
Informatica® Cloud Data Integration

REST V2 Connector

Informatica Cloud Data Integration REST V2 Connector
April 2020

© Copyright Informatica LLC 2016, 2020

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica, the Informatica logo, Informatica Cloud, and PowerCenter are trademarks or registered trademarks of Informatica LLC in the United States and many
jurisdictions throughout the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company
and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2020-05-17

https://www.informatica.com/legal/patents.html

Table of Contents

Preface. 5

Informatica Resources. 5

Informatica Documentation. 5

Informatica Intelligent Cloud Services web site. 5

Informatica Intelligent Cloud Services Communities. 5

Informatica Intelligent Cloud Services Marketplace. 5

Data Integration connector documentation. 5

Informatica Knowledge Base. 6

Informatica Intelligent Cloud Services Trust Center. 6

Informatica Global Customer Support. 6

Chapter 1: Introduction to REST V2 Connector. 7
REST V2 Connector overview. 7

REST V2 Connector task and object types. 8

XML objects. 8

Administration of REST V2 Connector. 10

Secure communication. 10

Limitations on Hosted Agent. 11

Chapter 2: REST V2 connections. 12
REST V2 connection overview. 12

REST V2 connection properties. 13

OAuth 2.0 client credentials authentication. 14

OAuth 2.0 authorization code authentication. 15

JWT bearer token authentication. 18

Rules and guidelines for REST V2 connections. 20

Chapter 3: REST V2 operations. 21
REST V2 operations overview. 21

REST V2 source operations. 21

Configuring a request using Request Message Editor. 22

Parameterizing the input values in a request message. 22

Field mapping in a source transformation. 23

Creating packed fields. 24

REST V2 midstream operations. 25

REST V2 target operations. 25

Field Mapping in a target transformation. 26

Configuring a request that contains array elements . 26

Creating a request using multiple source groups. 26

Creating a request using a single source group. 27

Table of Contents 3

Uploading a file to a REST endpoint URL. 28

Parsing response headers. 29

Parsing security definitions. 30

Rules and guidelines for REST V2 operations. 31

Chapter 4: Mappings and mapping tasks with REST V2 Connector. 33
Mappings and mapping tasks overview. 33

REST source transformation in mappings. 33

Advanced source properties. 34

REST source mapping example. 36

REST midstream transformation in mappings. 38

Advanced midstream properties. 39

Midstream transformation mapping example. 40

REST V2 targets in mappings. 43

Advanced target properties. 43

Input settings properties. 44

REST target mapping example. 44

Appendix A: Supported swagger objects. 47
Supported swagger objects overview. 47

Index. 50

4 Table of Contents

Preface
Use REST V2 Connector to learn how to read from or write to a web service that supports REST API by using
Cloud Data Integration. Learn to create a REST V2 connection, develop and run mappings and mapping tasks
in Cloud Data Integration.

Informatica Resources
Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Documentation
Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Intelligent Cloud Services web site
You can access the Informatica Intelligent Cloud Services web site at http://www.informatica.com/cloud.
This site contains information about Informatica Cloud integration services.

Informatica Intelligent Cloud Services Communities
Use the Informatica Intelligent Cloud Services Community to discuss and resolve technical issues. You can
also find technical tips, documentation updates, and answers to frequently asked questions.

Access the Informatica Intelligent Cloud Services Community at:

https://network.informatica.com/community/informatica-network/products/cloud-integration

Developers can learn more and share tips at the Cloud Developer community:

https://network.informatica.com/community/informatica-network/products/cloud-integration/cloud-
developers

Informatica Intelligent Cloud Services Marketplace
Visit the Informatica Marketplace to try and buy Data Integration Connectors, templates, and mapplets:

https://marketplace.informatica.com/

Data Integration connector documentation
You can access documentation for Data Integration Connectors at the Documentation Portal. To explore the
Documentation Portal, visit https://docs.informatica.com.

5

https://docs.informatica.com
mailto:infa_documentation@informatica.com
http://www.informatica.com/cloud
https://network.informatica.com/community/informatica-network/products/cloud-integration
https://network.informatica.com/community/informatica-network/products/cloud-integration/cloud-developers
https://network.informatica.com/community/informatica-network/products/cloud-integration/cloud-developers
https://marketplace.informatica.com/
https://docs.informatica.com

Informatica Knowledge Base
Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Intelligent Cloud Services Trust Center
The Informatica Intelligent Cloud Services Trust Center provides information about Informatica security
policies and real-time system availability.

You can access the trust center at https://www.informatica.com/trust-center.html.

Subscribe to the Informatica Intelligent Cloud Services Trust Center to receive upgrade, maintenance, and
incident notifications. The Informatica Intelligent Cloud Services Status page displays the production status
of all the Informatica cloud products. All maintenance updates are posted to this page, and during an outage,
it will have the most current information. To ensure you are notified of updates and outages, you can
subscribe to receive updates for a single component or all Informatica Intelligent Cloud Services
components. Subscribing to all components is the best way to be certain you never miss an update.

To subscribe, go to https://status.informatica.com/ and click SUBSCRIBE TO UPDATES. You can then
choose to receive notifications sent as emails, SMS text messages, webhooks, RSS feeds, or any
combination of the four.

Informatica Global Customer Support
You can contact a Customer Support Center by telephone or online.

For online support, click Submit Support Request in Informatica Intelligent Cloud Services. You can also use
Online Support to log a case. Online Support requires a login. You can request a login at
https://network.informatica.com/welcome.

The telephone numbers for Informatica Global Customer Support are available from the Informatica web site
at https://www.informatica.com/services-and-training/support-services/contact-us.html.

6 Chapter 1: Preface

http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://www.informatica.com/trust-center.html
https://status.informatica.com/
https://status.informatica.com/
https://network.informatica.com/welcome
https://www.informatica.com/services-and-training/support-services/contact-us.html

C h a p t e r 1

Introduction to REST V2
Connector

This chapter includes the following topics:

• REST V2 Connector overview, 7

• REST V2 Connector task and object types, 8

• XML objects, 8

• Administration of REST V2 Connector, 10

REST V2 Connector overview
Use REST V2 Connector to interact with web service applications that support REST API. You can use REST
V2 Connector in a Source transformation, Target transformation, or midstream in a Web Services
transformation.

You can use REST V2 Connector midstream in a mapping to pass a single or multiple requests to a web
service application and process the response data. You can also pass data obtained from multiple
transformations in the mapping pipeline and process the data.

When you use REST V2 Connector midstream in a mapping, you first create a business service for the
operation that you want to perform in the web service application. You then associate the business service in
a Web Services transformation midstream in a mapping to read from or write data to the web service
application. For example, you can use REST V2 Connector as a midstream transformation to perform PUT
operation on a web service application.

You can use special characters in field names for target and midstream transformations.

You can use the following REST methods in source, target, and midstream transformation:

• GET

• PUT

• POST

• DELETE

• OPTIONS

• HEAD

7

When you can create a REST V2 connection, you can configure one of the following REST authentication
types:

• Standard

- BASIC

- DIGEST

- OAuth 1.0

• OAuth 2.0 client credentials

• OAuth 2.0 authorization code

You can use the following media types to process data:

• application/xml

• application/json

• application/x-www-form-urlencoded

• JSON subtype. For example: application/hal+json
• JSON custom type. For example: application/vnd.ds.abc.v1+json
• Extended JSON mime type. For example: application/vnd.ds.abc.v1+json;version=q1
• text/xml

REST V2 Connector task and object types
The following table lists the REST V2 transformation types that you can include in Data Integration tasks:

Task Type Transformation Type

Mapping Source, Target, and Midstream

When you run a mapping or mapping task, the session log is saved to the following directory: <Secure Agent
installation directory>/apps/Data_Integration_Server/logs.

XML objects
REST V2 Connector supports XML objects such as, XML attributes, the wrapper object, and the namespace
object.

You can define attributes only for XML objects. You cannot define attributes for XML elements in the
swagger specification file. Wrapper objects are supported for a simple type array element only when the
array element has inline definitions. REST V2 Connector supports qualified and unqualified namespace
objects in Response for source, midstream, and target transformations. Whereas, REQUEST with qualified
and unqualified namespace objects is supported for midstream and target transformations.

Swagger definition for an XML attribute:

"XMLAttrArray_Request##body##Employee##dep##Mangr" : {

8 Chapter 1: Introduction to REST V2 Connector

"properties" : {

"desg" : {

"type" : "string",

"xml": { "attribute": true }

}, "mid" : { "type" : "string" },

The XML attribute sample:

<dep>

<Mangr desg="Director">

<mid>em09</mid>

<mname>mg</mname>

</Mangr>

<id>did</id>

<name>dname</name>

</dep>

An XML attribute is always of type string. Even if the swagger definition has attribute with type as number,
the REST V2 connector always treats the attribute as string. The XSD generated has the data type as string
for the XML attribute.

Swagger definition for a Wrapper object:

"books" : {

"type" : "array",

"items" : { "type" : "string" },

"xml": {

"wrapped" : "true", "name": "books-array"

}

}

The Wrapper object sample:

<books-array>

<books>1</books>

<books>2</books>

</books-array>

Swagger definition for a Namespace object:

root" : {

"properties" : {

"table" : {

"$ref" : "#/definitions/NSResReq_Request##body##root##table"

}

},

XML objects 9

"xml":{

"prefix": "h",

"namespace": "http://www.w3.org/TR/html4/"

}

}

The namespace object sample:

<h:root xmlns:h="http://www.w3.org/TR/html4/">

<table>

<tr>

<td>Apples</td>

<td>Bananas</td>

</tr>

</table>

</h:root>

Administration of REST V2 Connector
As a user, you can use REST V2 Connector after the organization administrator performs the following tasks:

• Installs the Secure Agent on a 64-bit machine.

• Ensures that the machine hosting the Secure Agent has a minimum memory size of 2048 MB.

• Deploys the latest version of the XToolkit API to the Secure Agent directory.

• Installs the Data Transformation package on the Secure Agent machine.

• Installs the UDT Notation Generator package on the Secure Agent machine.

• Provides the license to the Data Transformation package, UDT Notation Generator package, and the saas-
xmetadataread package on the Secure Agent machine.

Secure communication
You can configure TLS authentication to establish one-way or two-way secure communication with the REST
API.

The Secure Agent establishes a secure connection with the REST API over TLS. You can use one-way SSL or
two-way SSL.

Use One-Way SSL

To use one-way SSL, perform the following steps:

• Import the server certificate to the <Secure Agent installation directory>\jre\lib\security
\cacerts file. Use the following command:
keytool -importkeystore -srckeystore <PathtoCert>\clientSSL.p12 -srcstoretype <type of
certificate pkcs12> -destkeystore <Informatica agent Installation location\jdk\jre\lib
\security\cacerts -deststoretype JKS

10 Chapter 1: Introduction to REST V2 Connector

• Add JVM options for truststore file name and truststore password:

- Click Administrator > Runtime Environments and select an agent.

- Select Type as DTM under System Configuration Details.

- Add the following JVM options:

- JVMOption1=-Djavax.net.ssl.trustStore=<absolute path of the .jks truststore file>
- JVMOption2=-Djavax.net.ssl.trustStorePassword=<truststore password>

You can also specify the name of the keystore file and keystore password in the KeyStore File Name and
KeyStore Password connection properties.

Use Two-Way SSL

To use two-way SSL, you must first perform the steps for one-way SSL, and then perform the following steps:

• Add JVM options for keystore file and keystore password:

- Click Administrator > Runtime Environments and select an agent.

- Select Type as DTM under System Configuration Details.

- Set the following JVM options:

- JVMOption3=-Djavax.net.ssl.keyStore=<absolute path of the .jks keystore file>
- JVMOption4=-Djavax.net.ssl.keyStorePassword=<keystore password>

You can also specify the name of the keystore file and keystore password in the KeyStore File Name and
KeyStore Password connection properties.

The Secure Agent processes the certificate in the following order:

Keystore

1. Connection attributes

2. JVM property

Truststore

1. Connection attributes

2. JVM property

3. Certificate imported at <Secure Agent installation directory>\jdk\jre\lib\security\cacerts

Limitations on Hosted Agent
Consider the following limitations when you run mappings on the Hosted Agent:

• The swagger specification file URL must be a public URL and must return the content of the file without
prompting for further authentication and redirection.

• The REST APIs that require custom server certificate signed by CA, which are not a part of Informatica
cacerts truststore, are not supported on the Hosted Agent.

• JWT bearer token authentication is not supported on the Hosted Agent.

Administration of REST V2 Connector 11

C h a p t e r 2

REST V2 connections
This chapter includes the following topics:

• REST V2 connection overview, 12

• REST V2 connection properties, 13

• Rules and guidelines for REST V2 connections, 20

REST V2 connection overview
Create a REST V2 connection to make calls to a web service application.

When you create a connection, specify the swagger specification file and the authentication method if
required. You can specify the following authentication methods:

• Standard

• OAuth 2.0 client credentials

• OAuth 2.0 authorization code

• JWT bearer token

REST V2 Connector supports swagger specification version 2.0. The swagger specification file contains
operation ID, path parameters, query parameters, header fields, request details, and response details.

You create a REST V2 connection on the Connections page.

If your REST endpoint does not have a swagger specification, you can generate the swagger specification file
from Administrator. Click Administrator > Swagger Files to generate a swagger specification file.

For information about parameters to create a swagger file, see Data Integration Connections.

12

REST V2 connection properties
When you set up a REST V2 connection, you must configure the connection properties.

The following table describes the REST V2 connection properties for a standard authentication type
connection:

Connection
property

Description

Authentication Type If required, select the authentication method that the connector must use to login to the web
service application. Default is none.

Auth User ID The user name to login to the web service application.
Required only for Basic and Digest authentication types.

Auth Password The password associated with the user name.
Required only for Basic and Digest authentication types.

OAuth Consumer
Key

The client key associated with the web service application.
Required only for OAuth authentication type.

OAuth Consumer
Secret

The client password to connect to the web service application.
Required only for OAuth authentication type.

OAuth Token The access token to connect to the web service application.
Required only for OAuth authentication type.

OAuth Token Secret The password associated with the OAuth token.
Required only for OAuth authentication type.

Swagger File Path The absolute path along with the file name or the hosted URL of the swagger specification file.
If you are providing the absolute path of the swagger specification file, the swagger
specification file must be located on the machine that hosts the Secure Agent.
Note: You can generate the swagger specification file from Administrator. Click Administrator
> Swagger Files to generate a swagger specification file.

TrustStore File Path The absolute path of the truststore file that contains the TLS certificate to establish a one-way
or two-way secure connection with the REST API. Specify a directory path that is available on
each Secure Agent machine in the runtime environment.
You can also configure the truststore file name and password as a JVM option or import the
certificate to the following directory:
<Secure Agent installation directory\jre\lib\security\cacerts.

TrustStore
Password

The password for the truststore file that contains the SSL certificate.
You can also configure the truststore password as a JVM option.

KeyStore File Name The absolute path of the keystore file that contains the keys and certificates required to
establish a two-way secure communication with the REST API. Specify a directory path that is
available on each Secure Agent machine in the runtime environment.
You can also configure the keystore file name and location as a JVM option or import the
certificate to any directory.

KeyStore Password The password for the keystore file required for secure communication.
You can also configure the keystore password as a JVM option.

REST V2 connection properties 13

Connection
property

Description

Proxy Type Type of proxy. You can select one of the following options:
- No Proxy: Bypasses the proxy server configured at the agent or the connection level.
- Platform Proxy: Proxy configured at the agent level is considered.
- Custom Proxy: Proxy configured at the connection level is considered.

Proxy Configuration The proxy configuration format: <host>:<port>
Note: Proxy server with authentication is not supported.

Advanced Fields Enter the arguments that the Secure Agent uses when connecting to a REST endpoint. You can
specify the following arguments, each separated by a semicolon (;):
ConnectionTimeout: the wait time in milliseconds to get a response from a REST endpoint.
The connection ends after the connection timeout is over. Default is the timeout defined in the
endpoint API.
Note: If you define both the REST V2 connection timeout and the endpoint API timeout, the
connection ends at the shortest defined timeout.
connectiondelaytime: the delay time in milliseconds to send a request to a REST endpoint.
Default is 10000.
retryattempts: number of times the connection is attempted. Default is 3.
qualifiedSchema: specifies if the schema selected is qualified or unqualified. Default is
false.
Example:
connectiondelaytime:10000;retryattempts:5

OAuth 2.0 client credentials authentication
The following table describes the REST V2 connection properties for an OAuth 2.0 - Client Credentials
authentication type connection:

Connection
property

Description

Access Token
URL

Access token URL configured in your application.

Client ID Client ID of your application.

Client Secret Client secret of your application.

Scope Specifies access control if the API endpoint has defined custom scopes. Enter space separated
scope attributes. For example:
root_readonly root_readwrite manage_app_users

Access Token
Parameters

Additional parameters to use with the access token URL. Parameters must be defined in the JSON
format. For example:
[{"Name":"resource","Value":"https://<serverName>"}]

Generate Access
Token

Generates access token based on the information provided in the above fields.

Access Token Enter the access token value or click Generate Access Token to populate the access token value.

14 Chapter 2: REST V2 connections

Connection
property

Description

Swagger File
Path

The absolute path along with the file name or the hosted URL of the swagger specification file.
If you are providing the absolute path of the swagger specification file, the swagger specification
file must be located on the machine that hosts the Secure Agent.
Note: You can generate the swagger specification file from Administrator. Click Administrator >
Swagger Files to generate a swagger specification file.

TrustStore File
Path

The absolute path of the truststore file that contains the TLS certificate to establish a one-way or
two-way secure connection with the REST API. Specify a directory path that is available on each
Secure Agent machine in the runtime environment.
You can also configure the truststore file name and password as a JVM option or import the
certificate to the following directory:
<Secure Agent installation directory\jre\lib\security\cacerts.

TrustStore
Password

The password for the truststore file that contains the SSL certificate.
You can also configure the truststore password as a JVM option.

KeyStore File
Name

The absolute path of the keystore file that contains the keys and certificates required to establish
a two-way secure communication with the REST API. Specify a directory path that is available on
each Secure Agent machine in the runtime environment.
You can also configure the keystore file name and location as a JVM option or import the
certificate to any directory.

KeyStore
Password

The password for the keystore file required for secure communication.
You can also configure the keystore password as a JVM option.

Proxy Type Type of proxy. You can select one of the following options:
- No Proxy: Bypasses the proxy server configured at the agent or the connection level.
- Platform Proxy: Proxy configured at the agent level is considered.
- Custom Proxy: Proxy configured at the connection level is considered.

Proxy
Configuration

The proxy configuration format: <host>:<port>
Note: Proxy server with authentication is not supported.

Advanced Fields Enter the arguments that the Secure Agent uses when connecting to a REST endpoint. You can
specify the following arguments, each separated by a semicolon (;):
ConnectionTimeout: the wait time in milliseconds to get a response from a REST endpoint. The
connection ends after the connection timeout is over. Default is the timeout defined in the
endpoint API.
Note: If you define both the REST V2 connection timeout and the endpoint API timeout, the
connection ends at the shortest defined timeout.
connectiondelaytime: the delay time in milliseconds to send a request to a REST endpoint.
Default is 10000.
retryattempts: number of times the connection is attempted. Default is 3.
qualifiedSchema: specifies if the schema selected is qualified or unqualified. Default is false.
Example:
connectiondelaytime:10000;retryattempts:5

OAuth 2.0 authorization code authentication
To use authorization code authentication, you must first register the following Informatica redirect URL in
your application:

REST V2 connection properties 15

https://<Informatica cloud hosting facility for your organization>/ma/proxy/oauthcallback

If the access token expires, Informatica redirect URL, which is outside the customer firewall, tries to connect
to the endpoint and retrieve a new access token.

The following table describes the REST V2 connection properties for an OAuth 2.0 - Authorization Code
authentication type connection:

Connection
property

Description

Authorization
Token URL

Authorization server URL configured in your application.

Access Token
URL

Access token URL configured in your application.

Client ID Client ID of your application.

Client Secret Client secret of your application.

Scope Specifies access control if the API endpoint has defined custom scopes. Enter space separated
scope attributes. For example:
root_readonly root_readwrite manage_app_users

Access Token
Parameters

Additional parameters to use with the access token URL. Parameters must be defined in the JSON
format. For example:
[{"Name":"resource","Value":"https://<serverName>"}]

Authorization
Code Parameters

Additional parameters to use with the authorization token URL. Parameters must be defined in the
JSON format. For example:
[{"Name":"max_age","Value":60},{"Name":"state","Value":"test"}]

Generate Access
Token

Generates access token and refresh token based on the information provided in the above fields.

Access Token Enter the access token value or click Generate Access Token to populate the access token value.

Refresh Token Enter the refresh token value or click Generate Access Token to populate the refresh token value.
If the access token is not valid or expires, the Secure Agent fetches a new access token with the
help of refresh token.
Note: If the refresh token expires, you must either provide a valid refresh token or regenerate a
new refresh token by clicking Generate Access Token.

Swagger File
Path

The absolute path along with the file name or the hosted URL of the swagger specification file.
If you are providing the absolute path of the swagger specification file, the swagger specification
file must be located on the machine that hosts the Secure Agent.
Note: You can generate the swagger specification file from Administrator. Click Administrator >
Swagger Files to generate a swagger specification file.

TrustStore File
Path

The absolute path of the truststore file that contains the TLS certificate to establish a one-way or
two-way secure connection with the REST API. Specify a directory path that is available on each
Secure Agent machine in the runtime environment.
You can also configure the truststore file name and password as a JVM option or import the
certificate to the following directory:
<Secure Agent installation directory\jre\lib\security\cacerts.

16 Chapter 2: REST V2 connections

Connection
property

Description

TrustStore
Password

The password for the truststore file that contains the SSL certificate.
You can also configure the truststore password as a JVM option.

KeyStore File
Name

The absolute path of the keystore file that contains the keys and certificates required to establish
a two-way secure communication with the REST API. Specify a directory path that is available on
each Secure Agent machine in the runtime environment.
You can also configure the keystore file name and location as a JVM option or import the
certificate to any directory.

KeyStore
Password

The password for the keystore file required for secure communication.
You can also configure the keystore password as a JVM option.

Proxy Type Type of proxy. You can select one of the following options:
- No Proxy: Bypasses the proxy server configured at the agent or the connection level.
- Platform Proxy: Proxy configured at the agent level is considered.
- Custom Proxy: Proxy configured at the connection level is considered.

Proxy
Configuration

The proxy configuration format: <host>:<port>
Note: Proxy server with authentication is not supported.

Advanced Fields Enter the arguments that the Secure Agent uses when connecting to a REST endpoint. You can
specify the following arguments, each separated by a semicolon (;):
ConnectionTimeout: the wait time in milliseconds to get a response from a REST endpoint. The
connection ends after the connection timeout is over. Default is the timeout defined in the
endpoint API.
Note: If you define both the REST V2 connection timeout and the endpoint API timeout, the
connection ends at the shortest defined timeout.
connectiondelaytime: the delay time in milliseconds to send a request to a REST endpoint.
Default is 10000.
retryattempts: number of times the connection is attempted. Default is 3.
qualifiedSchema: specifies if the schema selected is qualified or unqualified. Default is false.
Example:
connectiondelaytime:10000;retryattempts:5

REST V2 connection properties 17

JWT bearer token authentication
When you set up a REST V2 connection, you must configure the connection properties.

The following table describes the REST V2 connection properties when you use JWT bearer token
authentication:

Connection
property

Description

JWT Header JWT header in JSON format.
Sample:
{
"alg":"RS256",
"kid":"xxyyzz"
}
You can configure HS256 and RS256 algorithms.

JWT Payload JWT payload in JSON format.
Sample:
{
"iss":"abc",
"sub":"678",
"aud":"https://api.box.com/oauth2/token",
"box_sub_type":"enterprise",
"exp":"120",
"jti":"3ee9364e"
}
The expiry time represented as exp is the relative time in seconds. The expiry time is calculated in
the UTC format from the token issuer time (iat).
When iat is defined in the payload and the expiry time is reached, mappings and Generate Access
Token will fail. To generate a new access token, you must provide a valid iat in the payload.
If iat is not defined in the payload, the expiry time is calculated from the current timestamp.
To pass the expiry time as a string value, enclose the value with double quotes. For example:
"exp":"120",
To pass the expiry time as an integer value, do not enclose the value with double quotes. For
example:
"exp":120,

Authorization
Server

Access token URL configured in your application.

Authorization
Advanced
Properties

Additional parameters to use with the access token URL. Parameters must be defined in the JSON
format. For example:
[\{"Name":"client_id","Value":"abc"},\
{"Name":"client_secret","Value":"abc"}]

TrustStore File
Path

The absolute path of the truststore file that contains the TLS certificate to establish a one-way or
two-way secure connection with the REST API. Specify a directory path that is available on each
Secure Agent machine in the runtime environment.
You can also configure the truststore file name and password as a JVM option or import the
certificate to the following directory:
<Secure Agent installation directory\jre\lib\security\cacerts.

18 Chapter 2: REST V2 connections

Connection
property

Description

TrustStore
Password

The password for the truststore file that contains the SSL certificate.
You can also configure the truststore password as a JVM option.

KeyStore File
Path

Mandatory. The absolute path of the keystore file that contains the keys and certificates required
to establish a two-way secure communication with the REST API. Specify a directory path that is
available on each Secure Agent machine in the runtime environment.
The keystore file must be in the JKS format.
You can also configure the keystore file name and location as a JVM option or import the
certificate to any directory.

KeyStore
Password

Mandatory. The password for the keystore file required for secure communication.
You can also configure the keystore password as a JVM option.

Private Key
Alias

Mandatory. Alias name of the private key used to sign the JWT payload.

Private Key
Password

Mandatory. The password for the keystore file required for secure communication.
Note: The private key password must be same as the keystore password.

Access Token Enter the access token value or click Generate Access Token to populate the access token value.

Swagger File
Path

The absolute path along with the file name or the hosted URL of the swagger specification file.
If you are providing the absolute path of the swagger specification file, the swagger specification
file must be located on the machine that hosts the Secure Agent.
Note: You can generate the swagger specification file from Administrator. Click Administrator >
Swagger Files to generate a swagger specification file.

Proxy Type Type of proxy. You can select one of the following options:
- No Proxy: Bypasses the proxy server configured at the agent or the connection level.
- Platform Proxy: Proxy configured at the agent level is considered.
- Custom Proxy: Proxy configured at the connection level is considered.

Proxy
Configuration

The proxy configuration format: <host>:<port>
Note: Proxy server with authentication is not supported.

Advanced Fields Enter the arguments that the Secure Agent uses when connecting to a REST endpoint. You can
specify the following arguments, each separated by a semicolon (;):
ConnectionTimeout: the wait time in milliseconds to get a response from a REST endpoint. The
connection ends after the connection timeout is over. Default is the timeout defined in the
endpoint API.
Note: If you define both the REST V2 connection timeout and the endpoint API timeout, the
connection ends at the shortest defined timeout.
connectiondelaytime: the delay time in milliseconds to send a request to a REST endpoint.
Default is 10000.
retryattempts: number of times the connection is attempted. Default is 3.
qualifiedSchema: specifies if the schema selected is qualified or unqualified. Default is false.
Example:
connectiondelaytime:10000;retryattempts:5

Note: The HS256 algorithm support in JWT Header is available for preview. Preview functionality is supported
for evaluation purposes but is unwarranted and is not production-ready. Informatica recommends that you
use in non-production environments only. Informatica intends to include the preview functionality in an

REST V2 connection properties 19

upcoming release for production use, but might choose not to in accordance with changing market or
technical circumstances. For more information, contact Informatica Global Customer Support. To use the
functionality, your organization must have the appropriate licenses.

Rules and guidelines for REST V2 connections
The following verifications take place when you test a connection:

• Path of the local swagger file.

• User ID and Password fields for the Basic and Digest authentication.

• Format of the swagger file is JSON.

• Accessibility of the URL specified in the swagger file

The following table lists the results for various proxy settings use cases:

System Proxy REST V2 Connection Attribute Result

No Proxy Platform Proxy Custom Proxy

No Yes No No Proxy is not considered.

No No Yes No Proxy is not considered.

No No No Yes Custom proxy is considered.

Yes Yes No No Proxy is not considered.

Yes No Yes No Platform proxy is considered.

Yes No No Yes Custom proxy is considered.

20 Chapter 2: REST V2 connections

C h a p t e r 3

REST V2 operations
This chapter includes the following topics:

• REST V2 operations overview, 21

• REST V2 source operations, 21

• REST V2 midstream operations, 25

• REST V2 target operations, 25

• Configuring a request that contains array elements , 26

• Uploading a file to a REST endpoint URL, 28

• Parsing response headers, 29

• Parsing security definitions, 30

• Rules and guidelines for REST V2 operations, 31

REST V2 operations overview
Create a mapping in the Mapping Designer to read or write data to the web service application.

When you create a mapping, you must select a REST V2 connection and an operation. The Secure Agent
connects to the web service application to access, transform, or deliver data. If you want to write data to a
relational target, the Secure Agent converts the hierarchical data fetched from the web service application to
relational data. If you want to read data from a relational source and write data to a REST V2 target, the
Secure Agent converts the relational data fetched from the source to hierarchical data.

REST V2 Connector supports all the HTTP 300 series status codes that indicate URL redirection in Source,
Target, and Midstream transformations.

You can use REST V2 Connector to parse responses that are compressed using GZIP format only for GET
method. You can also use REST V2 Connector to perform paging in Source and Midstream transformations.

REST V2 source operations
Create a Source transformation in the Mapping Designer to read data from the web service application.

When you select a REST V2 connection for a Source transformation in a mapping to read data from a web
service application, specify Operations on the Source tab of the Source transformation. The Secure Agent
displays operation IDs specified in the swagger specification.

21

Select an operation ID, configure the request message from the sample template provided in the request
message editor, and configure the advanced properties for the operation. If you want to write to a relational
target, define a relational structure for the source data by mapping the incoming fields that is in hierarchical
format to the output fields in relational format. When you run the mapping, the Secure Agent retrieves data
for the specified operation from the web service application.

Configuring a request using Request Message Editor
When you create a Source transformation, configure an XML request message for the operation that you
want to perform in the web service application.

Use the Request Message Editor to create a request message. The request message is in XML format. You
can use the sample request message for the operation and then customize the request message to specify
the data that you want to enter into the data flow.

To customize your request, copy the request message from the sample template to the Request Message
Editor pane where you can edit the XML message and add the attributes for the request. Remove
unnecessary and empty tags from the request message to avoid operation failure.

Header fields, path parameters, and query parameters appear as fields in source, target, midstream
transformations

Parameterizing the input values in a request message
You can use in-out parameters to represent input values in a request XML.

Configure the in-out parameters in the Mapping Designer. From the Mapping Design page, you open the
parameters panel and configure an in-out parameter.

The following image shows a configured empID in-out parameter value:

22 Chapter 3: REST V2 operations

After you configure a parameter, use the parameter name in the following format, $$Name, in a request
message. The XML uses the values of fields from the parameterized object.

For example, you want to use parameterized empID in an XML Request for a CouchDB_INPUT operation.

The following sample request shows the parameterized values that you can specify in an XML request:

<!--1 or more repetitions:-->
<proc:CouchDB_INPUT xmlns:proc="http://xml.schemas/infa/procedure/">
 <!--Optional:-->
 <CouchDB>
 <!--1 or more repetitions:-->
 <emp>
 $$empID
 </emp>
 </CouchDB>
</proc:CouchDB_INPUT>

Configuring values for in-out parameters in a mapping
You can use an in-out parameter that holds a variable value that can change each time a task runs to manage
incremental data loading.

Add the in-out parameterized field in complex expressions in a mapping if you want to update the parameters
when each task runs. The in-out parameter acts like a placeholder for a value that stores a task stage. Data
Integration evaluates the parameter at runtime based on the specified configuration.

For example, you can use the following parameterized values in an Expression transformation:

SetVariable($$empID, CONCAT(SUBSTR($$empID,1,3),TO_INTEGER(SUBSTR($$empID,4,2))+1))

In the example, SetVariable function sets the parameter value each time the mapping task runs. You set a
default value for the $$empID parameter. You want to update the value of $$empID by one every time the
task runs.

The following image shows the logic used in expression transformation to assign value to in-out parameter in
the Mapping Designer:

When the task runs, the Secure Agent updates the in-out parameters based on the specified logic in the
expression.

Field mapping in a source transformation
The response message format follows the service response definition in the swagger specification file. You
can map response fields from a hierarchical to a relational structure of output groups and fields.

REST V2 source operations 23

After you configure an operation for a source and specify the request message, create the relational format
from the hierarchical data to include groups and fields that you want in the output.

To do this, select the elements in the response structure that you want to include as output fields. The Secure
Agent converts the XML response in the hierarchical structure to relational groups at run time.

Creating packed fields
If you do not want to parse hierarchical elements, you can pack the elements into one field. You can also
pack array elements when you write to the target.

A pack icon appears next to elements on the Field Mapping tab. When you select the pack icon that appears
next to the element, the agent packs the element and its child elements into a single XML string during
runtime. You cannot select fields that are child elements of packed fields in field mapping.

You can unpack fields by clicking on the pack icon.

To pack the fields, click on the pack icon that appears next to the rows element.

The following image shows the packed rows element:

The following sample shows the output of the Rows field in the target file after you run the task:

<infa_packed>
<rows>
<id>52835a523b9b6816ec81e9585b09c987</id>
<key>52835a523b9b6816ec81e9585b09c987</key>
<value>
<rev>1-c7fe1b7b899a9ce50319a47d675af735</rev>
</value>
</rows>
</infa_packed>

24 Chapter 3: REST V2 operations

REST V2 midstream operations
Create a REST V2 midstream transformation that interacts with the web service application to perform
operations on hierarchical data.

When you use REST V2 Connector midstream, you create a business service, associate a REST V2
connection, and the required REST read or write operation for the business service. You can then use the
business service to add operations to the Web Services transformation in the Mapping Designer.

Note: When you configure a business service, the values that appear in the Operations list are based on the
operation IDs listed in the swagger specification file. If the operations IDs listed in the swagger specification
file do not appear in the Operations list, contact Informatica Global Support.

A Web Services transformation connects to the web service application as a web service client to access,
transform, or deliver data. Use the Web Services transformation in the Mapping Designer to construct a web
service request and to parse the web service response.

The following image shows a REST V2 midstream transformation in a mapping:

On the Response Mapping tab of the Web Service transformation, the request generates a response structure
for the specified REST operation from which you can select the elements that you require in the output. The
output groups and keys generate automatically.

The response structure displays the fault output group by default. The fault group contains the request XML,
error code, and error message. The fault group is displayed for the new business services. To map the fault
group for the business services created in the previous version of connector, create new business services
and import them again.

REST V2 target operations
Create a Target transformation in the Mapping Designer to write data to a web service application. When you
select a REST V2 connection for a Target transformation in a mapping, the Secure Agent displays operation
IDs specified in the swagger specification you configure in the connection. You must select an operation

REST V2 midstream operations 25

based on the object configured in the connection. When you want to write data that is in relational format to
the web service application, the Secure Agent converts the relational data to a hierarchical format before
writing to web service application.

When you configure a REST V2 target, you can select Operations on the Target tab to display the list of valid
operations. The Secure Agent creates target fields based on the request message structure of the operation
you select on the Target tab.

When you write data to a web service application, the Secure Agent includes all the mapped incoming fields
from the source. You can add multiple input sources to write data to a web service application target object
and define the primary and foreign key relationships between the input sources before you run the mapping.
Each input source appears as separate group in the Field Mapping tab in the target transformation. You can
define key relationships in the Field Mapping tab.

Field Mapping in a target transformation
You can map fields that are in a relational structure to the hierarchical structure used by the web service
application.

On the Field Mapping tab for the Target transformation, the fields in the Target Fields appear in hierarchical
format. The target fields are determined by the request message structure of the operation you select for the
Target transformation.

Each source object displays as a group in the Input Fields area. You can select fields in the Input Fields area
to map the fields to the request. If the input fields include multiple input groups, map the groups to the
corresponding nodes in the request. Be sure to map all of the fields that you require in the request.

The following image shows an example of mapped input fields from the source file with the REST V2 target
to update employee details:

Configuring a request that contains array elements
You can construct a request for a REST V2 target and REST V2 midstream transformation that contains array
elements using one of the following methods:

Creating a request using multiple source groups
If the request message contains an element, for example, phone number of type work of an employee, that
occurs multiple times, the input fields for this element must come from different source groups.

26 Chapter 3: REST V2 operations

To create a request for relational sources, link the source group in the input fields to its parent source group
by using the foreign key.

To decide the parent source group for multi-occurring elements, you must perform the following steps:

• The parent group must be the immediate multi-occurring parent element.

• In the absence of a multi-occurring parent element, map the multi-occurring element to the source group
that is mapped to the root element.

For example, the following image shows the mapping of the multi-occurring element work from the relational
data source to the REST V2 target:

Creating a request using a single source group
To create a request using a denormalized source for a midstream transformation or REST V2 target, perform
the following steps:

1. Include all the fields in a single source file. Ensure that the multi-occuring elements are the last fields in
the denormalized source file.

2. Click Administrator > Runtime Environments and select an agent.

3. Add a new property under Custom Configuration Details.

4. Select Service as Data Integration Server and Type as Tomcat.

5. Specify the name of the property as ALLOW_DUPLICATE_VALUES.

6. Set the value to true.

7. Click Done to save the changes.

8. Map the corresponding source to target fields.

Configuring a request that contains array elements 27

For example, the following image shows the mapping of the field work to an array element of REST V2 target:

Uploading a file to a REST endpoint URL
You can upload a file to a REST endpoint URL as a part of the REST API call.

To pass a file as an input to REST V2 connector, you must set the content-type to either multipart/form-
data or binary in the request. When the swagger definition has Input parameter of type formData, the file
boundary is added to the content of the uploaded file to indicate the start and end of the file. When the
swagger definition has Input parameter of type binary, the content is generated without having the file
boundary.

You must have the formData parameter of type file defined as one of input parameters in swagger. For
example,

{ "name":"file",

"in":"formData",

"description":"file to upload",

"required":false,

"type":"file" }

The following image shows the sample REST V2 object hierarchy:

28 Chapter 3: REST V2 operations

Use one of the following methods to pass a file as an input:

• For the xxx_FilePath input field, specify the complete file path as value in the source. Used for any file
formats.

• For the xxx_FileData input field, pass the Base64 encoded value of the file in the source. Used for file
formats, such as .pdf, .jpg, .xls, and .doc. The length of the Base64 encoded value must not exceed
65535 characters.

• For the xxx_FileData input field, pass the file value as string in the source. Used for plain text file
formats, such as .txt, .JSON, and .xml. The file size must not exceed 65535 characters.

Parsing response headers
You can parse the header content in a response sent by a REST API endpoint.

Use the headers tag in the swagger file to parse the header content. By using the Set-Cookie tag, you can
also parse the cookie content as part of the header tag. REST V2 Connector parses fields defined in the
swagger file. Any extra fields coming from the web service for header or cookies appear under
OtherResponseHeaders or OtherCookies fields respectively.

Defining Response Headers

"responses" : {

....

"headers": {

"places": {

"type": "string",

"description": "calls per hour allowed by the user"

},

"sessionId": {

"type": "integer",

"description": "date in UTC when token expires"

Parsing response headers 29

},

"Set-Cookie/activeSession": {

"type": "string",

"description": "cookies sample"

},

"Set-Cookie/PhoneId": {

"type": "integer",

"description": "cookies sample"

}

}

Note: The Set-Cookie tag is case-sensitive.

Parsing security definitions
You can define security definitions when you perform an operation on a REST API endpoint.

Define the securityDefinitions input parameter in the swagger file and call the security definitions in an
operation. The securityDefinitions parameter supports only the basic and apiKey security definitions
types.

Defining securityDefinitions

...

"security": [{"type": [],"id": [],"basic_key": []}]

}

}

},

"securityDefinitions": {

"type": {

"type": "apiKey",

"name": "type",

"in": "query",

"default":"json"

},

"id": {

"type": "apiKey",

"name": "id",

"in": "query"

},

30 Chapter 3: REST V2 operations

"basic_key": {

"type": "basic",

"name": "basicAuth",

"in": "header"

}

}

If you want to connect to a web service that uses OAUTH version 2.0, provide the values of authentication
details as custom header fields or query parameters in a request message.

Rules and guidelines for REST V2 operations
Consider the following rules and guidelines for REST V2 Operations:

• Elements related to header fields, path parameters, and query parameters appears as input fields in
Source, Target, and Midstream transformation.

• REST V2 Connector does not support a proxy server on which authentication is enabled.

• REST V2 Connector supports only Integer and Decimal data types.

• REST V2 Connector supports packed field in Source transformation only.

• REST V2 Connector overrides the Content-Type and Accept headers.

• REST V2 Connector does not support extended ASCII characters and I18N characters in a field name for
JSON payload.

• REST V2 Connector does not support special characters in the field name for query parameters and
operation names.

• REST V2 Connector does not support special characters in the array type fields.

• You must not create in-out parameters for advanced properties, such as Page Parameter, Start Page, End
Page, and Override URL.

• If an endpoint API path contains spaces, you must define the path as path parameter.

• If the swagger URL you specify is not accessible or the proxy server is not accessible, mappings fail and
one of the following errors is logged in the session log. The behavior is same for the source, midstream,
and target mappings.

- [ERROR] com.informatica.sdk.helper.common.ApiException: java.net.UnknownHostException:
inv28pers108Communication exception, Proxy settings might be incorrect.

- [ERROR] com.informatica.sdk.helper.common.ApiException: java.net.ConnectException:
Connection refused: connectCommunication exception, Proxy settings might be incorrect.

• You can define a page parameter on the request input field if the payload is of type JSON. The page
parameter gets resolved only when the JSON request payload is an unnamed object. For example:
"body" : {
"a" : "ty",
"b" : 0
}

Rules and guidelines for REST V2 operations 31

The page parameter does not get resolved in the following scenarios:

•When the JSON request payload is a named object.

•The parameter defined is a nested input element.

•The parameter defined is an array element.

•When the payload is of type XML.

• You can define default values for request input parameters except for the body and securityDefinitions
parameters. For example:
"parameters": {
"keyReference": {
"name": "keyReference",
"in": "header",
"required": false,
"type": "integer",
"default": 123
}
}
Note: Default values are applicable to integer, string, boolean, and array of primitive types fields.

• When you use the REST V2 Connector as source, the default values defined in the swagger file are not
honored if you pass empty values for input parameters in the request message editor. If you do not
provide values in request message fields and want the fields to pick up default values defined in the
swagger definition, you must remove the fields from the request message editor.

• If the default value for an input parameter is defined as blank, the blank value is treated as NULL unless
you set the value explicitly in a mapping.

• You cannot define XML attributes using inline elements in the swagger file. Define XML attributes as
separate elements in the swagger file and refer the XML attributes to extract data.

32 Chapter 3: REST V2 operations

C h a p t e r 4

Mappings and mapping tasks
with REST V2 Connector

This chapter includes the following topics:

• Mappings and mapping tasks overview, 33

• REST source transformation in mappings, 33

• REST midstream transformation in mappings, 38

• REST V2 targets in mappings, 43

Mappings and mapping tasks overview
When you create a new mapping in this release, the request message editor shows the sample request in the
JSON format for the JSON data. Previously, the sample request for the JSON data was shown in the xml
format. This changed behavior occurs because in this release, REST V2 Connector uses the JSON parser
shipped with Data Integration. If you do not change the mappings created in previous release, the mappings
continue to use the old parsing technique and run successfully.

If you update the business service, source, or target either by changing the connection or the operation in the
mappings created in the previous release, the Informatica JSON parser is enabled. The updated mapping
might throw a null pointer exception during metadata fetch when the schema related to the operation does
not have a write permission.

REST source transformation in mappings
When you configure a Source transformation, select the REST V2 connection and choose an operation to
represent a web service source.

You can select an operation for the source through the connection. Configure the request message using the
request message template. You can parameterize the input values in the request XML. Configure the paging
attributes.

You can view the response structure in the field mapping. When you map the elements from the response
structure to the output fields, the Secure Agent creates the output groups, along with the primary and foreign
keys for the field names. When you deploy the mapping in a mapping task and run the task, the Secure Agent
reads the data from web service.

33

Advanced source properties
In a mapping, you can configure a source to represent a web service application source. For the REST source
connections used in a mapping, you can configure advanced properties in the Source tab in the Mapping
Designer.

The following table describes the advanced properties that you can configure in a source:

Property Description

Paging Type Specify one of the following values:
Page. Enables paging support for REST V2 Connector and considers the values of Page Parameter,
Start Page, End Page, and End of Response Expression properties.
None. Ignores the values of Page Parameter, Start Page, End Page, and End of Response Expression
properties.

Page
Parameter

The name of the parameter that you want to use for the paging operation. You can use a query
parameter or a path parameter.
The parameter must be of the integer type and from the request message.

Start Page The page number that indicates the first page in the range, on which you want to perform the
paging operation.

End Page The page number that indicates the last page in the range, on which you want to perform the paging
operation. The default is 10000.
Paging stops when the End Page is reached or the End of Response Expression is met.

Page Increment
Factor

An integer to increment the Page Parameter. Page Increment Factor must be same as the number
of records being fetched per request.
Note: If the Page Increment Parameter option is not same as the number of records being fetched
per request, you might have missing or duplicate records between two calls.

End of
Response
Expression

Specify an expression or a string to control paging. You can observe one of the following behaviors:
- If you specify a string or an expression, the paging stops when the value matches with the page

response. It does not parse the page that has matching end of response.
- If you do not specify a string or an expression, the paging stops on reaching a page that has an

empty or a Null response. If an empty or a Null response is never reached, the paging stops at the
default end page.

- If you specify both, End Page and End of Response Expression, the paging stops on whichever
condition is met first.

- If you do not specify End Page and End of Response Expression, the paging stops on reaching an
empty or a Null response. If an empty or a Null response is never reached, the paging stops at the
default end page.

Override URL Overrides the URL specified in the swagger specification. The override URL cannot have query
parameters. When a path parameter is included in the Override URL, enclose the path parameter
with curly brackets {}. For example:
URL specified in the swagger specification: http://invr28pers102:13080/sample/day/
20170505?a:b
If you define 20170505 as a path variable with the path variable name as path1, the Override URL
will be as follows: http://invr28pers102:13080/sample/day/{path1}

34 Chapter 4: Mappings and mapping tasks with REST V2 Connector

Property Description

Tracing Level Amount of detail that appears in the log for the source.
Use the following tracing levels:
- Terse
- Normal
- Verbose Initialization
- Verbose
Default is normal.

Cache Size for
Web Service
Response (KB)

Memory available for the web service response. If the web service response contains many rows or
columns, you might want to increase the cache size. Default is 1024 KB.

Sample End of Response Expression

Use End of Response Expression for paging. The following snippet shows a sample response for a page :

{

"code": "SUCCESS",

"validationResult": [],

"systemErrors": [],

"patientResponseData": [],

"count": 0,

"message": "Unable to retrieve the implant details"

}

For End of Response Expression, you can use the string, Unable to retrieve the implant details. If you want to
match multiple conditions in the response page, you can use the following expression:

(.*)"patientResponseData": [](.*)Unable to retrieve the implant details

The above expression ensures that the paging will stop when both "patientResponseData": [] and Unable to
retrieve the implant details are matched in the page response.

REST source transformation in mappings 35

REST source mapping example
You are a human resources administrator and you want to extract contact information, such as first name,
last name, email, and phone number of employees from Apache CouchDB to a flat file.

1. Create a REST connection. Verify that you specify the absolute path or the hosted URL of the swagger
specification file, and the authentication method in the connection properties.

The following image shows the configured REST connection:

2. Create a flat file connection to write data to the flat file.

3. Create a REST mapping.

The following image shows the REST mapping:

4. Add a Source transformation. Specify a name and description in the general properties.

5. On the Source tab, perform the following steps:

a. In the Connection field, select the configured REST connection to connect to the Couch database.

36 Chapter 4: Mappings and mapping tasks with REST V2 Connector

b. In the Operation field, select CouchDB as the operation.

The following image shows the CouchDB operations:

c. In the Request Options section, configure the request message in the following XML format, specify
the attributes in the message, and validate the message:

<!--1 or more repetitions:-->
<proc:CouchDB_INPUT xmlns:proc="http://xml.schemas/infa/procedure/">
 <!--Optional:-->
 <CouchDB>
 <!--1 or more repetitions:-->
 <emp>
 $$empID
 </emp>
 </CouchDB>
</proc:CouchDB_INPUT>

The request message fetches the details of an employee based on the specified employee ID.

d. In the Advanced Properties section, set the tracing level to Normal, and use the default cache size
of 1024 KB.

6. On the Field Mapping tab, select the elements, such as _id, FirstName, and LastName in the response
structure that you want to map to the output fields.

The following image shows the response structure on the left pane in a hierarchical format and the
output groups on the right pane in a relational format:

The Secure Agent creates two output groups, workPhoneNumber and couchDB_out, which results in two
relational output files. Primary and foreign keys are auto-generated.

REST source transformation in mappings 37

7. Add three Target transformations and specify the target objects for each of the transformations.
Perform the following steps:

a. Select a flat file connection for each of the target transformations to write data to the flat files.

b. Create target objects workPhoneNumber.csv, couchDB_out.csv, and NewTarget.csv files to write
data to the target.

c. Select the output group from CouchDB that you want to link to the target objects.

8. Add an Expression transformation, and include a SetVariable function and the parameterized value $
$empID in the expression so that the task updates the value of empID by one at the end of each run.

The following image shows the configured expression that utilizes the in-out parameters:

9. Click New > Tasks > Mapping Task, and select the mapping for the task.

10. When you save and run the mapping task, the Secure Agent retrieves employee records from CouchDB
and writes the data to the corresponding flat files.

REST midstream transformation in mappings
Before you configure a midstream transformation, you must create a business service from the New >
Components tab. You must select a REST V2 connection and an operation when you create a business
service.

When you configure the midstream transformation, select the business service and the operation on the Web
Service tab.

You can map the input fields from source file to elements in request structure on the Request Mapping tab.

You can view the response structure in the field mapping. When you map the elements from the response
structure to the output fields, the Secure Agent creates the output groups, along with the primary and foreign
keys for the field names.

38 Chapter 4: Mappings and mapping tasks with REST V2 Connector

Advanced midstream properties
The following table describes the advanced properties that you can configure for a midstream
transformation:

Property Description

Paging Type Specify one of the following values:
Page. Enables paging support for REST V2 Connector and considers the values of Page
Parameter, Start Page, End Page, and End of Response Expression properties.
None. Ignores the values of Page Parameter, Start Page, End Page, and End of Response
Expression properties.

Page Parameter The name of the parameter that you want to use for the paging operation. You can use a query
parameter or a path parameter.
The parameter must be of the integer type and from the request message.

Start Page The page number that indicates the first page in the range, on which you want to perform the
paging operation.

End Page The page number that indicates the last page in the range, on which you want to perform the
paging operation. The default is 10000.
Paging stops when the End Page is reached or the End of Response Expression is met.

Page Increment
Factor

An integer to increment the Page Parameter. Page Increment Factor must be same as the
number of records being fetched per request.
Note: If the Page Increment Parameter option is not same as the number of records being
fetched per request, you might have missing or duplicate records between two calls.

End of Response
Expression

Specify an expression or a string to control paging. You can observe one of the following
behaviors:
- If you specify a string or an expression, the paging stops when the value matches with the

page response. It does not parse the page that has matching end of response.
- If you do not specify a string or an expression, the paging stops on reaching a page that has

an empty or a Null response. If an empty or a Null response is never reached, the paging stops
at the default end page.

- If you specify both, End Page and End of Response Expression, the paging stops on whichever
condition is met first.

- If you do not specify End Page and End of Response Expression, the paging stops on reaching
an empty or a Null response. If an empty or a Null response is never reached, the paging stops
at the default end page.

Override URL Overrides the URL specified in the swagger specification. The override URL cannot have query
parameters. When a path parameter is included in the Override URL, enclose the path parameter
with curly brackets {}. For example:
URL specified in the swagger specification: http://invr28pers102:13080/sample/day/
20170505?a:b
If you define 20170505 as a path variable with the path variable name as path1, the Override
URL will be as follows: http://invr28pers102:13080/sample/day/{path1}

Cache Size for
Web Service
Request (KB)

Default is 100 KB. If the request is more than 100 KB, you can increase the cache size.

Cache Size for
Web Service
Response (KB)

Memory available for the web service response. If the web service response contains many rows
or columns, you might want to increase the cache size. Default is 100 KB.

REST midstream transformation in mappings 39

Property Description

Allow Input Flush Not Applicable.

Transaction
Commit Control

Not Applicable.

Midstream transformation mapping example
You are a human resources administrator and you want to retrieve details of an employee from Apache
CouchDB.

To retrieve employee details from CouchDB and to write the employee details to a flat file, perform the
following tasks:

1. Create a REST V2 connection to read data from CouchDB.

The following image shows the configured CouchDB connection:

2. Create a business service to associate the REST V2 connection and an operation.

40 Chapter 4: Mappings and mapping tasks with REST V2 Connector

The following image shows the configured business service:

3. Create a REST V2 mapping.

4. Add a Web Services transformation. Specify a name and description in the general properties.

5. On the Web Service tab, select the business service and the operation that you configured. Also, specify
paging parameters.

The following image shows the configured web service:

REST midstream transformation in mappings 41

6. On the Request Mapping tab, map the incoming fields from the source to the respective fields in
CouchDB.

7. On the Response Mapping tab, select the employee details fields that you want to write to the target file
on the Response Structure.

8. On the Advanced tab, specify the cache size details.

The fields that you selected from the Response Structure of the Web Service transformation appear as
incoming fields for the target object.

9. If required, map the incoming fields to the flat file fields.

10. Click New > Tasks > Mapping Task, and select the mapping for the task.

11. When you save and run the mapping task, the Secure Agent retrieves the employee record for the
employee that you map on the Request Mapping tab from CouchDB and writes the data to the
corresponding flat files.

42 Chapter 4: Mappings and mapping tasks with REST V2 Connector

REST V2 targets in mappings
When you select a REST V2 connection for a Target transformation, you can select an operation. The
operation is based on the swagger specification file that you specify during the REST V2 connection
configuration.

You can add multiple input groups into the REST target and define the primary and foreign key relationships
between the multiple input groups before the mapping.

Advanced target properties
In a mapping, you can configure a target to represent a REST target. For REST target connections used in a
mapping, you can configure advanced properties in the Targets page of the Mapping Task wizard.

The following table describes the advanced properties that you can configure in a Target transformation:

Property Description

Paging Type Specify one of the following values:
Page. Enables paging support for REST V2 Connector and considers the values of Page
Parameter, Start Page, End Page, and End of Response Expression properties.
None. Ignores the values of Page Parameter, Start Page, End Page, and End of Response
Expression properties.

Page Parameter The name of the parameter that you want to use for the paging operation. You can use a query
parameter or a path parameter.
The parameter must be of the integer type and from the request message.

Start Page The page number that indicates the first page in the range, on which you want to perform the
paging operation.

End Page The page number that indicates the last page in the range, on which you want to perform the
paging operation. The default is 10000.
Paging stops when the End Page is reached or the End of Response Expression is met.

Page Increment
Factor

An integer to increment the Page Parameter. Page Increment Factor must be same as the
number of records being fetched per request.
Note: If the Page Increment Parameter option is not same as the number of records being
fetched per request, you might have missing or duplicate records between two calls.

End of Response
Expression

Specify an expression or a string to control paging. You can observe one of the following
behaviors:
- If you specify a string or an expression, the paging stops when the value matches with the

page response. It does not parse the page that has matching end of response.
- If you do not specify a string or an expression, the paging stops on reaching a page that has

an empty or a Null response. If an empty or a Null response is never reached, the paging
stops at the default end page.

- If you specify both, End Page and End of Response Expression, the paging stops on
whichever condition is met first.

- If you do not specify End Page and End of Response Expression, the paging stops on
reaching an empty or a Null response. If an empty or a Null response is never reached, the
paging stops at the default end page.

REST V2 targets in mappings 43

Property Description

Override URL Overrides the URL specified in the swagger specification. The override URL cannot have query
parameters. When a path parameter is included in the Override URL, enclose the path parameter
with curly brackets {}. For example:
URL specified in the swagger specification: http://invr28pers102:13080/
sample/day/20170505?a:b
If you define 20170505 as a path variable with the path variable name as path1, the Override
URL will be as follows: http://invr28pers102:13080/sample/day/{path1}

Cache Size for Web
Service Request
(KB)

Memory available for the web service request. If the web service request contains many rows or
columns, you might want to increase the cache size. Default is 1024 KB.

Transaction
Commit Control

Control to commit or roll back transactions based on the set of columns that pass through the
transformation. Use the transaction commit control if you have a large amount of data and you
want to control how it is processed.
Note: Does not apply when you select Transformation Scope as Transaction for real-time
processing.

Transformation
Scope

The method in which the Secure Agent applies the transformation logic to incoming data.
Default is All Input.
To process data from a real-time source, select the transformation scope as Transaction.
If the source is not real-time, select the transformation scope as All Input.
Note: You can connect only one effective real-time source to a real-time target.

Input settings properties
You can enable Sorted Input under Input Settings. Sorted Input indicates that input data is presorted. Default
is disabled.

Enable sorted input for better performance.

Note: When Sorted Input is enabled and the input is not sorted, the Secure Agent does not process input and
the mapping fails.

REST target mapping example
You are a human resources administrator and you want to update details of an employee in Apache
CouchDB.

To update employee details in CouchDB from a flat file, perform the following tasks:

1. Create a flat file connection to read data from the flat file.

2. Create a REST connection to write data to CouchDB.

44 Chapter 4: Mappings and mapping tasks with REST V2 Connector

The following image shows the configured CouchDB connection:

3. Create a CouchDB mapping.

4. Add a Source transformation to include the flat file object that contains the employee details. Add the
flat file connection.

5. Add a Target transformation to write the employee details to CouchDB. Perform the following tasks on
the Target tab:

a. In the Connection field, select the REST connection to connect to CouchDB.

b. In the Operation field, select CouchDBPost as the operation.

REST V2 targets in mappings 45

The following image shows the CouchDBPost in the list of write operations:

c. In the Advanced Properties section, set the cache size and the transaction commit interval.

6. On the Field Mapping tab, select the input elements to map to the target fields.

The following image shows all the mapped fields between the input file and the CouchDB target:

7. When you save and run the mapping in a mapping task, the Secure Agent updates the employee details
in CouchDB.

46 Chapter 4: Mappings and mapping tasks with REST V2 Connector

A p p e n d i x A

Supported swagger objects
This appendix includes the following topic:

• Supported swagger objects overview, 47

Supported swagger objects overview
The following table lists swagger objects with field names supported by REST V2 Connector:

Object Category Supported Objects or Fields

Swagger swagger

info

host

basepath

schemes

consumes

produces

paths

definitions

parameters

responses

Paths /{path}

Path Item $ref

get

put

47

Object Category Supported Objects or Fields

post

delete

parameters

Operation Summary
Note: If operation ID value is not defined, the value of summary field is treated as operation ID.

operationId

consumes

produces

parameters

responses

schemes

Parameter Type path

query

header

formData

cookie

body

Parameter Fields name

In
If in is body, the supported field is schema.
If in is any value other than body, the supported fields are type, format, and items.

required

default
Note: Not applicable to the body and securityDefinitions parameters.

Items type

format

items

Response schema

Schema $ref

48 Appendix A: Supported swagger objects

Object Category Supported Objects or Fields

format

type

items

properties

xml

Definitions {name}

securityDefinitions {name}
Note: Basic and apiKey are the supported security definitions types.

xml name
Note: Name works only when used with the wrapped object.

attribute

prefix

namespace

wrapped

Rest V2 Connector does not process unsupported objects and fields, if included, in the swagger definition.

Supported swagger objects overview 49

I n d e x

A
authentication

OAuth 2.0 authorization code 15
OAuth 2.0 client credentials 14

C
Cloud Application Integration community

URL 5
Cloud Developer community

URL 5
configuring

TLS authentication 10
Configuring a Request 22
connections

REST V2 13, 18

D
Data Integration community

URL 5

F
field mapping

packed fields 24
Field Mapping 23
foreign key 43

H
header fields 12

I
Informatica Global Customer Support

contact information 6
Informatica Intelligent Cloud Services

web site 5
Input Settings Properties 44

M
maintenance outages 6
Midstream Operations 25
Midstream Transformation Mapping 40

O
operation ID 12
Operations 21

P
packed fields

field mapping 24
Parameterizing 22
path parameters 12

Q
query parameters 12

R
request details 12
Request Message 22
Request Message Editor 22
response details 12
REST V2

authentication
standard 13, 18

connection properties 13, 18
supported swagger objects 47

REST V2 Connector
administration 10

REST V2 Connector Overview 7

S
Source Transformation 23
Source Transformation in Mappings 33
status

Informatica Intelligent Cloud Services 6
swagger specification 12
system status 6

T
Target Mapping 44
Target Properties 43
Target transformation, 43
trust site

description 6

50

U
upgrade notifications 6
Upload

file 28

W
web site 5

Index 51

	Table of Contents
	Preface
	Informatica Resources
	Informatica Documentation
	Informatica Intelligent Cloud Services web site
	Informatica Intelligent Cloud Services Communities
	Informatica Intelligent Cloud Services Marketplace
	Data Integration connector documentation
	Informatica Knowledge Base
	Informatica Intelligent Cloud Services Trust Center
	Informatica Global Customer Support

	Chapter 1: Introduction to REST V2 Connector
	REST V2 Connector overview
	REST V2 Connector task and object types
	XML objects
	Administration of REST V2 Connector
	Secure communication
	Limitations on Hosted Agent

	Chapter 2: REST V2 connections
	REST V2 connection overview
	REST V2 connection properties
	OAuth 2.0 client credentials authentication
	OAuth 2.0 authorization code authentication
	JWT bearer token authentication

	Rules and guidelines for REST V2 connections

	Chapter 3: REST V2 operations
	REST V2 operations overview
	REST V2 source operations
	Configuring a request using Request Message Editor
	Parameterizing the input values in a request message
	Field mapping in a source transformation
	Creating packed fields

	REST V2 midstream operations
	REST V2 target operations
	Field Mapping in a target transformation

	Configuring a request that contains array elements
	Creating a request using multiple source groups
	Creating a request using a single source group

	Uploading a file to a REST endpoint URL
	Parsing response headers
	Parsing security definitions
	Rules and guidelines for REST V2 operations

	Chapter 4: Mappings and mapping tasks with REST V2 Connector
	Mappings and mapping tasks overview
	REST source transformation in mappings
	Advanced source properties
	REST source mapping example

	REST midstream transformation in mappings
	Advanced midstream properties
	Midstream transformation mapping example

	REST V2 targets in mappings
	Advanced target properties
	Input settings properties
	REST target mapping example

	Appendix A: Supported swagger objects
	Supported swagger objects overview

	Index

