
Informatica® ActiveVOS
9.2.4.6

Server User Guide

Informatica ActiveVOS Server User Guide
9.2.4.6
March 2020

© Copyright Informatica LLC 1993, 2023

This software and documentation contain proprietary information of Informatica LLC and are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright law. Reverse engineering of the software is prohibited. No part of this document may be reproduced or transmitted in any
form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC. This Software may be protected by U.S. and/or
international Patents and other Patents Pending.

Use, duplication, or disclosure of the Software by the U.S. Government is subject to the restrictions set forth in the applicable software license agreement and as
provided in DFARS 227.7202-1(a) and 227.7702-3(a) (1995), DFARS 252.227-7013©(1)(ii) (OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14 (ALT III),
as applicable.

The information in this product or documentation is subject to change without notice. If you find any problems in this product or documentation, please report them to
us in writing.

Informatica, Informatica Platform, Informatica Data Services, PowerCenter, PowerCenterRT, PowerCenter Connect, PowerCenter Data Analyzer, PowerExchange,
PowerMart, Metadata Manager, Informatica Data Quality, Informatica Data Explorer, Informatica B2B Data Transformation, Informatica B2B Data Exchange Informatica
On Demand, Informatica Identity Resolution, Informatica Application Information Lifecycle Management, Informatica Complex Event Processing, Ultra Messaging,
Informatica Master Data Management, and Live Data Map are trademarks or registered trademarks of Informatica LLC in the United States and in jurisdictions
throughout the world. All other company and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © OSS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright © University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright© MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/
Consortium/Legal/2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http://forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/faq.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/
EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://
jdbc.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/lz4/; https://github.com/jedisct1/libsodium/blob/master/
LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe WaInes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

Publication Date: 2023-11-27

https://www.informatica.com/legal/patents.html

Table of Contents

Preface . 5

Chapter 1: Server User Guide . 6
Welcome to Process Server . 6

Installing Configuring and Starting Up the Server. 7

Using ActiveVOS Designer . 7

Using the ActiveVOS Server Administration Console . 8

Using ActiveVOS Central . 8

Accessing Service Endpoints . 8

List of Process Server URLS . 10

Process Server APIs and SDKs . 10

Chapter 2: Security Configurations . 12
Security Configurations . 12

Configuring Authentication for SAML-Secured Services . 13

Securing Process Server Components . 13

Configuring Your Application Server to Work with Process Server Security Roles 15

Chapter 3: Standard for Java-based Service Endpoints for Process
Consumer (My Role) Partner Links . 19
Invoking a Process Using Standard SOAP or Policy-Driven Bindings . 19

Invoking a Process from Java . 21

Chapter 4: Custom Invoke Handlers . 24
Referencing the Custom Invoke Handler Interface in a Java-Based Implementation 25

Adding the Custom Invoke Handler Attribute to the Process Deployment Descriptor 26

Packaging the Custom Invoke Handler as an EJB . 27

Deploying Custom Invoke Handler Files . 28

4 Table of Contents

Preface
This module contains information on using and configuring Process Server.

5

C h a p t e r 1

Server User Guide
This chapter includes the following topics:

• Welcome to Process Server , 6

• Installing Configuring and Starting Up the Server, 7

• Using ActiveVOS Designer , 7

• Using the ActiveVOS Server Administration Console , 8

• Using ActiveVOS Central , 8

• Accessing Service Endpoints , 8

• List of Process Server URLS , 10

• Process Server APIs and SDKs , 10

Welcome to Process Server
Process Server includes the following components to run and manage Business Process Execution Language
(BPEL) processes.

• Process Server engine and related database configuration files

• Process Console

• Process Central, which is a request, report, and task management application

• Support for custom task management client applications

• Business event processing for business analysis

• User-defined reports

• Catalog resources for updating business process logic and HTML forms

The Process Server engine manages processes, including process versioning (effective and expiration dates),
invocation handlers for partner endpoints, endpoint retry, security, and many other policies, and process
exception management.

The Process Console provides pages to manage deployed and active processes, an alerting system, and
endpoint locations. It also has engine configuration settings for performance monitoring and management.

6

Installing Configuring and Starting Up the Server
Be sure to follow the instructions in the Installation wizard that appears when you launch config_deploy.bat
or config_deploy.sh. These executables are located in the \bin folder of your product installation folder.

Install steps include:

• Perform pre-installation steps to remove older versions and set up engine clustering, if appropriate.

• Follow all steps in the Install and Configuration Prerequisites page.

• Set up the database, as described in the Install and Configuration Configuration page.

• Install the software using the config_deploy script mentioned above.

Configuration steps include:

• Security Configurations

• Securing Process Server Components

• Configuring Your Application Server to Work with Process Server Security Roles

Startup steps include:

• Start your application server to start Process Server.

• Display the Process Console in a Web browser using the following URL:
http://localhost:8080/activevos
Change the port number if it is already in use on your computer.

• Navigate to the License page to add your license.

• Navigate to the Server Status page to start the server.

Using ActiveVOS Designer
ActiveVOS Designer is a comprehensive environment for creating, testing and deploying BPEL processes.

Based on the Eclipse visual framework, ActiveVOS Designer provides a full complement of WS-BPEL 2.0
constructs and supports BPEL4WS 1.1 processes. You can drag items directly from a WSDL file or from a
tools palette onto a Process Editor canvas. As you build your process, the BPEL XML code is automatically
generated and validated. Problems are immediately reported with suggested solutions.

Several shortcuts aid you in creating process flows and data assignments.

Deployment wizards package all required files together into a business process archive and move the archive
to your ActiveVOS server.

Designer also includes support for BPEL4People, Version 1.0 so that you can include human workflow within
BPEL processes. This functionality introduces human workflow into a process for business applications that
require the services of a person in addition to Web services. The human tasks are routed to ActiveVOS
Central at runtime, where users can complete them and send their response back to the process.

Installing Configuring and Starting Up the Server 7

Using the ActiveVOS Server Administration Console
The ActiveVOS Server Administration Console allows you to manage and configure the ActiveVOS engine and
the resources that are deployed into it.

The Administration Console provides several ways to select, inspect, and correct process instances and
related deployment, execution, and server logs, descriptors, WSDL and other resource files.

You can also configure many ActiveVOS engine properties to monitor and manage performance.

System and user-defined reports provide charts and graphs for analyzing active and complete processes and
human tasks.

You can display the Administration Console in a Web browser using the following URL:

http://localhost:8080/activevos

Change the port number if it is already in use on your computer.

Using ActiveVOS Central
ActiveVOS Central is a browser-based application where end-users can manage tasks, requests, and reports.
The tasks are part of a running business process that requires human interaction. Requests are forms that
can be submitted to the server to start a new instance of a deployed business process. Reports display
charts and graphs of interest to various users and groups.

ActiveVOS Central is available at the following URL:

http://localhost:8080/activevos-central

Note that the host and port may be different in your environment.

Users must login to ActiveVOS Central. This requirement means that the ActiveVOS administrator must map
the human task security role (abTaskClient) to all users. For details, see Securing ActiveVOS Server
Components.

When users log in to ActiveVOS Central:

• ActiveVOS Central handles session timeouts, but not authentication. The timeout value is configurable.

• ActiveVOS Central checks to see if any new resources for the user have been deployed to the server

• If new resources have been deployed, then ActiveVOS Central invalidates the cached resources

• The latest resources are available to users when they login

ActiveVOS Central has a debug mode to help developers debug the deployed resources.

Accessing Service Endpoints
When processes are deployed to Process Server, they are made available as service endpoints. Users and
automated business processes start up process instances by submitting a request to a service endpoint.

In Process Console, you can see a list of services by selecting Service Definitions.

Default Service Endpoint: SOAP 1.1

8 Chapter 1: Server User Guide

By default, all services, except REST services, are listed at:

http://localhost:8080/active-bpel/services

This URL displays all services with a SOAP 1.1 binding. A request to start a SOAP 1.1 process can include:

• Binding style of Document Literal, RPC Literal, RPC Encoded, or Policy Driven (handled by policy
assertions)

• Multiple-part message

• Processes that may not be WS-I compliant

• SOAP headers

• Binding to HTTP GET and POST methods

Additional Service Endpoints

In addition to SOAP 1.1, you can use the following service endpoints:

• http..active-bpel/services/SOAP12
SOAP 1.2 services. All services can be invoked except for REST services and the ActiveBpelAdmin
service. Requests may be submitted to services exactly like SOAP 1.1 services, described above.

• http..active-bpel/services/REST
Only REST services can be invoked. A request must be submitted with the following conditions:

- Requests must conform to the input message defined in aeRest.xsd
- HTTP methods HTTP GET, POST, PUT, and OPTIONS

• http..active-bpel/services/XML
All services can be invoked except for REST and the ActiveBpelAdmin service. A request must be
submitted with the following conditions:

- Binding style must be document literal

- Input and output messages must be a single-part element

- Process must be WS-I compliant

- Request is HTTP POST with header content-type of text/xml
• http..active-bpel/services?JSON

All services can be invoked except for REST and the ActiveBpelAdmin service. A request must be
submitted with the following conditions:

- Binding style must be document literal

- Input and output messages must be a single-part element

- Input message must be represented in JSON

- Process must be WS-I compliant

- Request is HTTP POST with header content-type of application/json

• http://host:port/active-bpel/catalog/project:/relative_path_to_resourceFolder
Examples:

http://localhost:8080/active-bpel/catalog/project:/AutoStep/wsdl/telco.wsdl
http://localhost:8080/active-bpel/catalog/project:/AutoStep/schema/telco.xsd

Accessing Service Endpoints 9

List of Process Server URLS
The following table shows a list of available URLs when the Process server is running:

http://<host>:<port>/ Description

activevos Process Console

activevos-central Process Central

activevos-central/inbox Older style task client for B4P processes

active-bpel/services For details, see the Service Endpoints topic.

active-bpel/catalog/project:/
path/to/catalog/ resource-type/
resource-name

Opens a WSDL, schema, or other resource:
http://localhost:8080/active-bpel/catalog/ project:/
HumanTaskDemo/schema/loanRequest.xsd

active-bpel/i18n/
name_of_props.properties

Externalized strings for Process Central multilingual support

active-bpel/avccatalog/project:/
path/to/catalog /
name_of_form.html

Opens Process Central request or task form. Required login with
abTaskClient security role.

activevos/process/processview.jsp?
pid=101&readonly=1&view=2

To make the Active Process Detail view read-only, use the
readonly=1 parameter. To show and hide different components of
the Active Process Detail view, use the view parameter with the
following arguments:
1: default, show all components (Outline, Canvas, Properties)
2: Canvas only
3: Outline and Canvas
4: Canvas and Properties

Process Server APIs and SDKs
Developers can take advantage of several Process Server APIs. The APIs are documented in the Process
Developer Help. Here you will also find sample code and applications.

The following table is a partial list of the Process Server interfaces:

Name Description Service Endpoint
http://<host>:<port>/

Process Central Process Central primarily relies on the
AvosCentralApi service for configuration

active-bpel/services/
JSON/AvosCentralApi

Informatica Business
Process Manager
extensions to WS-HT

Operations for interacting with human tasks, such as
authorize and getInstance

active-bpel/services/
AeB4PTaskClient-
aeTaskOperations

10 Chapter 1: Server User Guide

Name Description Service Endpoint
http://<host>:<port>/

Admin Service Operations to communicate with the Process Console active-bpel/services/
ActiveBpelAdmin

WS-HT Web Service-Human Task operations as described by
the OASIS standards committee

active-bpel/services/
AeB4PTaskClient-
taskOperations

WS-HT Task Feed getMyTasks() operation represented as a RSS or
ATOM syndication feed

active-bpel/services/
REST/AeB4PTaskFeed

XML and JSON
Bindings

Process Server exposes all its processes and services
via simple XML and JavaScript Object Notation (JSON)
bindings

For details, see Process Server
URLS.

Process Server APIs and SDKs 11

C h a p t e r 2

Security Configurations
This chapter includes the following topics:

• Security Configurations , 12

• Configuring Authentication for SAML-Secured Services , 13

• Securing Process Server Components , 13

• Configuring Your Application Server to Work with Process Server Security Roles , 15

Security Configurations
The OASIS WS-Security V1.0 (WSSE) standard establishes a framework for assuring the integrity and
confidentiality of SOAP messages. Message integrity is assured via digital signature, and confidentiality of
message data is achieved via encryption. The standards referenced by WS-Security V1.0 are supported by
Process Server.

To use WS-Security features, you must set up the container in which Process Server is deployed with the
necessary certificates manager or keystores that are often used for standard SSL processing. Also, you must
provide a properties file that contains settings required for Process Server to interact with your platform’s
encryption and certificate management. The properties file is named crypto.properties.

The following properties must be set in crypto.properties to match the your platform:

• org.apache.ws.security.crypto.provider=<provider>
where <provider> must be the default unless a custom provider is supplied that implements the apache
crypto interface. The default is: org.apache.ws.security.components.crypto.Merlin

• org.apache.ws.security.crypto.merlin.keystore.type=<type>
The <type> is based on the format of the keystore, usually jks or pks12.

• org.apache.ws.security.crypto.merlin.keystore.alias=<alias>
The <alias> is the name that the private key and certificate are known by.

• org.apache.ws.security.crypto.merlin.keystore.password=<password>
where <password> is an optional property. Include a password if one is required for a keystore.

• org.apache.ws.security.crypto.merlin.file=<keystore filename>

The keystore must be accessible by the server from the file system using the path specified by
org.apache.ws.security.crypto.merlin.file in crypto.properties. Also, the crypto.properties file must
be available on the server's classpath. The target location of these files varies depending on the target
platform.

12

The following is an example of crypto.properties:

org.apache.ws.security.crypto.merlin.keystore.password=pw
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.file=ae.keystore
org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.alias=myadmin

Configuring Authentication for SAML-Secured
Services

Process Server supports the Security Assertions Markup Language (SAML) standard for exchanging
authentication and authorization data between an identity provider (a producer of assertions) and a service
provider.

To configure Process Server to use SAML policy assertions, you must do the following:

• In the Process Deployment Descriptor (PDD) of your BPEL processes, add a SAML policy assertion for my
roles and/or partner roles that send/receive SAML-authenticated messages. This policy describes
parameters that a service uses to make access control decisions. For details, see SAML in the Process
Developer Help.

• Add a SAML properties section to the Process Server crypto.properties file.

Here is an example of the SAML properties to add:

org.apache.ws.security.saml.issuer.key.name=aeadmin
org.apache.ws.security.saml.issuer.key.password=password
org.apache.ws.security.saml.issuer=http://www.abe-saml-demo.com/saml
org.apache.ws.security.saml.subjectNameId.qualifier=http://www.abe-saml-demo.com/saml

Note that the key name and password must match what you have in the Process Server keystore.

Securing Process Server Components
You can provide permission to groups of users to access Process Serve by configuring the security roles
provided.

Note: Configuration of one role is required. It is abTaskClient, which is required for access to Process
Central. The remaining roles are optional and can be configured during the config-deploy process. However, if
you have a license for the Multi-Tenant feature, you must configure security.

To secure Process Server components:

1. Run the config-deploy utility (the installation utility), and navigate to the Security page if you have
already installed the application.

2. On the Security page, select the checkboxes for the components you want to secure:

• Administrative functions. This setting enables you to configure three levels of authenticated users for
access to the Process Console and deployed processes.

• Process services. This setting enables you to configure authenticated users to initiate process
instances of deployed processes.

Configuring Authentication for SAML-Secured Services 13

• Process Server Identity Service Consumer. This setting enables you to configure authenticated users
of Process Developer to open and use the Identity Service (member directory) configured in Process
Server Console. The Identity Service is a resource used in many types of processes.

3. Complete the config-deploy installation. If you are only setting up security, note that all your other
settings from a previous installation are still in tact.

4. Review the security roles definitions in the table below.

5. Assign the roles to users and groups as desired, to tell your application server to use them.

Process Server Security Roles

The following sections describe the roles that you use to secure Process Central, Process Console, and
deployed processes.

Administrative Functions

These functions add security parameters to the ActiveVOS Consoles and services by setting the following
roles:

abAdmin

Users associated with this role have full administrative rights to ActiveVOS Server.

abBusinessManager

Users associated with this role have access to process instance details (but cannot operate on them).
They can monitor active processes and tasks, and work queues. They have a read-only view of process
instance details.

abDeployer

Users associated with this role have rights restricted to deploying business process archive files to
ActiveVOS Server.

abDeveloper

Users associated with this role have rights restricted to service artifacts, endpoint information, and
sample messages for the services they consume and expose (that is, processes) after they are
deployed. Developers need the ability to deploy process deployment archives, initiate process execution
and analyze them. Developers also need to configure global function contexts for custom functions, URN
mappings, and the ability to schedule process execution. Specifically, this user has access to the Active
Process list, the Process Instance View, the Active Task and Work Queues lists, the Server Log, the
Dashboard and all reports, and the catalog's content.

abOperator

Users associated with this role have rights restricted to operating the system. These include observing
the functionality of processes, managing process instances using the process instance detail view,
running reports, logging, viewing exceptions, acquiring information on service operations, adding and
removing tenants, and managing the scheduled database delete schedule.

abTaskClient

Required. You must configure permission to access ActiveVOS Central for all users. In addition, users
who interact with the Human Task (WS-HT) API must have this role.

ActiveVOS Central presents a login page to users.

Process Services

The process services adds security parameters to the Web Services handler for all deployed BPEL services
with a role. The services listed at http://[host]:[port]/active-bpel/services are secured. The process
services (roles) are:

14 Chapter 2: Security Configurations

abRestrictedServiceConsumer

Users associated with this role cannot access a service unless it is deployed with allowed roles specified
in the pdd and the user belongs to at least of these roles. If no roles are specified in the pdd, access to
services with no roles specified in the pdd are also denied. Users in this role can view the wsdl files for
other services like abServiceConsumer; however, they are blocked at runtime.

abServiceConsumer

Users associated with this role have rights restricted to start process instances of deployed processes,
including from ActiveVOS Central, the Eclipse Web Tools Project, or other client application,such as
SOAPUI.

abTenantAdmin

(For a Multi-Tenant licensed server only.) Users associated with this role have rights to deploy and
manage contributions into a configured tenant on the server.

Based on a Tenant Definition configured by the ActiveVOS Server administrator (with the abAdmin role),
a tenant administrator user can log into the tenant context on the server. A service consumer user can
create process instances for processes deployed to the tenant context.

Identity Service Consumer

The identity service consumer adds security parameters to the Web Services handler for Process Identity
service used by the ActiveVOS Central application using the following roles:

abIdentityListConsumer

Only users associated with this role or abAdmin have rights to submit Web Service requests to the
identity service from Process Developer.

Configuring Your Application Server to Work with
Process Server Security Roles

Setting up secure access to Process Server includes the following steps:

• Run the Process Server config-deploy utility and select security options. When Process Server is
deployed, it is configured to use its security roles.

• Configure your application server to use Process Server security roles by mapping roles to users and
groups (discussed below).

• Configure the security details of your application server for authentication and authorization methods
(discussed below).

Mapping Roles to Users and Groups

Configuring Your Application Server to Work with Process Server Security Roles 15

Each application server has a different set of steps for configuring security for deployed applications. You
must familiarize yourself with your application server environment to understand how to configure the
security methods you need. However, here are some general guidelines and links to documentation.

Application
Server

Setup Guidelines

Tomcat Add a realm to server.xml, connecting to an existing "database" of usernames, passwords, and user
roles.
See examples below.
For an LDAP-based database, add the Process Server security roles to your database and map them
to groups.
Refer to Realm Configuration HOW-TO at the following URL (Tomcat 6.0):
http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html

JBoss Refer to https://docs.jboss.org/author/display/AS71/Admin+Guide
Add a security domain and login module to your chosen configuration file. The security domain must
be named the same as what was selected in the Process Server config-deploy utility. If the name
was not changed in the utility, it defaults to "ActiveVOS". Add roles to one of the following: a set of
user/role files, LDAP-based database, or JDBC-based database.

WebLogic Login to the WebLogic console and set up the LDAP provider, if you have not already done so:
(Navigate to Security Realms. In the default realm, select Providers > Authentication > Default
Authenticator and change the Control Flag from REQUIRED to OPTIONAL. Add and configure your
LDAP provider.)
For details, see Configuring Authentication Providers at http://download.oracle.com/
docs/cd/E13222_01/wls/docs103/secmanage/atn.html
In your security realm, navigate to Roles and Policies. Expand Global Roles, select Roles, and enter
the Process Server security roles.
For details, see Users, Groups, and Security Roles at http://download.oracle.com/docs/cd/
E12840_01/wls/docs103/secwlres/secroles.html

WebSphere Login to the WebSphere console and follow the links similar to this example:
Applications > Application types > WebSphere enterprise applications > Process Server
Look for the Security role to user/group mapping group. Map the existing Process Server security
roles to groups.
Note: You must ensure that WebSphere application security is set up correctly. On the WebSphere
Console navigation area, select Security > Secure administration, applications, and infrastructure.
Then select the checkbox next to Enable Application Security and select Apply.

Tomcat Examples

tomcat\conf\server.xml (file-based configuration)

<Realm className="org.apache.catalina.realm.UserDatabaseRealm"
 resourceName="UserDatabase"/>
 tomcat\conf\tomcat-users.xml file:
 <role rolename="abTaskClient"/>
 <role rolename="abServiceConsumer"/>
 <role rolename="abAdmin"/>
 <user username="admin" password="admin"
 roles="abAdmin, abTaskClient, abServiceConsumer"/>

tomcat\conf\server.xml (LDAP-based configuration)

<Realm className="org.apache.catalina.realm.JNDIRealm" debug="99"
 connectionName="uid=ldapadmin,ou=system"
 connectionPassword="password"
 connectionURL="ldap://<LDAP_Server_name>:<Port>"
 userSubtree="true"

16 Chapter 2: Security Configurations

 userBase="ou=users,o=xyzuser"
 userSearch="(uid={0})"
 roleSubtree="true"
 roleBase="ou=groups,o=xyzrole"
 roleName="cn"
 roleSearch="(uniqueMember={0})"
/>

JBoss Examples

Note: The following two examples are specific to JBoss 7.1.1; other versions require different configurations.
Also, what you see here is just to indicate how you might configure JBoss. What you will actually declare will
almost certainly be different. For all JBoss versions, you must review the JBoss documentation.

[Path] \configuration\ [file.xml] (file-based configuration)

The file name you will enter will be unique to your installation. The only part of the name that will be there is
“configuration”. Here is an example: C:\servers\jboss-as-7.1.1.Final\standalone\configuration
\standalone-full.xml

<security-domain name="ActiveVOS" >
 <authentication>
 <login-module code="RealmUsersRoles" flag="required">
 <module-option name="usersProperties"
 value="${jboss.server.config.dir}/application-users.properties"/>
 <module-option name="rolesProperties"
 value="${jboss.server.config.dir}/application-roles.properties"/>
 <module-option name="realm" value="ApplicationRealm"/>
 <module-option
 name="unauthenticatedIdentity"> anonymous
 </module-option>
 </login-module>
 </authentication>
</security-domain>

${jboss.server.config.dir}/application-roles.properties
 admin=abTaskClient,abAdmin,abServiceConsumer

${jboss.server.config.dir}/application-users.properties
 admin=admin

[Path] \configuration\[Path](LDAP-based configuration)

The file name you will enter will be unique to your installation. The only part of the name that will be there is
“configuration”. Here is an example: C:\servers\jboss-as-7.1.1.Final\standalone\configuration
\standalone-full.xml.

<security-domain name="ActiveVOS">
 <authentication>
 <login-module code="org.jboss.security.auth.spi.LdapExtLoginModule"
 flag="optional">
 <module-option name="java.naming.provider.url"
 value="ldap://myserver:3268"/>
 <module-option name="bindDN"
 value="CN=admin,CN=Users,DC=myDomain,DC=myCompany,DC=local"/>
 <module-option name="bindCredential" value="admin"/>
 <module-option name="baseCtxDN"
 value="DC=myDomain,DC=myCompany,DC=local"/>
 <module-option name="baseFilter"
 value="(sAMAccountName={0})"/>
 <module-option name="rolesCtxDN"
 value="DC=myDomain,DC=myCompany,DC=local"/>
 <module-option name="roleFilter" value="(member={1})"/>
 <module-option name="roleAttributeID" value="memberOf"/>
 <module-option name="roleAttributeIsDN" value="true"/>
 <module-option name="roleNameAttributeID" value="cn"/>
 <module-option name="roleRecursion" value="2"/>
 <module-option name="searchScope" value="SUBTREE_SCOPE"/>
 <module-option name="allowEmptyPasswords" value="true"/>

Configuring Your Application Server to Work with Process Server Security Roles 17

 <module-option name="java.naming.referral" value="follow"/>
 <module-option name="unauthenticatedIdentity" value="aeadmin"/>
 </login-module>
 </authentication>
</security-domain>

18 Chapter 2: Security Configurations

C h a p t e r 3

Standard for Java-based Service
Endpoints for Process Consumer
(My Role) Partner Links

A service endpoint for a process consumer lets you send a message to the Process Server that either creates
a new process instance or gets routed to an existing process instance. In BPEL terminology, the endpoint is
known as a My Role service endpoint. In Process Developer, the My Role endpoint is referred to as the
Process Consumer.

The deployment options for service endpoints are configured as myRole elements within the process
deployment descriptor (PDD) and are automatically published by Process Developer when you deploy a
business process archive (.bpr).

Services can be deployed as SOAP web services, REST-ful HTTP endpoints, or as unpublished services only
accessible to internal clients. Process Server uses the binding attribute on the myRole service to determine
how to deploy the endpoint and make it accessible.

When you create a Process Deployment Descriptor, you can select one of the standard bindings for a myRole
service. You can also create a Java implementation, if desired.

Invoking a Process Using Standard SOAP or Policy-
Driven Bindings

When you create a Process Deployment Descriptor (PDD), you can select one of the standard bindings for a
My Role service. These selections are:

• SOAP Bindings

• Policy-Driven Bindings

• Unpublished

SOAP Bindings

The simplest way to deploy a service endpoint as a Web Service is to select one of the standard SOAP
bindings:

• Document Literal

• RPC Literal

19

• RPC Encoded

You only need to select the binding style and a service name. The SOAP binding elements for the selected
style are generated based on the Port Type and Policies associated with the myRole element in the PDD.

After deployment, Process Server handles the receipt and reply of messages designated for the service
endpoint. The messages are formatted and processed by Process Server based on the binding.

Services are deployed to the engine's internal web service provider. Web services are supported by the Metro
SOAP stack. (Metro was developed by Sun as a core component of the Glassfish project.)

Both SOAP 1.1 and SOAP 1.2 endpoints are deployed for JAX-WS compliant services (Document Literal and
RPC Literal). Legacy bindings such as RPC Encoded are deployed as SOAP 1.1 only.

When a request is received, the URL determines the target service and SOAP version. The last segment of the
path corresponds to the service name specified in the PDD:

• For SOAP 1.1 the URL is:
http://host:port/active-bpel/services/<MyRoleServiceNameInPDD>

• For SOAP 1.2 the URL is:
http://host:port/active-bpel/services/soap12/<MyRoleServiceNameInPDD>

The WSDL for a deployed web service endpoint is accessible at:

http://host:port/active-bpel/services/<MyRoleServiceNameInPDD>?wsdl

A listing of all deployed web services hosted within the Process Server engine is found at the following URL:

http://host:port/active-bpel/services
In the Process Console, select the Service Definitions link.

The WSDL that is published for the service includes standard WS-Policy attachments for policy assertions
including WS-Addressing and WS-Security.

Policy-Driven Bindings

A policy-driven binding defines how a service is exposed using a policy assertion defined on the myRole
element.

There are many policy assertions, but only the following three can be used as a binding:

• Referenced WSDL Binding: As an alternative to letting the engine generate a SOAP binding based on a
given style, you can reference a specific SOAP binding in WSDL by using a Referenced WSDL Binding
policy assertion in the PDD. Use this feature to deploy services with message parts mapped as SOAP
headers or specify non-empty soapAction attributes.

• WS-Reliable Messaging: The presence of WSRM policy dictates that the service is deployed as a Web
service with support for the WS-Reliable Messaging protocol.

• REST: If REST policy is used, a REST-ful service endpoint is exposed using a URL to HTTP clients.

For details about policy assertions, see Endpoint References and WS-Policy.

Unpublished Binding Style

When Unpublished is selected as the binding, the endpoint is not published to the SOAP stack and is only
accessible to internal clients using process invokes or through custom java clients. For details, see Invoking a
Process from Java.

20 Chapter 3: Standard for Java-based Service Endpoints for Process Consumer (My Role) Partner Links

Invoking a Process from Java
Process Server provides an API for dispatching a message directly to the engine. This API is available as an
Enterprise Java Bean (EJB) on platforms that support EJB or as a plain Java API for deployment platforms
without an EJB container.

The following illustration shows an overview of the external and standard implementations of My Role
service endpoints.

The Process Server engine’s Enterprise Java Bean (EJB) binding implements the following interface:

public interface org.activebpel.wsio.receive.IAeMessageQueue
{
 /**)
 * Delivers the message to the BPEL engine's message queue.
 *
 * @param aData
 * @param aContext
 * @return IAeWebServiceResponse
 * @throws RemoteException
 * @throws AeRequestException
 */
 queueReceiveData
 (org.activebpel.wsio.IAeWebServiceMessageData aData,
 org.activebpel.wsio.receive.IAeMessageContext aContext)
 throws RemoteException,
 org.activebpel.wsio.receive.AeRequestException;

where:

• IAeMessageQueue is name of the interface. The package is org.activebpel.wsio.receive.

• IAeWebServiceResponse is the interface for the data or fault that can be returned from the calling service.

• queueReceiveData is a method that a service endpoint can invoke passing in context and data.

• IAeWebServiceMessageData contains the data for the inbound message.

• IAeMessageContext contains the contextual information for the request.

Invoking a Process from Java 21

Steps to Invoke a Process using plain Java or EJB API

Step 1: Include required .jar files on your java project classpath

The API is contained in the following .jar files. If using the plain Java API, only ae_wsio.jar is required, if
using the EJB implementation, both are required in the classpath.

• ae_wsio.jar contains the core interfaces used to send messages to the engine.

• ae_awfwsio.jar contains the required interfaces for interacting with the Process Server engine EJB.

Step 2: Lookup the EJBHome

From Java code, lookup the EJBHome for the AeMessageQueueBean from JNDI context and create an instance
of the bean. For example:

InitialContext ctx = new InitialContext();
object home = ctx.lookup("ejb/AeMessageQueueBean");
Home = (AeMessageQueueHome)
portableRemoteObject.narrow(home,AeMessageQueueHome.class);
eMessageQueueRemote msgQueueBean = mHome.create();

Step 3: Create an instance of AeMessageContext.

The AeMessageContext object contains the relevant details about the My Role partner link from the BPEL
process. These details make up the context for the inbound messages sent to the engine. and are:

AeMessageContext
Parameters

Description

setProcessName Process Qname. The Qname includes the namespace plus the local part of the process
name. In a BPEL source file, this is the target namespace.
Note: You can specify a service name instead of a process/partnerlink name.

setPartnerLinkName Partner link name from the BPEL process

setServiceName Optional. As an alternative to setting the process and partner link name, you may specify
the My Role (Process Consumer) service name. This name is in the Process Deployment
Descriptor Editor on the Partner Links page and is also on the Service Definitions page in
the Process Console.
This property is mutually exclusive with the process name and only one or the other may
be set on the context.

setOperation Operation from the portType of the partner link type defined for My Role

setProcessVersion Optional. Messages are sent to the current process if a process version is not specified.

setPrincipal Optional. This value is used by the engine for performing lookups on deployed partner
definitions when using the "Principal" endpoint type. Identifies the principal name value
for inbound messages. Processes that include human tasks also use this value to
identify the process initiator.

Example code for creating a new message context:

// Create the message context object for the request
/ containing the routing information for the process
eMessageContext context = new AeMessageContext();
context.setProcessName(new QName(aProcessNamespace,aProcessName));
context.setPartnerLink(aPartnerLink);
context.setOperation(aOperation);

Step 4: Create an instance of AeWebServiceMessageData

22 Chapter 3: Standard for Java-based Service Endpoints for Process Consumer (My Role) Partner Links

The context details are as follows:

AeWebServiceMessageData
Parameters

Description

Constructor QName The QName specified in the constructor corresponds to the QName of the WSDL
message associated with the input message

setData Each message part is defined in this parameter. Message parts must be primitive
types like strings, integers, or XML passed as DOM Document object. Complex
types get passed as documents. The XML document must conform to the schema
definition of the complex type. If a message has correlated properties in it, the
engine extracts these properties using the property aliases and routes the
message to the correct process instance.

WSDL Message for the message data object:

<wsdl:message name="creditInformationMessage">
 <wsdl:part name="part1" element="tns:LoanProcessRequest" />
 <wsdl:part name="part2" element="tns:LoanProcessAddress" />
</wsdl:message>

Example code for creating message data object:

AeWebServiceMessageData data = new AeWebServiceMessageData (new
 QName("http://tempuri.org/services/loandefinitions","creditInformationMessage"));
 data.setData("part1", domOfLoanProcessRequest);
 data.setData("part2", domOfLoanProcessAddress);

Invoke the queueReceiveData method on the bean.

IAeWebServiceResponse response = msgQueueBean.queueReceiveData(data,context);
The context details are as follows:

IAeWebServiceResponse Parameter Description

getMessageData() Message data returned from the invoke. See the description of
AeWebServiceMessageData for details.

isFaultResponse() Return true if the response wraps a fault

getErrorCode() Accessor for the error code QName

getErrorString() Returns an error message associated with the fault or null if there is none

getErrorDetail() Returns a stack trace or other detailed information associated with the fault
or null if there was none

getRootCause() Returns a Throwable that is the root cause of the error code

getBusinessProcessProperties() Return a Map of (string) name/value pairs from the business process

Invoking a Process from Java 23

C h a p t e r 4

Custom Invoke Handlers
You can write Java custom handlers to invoke the service endpoints in BPEL processes.

Process Server's standard invocation framework works with the standard deployment of a BPEL process. In
this scenario, a service endpoint is identified in the process deployment descriptor (PDD) with standard
Partner Role attributes. To invoke the endpoint, Process Server uses its internal Web service framework
based on Metro, the Apache SOAP engine. Metro marshals the data from a data structure into a SOAP
message and sends the SOAP message to the service endpoint.

Instead of using the standard framework, you can implement a custom invoke handler to bypass the creation
and transport of SOAP messages over Metro. This means that when an invoke activity executes, you can
route the outbound message directly to a service.

A custom invoke handler is a Java class or EJB container loaded by Process Server that calls out to a Partner
Role service endpoint when the service is invoked within a BPEL process. The handler implements the
Process Server engine's custom invocation interface, IAeInvokeHandler. The BPEL process' deployment
descriptor contains a custom invoke handler attribute for the partner role service.

For example, you may want to:

• Provide a more efficient technique for sending and receiving messages between processes and services
on the same machine. You can create Java objects rather than SOAP messages.

• Provide messaging to an application that is not exposed as a Web service

• Take advantage of your own SOAP engine

The following illustration shows an overview of the custom and standard invocations of Partner Role service
endpoints.

24

Referencing the Custom Invoke Handler Interface in a
Java-Based Implementation

The Process Server’s custom invocation handler implements the following interface:

package org.ActiveVOS.wsio.invoke;
import org.ActiveVOS.wsio.IAeWebServiceResponse;
public interface org.ActiveVOS.wsio.invoke.IAeInvokeHandler
{
 /**
 * Handles the invoke call. Query data will be null if
 * none was specified on the customInvokerUri.
 * @param aInvoke
 * @param aQueryData
 */
 public IAeWebServiceResponse
 handleInvoke
 (IAeInvoke aInvoke, String aQueryData);
}

Referencing the Custom Invoke Handler Interface in a Java-Based Implementation 25

where:

• IAeInvokeHandler is the name of the interface. The package is org.ActiveVOS.wsio.invoke. This
interface imports org.ActiveVOS.wsio.IAeWebServiceResponse.

• IAeWebServiceResponse is the interface for the data or fault that is returned from the calling service.

• handleInvoke is the entry point into the service.

• aInvoke contains the service’s message data and endpoint reference address data from the input
message.

• aQueryData contains additional parameters that can be passed in from the invokeHandler attribute for
the partner role in the process deployment descriptor

Code Sample

The following Java code snippet shows an implementation of the interface’s handleInvoke method. In this
example, a loan approval service receives an amount for a loan approval and returns an “accepted” or
“denied” message based on the maximum loan amount allowed.

public IAeWebServiceResponse handleInvoke(IAeInvoke aInvoke,
 String aQueryData)
{
 // Parse the query data section of the uri to create the
 // message type qname,
 // then create the appropriate response and return.
 Map data = parse(aQueryData);
 Integer maxLoan = new Integer(
 (String)data.get(URI_PARM_MAXLOAN));
 String ns = (String)data.get(URI_PARM_MSG_NAMESPACE);
 String lp = (String)data.get(URI_PARM_MSG_LOCALPART);
 QName messageType = new QName(ns, lp);

 // Get input message data.
 IAeWebServiceMessageData input = aInvoke.getInputMessageData();
 Map input_data = input.getMessageData();
 Integer amount = (Integer)input_data.get(MSG_AMOUNT);

 // Determine response.
 String approval = APPROVER_DENY_RESP;
 if (validateLoan(amount, maxLoan))
 approval = APPROVER_ACCEPT_RESP;

 // Build and return response message. Note that in this example,
 // the implementation is for a request/response invocation.
 // For a request-only invocation, you would not need to
 // setMessageData.
 Map output_data = new HashMap();
 output_data.put(MSG_ACCEPT, approval);
 AeWebServiceMessageData msgData = new
 AeWebServiceMessageData(messageType, output_data);
 AeInvokeResponse response = new AeInvokeResponse();
 response.setMessageData(msgData);
 return response;
}

Adding the Custom Invoke Handler Attribute to the
Process Deployment Descriptor

To bypass the Process Server's standard invocation framework, you must add the custom invoke handler
attribute to the partner role in the Process Deployment Descriptor (PDD) file.

26 Chapter 4: Custom Invoke Handlers

The custom invoke handler attribute tells the engine to use a custom invocation for the partner service. Add
the attribute, along with optional message parameters to pass into the service, and then deploy the business
process archive (BPR) file.

Depending on your invocation implementation, you must specify the URI information for a Java class or EJB
container.

Java Class Implementation

Use the Process Developer's PDD wizard to specify a Java invoke handler. The following syntax show how to
include the custom invoke attribute in the PDD file for a Java class file.

<partnerLink name="qname">
 <partnerRole endpointReference="type"
 invokeHandler="java:org.ActiveVOS.rt.axis.bpel
 .MyInvokeHandler?parameters+
 ...
 </partnerRole>
</partnerLink>

Example:

invokeHandler="java:org.ActiveVOS.rt.axis.bpel.
 AeApproverInvokeHandler?type-namespace=
 http://tempuri.org/services/loanapprover&
 type-localpart=approvalMessage&maxLoan=1000000">

EJB Implementation

The following syntax show how to include the custom invoke attribute in the PDD file for an EJB.

<partnerLink name="qname">
 <partnerRole endpointReference="type"
 invokeHandler="ejb:jndiLocation/
 MyInvokeHandler?parameters+
 ...
 </partnerRole>
</partnerLink>

The jndiLocation defines the context that specifies where to look for the custom invoke handler.

Example:

invokeHandler="ejb:ejb/AeApproverInvokeHandler?type-namespace=
 http://tempuri.org/services/loanapprover&
 type-localpart=approvalMessage&maxLoan=1000000">

Packaging the Custom Invoke Handler as an EJB
If your custom invoke handler is an EJB, you must package the EJB and other files into an EAR archive.

Packaging includes the following:

• JAR files for the custom invoke handler

• Deployment descriptors

Service Implementation Bean class and their dependent classes. These files are ae_wsio.jar,
ae_awfwsio.jar, and qname.jar.

Sample EAR package

META-INF
 Manifest.mf
 jboss-app.xml
 application.xml

Packaging the Custom Invoke Handler as an EJB 27

 name.jar
 customInvokeSample.jar
 ae_awfwsio.jar

The following table describes the contents of the sample EAR file.

Web Application File Description

META-INF
 Manifest.mf

Contains meta-information about the EAR file and can also contain information about
the other files that are packaged in the archive. This file name and pathname are
required for an EAR file.

 jboss-app.xml A representative configuration file from a J2EE server, in this case JBoss

 application.xml Descriptor required for the EAR file

customInvokeSample.jar Custom Invoke handler referencing the IAeInvokeHandler implementation

ae_wsio.jar Contains the core interfaces used to send messages to the engine. The file is located
in the Process Server EAR file.

ae_awfwsio.jar Contains the required interfaces for interacting with the Process Server EJB. The file
is located in the Process Server EAR file.

qname.jar Required for handling WSDL. The file is located in the Process Server EAR file.

Deploying Custom Invoke Handler Files
Follow these instructions for deploying a custom invoke handler to Process Server.

Process Server for Apache Tomcat:

1. Copy your JAR file to [Tomcat installation folder]/lib.

2. Deploy your BPR file using the Process Console or Process Developer.

3. Restart Tomcat.

Process Server Application Servers that Support EARs:

1. Copy your EAR file into your J2EE application server’s deploy server. For example in JBoss, deploy
to[JBoss installation folder]/server/ActiveVOS server/deploy.

2. Deploy your BPR file using the Process Console or Process Developer.

Note: You can deploy the Java class to the Process Server, but you must ensure that the class is on the
classpath of the server EAR file.

28 Chapter 4: Custom Invoke Handlers

	Table of Contents
	Preface
	Chapter 1: Server User Guide
	Welcome to Process Server
	Installing Configuring and Starting Up the Server
	Using ActiveVOS Designer
	Using the ActiveVOS Server Administration Console
	Using ActiveVOS Central
	Accessing Service Endpoints
	List of Process Server URLS
	Process Server APIs and SDKs

	Chapter 2: Security Configurations
	Security Configurations
	Configuring Authentication for SAML-Secured Services
	Securing Process Server Components
	Configuring Your Application Server to Work with Process Server Security Roles

	Chapter 3: Standard for Java-based Service Endpoints for Process Consumer (My Role) Partner Links
	Invoking a Process Using Standard SOAP or Policy-Driven Bindings
	Invoking a Process from Java

	Chapter 4: Custom Invoke Handlers
	Referencing the Custom Invoke Handler Interface in a Java-Based Implementation
	Adding the Custom Invoke Handler Attribute to the Process Deployment Descriptor
	Packaging the Custom Invoke Handler as an EJB
	Deploying Custom Invoke Handler Files

