
Informatica® Cloud Data Integration

REST V2 Connector

Informatica Cloud Data Integration REST V2 Connector
April 2024

© Copyright Informatica LLC 2016, 2024

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica, the Informatica logo, Informatica Cloud, and PowerCenter are trademarks or registered trademarks of Informatica LLC in the United States and many
jurisdictions throughout the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company
and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2024-10-04

https://www.informatica.com/legal/patents.html

Table of Contents

Preface. 5

Informatica Resources. 5

Informatica Documentation. 5

Informatica Intelligent Cloud Services web site. 5

Informatica Intelligent Cloud Services Communities. 5

Informatica Intelligent Cloud Services Marketplace. 5

Data Integration connector documentation. 5

Informatica Knowledge Base. 6

Informatica Intelligent Cloud Services Trust Center. 6

Informatica Global Customer Support. 6

Chapter 1: Introduction to REST V2 Connector. 7
REST V2 Connector assets. 7

Basic structure of the Swagger and OpenAPI specification file. 8

Media types and operations. 11

Array of objects. 12

XML objects in swagger specification. 15

Chapter 2: Connections for REST V2. 18
Prerequisites. 18

Connect to REST V2. 18

Before you begin. 18

Connection details. 19

Authentication types. 19

Advanced settings. 28

Related links. 29

Secure communication with TLS authentication. 29

Generate a truststore. 30

Generate a keystore. 30

Configuring one-way or two-way secure communication. 31

Secure communication in a serverless runtime environment. 32

Swagger specification file in a serverless runtime environment. 32

Rules and guidelines for runtime environment. 33

Rules and guidelines for a REST V2 connection. 34

Chapter 3: REST V2 operations. 35
REST V2 source operations. 35

Configuring a request using Request Message Editor. 35

Parameterizing the input values in a request message. 36

Field mapping in a source transformation. 37

Table of Contents 3

Creating packed fields. 38

REST V2 midstream operations. 38

REST V2 target operations. 39

Field Mapping in a target transformation. 40

Configuring a request that contains array elements . 40

Creating a request using multiple source groups. 40

Creating a request using a single source group. 41

Uploading a file to a REST endpoint URL. 42

Parsing response headers. 44

Parsing security definitions. 44

Rules and guidelines for REST V2 operations. 45

Chapter 4: Mappings and mapping tasks with REST V2 Connector. 48
REST source transformation in mappings. 48

Advanced source properties. 48

REST source mapping example. 51

REST midstream transformation in mappings. 53

Advanced midstream properties. 54

Midstream transformation mapping example. 55

REST V2 targets in mappings. 58

Advanced target properties. 58

Input settings properties. 59

REST target mapping example. 59

Chapter 5: Swagger File Generation. 62
Generating a Swagger File. 62

Appendix A: Swagger objects. 65

Appendix B: OpenAPI objects. 67

Index. 69

4 Table of Contents

Preface
Use REST V2 Connector to learn how to read from or write to a web service that supports REST API by using
Data Integration. Learn to create a REST V2 connection, develop and run mappings and mapping tasks in
Data Integration.

Informatica Resources
Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Documentation
Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Intelligent Cloud Services web site
You can access the Informatica Intelligent Cloud Services web site at http://www.informatica.com/cloud.
This site contains information about Informatica Cloud integration services.

Informatica Intelligent Cloud Services Communities
Use the Informatica Intelligent Cloud Services Community to discuss and resolve technical issues. You can
also find technical tips, documentation updates, and answers to frequently asked questions.

Access the Informatica Intelligent Cloud Services Community at:

https://network.informatica.com/community/informatica-network/products/cloud-integration

Developers can learn more and share tips at the Cloud Developer community:

https://network.informatica.com/community/informatica-network/products/cloud-integration/cloud-
developers

Informatica Intelligent Cloud Services Marketplace
Visit the Informatica Marketplace to try and buy Data Integration Connectors, templates, and mapplets:

https://marketplace.informatica.com/

Data Integration connector documentation
You can access documentation for Data Integration Connectors at the Documentation Portal. To explore the
Documentation Portal, visit https://docs.informatica.com.

5

https://docs.informatica.com
mailto:infa_documentation@informatica.com
http://www.informatica.com/cloud
https://network.informatica.com/community/informatica-network/products/cloud-integration
https://network.informatica.com/community/informatica-network/products/cloud-integration/cloud-developers
https://network.informatica.com/community/informatica-network/products/cloud-integration/cloud-developers
https://marketplace.informatica.com/
https://docs.informatica.com

Informatica Knowledge Base
Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Intelligent Cloud Services Trust Center
The Informatica Intelligent Cloud Services Trust Center provides information about Informatica security
policies and real-time system availability.

You can access the trust center at https://www.informatica.com/trust-center.html.

Subscribe to the Informatica Intelligent Cloud Services Trust Center to receive upgrade, maintenance, and
incident notifications. The Informatica Intelligent Cloud Services Status page displays the production status
of all the Informatica cloud products. All maintenance updates are posted to this page, and during an outage,
it will have the most current information. To ensure you are notified of updates and outages, you can
subscribe to receive updates for a single component or all Informatica Intelligent Cloud Services
components. Subscribing to all components is the best way to be certain you never miss an update.

To subscribe, on the Informatica Intelligent Cloud Services Status page, click SUBSCRIBE TO UPDATES. You
can choose to receive notifications sent as emails, SMS text messages, webhooks, RSS feeds, or any
combination of the four.

Informatica Global Customer Support
You can contact a Global Support Center through the Informatica Network or by telephone.

To find online support resources on the Informatica Network, click Contact Support in the Informatica
Intelligent Cloud Services Help menu to go to the Cloud Support page. The Cloud Support page includes
system status information and community discussions. Log in to Informatica Network and click Need Help to
find additional resources and to contact Informatica Global Customer Support through email.

The telephone numbers for Informatica Global Customer Support are available from the Informatica web site
at https://www.informatica.com/services-and-training/support-services/contact-us.html.

6 Chapter 1: Preface

http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://www.informatica.com/trust-center.html
https://status.informatica.com/
https://status.informatica.com/
https://www.informatica.com/services-and-training/support-services/contact-us.html

C h a p t e r 1

Introduction to REST V2
Connector

Use REST V2 Connector to interact with web service applications built on REST architecture. You can use
REST V2 Connector in a Source transformation, Target transformation, or midstream in a Web Services
transformation.

REST V2 Connector supports Swagger specification 2.0 and OpenAPI 3.0.x that helps to interact with web
service applications. The Swagger or OpenAPI specification file must be in JSON format.

You can use REST V2 Connector midstream in a mapping to pass a single or multiple requests to a web
service application and process the response data. You can also pass data obtained from multiple
transformations in the mapping pipeline and process the data.

When you use REST V2 Connector midstream in a mapping, you first create a business service for the
operation that you want to perform in the web service application. You then associate the business service in
a Web Services transformation midstream in a mapping to read from or write data to the web service
application. For example, you can use REST V2 Connector as a midstream transformation to perform PUT
operation on a web service application.

You can switch mappings to advanced mode to include transformations and functions that enable advanced
functionality.

REST V2 Connector assets
Create assets in Data Integration to integrate data using Rest V2 Connector.

You can use Source, Target, and Midstream transformation types in the following Data Integration assets:

• Mapping

• Mapping task

When you run a mapping or mapping task, the session log is saved to the following directory: <Secure Agent
installation directory>/apps/Data_Integration_Server/logs.

For more information about configuring assets and transformations, see Mappings, Transformations, and
Tasks in the Data Integration documentation.

7

Basic structure of the Swagger and OpenAPI
specification file

Swagger is a specification for documenting REST API. It specifies the format to describe REST web services.

REST V2 Connector supports swagger specification 2.0 and OpenAPI 3.0.x to interact with web service
applications. When you configure a Rest V2 connection, you can specify the path of the Swagger or OpenAPI
file in the Swagger File Path property.

The swagger or OpenAPI specification file contains the following details:

• metadata of the API

• server details

• operations

• path parameters

• query parameters

• header fields

• request details

• response details

Servers

You can specify an array of server URL in the servers section in the OpenAPI specification.

The following example shows how servers are defined in the OpenAPI specification file:

{
 "servers": [
 {
 "url": "https://development.gigantic-server.com/v1",
 "description": "Development server"
 },
 {
 "url": "https://staging.gigantic-server.com/v1",
 "description": "Staging server"
 },
 {
 "url": "https://api.gigantic-server.com/v1",
 "description": "Production server"
 }
]
}

You can define servers globally at the path level or for specific operations. However, Rest V2 Connector
honors the first server listed in the specification file to connect to the REST endpoint.

Alternatively, if you want to specify the server URL when you create a Rest V2 connection, you can add the
host URL in the Advanced Fields property in the following format: hosturl:schemes://host

For example, hosturl:https://openapiworld.com

The server specified in the connection properties takes precedence over the server specified in the
specification file.

For more information on creating a Rest V2 connection, see Rest V2 connection properties.

Note: You can't specify variables in a server URL.

In the swagger specification, you can define a server URL using the host keyword. You cannot define multiple
servers in the swagger specification file.

8 Chapter 1: Introduction to REST V2 Connector

The following example shows how servers are defined in the swagger specification file:

{
 "host": "petstore.swagger.io",
 "basePath": "/v2",
 "schemes": [
 "https"
]
}

Parameters

In the OpenAPI specification, you can define parameters at the path level and for specific operations. The
parameters at the path level are applicable to all operations defined under the path. The parameters at the
operation level are applicable only to the operations under which it is defined.

If the same parameters are defined at the path level and operation level, the operation level parameters take
precedence.

You can define the following parameter types:

• path parameters

• query parameters

• header parameters

• cookie parameters

The following example shows how the parameters are defined in the OpenAPI specification file:

"paths": {
"/pet": {
"put": {
 "tags": [
 "pet"
],
"summary": "Update an existing pet",
 "description": "Update an existing pet by Id",
 "operationId": "updatePet",
 "parameters": [
{
"name": "status",
"in": "query",
"description": "Status values that need to be considered for filter",
"required": false,
"explode": true,
"schema": {
 "type": "string",
 "default": "available",
 }
 }
]

Note: Ensure that the parameters section in the OpenAPI specification contains the schema type.

In the swagger specification file, you can define parameters for each operation.

The following example shows how parameters are defined in the swagger specification file:

"parameters": [
{
 "in": "body",
 "name": "user",
 "description": "The user to create.",
 "schema": {
 "$ref": "#/definitions/User"
 }
 }
]

Basic structure of the Swagger and OpenAPI specification file 9

Request body

Request body defines the structure of the endpoint request body.

In the OpenAPI specification file, you can define parameters and requestBody to connect to a REST endpoint.

The following example shows how the requestBody is defined in the OpenAPI specification file:

"operationId": "addPet",
"requestBody": {
 "description": "Create a new pet in the store",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Pet"
 }
 },
"application/xml": {
 "schema": {
 "$ref": "#/components/schemas/Pet"
 }
 }
 }
}

In the swagger specification file, you can define the parameters section to send a request to the REST
endpoint.

The following example shows how the request body is defined in the swagger specification file:

{
"paths": {
 "/users": {
 "post": {
 "summary": "Creates a new user.",
 "consumes": [
 "application/json"
],
 "parameters": [
 {
 "in": "body",
 "name": "user",
 "description": "The user to create.",
 "schema": {
 "$ref": "#/definitions/User"
 }
 }
]

Response body

Response body defines the response fields of the endpoint. Rest V2 Connector supports only the successful
response with HTTP status code 200. For all responses other than status code 200, the field mapping
displays a static field named Response_Port.

The following example shows the response body section in the OpenAPI specification file:

"responses": {
"200": {
 "description": "Successful operation",
 "content": {
 "application/xml": {
 "schema": {
 "$ref": "#/components/schemas/Pet"
 }
 },
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/Pet"
 }
 }

10 Chapter 1: Introduction to REST V2 Connector

 }
 }
}

The following example shows the response body section in the swagger specification file:

"responses": {
"200": {
 "description": "A User object",
 "schema": {
 "$ref": "#/definitions/User"
 }
 }
}

Media types and operations
Media types

You can define media types in request and response definitions when you connect to the REST endpoint.

In Swagger, you can specify the following media types in request and response definitions to process data:

• application/xml

• application/json

• application/x-www-form-urlencoded

• JSON subtype. For example: application/hal+json
• JSON custom type. For example: application/vnd.ds.abc.v1+json
• Extended JSON mime type. For example: application/vnd.ds.abc.v1+json;version=q1
• text/xml

If a swagger definition contains multiple mime types in consumes and produces attribute values, the REST
V2 Connector considers the payload to be of first mime type in the list.

In OpenAPI, you can specify the following media types in request and response definitions to process data:

• application/xml

• application/json

Consider the following guidelines when you define media types in OpenAPI:

• The default request and response media type for all operations is application/json.

• If application/json media type is not available for an operation, the task considers application/xml as
the request and response media type.

• If application/json or application/xml media type is not available for an operation, the request
message template displays a static field named Request_Port and the field mapping displays a static field
named Response_Port.

Operations

You can define operations to connect to the REST endpoint.

You can use the following REST methods or operations in source, target, and midstream transformations in
Swagger or OpenAPI:

• GET

Media types and operations 11

• PUT

• POST

• DELETE

• OPTIONS

• HEAD

• PATCH

Array of objects
You can define an array of objects for application/json media type in the OpenAPI specification file in the
request and response definitions.

Inline array in the request and response body

The requestBody or response where all the fields of the request body are defined in the requestBody section.

For example,

"/users_inline": {
"post": {
 "description": "Add Multiple Users",
 "operationId": "users_inline",
 "requestBody": {
 "description": "Add Multiple Users",
 "content": {
 "application/json": {
 "schema": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "first_name": {
 "type": "string"
 },
 "last_name": {
 "type": "string"
 }
 }
 }
 }
 }
 }
}
"responses": {
 "200": {
 "description": "add User Response",
 "content": {
 "application/json": {
 "schema": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "first_name": {
 "type": "string"
 },
 "last_name": {
 "type": "string"
 },
 "id": {

12 Chapter 1: Introduction to REST V2 Connector

 "type": "string"
 }
 }
 }
 }
 }
 }
 }
}

Inline ref array in the request and response body

The requestBody or response where the schema type is array and it contains the reference object $ref.

For example,

"post": {
"description": "Add Multiple Users",
"operationId": "users_inline_ref",
"requestBody": {
 "description": "Add new Users",
 "content": {
 "application/json": {
 "schema": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/user"
 }
 }
 }
 }
 }
"responses": {
 "200": {
 "description": "add User Response",
 "content": {
 "application/json": {
 "schema": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/user"
 }
 }
 }
 }
 }
}

Array in component in the request and response body

The requestBody or response where schema contains only the reference object $ref pointing to a
component.

For example,

"post": {
"description": "Add Multiple Users",
 "operationId": "users",
 "requestBody": {
 "description": "Add new Users",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/user_list_inline"
 }
 }
 }
 }
"components": {
 "schemas": {

Array of objects 13

 "user_list": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/user"
 }
 }
 }
}
"responses": {
 "200": {
 "description": "add User Response",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/user_list"
 }
 }
 }
 }
}
"components": {
 "schemas": {
 "user_list": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/user"
 }
 }
 }
 }

Complex object in the request and response body

The requestBody or response that contains array fields along with simple fields.

For example,

"description": "Add Complex Object",
 "operationId": "aad_complex_object",
 "requestBody": {
 "description": "Add new Users",
 "content": {
 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/complex_object"
 }
 }
 }
 }
"components": {
 "schemas": {
 "complex_object": {
 "type": "object",
 "properties": {
 "sample_string": {
 "type": "string"
 },
 "user_array": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/user"
 }
 }
 }
 }
 }
 }
"responses": {
 "200": {
 "description": "add User Response",
 "content": {

14 Chapter 1: Introduction to REST V2 Connector

 "application/json": {
 "schema": {
 "$ref": "#/components/schemas/complex_object"
 }
 }
 }
 }
 }

"components": {
 "schemas": {
 "complex_object": {
 "type": "object",
 "properties": {
 "sample_string": {
 "type": "string"
 },
 "user_array": {
 "type": "array",
 "items": {
 "$ref": "#/components/schemas/user"
 }
 }
 }
 }
 }
}

XML objects in swagger specification
You can configure XML objects such as XML attributes, the wrapper object, and the namespace object in the
swagger specification file.

You can define attributes only for XML objects. You cannot define attributes for XML elements. You can use
wrapper objects for a simple type array element only when the array element has inline definitions. Use
qualified and unqualified namespace objects in response for source, midstream, and target transformations
and in request for midstream and target transformations.

An XML attribute is always of type string. Even if the swagger definition has attribute with type as number,
REST V2 Connector always treats the attribute as string. The XSD generated contains the data type as string
for the XML attribute.

Note: Ensure that the Swagger definition does not contain multiple namespaces.

Swagger definition for an XML attribute:

"XMLAttrArray_Request##body##Employee##dep##Mangr" : {

"properties" : {

"desg" : {

"type" : "string",

"xml": { "attribute": true }

}, "mid" : { "type" : "string" },

XML attribute sample:

<dep>

<Mangr desg="Director">

XML objects in swagger specification 15

<mid>em09</mid>

<mname>mg</mname>

</Mangr>

<id>did</id>

<name>dname</name>

</dep>

Swagger definition for a Wrapper object:

"books" : {

"type" : "array",

"items" : { "type" : "string" },

"xml": {

"wrapped" : "true", "name": "books-array"

}

}

Wrapper object sample:

<books-array>

<books>1</books>

<books>2</books>

</books-array>

Swagger definition for a Namespace object:

root" : {

"properties" : {

"table" : {

"$ref" : "#/definitions/NSResReq_Request##body##root##table"

}

},

"xml":{

"prefix": "h",

"namespace": "http://www.w3.org/TR/html4/"

}

}

Namespace object sample:

<h:root xmlns:h="http://www.w3.org/TR/html4/">

<table>

<tr>

<td>Apples</td>

16 Chapter 1: Introduction to REST V2 Connector

<td>Bananas</td>

</tr>

</table>

</h:root>

XML objects in swagger specification 17

C h a p t e r 2

Connections for REST V2
Create a REST V2 connection to make calls to a web service application.

When you create a connection, specify the swagger specification file and the authentication method. You can
specify the following authentication methods:

• Standard

• OAuth 2.0 client credentials

• OAuth 2.0 authorization code

• JWT bearer token

• API key

You can use OAuth 2.0 client credentials or OAuth 2.0 authorization code authentication to connect to the
authorization server in a Virtual Private Cloud network for the authorization process.

If your REST endpoint does not have a swagger specification, you can generate the swagger specification file
from Administrator. Click Administrator > Swagger Files to generate a swagger specification file.

For information about the parameters that you need to define in a Swagger file, see “Generating a Swagger
File” on page 62.

Prerequisites
Before you configure a REST V2 connection, be sure to complete the prerequisites.

• Install the Secure Agent on a 64-bit machine.

• Ensure that the machine hosting the Secure Agent has a minimum memory size of 2048 MB.

Connect to REST V2
Let's configure the REST V2 connection properties to interact with web service applications built on REST
architecture.

Before you begin
Before you get started, be sure to complete the prerequisites.

18

Check out “Prerequisites” on page 18 to learn more about the required prerequisites.

Connection details
The following table describes the basic connection properties:

Property Description

Connection Name Name of the connection.
Each connection name must be unique within the organization. Connection names can contain
alphanumeric characters, spaces, and the following special characters: _ . + -,
Maximum length is 255 characters.

Description Description of the connection. Maximum length is 4000 characters.

Type REST V2

Runtime
Environment

Name of the runtime environment where you want to run tasks.
Select a Secure Agent, Hosted Agent, or serverless runtime environment.

Authentication types
You can configure standard, OAuth 2.0 client credentials, OAuth 2.0 authorization code, JWT bearer token,
and API key authentication types to connect to a REST endpoint.

Select the required authentication method and then configure the authentication-specific parameters.

Standard authentication
Standard authentication requires an authentication user ID and password to connect to a REST endpoint.
When you configure a standard authentication type, you can further configure basic and OAuth authentication
types.

Note: Digest authentication is not applicable.

The following table describes the basic connection properties for standard authentication:

Property Description

Authentication Type The authentication type that you can use when you select the
Standard authentication.
You can select one of the following authentication types:
- BASIC
- OAUTH
- NONE
Default is NONE.

Auth User ID The user name to log in to the web service application when
you select the standard authentication.
Required for Basic authentication type.

Auth Password The password associated with the user name when you select
the standard authentication.
Required for Basic authentication type.

Connect to REST V2 19

Property Description

OAuth Consumer Key The client key associated with the web service application.
Required only for OAuth authentication type.

OAuth Consumer Secret The client password to connect to the web service application.
Required only for OAuth authentication type.

OAuth Token The access token to connect to the web service application.
Required only for OAuth authentication type.

OAuth Token Secret The password associated with the OAuth token.
Required only for OAuth authentication type.

Swagger File Path The path of the Swagger file or OpenAPI file.
You can specify one of the following file paths:
- Path and file name of the Swagger or OpenAPI file on the

Secure Agent machine.
- The URL on which the Swagger or OpenAPI file is hosted. The

hosted URL must return the content of the file without
prompting for further authentication and redirection.

For example, the path of the Swagger file can be:
C:\Swagger\sampleSwagger.json
The user must have the read permission for the folder and the
file.

OAuth 2.0 client credentials authentication
OAuth 2.0 client credentials authentication requires at a minimum the client ID, access token URL, client
secret, scope, and the access token.

The following table describes the basic connection properties for OAuth 2.0 client credentials authentication:

Property Description

Access Token URL Access token URL configured in your application.

Client ID Client ID of your application.

Client Secret Client secret of your application.

Scope Specifies access control if the API endpoint has defined
custom scopes. Enter scope attributes, each separated by a
space. For example:
root_readonly root_readwrite manage_app_users

Access Token Parameters Additional parameters to use with the access token URL. Define
the parameters in the JSON format.
For example,
[{"Name":"resource","Value":"https://
<serverName>"}]

20 Chapter 2: Connections for REST V2

Property Description

Client Authentication Select an option to send the client ID and client secret for
authorization either in the request body or in the request
header.
Default is Send Client Credentials in Body.

Generate Access Token Generates an access token based on the information provided
in the above fields.

Access Token The access token value.
Enter the access token value or click Generate Access Token
to populate the access token value.
To pass the generate access token call through a proxy server,
you must configure an unauthenticated proxy server in the
Secure Agent properties. The proxy configured in the
connection configuration does not apply to the generate
access token call.

Swagger File Path The path of the Swagger file or OpenAPI file.
You can specify one of the following file paths:
- Path and file name of the Swagger or OpenAPI file on the

Secure Agent machine.
- The URL on which the Swagger or OpenAPI file is hosted. The

hosted URL must return the content of the file without
prompting for further authentication and redirection.

For example, the path of the swagger file can be:
C:\swagger\sampleSwagger.json
The user must have the read permission for the folder and the
file.

OAuth 2.0 authorization code authentication
To use authorization code authentication, register the following Informatica redirect URL in your application:

https://<Informatica cloud hosting facility for your organization>/ma/proxy/oauthcallback

If the access token expires and the error codes 400, 401, and 403 are returned in the response, Informatica
redirect URL, which is outside the customer firewall, tries to connect to the endpoint and retrieves a new
access token.

The following table describes the basic connection properties for OAuth 2.0 authorization code
authentication:

Property Description

Authorization Token URL Authorization server URL configured in your application.

Access Token URL Access token URL configured in your application.

Client ID Client ID of your application.

Client Secret Client secret of your application.

Connect to REST V2 21

Property Description

Scope Specifies access control if the API endpoint has defined
custom scopes. Enter scope attributes, each separated by a
space.
For example,
root_readonly root_readwrite manage_app_users

Access Token Parameters Additional parameters to use with the access token URL. Define
the parameters in the JSON format.
For example,
[{"Name":"resource","Value":"https://
<serverName>"}]

Authorization Code Parameters Additional parameters to use with the authorization token URL.
Define the parameters in the JSON format.
For example,
[{"Name":"max_age","Value":60},
{"Name":"state","Value":"test"}]

Client Authentication Select an option to send the client ID and client secret for
authorization either in the request body or in the request
header.
Default is Send Client Credentials in Body.

Generate Access Token Generates an access token and refreshes the token based on
the information provided in the above fields.

Access Token The access token value.
Enter the access token value or click Generate Access Token
to populate the access token value.
To pass the generate access token call through a proxy server,
you must configure an unauthenticated proxy server in the
Secure Agent properties. The proxy configured in the
connection configuration does not apply to the generate
access token call.

22 Chapter 2: Connections for REST V2

Property Description

Refresh Token The refresh token value.
Enter the refresh token value or click Generate Access Token
to populate the refresh token value. If the access token is not
valid or expires, the Secure Agent fetches a new access token
with the help of refresh token.
If the refresh token expires, you must either provide a valid
refresh token or regenerate a new refresh token by clicking
Generate Access Token.

Swagger File Path The path of the Swagger file or OpenAPI file.
You can specify one of the following file paths:
- Path and file name of the Swagger or OpenAPI file on the

Secure Agent machine.
- The URL on which the Swagger or OpenAPI file is hosted. The

hosted URL must return the content of the file without
prompting for further authentication and redirection.

For example, the path of the swagger file can be:
C:\swagger\sampleSwagger.json
The user must have the read permission for the folder and the
file.

JWT bearer token authentication
JWT bearer token authentication requires at a minimum the JWT header, JWT payload, and authorization
server URL.

Connect to REST V2 23

The following table describes the basic connection properties for JWT bearer token authentication:

Property Description

JWT Header JWT header in JSON format.
Sample:
{
"alg":"RS256",
"kid":"xxyyzz"
}
You can configure HS256 and RS256 algorithms.

JWT Payload JWT payload in JSON format.
Sample:
{
"iss":"abc",
"sub":"678",
"aud":"https://api.box.com/oauth2/token",
"box_sub_type":"enterprise",
"exp":"120",
"jti":"3ee9364e"
}
The expiry time represented as exp is the relative time in
seconds. The expiry time is calculated in the UTC format from
the token issuer time (iat).
When iat is defined in the payload and the expiry time is
reached, mappings and Generate Access Token fails. To
generate a new access token, you must provide a valid iat in
the payload.
If iat is not defined in the payload, the expiry time is
calculated from the current timestamp.
To pass the expiry time as a string value, enclose the value
with double quotes. For example:
"exp":"120"
To pass the expiry time as an integer value, do not enclose the
value with double quotes.
For example,
"exp":"120"

Authorization Server Access token URL configured in your application.

KeyStore File Path The absolute path of the keystore file that contains the keys
and certificates required to establish a two-way secure
communication with the REST API. Specify a directory path that
is available on each Secure Agent machine.
You can also configure the keystore file name and path as a
JVM option or import the certificate to any directory.
For the serverless runtime environment, specify the keystore
file path in the serverless agent directory.
For example, /home/cldagnt/SystemAgent/serverless/
configurations/ssl_store/<cert_name>.jks

24 Chapter 2: Connections for REST V2

Property Description

KeyStore Password The password for the keystore file required for a secure
communication.
You can also configure the keystore password as a JVM option.

Private Key Alias Alias name of the private key used to sign the JWT payload.

Private Key Password The password for the keystore file required for a secure
communication. The private key password must be same as the
keystore password.

Access Token The access token value.
Enter the access token value or click Generate Access Token
to populate the access token value.
To pass the generate access token call through a proxy server,
you must configure an unauthenticated proxy server in the
Secure Agent properties. The proxy configured in the
connection configuration does not apply to the generate
access token call.

Swagger File Path The path of the Swagger file or OpenAPI file.
You can specify one of the following file paths:
- Path and file name of the Swagger or OpenAPI file on the

Secure Agent machine.
- The URL on which the Swagger or OpenAPI file is hosted. The

hosted URL must return the content of the file without
prompting for further authentication and redirection.

For example, the path of the swagger file can be:
C:\swagger\sampleSwagger.json
The user must have the read permission for the folder and the
file.

Connect to REST V2 25

Advanced settings

The following table describes the advanced connection properties for JWT bearer token authentication:

Property Description

Authorization Advanced Properties Additional parameters to use with the access token URL.
Parameters must be defined in the JSON format.
For example,
[\{"Name":"client_id","Value":"abc"},\
{"Name":"client_secret","Value":"abc"}]

TrustStore File Path The absolute path of the truststore file that contains the TLS
certificate to establish a one-way or two-way secure
connection with the REST API. Specify a directory path that
is available on each Secure Agent machine.
You can also configure the truststore file name and
password as a JVM option or import the certificate to the
following directory:
<Secure Agent installation directory\jre\lib
\security\cacerts.
For the serverless runtime environment, specify the
truststore file path in the serverless agent directory.
For example, /home/cldagnt/SystemAgent/
serverless/configurations/ssl_store/
<cert_name>.jks

TrustStore Password The password for the truststore file that contains the SSL
certificate.
You can also configure the truststore password as a JVM
option.

Proxy Type Type of proxy.
Select one of the following options:
- No Proxy. Bypasses the proxy server configured in the

agent or the connection properties.
- Platform Proxy. Considers the proxy configured in the

agent.
- Custom Proxy. Considers the proxy configured in the

connection properties.

26 Chapter 2: Connections for REST V2

Property Description

Proxy Configuration The format required to configure proxy.
You can configure proxy using the following format:
<host>:<port>
You cannot configure an authenticated proxy server.

Advanced Fields Enter the arguments that the agent uses when connecting to
a REST endpoint.
When you specify multiple arguments, separate each
argument by a semicolon.
For example,
connectiondelaytime:10000;retryattempts:5
You can specify the following arguments:
- ConnectionTimeout. The wait time in milliseconds to get

a response from a REST endpoint. The connection ends
after the connection timeout is over.
Default is the timeout defined in the endpoint API.
Note: If you define both the REST V2 connection timeout
and the endpoint API timeout, the connection ends at the
shortest defined timeout.

- connectiondelaytime. The delay time in milliseconds to
send a request to a REST endpoint.
Default is 10000.

- retryattempts. Number of times the connection is
attempted when 400 and 500 series error codes are
returned in the response.
Default is 3. Specify 0 to disable the retry attempts.

- qualifiedSchema. Determines if the schema selected is
qualified or unqualified.
Default is false.

API key authentication
API key authentication allows you to provide a unique key and a corresponding value to authenticate API calls
made to the REST endpoint.

The following table describes the basic connection properties for API key authentication:

Property Description

Key The unique API key that REST V2 Connector uses to
authenticate the API calls made to the REST endpoint.

Value The value corresponding to the API key that is required to make
the API calls.

Connect to REST V2 27

Property Description

Add API Key to Determines if the API key and its corresponding value must be
sent as a request header or a query parameter to make API
calls to the REST endpoint.
Select one of the following options:
- Request Header
- Query Parameter

Swagger File Path The path of the Swagger file or OpenAPI file.
You can specify one of the following file paths:
- Path and file name of the Swagger or OpenAPI file on the

Secure Agent machine.
- The URL on which the Swagger or OpenAPI file is hosted. The

hosted URL must return the content of the file without
prompting for further authentication and redirection.

For example, the path of the swagger file can be:
C:\swagger\sampleSwagger.json
The user must have the read permission for the folder and the
file.

Advanced settings
The following table describes the advanced connection properties:

Property Description

TrustStore File
Path

The absolute path of the truststore file that contains the TLS certificate to establish a one-way or
two-way secure connection with the REST API. Specify a directory path that is available on each
Secure Agent machine.
You can also configure the truststore file name and password as a JVM option or import the
certificate to the following directory:
<Secure Agent installation directory\jre\lib\security\cacerts.
For the serverless runtime environment, specify the truststore file path in the serverless agent
directory.
For example, /home/cldagnt/SystemAgent/serverless/configurations/ssl_store/
<cert_name>.jks

TrustStore
Password

The password for the truststore file that contains the SSL certificate.
You can also configure the truststore password as a JVM option.

KeyStore File
Path

The absolute path of the keystore file that contains the keys and certificates required to establish
a two-way secure communication with the REST API. Specify a directory path that is available on
each Secure Agent machine.
You can also configure the keystore file name and path as a JVM option or import the certificate
to any directory.
For the serverless runtime environment, specify the keystore file path in the serverless agent
directory.
For example, /home/cldagnt/SystemAgent/serverless/configurations/ssl_store/
<cert_name>.jks

KeyStore
Password

The password for the keystore file required for secure communication.
You can also configure the keystore password as a JVM option.

28 Chapter 2: Connections for REST V2

Property Description

Proxy Type Type of proxy.
Select one of the following options:
- No Proxy: Bypasses the proxy server configured in the agent or the connection properties.
- Platform Proxy: Considers the proxy configured in the agent.
- Custom Proxy: Considers the proxy configured in the connection properties.

Proxy
Configuration

The format required to configure proxy.
Configure proxy using the following format:
<host>:<port>
You cannot configure an authenticated proxy server.

Advanced Fields Enter the arguments that the agent uses when connecting to a REST endpoint.
When you specify multiple arguments, separate each argument by a semicolon.
For example,
connectiondelaytime:10000;retryattempts:5
You can specify the following arguments:
- ConnectionTimeout. The wait time in milliseconds to get a response from a REST endpoint. The

connection ends after the connection timeout is over.
Default is the timeout defined in the endpoint API.
Note: If you define both the REST V2 connection timeout and the endpoint API timeout, the
connection ends at the shortest defined timeout.

- connectiondelaytime. The delay time in milliseconds to send a request to a REST endpoint.
Default is 10000.

- retryattempts. Number of times the connection is attempted when 400 and 500 series error
codes are returned in the response.
Default is 3. Specify 0 to disable the retry attempts.

- qualifiedSchema. Determines if the schema selected is qualified or unqualified.
Default is false.

Related links
“Secure communication with TLS authentication” on page 29

“Secure communication in a serverless runtime environment” on page 32

“Swagger specification file in a serverless runtime environment” on page 32

“Rules and guidelines for a REST V2 connection” on page 34

“Rules and guidelines for runtime environment” on page 33

Secure communication with TLS authentication
Configure TLS authentication to establish one-way or two-way secure communication between the Secure
Agent and the REST API over TLS.

To establish one-way secure communcation, perform the following steps:

1. Generate the truststore. For more information on the steps, see Generate a Truststore.

Secure communication with TLS authentication 29

2. Configure the REST V2 connection for one-way SSL. You can specify the truststore file and truststore
password in the connection, or set them in the JVM options of the Secure Agent.

To establish two-way secure communcation, you must first configure one-way secure communication, and
then perform the following steps:

1. Generate the keystore. For more information on the steps, see Generate a Keystore.

2. Configure the REST V2 connection for two-way SSL. You can specify the keystore file and keystore
password in the connection, or set them in the JVM options of the Secure Agent.

If you specify keystore and truststore properties in the connection and in the JVM options, the Secure Agent
processes the certificates based on the properties configured in the connection.

Generate a truststore
To generate a truststore, you need a server certificate. Get the server certificate and perform the following
steps to generate the truststore:

1. Import the server certificate to the following file path:
<Secure Agent installation directory>\jre\lib\security\cacerts

2. To generate the truststore, run the following command from the command line:
keytool -importcert -alias <Specify alias name here> -file <Specify server certificate
here> -keystore <Specify the name of custom truststore to be generated> -storepass
<Specify password for the custom truststore>

For example, keytool -importcert -alias RESTV2CACert -file ca.pem -keystore
sampletruststore -storepass JKSTrustStorePassword
In the example, a truststore file is generated by the name sampletruststore and password
JKSTrustStorePassword.

Generate a keystore
To generate a keystore, you need a client certificate and a client private key. Get the client certificate and
client private key, and then perform the following steps to generate the keystore:

1. Import the certificate to the following file path:
<Secure Agent installation directory>\jre\lib\security\cacerts

30 Chapter 2: Connections for REST V2

2. To generate the keystore, run the following command from the command line:
openssl pkcs12 -export -in <Specify client certificate here> -inkey <Specify client
private key here> -name "<Specify any name here>" -passout pass:<Specify password for the
keystore to be generated> -out <Specify name for the keystore with p12 extension>
For example, openssl pkcs12 -export -in /home/samplefolder/certs/client-cert.pem -inkey /
home/samplefolder/certs/client-key.pem -name "restclient" -passout
pass:PKCSKeyStorePassword -out samplekeystore.p12
In the example, a keystore file by the name samplekeystore.p12 is generated in the PKCS12 format.

To convert the keystore file from .p12 format to .jks format, run the following command from the
command line:

keytool -importkeystore -srckeystore <Specify name of the p12 keystore file> -
srcstoretype pkcs12 -srcstorepass <Specify password for generated p12 keystore file> -
destkeystore <Specify name for the JKS keystore file> -deststoretype JKS -deststorepass
<Specify password for the JKS keystore file>

Note: Ensure that the password specified in -srcstorepass must be the same as the -deststorepass.

For example, keytool -importkeystore -srckeystore samplekeystore.p12 -srcstoretype pkcs12
-srcstorepass PKCSKeyStorePassword -destkeystore keystore -deststoretype JKS -
deststorepass PKCSKeyStorePassword
In the example, a keystore file is generated by the name samplekeystore and password
PKCSKeyStorePassword.

Configuring one-way or two-way secure communication
You can configure a connection for one-way or two-way SSL.

Configuring the connection for one-way SSL

You can either specify the name of the truststore file and truststore password in the TrustStore File Name
and TrustStore Password fields in the connection properties. Alterntaively, you can set the truststore file
name and truststore password in the JVM options in the Secure Agent properties.

1. Click Administrator > Runtime Environments, and select an agent.

2. Select Type as DTM under System Configuration Details.

3. Add the following JVM options:

• JVMOption1=-Djavax.net.ssl.trustStore=<absolute path of the .jks truststore file>
• JVMOption2=-Djavax.net.ssl.trustStorePassword=<truststore password>

Configuring the connection for two-way SSL

You can either specify the name of the keystore file and keystore password in the KeyStore File Name and
KeyStore Password connection properties. Alternatively, you can set the keystore file and keystore password
in the JVM options in the Secure Agent properties.

To use two-way SSL, you must first configure one-way SSL, and then perform the following steps to configure
two-way SSL:

1. Click Administrator > Runtime Environments, and select an agent.

2. Select Type as DTM under System Configuration Details.

3. Add the following JVM options:

• JVMOption3=-Djavax.net.ssl.keyStore=<absolute path of the .jks keystore file>

Secure communication with TLS authentication 31

• JVMOption4=-Djavax.net.ssl.keyStorePassword=<keystore password>

Secure communication in a serverless runtime
environment

When you use the serverless runtime environment, you can configure TLS authentication and establish one-
way or two-way secure communication with the REST API.

Ensure that the certificates are in the .jks format.

To configure a secure REST V2 connection using the serverless runtime environment, complete the following
prerequisite tasks to add the TLS certificates to the serverless runtime location:

1. Create the following structure for the serverless agent configuration in AWS:
<Supplementary file location>/serverless_agent_config

2. For one-way secure communication, add the truststore certificates and for the two-way secure
communication, add the truststore and keystore certificates in the Amazon S3 bucket in the following
location in your AWS account:
<Supplementary file location>/serverless_agent_config/SSL

3. Copy the following code snippet to a text editor:

version: 1
agent:
 agentAutoApply:
 general:
 sslStore:
 - fileCopy:
 sourcePath: SSL/<RESTV2_trustStore_cert_name>.jks
 - fileCopy:
 sourcePath: SSL/<RESTV2_keyStore_cert_name>.jks

where the source path is the directory of the certificate files in AWS.

4. Ensure that the syntax and indentations are valid, and then save the file as
serverlessUserAgentConfig.yml in the following AWS location:
<Supplementary file location>/serverless_agent_config
When the .yml file runs, the SSL certificates are copied from the AWS location to the serverless agent
directory.

5. In the REST V2 connection properties, specify the following certificate path in the serverless agent
directory in the TrustStore File Path and KeyStore File Path fields:
/home/cldagnt/SystemAgent/serverless/configurations/ssl_store/<cert_name>.jks

Swagger specification file in a serverless runtime
environment

To configure a swagger file in a serverless runtime environment, be sure to complete the prerequisites.

32 Chapter 2: Connections for REST V2

In the serverless runtime environment, you can configure a swagger file in one of the following ways:

• Provide the swagger file public hosted URL in the Swagger File Path connection property. Ensure that the
URL must return the content of the file without prompting for further authentication and redirection.

• Place the swagger file in the serverless agent directory.

To configure a swagger file in a serverless runtime environment, complete the following prerequisite tasks to
add the swagger file to the serverless runtime location:

1. Create the following structure for the serverless agent configuration in AWS or Azure:
<Supplementary file location>/serverless_agent_config

2. Add the swagger specification file in the Amazon S3 bucket or Azure container in the following location
in your AWS or Azure account:
<Supplementary file location>/serverless_agent_config/restv2
a. Copy the following code snippet to a text editor:

version: 1
agent:
 dataIntegrationServer:
 autoApply:
 restv2:
 swaggers:
 - fileCopy:
 sourcePath: restv2/<swagger_file_name1>.json
 - fileCopy:
 sourcePath: restv2/<swagger_file_name2>.json

where the source path is the directory path of the swagger files in AWS or Azure.

3. Ensure that the syntax and indentations are valid, and then save the file as
serverlessUserAgentConfig.yml in the following AWS or Azure location:
<Supplementary file location>/serverless_agent_config
When the .yml file runs, the SSL certificates are copied from the AWS or Azure location to the serverless
agent directory.

4. In the REST V2 connection properties, specify the following swagger path in the serverless agent
directory in the Swagger File Path field:
/home/cldagnt/SystemAgent/serverless/configurations/restv2/<swagger_file_name>.json

Rules and guidelines for runtime environment
Consider the following guidelines when you run tasks in different runtime environments:

• You cannot use a proxy server to connect to Informatica Intelligent Cloud Services when you use the
Hosted Agent or the serverless runtime environment.

• You cannot connect to the REST API endpoints that require custom server certificate signed by CA and
are not a part of Informatica cacerts truststore, when you use the Hosted Agent.

• You cannot configure JWT bearer token authentication when you use the Hosted Agent.

• Ensure that the swagger specification file URL is a public URL and returns the content of the file without
prompting for further authentication and redirection when you use the Hosted Agent.

Rules and guidelines for runtime environment 33

Rules and guidelines for a REST V2 connection
Consider the following rules and guidelines for a Rest V2 connection:

• When you test the connection, the Secure Agent validates the following parameters:

- Path of the local Swagger file or the URL of the hosted Swagger file.

- JSON format of the Swagger file.

However, the Secure Agent does not validate endpoint credentials when you test the connection.

• You can configure proxy at the agent level or connection level. See the following table to understand the
proxy settings that take precedence when you define the System proxy and proxy at the connection level:

System proxy REST V2 connection attribute Result

No proxy Platform proxy Custom proxy

No Yes No No Does not consider proxy.

No No Yes No Does not consider proxy.

No No No Yes Considers custom proxy.

Yes Yes No No Does not consider proxy.

Yes No Yes No Considers platform proxy.

Yes No No Yes Considers custom proxy.

34 Chapter 2: Connections for REST V2

C h a p t e r 3

REST V2 operations
Create a mapping in the Mapping Designer to read or write data to the web service application.

When you create a mapping, you must select a REST V2 connection and an operation. The Secure Agent
connects to the web service application to access, transform, or deliver data. If you want to write data to a
relational target, the Secure Agent converts the hierarchical data fetched from the web service application to
relational data. If you want to read data from a relational source and write data to a REST V2 target, the
Secure Agent converts the relational data fetched from the source to hierarchical data.

REST V2 Connector can handle all HTTP 300 series status codes that indicate URL redirection in Source,
Target, and Midstream transformations.

You can use REST V2 Connector to perform paging in Source and Midstream transformations.

REST V2 source operations
Create a Source transformation in the Mapping Designer to read data from the web service application.

When you select a REST V2 connection for a Source transformation in a mapping to read data from a web
service application, specify Operations on the Source tab of the Source transformation. The Secure Agent
displays operation IDs specified in the swagger specification.

Select an operation ID, configure the request message from the sample template provided in the request
message editor, and configure the advanced properties for the operation. If you want to write to a relational
target, define a relational structure for the source data by mapping the incoming fields that is in hierarchical
format to the output fields in relational format. When you run the mapping, the Secure Agent retrieves data
for the specified operation from the web service application.

Configuring a request using Request Message Editor
When you create a Source transformation, configure an XML request message for the operation that you
want to perform in the web service application.

Use the Request Message Editor to create a request message. The request message is in XML format. You
can use the sample request message for the operation and then customize the request message to specify
the data that you want to enter into the data flow.

To customize your request, copy the request message from the sample template to the Request Message
Editor pane where you can edit the XML message and add the attributes for the request. Remove
unnecessary and empty tags from the request message to avoid operation failure.

If you have not defined the request body or parameters in the OpenAPI specification, the request message
template displays a static field named Request_Port. Copy the request message from the sample template to

35

the Request Message Editor pane where you can edit the XML message and add the attributes for the
request.

Header fields, path parameters, and query parameters appear as fields in source, target, midstream
transformations.

Parameterizing the input values in a request message
You can use in-out parameters to represent input values in a request XML.

Configure the in-out parameters in the Mapping Designer. From the Mapping Design page, you open the
parameters panel and configure an in-out parameter.

The following image shows a configured empID in-out parameter value:

After you configure a parameter, use the parameter name in the following format, $$Name, in a request
message. The XML uses the values of fields from the parameterized object.

For example, you want to use parameterized empID in an XML Request for a CouchDB_INPUT operation.

The following sample request shows the parameterized values that you can specify in an XML request:

<!--1 or more repetitions:-->
<proc:CouchDB_INPUT xmlns:proc="http://xml.schemas/infa/procedure/">
 <!--Optional:-->
 <CouchDB>
 <!--1 or more repetitions:-->
 <emp>
 $$empID
 </emp>
 </CouchDB>
</proc:CouchDB_INPUT>

36 Chapter 3: REST V2 operations

Configuring values for in-out parameters in a mapping
You can use an in-out parameter that holds a variable value that can change each time a task runs to manage
incremental data loading.

Add the in-out parameterized field in complex expressions in a mapping if you want to update the parameters
when each task runs. The in-out parameter acts like a placeholder for a value that stores a task stage. Data
Integration evaluates the parameter at runtime based on the specified configuration.

For example, you can use the following parameterized values in an Expression transformation:

SetVariable($$empID, CONCAT(SUBSTR($$empID,1,3),TO_INTEGER(SUBSTR($$empID,4,2))+1))

In the example, SetVariable function sets the parameter value each time the mapping task runs. You set a
default value for the $$empID parameter. You want to update the value of $$empID by one every time the
task runs.

The following image shows the logic used in expression transformation to assign value to in-out parameter in
the Mapping Designer:

When the task runs, the Secure Agent updates the in-out parameters based on the specified logic in the
expression.

Field mapping in a source transformation
The response message format follows the service response definition in the Swagger or OpenAPI
specification file. You can map response fields from a hierarchical to a relational structure of output groups
and fields.

After you configure an operation for a source and specify the request message, create the relational format
from the hierarchical data to include groups and fields that you want in the output.

To do this, select the elements in the response structure that you want to include as output fields. The Secure
Agent converts the XML response in the hierarchical structure to relational groups at run time.

If you have not defined the response body in the swagger or OpenAPI specification, the field mapping
displays a static field named Response_Port.

The field mapping displays static fields named OtherResponseheaders and OtherCookies that contain
response headers and cookies.

REST V2 source operations 37

Creating packed fields
If you do not want to parse hierarchical elements, you can pack the elements into one field. You can also
pack array elements when you write to the target.

A pack icon appears next to elements on the Field Mapping tab. When you select the pack icon that appears
next to the element, the agent packs the element and its child elements into a single XML string during
runtime. You cannot select fields that are child elements of packed fields in field mapping.

You can unpack fields by clicking on the pack icon.

To pack the fields, click on the pack icon that appears next to the rows element.

The following image shows the packed rows element:

The following sample shows the output of the Rows field in the target file after you run the task:

<infa_packed>
<rows>
<id>52835a523b9b6816ec81e9585b09c987</id>
<key>52835a523b9b6816ec81e9585b09c987</key>
<value>
<rev>1-c7fe1b7b899a9ce50319a47d675af735</rev>
</value>
</rows>
</infa_packed>

REST V2 midstream operations
Create a REST V2 midstream transformation that interacts with the web service application to perform
operations on hierarchical data.

38 Chapter 3: REST V2 operations

When you use REST V2 Connector midstream, you create a business service, associate a REST V2
connection, and the required REST read or write operation for the business service. You can then use the
business service to add operations to the Web Services transformation in the Mapping Designer.

Note: When you configure a business service, the values that appear in the Operations list are based on the
operation IDs listed in the swagger specification file. If the operations IDs listed in the swagger specification
file do not appear in the Operations list, contact Informatica Global Support.

A Web Services transformation connects to the web service application as a web service client to access,
transform, or deliver data. Use the Web Services transformation in the Mapping Designer to construct a web
service request and to parse the web service response.

The following image shows a REST V2 midstream transformation in a mapping:

On the Response Mapping tab of the Web Service transformation, the request generates a response structure
for the specified REST operation from which you can select the elements that you require in the output. The
output groups and keys generate automatically.

The response structure displays the fault output group by default. The fault group contains the request XML,
error code, and error message. The fault group is displayed for the new business services. To map the fault
group for the business services created in the previous version of connector, create new business services
and import them again.

REST V2 target operations
Create a Target transformation in the Mapping Designer to write data to a web service application. When you
select a REST V2 connection for a Target transformation in a mapping, the Secure Agent displays operation
IDs specified in the swagger specification you configure in the connection. You must select an operation
based on the object configured in the connection. When you want to write data that is in relational format to
the web service application, the Secure Agent converts the relational data to a hierarchical format before
writing to web service application.

REST V2 target operations 39

When you configure a REST V2 target, you can select Operations on the Target tab to display the list of valid
operations. The Secure Agent creates target fields based on the request message structure of the operation
you select on the Target tab.

When you write data to a web service application, the Secure Agent includes all the mapped incoming fields
from the source. You can add multiple input sources to write data to a web service application target object
and define the primary and foreign key relationships between the input sources before you run the mapping.
Each input source appears as separate group in the Field Mapping tab in the target transformation. You can
define key relationships in the Field Mapping tab.

Field Mapping in a target transformation
You can map fields that are in a relational structure to the hierarchical structure used by the web service
application.

On the Field Mapping tab for the Target transformation, the fields in the Target Fields appear in hierarchical
format. The target fields are determined by the request message structure of the operation you select for the
Target transformation.

Each source object displays as a group in the Input Fields area. You can select fields in the Input Fields area
to map the fields to the request. If the input fields include multiple input groups, map the groups to the
corresponding nodes in the request. Be sure to map all of the fields that you require in the request.

The following image shows an example of mapped input fields from the source file with the REST V2 target
to update employee details:

Configuring a request that contains array elements
You can construct a request for a REST V2 target and REST V2 midstream transformation that contains array
elements using one of the following methods:

• Create a request using multiple source groups

• Create a request using a single source group

Note: You cannot configure unnamed arrays in the request body.

Creating a request using multiple source groups
If the request message contains an element, for example, phone number of type work of an employee, that
occurs multiple times, the input fields for this element must come from different source groups.

40 Chapter 3: REST V2 operations

To create a request for relational sources, link the source group in the input fields to its parent source group
by using the foreign key.

To decide the parent source group for multi-occurring elements, you must perform the following steps:

• The parent group must be the immediate multi-occurring parent element.

• In the absence of a multi-occurring parent element, map the multi-occurring element to the source group
that is mapped to the root element.

For example, the following image shows the mapping of the multi-occurring element work from the relational
data source to the REST V2 target:

Creating a request using a single source group
To create a request using a denormalized source for a midstream transformation or REST V2 target, perform
the following steps:

1. Include all the fields in a single source file. Ensure that the multi-occuring elements are the last fields in
the denormalized source file.

2. Click Administrator > Runtime Environments and select an agent.

3. Add a new property under Custom Configuration Details.

4. Select Service as Data Integration Server and Type as Tomcat.

5. Specify the name of the property as ALLOW_DUPLICATE_VALUES.

6. Set the value to true.

7. Click Done to save the changes.

8. Map the corresponding source to target fields.

Configuring a request that contains array elements 41

For example, the following image shows the mapping of the field work to an array element of REST V2 target:

Uploading a file to a REST endpoint URL
You can upload a file to a REST endpoint URL as a part of the REST API call.

To pass a file as an input to REST V2 connector, you must set the content-type to either multipart/form-
data or binary in the request. When the swagger definition has Input parameter of type formData, the file
boundary is added to the content of the uploaded file to indicate the start and end of the file. When the
swagger definition has Input parameter of type binary, the content is generated without having the file
boundary.

You must have the formData parameter of type file defined as one of input parameters in swagger. For
example,

{ "name":"file",

"in":"formData",

"description":"file to upload",

"required":false,

"type":"file" }

The following image shows the sample REST V2 object hierarchy:

42 Chapter 3: REST V2 operations

Use one of the following methods to pass a file as an input:

• For the xxx_FilePath input field, specify the complete file path as value in the source. Used for any file
formats.

• For the xxx_FileData input field, pass the Base64 encoded value of the file in the source. Used for file
formats, such as .pdf, .jpg, .xls, and .doc. The length of the Base64 encoded value must not exceed
65535 characters.

• For the xxx_FileData input field, pass the file value as string in the source. Used for plain text file
formats, such as .txt, .JSON, and .xml. The file size must not exceed 65535 characters.

The following image shows a sample swagger file to upload a binary file:

Uploading a file to a REST endpoint URL 43

Parsing response headers
You can parse the header content in a response sent by a REST API endpoint.

Use the headers tag in the swagger file to parse the header content. By using the Set-Cookie tag, you can
also parse the cookie content as part of the header tag. REST V2 Connector parses fields defined in the
swagger file. Any extra fields coming from the web service for header or cookies appear under
OtherResponseHeaders or OtherCookies fields respectively.

Defining Response Headers

"responses" : {

....

"headers": {

"places": {

"type": "string",

"description": "calls per hour allowed by the user"

},

"sessionId": {

"type": "integer",

"description": "date in UTC when token expires"

},

"Set-Cookie/activeSession": {

"type": "string",

"description": "cookies sample"

},

"Set-Cookie/PhoneId": {

"type": "integer",

"description": "cookies sample"

}

}

Note: The Set-Cookie tag is case-sensitive.

Parsing security definitions
You can define security definitions when you perform an operation on a REST API endpoint.

Define the securityDefinitions input parameter in the swagger file and call the security definitions in an
operation. You can use only the basic and apiKey security definitions types with the securityDefinitions
parameter.

Defining securityDefinitions

44 Chapter 3: REST V2 operations

...

"security": [{"type": [],"id": [],"basic_key": []}]

}

}

},

"securityDefinitions": {

"type": {

"type": "apiKey",

"name": "type",

"in": "query",

"default":"json"

},

"id": {

"type": "apiKey",

"name": "id",

"in": "query"

},

"basic_key": {

"type": "basic",

"name": "basicAuth",

"in": "header"

}

}

If you want to connect to a web service that uses OAUTH version 2.0, provide the values of authentication
details as custom header fields or query parameters in a request message.

Rules and guidelines for REST V2 operations
Consider the following rules and guidelines for REST V2 Operations:

• You cannot validate a request message.

• Elements related to header fields, path parameters, and query parameters appears as input fields in
Source, Target, and Midstream transformations.

• You cannot configure a proxy server on which authentication is enabled.

• To parse xml elements in request and response structures, ensure that the element is enclosed within a
parent element. For example:
<parentElement><childElement>xyz</childElement></parentElement>

Rules and guidelines for REST V2 operations 45

• You can only use Integer, Decimal, and Long data types. Set type as normal and format as int64 for fields
that contain values of Long data type in the swagger specification file.

• You can use packed field only in a Source transformation.

• You cannot use extended ASCII characters and I18N characters in a field name for JSON payload.

• You cannot use special characters in the field name for query parameters and operation names.

• You must specify operationId for all operations in the OpenAPI specification file.

• You cannot use special characters in the array type fields.

• When you use application/xml or application/x-www-form-urlencoded media type to process data, do not
use special characters, such as &, >, and < in data for headers, body, query parameters, and input fields.
These characters are transformed in the target API to an encoded format. For example, & is encoded as
&.

• If you use invalid XML tags or special characters, such as &, >, and < in body and input fields in the
application/xml media type, the task throws an exception during XML validation. For example, if input data
is <BODID>infor-nid:infor:15101113565:?Employee&verb=Sync</BODID>, the following error message
appears based on the input data:
[ERROR][Fatal Error] :1:516: The reference to entity "verb" must end with the ';'
delimiter
You can ignore the error message.

• You must not create in-out parameters for advanced properties, such as Page Parameter, Start Page, End
Page, and Override URL.

• REST V2 Connector overrides the Content-Type and Accept headers.

• If an endpoint API path contains spaces, you must define the path as path parameter.

• If the swagger URL you specify is not accessible or the proxy server is not accessible, mappings fail and
one of the following errors is logged in the session log. The behavior is same for the source, midstream,
and target mappings.

- [ERROR] com.informatica.sdk.helper.common.ApiException: java.net.UnknownHostException:
inv28pers108Communication exception, Proxy settings might be incorrect.

- [ERROR] com.informatica.sdk.helper.common.ApiException: java.net.ConnectException:
Connection refused: connectCommunication exception, Proxy settings might be incorrect.

• You can define a page parameter on the request input field if the payload is of type JSON. The page
parameter gets resolved only when the JSON request payload is an unnamed object. For example:
"body" : {
"a" : "ty",
"b" : 0
}
The page parameter does not get resolved in the following scenarios:

•When the JSON request payload is a named object.

•The parameter defined is a nested input element.

•The parameter defined is an array element.

•When the payload is of type XML.

• You can define default values for request input parameters except for the body and securityDefinitions
parameters. For example:
"parameters": {
"keyReference": {

46 Chapter 3: REST V2 operations

"name": "keyReference",
"in": "header",
"required": false,
"type": "integer",
"default": 123
}
}
Default values are applicable to integer, string, boolean, and array of primitive types fields.

• When you use the REST V2 Connector as source, the default values defined in the swagger file are not
honored if you pass empty values for input parameters in the request message editor. If you do not
provide values in request message fields and want the fields to pick up default values defined in the
swagger definition, you must remove the fields from the request message editor.

• If the default value for an input parameter is defined as blank, the blank value is treated as NULL unless
you set the value explicitly in a mapping.

• You cannot define XML attributes using inline elements in the swagger file. Define XML attributes as
separate elements in the swagger file and refer the XML attributes to extract data.

• When you use a REST V2 connection to configure a source or target operation and try to modify the object
by manually typing a valid name in the Operation field, the task fails with the following validation error:
Error occurred validating object: Selected connection does not support this operation.
Workaround: Select the same operation from the Select... dialog box and run the task again.

• When you read JSON data with an array of response, the session log contains only the first instance of the
array.

• When you define parameters in the request body, ensure that the name under parameters and definitions
is the same. In the following example, if the parameter name is getAccounts, the definition name in $ref
must also be getAccounts:

"parameters": {
"name": "getAccounts",
"in": "body",
"required": true,
"schema":{
"$ref":"#/definitions/getAccounts"
 }

• You can either define an attribute or a value in a single XML element. The following example where a
single XML element contains both an attribute and a value is not applicable:

<wd:ID wd:type="Organization_Role">Manager</wd:ID>

Rules and guidelines for REST V2 operations 47

C h a p t e r 4

Mappings and mapping tasks
with REST V2 Connector

Use the Data Integration Mapping Designer to create a mapping. When you create a mapping, you configure a
source or target to represent a Rest V2 object. In advanced mode, the Mapping Designer updates the
mapping canvas to include transformations and functions that enable advanced functionality.

REST source transformation in mappings
When you configure a Source transformation, select the REST V2 connection and choose an operation to
represent a web service source.

You can select an operation for the source through the connection. Configure the request message using the
request message template. You can parameterize the input values in the request XML. Configure the paging
attributes.

You can view the response structure in the field mapping. When you map the elements from the response
structure to the output fields, the Secure Agent creates the output groups, along with the primary and foreign
keys for the field names. When you deploy the mapping in a mapping task and run the task, the Secure Agent
reads the data from web service.

Advanced source properties
In a mapping, you can configure a source to represent a web service application source. For the REST source
connections used in a mapping, you can configure advanced properties in the Source tab in the Mapping
Designer.

48

The following table describes the advanced properties that you can configure in a source:

Property Description

Paging Type Specify one of the following values:
Page. Enables paging and considers the values of Page Parameter, Start Page, End Page, and End
of Response Expression properties.
None. Ignores the values of Page Parameter, Start Page, End Page, and End of Response
Expression properties.

Page
Parameter

The name of the parameter that you want to use for the paging operation. You can use a query
parameter or a path parameter.
The parameter must be of the integer type and from the request message.

Start Page The page number that indicates the first page in the range, on which you want to perform the
paging operation.

End Page The page number that indicates the last page in the range, on which you want to perform the paging
operation. The default is 10000.
Paging stops when the End Page is reached or the End of Response Expression is met.

Page Increment
Factor

An integer to increment the Page Parameter. Page Increment Factor must be same as the number
of records being fetched per request. If the Page Increment Parameter option is not same as the
number of records being fetched per request, you might have missing or duplicate records between
two calls.

End of
Response
Expression

Specify an expression or a string to control paging. You can observe one of the following behaviors:
- If you specify a string or an expression, the paging stops when the value matches with the page

response. It does not parse the page that has matching end of response.
- If you do not specify a string or an expression, the paging stops on reaching a page that has an

empty or a Null response. If an empty or a Null response is never reached, the paging stops at
the default end page.

- If you specify both, End Page and End of Response Expression, the paging stops on whichever
condition is met first.

- If you do not specify End Page and End of Response Expression, the paging stops on reaching an
empty or a Null response. If an empty or a Null response is never reached, the paging stops at
the default end page.

Override URL Overrides the URL specified in the swagger specification. The override URL cannot have query
parameters. When a path parameter is included in the Override URL, enclose the path parameter
with curly brackets {}. For example:
URL specified in the swagger specification: http://invr28pers102:13080/sample/day/
20170505?a:b
If you define 20170505 as a path variable with the path variable name as path1, the Override URL
will be as follows: http://invr28pers102:13080/sample/day/{path1}

REST source transformation in mappings 49

Property Description

Tracing Level Amount of detail that appears in the log for the source.
Use the following tracing levels:
- Terse
- Normal
- Verbose Initialization
- Verbose
Default is normal.

Cache Size for
Web Service
Response (KB)

Memory available for the web service response.
If the web service response contains many rows or columns, you might want to increase the cache
size. Default is 1024 KB. Maximum is 99999 KB.

Sample End of Response Expression

Use End of Response Expression for paging. The following snippet shows a sample response for a page :

{

"code": "SUCCESS",

"validationResult": [],

"systemErrors": [],

"patientResponseData": [],

"count": 0,

"message": "Unable to retrieve the implant details"

}

For End of Response Expression, you can use the string, Unable to retrieve the implant details. If you want to
match multiple conditions in the response page, you can use the following expression:

(.*)"patientResponseData": [](.*)Unable to retrieve the implant details

The above expression ensures that the paging will stop when both "patientResponseData": [] and Unable to
retrieve the implant details are matched in the page response.

50 Chapter 4: Mappings and mapping tasks with REST V2 Connector

REST source mapping example
You are a human resources administrator and you want to extract contact information, such as first name,
last name, email, and phone number of employees from Apache CouchDB to a flat file.

1. Create a REST connection. Verify that you specify the absolute path or the hosted URL of the swagger
specification file, and the authentication method in the connection properties.

The following image shows the configured REST connection:

2. Create a flat file connection to write data to the flat file.

3. Create a REST mapping.

The following image shows the REST mapping:

4. Add a Source transformation. Specify a name and description in the general properties.

5. On the Source tab, perform the following steps:

a. In the Connection field, select the configured REST connection to connect to the Couch database.

REST source transformation in mappings 51

b. In the Operation field, select CouchDB as the operation.

The following image shows the CouchDB operations:

c. In the Request Options section, configure the request message in the following XML format, specify
the attributes in the message, and validate the message:

<!--1 or more repetitions:-->
<proc:CouchDB_INPUT xmlns:proc="http://xml.schemas/infa/procedure/">
 <!--Optional:-->
 <CouchDB>
 <!--1 or more repetitions:-->
 <emp>
 $$empID
 </emp>
 </CouchDB>
</proc:CouchDB_INPUT>

The request message fetches the details of an employee based on the specified employee ID.

d. In the Advanced Properties section, set the tracing level to Normal, and use the default cache size
of 1024 KB.

6. On the Field Mapping tab, select the elements, such as _id, FirstName, and LastName in the response
structure that you want to map to the output fields.

The following image shows the response structure on the left pane in a hierarchical format and the
output groups on the right pane in a relational format:

The Secure Agent creates two output groups, workPhoneNumber and couchDB_out, which results in two
relational output files. Primary and foreign keys are auto-generated.

52 Chapter 4: Mappings and mapping tasks with REST V2 Connector

7. Add three Target transformations and specify the target objects for each of the transformations.
Perform the following steps:

a. Select a flat file connection for each of the target transformations to write data to the flat files.

b. Create target objects workPhoneNumber.csv, couchDB_out.csv, and NewTarget.csv files to write
data to the target.

c. Select the output group from CouchDB that you want to link to the target objects.

8. Add an Expression transformation, and include a SetVariable function and the parameterized value $
$empID in the expression so that the task updates the value of empID by one at the end of each run.

The following image shows the configured expression that utilizes the in-out parameters:

9. Click New > Tasks > Mapping Task, and select the mapping for the task.

10. When you save and run the mapping task, the Secure Agent retrieves employee records from CouchDB
and writes the data to the corresponding flat files.

REST midstream transformation in mappings
Before you configure a midstream transformation, you must create a business service from the New >
Components tab. You must select a REST V2 connection and an operation when you create a business
service.

When you configure the midstream transformation, select the business service and the operation on the Web
Service tab.

You can map the input fields from source file to elements in request structure on the Request Mapping tab.

You can view the response structure in the field mapping. When you map the elements from the response
structure to the output fields, the Secure Agent creates the output groups, along with the primary and foreign
keys for the field names.

REST midstream transformation in mappings 53

Advanced midstream properties
The following table describes the advanced properties that you can configure for a midstream
transformation:

Property Description

Paging Type Specify one of the following values:
Page. Enables paging and considers the values of Page Parameter, Start Page, End Page, and
End of Response Expression properties.
None. Ignores the values of Page Parameter, Start Page, End Page, and End of Response
Expression properties.

Page Parameter The name of the parameter that you want to use for the paging operation. You can use a query
parameter or a path parameter.
The parameter must be of the integer type and from the request message.

Start Page The page number that indicates the first page in the range, on which you want to perform the
paging operation.

End Page The page number that indicates the last page in the range, on which you want to perform the
paging operation. The default is 10000.
Paging stops when the End Page is reached or the End of Response Expression is met.

Page Increment
Factor

An integer to increment the Page Parameter. Page Increment Factor must be same as the
number of records being fetched per request. If the Page Increment Parameter option is not
same as the number of records being fetched per request, you might have missing or duplicate
records between two calls.

End of Response
Expression

Specify an expression or a string to control paging. You can observe one of the following
behaviors:
- If you specify a string or an expression, the paging stops when the value matches with the

page response. It does not parse the page that has matching end of response.
- If you do not specify a string or an expression, the paging stops on reaching a page that has

an empty or a Null response. If an empty or a Null response is never reached, the paging stops
at the default end page.

- If you specify both, End Page and End of Response Expression, the paging stops on whichever
condition is met first.

- If you do not specify End Page and End of Response Expression, the paging stops on reaching
an empty or a Null response. If an empty or a Null response is never reached, the paging stops
at the default end page.

Override URL Overrides the URL specified in the swagger specification. The override URL cannot have query
parameters. When a path parameter is included in the Override URL, enclose the path parameter
with curly brackets {}. For example:
URL specified in the swagger specification: http://invr28pers102:13080/sample/day/
20170505?a:b
If you define 20170505 as a path variable with the path variable name as path1, the Override
URL will be as follows: http://invr28pers102:13080/sample/day/{path1}

Cache Size for
Web Service
Request (KB)

Default is 100 KB. If the request is more than 100 KB, you can increase the cache size.

Cache Size for
Web Service
Response (KB)

Memory available for the web service response. If the web service response contains many rows
or columns, you might want to increase the cache size. Default is 100 KB.

54 Chapter 4: Mappings and mapping tasks with REST V2 Connector

Property Description

Allow Input Flush Not Applicable.

Transaction
Commit Control

Not Applicable.

Midstream transformation mapping example
You are a human resources administrator and you want to retrieve details of an employee from Apache
CouchDB.

To retrieve employee details from CouchDB and to write the employee details to a flat file, perform the
following tasks:

1. Create a REST V2 connection to read data from CouchDB.

The following image shows the configured CouchDB connection:

2. Create a business service to associate the REST V2 connection and an operation.

REST midstream transformation in mappings 55

The following image shows the configured business service:

3. Create a REST V2 mapping.

4. Add a Web Services transformation. Specify a name and description in the general properties.

5. On the Web Service tab, select the business service and the operation that you configured. Also, specify
paging parameters.

The following image shows the configured web service:

56 Chapter 4: Mappings and mapping tasks with REST V2 Connector

6. On the Request Mapping tab, map the incoming fields from the source to the respective fields in
CouchDB.

7. On the Response Mapping tab, select the employee details fields that you want to write to the target file
on the Response Structure.

8. On the Advanced tab, specify the cache size details.

The fields that you selected from the Response Structure of the Web Service transformation appear as
incoming fields for the target object.

9. If required, map the incoming fields to the flat file fields.

10. Click New > Tasks > Mapping Task, and select the mapping for the task.

11. When you save and run the mapping task, the Secure Agent retrieves the employee record for the
employee that you map on the Request Mapping tab from CouchDB and writes the data to the
corresponding flat files.

REST midstream transformation in mappings 57

REST V2 targets in mappings
When you select a REST V2 connection for a Target transformation, you can select an operation. The
operation is based on the swagger specification file that you specify during the REST V2 connection
configuration.

You can add multiple input groups into the REST target and define the primary and foreign key relationships
between the multiple input groups before the mapping.

Advanced target properties
In a mapping, you can configure a target to represent a REST target. For REST target connections used in a
mapping, you can configure advanced properties in the Targets page of the Mapping Task wizard.

The following table describes the advanced properties that you can configure in a Target transformation:

Property Description

Paging Type Specify one of the following values:
Page. Enables paging and considers the values of Page Parameter, Start Page, End Page, and
End of Response Expression properties.
None. Ignores the values of Page Parameter, Start Page, End Page, and End of Response
Expression properties.

Page Parameter The name of the parameter that you want to use for the paging operation. You can use a query
parameter or a path parameter.
The parameter must be of the integer type and from the request message.

Start Page The page number that indicates the first page in the range, on which you want to perform the
paging operation.

End Page The page number that indicates the last page in the range, on which you want to perform the
paging operation. The default is 10000.
Paging stops when the End Page is reached or the End of Response Expression is met.

Page Increment
Factor

An integer to increment the Page Parameter. Page Increment Factor must be same as the
number of records being fetched per request. If the Page Increment Parameter option is not
same as the number of records being fetched per request, you might have missing or duplicate
records between two calls.

End of Response
Expression

Specify an expression or a string to control paging. You can observe one of the following
behaviors:
- If you specify a string or an expression, the paging stops when the value matches with the

page response. It does not parse the page that has matching end of response.
- If you do not specify a string or an expression, the paging stops on reaching a page that has

an empty or a Null response. If an empty or a Null response is never reached, the paging
stops at the default end page.

- If you specify both, End Page and End of Response Expression, the paging stops on
whichever condition is met first.

- If you do not specify End Page and End of Response Expression, the paging stops on
reaching an empty or a Null response. If an empty or a Null response is never reached, the
paging stops at the default end page.

58 Chapter 4: Mappings and mapping tasks with REST V2 Connector

Property Description

Override URL Overrides the URL specified in the swagger specification. The override URL cannot have query
parameters. When a path parameter is included in the Override URL, enclose the path parameter
with curly brackets {}. For example:
URL specified in the swagger specification: http://invr28pers102:13080/
sample/day/20170505?a:b
If you define 20170505 as a path variable with the path variable name as path1, the Override
URL will be as follows: http://invr28pers102:13080/sample/day/{path1}

Cache Size for Web
Service Request
(KB)

Memory available for the web service request. If the web service request contains many rows or
columns, you might want to increase the cache size. Default is 1024 KB.

Transaction
Commit Control

Control to commit or roll back transactions based on the set of columns that pass through the
transformation. Use the transaction commit control if you have a large amount of data and you
want to control how it is processed.
Does not apply when you select Transformation Scope as Transaction for real-time
processing.

Transformation
Scope

The method in which the Secure Agent applies the transformation logic to incoming data.
Default is All Input.
To process data from a real-time source, select the transformation scope as Transaction.
For a source, which is not real-time, select the transformation scope as All Input.
You can connect only one effective real-time source to a real-time target.

Input settings properties
You can enable Sorted Input under Input Settings. Sorted Input indicates that input data is presorted. Default
is disabled.

Enable sorted input for better performance.

Note: When Sorted Input is enabled and the input is not sorted, the Secure Agent does not process input and
the mapping fails.

REST target mapping example
You are a human resources administrator and you want to update details of an employee in Apache
CouchDB.

To update employee details in CouchDB from a flat file, perform the following tasks:

1. Create a flat file connection to read data from the flat file.

2. Create a REST connection to write data to CouchDB.

REST V2 targets in mappings 59

The following image shows the configured CouchDB connection:

3. Create a CouchDB mapping.

4. Add a Source transformation to include the flat file object that contains the employee details. Add the
flat file connection.

5. Add a Target transformation to write the employee details to CouchDB. Perform the following tasks on
the Target tab:

a. In the Connection field, select the REST connection to connect to CouchDB.

b. In the Operation field, select CouchDBPost as the operation.

60 Chapter 4: Mappings and mapping tasks with REST V2 Connector

The following image shows the CouchDBPost in the list of write operations:

c. In the Advanced Properties section, set the cache size and the transaction commit interval.

6. On the Field Mapping tab, select the input elements to map to the target fields.

The following image shows all the mapped fields between the input file and the CouchDB target:

7. When you save and run the mapping in a mapping task, the Secure Agent updates the employee details
in CouchDB.

REST V2 targets in mappings 61

C h a p t e r 5

Swagger File Generation
Specify the path to a Swagger file that defines the REST service when you configure the connection. You can
generate a Swagger file in Administrator.

Informatica Intelligent Cloud Services supports Swagger specification version 2.0. When you generate a
Swagger file in Informatica Intelligent Cloud Services, you send an API call to the service using a request. If
you do not have permissions to send an API call to the service, you can generate a Swagger file using a
request and a sample response without submitting an API call.

You cannot modify a Swagger file once it is created. If you want to make changes in a Swagger file, create a
new Swagger file.

Note: The swagger file generation functionality is available for the convenience of the REST V2 customers.
Informatica does not warranty the compatibility of the swagger file for all customer scenarios.

Generating a Swagger File
You can generate a swagger file for REST V2 connections from the Swagger Files page in Administrator.

1. Click New.

2. Enter a name and description for the swagger file.

3. Specify the swagger details. The following table describes parameters to create a swagger file:

Parameter Description

Runtime
Environment

Mandatory. Name of the runtime environment used to generate the swagger file.

URL Mandatory. URL consists of the host name and port number. For example: http://
localhost:8000

Verb Select the REST method being used by the web service. The supported methods are:
- GET
- POST
- PUT
- DELETE
- PATCH

62

Parameter Description

Authentication
Type

If required, select the authentication method to login to the web service application. Default
is none.

API Base Path The path on which the API is served. The base path is the one specified after the hostname
and port. For example, if the REST web service URL is http://localhost:8000/
greetings, the base path will be /greetings.

API Path The path specified after the base path is API path. For example, if the REST web service
URL is http://localhost:8000/greetings/hello, the API path will be /hello.
To define a path parameter, enclose the path, which is being treated as variable with curly
brackets {}.
For example, if the REST web service URL is https://localhost:8080/sample/
Stringoperation/concat/str1/str2?id=123 and concat is a variable in this path,
define the API path as below:
Stringoperation/{concat}/str1/str2?id=123
You can define any number of path parameters.
Note: The API path can include the query parameters. If you define the query parameters
with the API path, do not specify the query parameters in the Query Params field.

Username The user name to login to the web service application.
Required for Basic and Digest authentication types.

Password The password associated with the user name.
Required for Basic and Digest authentication types.

Token The access token to connect to the web service application.
Required only for OAuth authentication type.

Token Secret The password associated with the OAuth token.
Required for OAuth authentication type.

Consumer Key The client key associated with the web service application.
Required for OAuth authentication type.

Consumer Secret The client password to connect to the web service application.
Required only for OAuth authentication type.

Accept Select the MIME type.

Headers Define header parameters in JSON format. For example: {"Accept-Charset":"utf-8"}
Maximum length is 1020 characters.

Query Params Provide query parameters in JSON format. For example:
{"name":"subject","description":"The subject to be greeted."}
Defining query parameters in the Query Params field adds the query parameters as input
parameters in the Swagger specification file.
If you define the query parameters in Query Params, do not specify the query parameters in
the API Path field.
Maximum length is 1020 characters.

Generating a Swagger File 63

Parameter Description

Operation ID Mandatory. A unique text identifier for the API path.

Content Type Select the MIME type.

Raw Body Enter the request body content. If you select application/x-www-form-urlencoded in
the content type, specify the raw body parameters in the key-value pair. Each key-value pair
starts with a new line. Example:
a : b
c : d
e : f
Not applicable to the GET method.

JSON Response
File

Optional. Upload the JSON response file if you want to generate the swagger definition
from the response file. No call is made to the REST endpoint if you select the JSON
response file.
If you do not provide the JSON response file, a call is made to the REST endpoint to fetch
the response for generating swagger definition.

4. Click Save to generate the swagger file. An entry for the swagger file appears in the Swagger Files page.

In case of failure while connecting to the web service, the fault response obtained from the web service
is logged in the Swagger Files page.

5. Click the download icon to save the Swagger file in a local directory.

To use the swagger file in the REST V2 connection, copy the file to the Secure Agent system where you
will create a REST V2 connection.

64 Chapter 5: Swagger File Generation

A p p e n d i x A

Swagger objects
The following table lists swagger objects with field names honored by REST V2 Connector:

Object Category Configurable Objects or Fields

Swagger swagger
info
host
basepath
schemes
consumes
produces
paths
definitions
parameters
responses

Paths /{path}

Path Item $ref
get
put
post
delete
parameters

Operation Summary
operationId
consumes
produces
parameters
responses
schemes
If operation ID value is not defined, the value of summary field is treated as operation ID.

65

Object Category Configurable Objects or Fields

Parameter Type path
query
header
formData
cookie
body

Parameter Fields name
In. If in is body, the supported field is schema. If in is any value other than body, the
supported fields are type, format, and items.
required
default. Not applicable to the body and securityDefinitions parameters.

Items type
format
items

Response schema

Schema $ref
format
type
items
properties
xml

Definitions {name}

securityDefinitions {name}
You can configure Basic and apiKey security definitions types.

xml name. Works only when used with the wrapped object.
attribute
prefix
namespace
wrapped

Important: Rest V2 Connector does not process objects and fields other than the listed above, in the swagger
definition.

66 Appendix A: Swagger objects

A p p e n d i x B

OpenAPI objects
The following table lists OpenAPI objects with field names honored by REST V2 Connector:

Object Category Configurable Objects or Fields

openapi openapi
info
servers
paths
components

Paths /{path}

Path Item operationId
parameters
requestBody
responses

Parameter Type path
query
header
formData
cookie

requestBody description
content

responses status code such as 200
content

components schemas
requestBodies

67

Object Category Configurable Objects or Fields

requestBodies description
content

Schema $ref
format
type
items
properties
xml

68 Appendix B: OpenAPI objects

I n d e x

C
Cloud Application Integration community

URL 5
Cloud Developer community

URL 5
configuring

TLS authentication 30, 31
Configuring a Request 35
connections

REST V2 18

D
Data Integration community

URL 5

F
field mapping

packed fields 38
Field Mapping 37
foreign key 58

G
generating Swagger files 62

H
header fields 18

I
Informatica Global Customer Support

contact information 6
Informatica Intelligent Cloud Services

web site 5
Input Settings Properties 59

M
maintenance outages 6
Midstream Operations 38
Midstream Transformation Mapping 55

O
operation ID 18

Operations 35

P
packed fields

field mapping 38
Parameterizing 36
path parameters 18

Q
query parameters 18

R
request details 18
Request Message 36
Request Message Editor 35
response details 18
REST V2

connection properties 18
OpenAPI objects 67
swagger objects 65

REST v2 connection
Swagger file generation 62

REST V2 Connector Overview 7, 11

S
Source Transformation 37
Source Transformation in Mappings 48
status

Informatica Intelligent Cloud Services 6
Swagger files

generating 62
swagger specification 18
system status 6

T
Target Mapping 59
Target Properties 58
Target transformation, 58
trust site

description 6

U
upgrade notifications 6

69

Upload
file 42 W

web site 5

70 Index

	Table of Contents
	Preface
	Informatica Resources
	Informatica Documentation
	Informatica Intelligent Cloud Services web site
	Informatica Intelligent Cloud Services Communities
	Informatica Intelligent Cloud Services Marketplace
	Data Integration connector documentation
	Informatica Knowledge Base
	Informatica Intelligent Cloud Services Trust Center
	Informatica Global Customer Support

	Chapter 1: Introduction to REST V2 Connector
	REST V2 Connector assets
	Basic structure of the Swagger and OpenAPI specification file
	Media types and operations
	Array of objects
	XML objects in swagger specification

	Chapter 2: Connections for REST V2
	Prerequisites
	Connect to REST V2
	Before you begin
	Connection details
	Authentication types
	Advanced settings
	Related links

	Secure communication with TLS authentication
	Generate a truststore
	Generate a keystore
	Configuring one-way or two-way secure communication

	Secure communication in a serverless runtime environment
	Swagger specification file in a serverless runtime environment
	Rules and guidelines for runtime environment
	Rules and guidelines for a REST V2 connection

	Chapter 3: REST V2 operations
	REST V2 source operations
	Configuring a request using Request Message Editor
	Parameterizing the input values in a request message
	Field mapping in a source transformation
	Creating packed fields

	REST V2 midstream operations
	REST V2 target operations
	Field Mapping in a target transformation

	Configuring a request that contains array elements
	Creating a request using multiple source groups
	Creating a request using a single source group

	Uploading a file to a REST endpoint URL
	Parsing response headers
	Parsing security definitions
	Rules and guidelines for REST V2 operations

	Chapter 4: Mappings and mapping tasks with REST V2 Connector
	REST source transformation in mappings
	Advanced source properties
	REST source mapping example

	REST midstream transformation in mappings
	Advanced midstream properties
	Midstream transformation mapping example

	REST V2 targets in mappings
	Advanced target properties
	Input settings properties
	REST target mapping example

	Chapter 5: Swagger File Generation
	Generating a Swagger File

	Appendix A: Swagger objects
	Appendix B: OpenAPI objects
	Index

