.

Using the WS-HT and Identity Service SDK
The Informatica Web site InfoCenter contains the Process Server SDK, which includes an API for custom task
client applications.

This SDK includes the documentation, JavaDoc, and samples for the use of the WS-Human Task and Identity
Service.

Download the archive from the InfoCenter or Education Center.

Creating Custom Task Properties
A task property is a well-known WS-HT API property or a user-defined property that serves as a selection filter
in Process Central and other task clients.

A task property can be used to display custom columns in Process Central’s task view or other task clients. A
task property can also be used to filter a task list or search within Process Central and other task clients.

• Using task properties, you can filter the Process Central task list like the following examples:

- Indicate which tasks contain comments and attachments

- Show all auto loan requests between $4,000 and $8,000

- Show all mortgage requests in zip code 06484

• The task properties required for the filters shown in the examples above consist of two types.

- WS-HT API properties. The comments and attachments properties in Example One are standard task
properties.

- User-defined properties. The loan type, loan amount, and zip code properties in Examples Two and Three
are custom properties created as Presentation Parameters in Process Developer.

To create a custom view for a task list, complete the following steps:

1. Decide which filters you want to apply to a task list.

2. Familiarize yourself with the WS-HT Task Property List.

3. Create your own properties, as described in Creating a Custom Task Property.

4. Create the task list configuration, described in Configuring Process Central Task Columns and Task
Filters Using Properties.

540 Chapter 35: Human Tasks

WS-HT Task Property List
The following table shows well-known WS-HT properties. Note that the Task prefix is reserved to distinguish
WS-HT task properties from user-defined properties.

WSHT Task Property Name
(case-sensitive)

Type Description

Task.ActivationTime xsd:dateTime Available if task activation was deferred

Task.CompleteBy xsd:dateTime Available if the task has a complete-by time

Task.CompleteByExists xsd:boolean

Task.CreatedOn xsd:dateTime The functions current-date(), current-time() and current-dateTime()
can be used with date type columns. For example, Task.CreatedOn <
current-date() filters all tasks created before today.

Task.Escalated xsd:boolean

Task.EscalatedOn xsd:dateTime Last escalated time (available if the task was escalated)

Task.ExpirationTime xsd:dateTime Available if the task has an expiration time. See comment for
Task.CreatedOn.

Task.HasAttachments xsd:boolean

Task.HasComments xsd:boolean

Task.HasFault xsd:boolean

Task.HasOutput xsd:boolean

Task.ID xsd.string Task ID, such as urn:b4p:3.

Task.IsSkipable xsd:boolean Task is defined as “can be skipped”

Task.ModifiedOn xsd:dateTime Last modified time.

Task.Name xsd.string Local name of task (not the presentation name)

Task.Owner xsd.string Current owner of the task

Task.PaProcessId xsd:long Note that this is not a WS-HT property. It is an Informatica Business
Process Manager property. The process ID of the BPEL process that
contains the people activity

Task.PresName xsd.string Presentation name

Creating Custom Task Properties 541

WSHT Task Property Name
(case-sensitive)

Type Description

Task.PresSubject xsd.string Task presentation subject
When using an Oracle database, you may get the following error: value
too large for column "AEB4PTASK.SUMMARY". While it may appear
that you have not exceeded the length limit, Oracle will be storing non-
standard characters and these characters use more storage than the
column can handle. You can fix this problem by setting the character
set to AL16UTF16. However, you would need to take the database
offline to make the change. as an alternative, you could use the
following command: ALTER TABLE AeB4pTask MODIFY Summary
VARCHAR2 (254 char).

Task.PrimarySearchBy xsd.string Primary search by value

Task.Priority xsd:integer Task priority. Zero is the highest priority. Higher numbers are lower
priorities.

Task.StartBy xsd:dateTime Available if the task has a start-by time

Task.StartByExists xsd:boolean

Task.Status xsd.string Task status such as CREATED, READY, RESERVED, IN_PROGRESS,
COMPLETED, FAILED, ERROR, OBSOLETE

Task.TaskType xsd.string Identifies task or notification. The values are TASK or NOTIFICATION.

Creating a Custom Task Property
Create substitutable parameters for use in subject and description expressions. Also create custom task
properties for selection filters in Process Central and other task clients.

When you define a task, you can create presentation parameters for the task subject and description, as
described in Configuring Presentation Parameters for a Task or Notification Subject or Description.

You can also create presentation parameters that are used for custom task properties. By creating custom
task properties, you can configure Process Central and other task clients to use them.

To use custom properties in Process Central, see Configuring Process Central Task Columns and Task Filters
Using Properties.

To Create a Custom Task Property:

1. In the Properties view of a task, select the Presentation tab.

2. Click (...) to open the Presentation Parameters dialog.

3. Select Add and click (...) to open the Expression builder.

4. Create an expression for the parameter. For example, select an input message part. The name of this
part can be used as a column name in an task list.

5. Select the Type. Allowed types are string, integer, double, boolean, date and dateTime

6. Name the parameter appropriately, as shown in the following illustration.

542 Chapter 35: Human Tasks

Tips for Using Custom Properties:

• Custom properties created in Presentation Parameters do not need to be used in the task subject or
description.

• To view a list of the properties you create, deploy your process to the server, display the Process Console
Catalog page, and select Task Properties

• Property names do not need to be unique, if added as different types. For example, you can create a
property named "priority", once as a string and once as an integer. The Task Properties list appends the
type to the name: priority.string and priority.integer.

• Allowed types are string, integer, double, boolean, date and dateTime.

• You may want to take advantage of the Process Developer custom function getOutput as an expression
for a property. This allows you to filter a task list using an output message part.

• Task properties deployed in the .avcconfig file are not tied to a particular process. They are for general
use in a task client.

See also, Configuring Process Central Task Columns and Task Filters Using Properties.

Configuring Process Central Task Columns and Task Filters Using
Properties

For an overview of this topic, see Creating Custom Task Properties.

Create an Process Central configuration file by selecting File > New > Central Configuration.

For an overview, see Creating an Process Central Configuration File for Tasks.

Creating Custom Task Properties 543

Creating Custom Escalation Actions
In a task definition, you can specify one or more deadlines by which a task must be started and also one or
more deadlines by which a task must be completed. If a particular start date or completion date is missed,
you can trigger a particular action to occur.

There are several actions that are available, as described in About Task Deadlines and Escalations.

In addition, you can create and deploy a BPEL process to provide your own custom action.

To Create the Custom Notification Process:

1. Select File > New > Bpel Process.

2. Name the file and click next.

3. In the BPEL templates page, select Custom B4P Notification.

A process is started for you, with the receive already implemented. You can add the programming logic you
wish.

The interface that is implemented is:

<portType name="IAeTaskCustomNotificationService">
 <operation name="processCustomNotification">
 <input message="aeb4pnw:processCustomNotificationRequest" />
 </operation>
</portType>

Adding the Service to the Start or Completion Deadline Property:

Once you have created and deployed your BPEL process, you can select process invocation, as described in
Invoking a Process When a Task Deadline Occurs.

544 Chapter 35: Human Tasks

C h a p t e r 3 6

BPEL Faults and Reports
This chapter includes the following topics:

• BPEL Standard Faults, 545

• User Reports Sample, 546

BPEL Standard Faults
The table below specifies the standard faults defined within the WS-BPEL specification. All these faults are
named within the WS-BPEL namespace with a standard prefix bpel: corresponding to the following URI:

http://docs.oasis-open.org/wsbpel/2.0/process/executable

Fault Name Description

ambiguousReceive Thrown when a business process instance simultaneously enables two or more
IMAs for the same partnerLink, portType, or operation but different correlation sets,
and the correlations of multiple of these activities match an incoming request
message

completionConditionFailure Thrown if upon completion of a directly enclosed <scope> activity within
<forEach> activity, it can be determined that the completion condition can never be
true

conflictingReceive Thrown when more than one inbound message activity is enabled simultaneously for
the same partner link, port type, operation, and correlation sets.

conflictingRequest Thrown when more than one inbound message activity is open for the same partner
link, operation, and message exchange

correlationViolation Thrown when the contents of the messages that are processed in an <invoke>,
<receive>, <reply>, <onMessage>, or <onEvent> do not match specified
correlation information.

invalidBranchCondition Thrown if the integer value used in the <branches> completion condition of
<forEach> is larger than the number of directly enclosed <scope> activities.

invalidExpressionValue Thrown when an expression used within a WS-BPEL construct (except <assign>)
returns an invalid value with respect to the expected XML Schema type.

invalidVariables Thrown when an XML Schema validation (implicit or explicit) of a variable value fails

545

http://docs.oasis-open.org/wsbpel/2.0/process/executable

Fault Name Description

joinFailure Thrown when the join condition of an activity evaluates to false and the value of the
suppresJoinFailure attribute is yes

mismatchedAssignmentFailure Thrown when incompatible types or incompatible XML infoset structure are
encountered in an <assign> activity.

missingReply Thrown when an inbound message activity executed, and the process instance or
scope instance reaches the end of its execution without a corresponding <reply>
activity being executed.

missingRequest Thrown when a <reply> activity cannot be associated with an open inbound
message activity by matching the partner link, operation, and message exchange
tuple.

scopeInitializationFailure Thrown if there is a problem creating any of the objects defined as part of scope
initialization. This fault is always caught by the parent scope of the faulted scope.

selectionFailure Thrown when a selection operation performed either in a function such as
bpel:getVariableProperty or in an assignment, encounters an error.

subLanguageExecutionFault Thrown when the execution of an expression results in an unhandled fault either in
an expression language or query language.

uninitializedPartnerRole Thrown when an <invoke> or <assign> activity references a partner link whose
partnerRole endpoint reference is not initialized.

uninitializedVariable Thrown when there is an attempt to access the value of an uninitialized variable, or
in the case of a message type variable, one of its uninitialized parts.

unsupportedReference Thrown when a WS-BPEL implementation fails to interpret the combination of the
reference-scheme attribute and the content element or just the content element
alone.

xsltInvalidSource Thrown when the transformation source provided in a bpel:doXslTransform
function call was not legal.

xsltStylesheetNotFound Thrown when the named style sheet in a bpel:doXslTransform function call was
not found.

User Reports Sample
This sample has reporting samples and information that will help you design and deploy your own reports.
The first step is to create the report using the reporting module in Process Developer is built on the robust
BIRT reporting engine. That engine has eclipse plug-in support, which Process Developer includes for you.
These plugins contain a rich editing environment for the construction of new reports. Once you have created
a report, you can then use a Business Process Archive (BPR file) to deploy it to the server as a resource.

After deployment, the report is available on the Report page of the console and optionally on the Reports tab
of Process Central if you specify this using a Process Central configuration (.avcconfig) file. This sample's
documentation supplies information about using reports with Process Developer, but only helps supplement

546 Chapter 36: BPEL Faults and Reports

the reporting module's (BIRT) documentation. Please refer to the BIRT documentation for more details on
advanced reporting features.

This topic discusses the following:

• Getting Started

• Sample Reports

• Deploying Reports

• Process Data Model

• Process Data Model Entity Relation Diagram Subset

• Human Task Data Model

Getting Started

You can add a new report to any project. It is good practice to separate the reporting files from other files in
your project. In this example, the supplied reports are stored in the report folder. When you use File > New
and choose to create a new report, always use the Process Developer Template. The template has a script,
which when the report is deployed, automatically detects the Data Source connection information by using
the supplied AeBirtContext class.

If you are interested in this script, open a report that uses the template, select the Data Source, and then click
on the Script tab in the report editor. The Data Source while in Process Developer does not use the server
settings; instead, it is predefined to point to your embedded Process Server's server derby database. This
database has a limitation that only one application can connect to it at a time, so if you are creating reports
using derby make sure you stop the embedded Process Server first.

Note: If you need to change the default, edit the data source properties to point to the database in which you
store your data.

Once you have created a new report, the next step is to define a data set. A data set is the SQL and
parameters that return the results from the database. After creating the SELECT statement, you can simply
drag the data set onto the canvas and a simple table is created for you. Now you can go ahead and make any
of the formatting changes for your report that you need.

Charts and other reporting types are also available. To use these features, you will need to consult the BIRT
documentation. A few chart samples are included to give you a sense of the capabilities. Please note that
these reports were designed and tested against the embedded server's derby database. You may need to
make modifications to the SQL Data Set for each report if you want to use them with another supported
database.

Sample Reports

Report Description

IndexedPropertyValues Displays all the indexed values in the system grouped by property name. Additionally it
can show an individual property's values using the filter.

ProcessDistribution Displays a pie chart of the distribution of process executions by process deployment (plan
I, process name). Additionally, it has a listing of the counts.

OpenTaskRoles Displays the users and groups and their roles for open tasks.

ProcessResponseTimes Displays a chart showing process response times.

ProcessStatesByDate Displays a chart showing process states by date.

User Reports Sample 547

ProcessStatesByProcess Displays a chart showing process states by process name.

ProcessList Displays a list of running processes similar to the Console's Active Process List. Clicking
on a Process ID link opens the process view in a new tab.
Note: This sample also shows how to create links to the console process detail view page.

Deploying Reports

Reports are easily deployed simply by selecting them or the folder where they reside using the context menu
to select Export. From within the displayed dialog, select the Orchestration > Business Process Archive
export option. Select a location for your BPR file. Typically, you will also choose Web service deployment with
the location of your server (the default is localhost on port 8080). Also, make sure to check the Replace
existing resources checkbox or the system may not overwrite the previous report deployments unless you
have set that as the default when setting server properties.

You can also choose to save the deployment script, which is an ant script that can deploy your reports again
simply by selecting Execute from the context menu. Note the sample project has a saved deployment script
in the deploy folder that you can use to automatically deploy the sample reports. Selecting the Next button
brings you to a page where you will see your reports in the additional resources list. Choose a Process Group
name for both your entries, for example Sample Reports.

Process Data Model

Table 1. Table 1 - Process Developer Process Tables

Table Description Notes

AeUserProcessView(AeProcess) Holds the main state of a
process instance. The primary
state of the process (for
example, running, started,
completed, and so on) is
stored in the ProcessState
column.

Actual BPEL language information and
related services are stored in a related table,
called AePlan.

AeVariable This is the set of variable data
associated with the process.

AeIndexedPropertyValue During deployment, you can
choose to index fields from
variables in your process. This
table stores those values,
which are typically your key
performance indicators (KPI).

In order to find the property name associated
with the value data, you need to link to
AeIndexedPropertyForPlan (plan is the
deployment information/table for a process
definition) and the AeIndexedProperty
tables.

AeProcessLogData Contains the logging
information associated with a
process instance.

This is used to do root cause analysis (show
process state at a point in time) of issues. It
also contains useful reporting information.

AeProcessAttachment Contains any attachments to
variables in the process.

The actual attachment data is stored in the
AeAttachment table as a BLOB.

548 Chapter 36: BPEL Faults and Reports

AeAttachment Stores the BLOB of an
attachment.

Others ...

Process Data Model Entity Relation Diagram Subset

Table 2. Figure 1--ER Diagram for some of the process centric tables.

Human Task Data Model

In order to create human task-centric reports, you will need a basic understanding of the human task data
model. The data model is of course centered on the task, which is in the AeB4PTask table. The primary key of
this table is the ProcessId. Other tables have keys that relate back to the ProcessId in this table. As
mentioned in the process section of the data model, a system process actually handles the task state
management using the AeB4PTask table and the AeProcess table.

User Reports Sample 549

Table 2 contains a short list and descriptions of task tables for which you may have monitoring or other
interests. Figure 2 contains a portion of the full data model that is centered on the AeB4PTask table.

Table 3. Table 2 - Human Task Tables

Table Description Notes

AeB4PTask Holds the main state of a task
instance. The primary state of the
task (for example, unclaimed,
claimed, started, completed, and so
on) is stored in the State column see
Table 4 below The TaskType column
indicates whether the row contains a
task or notification, (0=task,
1=notification).

Much of the task state interaction is
accomplished through processes. Tochange
anything in a task, you must use the WS-HT
Service API. Most task access information is
stored in CLOB columns in this table as
organization entities. However, for quicker
access when logging in, it is is also separated
into its own table (AeB4pTaskACL).

AeB4pTaskACL This table contains the access
control list for the task. Type is zero
for user and 1 for group. See Table 3
below for generic human role column
values.

This table controls access to task information
when using the WS-HT API. It controls what is
visible to a user who is logged into the
Process Central inbox, or another client
application.

AeB4PTaskPa
AeB4PTaskEventDetail

Contains all events that change the
state of the task.

This is used to produce the history of a task.

AeB4PTaskAttachments Contains the attachments associated
with a task.

This is used to store attachments that are
associated with a task and are typically
available in the task detail display.

Others ...

Table 4. Table 3--AeB4PTaskACL: GenericHumanRole Column

Role Value Description

Initiator 0 Task Initiator

Stakeholder 1 Task Stakeholder

Potential Owner 2 Potential Owner

Actual Owner 3 Actual Owner

Excluded Owner 4 An excluded owner

Business Administrator 5 Business Administrator

Notification recipient 6 Recipient of a notification task type

Table 5. Table 4--AeB4PTask: State Column

State Value

Deferred 0

550 Chapter 36: BPEL Faults and Reports

Unclaimed 1

Claimed 2

Started 3

Completed 4

Skipped 5

System Error 6

Faulted 7

Exited 8

Suspended 9

Table 6. Figure 2--Human Task ER Diagram Subset

User Reports Sample 551

	Table of Contents
	Preface
	Chapter 1: Welcome to Informatica Process Developer
	About Informatica Process Developer
	Working in the Eclipse Environment
	Migrating from Earlier Versions
	Required Reset for Process Developer Perspectives
	Migrating from Process Developer Versions Prior to 9.0
	Migrating from Process Developer Versions Prior to 8.0.x
	Opening and Using BPEL4WS 1.1 Processes
	Migrating Processes from BPEL4WS 1.1 to WS-BPEL 2.0
	Taking Advantage of SOAP 1.2 Port Binding Version 7.x

	Saving From One Editing Style to Another (BPMN and Classic)
	Converting Legacy Deployments to Contributions

	Chapter 2: Using Guide Developer for the First Time
	Launching Process Developer
	Using the Workspace to Store Projects
	Creating an Orchestration Project
	Changing the Default Location of a Workspace Project
	Orchestration Project Templates

	Adding or Removing a Project Orchestration Nature
	About Project Orchestration and Validation Builders
	Using Project References
	Creating a New Process
	Beginning a New Process
	Selecting the BPMN-Centric or BPEL-Centric Palette

	Importing an Existing BPEL Process
	Importing a Visio XML Drawing File
	Begin Your First Project with Process Developer Assistance
	Setting Up the Embedded Process Server
	Process Developer Orchestration File Resources

	Chapter 3: Getting Started with Informatica Process Developer
	Using Source Control Systems
	Navigating Through Process Developer
	Windows Perspectives Views and Editors
	Process Developer Perspective
	Project Explorer
	Participants
	Interfaces
	Outline View
	Problems View
	Tasks View
	Thumbnail View
	Bookmarks View
	Relationships View
	Servers and Console Views
	Status Bar

	Guide Developer Debug Perspective
	BPMN-Centric and BPEL-Centric Edit Styles
	What is BPMN-Centric Style
	What is BPEL-Centric Style
	Comparing the BPMN-Centric and BPEL-Centric Tool Palettes
	Which Edit Style to Choose BPMN-Centric or BPEL-Centric
	Using Swimlanes
	What is Guide Developer Classic Style

	Using the Process Developer Process Editor
	Process Editor Process Activities Tab
	Process Editor Fault Handlers Tab
	Process Editor Event Handlers Tab
	Process Editor Compensation and Termination Handler Tabs
	Process Editor Source Tab
	Process Editor Source Tab
	Setting Visual Properties and Using Your Own Library of Images
	Adding Tasks and Bookmarks to the Process
	Adding Comments to a Process
	Adding Documentation to a Process
	Tips for Designing on the Process Editor Canvas
	Showing and Hiding Activities
	Process Editor Keyboard Shortcuts
	Process Developer Function Keys

	Customizing the Process Developer Perspective
	Process Developer Menus and Toolbars
	Refactor
	Go To Activity (Ctrl + l)
	Open Operation (Ctrl + Shift + t o)
	Open Port Type (Ctrl + Shift + t p)
	Open Web Type (Ctrl + Shift + t w)
	Optimize Parameters
	Validate Process
	Generate Process Report
	Generate Process Image
	Generate Deployment Image

	Process Developer Preferences
	B-Unit Preference
	Cache and Timeout Preference
	Colors and Fonts Preferences
	Contribution Preference
	Layout Preferences
	Relationships View Preferences
	Tasks and Problems Preferences
	Identity Chooser Preference
	Additional Preferences

	Accessing Process Developer Help

	Chapter 4: About Interfaces Service References and Local WSDL
	Importing a Local WSDL
	Viewing Key Elements of a WSDL Tree
	Editing a WSDL in the WSDL Editor
	Deleting a WSDL from Your Project

	Importing a Service Reference
	Creating a New Interface
	Creating a Java Interface
	Setting up Your Java Project in Process Developer
	Constraints for your Java Project
	Generating WSDL and Schema from a Java Interface
	Generating Argument Names for Schema Elements
	Updating Your Java Project and Your BPEL Process Concurrently
	Deployment Requirements for a Java (POJO) Endpoint
	Deployment Requirements for Java (EJB) Endpoint
	Running a BPEL Process with a POJO EJB Endpoint
	Comparing the POJO EJB Interface to a Custom Java Invoke Handler

	Using the Interfaces View to Create Activities
	Interfaces Toolbar Options
	Filtering the Interfaces View
	System Services Interfaces

	Creating a WSDL File with Extensions for BPEL
	Using Sample Data for WSDL Messages
	Adding or Editing a Sample Data Value for a Simple Type Message Part
	Generating a Sample Data File
	Adding a Sample Data File to a WSDL Message
	Selecting a Default Sample Data File
	Viewing the XML Structure of a Sample Data File
	Removing a Sample Data File

	Finding Where a WSDL Component is Used
	Using Process Search

	Chapter 5: Planning Your BPEL Process
	Using Top-Down or Bottom-Up Process Design
	Using WSDL References for Efficient Design
	Creating WSDL Extensions for BPEL
	Starting a Process by Dropping an Operation onto the Process Editor

	Importing WSDL Schema and Other Resources
	Automatically Importing WSDL and Schema Locations
	Manually Importing WSDL Schema and Other Resources
	Refreshing Imports
	Deleting an Import
	Namespace Prefix and Declaration

	Declaring Extensions
	Using the Process Developer Create XPath Extension
	Using the Process Developer Disable Selection Failure Fault Extension

	Declaring Extension Elements and Attributes
	Understanding BPEL Process Structure and Properties
	Process Element and Properties
	Partner Links
	Variables
	Activities
	Fault Handlers
	Compensation Handlers
	BPEL XML Source and Implicitly Added Activities

	Understanding BPEL Process Lifecycle
	Creating an Executable vs. an Abstract Process
	Creating an Abstract Process
	Tips for Working with Abstract Processes

	Creating a BPEL Process as a Service for Another BPEL Process
	Message Exchange Declaration

	Chapter 6: Participants
	What are Participants
	Using the Participants View
	Creating a New Process Service Consumer Interface
	Creating a New Partner Service Interface
	Creating a New Callback Interface
	Clearing a Service Interface from a Participant
	Creating New Activities from the Participants View
	Creating a New Variable From an Activities Property View

	What are Partner Link Types and Partner Links
	Partner Link Type
	Adding a new Partner Link Type from a WSDL in Project Explorer
	Adding a new Partner Link Type to a new WSDL using a Service Reference WSDL
	Add a new Partner Link Type from Interfaces View

	Partner Link
	Using Scoped Partner Links
	Partner Links and Endpoint References

	Chapter 7: Implementing a BPMN Task or Event in BPEL
	BPMN-to-BPEL Implementation of Tasks and Events
	Overview of BPEL Activities
	Defining an Activity and Its Properties
	Selecting Values for Activity Properties
	Selecting Activity Labels
	Standard Properties for Activities
	Adding a Background Color to a Task Scope People Activity and Handlers

	Understanding and Using Activity Sequences and Flows
	Receive
	Reply
	Throw
	Rethrow
	Signal
	Exit
	Wait
	Compensate
	Compensate Scope
	Break
	Continue
	Start End None
	Invoke
	From Part to Variable
	From Variable to Part
	Input Variable
	Output Variable

	Assign
	Tips for Copy Operations
	Copy Operation Query and Expression Examples
	Copy Operation Literal Contents Examples
	Copy Operation Dynamic Endpoint Reference Example
	Element to Element Copy Operation with Keep Source Element Name Attribute
	Copy Operation with Ignore Missing From Data Attribute

	Empty
	Suspend
	Validate
	Opaque
	Creating a Custom Activity
	Creating an Activity by Starting with a WSDL Interface

	Chapter 8: Implementing a BPMN Gateway or Control Flow
	BPMN-to-BPEL Implementation of Gateways and Control Flow
	Different Ways of Structuring Activities
	Overview of Control Flow Items
	Ungrouping Selected Structured Activities

	Gateway
	About Gateway Types
	Building a Gateway
	Mutually Exclusive Transitions

	Pick
	Fork Join
	If
	While
	Repeat Until
	Scope
	Setting Isolated to Yes in a Scope
	Using a Termination Handler for a Scope
	Lifecycle of a Scope

	For Each
	Sequence
	Flow

	Chapter 9: Using Variables
	Overview of Variables
	Adding a Variable
	WSDL Message Types
	XML Schema Type
	XML Schema Element

	Adding Variable Properties and Property Aliases
	Initializing a Variable
	Viewing Variables
	Quick View of Variables Used in Activities
	Using the Process Variables View Options
	Opening a Variable to View its Definition
	Viewing Variable Properties
	Understanding Icons Symbols and Descriptions of Variable Parts

	Deleting a Variable
	Using Sample Data in Process Variables View
	Editing a Single Sample Data Value for a Simple Type Message Part
	Loading a Sample Data File in Process Variables View
	Saving and Viewing Sample Data in Process Variables View

	Using the XML Data Wizard
	Finding Where Variables are Used
	Using Variables in a Copy Operation
	Creating a Copy Operation Using a Context Menu
	Creating a Copy Operation Using Drag and Drop
	Selecting a Copy Operation to Edit

	Using Variables Based on WSDL Fault Messages
	Mapping WSDL Message Parts in Web Service Interaction Activities
	Validating Variables
	Working with Variable Attachments

	Chapter 10: Attachments
	Adding an Attachment
	Adding an Attachment for Simulation
	Remote Debugging with Variable Attachments
	Custom Functions for Manipulating Attachments
	Attachment Custom Function Examples

	Chapter 11: Using Links
	What is a Link
	Process Developer Extension for Links
	Adding a Link Between Activities
	Adding a Link with no Transition
	Adding a Link with a Transition Condition
	Link Examples

	Execution Rules for Links
	Designing With Links vs. Structured Activities
	Links and the Join Condition
	Link Properties

	Chapter 12: Data Manipulation
	Overview of Data Manipulation in BPEL
	Selecting XPath or XQuery for Expression Building
	Example XQuery Expressions
	Example XPath Expressions

	Using the Expression Builder
	Using Content Assist
	BPEL Functions
	Process Developer Custom Functions General
	Attachment Functions
	Boolean Functions
	Catalog Functions
	Fault Functions
	I18N Functions
	JSON Functions
	Node Set Functions
	Number Functions
	String Functions

	Expected Expressions for Conditions Counters and Other Values
	Using the Query Builder
	Creating a Join Condition for an Incoming Link
	Deadline and Duration Expressions

	Chapter 13: Compensation
	Compensation Handlers and Compensate Activities
	Default-Order Compensation Example
	Specified Compensation Example

	Adding a Compensation Handler to a Scope
	Compensating an Invoke Activity

	Chapter 14: Correlation
	Chapter 15: What is Correlation
	Chapter 16: What is a Correlation Set
	Properties
	Property Aliases
	WSDL Syntax and Example for Property Names and Aliases
	Global and Local Correlation Sets

	Chapter 17: Creating Message Properties and Property Aliases
	Creating a Property Definition
	Creating a Property Alias

	Chapter 18: Adding a Correlation Set
	XML Syntax
	Example
	Correlation Sets: Required and Optional Properties

	Chapter 19: Deleting a Correlation Set
	Chapter 20: Adding Correlations to an Activity
	Chapter 21: Rules for Declaring and Using Correlation Sets
	Chapter 22: Correlation Sets and Engine-Managed Correlation
	Chapter 23: Event Handling
	What is Event Handling
	Adding Event Handlers
	Adding an onEvent Event Handler
	Adding an onAlarm Event Handler

	Processing Rules for Events
	Adding Boundary Events
	Catch and Catch All Boundary Events and Compensate Compensate Scope and Rethrow
	Using a Variable from a Catch or Interrupting OnEvent Boundary Event

	Chapter 24: Fault Handling
	What is BPEL Fault Handling
	Defining Catch and CatchAll Fault Handlers
	Fault Handling for Service Invocations
	Adding a Fault Handler
	Adding a Fault Handler for the Process
	Adding a Fault Handler for a Scope
	Adding a Fault Handler as a Boundary Event for an Invoke Activity
	Selecting a Fault Name
	Adding a Fault Variable Definition

	Fault Handling Processing Rules
	Rules for Catching Faults in a Catch Activity
	Tips on Fault Handling
	Catching Undeclared and SOAP Faults

	Chapter 25: Simulating and Debugging
	What is the Process Developer Debug Perspective
	Opening the Process Developer Debug Perspective
	Switching Between Process Developer Perspectives

	Process Developer Debug Perspective Views and Menus
	Using the Process Developer Debug View
	Using Breakpoints in BPEL Process Simulation
	Using the Process Developer Debug Console

	Simulating Execution of a BPEL Process
	Prerequisites for Simulation
	Starting and Ending Simulation of a BPEL Process
	Running to a Breakpoint in a BPEL Process
	Stepping to the Next Activity in a BPEL Simulation
	Viewing the Execution State of an Activity or Link
	Modifying a BPEL Process During Simulation
	Terminating and Removing BPEL Process Simulations
	Clearing the Process Execution State

	Supplying and Inspecting Sample Variable Data During Simulation
	Setting up Sample Data Values for Input Output and Fault Messages
	Inspecting Process Variables during Simulation

	Selecting Simulation Paths and Properties
	Selecting an Invoke Subprocess for Simulation
	Simulating Event Handlers
	Simulating Fault Handlers

	Inspecting Standard Faults During Simulation
	Simulation Preferences
	Disable bpel selectionFailure Fault Example
	Auto Create Target Path for Copy To Example
	Disable bpel selectionFailure Fault and Auto Create Target Path for Copy To Example

	Setting Debug Preferences
	Debugging Remote Processes Running on the Server
	Configuring a Remote Process Connection
	Selecting Processes for Remote Debugging
	Setting Breakpoints on a Process for Remote Debugging
	Using the Debug View Process Editor and Variable View for Remote Debugging
	Remote Debugging Preferences
	Selecting a Launch Configuration from the Toolbar
	Checking for an Out of Sync Process
	Server Interactions During a Remote Debugging Session
	Setting Options for Console Output

	Correcting Retrying or Completing Activities
	Updating Variable Data in the Process Variables View
	Updating Correlation Property Data
	Updating Partner Link Address Information

	Monitoring Client Message Traffic with TCP IP Monitor

	Chapter 26: Deploying Your Processes
	Preparing for Deployment
	Preparing BPEL Files for Deployment
	Selecting a Server Platform for Deployed Processes

	Endpoint Reference Addressing Considerations
	Endpoint References and WS-Addressing Considerations
	Endpoint References Requiring Credentials for Access
	Specifying a Replaceable URN URL for an Endpoint Reference
	Endpoint References and WS-Policy

	Overview of Process Deployment Steps
	Creating a Process Deployment Descriptor File
	General Deployment Options
	Partner Role Invoke Handlers
	Partner Role Endpoint Types
	My Role Binding Service Name and Allowed Roles Options
	Selecting a Service for a Deployment Descriptor Partner Link
	Using SOAP 1.1 or 1.2 Port Binding
	Adding Policy Assertions
	Adding Indexed Properties
	Eventing tab of the PDD
	People tab of the PDD
	Using the PDD Editor Source View

	Creating and Deploying a Business Process Archive Contribution
	Deploying Project Dependencies and Viewing Excluded Dependencies
	Deploying Additional Resources

	Managing Deployment Contributions
	Using a BPRD Script to Regenerate and Deploy a BPR Contribution
	Running a BPRD Ant Script from within Process Developer
	Running a BPRD Ant Script from the Command Line

	Deployment Complete
	Starting the Server and Running a Process
	How a BPEL Process is Instantiated
	What is Process Versioning

	Chapter 27: BPEL Unit Testing
	What is BPEL Unit Testing
	Creating a BPEL Unit Test File
	Running a BPEL Unit Test in Process Developer
	Creating and Running a B-unit Ant Script
	Prerequisite
	Creating a B-unit Ant Script
	Notes on Modifying a B-Unit Ant Script
	Adding Multiple B-unit and B-suite to an Ant Script
	Running a B-Unit Ant Script
	Generating a Code Coverage Report

	Editing a B-unit File
	BPEL Unit (Root)
	Extensions and Extension Activities
	Invokes
	Alarms
	Commands

	Debugging a B-unit Test
	Creating and Running BPEL Unit Test Suites
	Tips on Using Assertions
	Tips on Using Parameterized XSL for Input and Assert Data
	Tips on Providing Partner Link Data

	Example B-unit File

	Chapter 28: Creating POJO and XQuery Custom Functions
	Custom Functions Overview
	Implementing the Function Context and Adding Annotations
	Implementing: Step 1
	Implementing: Step 2
	Implementing: Step3

	Sample Custom Function
	Adding Global Custom Functions to the Process Server
	Writing XQuery Functions
	Using the XQuery Editor
	Tips on Writing XQuery Functions
	Testing XQuery Functions in the XQuery Editor

	Chapter 29: Custom Service Interactions
	Using a REST-based Service
	Creating a REST-based Receive or Invoke
	BPEL REST Messages
	Handling of Multipart HTTP Messages
	Specifying Deployment Details for a REST-based Process

	Using an OAuth REST-Based System Service
	Creating an OAuth Service
	Specifying Deployment Details for an OAuth Service Provider

	Using a Java Messaging Service Invoke Handler

	Chapter 30: Process Exception Management
	What is Process Exception Management
	Suspending a Process on Uncaught Faults
	Making all Processes Eligible for Suspension on Uncaught Faults
	Making Individual Processes Eligible for Suspension on Uncaught Faults
	Suspending a Process Programmatically with a Suspend Activity

	Chapter 31: Creating Reports for Process Server and Central
	Creating the User Reports Orchestration Project
	Using the Process Developer Report Template
	Using the Process Developer Data Source
	Creating a Data Set from the Process Developer Data Source
	Understanding the Process Developer Data Model
	Deploying a Process Developer Report
	Updating or Deleting a Deployed Report
	Reporting Service

	Chapter 32: Business Event Processing
	Defining an Event in the Process Deployment Descriptor
	Using System-Defined Events
	Creating an Event-Action BPEL Process
	Activity States Event Properties Task States and Task Event Types

	Chapter 33: Process Central Forms and Configuration
	What is Process Central
	Creating a Process Central Process Form
	Understanding the Process Request Form Template
	Editing HTML in Process Central Forms
	Adding a New Service Operation for a Form or a Task
	Customizing Task and Form Scripts An Introduction
	Using the Process Developer SDK for Customizing Forms

	Testing and Debugging Process Central Forms
	Creating a Process Central Configuration File
	Configuring Form Filters
	Configuring Reports Filters
	Including Your Own Styles Scripts and Meta Data for Process Central

	Configuring Task Role Filters
	Basic Task Roles Filter Configuration
	Configuring Custom Columns for Task Roles Filtering
	Configuring a GetMyTasks Filter with a WhereClause
	Using a getMyTasks orderBy Element
	Configuring an RSS or Atom Feed Filter

	Deploying Forms Reports and Configuration Files
	Adding Multilingual Support to Process Central
	Displaying Process Central in a Web Browsers Preferred Language
	Adding Multilingual Support for Forms and Tasks
	Adding Multilingual Support for an .avcconfig File
	Adding Multilingual Support for Reports
	Naming Conventions for .properties File

	Process Central Advanced Configuration

	Chapter 34: Building a Process with a System Service
	Using a BPEL Template for a System Service-Based Process
	Alert Service
	Data Access Service
	Creating a BPEL Process that Executes Statements on a Data Source
	Parameter-Based Request
	Simulating the Data Access Invoke Output
	Example-Response from an Insert Update or Delete Statement
	Handling Binary Data
	Fault Handling
	Mapping Data Returned in the Data Access Response
	Simulating the Data Access Service

	Email Service
	Identity Service
	Migration Service
	Input and Output for Create Map
	Input and Output for Migrate
	Creating a BPEL Process That Migrates Process Instances to a New Version
	Testing Your Migration Process
	Using the Process Server Migration Web Service

	Monitoring Alert Service
	Retry-Policy Service
	Server Log Service
	Shell Command Invoke Service

	Chapter 35: Human Tasks
	Getting Started with Human Tasks
	About the BPEL4People Specification
	Introducing Human Workflow into a BPEL Process
	Routing Tasks to People at Run Time
	About Task Life Cycle
	Creating the Artifacts Needed for the People Activity

	Participants and Tasks
	Creating a Human Task Participant
	Using or Mapping Users or Groups From the Identity Service
	Creating a Task for a Participant
	Using BPEL4People Extension Elements and Activities
	Human Interactions Extension Element
	About Logical People Groups
	Using Logical People Groups for Role Assignments
	Using Literal Values for Role Assignments
	Using Expressions for Role Assignments
	About Tasks
	About Task Deadlines and Escalations
	About Notifications

	Using the People Activity
	What is a People Activity
	Conceptual Overview of the People Activity
	Adding a People Activity
	Required and Optional Properties of a People Activity
	Creating an Inline Task or Notification
	Selecting a Local Task or Notification
	Selecting Overrides for Priority and People Assignments
	Selecting Variables
	Adding Scheduled Actions for Tasks
	Sending and Receiving Attachments
	Catching a Fault Thrown by the People Activity

	Simulating Debugging Deploying
	Simulating a Process with a People Activity
	Selecting a Logical People Group Handler During Deployment
	Using the Identity Chooser During Deployment
	Running Your Process from the Process Server

	Providing Renderings for Task Clients
	About Task Presentation in Process Central
	Rendering a Task Interface into a User Interface
	Creating an Process Central Task Form
	Working in Development Mode or Production Mode
	Understanding the Task Form Template
	Examples of Task Forms for End Users
	Adding a New Service Operation to a Task Form
	Providing Multilingual Support for Task Forms
	Deploying a Task Form and Properties Files
	Creating an Process Central Configuration File for Tasks
	Creating a Custom Rendering
	Contributing a Custom Task Rendering Hint Editor

	Custom Functions
	Human Tasks Custom Functions
	WS-HT (Human Task) Custom Functions

	Using Customized Task Clients
	What is the Informatica Business Process Manager WS-HumanTask API
	Using the WS-HT and Identity Service SDK

	Creating Custom Task Properties
	WS-HT Task Property List
	Creating a Custom Task Property
	Configuring Process Central Task Columns and Task Filters Using Properties

	Creating Custom Escalation Actions

	Chapter 36: BPEL Faults and Reports
	BPEL Standard Faults
	User Reports Sample

