
Informatica® Data Engineering Integration
10.5.7

User Guide

Informatica Data Engineering Integration User Guide
10.5.7
December 2024

© Copyright Informatica LLC 2012, 2024

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica, the Informatica logo, and PowerExchange are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions
throughout the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product
names may be trade names or trademarks of their respective owners.

Subject to your opt-out rights, the software will automatically transmit to Informatica in the USA information about the computing and network environment in which the
Software is deployed and the data usage and system statistics of the deployment. This transmission is deemed part of the Services under the Informatica privacy policy
and Informatica will use and otherwise process this information in accordance with the Informatica privacy policy available at
https://www.informatica.com/in/privacy-policy.html. You may disable usage collection in Administrator tool.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product.

See patents at https://www.informatica.com/legal/patents.html.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2024-12-18

https://www.informatica.com/in/privacy-policy.html
https://www.informatica.com/legal/patents.html

Table of Contents

Preface . 15
Informatica Resources. 15

Informatica Network. 15

Informatica Knowledge Base. 15

Informatica Documentation. 15

Informatica Product Availability Matrices. 16

Informatica Velocity. 16

Informatica Marketplace. 16

Informatica Global Customer Support. 16

Chapter 1: Introduction to Informatica Data Engineering Integration. 17
Informatica Data Engineering Integration Overview. 17

Example. 17

Data Engineering Integration Component Architecture. 18

Clients and Tools. 18

Application Services. 18

Repositories. 19

Hadoop Integration. 19

Databricks Integration. 21

Data Engineering Integration Engines. 21

Run-time Process on the Blaze Engine. 22

Run-time Process on the Spark Engine. 23

Run-time Process on the Databricks Spark Engine. 24

Data Engineering Process. 25

Step 1. Collect the Data. 25

Step 2. Cleanse the Data. 25

Step 3. Transform the Data. 26

Step 4. Process the Data. 26

Step 5. Monitor Jobs. 26

Data Warehouse Optimization Mapping Example . 26

Chapter 2: Mappings. 29
Overview of Mappings. 29

Mapping Run-time Properties. 30

Validation Environments. 31

Execution Environment. 32

Updating Run-time Properties for Multiple Mappings. 35

PreSQL and PostSQL Queries for JDBC Sources. 35

Sqoop Mappings in a Hadoop Environment. 36

Sqoop Mapping-Level Arguments. 36

Table of Contents 3

Incremental Data Extraction for Sqoop Mappings. 39

Configuring Sqoop Properties in the Mapping. 41

Configuring Parameters for Sqoop Arguments in the Mapping. 41

Mapping Output Binding. 42

Rules and Guidelines for Mappings in a Non-native Environment. 42

Rules and Guidelines for Mappings on the Blaze Engine. 42

Rules and Guidelines for Mappings on the Spark Engine. 43

Rules and Guidelines for Mappings on the Databricks Spark Engine. 46

Workflows that Run Mappings in a Non-native Environment. 46

Configuring a Mapping to Run in a Non-native Environment. 46

Configure Mappings to Run on Dataproc. 47

Audits. 47

Creating an Audit. 48

Rules and Guidelines for Audits. 52

Example. 53

Mapping Execution Plans. 54

Blaze Engine Execution Plan Details. 55

Spark Engine Execution Plan Details. 56

Databricks Spark Engine Execution Details. 56

Viewing the Execution Plan. 57

Troubleshooting Mappings in a Non-native Environment. 58

Mappings in the Native Environment. 60

Data Processor Mappings. 60

HDFS Mappings. 60

Hive Mappings. 62

Social Media Mappings. 63

Native Environment Optimization. 64

Chapter 3: Mapping Optimization. 67
Mapping Optimization. 67

Mapping Recommendations and Analysis. 68

Recommendations. 69

Insights. 73

Example . 74

Enabling and Customizing Access to Sensitive Data. 75

Enabling Data Compression on Temporary Staging Tables. 76

Step 1. Enable Data Compression in the Hadoop Connection. 76

Step 2. Enable Data Compression on the Hadoop Environment. 76

Truncating Partitions in a Hive Target. 77

Hive Warehouse Connector and Hive LLAP. 77

Enabling the Hive Warehouse Connector and Hive LLAP. 78

Scheduling, Queuing, and Node Labeling. 79

Enable Scheduling and Node Labeling. 79

4 Table of Contents

Define YARN Queues. 80

Configure the Blaze Engine to Use Node Labels. 80

Data Engineering Recovery. 81

Spark Engine Optimization for Sqoop Pass-Through Mappings. 81

Chapter 4: Sources. 83
Overview of Sources. 83

PowerExchange Adapter Sources. 83

Sources on Databricks. 85

Complex File Sources on Amazon S3. 85

Complex File Sources on ADLS . 85

Complex File Sources on Azure Data Lake Storage Gen2. 86

Complex File Sources on Azure Blob . 86

Databricks and Delta Lake Tables. 87

Rules and Guidelines for Databricks Sources. 88

File Sources on Hadoop. 89

Complex File Sources on Amazon S3. 89

Complex File Sources on Google Cloud Storage. 90

Complex File Sources on HDFS or View File System (ViewFS). 90

Complex File Sources on Hive. 90

Complex File Sources on MapR-FS. 91

Complex File Sources on Azure Blob. 91

Complex File Sources on ADLS. 92

Complex File Sources on Azure Data Lake Storage Gen2. 93

Flat File Sources on Hadoop. 94

Relational Sources on Hadoop. 95

Hive Sources on Hadoop. 96

PreSQL and PostSQL Commands. 96

Rules and Guidelines for Hive Sources on the Blaze Engine. 97

Sqoop Sources on Hadoop. 99

Reading Data from Vertica Sources through Sqoop. 99

Rules and Guidelines for Sqoop Sources. 100

Rules and Guidelines for Sqoop Queries. 100

Chapter 5: Targets. 101
Overview of Targets. 101

PowerExchange Adapter Targets. 101

Targets on Databricks. 103

Complex File Targets on Amazon S3. 103

Complex File Targets on ADLS. 103

Complex File Targets on Azure Data Lake Storage Gen2. 104

Complex File Targets on Azure Blob . 104

Databricks and Delta Lake Tables . 105

Table of Contents 5

Databricks Schema Evolution . 105

Rules and Guidelines for Databricks Targets. 109

File Targets on Hadoop. 110

Complex File Targets on Amazon S3. 111

Complex File Targets on Google Cloud Storage . 111

Complex File Targets on ADLS. 111

Complex File Targets on Azure Data Lake Storage Gen2. 112

Complex File Targets on Azure Blob . 113

Complex File Targets on MapR-FS. 114

Complex File Targets on HDFS or View File System (ViewFS). 114

Complex File Targets on Hive. 115

Flat File Targets on Hadoop. 115

Message Targets on Hadoop. 116

Relational Targets on Hadoop. 116

Hive Targets on Hadoop. 117

PreSQL and PostSQL Commands. 117

Truncating Hive Targets. 118

Updating Hive Targets with an Update Strategy Transformation. 118

Rules and Guidelines for Hive Targets on the Blaze Engine. 119

Sqoop Targets on Hadoop. 120

Rules and Guidelines for Sqoop Targets. 121

Chapter 6: Transformations. 122
Overview of Transformations. 122

Address Validator Transformation in a Non-native Environment. 125

Address Validator Transformation on the Blaze Engine. 125

Address Validator Transformation on the Spark Engine. 125

Address Validator Transformation on the Databricks Spark Engine. 125

Aggregator Transformation in a Non-native Environment. 126

Aggregator Transformation on the Blaze Engine. 126

Aggregator Transformation on the Spark Engine. 127

Aggregator Transformation on the Databricks Spark Engine. 127

Case Converter Transformation in a Non-native Environment. 128

Classifier Transformation in a Non-native Environment. 128

Comparison Transformation in a Non-native Environment. 128

Consolidation Transformation in a Non-native Environment. 129

Consolidation Transformation on the Blaze Engine. 129

Consolidation Transformation on the Spark Engine. 129

Consolidation Transformation on the Databricks Spark Engine. 129

Data Masking Transformation in a Non-native Environment. 130

Data Masking Transformation on the Blaze Engine. 130

Data Masking Transformation on the Spark Engine. 130

Data Processor Transformation in a Non-native Environment. 131

6 Table of Contents

Decision Transformation in a Non-native Environment. 132

Decision Transformation on the Spark Engine. 132

Decision Transformation on the Databricks Spark Engine. 132

Expression Transformation in a Non-native Environment. 132

Expression Transformation on the Blaze Engine. 133

Expression Transformation on the Spark Engine. 133

Expression Transformation on the Databricks Spark Engine. 133

Filter Transformation in a Non-native Environment. 133

Filter Transformation on the Blaze Engine. 134

Hierarchical to Relational Transformation in a Non-native Environment. 134

Java Transformation in a Non-native Environment. 134

Java Transformation on the Blaze Engine. 134

Java Transformation on the Spark Engine. 135

Joiner Transformation in a Non-native Environment . 136

Joiner Transformation on the Blaze Engine. 136

Joiner Transformation on the Spark Engine. 136

Joiner Transformation on the Databricks Spark Engine. 137

Key Generator Transformation in a Non-native Environment. 137

Key Generator Transformation on the Blaze Engine. 137

Key Generator Transformation on the Spark Engine. 137

Key Generator Transformation on the Databricks Spark Engine. 138

Labeler Transformation in a Non-native Environment. 138

Lookup Transformation in a Non-native Environment. 138

Lookup Transformation on the Blaze Engine. 138

Lookup Transformation on the Spark Engine. 139

Lookup Transformation on the Databricks Spark Engine. 142

Macro Transformation in a Non-native Environment. 142

Match Transformation in a Non-native Environment. 142

Match Transformation on the Blaze Engine. 143

Match Transformation on the Spark Engine. 143

Match Transformation on the Databricks Spark Engine. 143

Merge Transformation in a Non-native Environment. 143

Normalizer Transformation in a Non-native Environment. 144

Parser Transformation in a Non-native Environment. 144

Rank Transformation in a Non-native Environment. 144

Rank Transformation on the Blaze Engine . 144

Rank Transformation on the Spark Engine. 145

Rank Transformation on the Databricks Spark Engine. 145

Relational to Hierarchical Transformation in a Non-native Environment. 146

Router Transformation in a Non-native Environment. 146

Rule Specification Transformation in a Non-native Environment. 146

Sequence Generator Transformation in a Non-native Environment. 147

Table of Contents 7

Sequence Generator Transformation on the Blaze Engine. 147

Sequence Generator Transformation on the Spark Engine. 147

Sequence Generator Transformation on the Databricks Spark Engine. 147

Sorter Transformation in a Non-native Environment. 147

Sorter Transformation on the Blaze Engine. 148

Sorter Transformation on the Spark Engine. 148

Sorter Transformation on the Databricks Spark Engine. 149

Standardizer Transformation in a Non-native Environment. 150

Union Transformation in a Non-native Environment. 150

Union Transformation in a Streaming Mapping. 150

Update Strategy Transformation in a Non-native Environment. 150

Update Strategy Transformation on the Blaze Engine. 151

Update Strategy Transformation on the Spark Engine. 151

Update Strategy Transformation on the Databricks Spark Engine. 153

Weighted Average Transformation in a Non-native Environment. 154

Chapter 7: Python Transformation. 155
Python Transformation Overview. 155

Active and Passive Python Transformations. 156

Data Type Conversion. 156

Data Types in Input and Output Ports. 157

Python Transformation Ports. 157

Python Transformation Advanced Properties. 157

Python Transformation Components. 158

Resource File. 158

Python Code. 159

Rules and Guidelines for the Python Transformation. 160

Python Transformation in a Streaming Mapping. 160

Creating a Python Transformation. 160

Creating a Reusable Python Transformation. 161

Creating a Non-Reusable Python Transformation. 161

Example: Add an ID Column to Nonpartitioned Data. 162

Example: Use Partitions to Find the Highest Salary. 163

Use Case: Operationalize a Pre-Trained Model. 165

Chapter 8: Data Preview. 167
Overview of Data Preview. 167

Connections and Cluster Distributions that Support Data Preview. 168

Data Preview Process. 168

Previewing Data. 169

Data Preview Interface for Hierarchical Data. 170

Data Viewer. 171

Exporting Data . 171

8 Table of Contents

Hierarchical Type Panel. 172

Data Preview on Transformations. 172

Data Preview Logs. 173

Rules and Guidelines for Data Preview on the Spark Engine. 174

Chapter 9: Cluster Workflows. 175
Cluster Workflows Overview. 175

Cluster Workflows Platform Support. 175

Cluster Workflow Components. 176

Cluster Workflows Process . 177

Create the Workflow and the Create Cluster Task. 178

Where to Configure Parameters for Cluster Creation. 179

Using the Developer Tool to Configure Cluster Creation Properties 179

Using a JSON File to Configure Cluster Creation Properties . 180

Add a Mapping Task. 182

Prepare Mappings for the Cluster Workflow. 182

Add Mapping and Other Tasks to the Workflow. 183

Mapping Task Properties. 184

Add a Delete Cluster Task. 185

Deploy and Run the Workflow. 185

Monitoring Azure HDInsight Cluster Workflow Jobs . 185

Configure Databricks Clusters Using Warm Pools. 185

Create Cluster Task Properties. 187

Advanced Properties for Amazon EMR. 188

Advanced Properties for Azure HDInsight. 191

Advanced Properties for Azure Databricks. 192

Advanced Properties for AWS Databricks. 194

Advanced Properties for the Blaze Engine. 197

Advanced Properties for a Hive Metastore Database. 198

Chapter 10: Profiles. 200
Profiles Overview. 200

Native Environment. 200

Hadoop Environment. 201

Column Profiles for Sqoop Data Sources. 201

Sampling Options. 202

Creating a Single Data Object Profile in Informatica Developer. 202

Creating an Enterprise Discovery Profile in Informatica Developer. 203

Creating a Column Profile in Informatica Analyst. 204

Creating an Enterprise Discovery Profile in Informatica Analyst. 206

Creating a Scorecard in Informatica Analyst. 207

Monitoring a Profile. 208

Profiling Functionality Support. 208

Table of Contents 9

Troubleshooting. 209

Chapter 11: Monitoring. 211
Overview of Monitoring. 211

Hadoop Environment Logs. 211

YARN Web User Interface. 212

Accessing the Monitoring URL. 213

Viewing Hadoop Environment Logs in the Administrator Tool. 213

Monitoring a Mapping. 214

Blaze Engine Monitoring. 217

Blaze Job Monitoring Application. 219

Blaze Summary Report. 220

Blaze Engine Logs. 223

Viewing Blaze Logs. 224

Orchestrator Sunset Time. 224

Troubleshooting Blaze Monitoring. 224

Spark Engine Monitoring. 225

Viewing Hive Tasks. 229

Spark Engine Logs. 230

Viewing Spark Logs . 230

Troubleshooting Spark Engine Monitoring. 230

Chapter 12: Hierarchical Data Processing. 232
Overview of Hierarchical Data Processing. 232

How to Develop a Mapping to Process Hierarchical Data. 233

Complex Data Types. 235

Array Data Type. 236

Map Data Type. 238

Struct Data Type. 238

Rules and Guidelines for Complex Data Types. 239

Complex Ports. 240

Complex Ports in Transformations. 241

Rules and Guidelines for Complex Ports. 241

Creating a Complex Port. 242

Complex Data Type Definitions. 242

Nested Data Type Definitions. 244

Rules and Guidelines for Complex Data Type Definitions. 244

Creating a Complex Data Type Definition. 245

Importing a Complex Data Type Definition. 245

Type Configuration. 247

Changing the Type Configuration for an Array Port. 247

Changing the Type Configuration for a Map Port. 249

Specifying the Type Configuration for a Struct Port. 250

10 Table of Contents

Complex Operators. 251

Extracting an Array Element Using a Subscript Operator. 252

Extracting a Struct Element Using the Dot Operator. 252

Complex Functions. 253

Rules and Guidelines for Processing Hierarchical Data on the Spark Engine. 255

Midstream Parsing of Hierarchical Data. 255

Midstream Parsing Overview. 255

Midstream Parsing Use Case. 255

How to Use a Midstream Mapping to Parse Hierarchical Data. 256

Rules and Guidelines for Midstream Parsing. 257

Troubleshooting Midstream Parsing. 257

Chapter 13: Hierarchical Data Processing Configuration. 259
Hierarchical Data Conversion. 259

Convert Relational or Hierarchical Data to Struct Data. 260

Creating a Struct Port. 260

Convert Relational or Hierarchical Data to Nested Struct Data. 262

Creating A Nested Complex Port. 263

Extract Elements from Hierarchical Data. 270

Extracting Elements from a Complex Port. 270

Flatten Hierarchical Data. 272

Flattening a Complex Port. 273

Chapter 14: Hierarchical Data Processing with Schema Changes. 275
Overview of Hierarchical Data Processing with Schema Changes. 275

How to Develop a Dynamic Mapping to Process Schema Changes in Hierarchical Data. 276

Flatten Hierarchical Data with Schema Changes. 277

Flatten a Dynamic Struct. 277

Dynamic Complex Ports. 278

Dynamic Ports and Dynamic Complex Ports. 279

Dynamic Complex Ports in Transformations. 280

Input Rules for a Dynamic Complex Port. 280

Input Rule for a Dynamic Array. 281

Input Rules for a Dynamic Map. 282

Input Rules for a Dynamic Struct. 282

Port Selectors for Dynamic Complex Ports. 283

Dynamic Expressions. 283

Example - Dynamic Expression to Construct a Dynamic Struct. 284

Complex Operators. 285

Complex Functions. 285

Rules and Guidelines for Dynamic Complex Ports. 285

Optimized Mappings. 285

Table of Contents 11

Chapter 15: Intelligent Structure Models. 288
Overview of Intelligent Structure Models. 288

Intelligent Structure Discovery Process. 289

Use Case. 290

Using an Intelligent Structure Model in a Mapping. 290

Rules and Guidelines for Intelligent Structure Models. 291

How to Create a Mapping with an Intelligent Structure Model . 291

Mapping Example. 293

Create an Intelligent Structure Model in Cloud Data Integration. 294

Before You Begin. 294

Creating an Informatica Intelligent Cloud Services Account. 294

Creating an Intelligent Structure Model. 294

Exporting an Intelligent Structure Model. 295

Chapter 16: Blockchain. 296
Blockchain Overview. 296

Blockchain Process. 297

Blockchain Data Objects. 297

Response Ports. 297

Blockchain Data Object Overview Properties. 298

Creating a Blockchain Data Object. 299

Blockchain Data Object Operations. 301

Blockchain Data Object Read Operation Properties. 301

Blockchain Data Object Write Operation Properties. 303

Creating a Blockchain Data Object Operation. 304

Use Case: Using a Blockchain Source to Improve Services in a Vehicle Lifecycle. 305

Mapping Overview. 305

Chapter 17: Stateful Computing. 308
Overview of Stateful Computing. 308

Windowing Configuration. 309

Frame. 309

Partition and Order Keys. 310

Rules and Guidelines for Windowing Configuration. 312

Window Functions. 312

LEAD. 313

LAG. 313

Aggregate Functions as Window Functions. 313

Rules and Guidelines for Window Functions. 317

Windowing Examples. 317

Financial Plans Example. 317

GPS Pings Example. 319

12 Table of Contents

Aggregate Function as Window Function Example. 321

Appendix A: Connections Reference. 324
Connections Overview. 325

Cloud Provisioning Configuration. 325

AWS Cloud Provisioning Configuration Properties. 326

Azure Cloud Provisioning Configuration Properties. 329

Databricks Cloud Provisioning Configuration Properties. 334

Amazon Redshift Connection Properties. 335

Amazon S3 Connection Properties. 338

Blockchain Connection Properties. 341

Cassandra Connection Properties. 342

Confluent Kafka Connection. 344

General Properties. 344

Confluent Kafka Broker Properties. 345

SSL Properties . 345

Creating a Confluent Kafka Connection Using infacmd. 346

Databricks Connection Properties. 346

Google Analytics Connection Properties. 348

Google BigQuery Connection Properties. 349

Google Cloud Spanner Connection Properties. 350

Google Cloud Storage Connection Properties. 351

Google PubSub Connection Properties. 352

Hadoop Connection Properties. 352

Hadoop Cluster Properties. 353

Common Properties. 355

Reject Directory Properties. 356

Blaze Configuration. 357

Spark Configuration. 358

HDFS or View File System (ViewFS) Connection Properties. 359

HBase Connection Properties. 361

HBase Connection Properties for MapR-DB. 361

Hive Connection Properties. 362

JDBC Connection Properties. 365

JDBC Connection String. 367

Sqoop Connection-Level Arguments. 369

Delta Lake JDBC Connection Properties. 372

JDBC V2 Connection Properties. 372

Kafka Connection Properties. 374

General Properties. 375

Kafka Broker Properties. 376

SSL Properties. 377

Creating a Kafka Connection Using infacmd. 377

Table of Contents 13

Kudu Connection Properties . 377

Microsoft Azure Blob Storage Connection Properties. 378

Microsoft Azure Cosmos DB SQL API Connection Properties. 379

Microsoft Azure Data Lake Storage Gen1 Connection Properties. 380

Microsoft Azure Data Lake Storage Gen2 Connection Properties. 381

Microsoft Azure SQL Data Warehouse Connection Properties. 382

Snowflake Connection Properties. 384

Creating a Connection to Access Sources or Targets. 385

Creating a Hadoop Connection. 385

Configuring Hadoop Connection Properties. 387

Cluster Environment Variables. 387

Cluster Library Path. 387

Common Advanced Properties. 388

Blaze Engine Advanced Properties. 388

Spark Advanced Properties. 389

Appendix B: Data Type Reference. 395
Data Type Reference Overview. 395

Transformation Data Type Support in a Non-native Environment. 396

Complex File and Transformation Data Types. 397

Avro Data Types and Transformation Data Types. 397

JSON Data Types and Transformation Data Types. 399

ORC Data Types and Transformation Data Types. 399

Parquet Data Types and Transformation Data Types. 400

Flat File and Transformation Data Types. 402

Hive Data Types and Transformation Data Types. 403

Hive Complex Data Types. 404

Sqoop Data Types. 405

Aurora Data Types. 405

IBM DB2 and DB2 for z/OS Data Types. 406

Greenplum Data Types. 406

Microsoft SQL Server Data Types. 407

Netezza Data Types. 407

Oracle Data Types. 408

Teradata Data Types. 408

Teradata Data Types with TDCH Specialized Connectors for Sqoop. 409

Vertica Data Types. 409

Appendix C: Function Reference. 411
Function Support in a Non-native Environment. 411

Function and Data Type Processing. 413

Index. 414

14 Table of Contents

Preface
Follow the instructions in the Informatica Data Engineering Integration User Guide to learn to create
Informatica mappings that run in a native, Hadoop, or Databricks environment. Learn about transformation
processing behavior in a non-native environment. Learn to configure mappings to run using the Spark engine
or the proprietary Blaze engine. Learn to create workflows that deploy several mappings to a cluster.

Informatica Resources
Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Network
The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:

• Search the Knowledge Base for product resources.

• View product availability information.

• Create and review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

15

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://docs.informatica.com

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Product Availability Matrices
Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and
select the eSupport option.

16 Preface

mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com

C h a p t e r 1

Introduction to Informatica Data
Engineering Integration

This chapter includes the following topics:

• Informatica Data Engineering Integration Overview, 17

• Data Engineering Integration Component Architecture, 18

• Data Engineering Integration Engines, 21

• Data Engineering Process, 25

• Data Warehouse Optimization Mapping Example , 26

Informatica Data Engineering Integration Overview
Informatica Data Engineering Integration enables your organization to process large, diverse, and fast
changing data sets so you can get insights into your data. Use Data Engineering Integration to perform data
engineering integration and transformation without writing or maintaining external code.

Use Data Engineering Integration to collect diverse data faster, build business logic in a visual environment,
and eliminate hand-coding to get insights on your data. Consider implementing a data engineering project in
the following situations:

• The volume of the data that you want to process is greater than 10 terabytes.

• You need to analyze or capture data changes in microseconds.

• The data sources are varied and range from unstructured text to social media data.

You can perform run-time processing in the native environment or in a non-native environment. The native
environment is the Informatica domain where the Data Integration Service performs all run-time processing.
Use the native run-time environment to process data that is less than 10 terabytes. A non-native environment
is a distributed cluster outside of the Informatica domain, such as Hadoop or Databricks, where the Data
Integration Service can push run-time processing. Use a non-native run-time environment to optimize
mapping performance and process data that is greater than 10 terabytes.

Example
You are an investment banker who needs to calculate the popularity and risk of stocks and then match
stocks to each customer based on the preferences of the customer. Your CIO wants to automate the process
of calculating the popularity and risk of each stock, match stocks to each customer, and then send an email
with a list of stock recommendations for all customers.

17

You consider the following requirements for your project:

• The volume of data generated by each stock is greater than 10 terabytes.

• You need to analyze the changes to the stock in microseconds.

• The stock is included in Twitter feeds and company stock trade websites, so you need to analyze these
social media sources.

Based on your requirements, you work with the IT department to create mappings to determine the popularity
of a stock. One mapping tracks the number of times the stock is included in Twitter feeds, and another
mapping tracks the number of times customers inquire about the stock on the company stock trade website.

Data Engineering Integration Component
Architecture

The Data Engineering Integration components include client tools, application services, repositories, and
third-party tools that Data Engineering Integration uses for a data engineering project. The specific
components involved depend on the task you perform.

Clients and Tools
You can use several Informatica tools and clients to manage data engineering projects.

Based on your product license and use case, you can use the Administrator tool, Developer tool, Analyst tool,
and command line interface.

Application Services
Informatica uses application services in the Informatica domain to process data.

Use the Administrator tool to create connections, monitor jobs, and manage application services.

Data Engineering Integration uses the following application services:

Analyst Service

The Analyst Service runs the Analyst tool in the Informatica domain. The Analyst Service manages the
connections between service components and the users that have access to the Analyst tool.

Data Integration Service

The Data Integration Service can process mappings in the native environment or push the mapping for
processing to a compute cluster in a non-native environment. The Data Integration Service also retrieves
metadata from the Model repository when you run a Developer tool mapping or workflow. The Analyst
tool and Developer tool connect to the Data Integration Service to run profile jobs and store profile
results in the profiling warehouse.

Mass Ingestion Service

The Mass Ingestion Service manages and validates mass ingestion specifications that you create in the
Mass Ingestion tool. The Mass Ingestion Service deploys specifications to the Data Integration Service.
When a specification runs, the Mass Ingestion Service generates ingestion statistics.

18 Chapter 1: Introduction to Informatica Data Engineering Integration

Metadata Access Service

The Metadata Access Service allows the Developer tool to import and preview metadata from a Hadoop
cluster.

The Metadata Access Service contains information about the Service Principal Name (SPN) and keytab
information if the Hadoop cluster uses Kerberos authentication. You can create one or more Metadata
Access Services on a node. Based on your license, the Metadata Access Service can be highly available.

HBase, HDFS, Hive, and MapR-DB connections use the Metadata Access Service when you import an
object from a Hadoop cluster. Create and configure a Metadata Access Service before you create HBase,
HDFS, Hive, and MapR-DB connections.

Model Repository Service

The Model Repository Service manages the Model repository. The Model Repository Service connects to
the Model repository when you run a mapping, mapping specification, profile, or workflow.

REST Operations Hub

The REST Operations Hub Service is an application service in the Informatica domain that exposes
Informatica product functionality to external clients through REST APIs.

Repositories
Data Engineering Integration uses repositories and other databases to store data related to connections,
source metadata, data domains, data profiling, data masking, and data lineage. Data Engineering Integration
uses application services in the Informatica domain to access data in repositories.

Data Engineering Integration uses the following databases:

Model repository

The Model repository stores profiles, data domains, mapping, and workflows that you manage in the
Developer tool. The Model repository also stores profiles, data domains, and mapping specifications that
you manage in the Analyst tool.

Profiling warehouse

The Data Integration Service runs profiles and stores profile results in the profiling warehouse.

Hadoop Integration
The Informatica domain can connect to clusters that run different Hadoop distributions. Hadoop is an open-
source software framework that enables distributed processing of large data sets across clusters of
machines. You might also need to use third-party software clients to set up and manage your Hadoop cluster.

The domain can connect to the supported data source in the Hadoop environment, such as HDFS, HBase, or
Hive, and push job processing to the Hadoop cluster. To enable high performance access to files across the
cluster, you can connect to an HDFS source. You can also connect to a Hive source, which is a data
warehouse that connects to HDFS.

It can also connect to NoSQL databases such as HBase, which is a database comprising key-value pairs on
Hadoop that performs operations in real-time. The Data Integration Service can push mapping jobs to the
Spark or Blaze engine, and it can push profile jobs to the Blaze engine in the Hadoop environment.

Data Engineering Integration supports more than one version of some Hadoop distributions. By default, the
cluster configuration wizard populates the latest supported version.

Data Engineering Integration Component Architecture 19

Hadoop Utilities
Data Engineering Integration uses third-party Hadoop utilities such as Sqoop to process data efficiently.

Sqoop is a Hadoop command line program to process data between relational databases and HDFS through
MapReduce programs. You can use Sqoop to import and export data. When you use Sqoop, you do not need
to install the relational database client and software on any node in the Hadoop cluster.

To use Sqoop, you must configure Sqoop properties in a JDBC connection and run the mapping in the
Hadoop environment. You can configure Sqoop connectivity for relational data objects, customized data
objects, and logical data objects that are based on a JDBC-compliant database. For example, you can
configure Sqoop connectivity for the following databases:

• Aurora

• Greenplum

• IBM DB2

• IBM DB2 for z/OS

• Microsoft SQL Server

• Netezza

• Oracle

• Teradata

• Vertica

The Model Repository Service uses JDBC to import metadata. The Data Integration Service runs the mapping
in the Hadoop run-time environment and pushes the job processing to Sqoop. Sqoop then creates map-
reduce jobs in the Hadoop cluster, which perform the import and export job in parallel.

Specialized Sqoop Connectors

When you run mappings through Sqoop, you can use the following specialized connectors:

OraOop

You can use OraOop with Sqoop to optimize performance when you read data from or write data to
Oracle. OraOop is a specialized Sqoop plug-in for Oracle that uses native protocols to connect to the
Oracle database.

You can configure OraOop when you run Sqoop mappings on the Spark engine.

Teradata Connector for Hadoop (TDCH) Specialized Connectors for Sqoop

You can use the following TDCH specialized connectors for Sqoop to read data from or write data to
Teradata:

• Cloudera Connector Powered by Teradata

• Hortonworks Connector for Teradata (powered by the Teradata Connector for Hadoop)

• MapR Connector for Teradata

These connectors are specialized Sqoop plug-ins that Cloudera, Hortonworks, and MapR provide for
Teradata. They use native protocols to connect to the Teradata database.

Informatica supports Cloudera Connector Powered by Teradata and Hortonworks Connector for
Teradata on the Blaze and Spark engines. When you run Sqoop mappings on the Blaze engine, you must
configure these connectors. When you run Sqoop mappings on the Spark engine, the Data Integration
Service invokes these connectors by default.

Informatica supports MapR Connector for Teradata on the Spark engine. When you run Sqoop mappings
on the Spark engine, the Data Integration Service invokes the connector by default.

20 Chapter 1: Introduction to Informatica Data Engineering Integration

Note: For information about running native Teradata mappings with Sqoop, see the Informatica
PowerExchange for Teradata Parallel Transporter API User Guide.

Databricks Integration
The Data Integration Service can push mappings to the Databricks environment. Databricks is an analytics
cloud platform that you can use with Microsoft Azure cloud services or Amazon Web Services. Databricks
incorporates the open-source Apache Spark cluster technologies and capabilities.

Informatica automatically installs the binaries required to integrate the Informatica domain with the
Databricks environment.

The integration requires Informatica connection objects and cluster configurations. A cluster configuration is
a domain object that contains configuration parameters that you import from the Databricks cluster. You
then associate the cluster configuration with connections to access the Databricks environment.

Data Engineering Integration Engines
When you run a mapping, you can choose to run the mapping in the native environment or in a non-native
environment, such as Hadoop or Databricks. When you validate a mapping, you can validate it against one or
all of the engines. The Developer tool returns validation messages for each engine.

When you run a mapping in the native environment, the Data Integration Service in the Informatica domain
runs the mapping. When you run the mapping in a non-native environment, the Data Integration Service
pushes the run-time processing to a compute cluster in the non-native environment.

When you run the mapping in a non-native environment, the Data Integration Service uses a proprietary rule-
based methodology to determine the best engine to run the mapping. The rule-based methodology evaluates
the mapping sources and the mapping logic to determine the engine. The Data Integration Service translates
the mapping logic into code that the engine can process, and it transfers the code to the engine.

The following image shows the processing environments and the run-time engines in the environments:

Data Engineering Integration Engines 21

Run-time Process on the Blaze Engine
To run a mapping on the Informatica Blaze engine, the Data Integration Service submits jobs to the Blaze
engine executor. The Blaze engine executor is a software component that enables communication between
the Data Integration Service and the Blaze engine components on the Hadoop cluster.

The following Blaze engine components appear on the Hadoop cluster:

• Grid Manager. Manages tasks for batch processing.

• Orchestrator. Schedules and processes parallel data processing tasks on a cluster.

• Blaze Job Monitor. Monitors Blaze engine jobs on a cluster.

• DTM Process Manager. Manages the DTM Processes.

• DTM Processes. An operating system process started to run DTM instances.

• Data Exchange Framework. Shuffles data between different processes that process the data on cluster
nodes.

The following image shows how a Hadoop cluster processes jobs sent from the Blaze engine executor:

The following events occur when the Data Integration Service submits jobs to the Blaze engine executor:

1. The Blaze Engine Executor communicates with the Grid Manager to initialize Blaze engine components
on the Hadoop cluster, and it queries the Grid Manager for an available Orchestrator.

2. The Grid Manager starts the Blaze Job Monitor.

3. The Grid Manager starts the Orchestrator and sends Orchestrator information back to the LDTM.

4. The LDTM communicates with the Orchestrator.

5. The Grid Manager communicates with the Resource Manager for available resources for the
Orchestrator.

6. The Resource Manager handles resource allocation on the data nodes through the Node Manager.

7. The Orchestrator sends the tasks to the DTM Processes through the DTM Process Manger.

8. The DTM Process Manager continually communicates with the DTM Processes.

9. The DTM Processes continually communicate with the Data Exchange Framework to send and receive
data across processing units that run on the cluster nodes.

22 Chapter 1: Introduction to Informatica Data Engineering Integration

Blaze Engine High Availability
The Blaze engine is a highly available engine that determines the best possible recovery strategy for grid
tasks and tasklets.

Based on the size of the grid task, the Blaze engine attempts to apply the following recovery strategy:

• No high availability. The Blaze engine does not apply a recovery strategy.

• Full restart. Restarts the grid task.

Application Timeline Server
The Hadoop Application Timeline Server collects basic information about completed application processes.
The Timeline Server also provides information about completed and running YARN applications.

The Grid Manager starts the Application Timeline Server in the Yarn configuration by default.

The Blaze engine uses the Application Timeline Server to store the Blaze Job Monitor status. On Hadoop
distributions where the Timeline Server is not enabled by default, the Grid Manager attempts to start the
Application Timeline Server process on the current node.

The Grid Manager stores Application Timeline Server logs for each user under the logs directory that is
configured in the Hadoop connection property infagrid.node.local.root.log.dir.

For example, if infagrid.node.local.root.log.dir is configured with the path /tmp/infa/logs, then logs for user
User1 are saved in /tmp/infa/logs/timelineserver_User1.

If you do not enable the Application Timeline Server on secured Kerberos clusters, the Grid Manager attempts
to start the Application Timeline Server process in HTTP mode.

Run-time Process on the Spark Engine
The Data Integration Service can use the Spark engine on a Hadoop cluster to run Model repository
mappings.

To run a mapping on the Spark engine, the Data Integration Service sends a mapping application to the Spark
executor. The Spark executor submits the job to the Hadoop cluster to run.

The following image shows how a Hadoop cluster processes jobs sent from the Spark executor:

Data Engineering Integration Engines 23

The following events occur when Data Integration Service runs a mapping on the Spark engine:

1. The Logical Data Transformation Manager translates the mapping into a Scala program, packages it as
an application, and sends it to the Spark executor.

2. The Spark executor submits the application to the Resource Manager in the Hadoop cluster and requests
resources to run the application.

Note: When you run mappings on the HDInsight cluster, the Spark executor launches a spark-submit
script. The script requests resources to run the application.

3. The Resource Manager identifies the Node Managers that can provide resources, and it assigns jobs to
the data nodes.

4. Driver and Executor processes are launched in data nodes where the Spark application runs.

Run-time Process on the Databricks Spark Engine
When you run a job on the Databricks Spark engine, the Data Integration Service pushes the processing to the
Databricks cluster, and the Databricks Spark engine runs the job.

The following image shows the components of the Informatica and the Databricks environments:

1. The Logical Data Transformation Manager translates the mapping into a Scala program, packages it as
an application, and sends it to the Databricks Engine Executor on the Data Integration Service machine.

2. The Databricks Engine Executor submits the application through REST API to the Databricks cluster,
requests to run the application, and stages files for access during run time.

3. The Databricks cluster passes the request to the Databricks Spark driver on the driver node.

4. The Databricks Spark driver distributes the job to one or more Databricks Spark executors that reside on
worker nodes.

5. The executors run the job and stage run-time data to the Databricks File System (DBFS) of the
workspace.

24 Chapter 1: Introduction to Informatica Data Engineering Integration

Data Engineering Process
As part of a data engineering project, you collect the data from diverse data sources. You can perform
profiling, cleansing, and matching for the data. You build the business logic for the data and push the
transformed data to the data warehouse. Then you can perform business intelligence on a view of the data.

Based on your data engineering project requirements, you can perform the following high-level tasks:

1. Collect the data.

2. Cleanse the data

3. Transform the data.

4. Process the data.

5. Monitor jobs.

Step 1. Collect the Data
Identify the data sources from which you need to collect the data.

Data Engineering Integration provides several ways to access your data in and out of Hadoop based on the
data types, data volumes, and data latencies in the data.

You can use PowerExchange adapters to connect to multiple data engineering sources. You can schedule
batch loads to move data from multiple source systems to HDFS without the need to stage the data. You can
move changed data from relational and mainframe systems into HDFS or the Hive warehouse. For real-time
data feeds, you can move data off message queues and into HDFS.

You can collect the following types of data:

• Transactional

• Interactive

• Log file

• Sensor device

• Document and file

• Industry format

Step 2. Cleanse the Data
Cleanse the data by profiling, cleaning, and matching your data. You can view data lineage for the data.

You can perform data profiling to view missing values and descriptive statistics to identify outliers and
anomalies in your data. You can view value and pattern frequencies to isolate inconsistencies or unexpected
patterns in your data. You can drill down on the inconsistent data to view results across the entire data set.

You can automate the discovery of data domains and relationships between them. You can discover
sensitive data such as social security numbers and credit card numbers so that you can mask the data for
compliance.

After you are satisfied with the quality of your data, you can also create a business glossary from your data.
You can use the Analyst tool or Developer tool to perform data profiling tasks. Use the Analyst tool to
perform data discovery tasks. Use Metadata Manager to perform data lineage tasks.

Data Engineering Process 25

Step 3. Transform the Data
You can build the business logic to parse data in the Developer tool. Eliminate the need for hand-coding the
transformation logic by using pre-built Informatica transformations to transform data.

Step 4. Process the Data
Based on your business logic, you can determine the optimal run-time environment to process your data. If
your data is less than 10 terabytes, consider processing your data in the native environment. If your data is
greater than 10 terabytes, consider processing your data on a compute cluster.

Step 5. Monitor Jobs
Monitor the status of your processing jobs. You can view monitoring statistics for your processing jobs in the
Monitoring tool. After your processing jobs complete you can get business intelligence and analytics from
your data.

Data Warehouse Optimization Mapping Example
You can optimize an enterprise data warehouse with the Hadoop system to store more terabytes of data
cheaply in the warehouse.

For example, you need to analyze customer portfolios by processing the records that have changed in a 24-
hour time period. You can offload the data on Hadoop, find the customer records that have been inserted,
deleted, and updated in the last 24 hours, and then update those records in your data warehouse. You can
capture these changes even if the number of columns change or if the keys change in the source files.

To capture the changes, you can create the following mappings in the Developer tool:
Mapping_Day1

Create a mapping to read customer data from flat files in a local file system and write to an HDFS target
for the first 24-hour period.

Mapping_Day2

Create a mapping to read customer data from flat files in a local file system and write to an HDFS target
for the next 24-hour period.

m_CDC_DWHOptimization

Create a mapping to capture the changed data. The mapping reads data from HDFS and identifies the
data that has changed. To increase performance, you configure the mapping to run on Hadoop cluster
nodes in a Hadoop environment.

26 Chapter 1: Introduction to Informatica Data Engineering Integration

The following image shows the mapping m_CDC_DWHOptimization:

The mapping contains the following objects:

• Read transformations. Transformations that read data from HDFS files that were the targets of
Mapping_Day1 and Mapping_Day2. The Data Integration Service reads all of the data as a single
column.

• Expression transformations. Extract a key from the non-key values in the data. The expressions use
the INSTR function and SUBSTR function to perform the extraction of key values.

• Joiner transformation. Performs a full outer join on the two sources based on the keys generated by
the Expression transformations.

• Filter transformations. Use the output of the Joiner transformation to filter rows based on whether or
not the rows should be updated, deleted, or inserted.

• Write transformations. Transformations that write the data to three HDFS files based on whether the
data is inserted, deleted, or updated.

Consolidated_Mapping

Create a mapping to consolidate the data in the HDFS files and load the data to the data warehouse.

The following figure shows the mapping Consolidated_Mapping:

Data Warehouse Optimization Mapping Example 27

The mapping contains the following objects:

• Read transformations. Transformations that read data from HDFS files that were the target of the
previous mapping are the sources of this mapping.

• Expression transformations. Add the deleted, updated, or inserted tags to the data rows.

• Union transformation. Combines the records.

• Write transformation. Transformation that writes data to the flat file that acts as a staging location
on the local file system.

You can open each mapping and right-click to run the mapping. To run all mappings in sequence, use a
workflow.

The following image shows the example Data Warehouse Optimization workflow:

To run the workflow, use the infacmd wfs startWorkflow command.

28 Chapter 1: Introduction to Informatica Data Engineering Integration

C h a p t e r 2

Mappings
This chapter includes the following topics:

• Overview of Mappings, 29

• Mapping Run-time Properties, 30

• PreSQL and PostSQL Queries for JDBC Sources, 35

• Sqoop Mappings in a Hadoop Environment, 36

• Mapping Output Binding, 42

• Rules and Guidelines for Mappings in a Non-native Environment, 42

• Workflows that Run Mappings in a Non-native Environment, 46

• Configuring a Mapping to Run in a Non-native Environment, 46

• Audits, 47

• Mapping Execution Plans, 54

• Troubleshooting Mappings in a Non-native Environment, 58

• Mappings in the Native Environment, 60

Overview of Mappings
Configure the run-time environment in the Developer tool to optimize mapping performance and process data
that is greater than 10 terabytes. You can choose to run a mapping in the native environment or in a non-
native environment. When you run mappings in the native environment, the Data Integration Service
processes and runs the mapping. When you run mappings in a non-native environment, the Data Integration
Service pushes the processing to a compute cluster, such as Hadoop or Databricks.

You can run standalone mappings and mappings that are a part of a workflow in the non-native environment.

When you select the Hadoop environment, you can also select the engine to push the mapping logic to the
Hadoop cluster. Based on the mapping logic, the Data Integration Service can push the mapping logic to one
of the following engines in the Hadoop environment:

• Informatica Blaze engine. An Informatica proprietary engine for distributed processing on Hadoop.

• Spark engine. A high performance engine for batch processing that can run on a Hadoop cluster or on a
Spark standalone mode cluster.

When you select the Databricks environment, the Integration Service pushes the mapping logic to the
Databricks Spark engine, the Apache Spark engine packaged for Databricks.

29

When you select multiple engines, the Data Integration Service determines the best engine to run the
mapping during validation. You can also choose to select which engine the Data Integration Service uses.
You might select an engine based on whether an engine supports a particular transformation or based on the
format in which the engine returns data.

When you run a mapping in a non-native environment, you must configure a connection to access the
environment. You can set the run-time properties for the environment and for the engine that runs the
mapping.

To validate the consistency and accuracy of data processed in a mapping, you can create audit rules and
conditions for the mapping.

You can view the execution plan for a mapping to run in the non-native environment. View the execution plan
for the engine that the Data Integration Service selects to run the mapping.

You can monitor Hive queries and Hadoop jobs in the Monitoring tool. Monitor the jobs on a Hadoop cluster
with the YARN Web User Interface or the Blaze Job Monitor web application.

The Data Integration Service logs messages from the Blaze, Spark and Databricks Spark engines and the
DTM.

Mapping Run-time Properties
The mapping run-time properties depend on the environment that you select for the mapping.

The mapping properties contain the Validation Environments area and an Execution Environment area. The
properties in the Validation Environment indicate whether the Developer tool validates the mapping definition
for the native execution environment, the non-native execution environment, or both. When you run a mapping
in the native environment, the Data Integration Service processes the mapping.

When you run a mapping in the non-native environment, the Data Integration Service pushes the mapping
execution to the compute cluster through a runtime connection. The engine in the compute cluster processes
the mapping.

The following image shows the mapping Run-time properties in a Hadoop environment:

30 Chapter 2: Mappings

Validation Environments
The properties in the Validation Environments indicate whether the Developer tool validates the mapping
definition for the native or non-native execution environment.

You can configure the following properties for the Validation Environments:

Native

Default environment. The Data Integration Service runs the mapping in a native environment.

Hadoop

Run the mapping in the Hadoop environment. The Data Integration Service pushes the transformation
logic to the Hadoop cluster through a Hadoop connection. Select the engine to process the mapping.
You can select the Blaze or Spark engine.

Databricks

Run the mapping in the Databricks environment. The Data Integration Service pushes the transformation
logic to the Databricks cluster through a Databricks connection. The Databricks cluster processes the
mapping on the Databricks Spark engine.

You can use a mapping parameter to indicate the execution environment for the mapping. When you select
the execution environment, click Assign Parameter. Configure a string parameter. Set the default value to
native, hadoop, or spark-databricks.

When you validate the mapping, validation occurs for each engine that you choose in the Validation
Environments. The validation log might contain validation errors specific to each engine. If the mapping is
valid for at least one mapping, the mapping is valid. The errors for the other engines appear in the validation
log as warnings. If the mapping is valid for multiple engines, you can view the execution plan to determine
which engine will run the job.

The following image shows a sample validation log:

Mapping Run-time Properties 31

Execution Environment
Configure non-native properties, pushdown configuration properties, and source configuration properties in
the Execution Environment area.

The following table describes properties that you can configure for the Hadoop and Databricks environments:

Name Description

Connection Configure for the Hadoop and Databricks environments.
Defines the connection information that the Data Integration Service requires to push the mapping
execution to the compute cluster. Select the non-native connection to run the mapping in the
compute cluster. You can assign a user-defined parameter for the non-native connection.

Runtime
Properties

Configure for the Hadoop environment.
You can configure run-time properties for the Hadoop environment in the Data Integration Service, the
Hadoop connection, and in the mapping. You can override a property configured at a high level by
setting the value at a lower level. For example, if you configure a property in the Data Integration
Service custom properties, you can override it in the Hadoop connection or in the mapping. The Data
Integration Service processes property overrides based on the following priorities:
1. Mapping custom properties set using infacmd ms runMapping with the -cp option
2. Mapping run-time properties for the Hadoop environment
3. Hadoop connection advanced properties for run-time engines
4. Hadoop connection advanced general properties, environment variables, and classpaths
5. Data Integration Service custom properties
Note: When a mapping uses Hive Server 2 to run a job or parts of a job, you cannot override
properties that are configured on the cluster level in preSQL or post-SQL queries or SQL override
statements. Workaround: Instead of attempting to use the cluster configuration on the domain to
override cluster properties, pass the override settings to the JDBC URL. For example: beeline -u
"jdbc:hive2://<domain host>:<port_number>/tpch_text_100" --hiveconf
hive.execution.engine=tez

Reject File
Directory

Configure for the Hadoop environment.
The directory for Hadoop mapping files on HDFS when you run mappings in the Hadoop environment.
The Blaze engine can write reject files to the Hadoop environment for flat file, HDFS, and Hive
targets. The Spark engine can write reject files to the Hadoop environment for flat file and HDFS
targets.
Choose one of the following options:
- On the Hadoop Cluster. The reject files are moved to the reject directory configured in the Hadoop

connection. If the directory is not configured, the mapping will fail.
- Defer to the Hadoop Connection. The reject files are moved based on whether the reject directory

is enabled in the Hadoop connection properties. If the reject directory is enabled, the reject files
are moved to the reject directory configured in the Hadoop connection. Otherwise, the Data
Integration Service stores the reject files based on the RejectDir system parameter.

32 Chapter 2: Mappings

You can configure the following pushdown configuration properties:

Name Description

Pushdown type Configure for the Hadoop environment.
Choose one of the following options:
- None. Select no pushdown type for the mapping.
- Source. The Data Integration Service tries to push down transformation logic to the source

database.
- Full. The Data Integration Service pushes the full transformation logic to the source database.

Pushdown
Compatibility

Configure for the Hadoop environment.
Optionally, if you choose full pushdown optimization and the mapping contains an Update Strategy
transformation, you can choose a pushdown compatibility option or assign a pushdown
compatibility parameter.
Choose one of the following options:
- Multiple rows do not have the same key. The transformation connected to the Update Strategy

transformation receives multiple rows without the same key. The Data Integration Service can
push the transformation logic to the target.

- Multiple rows with the same key can be reordered. The target transformation connected to the
Update Strategy transformation receives multiple rows with the same key that can be reordered.
The Data Integration Service can push the Update Strategy transformation to the non-native
environment.

- Multiple rows with the same key cannot be reordered. The target transformation connected to
the Update Strategy transformation receives multiple rows with the same key that cannot be
reordered. The Data Integration Service cannot push the Update Strategy transformation to the
non-native environment.

You can configure the following source properties for the Hadoop and Databricks environments:

Name Description

Maximum Rows Read Reserved for future use.

Maximum Runtime Interval Reserved for future use.

State Store Reserved for future use.

Parsing JSON Records on the Spark Engines
In the mapping run-time properties, you can configure how the Spark engine parses corrupt records and
multiline records when it reads from JSON sources in a mapping.

Configure the following Spark run-time properties:

infaspark.json.parser.mode

Specifies the parser how to handle corrupt JSON records. You can set the value to one of the following
modes:

• DROPMALFORMED. The parser ignores all corrupted records. Default mode.

• PERMISSIVE. The parser accepts non-standard fields as nulls in corrupted records.

• FAILFAST. The parser generates an exception when it encounters a corrupted record and the Spark
application goes down.

Mapping Run-time Properties 33

infaspark.json.parser.multiLine

Specifies whether the parser can read a multiline record in a JSON file. You can set the value to true or
false. Default is false. Applies only to non-native distributions that use Spark version 2.2.x and above.

Reject File Directory
You can write reject files to the Data Integration Service machine or to the Hadoop cluster. Or, you can defer
to the Hadoop connection configuration. The Blaze engine and Spark engine can write reject files to the
Hadoop environment for flat file and HDFS targets.

If you configure the mapping run-time properties to defer to the Hadoop connection, the reject files for all
mappings with this configuration are moved based on whether you choose to write reject files to Hadoop for
the active Hadoop connection. You do not need to change the mapping run-time properties manually to
change the reject file directory.

For example, if the reject files are currently moved to the Data Integration Service machine and you want to
move them to the directory configured in the Hadoop connection, edit the Hadoop connection properties to
write reject files to Hadoop. The reject files of all mappings that are configured to defer to the Hadoop
connection are moved to the configured directory.

You might also to choose to defer to the Hadoop connection when the connection is parameterized to
alternate between multiple Hadoop connections. For example, the parameter might alternate between one
Hadoop connection that is configured to move reject files to the Data Integration Service machine and
another Hadoop connection that is configured to move reject files to the directory configured in the Hadoop
connection. If you choose to defer to the Hadoop connection, the reject files are moved depending on the
active Hadoop connection in the connection parameter.

You cannot create the reject file directory at run time. Depending on the option that you choose, the
configured reject file directory must exist on the Data Integration Service machine or in the Hadoop
environment before you can store reject files.

Changing the Compute Cluster for a Mapping Run
You can change the compute cluster that a mapping runs on.

You might want to change the compute cluster to run the mapping on a different compute cluster type or
different version.

To change the compute cluster that a mapping runs on, click the connection where it appears in the mapping
run-time properties. Then click Browse, and select a non-native connection that uses a cluster configuration
for the cluster where you want to run the mapping.

The following image shows the Browse choice for a non-native connection:

34 Chapter 2: Mappings

After you change the connection that the mapping uses, you must restart the Data Integration Service for the
change to take effect.

Updating Run-time Properties for Multiple Mappings
You can enable or disable the validation environment or set the execution environment for multiple
mappings. You can update multiple mappings that you run from the Developer tool or mappings that are
deployed to a Data Integration Service. Use the Command Line Interface to perform these updates.

The following table describes the commands to update mapping run-time properties:

Command Description

dis disableMappingValidationEnvironment Disables the mapping validation environment for mappings that are
deployed to the Data Integration Service.

mrs disableMappingValidationEnvironment Disables the mapping validation environment for mappings that you run
from the Developer tool.

dis enableMappingValidationEnvironment Enables a mapping validation environment for mappings that are
deployed to the Data Integration Service.

mrs enableMappingValidationEnvironment Enables a mapping validation environment for mappings that you run
from the Developer tool.

dis setMappingExecutionEnvironment Specifies the mapping execution environment for mappings that are
deployed to the Data Integration Service.

mrs setMappingExecutionEnvironment Specifies the mapping execution environment for mappings that you run
from the Developer tool.

PreSQL and PostSQL Queries for JDBC Sources
When you create a mapping to access JDBC storage resources, you can use SQL statements to execute SQL
commands such as insert, update, and delete on JDBC source tables.

JDBC sources include Hadoop and Databricks sources that use the JDBC connection.

You can create a PreSQL or PostSQL statement that contains one command or a series of commands. To
create an SQL statement with more than one command, write the SQL statement with the following delimiter
between each command:

{INFA_SQL_SPLITTER}
PreSQL Queries for JDBC Sources

PreSQL is an SQL command that runs against the JDBC source before the mapping reads from the source.
You can input the SQL statement in the Read transformation advanced properties.

For example, the following PreSQL statement contains three commands separated by the
{INFA_SQL_SPLITTER} delimiter:

INSERT INTO 'default'.employee_csv_us_src VALUES
(201, 'PRE_SQL_AA-INSERT', 1000.021, 'SWE-1',
11,111111.132412341,'2019-11-12','2019-12-01 01:01:01.111'){INFA_SQL_SPLITTER}
INSERT INTO 'default'.employee_csv_us_src VALUES

PreSQL and PostSQL Queries for JDBC Sources 35

(202, 'PRE_SQL_BB-INSERT', 1000.021, 'SWE-2',
11,111111.132412341,'2019-11-12','2019-12-01 01:01:01.111'){INFA_SQL_SPLITTER}
INSERT INTO 'default'.employee_csv_us_src VALUES
(203, 'PRE_SQL_CC-INSERT', 1000.021, 'SWE-3',
11,111111.132412341,'2019-11-12','2019-12-01 01:01:01.111'){INFA_SQL_SPLITTER}

PostSQL Queries for JDBC Targets

PostSQL is an SQL command that runs against the JDBC target after the mapping writes to the target. You
can input the SQL statement in the Write transformation advanced properties.

For example, the following PostSQL statement contains three commands separated by the
{INFA_SQL_SPLITTER} delimiter:

INSERT INTO 'default'.employee_csv_us_src VALUES
(204, 'POST_SQL_AA-INSERT', 1000.021, 'SWE-1',
11,111111.132412341,'2019-11-12','2019-12-01 01:01:01.111'){INFA_SQL_SPLITTER}
INSERT INTO 'default'.employee_csv_us_src VALUES
(205, 'POST_SQL_BB-INSERT', 1000.021, 'SWE-2',
11,111111.132412341,'2019-11-12','2019-12-01 01:01:01.111'){INFA_SQL_SPLITTER}
INSERT INTO 'default'.employee_csv_us_src VALUES
(206, 'POST_SQL_CC-INSERT', 1000.021, 'SWE-3',
11,111111.132412341,'2019-11-12','2019-12-01 01:01:01.111'){INFA_SQL_SPLITTER}

Sqoop Mappings in a Hadoop Environment
You can use a JDBC connection that is enabled for Sqoop connectivity to import a Sqoop source or Sqoop
target and create a mapping. You can run Sqoop mappings on the Blaze and Spark engines.

If you use Cloudera Connector Powered by Teradata or Hortonworks Connector for Teradata, you can run
mappings on the Blaze or Spark engines. If you use MapR Connector for Teradata, you can run mappings on
the Spark engine.

In the mapping, you can specify additional Sqoop arguments and disable the Sqoop connector.

Note: If you add or delete a Type 4 JDBC driver .jar file required for Sqoop connectivity from the
externaljdbcjars directory, changes take effect after you restart the Data Integration Service. If you run the
mapping on the Blaze engine, changes take effect after you restart the Data Integration Service and Blaze
Grid Manager. When you run the mapping for the first time, you do not need to restart the Data Integration
Service and Blaze Grid Manager. You need to restart the Data Integration Service and Blaze Grid Manager
only for the subsequent mapping runs.

Sqoop Mapping-Level Arguments
If a data object uses Sqoop, you can click the corresponding Read transformation or Write transformation in
the Sqoop mapping to define the arguments that Sqoop must use to process the data. The Data Integration
Service merges the additional Sqoop arguments that you specify in the mapping with the arguments that you
specified in the JDBC connection and constructs the Sqoop command.

The Sqoop arguments that you specify in the mapping take precedence over the arguments that you
specified in the JDBC connection. However, if you do not enable the Sqoop connector in the JDBC connection
but enable the Sqoop connector in the mapping, the Data Integration Service does not run the mapping
through Sqoop. The Data Integration Service runs the mapping through JDBC.

You can configure the following Sqoop arguments in a Sqoop mapping:

• m or num-mappers

36 Chapter 2: Mappings

• split-by

• batch

• infaoptimize

• infaownername

• schema

• verbose

For a complete list of the Sqoop arguments that you can configure, see the Sqoop documentation.

m or num-mappers
The m or num-mappers argument defines the number of map tasks that Sqoop must use to import and
export data in parallel.

Use the following syntax:

-m <number of map tasks>

--num-mappers <number of map tasks>

If you configure the m argument or num-mappers argument, you must also configure the split-by argument to
specify the column based on which Sqoop must split the work units.

Use the m argument or num-mappers argument to increase the degree of parallelism. You might have to test
different values for optimal performance.

When you configure the m argument or num-mappers argument and run Sqoop mappings on the Spark or
Blaze engines, Sqoop dynamically creates partitions based on the file size.

Note: If you configure the num-mappers argument to export data on the Blaze or Spark engine, Sqoop ignores
the argument. Sqoop creates map tasks based on the number of intermediate files that the Blaze or Spark
engine creates.

split-by
The split-by argument defines the column based on which Sqoop splits work units.

Use the following syntax:

--split-by <column_name>

You can configure the split-by argument to improve the performance. If the primary key does not have an
even distribution of values between the minimum and maximum range, you can configure the split-by
argument to specify another column that has a balanced distribution of data to split the work units.

If you do not define the split-by column, Sqoop splits work units based on the following criteria:

• If the data object contains a single primary key, Sqoop uses the primary key as the split-by column.

• If the data object contains a composite primary key, Sqoop defaults to the behavior of handling composite
primary keys without the split-by argument. See the Sqoop documentation for more information.

• If the data object does not contain a primary key, the value of the m argument and num-mappers
argument default to 1.

Sqoop Mappings in a Hadoop Environment 37

Rules and Guidelines for the split-by Argument

Consider the following restrictions when you configure the split-by argument:

• If you configure the split-by argument and the split-by column contains NULL values, Sqoop does not
import the rows that contain NULL values. However, the mapping runs successfully and no error is written
in the YARN log.

• If you configure the split-by argument and the split-by column contains special characters, the Sqoop
import process fails.

• The split-by argument is required in the following scenarios:

- You use Cloudera Connector Powered by Teradata or Hortonworks Connector for Teradata, and the
Teradata table does not contain a primary key.

- You create a custom query to override the default query when you import data from a Sqoop source.

batch
The batch argument indicates that Sqoop must export data in batches instead of exporting data row by row.

Use the following syntax:

--batch

You can configure the batch argument to improve the performance.

The batch argument is required when you configure Sqoop in the following scenarios:

• You write data to a Vertica target.

• You write data to an IBM DB2 for z/OS target.

• You write data to a Teradata target by running the mapping with a generic JDBC connector instead of a
TDCH specialized connector for Sqoop. You can invoke the generic JDBC connector by configuring the --
driver and --connection-manager Sqoop arguments in the JDBC connection.

infaoptimize
The infaoptimize argument defines whether you want to disable the performance optimization of Sqoop
pass-through mappings on the Spark engine.

When you run a Sqoop pass-through mapping on the Spark engine, the Data Integration Service optimizes
mapping performance in the following scenarios:

• You read data from a Sqoop source and write data to a Hive target that uses the Text format.

• You read data from a Sqoop source and write data to an HDFS target that uses the Flat, Avro, or Parquet
format.

If you want to disable the performance optimization, set the --infaoptimize argument to false. For example, if
you see data type issues after you run an optimized Sqoop mapping, you can disable the performance
optimization.

Use the following syntax:

--infaoptimize false

38 Chapter 2: Mappings

infaownername
The infaownername argument indicates whether Sqoop must honor the owner name for a data object.

To configure Sqoop to honor the owner name for a data object, set the value of the infaownername argument
to true.

Use the following syntax:

--infaownername true

Note: To honor the owner name for a Microsoft SQL Server database, you must configure the -- --schema
argument and specify the owner name. Use the following syntax:

-- --schema <owner_name>

schema
The schema argument indicates whether Sqoop must honor the owner name for a data object that represents
a Microsoft SQL Server database.

To honor the owner name for a Microsoft SQL Server source database, specify the owner name in the
Additional Sqoop Import Arguments field in the Sqoop mapping. Use the following syntax:

-- --schema <owner_name>

To honor the owner name for a Microsoft SQL Server target database, you must leave the Owner field blank in
the Sqoop target data object. Specify the owner name in the Additional Sqoop Export Arguments field in the
Sqoop mapping. Use the following syntax:

-- --schema <owner_name>

verbose
Configure the --verbose argument when you want detailed information in the logs for debugging purposes.

Use the following syntax:

--verbose

Note: If you configure the --verbose argument, you might experience significant performance degradation,
especially if you run the Sqoop mapping on the Spark engine.

Incremental Data Extraction for Sqoop Mappings
You can configure a Sqoop mapping to perform incremental data extraction based on an ID or timestamp
based source column. With incremental data extraction, Sqoop extracts only the data that changed since the
last data extraction. Incremental data extraction increases the mapping performance.

To perform incremental data extraction, configure arguments in the Additional Sqoop Import Arguments text
box of the Read transformation in the Sqoop mapping.

You must configure all of the following arguments for incremental data extraction:

--infa-incremental-type

Indicates whether you want to perform the incremental data extraction based on an ID or timestamp
column.

If the source table contains an ID column that acts as a primary key or unique key column, you can
configure incremental data extraction based on the ID column. Set the value of the --infa-incremental-
type argument as ID. Sqoop extracts rows whose IDs are greater than the last extracted ID.

Sqoop Mappings in a Hadoop Environment 39

If the source table contains a timestamp column that contains the last updated time for all rows, you can
configure incremental data extraction based on the timestamp column. Set the value of the --infa-
incremental-type argument as timestamp. Sqoop extracts rows whose timestamps are greater than the
last read timestamp value or the maximum timestamp value.

Use the following syntax:

--infa-incremental-type <ID or timestamp>

--infa-incremental-key

Indicates the column name based on which Sqoop must perform the incremental data extraction.

Use the following syntax:

--infa-incremental-key <column_name>

--infa-incremental-value

Indicates the column value that Sqoop must use as the baseline value to perform the incremental data
extraction. Sqoop extracts all rows that have a value greater than the value defined in the --infa-
incremental-value argument.

Enclose the column value within double quotes.

Use the following syntax:

--infa-incremental-value "<column_value>"

--infa-incremental-value-format

Applicable if you configure incremental data extraction based on a timestamp column. Indicates the
timestamp format of the column value defined in the --infa-incremental-value argument.

Enclose the format value within double quotes.

Use the following syntax:

--infa-incremental-value-format "<format>"

Default is "MM/dd/yyyy HH:mm:ss.SSSSSSSSS".

Note: If you want to perform incremental data extraction but you do not configure all the required arguments,
the Sqoop mapping fails. The argument values are not case sensitive.

Example

The Sales department in your organization stores information related to new customers in Salesforce. You
want to create a Sqoop mapping to read customer records that were created after a certain date and write
the data to SAP.

In the Sqoop mapping, you can define the Sqoop import arguments as follows:

--infa-incremental-type timestamp --infa-incremental-key CreatedDate --infa-incremental-value
"10/20/2018 00:00:00.000000000" --infa-incremental-value-format "MM/dd/yyyy
HH:mm:ss.SSSSSSSSS"

The Data Integration Service reads all customer records whose CreatedDate column contains timestamp
values greater than 10/20/2018 00:00:00.000000000. The Sqoop mapping uses the 10/20/2018
00:00:00.000000000 format while reading data.

40 Chapter 2: Mappings

Configuring Sqoop Properties in the Mapping
You can specify additional Sqoop arguments and disable the Sqoop connector at the mapping level. The
Sqoop arguments that you specify at the mapping level take precedence over the arguments that you
specified in the JDBC connection.

1. Open the mapping that contains the data object for which you want to configure Sqoop properties.

2. Select the Read or Write transformation that is associated with the data object.

3. Click the Advanced tab.

4. To disable the Sqoop connector for the data object, select the Disable Sqoop Connector check box.

A mapping that contains an Update Strategy transformation cannot use a Sqoop-enabled JDBC
connection to write to a target. To run the mapping, disable the Sqoop connector in the Write
transformation.

5. Perform one of the following steps:

• To specify additional Sqoop import arguments for the data object, enter the import arguments in the
Additional Sqoop Import Arguments text box.

• To specify additional Sqoop export arguments for the data object, enter the export arguments in the
Additional Sqoop Export Arguments text box.

The Data Integration Service merges the additional Sqoop arguments that you specified in the mapping
with the arguments that you specified in the JDBC connection and constructs the Sqoop command. The
Data Integration Service then invokes Sqoop on a Hadoop node.

Configuring Parameters for Sqoop Arguments in the Mapping
In a Sqoop mapping, you can parameterize the Sqoop import and export arguments.

1. Open the Sqoop mapping where you want to parameterize the Sqoop arguments.

2. Click the Parameters tab, and define a parameter name and parameter value.

For example, enter the parameter name as Param_splitByColumn
3. Select the Read or Write transformation that is associated with the data object.

4. Click the Advanced tab.

5. Perform one of the following steps:

• To parameterize Sqoop import arguments for the data object, click the Additional Sqoop Import
Arguments text box and enter the parameter name you defined in the Parameters tab.

• To parameterize Sqoop export arguments for the data object, click the Additional Sqoop Export
Arguments text box and enter the parameter name you defined in the Parameters tab.

Use the following format to specify the parameter name for a Sqoop import or export argument:

--<Sqoop_argument_name> $<parameter_name>
For example, enter --split-by $Param_splitByColumn

Sqoop Mappings in a Hadoop Environment 41

Mapping Output Binding
You can configure mapping outputs for standalone mappings or mappings that are a part of a workflow. You
can bind persisted mapping outputs to use them in subsequent runs of the mapping or workflow.

Standalone Deployed Mappings

You can persist a mapping output in the Model repository for mappings that run in the native environment or
on the Spark engine. You can bind a mapping output to a mapping parameter to pass the value of the output
to the mapping the next time you run the mapping.

For more information about mapping outputs in standalone mappings, see the "Mapping Outputs" chapter in
the Developer Mapping Guide.

Mapping Tasks in Workflows

If you add a mapping to a workflow that runs on the Spark or Blaze engine, you can configure mapping
outputs. You can persist a mapping output in the Model repository to assign the persisted output to a
Mapping task input, or you can bind a mapping output to a workflow variable to pass the value of the output
to other tasks in the workflow. The mappings that run on these engines provide the total number of target,
source, and error rows.

Note: You cannot use the SUM aggregation type in mapping outputs on the Spark engine.

For more information about mapping outputs in workflow Mapping tasks, see the "Mapping Task" chapter in
the Developer Workflow Guide.

Rules and Guidelines for Mappings in a Non-native
Environment

When you run mappings in a non-native environment, some differences in processing and configuration
apply. You can run mappings in a non-native environment on the Blaze, Spark, or Databricks Spark engine.
Consider the following rules and guidelines when you run mappings in the native and non-native
environments.

Rules and Guidelines for Mappings on the Blaze Engine
Consider the following run-time differences on the Blaze engine:

• In a Hadoop environment, sources that have data errors in a column result in a null value for the column.
In the native environment, the Data Integration Service does not process the rows that have data errors in
a column.

• When you cancel a mapping that reads from a flat file source, the file copy process that copies flat file
data to HDFS may continue to run. The Data Integration Service logs the command to kill this process in
the Hive session log, and cleans up any data copied to HDFS. Optionally, you can run the command to kill
the file copy process.

• If you use Hive 2.0 or higher, the Blaze engine guarantees scale values. For example, when the Blaze
engine processes the decimal 1.1234567 with scale 9 using Hive 2.0, the output is 1.123456700.

42 Chapter 2: Mappings

Rules and Guidelines for Mappings on the Spark Engine
Consider the following run-time differences on the Spark engine:

Mapping Validation

Consider the following rules and guidelines for mapping validation:

• Mapping validation fails if you configure SYSTIMESTAMP with a variable value, such as a port name. The
function can either include no argument or the precision to which you want to retrieve the timestamp
value.

• Mapping validation fails if an output port contains a Timestamp with Time Zone data type.

Optimization
• Set the optimizer level to none or minimal if a mapping validates but fails to run. If you set the optimizer

level to use cost-based or semi-join optimization methods, the Data Integration Service ignores this at run-
time and uses the default.

• The run-time engine does not honor the early projection optimization method in all cases. If the Data
Integration Service removes the links between unused ports, the run-time engine might reconnect the
ports.

• When you use the auto optimizer level, the early selection optimization method is enabled if the mapping
contains any data source that supports pushing filters to the source on Spark or Databricks Spark
engines. For more information about optimizer levels, see the Informatica Developer Mapping Guide.

• When the Spark engine runs a mapping, it processes jobs on the cluster using HiveServer2 in the following
cases:

- The mapping writes to a target that is a Hive table bucketed on fields of type char or varchar.

- The mapping reads from or writes to Hive transaction-enabled tables.

- The mapping reads from or writes to Hive tables where column-level security is enabled.

- The mapping writes to a Hive target and is configured to create or replace the table at run time.

High Precision

Consider the following rules and guidelines for mappings that run in high precision or low precision mode:

• When you use the TO_DECIMAL or TO_DECIMAL38 function in a mapping that runs in high precision
mode, you must specify a scale argument. If the mapping runs in low precision mode, the Spark engine
ignores the scale argument and returns a double.

• If you enable high-precision in a streaming mapping, the Spark engine runs the mapping in low-precision
mode.

• If the mapping contains a complex port with an element of a decimal data type, the Spark engine runs the
mapping in low-precision mode.

Overflow Values

The Spark engine and the Data Integration Service process overflow values differently. The Spark engine
processing rules might differ from the rules that the Data Integration Service uses. As a result, mapping
results can vary between the native and Hadoop environment when the Spark engine processes an overflow.

Null and Invalid Values and Rejected Rows

Consider the following guidelines when mappings pass null or invalid values for rows:

• The Spark run-time engine drops rejected rows even if you configure the mapping to forward rejected
rows. The rejected rows are not written to the session log file.

Rules and Guidelines for Mappings in a Non-native Environment 43

• If an expression results in numerical errors, such as division by zero or SQRT of a negative number, the
Spark engine returns null. In the native environment, the same expression results in a row error.

• The Hadoop environment treats "/n" values as null values. If an aggregate function contains empty or
NULL values, the Hadoop environment includes these values while performing an aggregate calculation.

• The Spark engine writes null values for rows when invalid values are passed in the following situations:

- The terms argument in PV, FV, PMT, and RATE finance functions passes a 0 value. The value of terms
must be an integer greater than 0.

- The month argument in the MAKE_DATE_TIME function passes an invalid value. The value of month
must be from 1 to 12.

In the native environment, the Data Integration Service rejects the row and does not write it to the target.

• If data overflow occurs, the Spark engine returns null. For example, if you use the expression
TO_DECIMAL(12.34, 2) in a port that has a precision of 3 and a scale of 2, the return value is null. The null
value will be propagated through the mapping. The mapping might overwrite it using a default value,
detect it using the function IS_NULL, and write the null value to the target.

Data Conversions

The Spark engine and the Data Integration Service process data type conversions differently. As a result,
mapping results can vary between the native and Hadoop environment when the Spark engine performs a
data type conversion. Consider the following processing variations for Spark:

• The results of arithmetic operations on floating point types, such as Decimal, can vary between the native
environment and a Hadoop environment. The difference between the results can increase across multiple
operations.

• When the number of fractional digits in a double or decimal value exceeds the scale that is configured in a
decimal port, the Spark engine trims trailing digits, rounding the value if necessary.

• If you use Hive 2.0 or higher, the Spark engine guarantees scale values. For example, when the Spark
engine processes the decimal 1.1234567 with scale 9 using Hive 2.0, the output is 1.123456700.

• The Spark engine cannot process dates to the nanosecond. It can return a precision for date/time data up
to the microsecond.

Scale

The Spark engine and the Data Integration Service process scale differently. The Data Integration Service
allows scale to differ between rows of decimal data while the Spark engine uses a fixed scale for each row.
Because the scale is fixed, arithmetic operations can result in data overflow.

For example, the arithmetic operation dec(38,0) / dec(10,0) outputs a decimal dec(38,6) on the Spark engine.
The operation might result in data overflow based on whether the result can be represented as a decimal
dec(38,6).

The following table shows the decimal values of dec(10,0) that result in data overflow for several decimal
values of dec(38,0):

Decimal Value of dec(38,0) Decimal Values of dec(10,0) that Result in Data Overflow

Less than 10^32 None

10^32 Decimals with an absolute value that is less than or equal to 1

44 Chapter 2: Mappings

Decimal Value of dec(38,0) Decimal Values of dec(10,0) that Result in Data Overflow

10^33 Decimals with an absolute value that is less than or equal to 10

10^34 Decimals with an absolute value that is less than or equal to 100

Function

Consider the following rules and guidelines for various functions:

• Avoid including single and nested functions in an Aggregator transformation. The Data Integration Service
fails the mapping in the native environment. It can push the processing to the Hadoop environment, but
you might get unexpected results. Informatica recommends creating multiple transformations to perform
the aggregation.

• The Spark METAPHONE function uses phonetic encoders from the org.apache.commons.codec.language
library. When the Spark engine runs a mapping, the METAPHONE function can produce an output that is
different from the output in the native environment. The following table shows some examples:

String Data Integration Service Spark Engine

Might MFT MT

High HF H

• If you use the TO_DATE function on the Spark engine to process a string written in ISO standard format,
you must add *T* to the date string and *”T”* to the format string. The following expression shows an
example that uses the TO_DATE function to convert a string written in the ISO standard format YYYY-MM-
DDTHH24:MI:SS:

TO_DATE(‘2017-11-03*T*12:45:00’,’YYYY-MM-DD*”T”*HH24:MI:SS’)
The following table shows how the function converts the string:

ISO Standard Format RETURN VALUE

2017-11-03T12:45:00 Nov 03 2017 12:45:00

• The UUID4 function is supported only when used as an argument in UUID_UNPARSE or ENC_BASE64.

• The UUID_UNPARSE function is supported only when the argument is UUID4().

Other Rules and Guidelines

You cannot preview data for a transformation that is configured for windowing.

When the Spark engine runs a mapping, it processes jobs on the cluster using HiveServer2 in the following
cases:

• The mapping writes to a target that is a Hive table bucketed on fields of type char or varchar.

• The mapping reads from or writes to Hive transaction-enabled tables.

• The mapping reads from or writes to Hive tables where column-level security is enabled.

• The mapping writes to a Hive target and is configured to create or replace the table at run time.

Rules and Guidelines for Mappings in a Non-native Environment 45

Rules and Guidelines for Mappings on the Databricks Spark Engine
A non-native environment like Databricks Spark uses distributed processing and processes data on different
nodes. Each node does not have access to the data that is being processed on other nodes. As a result, the
runtime engine might not be able to determine the order in which the data originated. So, when you run a
mapping in a non-native environment and you run the same mapping in the native environment, both
mappings return correct results, but the results might not be identical. For more information, see the
Developer Transformation Guide.

Consider the following run-time differences on the Databricks Spark engine:

• When you use the auto optimizer level, the early selection optimization method is enabled if the mapping
contains any data source that supports pushing filters to the source on Spark or Databricks Spark
engines. For more information about optimizer levels, see the Informatica Developer Mapping Guide.

• Databricks Spark performs auto-optimization on jobs based on configuration settings for the cluster. If
you set optimization through the Spark.default.parallelism property, the Databricks Spark engine ignores
this setting. As a consequence, it is not possible to configure optimization on the job level.

Workflows that Run Mappings in a Non-native
Environment

You can add a mapping that you configured to run in a non-native environment to a Mapping task in a
workflow. When you deploy and run the workflow, the Mapping task runs the mapping.

You might decide to run a mapping from a workflow so that you can make decisions during the workflow run.
You can configure a workflow to run multiple mappings in sequence or in parallel. You can configure a
workflow to send emails that notify users about the status of the Mapping tasks.

Configuring a Mapping to Run in a Non-native
Environment

You can configure a mapping to run in a non-native environment. To configure a mapping, you must select a
validation environment and an execution environment.

1. Select a mapping from a project or folder from the Object Explorer view to open in the editor.

2. In the Properties view, select the Run-time tab.

3. Select Hadoop, Databricks, or both as the value for the validation environment.

When you select the Hadoop environment, the Blaze and Spark engines are selected by default. Disable
the engines that you do not want to use.

4. Select Hadoop or Databricks for the execution environment.

46 Chapter 2: Mappings

https://docs.informatica.com/big-data-management/shared-content-for-data-engineering/10-4-0/developer-transformation-guide/introduction-to-transformations/transformations-in-the-native-and-non-native-environments.html

5. Select Connection and use the drop down in the value field to browse for a connection or to create a
connection parameter:

• To select a connection, click Browse and select a connection.

• To create a connection parameter, click Assign Parameter.

6. Configure the rest of the properties for the execution environment.

7. Right-click an empty area in the editor and click Validate.

The Developer tool validates the mapping.

8. View validation errors on the Validation Log tab.

9. To view the execution plan for the mapping, right-click the editor and select Show Execution Plan.

Configure Mappings to Run on Dataproc
To run mappings on the Dataproc cluster, configure mappings with the following properties:

1. In the Parameters section, create a parameter with the values shown in the following table:

Name Type Precision Scale Default Value

pushdownConnection Connection (blank) (blank) Use the dropdown control to select the Hadoop
connection that the cluster configuration created.

2. In the Run-Time section, choose the following values:

• Under Validation Environments, select Spark.

• For Execution Environment, select Hadoop.

• Under the Hadoop section, for the Connection property, click the right side of the Value cell to see the
dropdown menu, and choose the pushdownConnection parameter.

Audits
To validate the consistency and accuracy of data processed in a mapping, you can create an audit for the
mapping.

An audit is composed of rules and conditions. Use an audit rule to compute an aggregated value for a single
column of data in the source or target. Use an audit condition to compare multiple rules or a rule and
constant values. You can run audits in the native and Hadoop environments.

Audits 47

Note: Running an audit on the Blaze engine is available for technical preview only. Technical preview
functionality is supported for evaluation purposes but is unwarranted and is not supported in production
environments or any environment that you plan to push to production. Informatica intends to include the
preview functionality in an upcoming release for production use, but might choose not to in accordance with
changing market or technical circumstances. For more information, contact Informatica Global Customer
Support.

You can configure audit rules for data sources and targets that use the following connectors:

Connector Source Target

Amazon S3 Supported. Not supported.

HDFS Supported. Not supported.

Hive Supported. Supported.

JDBC V2 Supported. Not supported.

Microsoft Azure Synapse Supported. Not supported.

Oracle Supported. Supported.

Snowflake Supported. Not supported.

Example

You are a data engineer for an e-commerce store. You have a data table with clothing sales information,
including the sale price. You want to audit the data and verify that there are no outliers. You create a mapping
that uses the clothing sales table as the source. You configure audit rules to calculate the maximum and
minimum sales prices of the clothing from the Read transformation. After the mapping runs, you verify that
the maximum and minimum sales prices are within the range you expect.

Creating an Audit
To configure an audit, perform the following tasks:

1. Define a rule.

2. Optionally, define conditions.

3. Configure a storage location for the audit results.

4. Run and monitor the mapping.

5. View the audit results.

Step 1. Define Audit Rules
An audit rule calculates an aggregate value for a single field in either a Read transformation or a Write
transformation. Each rule returns a single numeric result.

1. In the mapping audit properties, select the Rules tab.

2. Select the New (Insert) icon.

48 Chapter 2: Mappings

The following image shows the icon:

A rule appears with default values.

3. Configure the following properties for a rule:

Property Description

Name Required. Name of the rule.

Description Optional. Description of the rule.

Transformation Required. Select a Read transformation or a Write transformation.

Column Required. Port from the configured transformation to apply the rule to. You can configure a
mapping parameter for the column.

Filter Optional. Filter expression to apply to the column before calculating the aggregate value.
The filter should return a boolean value for each row. Use transformation language to
configure the filter. You can configure a mapping parameter for the filter.
Note: You cannot use aggregate functions in the filter.

Type Required. Aggregate type to calculate. You can configure a mapping parameter for the type.
You can use the following types for any column:
- Count
- Distinct Count
- Null Count
You can use the following types for numeric columns:
- Average
- Max
- Median
- Min
- Percentile
- Standard Deviation
- Sum
- Variance

Execution
Override

Optional. Determines whether the Data Integration Service runs a rule before or after it runs
the mapping logic.
When Execution Override is set to Default, the Data Integration Service runs rules for the
Read transformation before the mapping logic and rules for the Write transformation after
the mapping logic.
To run a Write transformation rule before the mapping logic executes, set the value to Pre
Mapping. To run a Read transformation rule after the mapping logic executes, set the value
to Post Mapping.
You can configure a mapping parameter for the execution override.

Audits 49

For example, you can check the average value of a column in the target both before and after the mapping
runs. Create two rules with the same transformation, column, and filter. Set Type to Average. Set Execution
Override to Default for one rule and Pre Mapping for the second rule.

Step 2. Define Audit Conditions
An audit condition compares the results of multiple rules or the result of a rule and constant values. Each
condition returns a value of either Passed or Failed.

You must define at least one rule before you can define a condition.

1. In the mapping audit properties, select the Conditions tab.

2. Select the New (Insert) icon.

The following image shows the icon:

A condition appears with default values.

3. Configure the following properties:

Property Description

Name Required. Name of the condition.

Description Optional. Description of the condition.

Expression Required. Conditional expression that uses an audit rule and returns a boolean value. Use
transformation language to configure the expression. The expression is not case-sensitive.

Step 3. Configure a Storage Location
Set a storage location for the audit results before you run a mapping with audit rules and conditions.

Configure the storage location in the mapping audit properties. You can store the results in a local file, a
database that uses a JDBC connection, or both.

Configure local file storage

To store the results in a local file, configure the following properties:

• File directory. Local directory to store results file.

• File name. Name of the file to store the results. If the file does not exist, it is created at run time.

• Append. Select this option to append the results to an existing file. If you do not choose to append
the results, the Data Integration Service overwrites any results in the file when the mapping runs.

50 Chapter 2: Mappings

Configure JDBC connection storage

To store the results in a database that uses a JDBC connection, perform the following steps:

1. Verify that you have a JDBC connection defined for the database where you want to store the audit
results.

2. Create the resource table to store the results. Use the following schema to create the table:

CREATE TABLE <table name>

(

RULE_NAME VARCHAR2 (128),

RESULT VARCHAR2 (128),

EXECUTION_ID VARCHAR2 (128),

DIS_NAME VARCHAR2 (128),

USER_NAME VARCHAR2 (128),

MAPPING_NAME VARCHAR2 (128),

TIMESTAMP VARCHAR2 (29)

)

3. Configure the following connection storage properties:

• Connection. Select the JDBC connection.

• Owner. Name of the database that includes the table.

• Resource. Name of the table you created to store the results.

To clear the local file storage configuration, click the File storage clear button. To clear the JDBC connection
storage configuration, click the Database storage clear button. The following image shows these buttons:

Step 4. Run and Monitor the Mapping
Run the mapping in the Developer tool and monitor the results in the Administrator tool.

1. Select the Enable Audit checkbox in the mapping audit properties.

2. Run the mapping.

3. In the Administrator tool, monitor the mapping and audit jobs. For more information, see the Informatica
Administrator Guide.

Audits 51

If you want to clear the configured audit, including all rules, conditions, and storage configurations, click the
Audit configuration clear button. The following image shows this button:

Step 5. View Audit Results
You can view the results of the audit rules and conditions in the configured storage location and in the Audit
Viewer tab. You can view rule and condition results in the Audit Viewer and more detailed information in the
configured storage location.

Audit results in the Audit Viewer

After the mapping runs, the Audit Viewer tab becomes available in the Developer tool. The Audit Viewer
contains tabs for Rules and Conditions. On the Rules tab, you can see the result value and configured
properties for each rule. On the Conditions tab, you can see the result value and configured properties
for each condition.

Audit results in storage

In the configured storage location, you can view the following information for each rule and condition:

• Rule or condition name

• Result value

• Execution ID

• Data Integration Service name

• User name

• Mapping name

• Timestamp

Rules and Guidelines for Audits
Consider the following rules and guidelines when you configure an audit for a mapping:

• You cannot configure an audit for an optimized mapping.

• If you create an audit rule for a Write transformation that is created from an existing transformation, the
ports of the Write transformation must be linked by name.

• If you use a mapplet for the source or target in a mapping, you cannot select the mapplet as the
transformation for an audit rule.

• You cannot configure audit rules for a flat file target that has a footer command.

• If you define an audit rule for a Write transformation that creates a target data object at run time and you
set the Execution Override to Pre Mapping, the audit fails the first time the mapping runs. On subsequent
runs, the audit results are calculated.

• You cannot run a mapping with an audit when you configure the Data Integration Service to use operating
system profiles.

52 Chapter 2: Mappings

• If you configure JDBC connection storage and the resource table schema is not correct, the mapping and
audit run, but the Data Integration Service does not write the results to the table. The audit logs contain
the following error message: SEVERE: [WRT_8425] ERROR: Writer execution failed.

Example
You are a data architect for an automobile insurance company. Each local branch maintains a database of all
their insurance claims. You need to pull collision information from two branches into a single dataset and
then verify the accuracy of the data that you moved.

Both input tables contain information about each insurance claim, including a ClaimType. ClaimType is a
string value that can be one of a select number of values, including Collision, Property Damage, and Theft.
You have a mapping that reads all claim data from each of the branches and writes collision data only to a
single target.

Perform the following tasks to audit this data:

1. Define rules.

You first need to calculate the count of collision incidents from each of the sources and the target.

The following table shows the rules that you create:

Name Transformation Column Filter Type Execution
Override

Branch1_Collisions Read_Branch1 ClaimType claim_type =
"Collision"

COUNT Default

Branch2_Collisions Read_Branch2 ClaimType claim_type =
"Collision"

COUNT Default

Combined_Collisions Write_Combined ClaimType COUNT Default

2. Define a condition.

To verify that the combined table contains all collisions from both sources, create a condition to
compare the count of the input rows to the count of the output rows.

The following table shows the condition that you create:

Name Expression

Collision_count_match Branch1_Collisions + Branch2_Collisions = Combined_Collisions

3. Configure the storage location.

You configure a storage location for the audit results.

4. Run and monitor the mapping.

You select the Enable Audit checkbox and then run the mapping.

Audits 53

5. View the results.

In the Audit Viewer, you see the following results for the audit rules:

Result Name Transformation Column Filter Type Execution
Override

215 Branch1_Collisions Read_Branch1 ClaimType claim_type =
"Collision"

COUNT Default

324 Branch2_Collisions Read_Branch2 ClaimType claim_type =
"Collision"

COUNT Default

539 Combined_Collisions Write_Combined ClaimType COUNT Default

You see the following results for the audit condition:

Result Name Expression

Passed Collision_count_match Branch1_Collisions + Branch2_Collisions = Combined_Collisions

Mapping Execution Plans
The Data Integration Service generates an execution plan to run mappings on a Blaze, Spark, or Databricks
Spark engine. The Data Integration Service translates the mapping logic into code that the run-time engine
can execute. You can view the plan in the Developer tool before you run the mapping and in the Administrator
tool after you run the mapping.

The Data Integration Service generates mapping execution plans to run on the following engines:
Informatica Blaze engine

The Blaze engine execution plan simplifies the mapping into segments. It contains tasks to start the
mapping, run the mapping, and clean up the temporary tables and files. It contains multiple tasklets and
the task recovery strategy. It also contains pre- and post-grid task preparation commands for each
mapping before running the main mapping on a compute cluster. A pre-grid task can include a task such
as copying data to HDFS. A post-grid task can include tasks such as cleaning up temporary files or
copying data from HDFS.

Spark engine

The Spark execution plan shows the run-time Scala code that runs the mapping logic. A translation
engine translates the mapping into an internal representation of the logic. The internal representation is
rendered into Scala code that accesses the Spark API. You can view the Scala code in the execution plan
to debug the logic.

Databricks Spark engine

The Databricks Spark execution plan shows the run-time Scala code that runs the mapping logic. A
translation engine translates the mapping into an internal representation of the logic. The internal
representation is rendered into Scala code that accesses the Spark API. You can view the Scala code in
the execution plan to debug the logic.

54 Chapter 2: Mappings

Blaze Engine Execution Plan Details
You can view details of the Blaze engine execution plan in the Administrator tool and Developer tool.

In the Developer tool, the Blaze engine execution plan appears as a workflow. You can click on each
component in the workflow to get the details.

The following image shows the Blaze execution plan in the Developer tool:

The Blaze engine execution plan workflow contains the following components:

• Start task. The workflow start task.

• Command task. The pre-processing or post-processing task for local data.

• Grid mapping. An Informatica mapping that the Blaze engine compiles and distributes across a cluster of
nodes.

• Grid task. A parallel processing job request sent by the Blaze engine executor to the Grid Manager.

• Grid segment. Segment of a grid mapping that is contained in a grid task.

• Tasklet. A partition of a grid segment that runs on a separate DTM.

In the Administrator tool, the Blaze engine execution plan appears as a script.

The following image shows the Blaze execution script:

In the Administrator tool, the Blaze engine execution plan has the following details:

• Script ID. Unique identifier for the Blaze engine script.

Mapping Execution Plans 55

• Script. Blaze engine script that the Data Integration Service generates based on the mapping logic.

• Depends on. Tasks that the script depends on. Tasks include other scripts and Data Integration Service
tasks, like the Start task.

Spark Engine Execution Plan Details
You can view the details of a Spark engine execution plan from the Administrator tool or Developer tool.

The Spark engine execution plan shows the Scala code on the Databricks Spark engine.

The following image shows the execution plan for a mapping to run on the Spark engine:

The Spark engine execution plan has the following details:

• Script ID. Unique identifier for the Spark engine script.

• Script. Scala code that the Data Integration Service generates based on the mapping logic.

• Depends on. Tasks that the script depends on. Tasks include other scripts and Data Integration Service
tasks.

Databricks Spark Engine Execution Details
You can view the details of a Databricks Spark engine execution plan from the Administrator tool or
Developer tool.

The Databricks Spark engine execution plan shows the Scala code to run on the Databricks Spark engine.

56 Chapter 2: Mappings

The following image shows the execution plan for a mapping to run on the Databricks Spark engine:

The Databricks Spark engine execution plan has the following details:

• Script ID. Unique identifier for the Databricks Spark engine script.

• Script. Scala code that the Data Integration Service generates based on the mapping logic.

• Depends on. Tasks that the script depends on. Tasks include other scripts and Data Integration Service
tasks.

Viewing the Execution Plan
You can view the engine execution plan for a mapping. You do not have to run the mapping to view the
execution plan in the Developer tool.

Note: You can also view the execution plan in the Administrator tool.

1. In the Developer tool, open the mapping.

2. Right-click the editor and select Show Execution Plan.

The Show Execution Plan dialog box opens.

3. Select the mapping configuration and select OK.

The Developer tool shows the details for the execution plan.

Mapping Execution Plans 57

Troubleshooting Mappings in a Non-native
Environment

Consider troubleshooting tips for mappings in a non-native environment.

Hadoop Environment

When I run a mapping with a Hive source or a Hive target on a different cluster, the Data Integration Service fails to push
the mapping to Hadoop with the following error: Failed to execute query [exec0_query_6] with error code
[10], error message [FAILED: Error in semantic analysis: Line 1:181 Table not found
customer_eur], and SQL state [42000]].

When you run a mapping in a Hadoop environment, the Hive connection selected for the Hive source or
Hive target, and the mapping must be on the same Hive metastore.

When I run a mapping with SQL overrides concurrently, the mapping hangs.

There are not enough available resources because the cluster is being shared across different engines.

Use different YARN scheduler queues for the Blaze and Spark engines to allow HiveServer2 to run SQL
overrides through these engines.

Mappings run on the Blaze engine fail with the following preemption error messages:

 2018-09-27 11:05:27.208 INFO: Container completion status: id
[container_e135_1537815195064_4755_01_000012]; state [COMPLETE];
diagnostics [Container preempted by scheduler]; exit status [-102]..
2018-09-27 11:05:27.208 SEVERE: Service
[OOP_Container_Manager_Service_2] has stopped running..

The Blaze engine does not support YARN preemption on either the Capacity Scheduler or the Fair
Scheduler. Ask the Hadoop administrator to disable preemption on the queue allocated to the Blaze
engine. For more information, see Mappings Fail with Preemption Errors.

When I configure a mapping to create a partitioned Hive table, the mapping fails with the error "Need to specify partition
columns because the destination table is partitioned."

This issue happens because of internal Informatica requirements for a query that is designed to create a
Hive partitioned table. For details and a workaround, see Knowledge Base article 516266.

When Spark runs a mapping with a Hive source and target, and uses the Hive Warehouse Connector, the mapping fails
with the following error:

[[SPARK_1003] Spark task [<task name>] failed with the following error: [User class
threw exception: java.lang.reflect.InvocationTargetException ...
java.sql.SQLException: Cannot create PoolableConnectionFactory (Could not open
client transport for any of the Server URI's in ZooKeeper: Could not establish
connection...)

The issue occurs because the Data Integration Service fails to fetch the Hive DT.

Workaround: Add the URL for HiveServer2 Interactive to the advanced properties of the Hadoop
connection:

1. In the Ambari web console, browse to Services > Hive > Configs > Advanced > Advanced hive-site
and copy the value of the property hive.server2.authentication.kerberos.principal.

2. Edit the Advanced Properties of the Hadoop connection to add the property
spark.sql.hive.hiveserver2.jdbc.url.principal.

3. Paste the value that you copied in step 1 as the value of spark.sql.hive.hiveserver2.jdbc.url.principal.

58 Chapter 2: Mappings

https://search.informatica.com/KBSearch#q=577979&t=All&sort=relevancy
https://kb.informatica.com/solution/23/Pages/62/516266.aspx

Time stamp data that is precise to the nanosecond is truncated when a mapping runs on the Spark engine

Spark stores time stamp data to a precision of 1 microsecond (1us) and does not support nanosecond
precision. When a mapping that runs on the Spark engine reads datetime data that has nanosecond
precision, the data is truncated to the microsecond. For example, 2015-01-02 00:00:00.000456789 is
truncated to 2015-01-02 00:00:00.000456.

The Blaze engine supports nanosecond precision.

Databricks Environment

Mappings fail with the following error: SEVERE: Run with ID [1857] failed with state [INTERNAL_ERROR]
and error message [Library installation timed out after 1800 seconds. Libraries that are not
yet installed: jar: "dbfs:/tmp/DATABRICKS/sess6250142538173973565/staticCode.jar"

This might happen when you run concurrent jobs. When Databricks does not have resources to process
a job, it queues the job for a maximum of 1,800 seconds (30 minutes). If resources are not available in
30 minutes, the job fails. Consider the following actions to avoid timeouts:

• Configure preemption environment variables on the Databricks cluster to control the amount of
resources that get allocated to each job. For more information about preemption, see the Data
Engineering Integration Guide.

• Run cluster workflows to create ephemeral clusters. You can configure the workflow to create a
cluster, run the job, and then delete the cluster. For more information about ephemeral clusters, see
Chapter 9, “Cluster Workflows” on page 175.

When I run mappings on a Dataproc cluster to read or write data to SerDe-backed Hive tables, the mapping fails with the
java.lang.ClassNotFoundException: org.apache.hive.hcatalog.data.JsonSerDe error.

Add the following property in the hive-site.xml on all the nodes of the Dataproc cluster and restart the
Hive server:

<property>
 <name>hive.aux.jars.path</name>
 <value>file:///usr/lib/hive/lib/hive-hcatalog-core-<version>.jar</value>
</property>

When I run mappings on a non-VPN Dataproc cluster, the mappings fail.

Configure the following properties in the hdfs-site.xml on all the nodes of the Dataproc cluster:

<property>
 <name>dfs.namenode.rpc-bind-host</name>
 <value>0.0.0.0</value>
</property>
<property>
 <name>dfs.namenode.servicerpc-bind-host</name>
 <value>0.0.0.0</value>
</property>
<property>
 <name>dfs.namenode.http-bind-host</name>
 <value>0.0.0.0</value>
</property>
<property>
 <name>dfs.namenode.https-bind-host</name>
 <value>0.0.0.0</value>
</property>
<property>
 <name>dfs.client.use.datanode.hostname</name>
 <value>true</value>
</property>

Troubleshooting Mappings in a Non-native Environment 59

When I set job-level optimization on a mapping, the session log reflects the setting, but the Databricks Spark engine
ignores it.

The Databricks Spark engine performs auto-optimization on jobs based on configuration settings for the
cluster. It ignores custom configurations, such as the Spark.default.parallelism property. You cannot
configure job-level optimization on a mapping that runs on the Databricks Spark engine.

Important: Informatica integrates with Databricks, supporting standard concurrency clusters. Standard
concurrency clusters have a maximum queue time of 30 minutes, and jobs fail when the timeout is reached.
The maximum queue time cannot be extended. Setting the preemption threshold allows more jobs to run
concurrently, but with a lower percentage of allocated resources, the jobs can take longer to run. Also,
configuring the environment for preemption does not ensure that all jobs will run. In addition to configuring
preemption, you might choose to run cluster workflows to create ephemeral clusters that create the cluster,
run the job, and then delete the cluster. For more information about Databricks concurrency, contact Azure
Databricks.

Mappings in the Native Environment
You can run a mapping in the native environment. In the native environment, the Data Integration Service runs
the mapping from the Developer tool. You can run standalone mappings or mappings that are a part of a
workflow.

In the native environment, you can read and process data from large unstructured and semi-structured files,
Hive, or social media web sites. You can include the following objects in the mappings:

• Hive sources

• Flat file sources or targets in the local system or in HDFS

• Complex file sources in the local system or in HDFS

• Data Processor transformations to process unstructured and semi-structured file formats

• Social media sources

Data Processor Mappings
The Data Processor transformation processes unstructured and semi-structured file formats in a mapping. It
converts source data to flat CSV records that MapReduce applications can process.

You can configure the Data Processor transformation to process messaging formats, relational data, HTML
pages, XML, JSON, AVRO, Parquet, Cobol, Microsoft Excel, Microsoft Word, and PDF documents. You can
also configure it to transform structured formats such as ACORD, HIPAA, HL7, EDI-X12, EDIFACT, and SWIFT.

For example, an application produces hundreds of data files per second and writes the files to a directory.
You can create a mapping that extracts the files from the directory, passes them to a Data Processor
transformation, and writes the data to a target.

HDFS Mappings
Create an HDFS mapping to read or write to HDFS or View File System (ViewFS).

You can read and write fixed-width and delimited file formats. You can read or write compressed files. You
can read text files and binary file formats such as sequence file from HDFS or ViewFS. You can specify the
compression format of the files. You can use the binary stream output of the complex file data object as
input to a Data Processor transformation to parse the file.

60 Chapter 2: Mappings

You can define the following objects in an HDFS or ViewFS mapping:

• Flat file data object or complex file data object operation as the source to read data from HDFS or
ViewFS.

• Transformations.

• Flat file data object as the target to write data to HDFS or ViewFS or any target.

Validate and run the mapping. You can deploy the mapping and run it or add the mapping to a Mapping task
in a workflow.

HDFS or View File System (ViewFS) Data Extraction Mapping Example
Your organization needs to analyze purchase order details such as customer ID, item codes, and item
quantity. The purchase order details are stored in a semi-structured compressed XML file in HDFS or ViewFS.
The hierarchical data includes a purchase order parent hierarchy level and a customer contact details child
hierarchy level. Create a mapping that reads all the purchase records from the file in HDFS or ViewFS. The
mapping must convert the hierarchical data to relational data and write it to a relational target.

You can use the extracted data for business analytics.

The following figure shows the example mapping:

You can use the following objects in the HDFS or ViewFS mapping:
HDFS Input

The input object, Read_Complex_File, is a Read transformation that represents a compressed XML file
stored in HDFS or ViewFS.

Data Processor Transformation

The Data Processor transformation, Data_Processor_XML_to_Relational, parses the XML file and
provides a relational output.

Relational Output

The output object, Write_Relational_Data_Object, is a Write transformation that represents a table in an
Oracle database.

When you run the mapping, the Data Integration Service reads the file in a binary stream and passes it to the
Data Processor transformation. The Data Processor transformation parses the specified file and provides a
relational output. The output is written to the relational target.

You can configure the mapping to run in a native or Hadoop run-time environment.

Complete the following tasks to configure the mapping:

1. Create an HDFS connection to read files from the Hadoop cluster.

2. Create a complex file data object read operation. Specify the following parameters:

• The file as the resource in the data object.

• The file compression format.

• The HDFS file location.

3. Optionally, you can specify the input format that the Mapper uses to read the file.

Mappings in the Native Environment 61

4. Drag and drop the complex file data object read operation into a mapping.

5. Create a Data Processor transformation. Configure the following properties in the Data Processor
transformation:

• An input port set to buffer input and binary data type.

• Relational output ports depending on the number of columns you want in the relational output.
Specify the port size for the ports. Use an XML schema reference that describes the XML hierarchy.
Specify the normalized output that you want. For example, you can specify
PurchaseOrderNumber_Key as a generated key that relates the Purchase Orders output group to a
Customer Details group.

• Create a Streamer object and specify Streamer as a startup component.

6. Create a relational connection to an Oracle database.

7. Import a relational data object.

8. Create a write transformation for the relational data object and add it to the mapping.

Hive Mappings
Based on the mapping environment, you can read data from or write data to Hive.

In a native environment, you can read data from Hive. To read data from Hive, complete the following steps:

1. Create a Hive connection.

2. Configure the Hive connection mode to access Hive as a source or target.

3. Use the Hive connection to create a data object to read from Hive.

4. Add the data object to a mapping and configure the mapping to run in the native environment.

You can write to Hive in a Hadoop environment. To write data to Hive, complete the following steps:

1. Create a Hive connection.

2. Configure the Hive connection mode to access Hive as a source or target.

3. Use the Hive connection to create a data object to write to Hive.

4. Add the data object to a mapping and configure the mapping to run in the Hadoop environment.

You can define the following types of objects in a Hive mapping:

• A Read Transformation to read data from Hive

• Transformations

• A target or an SQL data service. You can write to Hive if you run the mapping in a Hadoop cluster.

Validate and run the mapping. You can deploy the mapping and run it or add the mapping to a Mapping task
in a workflow.

Hive Mapping Example
Your organization, HypoMarket Corporation, needs to analyze customer data. Create a mapping that reads all
the customer records. Create an SQL data service to make a virtual database available for end users to query.

You can use the following objects in a Hive mapping:
Hive input

The input file is a Hive table that contains the customer names and contact details.

62 Chapter 2: Mappings

Create a relational data object. Configure the Hive connection and specify the table that contains the
customer data as a resource for the data object. Drag the data object into a mapping as a read data
object.

SQL Data Service output

Create an SQL data service in the Developer tool. To make it available to end users, include it in an
application, and deploy the application to a Data Integration Service. When the application is running,
connect to the SQL data service from a third-party client tool by supplying a connect string.

You can run SQL queries through the client tool to access the customer data.

Social Media Mappings
Create mappings to read social media data from sources such as Facebook and LinkedIn.

You can extract social media data and load them to a target in the native environment only. You can choose
to parse this data or use the data for data mining and analysis.

To process or analyze the data in Hadoop, you must first move the data to a relational or flat file target and
then run the mapping in the Hadoop cluster.

You can use the following Informatica adapters in the Developer tool:

• PowerExchange for DataSift

• PowerExchange for Facebook

• PowerExchange for LinkedIn

• PowerExchange for Twitter

• PowerExchange for Web Content-Kapow Katalyst

Review the respective PowerExchange adapter documentation for more information.

Twitter Mapping Example
Your organization, Hypomarket Corporation, needs to review all the tweets that mention your product
HypoBasket with a positive attitude since the time you released the product in February 2012.

Create a mapping that identifies tweets that contain the word HypoBasket and writes those records to a
table.

You can use the following objects in a Twitter mapping:
Twitter input

The mapping source is a Twitter data object that contains the resource Search.

Create a physical data object and add the data object to the mapping. Add the Search resource to the
physical data object. Modify the query parameter with the following query:

QUERY=HypoBasket:)&since:2012-02-01
Sorter transformation

Optionally, sort the data based on the timestamp.

Add a Sorter transformation to the mapping. Specify the timestamp as the sort key with direction as
ascending.

Mapping output

Add a relational data object to the mapping as a target.

Mappings in the Native Environment 63

After you run the mapping, Data Integration Service writes the extracted tweets to the target table. You can
use text analytics and sentiment analysis tools to analyze the tweets.

Native Environment Optimization
You can optimize the native environment to increase performance. To increase performance, you can
configure the Data Integration Service to run on a grid and to use multiple partitions to process data. You can
also enable high availability to ensure that the domain can continue running despite temporary network,
hardware, or service failures.

You can run profiles, sessions, and workflows on a grid to increase the processing bandwidth. A grid is an
alias assigned to a group of nodes that run profiles, sessions, and workflows. When you enable grid, the Data
Integration Service runs a service process on each available node of the grid to increase performance and
scalability.

You can also run mapping with partitioning to increase performance. When you run a partitioned session or a
partitioned mapping, the Data Integration Service performs the extract, transformation, and load for each
partition in parallel.

You can configure high availability for the domain. High availability eliminates a single point of failure in a
domain and provides minimal service interruption in the event of failure.

Processing Data on a Grid
You can run an Integration Service on a grid to increase the processing bandwidth. When you enable grid, the
Integration Service runs a service process on each available node of the grid to increase performance and
scalability.

Large data sets may require additional bandwidth to process large amounts of data. For example, when you
run a Model repository profile on a large data set, the Data Integration Service grid splits the profile into
multiple mappings and runs the mappings simultaneously on different nodes in the grid.

When you run mappings on a grid, the Data Integration Service distributes the mappings to multiple DTM
processes on nodes in the grid. When you run a profile on a grid, the Data Integration Service splits the profile
into multiple mappings and distributes the mappings to multiple DTM processes on nodes in the grid. You
can optimize the grid to increase performance and scalability of the Data Integration Service.

To optimize the grid, add notes to the grid to increase processing bandwidth of the Data Integration Service.

For more information about the Data Integration Service grid, see the Informatica Administrator Guide.

Processing Data on Partitions
You can run a Model repository mapping with partitioning to increase performance. When you run a mapping
configured with partitioning, the Data Integration Service performs the extract, transformation, and load for
each partition in parallel.

Mappings that process large data sets can take a long time to process and can cause low data throughput.
When you configure partitioning, the Data Integration Service uses additional threads to process the session
or mapping which can increase performance.

If the nodes where mappings run have multiple CPUs, you can enable the Data Integration Service to
maximize parallelism when it runs mappings. When you maximize parallelism, the Data Integration Service
dynamically divides the underlying data into partitions and processes all of the partitions concurrently.

Optionally, developers can set a maximum parallelism value for a mapping in the Developer tool. By default,
the maximum parallelism for each mapping is set to Auto. Each mapping uses the maximum parallelism
value defined for the Data Integration Service. Developers can change the maximum parallelism value in the

64 Chapter 2: Mappings

mapping run-time properties to define a maximum value for a particular mapping. When maximum
parallelism is set to different integer values for the Data Integration Service and the mapping, the Data
Integration Service uses the minimum value.

For more information, see the Informatica Application Services Guide and the Informatica Developer Mapping
Guide.

Partition Optimization
You can optimize the partitioning of Model repository mappings to increase performance. You can add more
partitions, select the best performing partition types, use more CPUs, and optimize the source or target
database for partitioning.

To optimize partitioning, perform the following tasks:

Increase the number of partitions.

When you configure Model repository mappings, you increase the number of partitions when you
increase the maximum parallelism value for the Data Integration Service or the mapping.

Increase the number of partitions to enable the Data Integration Service to create multiple connections
to sources and process partitions of source data concurrently. Increasing the number of partitions
increases the number of threads, which also increases the load on the Data Integration Service nodes. If
the Data Integration Service node or nodes contain ample CPU bandwidth, processing rows of data
concurrently can increase performance.

Note: If you use a single-node Data Integration Service and the Data Integration Service uses a large
number of partitions in a session or mapping that processes large amounts of data, you can overload the
system.

Use multiple CPUs.

If you have a symmetric multi-processing (SMP) platform, you can use multiple CPUs to concurrently
process partitions of data.

Optimize the source database for partitioning.

You can optimize the source database for partitioning. For example, you can tune the database, enable
parallel queries, separate data into different tablespaces, and group sorted data.

Optimize the target database for partitioning.

You can optimize the target database for partitioning. For example, you can enable parallel inserts into
the database, separate data into different tablespaces, and increase the maximum number of sessions
allowed to the database.

High Availability
High availability eliminates a single point of failure in an Informatica domain and provides minimal service
interruption in the event of failure. When you configure high availability for a domain, the domain can
continue running despite temporary network, hardware, or service failures. You can configure high availability
for the domain, application services, and application clients.

The following high availability components make services highly available in an Informatica domain:

• Resilience. An Informatica domain can tolerate temporary connection failures until either the resilience
timeout expires or the failure is fixed.

• Restart and failover. A process can restart on the same node or on a backup node after the process
becomes unavailable.

Mappings in the Native Environment 65

• Recovery. Operations can complete after a service is interrupted. After a service process restarts or fails
over, it restores the service state and recovers operations.

When you plan a highly available Informatica environment, consider the differences between internal
Informatica components and systems that are external to Informatica. Internal components include the
Service Manager, application services, and command line programs. External systems include the network,
hardware, database management systems, FTP servers, message queues, and shared storage.

High availability features for the Informatica environment are available based on your license.

66 Chapter 2: Mappings

C h a p t e r 3

Mapping Optimization
This chapter includes the following topics:

• Mapping Optimization, 67

• Mapping Recommendations and Analysis, 68

• Enabling Data Compression on Temporary Staging Tables, 76

• Truncating Partitions in a Hive Target, 77

• Hive Warehouse Connector and Hive LLAP, 77

• Scheduling, Queuing, and Node Labeling, 79

• Data Engineering Recovery, 81

• Spark Engine Optimization for Sqoop Pass-Through Mappings, 81

Mapping Optimization
Optimize mappings and the Hadoop environment to increase performance.

You can optimize mappings and the Hadoop environment in the following ways:

Mapping Recommendations and Analysis

You can use recommendations and analysis generated by the Informatica CLAIRE engine to optimize
mappings and projects to reduce development costs and improve application performance. CLAIRE uses
machine learning and internal algorithms to analyze mappings individually or in groups. The Developer
tool displays the results of this analysis as recommendations and insights.

Configure a highly available Hadoop cluster

You can configure the Data Integration Service and the Developer tool to read from and write to a highly
available Hadoop cluster. The steps to configure a highly available Hadoop cluster depend on the type of
Hadoop distribution. For more information about configuration steps for a Hadoop distribution, see the
Data Engineering Integration Guide.

Compress data on temporary staging tables

You can enable data compression on temporary staging tables to increase mapping performance.

Run mappings on the Blaze engine

Run mappings on the highly available Blaze engine. The Blaze engine enables restart and recovery of grid
tasks and tasklets by default.

67

Perform parallel sorts

When you use a Sorter transformation in a mapping, the Data Integration Service enables parallel sorting
by default when it pushes the mapping logic to the Hadoop cluster. Parallel sorting improves mapping
performance.

Partition Joiner transformations

When you use a Joiner transformation in a Blaze engine mapping, the Data Integration Service can apply
map-side join optimization to improve mapping performance. The Data Integration Service applies map-
side join optimization if the master table is smaller than the detail table. When the Data Integration
Service applies map-side join optimization, it moves the data to the Joiner transformation without the
cost of shuffling the data.

Truncate partitions in a Hive target

You can truncate partitions in a Hive target to increase performance. To truncate partitions in a Hive
target, you must choose to both truncate the partition in the Hive target and truncate the target table.

Assign resources on Hadoop clusters

You can use schedulers to assign resources on a Hadoop cluster. You can use a capacity scheduler or a
fair scheduler depending on the needs of your organization.

Configure YARN queues to share resources on Hadoop clusters

You can configure YARN queues to redirect jobs on the Hadoop cluster to specific queues. The queue
where a job is assigned defines the resources that are allocated to perform the job.

Label nodes in a Hadoop cluster

You can label nodes in a Hadoop cluster to divide the cluster into partitions that have specific
characteristics.

Optimize Sqoop mappings on the Spark engine

The Data Integration Service can optimize the performance of Sqoop pass-through mappings that run on
the Spark engine.

Enable data engineering recovery

You can enable data engineering recovery to recover mapping jobs that the Data Integration Service
pushes to the Spark engine for processing.

Mapping Recommendations and Analysis
You can tune and correct mappings as you develop them based on recommendations and analysis generated
by the Informatica CLAIRE engine. The recommendations and insights help you optimize mappings and
projects to reduce development costs and improve application performance.

CLAIRE uses artificial intelligence and internal algorithms to analyze mappings individually or in groups. The
Developer tool displays the results of its analysis of a single mapping as recommendations, and analysis of a
group of mappings as insights. By reading and following these tips, you can recognize potential problems
and opportunities for improvement.

When you enable recommendations, as you develop a mapping, CLAIRE analyzes your work and raises
recommendations for improving the mapping. For example, a recommendation might point out a type
mismatch in the mapping flow, or suggest a run-time engine that might improve mapping performance.

68 Chapter 3: Mapping Optimization

If the domain and the Developer tool are enabled for Enterprise Data Catalog or Axon, the Developer tool
alerts you to the presence of sensitive data in a mapping. You can customize the types of sensitive data that
CLAIRE detects.

You can also run an analysis on a group of mappings, such as all the mappings in a project. The resulting
insights identify similarities among a group of mappings so you can find and remove redundancies.

Recommendations
As you develop a mapping, CLAIRE analyzes the mapping for potential errors and opportunities for
improvement, and displays recommendations on the Inbox tab of the Recommendations view.

Each recommendation belongs to a category that identifies the type of the recommendation. For example, if
the mapping flow contains a datatype mismatch from one transformation to another, the recommendation to
fix the issue appears under the "Port type variance" category.

You can read the recommendation and implement it by manually editing the mapping. When you select the
Show Me button, the Developer tool displays and highlights the interface where you can make the
recommended changes. In addition, you can archive the recommendation or disable the recommendation
category.

The following image shows recommendations in the New tab of the Recommendations view:

The numbers in the image correspond to the following list of elements:

Element name Description

1 Recommendations view Shows CLAIRE recommendations, sorted by category.

2 New tab Displays new recommendations as CLAIRE generates them based on changes in
the mapping as you develop it.

3 Archived tab Shows recommendations that you have read and moved from the New tab using
the X icon.

4 Disabled Categories tab Displays categories of recommendations that you have read and decided you do
not need to see repeatedly.

5 Recommendation category Recommendations grouped by type.

Mapping Recommendations and Analysis 69

Element name Description

6 Drop-down menu Commands for disabling recommendation categories.

7 Archive icon Dismisses the recommendation from the New tab and moves it to the Archived
tab.

8 Show Me button Opens the Properties view to the property where you can implement the
recommendation.

9 View menu Contains option to enable or disable the recommendations engine.

Note: When CLAIRE finds a very large (more than 200) number of recommendations for a mapping, not all of
the recommendations are visible in the default size of the Recommendations view even if you scroll to the
bottom of the view. To work around this issue, expand the Recommendations view.

Implementing a Recommendation
As you develop a mapping, the CLAIRE engine analyzes your work and displays tips for fixing or improving the
mapping in the New tab of the Recommendations view.

After you read a recommendation, you can prompt the Developer tool to show you where to implement the
recommendation. When you click Show Me, the bottom view in the Developer tool opens to the view where
you can implement the recommendation.

For example, you might want to implement a recommendation about port consistency. Click the Show Me
button for the recommendation. The Properties view shows where to implement the recommendation by
changing the port type.

The following image shows the mapping with a port consistency recommendation for the Filter
transformation, and the Properties view open to the location where you implement the recommendation:

70 Chapter 3: Mapping Optimization

Archiving a Recommendation
After you read a recommendation, you can click the X icon to archive it. You can also click X to archive a
recommendation category.

When you archive a recommendation or category, it moves to the Archived tab.

The following image shows recommendations in the Archived tab:

Notice that two of the recommendations are under a category, "Port type variance."

Disabling a Recommendation Category
The category at the top of each recommendation identifies the type of the recommendation. After you have
read a recommendation, you might want to stop seeing that type of recommendation, so you can disable it.
When you disable a recommendation, CLAIRE stops running the rule that produces that category of
recommendation.

To disable a category of recommendation, click the drop down menu and choose one of the following
options:

• Disable for this mapping. If you choose this option, the Developer tool no longer displays the
recommendation category while you develop this mapping.

• Disable for all mappings. If you choose this option, the Developer tool no longer displays the
recommendation category for any mappings in the project.

You can view disabled recommendation categories on the Disabled Categories tab.

The following image shows a recommendation category on the Disabled Categories tab:

Mapping Recommendations and Analysis 71

To re-enable a recommendation category, click the Enable for this mapping button.

Note: If the recommendation has been disabled for all mappings, the button will read "Enable for all
mappings," and will re-enable the recommendation category for all mappings in the project.

Enabling and Disabling Recommendations
You can enable and disable CLAIRE recommendations.

To enable recommendations, click the View menu in the Recommendations view and select Enable
Recommendations. The following image shows the Enable Recommendations menu item:

You can disable Recommendations. You might want to do this to speed Developer tool performance when
working with a very large mapping.

When you disable recommendations, CLAIRE no longer runs rules on mappings, and any recommendations in
the Recommendations view are lost.

To disable recommendations, click the View menu in the Recommendations view and deselect Enable
Recommendations.

To re-enable recommendations, click the View menu in the Recommendations view and select Enable
Recommendations.

After you re-enable recommendations, new recommendations appear when you open, save, or refresh a
mapping.

72 Chapter 3: Mapping Optimization

Insights
You can run a cross-mapping CLAIRE analysis of a project or project folder. When you run an analysis,
CLAIRE examines all of the mappings in the container to find similarities, and displays results in the Insights
view. By finding mappings with similar structures and functions, you might discover an opportunity to tune
mappings or combine them into a smaller number of mappings.

Perform these steps to conduct an analysis:

1. Right-click a folder in the repository tree and choose Analyze.
CLAIRE conducts the analysis and displays a message when complete.

Note: If you cancel the analysis before it finishes, the Developer tool might take a short time to complete
cancellation. During this time, the Developer tool does not indicate that cancellation is in progress. Wait
for cancellation to complete.

The following text is an example of a message that you see when analysis is complete:

Completed fetching and analyzing [12] mappings in [6] seconds.
CLAIRE detected [5] groups of mappings with a similar logical pattern.
See Insights view for details.

2. Click OK.

3. View the results of the analysis in the Insights view. The view shows groups of mappings with similar
logical patterns.
The following image shows the Insights view with a list of the groups of mappings that the analysis
identified:

4. Expand each group to view the mappings in the group.

5. Double-click an individual mapping to open it in the mapping editor.

Analysis Spreadsheet
When you analyze a group of mappings, the analysis produces a report that you can open as a spreadsheet.
The report contains detailed information about the mappings that you analyzed.

The spreadsheet contains the following information:

• Mapping. Mapping path and name.

• Transformation list. In the Transformations column, you can view a list of the transformations in the
mapping.

Mapping Recommendations and Analysis 73

For example, the following list shows that the mapping contains a Sorter transformation, two Expression
transformations, a Union transformation, and so on:

{SorterTx:1,ExpressionTx:2,UnionTx:1,FilterTx:1,SourceTx_com.informatica.adapter.hdfs:
2,TargetTx_com.informatica.adapter.hdfs:1}

Note that each entry includes the adapter type for Source and Target transformations. In this example,
you can see that the two Source transformations and one Target transformations all used the HDFS
adapter to connect to resources.

• Run-time engine. The last five columns show which run-time engines are configured for each mapping.

By viewing this information organized as a table, you might recognize similarities in mappings and
opportunities for improvement.

The image below shows the entire spreadsheet, using Excel as a viewer, and highlighting the example given
above.

Accessing the Analysis Spreadsheet

The Developer tool creates the spreadsheet as a text file in the following location: <Developer tool home>/
Clients/DeveloperClient/workspace/

You can use Excel or another tool to open the file and display its information in columns. Columns are
delimited using the pipe (|) symbol.

Example
In this example, you are creating several mappings that ingest and convert customer data.

You create a project with several mappings. Each uses the same relational source and writes to the same
target.

As you create one of the mappings, a CLAIRE rule finds that the mapping uses a JDBC connection and is
configured to use the Blaze run-time engine. CLAIRE raises the following recommendation, which you view in
the New tab of the Recommendations view:

Mappings that use a JDBC connection can run faster when you enable Sqoop on the connection
and run the mapping on the Spark engine.

You click Show Me, and the Properties view opens to settings where you can implement both
recommendations.

As development continues, you notice that recommendations of the same type repeatedly appepar in the
New tab of the Recommendations view. You know how you will address the issue, but decide to do it at a
later time. To stop seeing the same recommendation, you disable the category of recommendation for the
project.

When the mappings in the project are complete, you run an analysis on the entire project. CLAIRE analyzes
the mappings and finds that their similar structures indicate that some of the mappings could be combined
into a single mapping. You use the analysis spreadsheet to spot similarities between the mappings. After you
identify the similar mappings, you edit the mappings in the project to eliminate duplicative logic.

74 Chapter 3: Mapping Optimization

Enabling and Customizing Access to Sensitive Data
When you connect the developer tool to the Enterprise Data Catalog host, you can enable recommendations
and insights that alert you when mappings contain sensitive data.

The following types of sensitive data are enabled by default:

• Personal Health Information

• Payment Card Information

• Personally Identifiable Information

Connect the Developer Tool to Enterprise Data Catalog
To view recommendations for sensitive data, connect the Developer tool to the Enterprise Data Catalog host.

1. Choose Preferences > Informatica > Enterprise Data Catalog.

2. Enter the following properties:

Property Description

Host URL URL of the EDC host, including the port number. Example:

http://<host name>:<port number>

Username Enterprise Data Catalog user name.

Password Password for the Enterprise Data Catalog user.

3. Click OK.

Customize Sensitive Data Groups
You can define additional sensitive data types in developerCore.ini for the CLAIRE engine.

Add the following entry to the developerCore.ini file on every Developer tool machine:

-additionalSensitiveDataDomainGroups=[column1,column2]
The comma-delimited list can contain any column name from the data object that the mapping connects to.

You can find the file in the following path: <Developer tool installation directory>\clients
\DeveloperClient\developerCore.ini.

Mapping Recommendations and Analysis 75

Enabling Data Compression on Temporary Staging
Tables

To optimize performance when you run a mapping in the Hadoop environment, you can enable data
compression on temporary staging tables. When you enable data compression on temporary staging tables,
mapping performance might increase.

To enable data compression on temporary staging tables, complete the following steps:

1. Configure the Hadoop connection to use the codec class name that the Hadoop cluster uses to enable
compression on temporary staging tables.

2. Configure the Hadoop cluster to enable compression on temporary staging tables.

Hadoop provides following compression libraries for the following compression codec class names:

Compression Library Codec Class Name Performance Recommendation

Zlib org.apache.hadoop.io.compress.DefaultCodec n/a

Gzip org.apache.hadoop.io.compress.GzipCodec n/a

Snappy org.apache.hadoop.io.compress.SnappyCodec Recommended for best performance.

Bz2 org.apache.hadoop.io.compress.BZip2Codec Not recommended. Degrades performance.

LZO com.hadoop.compression.lzo.LzoCodec n/a

Step 1. Enable Data Compression in the Hadoop Connection
Use the Administrator tool or the Developer tool to configure the Hadoop connection to enable data
compression on temporary staging tables.

1. In the Hadoop connection properties, edit the properties to run mappings in a Hadoop cluster.

2. Select Temporary Table Compression Codec.

3. Choose to select a predefined codec class name or enter a custom codec class name.

• To select a predefined codec class name, select a compression library from the list.

• To enter a custom codec class name, select custom from the list and enter the codec class name
that matches the codec class name in the Hadoop cluster.

Step 2. Enable Data Compression on the Hadoop Environment
To enable compression on temporary staging tables, you must install a compression codec on the Hadoop
cluster.

For more information about how to install a compression codec, refer to the Apache Hadoop documentation.

1. Verify that the native libraries for the compression codec class name are installed on every node on the
cluster.

2. To include the compression codec class name that you want to use, update the property
io.compression.codecs in core-site.xml. The value for this property is a comma separated list of all the
codec class names supported on the cluster.

76 Chapter 3: Mapping Optimization

3. Verify that the Hadoop-native libraries for the compression codec class name that you want to use are
installed on every node on the cluster.

4. Verify that the LD_LIBRARY_PATH variable on the Hadoop cluster includes the locations of both the
native and Hadoop-native libraries where you installed the compression codec.

Truncating Partitions in a Hive Target
To truncate partitions in a Hive target, you must edit the write properties for the customized data object that
you created for the Hive target in the Developer tool.

You can truncate partitions in a Hive target when you use the Blaze or Spark run-time engines to run the
mapping.

1. Open the customized data object in the editor.

2. To edit write properties, select the Input transformation in the Write view, and then select the Advanced
properties.

The following image shows the Advanced properties tab:

3. Select Truncate Hive Target Partition.

4. Select Truncate target table.

Hive Warehouse Connector and Hive LLAP
Enable the Hive Warehouse Connector and Hive LLAP for faster execution of Hive queries when you read
from and write to Hive tables. You can use the Hive Warehouse Connector and Hive LLAP with Hortonworks
HDP 3.x and Microsoft Azure HDInsight 4.x clusters on the Spark engine.

The Hive Warehouse Connector reads from and writes to Hive tables without using temporary staging tables
that require additional storage overhead. Use the Hive Warehouse Connector on the Spark engine to allow
Spark code to interact with Hive targets and to use ACID-enabled Hive tables. When you enable the Hive
Warehouse Connector, mappings use Hive LLAP to run Hive queries rather than HiveServer2.

Truncating Partitions in a Hive Target 77

Consider the following limitations when you use the Hive Warehouse Connector and Hive LLAP:

• The Hive Warehouse Connector and Hive LLAP are used to run insert queries to ACID-enabled tables that
are not bucketed.

• You cannot use the Hive Warehouse Connector and Hive LLAP when you read hierarchical data from a
source.

• When you use the Hive Warehouse Connector on Hortonworks HDP clusters, you must use an ORC format
target. Data corruption might occur if the target does not use ORC format.
For more information, see Hortonworks documentation on supported target tables: Apache Hive 3 tables.

• When you use an external table that has compression properties set, the mapping executes using Spark
SQL instead of HiveServer2. The mapping fails if the value of the compression property is not one of the
following values: LZO, NONE, SNAPPY, ZLIB.

Note: The property value is case sensitive and must use upper case.

For more information, refer to the Apache Hive documentation on compression kind: CompressionKind
(Hive 2.1.1 API)

• When you use choose RETAIN as the target schema strategy, configure the property
hive.llap.daemon.num.enabled.executors on the Hadoop cluster. Set the value of this property to the same
value as hive.llap.daemon.num.executors.

• When you import a mapping with an ACID-enabled source and target, the Summary Statistics view does
not reflect any throughput statistics for the mapping job.

Enabling the Hive Warehouse Connector and Hive LLAP
Before you enable the Hive Warehouse Connector, enable Hive LLAP on the Hadoop cluster. To enable the
connector, configure the following properties in the Spark advanced properties for the Hadoop connection:
infaspark.useHiveWarehouseAPI

Enables the Hive Warehouse Connector. Set to TRUE.

For example, infaspark.useHiveWarehouseAPI=true.

spark.datasource.hive.warehouse.load.staging.dir

Directory for the temporary HDFS files used for batch writes to Hive. Required when you enable the Hive
Warehouse Connector.

For example, set to /tmp

spark.datasource.hive.warehouse.metastoreUri

URI for the Hive metastore. Required when you enable the Hive Warehouse Connector. Use the value for
hive.metastore.uris from the hive_site_xml cluster configuration properties.

For example, set the value to thrift://mycluster-1.com:9083 .

spark.hadoop.hive.llap.daemon.service.hosts

Application name for the LLAP service. Required when you enable the Hive Warehouse Connector. Use
the value for hive.llap.daemon.service.hosts from the hive_site_xml cluster configuration properties.

spark.hadoop.hive.zookeeper.quorum

Zookeeper hosts used by Hive LLAP. Required when you enable the Hive Warehouse Connector. Use the
value for hive.zookeeper.quorum from the hive_site_xml cluster configuration properties.

spark.sql.hive.hiveserver2.jdbc.url

URL for HiveServer2 Interactive. Required to use the Hive Warehouse Connector. Use the value in Ambari
for HiveServer2 JDBC URL.

78 Chapter 3: Mapping Optimization

https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.0/using-hiveql/content/hive_hive_3_tables.html
https://hive.apache.org/javadocs/r2.1.1/api/org/apache/hadoop/hive/ql/io/orc/CompressionKind.html
https://hive.apache.org/javadocs/r2.1.1/api/org/apache/hadoop/hive/ql/io/orc/CompressionKind.html

Scheduling, Queuing, and Node Labeling
You can use YARN schedulers, YARN queues, and node labels to optimize performance when you run a
mapping in the Hadoop environment.

A YARN scheduler assigns resources to YARN applications on the Hadoop cluster while honoring
organizational policies on sharing resources. You can configure YARN to use a fair scheduler or a capacity
scheduler. A fair scheduler shares resources evenly among all jobs running on the cluster over time. A
capacity scheduler allows multiple organizations to share a large cluster and distributes resources based on
capacity allocations. The capacity scheduler guarantees each organization a certain capacity and distributes
any excess capacity that is underutilized.

YARN queues are organizing structures for YARN schedulers and allow multiple tenants to share a cluster.
The capacity of each queue specifies the percentage of cluster resources that are available for applications
submitted to the queue. You can redirect Blaze, Spark, and Sqoop jobs to specific YARN queues.

Node labels allow YARN queues to run on specific nodes in a cluster. You can use node labels to partition a
cluster into sub-clusters such that jobs run on nodes with specific characteristics. For example, you might
label nodes that process data faster compared to other nodes. Nodes that are not labeled belong to the
default partition. You can associate the node labels with capacity scheduler queues.

You can also use the node labels to configure the Blaze engine. When you use node labels to configure the
Blaze engine, you can specify the nodes on the Hadoop cluster where you want the Blaze engine to run.

Note: You cannot use node labels on a Cloudera CDH cluster.

Enable Scheduling and Node Labeling
To enable scheduling and node labeling in the Hadoop environment, update the yarn-site.xml properties in the
cluster configuration.

Configure the following properties:

yarn.resourcemanager.scheduler.class

Defines the YARN scheduler that the Data Integration Service uses to assign resources on the cluster.

<property>
 <name>yarn.resourcemanager.scheduler.class</name>
 <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.[Scheduler Type].
[Scheduler Type]Scheduler</value>
</property>

For example:

<property>
 <name>yarn.resourcemanager.scheduler.class</name>

<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacitySched
uler</value>
</property>

yarn.node-labels.enabled

Enables node labeling.

<property>
 <name>yarn.node-labels.enabled</name>
 <value>TRUE</value>
</property>

Scheduling, Queuing, and Node Labeling 79

yarn.node-labels.fs-store.root-dir

The HDFS location to update the node label dynamically.

<property>
 <name>yarn.node-labels.fs-store.root-dir</name>
 <value>hdfs://[Node name]:[Port]/[Path to store]/[Node labels]/</value>
</property>

Define YARN Queues
You can define multiple YARN queues to redirect jobs to specific queues. You can redirect Blaze, Spark, and
Sqoop jobs.

To redirect jobs on the Blaze engine to a specific queue, configure the following Blaze configuration property
in the Hadoop connection:

Property Description

YARN Queue Name The YARN scheduler queue name used by the Blaze engine that specifies available resources on
a cluster.

To redirect jobs on the Spark engine to a specific queue, configure the following Spark configuration property
in the Hadoop connection:

Property Description

YARN Queue Name The YARN scheduler queue name used by the Spark engine that specifies available resources on
a cluster. The name is case sensitive.

To redirect Sqoop jobs to a specific queue, configure the following JDBC connection property:

Property Description

Sqoop Arguments The Sqoop connection-level argument to direct a MapReduce job to a specific YARN queue.
Use the following format:
-Dmapred.job.queue.name=<YARN queue name>
If you do not direct the job to a specific queue, the Spark engine uses the default queue.

Configure the Blaze Engine to Use Node Labels
If you enable node labeling in the Hadoop environment, you can use node labels to run Blaze components as
YARN applications on specific cluster nodes.

To run Blaze components on the labeled cluster nodes, specify the node labels when you configure the Blaze
engine.

80 Chapter 3: Mapping Optimization

To specify node labels on the Blaze engine, list the node labels in the following Hadoop connection property:

Property Description

Blaze YARN
Node Label

Node label that determines the node on the Hadoop cluster where the Blaze engine runs. If you do
not specify a node label, the Blaze engine runs on the nodes in the default partition.
If the Hadoop cluster supports logical operators for node labels, you can specify a list of node
labels. To list the node labels, use the operators && (AND), || (OR), and ! (NOT).

Note: When the Blaze engine uses node labels, Blaze components might be redundant on the labeled nodes.
If a node contains multiple labels and you specify the labels in different Hadoop connections, multiple Grid
Manager, Orchestrator, or Job Monitor instances might run on the same node.

Data Engineering Recovery
An administrator can enable data engineering recovery to recover a job configured to run on the Spark engine
when a Data Integration Service node stops unexpectedly.

When a Data Integration Service node fails before a running job is complete, the Data Integration Service
sends the job to another node, which resumes processing job tasks from the point at which the node failure
occurred. Recovery occurs upon node startup.

To use data engineering recovery, you must configure jobs to run on the Spark engine and submit jobs from
the infacmd client.

An administrator configures data engineering recovery in Data Integration Service properties. For more
information about data engineering recovery, see the Data Engineering Administrator Guide.

Spark Engine Optimization for Sqoop Pass-Through
Mappings

When you run a pass-through mapping with a Sqoop source on the Spark engine, the Data Integration Service
optimizes mapping performance in the following scenarios:

• You write data to a Hive target that uses the Text format.

• You write data to a Hive target that was created with a custom DDL query.

• You write data to an Hive target that is either partitioned with a custom DDL query or partitioned and
bucketed with a custom DDL query.

• You write data to an existing Hive target that is both partitioned and bucketed.

• You write data to an HDFS target that uses the Flat, Avro, or Parquet format.

If you want to disable the performance optimization, set the --infaoptimize argument to false in the JDBC
connection or Sqoop mapping. For example, if you see data type issues after you run an optimized Sqoop
mapping, you can disable the performance optimization.

Use the following syntax:

--infaoptimize false

Data Engineering Recovery 81

Rules and Guidelines for Sqoop Spark Engine Optimization

Consider the following rules and guidelines when you run Sqoop mappings on the Spark engine:

• The Data Integration Service does not optimize mapping performance in the following scenarios:

- There are unconnected ports between the source and target in the mapping.

- The data types of the source and target in the mapping do not match.

- You write data to an existing Hive target table that is either partitioned or bucketed.

- You run a mapping on an Azure HDInsight cluster that uses WASB to write data to an HDFS complex file
target of the Parquet format.

- The date or time data type in the Sqoop source is mapped to the timestamp data type in the Hive target.

- The Sqoop source contains a decimal column and the target is a complex file.

- Mapping that reads Decimal or Double data types from a Sqoop source and writes to an HDFS target
that uses the Parquet format.

• If you configure Hive-specific Sqoop arguments to write data to a Hive target, Sqoop ignores the
arguments.

• If you configure a delimiter for a Hive target table that is different from the default delimiter, Sqoop
ignores the delimiter.

82 Chapter 3: Mapping Optimization

C h a p t e r 4

Sources
This chapter includes the following topics:

• Overview of Sources, 83

• PowerExchange Adapter Sources, 83

• Sources on Databricks, 85

• File Sources on Hadoop, 89

• Relational Sources on Hadoop, 95

• Hive Sources on Hadoop, 96

• Sqoop Sources on Hadoop, 99

Overview of Sources
You can push a mapping to a non-native environment that includes a source from the native environment or
non-native environment. Some sources have restrictions when you reference them in a non-native
environment.

Access to sources in a non-native environment require a PowerExchange adapter.

When a mapping runs in the Hadoop environment, an HDFS source cannot reside on a remote cluster.

PowerExchange Adapter Sources
PowerExchange sources can run in the Hadoop or Databricks environment, based on the adapter.

The following table lists PowerExchange sources and the non-native engines that support the sources:

PowerExchange Adapter Supported Engines

Amazon Redshift - Blaze
- Spark
- Databricks Spark

Amazon S3 - Blaze
- Spark
- Databricks Spark

83

PowerExchange Adapter Supported Engines

Google Analytics - Spark

Google BigQuery - Spark

Google Cloud Spanner - Spark

Google Cloud Storage - Spark

HBase - Blaze
- Spark

HDFS - Blaze
- Spark

Hive - Blaze
- Spark

JDBC V2 - Spark
- Databricks Spark

MapR-DB - Blaze
- Spark

Microsoft Azure Blob Storage - Spark
- Databricks Spark

Microsoft Azure Cosmos DB - Spark
- Databricks Spark

Microsoft Azure Data Lake Storage Gen1 - Spark
- Databricks Spark

Microsoft Azure Data Lake Storage Gen2 - Spark
- Databricks Spark

Microsoft Azure SQL Data Warehouse - Spark
- Databricks Spark

Snowflake - Spark
- Databricks Spark

Teradata Parallel Transporter API - Blaze
- Spark

84 Chapter 4: Sources

Sources on Databricks
A mapping that runs in the Databricks environment can include file and database sources.

The following table lists the storage types and sources:

Storage Type Source

File - Amazon Simple Storage Service (Amazon S3)
- Databricks Delta Lake storage
- Microsoft Azure Blob Storage
- Microsoft Azure Data Lake Store (ADLS)

Database - Amazon Redshift
- JDBC V2
- Microsoft Azure Cosmos DB
- Microsoft Azure SQL Data Warehouse
- Snowflake

Complex File Sources on Amazon S3
Use a PowerExchange for Amazon S3 connection to read data from Amazon S3 data objects.

The following table shows the complex files that a mapping can process within Amazon S3 storage on the
Databricks Spark engine:

File Type Supported Formats

Avro - Flat
- Hierarchical

JSON - Flat
- Hierarchical

ORC - Flat

Parquet - Flat
- Hierarchical

Complex File Sources on ADLS
Use a PowerExchange for Microsoft Azure Data Lake Store connection to read data from ADLS data objects.

The following table shows the complex files that a mapping can process within ADLS storage in the
Databricks environment:

File Type Format

Avro - Flat
- Hierarchical

JSON - Flat
- Hierarchical

Sources on Databricks 85

File Type Format

Parquet - Flat
- Hierarchical

Note: The read operation for hierarchical files must be enabled to project columns as complex data type.

Complex File Sources on Azure Data Lake Storage Gen2
Use a PowerExchange for Microsoft Azure Data Lake Storage Gen2 connection to read data from Azure Data
Lake Storage Gen2 data objects.

The following table shows the complex files that a mapping can process within Azure Data Lake Storage
Gen2 in the Databricks environment:

File Type Format

Avro - Flat
- Hierarchical

JSON - Flat
- Hierarchical

ORC - Flat

Parquet - Flat
- Hierarchical

Note: The read operation for hierarchical files must be enabled to project columns as complex data type.

Complex File Sources on Azure Blob
Use a PowerExchange for Microsoft Azure Blob Storage connection to read data from Blob Storage data
objects. You can read compressed binary files.

The following table shows the complex files that a mapping can process within Azure Blob storage in the
Databricks environment:

File Type Format

Avro - Flat
- Hierarchical

JSON - Flat
- Hierarchical

Parquet - Flat
- Hierarchical

Note: The read operation for hierarchical files must be enabled to project columns as complex data type.

86 Chapter 4: Sources

Databricks and Delta Lake Tables
Mappings can access managed and unmanaged Databricks tables.

Delta Lake is an open-source data lake resource that stores data in large tables. Databricks manages stored
data and allows fast access to the data. Delta Lake supports ACID transactions and scalable handling of
metadata. You can build a lakehouse with Databricks Delta Lake using compute engines such as Spark,
PrestoDB, Flink, Trino, and Hive along with APIs for Scala, Java, Rust, and Python.

Mappings can also access unmanaged Databricks tables built on top of any of the following storage types:

• Azure blob storage

• Azure Data Lake Storage (ADLS) Gen1 or Gen2

• Amazon Web Services (AWS) S3

For more information, see the Databricks documentation.

You can configure dynamic mappings to apply Databricks source schema changes to Delta Lake targets. See
“Databricks Schema Evolution ” on page 87.

To use Delta Lake resources in a mapping, create a relational data object and use a JDBC connection to
connect to the resource.

Databricks Schema Evolution
Schema enforcement and evolution enable you to manage changes in a Databricks table schema. You can
choose different strategies to manage schema changes.

Schema enforcement monitors changes to Databricks table schemas and rejects changes that do not match
the target table schema. When Databricks rejects changes, it cancels the write transaction and logs an
exception. If you determine that you want to incorporate new columns in the target, schema evolution
enables you to add them to the target in a controlled fashion. Schema evolution is also known as schema
validation.

To use schema evolution, you need to disable schema enforcement in the target Databricks workspace.

For more information about Databricks schema enforcement and evolution, see the
Databricks documentation.

Use the Developer tool to apply schema evolution to a mapping and update Databricks target tables.

You can use the following strategies to enable schema evolution:

• CREATE. When you configure mappings to use the CREATE strategy, you drop the existing target table and
replace it with a target table that uses the new schema.
The mapping drops the existing target table and all its existing data and recreates the target table with all
the columns from the source and their data. Thereafter, every time the mapping runs, the mapping drops
the target table with its data and recreates the target table from the source schema.

• RETAIN using pre-SQL. When you configure mappings to use the RETAIN strategy, you use a pre-SQL
statement to add a subset of the schema's changed columns to the existing target table. Any existing
target data is also retained. You can parameterize the pre-SQL query, or substitute a parameter set.

• CREATE using post-SQL. When you configure mappings to sue the CREATE strategy with a post-SQL
statement, you add a subset of the schema's changed columns to the existing target table. Any existing
target data is also retained. The mapping loads source data from selected new columns into a temp table,
and then the Post-SQL statement merges it into the existing target table schema. You can parameterize
the post-SQL query, or substitute a parameter set.

Sources on Databricks 87

https://docs.databricks.com/data/tables.html#managed-and-unmanaged-tables
https://databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html

Note: You can't use schema evolution in the following conditions:

• When table access control is enabled.

• With INSERT INTO or .write. insertInto() clauses in Pre-SQL or Post-SQL.

Rules and Guidelines for Databricks Sources

File Sources

Consider the following general rules and guidelines for file sources:

• The flat file source must reside on one of the following storage resources:

- For the Azure platform: Microsoft Azure Blob Storage, Microsoft Azure Data Lake Store (ADLS) Gen1 or
Gen2

- For the AWS platform: S3

• The row delimiter must be /n.

• The file cannot be fixed width.

• Multiple column delimiters are not supported.

• To read multiline data, set the text qualifier to single or double quotes and enclose the data in the quoted
qualifier.

• Empty values only are treated as null values.

• When the path to the physical data object source includes spaces in the name of a file or directory, the
path that is rendered in the source column of the output has the characters %20 for spaces. For example,
C:\\testdirectory\flat file.txt is rendered as C:\\testdirectory\flat%20file.txt. This behavior
happens for flat file and complex files.

Delta Lake Sources

Consider the following guidelines for using Delta Lake sources:

• Mappings that access Delta Lake tables must use the Databricks run-time engine. If you run a Delta Lake
mapping in the native environment with the JDBC connection, the mapping succeeds, but no data is
written to the target.

Null Processing

Consider the following rules and guidelines for null processing:
Unexpected values converted to nulls

The Databricks Spark engine generates null values for all fields in the same record if any field contains
an unexpected value based on the following scenarios:

• Any type mismatch occurs, such as passing string data to a numeric column.

• Data is out of bounds, such as with bigint or int data types.

Consider using a Filter transformation to filter out null rows.

Date/time values converted to nulls

When the Databricks Spark engine reads date/time values, it uses the format YYYY-MM-DD
HH24:MM:SS.US. If the date format read from the source does not match this format, the Databricks
Spark engine converts the date values to nulls.

88 Chapter 4: Sources

Double and Decimal Conversions

When the Databricks Spark engine reads from an Azure or AWS source, it converts double and decimal data
types to scientific notation. When it converts that data back to a double or decimal to write to the target, it
drops precision greater than 15 and maintains precision of 15 digits.

File Sources on Hadoop
A mapping that runs in the Hadoop environment can process complex files and flat files.

To read large volumes of data, you can connect a complex file source to read data from a directory of files
that have the same format and properties. You can read compressed binary files.

You can read complex files from the following storage types in the Hadoop environment:

• Amazon Simple Storage Service (Amazon S3)

• Hadoop Distributed File System (HDFS)

• Hive

• MapR File System (MapR-FS)

• Microsoft Azure Blob Storage (Azure Blob Storage)

• Microsoft Azure Data Lake Store (ADLS)

Complex File Sources on Amazon S3
Use a PowerExchange for Amazon S3 connection to read data from Amazon S3 data objects.

The following table shows the complex files that a mapping can process within Amazon S3 storage in the
Hadoop environment:

Resource Format Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1 2

- Blaze
- Spark

Intelligent Structure Model or Sample File - Flat
- Hierarchical 1 2

- Blaze
- Spark

JSON - Flat
- Hierarchical 1 2

- Blaze
- Spark

ORC - Flat - Spark

Parquet - Flat
- Hierarchical 1 2

- Blaze
- Spark

1 To run on the Blaze engine, the complex file data object must be connected to a Data Processor transformation.
2 To run on the Spark engine, the complex file read operation must be enabled to project columns as complex data
type.

File Sources on Hadoop 89

Complex File Sources on Google Cloud Storage
You can use a PowerExchange for Google Cloud Storage connection to read data from Google Cloud Storage
data objects.

The following table shows the complex files that a mapping can process within Google Cloud Storage in the
Hadoop environment:

Resource Format Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1

Spark

JSON - Flat
- Hierarchical 1

Spark

Parquet - Flat
- Hierarchical 1

Spark

1 To run on the Spark engine, the complex file read operation must be enabled to project columns as complex data
type.

Complex File Sources on HDFS or View File System (ViewFS)
Use a PowerExchange for HDFS connection to read data from HDFS or View File System (ViewFS) data
objects.

The following table shows the complex files that a mapping can process within HDFS or ViewFS storage in
the Hadoop environment:

Resource Format Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1 2

- Blaze
- Spark

Intelligent Structure Model or Sample File - Flat
- Hierarchical 1 2

- Blaze
- Spark

JSON - Flat 1

- Hierarchical 1 2
- Blaze
- Spark

ORC - Flat - Spark

Parquet - Flat
- Hierarchical 1 2

- Blaze
- Spark

1 To run on the Blaze engine, the complex file data object must be connected to a Data Processor transformation.
2 To run on the Spark engine, the complex file read operation must be enabled to project columns as complex data
type.

Complex File Sources on Hive
Use a PowerExchange for Hive connection to read data from a Hive data warehouse.

90 Chapter 4: Sources

The following table shows the complex files that a mapping can process within Hive storage in the Hadoop
environment:

Resource Format Supported Formats Supported Engines

Avro - Flat - Blaze

ORC - Flat
- Hierarchical1

- Blaze
- Spark

Parquet - Flat - Blaze

RCfile - Flat - Blaze

Sequence - Flat - Blaze

Text - Flat - Blaze

1 Hierarchical data is only supported on the Spark engine.

Complex File Sources on MapR-FS
Use a PowerExchange for HDFS connection to read data from MapR-FS data objects.

The following table shows the complex files that a mapping can process within MapR-FS storage in the
Hadoop environment:

File Type Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1 2

- Blaze
- Spark

JSON - Flat 1

- Hierarchical 1 2
- Blaze
- Spark

ORC - Flat - Spark

Parquet - Flat
- Hierarchical 1 2

- Blaze
- Spark

1 To run on the Blaze engine, the complex file data object must be connected to a Data Processor transformation.
2 To run on the Spark engine, the complex file read operation must be enabled to project columns as complex data
type.

Complex File Sources on Azure Blob
You can use a PowerExchange for HDFS or a PowerExchange for Microsoft Azure Blob Storage connection to
read data from Azure Blob data objects.

File Sources on Hadoop 91

The following table shows the complex files that a mapping can process within Azure Blob storage in the
Hadoop environment:

Resource Format Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1

Spark

Intelligent Structure Model or Sample File - Flat
- Hierarchical 1

Spark

JSON - Flat
- Hierarchical 1

Spark

Parquet - Flat
- Hierarchical 1

Spark

1 To run on the Spark engine, the complex file read operation must be enabled to project columns as complex data
type.
2 To run on the Spark engine, the complex file read operation must be enabled to project columns as complex data
type.

The following table shows the complex files that a PowerExchange for HDFS connection can process within
Azure Blob Storage in the Hadoop environment:

File Type Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1 2

- Blaze
- Spark

JSON - Flat 1

- Hierarchical 1 2
- Blaze
- Spark

ORC - Flat - Spark

Parquet - Flat
- Hierarchical 1 2

- Blaze
- Spark

1 To run on the Blaze engine, the complex file data object must be connected to a Data Processor transformation.
2 To run on the Spark engine, the complex file read operation must be enabled to project columns as complex data
type.

Complex File Sources on ADLS
You can use a PowerExchange for HDFS or a PowerExchange for Microsoft Azure Data Lake Store
connection to read data from ADLS data objects. If you use a PowerExchange for Microsoft Azure Data Lake
Store connection, you cannot read compressed binary files from ADLS.

92 Chapter 4: Sources

The following table shows the complex files that a PowerExchange for Microsoft Azure Data Lake Store
connection can process within ADLS storage in the Hadoop environment:

File Type Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1

Spark

Intelligent Structure Model or Sample File - Flat
- Hierarchical 1

Spark

JSON - Flat
- Hierarchical 1

Spark

Parquet - Flat
- Hierarchical 1

Spark

1 To run on the Spark engine, the complex file read operation must be enabled to project columns as complex data
type.

The following table shows the complex files that a PowerExchange for HDFS connection can process within
ADLS storage in the Hadoop environment:

File Type Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1 2

- Blaze
- Spark

JSON - Flat 1

- Hierarchical 1 2
- Blaze
- Spark

ORC - Flat - Spark

Parquet - Flat
- Hierarchical 1 2

- Blaze
- Spark

1 To run on the Blaze engine, the complex file data object must be connected to a Data Processor transformation.
2 To run on the Spark engine, the complex file read operation must be enabled to project columns as complex data
type.

Complex File Sources on Azure Data Lake Storage Gen2
You can use a PowerExchange for HDFS or a PowerExchange for Microsoft Azure Data Lake Storage Gen2
connection to read data from Azure Data Lake Storage Gen2 data objects.

The PowerExchange for Microsoft Azure Data Lake Storage Gen2 connection is an Azure Blob File System
(ABFS) connection. You can use it if you have a PowerExchange for Microsoft Azure Data Lake Storage Gen2
connection license.

File Sources on Hadoop 93

The following table shows the complex files that a PowerExchange for Microsoft Azure Data Lake Storage
Gen2 mapping can process within Azure Data Lake Storage Gen2 in the Hadoop environment:

Resource Format Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1

Spark

Intelligent Structure Model or Sample File - Flat
- Hierarchical 1

Spark

JSON - Flat
- Hierarchical 1

Spark

ORC - Flat Spark

Parquet - Flat
- Hierarchical 1

Spark

1 To run on the Spark engine, the complex file read operation must be enabled to project columns as complex data
type.

The following table shows the complex files that a PowerExchange for HDFS connection can process within
Azure Data Lake Storage Gen2 in an HDInsight cluster in the Hadoop environment:

File Type Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1 2

- Blaze
- Spark

JSON - Flat 1

- Hierarchical 1 2
- Blaze
- Spark

ORC - Flat - Spark

Parquet - Flat
- Hierarchical 1 2

- Blaze
- Spark

1 To run on the Blaze engine, the complex file data object must be connected to a Data Processor transformation.
2 To run on the Spark engine, the complex file read operation must be enabled to project columns as complex data
type.

Flat File Sources on Hadoop
A mapping that is running in a Hadoop environment can read a flat file source from a native environment.

Consider the following limitations when you configure the mapping to read a flat file source:

• You cannot use an indirect source type.

• The row size in a flat file source cannot exceed 190 MB.

• You cannot use a command to generate or to transform flat file data and send the output to the flat file
reader at run time.

94 Chapter 4: Sources

Generate the Source File Name
You can generate the source file name for the flat file data object. The content of the file name column
remains consistent across different modes of execution.

When you push processing to the specific engine for the required file types, the file name column returns the
path based on the following formats:

Run-time
Engine

Source File Location Returned Path

Blaze Local system <staged path><local file path>
For example,

hdfs://host name:port/hive/warehouse/home/devbld/
Desktop/ff.txt

Spark HDFS hdfs://<host name>:<port>/<file name path>
For example,

hdfs://host name:port/hive/warehouse/ff.txt

Spark Local system <local file path>
For example,

/home/devbld/Desktop/ff.txt

The file name column returns the content in the following format for a high availability cluster: hdfs://<host
name>/<file name path>

For example, hdfs://irldv:5008/hive/warehouse/ff.txt

Relational Sources on Hadoop
You can run mappings with relational sources on the Blaze engine.

The Data Integration Service does not run pre-mapping SQL commands or post-mapping SQL commands
against relational sources. You cannot validate and run a mapping with PreSQL or PostSQL properties for a
relational source in a Hadoop environment.

The Data Integration Service can use multiple partitions to read from the following relational sources:

• IBM DB2

• Oracle

Relational Sources on Hadoop 95

Hive Sources on Hadoop
You can include Hive sources in an Informatica mapping that runs in the Hadoop environment.

Consider the following restrictions when you configure a Hive source in a mapping that runs in the Hadoop
environment:

• A mapping fails to run when you have Unicode characters in a Hive source definition.

• The Hive source cannot reside on a remote cluster. A remote cluster is a cluster that is remote from the
machine that the Hadoop connection references in the mapping.

• If a Hive source contains hierarchical data, you cannot push transformation logic to the source database.

• The third-party Hive JDBC driver does not return the correct precision and scale values for the Decimal
data type. As a result, when you import Hive tables with a Decimal data type into the Developer tool, the
Decimal data type precision is set to 38 and the scale is set to 0. Consider the following configuration
rules and guidelines based on the version of Hive:

- Hive 0.11. Accept the default precision and scale for the Decimal data type in the Developer tool.

- Hive 0.12. Accept the default precision and scale for the Decimal data type in the Developer tool.

- Hive 0.12 with Cloudera CDH 5.0. You can configure the precision and scale fields for source columns
with the Decimal data type in the Developer tool.

- Hive 0.13 and above. You can configure the precision and scale fields for source columns with the
Decimal data type in the Developer tool.

- Hive 0.14 or above. The precision and scale used for the Decimal data type in the Hive database also
appears in the Developer tool.

A mapping that runs on the Spark engine can have partitioned Hive source tables and bucketed sources.

PreSQL and PostSQL Commands
You can create SQL commands for Hive sources. You can execute the SQL commands to execute SQL
statements such as insert, update, and delete on the Hive source.

PreSQL is an SQL command that runs against the Hive source before the mapping reads from the source.
PostSQL is an SQL command that runs against the Hive source after the mapping writes to the target.

You can use PreSQL and PostSQL on the Spark engine. The Data Integration Service does not validate
PreSQL or PostSQL commands for a Hive source.

Note: You can manually validate the SQL by running the following query in a Hive command line utility:

CREATE VIEW <table name> (<port list>) AS <SQL>
where:

• <table name> is a name of your choice

• <port list> is the comma-delimited list of ports in the source

• <SQL> is the query to validate

Pre-Mapping SQL Commands

PreSQL is an SQL command that runs against a Hive source before the mapping reads from the source.

For example, you might use a Hive source in a mapping. The data stored in the Hive source changes regularly
and you must update the data in the Hive source before the mapping reads from the source to make sure that
the mapping reads the latest records. To update the Hive source, you can configure a PreSQL command.

96 Chapter 4: Sources

Post-Mapping SQL Commands

PostSQL is an SQL command that runs against a Hive source after the mapping writes to the target.

For example, you might use a Hive source in a mapping. After the mapping writes to a target, you might want
to delete the stage records stored in the Hive source. You want to run the command only after the mapping
writes the data to the target to make sure that the data is not removed prematurely from the Hive source. To
delete the records in the Hive source table after the mapping writes to the target, you can configure a
PostSQL command.

Rules and Guidelines for Pre- and Post-Mapping SQL Commands

Consider the following restrictions when you run PreSQL and PostSQL commands against Hive sources:

• When you create an SQL override on a Hive source, you must enclose keywords or special characters in
backtick (`) characters.

• When you run a mapping with a Hive source in the Hadoop environment, references to a local path in pre-
mapping SQL commands are relative to the Data Integration Service node. When you run a mapping with a
Hive source in the native environment, references to local path in pre-mapping SQL commands are relative
to the Hive server node.

Rules and Guidelines for Hive Sources on the Blaze Engine
You can include Hive sources in an Informatica mapping that runs on the Blaze engine.

Consider the following rules and guidelines when you configure a Hive source in a mapping that runs on the
Blaze engine:

• A mapping that runs on the Blaze engine can have bucketed Hive sources and Hive ACID tables.

• Hive ACID tables must be bucketed.

• The Blaze engine supports Hive tables that are enabled for locking.

• Hive sources can contain quoted identifiers in Hive table names, column names, and schema names.

• The TEXT storage format in a Hive source for a Blaze mapping can support ASCII characters as column
delimiters and the newline characters as a row separator. You cannot use hex values of ASCII characters.
For example, use a semicolon (;) instead of 3B.

• You can define an SQL override in the Hive source for a Blaze mapping.

• The Blaze engine can read from an RCFile as a Hive source. To read from an RCFile table, you must create
the table with the SerDe clause.

• The Blaze engine can read from Hive tables that are compressed. To read from a compressed Hive table,
you must set the TBLPROPERTIES clause.

RCFile as Hive Tables

The Blaze engine can read and write to RCFile as Hive tables. However, the Blaze engine supports only the
ColumnarSerDe. In Hortonworks, the default SerDe for an RCFile is LazyBinaryColumnarSerDe. To read and
write to an RCFile table, you must create the table by specifying the SerDe as
org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe.

For example:

CREATE TABLE TEST_RCFIle
(id int, name string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe' STORED AS RCFILE;

Hive Sources on Hadoop 97

You can also set the default RCFile SerDe in Apache Ambari, Cloudera Manager, or Amazon EMR distribution.
Set the property hive.default.rcfile.serde to
org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe.

Compressed Hive Tables

The Blaze engine can read and write to Hive tables that are compressed. However, to read from a
compressed Hive table or write to a Hive table in compressed format, you must set the TBLPROPERTIES
clause as follows:

• When you create the table, set the table properties:
TBLPROPERTIES ('property_name'='property_value')

• If the table already exists, alter the table to set the table properties:
ALTER TABLE table_name SET TBLPROPERTIES ('property_name' = 'property_value');

The property name and value are not case sensitive. Depending on the file format, the table property can take
different values.

The following table lists the property names and values for different file formats:

File Format Table Property Name Table Property Values

Avro avro.compression BZIP2, deflate, Snappy

ORC orc.compress Snappy, ZLIB

Parquet parquet.compression GZIP, Snappy

RCFile rcfile.compression Snappy, ZLIB

Sequence sequencefile.compression BZIP2, GZIP, LZ4, Snappy

Text text.compression BZIP2, GZIP, LZ4, Snappy

Note: The Blaze engine does not write data in the default ZLIB compressed format when it writes to a Hive
target stored as ORC format. To write in a compressed format, alter the table to set the TBLPROPERTIES
clause to use ZLIB or Snappy compression for the ORC file format.

The following text shows sample commands to create table and alter table:

• Create table:

create table CBO_3T_JOINS_CUSTOMER_HIVE_SEQ_GZIP
(C_CUSTKEY DECIMAL(38,0), C_NAME STRING,C_ADDRESS STRING,
C_PHONE STRING,C_ACCTBAL DECIMAL(10,2),
C_MKTSEGMENT VARCHAR(10),C_COMMENT vARCHAR(117))
partitioned by (C_NATIONKEY DECIMAL(38,0))
TBLPROPERTIES ('sequencefile.compression'='gzip')
stored as SEQUENCEFILE;

• Alter table:

ALTER TABLE table_name
SET TBLPROPERTIES (avro.compression'='BZIP2');

98 Chapter 4: Sources

Sqoop Sources on Hadoop
Sqoop sources are valid in mappings in a Hadoop environment.

You can include a JDBC-compliant database as a Sqoop source in an Informatica mapping that runs in a
Hadoop environment.

For example, you can include the following sources in a Sqoop mapping:

• Aurora

• Greenplum

• IBM DB2

• IBM DB2 for z/OS

• Microsoft SQL Server

• Netezza

• Oracle

• Teradata

• Vertica

Reading Data from Vertica Sources through Sqoop
To read Vertica data through Sqoop connectivity, Sqoop requires a custom query.

Create the custom query with the $CONDITIONS parameter in the WHERE clause. Then, define a mapping
parameter with the name as CONDITIONS and set its value to $CONDITIONS. At run time, Sqoop replaces
$CONDITIONS with a unique condition expression.

1. Open the Sqoop data object and click the Query tab in the Properties view.

2. Define a custom query and include $CONDITIONS in the WHERE clause of the custom query as shown in
the following image:

3. Open the Sqoop mapping and click the Parameters tab in the Properties view.

4. Define a mapping parameter with the name as CONDITIONS and set its value to $CONDITIONS as shown in
the following image:

Sqoop Sources on Hadoop 99

Rules and Guidelines for Sqoop Sources
Consider the following rules and guidelines when you configure a Sqoop source in a mapping:

• If you specify a sort condition in a mapping, the Data Integration Service ignores the Order By condition.

• You cannot sort columns in a Sqoop source.

• You cannot read distinct rows from a Sqoop source.

• When you read data from an Oracle source through Sqoop and run the mapping on the Blaze or Spark
engine, Sqoop treats the owner name as case sensitive.

• Sqoop uses the values that you configure in the User Name and Password fields of the JDBC connection.
If you configure the --username or --password argument in a JDBC connection or mapping, Sqoop ignores
the arguments. If you create a password file to access a database, Sqoop ignores the password file.

Rules and Guidelines for Sqoop Queries
Consider the following rules and guidelines when you configure a Sqoop query in a mapping:

• To override the default query in a mapping with an advanced query, you must define a mapping parameter
with the name as CONDITIONS and set its value to $CONDITIONS. You must then include $CONDITIONS in the
WHERE clause of the custom query.
Ensure that you include $CONDITIONS only after you validate the advanced query. After you add
$CONDITIONS, an error message appears stating that the query is not valid. You can ignore this message.

For more information about configuring the custom query, see the following Informatica Knowledge Base
article: KB 564550

• If you define a custom query, you must verify that the metadata of the custom query matches the
metadata of the source object. Otherwise, Sqoop might write blank values to the target.

• When you enable OraOop and configure an advanced query to read data from an Oracle source through
Sqoop, the mapping fails on the Spark engine.

100 Chapter 4: Sources

https://kb.informatica.com/howto/6/Pages/22/564550.aspx

C h a p t e r 5

Targets
This chapter includes the following topics:

• Overview of Targets, 101

• PowerExchange Adapter Targets, 101

• Targets on Databricks, 103

• File Targets on Hadoop, 110

• Message Targets on Hadoop, 116

• Relational Targets on Hadoop, 116

• Hive Targets on Hadoop, 117

• Sqoop Targets on Hadoop, 120

Overview of Targets
You can push a mapping to a non-native environment that includes a target from the native environment or
non-native environment. Some targets have restrictions when you reference them in a non-native
environment.

Access to targets in a non-native environment might require a PowerExchange adapter.

PowerExchange Adapter Targets
PowerExchange targets can run in the Hadoop or Databricks environment, based on the adapter.

The following table lists PowerExchange targets and the non-native engines that support the targets:

PowerExchange Adapter Supported Engines

Amazon Redshift - Blaze
- Spark
- Databricks Spark

Amazon S3 - Blaze
- Spark
- Databricks Spark

101

PowerExchange Adapter Supported Engines

Google Analytics - Spark

Google BigQuery - Spark

Google Cloud Spanner - Spark

Google Cloud Storage - Spark

HBase - Blaze
- Spark

HDFS - Blaze
- Spark

JDBC V2 - Spark
- Databricks Spark

Kudu - Spark

Hive - Blaze
- Spark

MapR-DB - Blaze
- Spark

Microsoft Azure Blob Storage - Spark
- Databricks Spark

Microsoft Azure Cosmos DB - Spark
- Databricks Spark

Microsoft Azure Data Lake Storage Gen1 - Spark
- Databricks Spark

Microsoft Azure Data Lake Storage Gen2 - Spark
- Databricks Spark

Microsoft Azure SQL Data Warehouse - Spark
- Databricks Spark

Snowflake - Spark
- Databricks Spark

Teradata Parallel Transporter API - Blaze
- Spark

102 Chapter 5: Targets

Targets on Databricks
A mapping that runs in the Databricks environment can include file and database targets.

The following table lists the storage types and targets:

Storage Type Target

File - Amazon Simple Storage Service (Amazon S3)
- Databricks Delta Lake storage
- Microsoft Azure Blob Storage
- Microsoft Azure Data Lake Store (ADLS)

Database - Amazon Redshift
- JDBC V2
- Microsoft Azure Cosmos DB
- Microsoft Azure SQL Data Warehouse
- Snowflake

Complex File Targets on Amazon S3
Use a PowerExchange for Amazon S3 connection to write data to Amazon S3 data objects.

The following table shows the complex files that a mapping can process within Amazon S3 storage on the
Databricks Spark engine:

File Type Supported Formats

Avro - Flat
- Hierarchical

JSON - Flat
- Hierarchical

ORC - Flat

Parquet - Flat
- Hierarchical

Complex File Targets on ADLS
Use a PowerExchange for Microsoft Azure Data Lake Store connection to write data to ADLS data objects.

The following table shows the complex files that a mapping can process within ADLS storage in the
Databricks environment:

File Type Format

Avro - Flat
- Hierarchical

JSON - Flat
- Hierarchical

Targets on Databricks 103

File Type Format

Parquet - Flat
- Hierarchical

Note: The write operation for hierarchical files must be enabled to project columns as complex data type.

Complex File Targets on Azure Data Lake Storage Gen2
Use a PowerExchange for Microsoft Azure Data Lake Storage Gen2 connection to write data to Azure Data
Lake Storage Gen2 data objects.

The following table shows the complex files that a mapping can process within Azure Data Lake Storage
Gen2 in the Databricks environment:

File Type Format

Avro - Flat
- Hierarchical

JSON - Flat
- Hierarchical

ORC - Flat

Parquet - Flat
- Hierarchical

Note: The write operation for hierarchical files must be enabled to project columns as complex data type.

Complex File Targets on Azure Blob
Use a PowerExchange for Microsoft Azure Blob Storage connection to write data to Blob Storage data
objects. You can write compressed binary files.

The following table shows the complex files that a mapping can process within Azure Blob storage in the
Databricks environment:

File Type Format

Avro - Flat
- Hierarchical

JSON - Flat
- Hierarchical

Parquet - Flat
- Hierarchical

Note: The write operation for hierarchical files must be enabled to project columns as complex data type.

104 Chapter 5: Targets

Databricks and Delta Lake Tables
You can use managed and unmanaged Databricks tables as a target in mappings.

Delta Lake is an open-source data lake resource that stores data in large tables. Databricks manages stored
data and allows fast access to the data. Delta Lake supports ACID transactions and scalable handling of
metadata. You can build a lakehouse with Databricks Delta Lake using compute engines such as Spark,
PrestoDB, Flink, Trino, and Hive along with APIs for Scala, Java, Rust, and Python.

Mappings can also access unmanaged Databricks tables built on top of any of the following storage types:

• Azure blob storage

• Azure Data Lake Storage (ADLS) Gen1 or Gen2

• Amazon Web Services (AWS) S3

Note: Mappings that access Delta Lake tables must use the Databricks Spark engine. If you run a Delta Lake
mapping in the native environment with the JDBC connection, the mapping succeeds, but no data is written
to the target.

You can configure dynamic mappings to apply Databricks source schema changes to Delta Lake targets. See
“Databricks Schema Evolution ” on page 87.

To use Delta Lake resources in a mapping, create a relational data object and use a JDBC connection to
connect to the resource.

To perform data ingestion to a Delta Lake target, use a pass-through mapping with a flat file source.

Databricks Schema Evolution
Schema enforcement and evolution enable you to manage changes in a Databricks table schema. You can
choose different strategies to manage schema changes.

Schema enforcement monitors changes to Databricks table schemas and rejects changes that do not match
the target table schema. When Databricks rejects changes, it cancels the write transaction and logs an
exception. If you determine that you want to incorporate new columns in the target, schema evolution
enables you to add them to the target in a controlled fashion. Schema evolution is also known as schema
validation.

To use schema evolution, you need to disable schema enforcement in the target Databricks workspace.

For more information about Databricks schema enforcement and evolution, see the
Databricks documentation.

Use the Developer tool to apply schema evolution to a mapping and update Databricks target tables.

You can use the following strategies to enable schema evolution:

• CREATE. When you configure mappings to use the CREATE strategy, you drop the existing target table and
replace it with a target table that uses the new schema.
The mapping drops the existing target table and all its existing data and recreates the target table with all
the columns from the source and their data. Thereafter, every time the mapping runs, the mapping drops
the target table with its data and recreates the target table from the source schema.

• RETAIN using pre-SQL. When you configure mappings to use the RETAIN strategy, you use a pre-SQL
statement to add a subset of the schema's changed columns to the existing target table. Any existing
target data is also retained. You can parameterize the pre-SQL query, or substitute a parameter set.

Targets on Databricks 105

https://databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html

• CREATE using post-SQL. When you configure mappings to sue the CREATE strategy with a post-SQL
statement, you add a subset of the schema's changed columns to the existing target table. Any existing
target data is also retained. The mapping loads source data from selected new columns into a temp table,
and then the Post-SQL statement merges it into the existing target table schema. You can parameterize
the post-SQL query, or substitute a parameter set.

Note: You can't use schema evolution in the following conditions:

• When table access control is enabled.

• With INSERT INTO or .write. insertInto() clauses in Pre-SQL or Post-SQL.

Using the CREATE strategy
Use the CREATE strategy in a mapping to drop the existing Delta Lake target table, including its data, and
create a new target table with all source schema columns and their data.

1. Create a passthrough mapping with ports dynamically linked from the Read transformation to the Write
transformation.

The following image shows the linked transformations:

2. Select the Write transformation and the Ports property sheet. Select the Columns defined by mapping
flow option.

The following image shows the location of the Mapping flow option in the Ports properties:

3. Select the Read transformation and the Data Object property sheet. Select the At run time, get data
object columns from the data source option.

The following image shows the option location in the Data Object properties:

106 Chapter 5: Targets

4. Select the Write transformation and the Advanced property sheet. For the Target Schema Strategy
property, select the CREATE option.

The following image shows the Target Schema Strategy property in the Advanced properties:

Using the RETAIN Strategy with Pre-SQL
Use pre-SQL with the RETAIN strategy in a mapping to retain the existing Delta Lake target table, including its
data, and add columns to it.

1. Create a passthrough mapping with ports dynamically linked from the Read transformation to the Write
transformation.

2. Select the Write transformation and the Advanced property sheet. For Target Schema Strategy, select
Retain.

Targets on Databricks 107

3. Open the Advanced property sheet. Use an ALTER TABLE Pre-SQL statement to specify the columns
from the source schema to add to the target table schema.

You can choose to put the Pre-SQL query itself into the PreSQL property, or use a parameter or
parameter set that contains the query. For more information about using parameterization in mappings,
see the Informatica Developer Tool Guide and the Informatica Developer Mapping Guide.

The following image shows the PreSQL property location in the Advanced properties:

The following image shows the PreSQL property with a parameter as a value:

Using the CREATE Strategy with Post-SQL
Use the CREATE strategy and a post-SQL statement to add a subset of the source schema's new columns to
the existing target table.

1. Create a passthrough mapping with ports dynamically linked from the Read transformation to the Write
transformation.

2. Select the Write transformation and the Advanced property sheet. For Target Schema Strategy, select
Create.

3. In the Update Strategy property, select Update as Update.

108 Chapter 5: Targets

4. In the PostSQL property, use an ALTER TABLE command to specify the columns to add. See the example
below.

You can choose to put the Post-SQL query itself into the PostSQL property, or use a parameter or
parameter set that contains the query. For more information about using parameterization in mappings,
see the Informatica Developer Tool Guide and the Informatica Developer Mapping Guide.

The following image shows the PostSQL statement in the Advanced properties:

Example

Use the SQL statement below as a template for the post-SQL statement.

ALTER TABLE default.deltatgt add column addition4 int{INFA_SQL_SPLITTER}MERGE INTO
default.deltatgt USING default.tmp_table_auto3 ON default.deltatgt.idt =
default.tmp_table_auto3.idt WHEN MATCHED THEN UPDATE SET default.deltatgt.addition4 =
default.tmp_table_auto3.addition4 WHEN NOT MATCHED THEN INSERT (dept, name, idt,
addition, addition2, addition3, addition4) VALUES (dept, name, idt, addition, addition2,
addition3, addition4)

Rules and Guidelines for Databricks Targets

File Targets

Consider the following general rules and guidelines for file targets:

• The file targets must reside on Microsoft Azure Blob Storage or Microsoft Azure Data Lake Store.

• The row delimiter must be /n.

• The file cannot be fixed width.

• Multiple column delimiters are not supported.

• Empty values only are treated as null values.

Delta Lake Targets

Consider the following guidelines for using Delta Lake targets:

• Mappings that access Delta Lake tables must use the Databricks run-time engine. If you run a Delta Lake
mapping in the native environment with the JDBC connection, the mapping succeeds, but no data is
written to the target.

Null Processing

Consider the following rules and guidelines for null processing:

Targets on Databricks 109

Null value conversions

When the Databricks Spark engine writes to a target, it converts null values to empty strings (" "). For
example, 12, AB,"",23p09udj.

Consider the null processing behavior based on the following Databricks targets:

• File target. The Databricks Spark engine writes all null values as empty strings.

• Azure SQL Data Warehouse. The Databricks Spark engine can write the empty strings to string
columns, but when it tries to write an empty string to a non-string column, the mapping fails with a
type mismatch.

To allow the Databricks Spark engine to convert the empty strings back to null values and write to the
target, configure the following advanced property in the Databricks Spark connection:
infaspark.flatfile.writer.nullValue=true

Unexpected values converted to nulls

The Databricks Spark engine generates null values for all fields in the same record if any field contains
an unexpected value based on the following scenarios:

• Any type mismatch occurs, such as passing string data to a numeric column.

• Data is out of bounds, such as with bigint or int data types.

Consider using a Filter transformation to filter out null rows.

Date/time values converted to nulls

When the Databricks Spark engine writes date/time values, it uses the format YYY-MM-DD
HH24:MM:SS.US. If the date format that passes to the target does not match this format, the Databricks
Spark engine writes null values.

Double and Decimal Conversions

When the Databricks Spark engine reads from an Azure or AWS source, it converts double and decimal data
types to scientific notation. When it converts that data back to a double or decimal to write to the target, it
drops precision greater than 15 and maintains precision of 15 digits.

File Targets on Hadoop
A mapping that runs in the Hadoop environment can process complex files and flat files.

To write large volumes of data, you can connect a complex file target to write data to a directory of files that
have the same format and properties. You can read compressed binary files.

You can write to complex files in the following storage types in the Hadoop environment:

• Amazon Simple Storage Service (Amazon S3)

• Hadoop Distributed File System (HDFS)

• Hive

• MapR File System (MapR-FS)

• Microsoft Azure Blob Storage (Azure Blob Storage)

• Microsoft Azure Data Lake Store (ADLS)

110 Chapter 5: Targets

Complex File Targets on Amazon S3
Use a PowerExchange for Amazon S3 connection to write data to Amazon S3 data objects.

The following table shows the complex files that a mapping can process within Amazon S3 storage in the
Hadoop environment:

File Type Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1 2

- Blaze
- Spark

JSON - Flat
- Hierarchical 1 2

- Blaze
- Spark

ORC - Flat - Spark

Parquet - Flat
- Hierarchical 1 2

- Blaze
- Spark

1 To run on the Blaze engine, the complex file data object must be connected to a Data Processor transformation.
2 To run on the Spark engine, the complex file write operation must be enabled to project columns as complex data
type.

Complex File Targets on Google Cloud Storage
You can use a PowerExchange for Google Cloud Storage connection to write data to Google Cloud Storage
data objects. If you use a PowerExchange for Google Cloud Storage connection, you cannot write
compressed binary files to Google Cloud Storage.

The following table shows the complex files that a PowerExchange for Google Cloud Storage connection can
process within Google Cloud Storage storage in the Hadoop environment:

File Type Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1

Spark

JSON - Flat
- Hierarchical 1

Spark

Parquet - Flat
- Hierarchical 1

Spark

1 To run on the Spark engine, the complex file write operation must be enabled to project columns as complex data
type.

Complex File Targets on ADLS
You can use a PowerExchange for HDFS or a PowerExchange for Microsoft Azure Data Lake Store
connection to write data to ADLS data objects. If you use a PowerExchange for Microsoft Azure Data Lake
Store connection, you cannot write compressed binary files to ADLS.

File Targets on Hadoop 111

The following table shows the complex files that a PowerExchange for Microsoft Azure Data Lake Store
connection can process within ADLS storage in the Hadoop environment:

File Type Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1

Spark

JSON - Flat
- Hierarchical 1

Spark

Parquet - Flat
- Hierarchical 1

Spark

1 To run on the Spark engine, the complex file write operation must be enabled to project columns as complex data
type.

The following table shows the complex files that a PowerExchange for HDFS connection can process within
ADLS storage in the Hadoop environment:

File Type Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1 2

- Blaze
- Spark

JSON - Flat 1

- Hierarchical 1 2
- Blaze
- Spark

ORC - Flat - Spark

Parquet - Flat
- Hierarchical 1 2

- Blaze
- Spark

1 To run on the Blaze engine, the complex file data object must be connected to a Data Processor transformation.
2 To run on the Spark engine, the complex file write operation must be enabled to project columns as complex data
type.

Complex File Targets on Azure Data Lake Storage Gen2
You can use a PowerExchange for HDFS or a PowerExchange for Microsoft Azure Data Lake Storage Gen2
connection to write data to Azure Data Lake Storage Gen2 data objects.

The following table shows the complex files that a PowerExchange for Microsoft Azure Data Lake Storage
Gen2 mapping can process within Azure Data Lake Storage Gen2 in the Hadoop environment:

File Type Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1

Spark

JSON - Flat
- Hierarchical 1

Spark

ORC - Flat Spark

112 Chapter 5: Targets

File Type Supported Formats Supported Engines

Parquet - Flat
- Hierarchical 1

Spark

1 To run on the Spark engine, the complex file write operation must be enabled to project columns as complex data
type.

The following table shows the complex files that a PowerExchange for HDFS connection can process within
Azure Data Lake Storage Gen2 in the Hadoop environment:

File Type Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1 2

- Blaze
- Spark

JSON - Flat 1

- Hierarchical 1 2
- Blaze
- Spark

ORC - Flat - Spark

Parquet - Flat
- Hierarchical 1 2

- Blaze
- Spark

1 To run on the Blaze engine, the complex file data object must be connected to a Data Processor transformation.
2 To run on the Spark engine, the complex file write operation must be enabled to project columns as complex data
type.

Complex File Targets on Azure Blob
You can use a PowerExchange for HDFS or a PowerExchange for Microsoft Azure Blob Storage connection to
write data to Azure Blob data objects.

The following table shows the complex files that a mapping can process within Azure Blob storage in the
Hadoop environment:

File Type Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1

Spark

JSON - Flat
- Hierarchical 1

Spark

Parquet - Flat
- Hierarchical 1

Spark

1 To run on the Spark engine, the complex file write operation must be enabled to project columns as complex data
type.

File Targets on Hadoop 113

The following table shows the complex files that a PowerExchange for HDFS connection can process within
Azure Blob Storage in the Hadoop environment:

File Type Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1 2

- Blaze
- Spark

JSON - Flat 1

- Hierarchical 1 2
- Blaze
- Spark

ORC - Flat - Spark

Parquet - Flat
- Hierarchical 1 2

- Blaze
- Spark

1 To run on the Blaze engine, the complex file data object must be connected to a Data Processor transformation.
2 To run on the Spark engine, the complex file write operation must be enabled to project columns as complex data
type.

Complex File Targets on MapR-FS
Use a PowerExchange for HDFS connection to read data from MapR-FS data objects.

The following table shows the complex files that a mapping can process within MapR-FS storage in the
Hadoop environment:

File Type Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1 2

- Blaze
- Spark

JSON - Flat 1

- Hierarchical 1 2
- Blaze
- Spark

ORC - Flat - Spark

Parquet - Flat
- Hierarchical 1 2

- Blaze
- Spark

1 To run on the Blaze engine, the complex file data object must be connected to a Data Processor transformation.
2 To run on the Spark engine, the complex file read operation must be enabled to project columns as complex data
type.

Complex File Targets on HDFS or View File System (ViewFS)
Use a PowerExchange for HDFS connection to write data to HDFS or ViewFS data objects.

114 Chapter 5: Targets

The following table shows the complex files that a mapping can process within HDFS or ViewFS storage in
the Hadoop environment:

File Type Supported Formats Supported Engines

Avro - Flat
- Hierarchical 1 2

- Blaze
- Spark

JSON - Flat 1

- Hierarchical 1 2
- Blaze
- Spark

ORC - Flat - Spark

Parquet - Flat
- Hierarchical 1 2

- Blaze
- Spark

1 To run on the Blaze engine, the complex file data object must be connected to a Data Processor transformation.
2 To run on the Spark engine, the complex file write operation must be enabled to project columns as complex data
type.

Complex File Targets on Hive
Use a PowerExchange for Hive connection to write data to a Hive data object.

The following table shows the complex files that a mapping can process within Hive storage in the Hadoop
environment:

Resource Format Supported Formats Supported Engines

Avro - Flat - Blaze

ORC - Flat
- Hierarchical1

- Blaze
- Spark

Parquet - Flat - Blaze

RCfile - Flat - Blaze

Sequence - Flat - Blaze

Text - Flat - Blaze

1 Hierarchical data is only supported on the Spark engine.

Flat File Targets on Hadoop
Consider the following rules and guidelines for flat file targets in the Hadoop environment:

• A mapping that runs in the Hadoop environment can write to a flat file target in the native environment.

• The Data Integration Service truncates the target files and reject files before writing the data. When you
use a flat file target, you cannot append output data to target files and reject files.

• The Data Integration Service can write to a file output for a flat file target. When you have a flat file target
in a mapping, you cannot write data to a command.

File Targets on Hadoop 115

Consider the following rules and guidelines for HDFS flat file targets:

• The Data Integration Service truncates the target files and reject files before writing the data. To append
output data to HDFS target files and reject files, choose to append data if the HDFS target exists.

Data is appended to reject files only if the reject file directory is on the Data Integration Service machine.
If the directory is in the Hadoop environment, rejected rows are overwritten.

• When you choose to append data if the HDFS target exists, the Data Integration Service appends the
mapping execution ID to the names of the target files and reject files.

• When you use a HDFS flat file target in a mapping, you must specify the full path that includes the output
file directory and file name. The Data Integration Service might generate multiple output files in the output
directory when you run the mapping in a Hadoop environment.

• An HDFS target cannot reside on a remote cluster. A remote cluster is a cluster that is remote from the
machine that the Hadoop connection references in the mapping.

Message Targets on Hadoop
You can write to Kafka messaging targets.

Apache Kafka is a publish-subscribe messaging system. Kafka runs as a cluster comprised of one or more
servers each of which is called a broker. Kafka brokers process data in the form of messages, publishes the
messages to a topic, subscribes the messages from a topic, and then writes it to the Kafka target.

You can use the Kafka data object write operation as a target. If you want to configure high availability for the
mapping, ensure that the Kafka cluster is highly available.

For more information about Kafka clusters, Kafka brokers, and partitions, see
https://kafka.apache.org/documentation.

Relational Targets on Hadoop
You can run mappings with relational targets on the Blaze engine.

The Data Integration Service does not run pre-mapping SQL commands or post-mapping SQL commands
against relational targets in a Hadoop environment. You cannot validate and run a mapping with PreSQL or
PostSQL properties for a relational target in a Hadoop environment.

The Data Integration Service can use multiple partitions to write to the following relational targets:

• IBM DB2

• Oracle

116 Chapter 5: Targets

https://kafka.apache.org/documentation

Hive Targets on Hadoop
A mapping run in the Hadoop environment can write to a Hive target. When you write to a Hive target,
consider the processing differences for functionality such as table types, DDL queries, and bucketing.

Hive Table Types

A Hive target can be an internal table or an external table. Internal Hive tables are managed by Hive and are
also known as managed tables. External Hive tables are tables managed by an external source such as HDFS,
Amazon S3, or Microsoft Azure Blob Storage.

When a mapping creates or replaces a Hive table, the type of table that the mapping creates depends on the
run-time engine that you use to run the mapping:

• On the Blaze engine, mappings create managed tables.

• On the Spark engine, mappings create external tables.

A mapping that runs on the Spark engine supports Hive tables in Apache Iceberg format on Cloudera Data
Platform (CDP).

DDL Queries

For mappings that run on the Spark engine or the Blaze engine, you can create a custom DDL query that
creates or replaces a Hive table at run time. However, with the Blaze engine, you cannot use a backtick (`)
character in the DDL query. The backtick character is required in HiveQL when you include special characters
or keywords in a query.

Bucketing

The Spark engine can write to bucketed Hive targets. Bucketing and partitioning of Hive tables can improve
performance by reducing data shuffling and sorting.

Hortonworks HDP 3.1

Hortonworks HDP 3.1 uses ACID-enabled ORC targets by default and uses ACID for all managed tables. If you
do not want to use ACID-enabled tables, use external tables.

PreSQL and PostSQL Commands
You can create SQL commands for Hive targets. You can execute the SQL commands to execute SQL
statements such as insert, update, and delete on the Hive target.

PreSQL is an SQL command that runs against the Hive target before the mapping reads from the source.
PostSQL is an SQL command that runs against the Hive target after the mapping writes to the target.

You can use PreSQL and PostSQL on the Spark engine. The Data Integration Service does not validate
PreSQL or PostSQL commands for a Hive target.

Pre-Mapping SQL Commands

PreSQL is an SQL command that runs against a Hive target before the mapping reads from a source.

For example, you might use a Hive target in a mapping. The data stored in the Hive target contains old
records from the previous day and you must delete the old records in the Hive target before you run the
mapping that writes new records to the target. To delete the old records in the Hive target, you can configure
a PreSQL command.

Post-Mapping SQL Commands

PostSQL is an SQL command that runs against a Hive target after the mapping writes to the target.

Hive Targets on Hadoop 117

For example, you might use a Hive target in a mapping that runs in a test environment. After the mapping
writes to the target, you might want to delete the records stored in the Hive target so that you can test the
same Hive target again in the next mapping run. To delete the records in the Hive target, you can configure a
PostSQL command.

Truncating Hive Targets
Truncate Hive target tables to delete the table contents. You can truncate internal and external Hive tables in
the Hadoop environment.

Truncate a Hive table in the Hive table properties. The following image shows the Hive table properties:

To truncate the entire Hive table, choose the option to truncate the target table.

To truncate only the partitions in the Hive table for which the transformation received input data, you must
choose to truncate the target table and to truncate the partition in the Hive target table.

Note: You must choose both "Truncate target table" and "Truncate target partition" options due to the
possibility that input data might affect all partitions and cause the whole table to be truncated.

You can design a mapping to truncate an internal or external Hive table that is bucketed and partitioned.

Consider the following restrictions when you truncate a Hive table in a mapping that runs in the Hadoop
environment:

• The Data Integration Service can truncate the partition in the Hive target in which the data is being
inserted.

• You must truncate the target table to overwrite data to a Hive table with Hive version 0.7. The Data
Integration Service ignores write, update override, delete, insert, and update strategy properties when it
writes data to a Hive target.

Updating Hive Targets with an Update Strategy Transformation
For mappings that run on the Spark engine, you can use Hive MERGE statements to perform Update Strategy
tasks. When a query uses a MERGE statement instead of INSERT, UPDATE or DELETE statements, processing
is more efficient.

To use Hive MERGE, select true for the option in the Advanced Properties of the Update Strategy
transformation.

The mapping ignores the Hive MERGE option and the Data Integration Service uses INSERT, UPDATE and
DELETE to perform the operation under the following scenarios:

• The mapping runs on the Blaze engine.

• Hive MERGE is restricted on the Hadoop distribution.

The mapping log contains results of the operation, including whether restrictions affected results.

When the update affects partitioning or bucketing columns, updates to the columns are omitted.

118 Chapter 5: Targets

Note: The Developer tool and the Data Integration Service do not validate against this restriction. If the
Update Strategy expression violates these restrictions, the mapping might produce unexpected results.

Rules and Guidelines for Hive Targets on the Blaze Engine
You can include Hive targets in an Informatica mapping that runs on the Blaze engine.

Consider the following rules and guidelines when you configure a Hive target in a mapping that runs on the
Blaze engine:

• Mappings that run on the Blaze engine can read and write to sorted targets.

• The Blaze engine supports Hive tables that are enabled for locking.

• The Blaze engine can create or replace Hive target tables.

• If you enable the Write transformation to maintain row order for a Hive target, the Blaze engine does not
maintain row order.

• A mapping that runs on the Blaze engine can have partitioned and bucketed Hive tables as targets.
However, if you append data to a bucketed table, the Blaze engine overwrites the data in the bucketed
target.

• When a mapping writes to a partitioned Hive target, the impersonation user who runs the mapping must
have the ALL privilege on the target table. The Blaze engine uses the 'MSCK REPAIR TABLE' command to
write to a partitioned Hive target and ALL privilege is required to run the command.

• To write to a Hive ACID table, the mapping must contain an Update Strategy transformation connected to
the Hive target. The update strategy expression must flag each row for insert.

• You cannot use update or delete update strategy properties.

RCFile as Hive Tables

The Blaze engine can read and write to RCFile as Hive tables. However, the Blaze engine supports only the
ColumnarSerDe. In Hortonworks, the default SerDe for an RCFile is LazyBinaryColumnarSerDe. To read and
write to an RCFile table, you must create the table by specifying the SerDe as
org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe.

For example:

CREATE TABLE TEST_RCFIle
(id int, name string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe' STORED AS RCFILE;

You can also set the default RCFile SerDe in Apache Ambari, Cloudera Manager, or Amazon EMR distribution.
Set the property hive.default.rcfile.serde to
org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe.

Compressed Hive Tables

The Blaze engine can read and write to Hive tables that are compressed. However, to read from a
compressed Hive table or write to a Hive table in compressed format, you must set the TBLPROPERTIES
clause as follows:

• When you create the table, set the table properties:
TBLPROPERTIES ('property_name'='property_value')

• If the table already exists, alter the table to set the table properties:
ALTER TABLE table_name SET TBLPROPERTIES ('property_name' = 'property_value');

The property name and value are not case sensitive. Depending on the file format, the table property can take
different values.

Hive Targets on Hadoop 119

The following table lists the property names and values for different file formats:

File Format Table Property Name Table Property Values

Avro avro.compression BZIP2, deflate, Snappy

ORC orc.compress Snappy, ZLIB

Parquet parquet.compression GZIP, Snappy

RCFile rcfile.compression Snappy, ZLIB

Sequence sequencefile.compression BZIP2, GZIP, LZ4, Snappy

Text text.compression BZIP2, GZIP, LZ4, Snappy

Note: The Blaze engine does not write data in the default ZLIB compressed format when it writes to a Hive
target stored as ORC format. To write in a compressed format, alter the table to set the TBLPROPERTIES
clause to use ZLIB or Snappy compression for the ORC file format.

The following text shows sample commands to create table and alter table:

• Create table:

create table CBO_3T_JOINS_CUSTOMER_HIVE_SEQ_GZIP
(C_CUSTKEY DECIMAL(38,0), C_NAME STRING,C_ADDRESS STRING,
C_PHONE STRING,C_ACCTBAL DECIMAL(10,2),
C_MKTSEGMENT VARCHAR(10),C_COMMENT vARCHAR(117))
partitioned by (C_NATIONKEY DECIMAL(38,0))
TBLPROPERTIES ('sequencefile.compression'='gzip')
stored as SEQUENCEFILE;

• Alter table:

ALTER TABLE table_name
SET TBLPROPERTIES (avro.compression'='BZIP2');

Sqoop Targets on Hadoop
Sqoop targets are valid in mappings in a Hadoop environment.

You can include a JDBC-compliant database as a Sqoop target in an Informatica mapping that runs in a
Hadoop environment:

For example, you can include the following targets in a Sqoop mapping:

• Aurora

• Greenplum

• IBM DB2

• IBM DB2 for z/OS

• Microsoft SQL Server

• Netezza

• Oracle

• Teradata

• Vertica

120 Chapter 5: Targets

You can insert data. You cannot update or delete data in a target. If you configure update arguments, Sqoop
ignores them.

Rules and Guidelines for Sqoop Targets
Consider the following rules and guidelines when you configure a Sqoop target in a mapping:

• If a column name or table name contains a special character, the Sqoop export process fails.

• If you configure the Maintain Row Order property for a Sqoop target, the Data Integration Service ignores
the property.

• If a mapping contains a Sqoop source, an Aggregator transformation, and a flat file target, you must
disable the Maintain Row Order property for the target. Otherwise, the mapping fails.

• When you run a Sqoop mapping on the Blaze engine, verify that you have not deleted any target port from
the mapping. Otherwise, the mapping fails.

• When you export null data to a Microsoft SQL Server column that is defined as not null, the Data
Integration Service fails the Sqoop mapping on the Blaze engine instead of rejecting and writing the null
data to the bad file.

• When you write data to an Oracle target through Sqoop and run the mapping on the Blaze or Spark engine,
Sqoop treats the owner name as case sensitive.

• A mapping that contains an Update Strategy transformation cannot use a Sqoop-enabled JDBC
connection to write to a target. To run the mapping, disable the Sqoop connector in the Write
transformation.

• Sqoop uses the values that you configure in the User Name and Password fields of the JDBC connection.
If you configure the --username or --password argument in a JDBC connection or mapping, Sqoop ignores
the arguments. If you create a password file to access a database, Sqoop ignores the password file.

• When you write data to a Vertica target through Sqoop, the --batch argument is required.

Sqoop Targets on Hadoop 121

C h a p t e r 6

Transformations
This chapter includes information about transformation support in the non-native environment.

Overview of Transformations
Due to the differences between native environments and non-native environments, only certain
transformations are valid or are valid with restrictions in a non-native environment. Some functions,
expressions, data types, and variable fields are not valid in a non-native environment.

Consider the following processing differences that can affect whether transformations and transformation
behavior are valid or are valid with restrictions in a non-native environment:

• Compute clusters use distributed processing and process data on different nodes. Each node does not
have access to the data that is being processed on other nodes. As a result, the run-time engine might not
be able to determine the order in which the data originated.

• Each of the run-time engines in the non-native environment can process mapping logic differently.

• Much of the processing behavior for batch mappings on the Spark engine also apply to streaming
mappings.

• You can access Delta Lake tables with any transformation that runs on Databricks Spark.

The following table lists transformations and support for different engines in a non-native environment:

Transformation Supported Engines

Transformations not listed in this table are supported only in the native environment.

Address Validator - Blaze
- Spark*
- Databricks Spark

Aggregator - Blaze
- Spark*
- Databricks Spark

Case Converter - Blaze
- Spark**
- Databricks Spark

122

Transformation Supported Engines

Classifier - Blaze
- Spark*
- Databricks Spark

Comparison - Blaze
- Spark**
- Databricks Spark

Consolidation - Blaze
- Spark**
- Databricks Spark

Data Masking - Blaze
- Spark*

Data Processor - Blaze
- Spark**

Decision - Blaze
- Spark**
- Databricks Spark

Expression - Blaze
- Spark*
- Databricks Spark

Filter - Blaze
- Spark*
- Databricks Spark

Java - Blaze
- Spark*

Joiner - Blaze
- Spark*
- Databricks Spark

Key Generator - Blaze
- Spark**
- Databricks Spark

Labeler - Blaze
- Spark**
- Databricks Spark

Lookup - Blaze
- Spark*
- Databricks Spark

Macro - Blaze
- Spark*
- Databricks Spark

Match - Blaze
- Spark**
- Databricks Spark

Overview of Transformations 123

Transformation Supported Engines

Merge - Blaze
- Spark**
- Databricks Spark

Normalizer - Blaze
- Spark*
- Databricks Spark

Parser - Blaze
- Spark*
- Databricks Spark

Python - Spark*
- Databricks Spark

Rank - Blaze
- Spark*
- Databricks Spark

Router - Blaze
- Spark*
- Databricks Spark

Rule Specification - Databricks Spark

Sequence Generator - Blaze
- Spark

Sorter - Blaze
- Spark*
- Databricks Spark

Standardizer - Blaze
- Spark*
- Databricks Spark

Union - Blaze
- Spark*
- Databricks Spark

Update Strategy - Blaze
- Spark
- Databricks Spark

Weighted Average - Blaze
- Spark**
- Databricks Spark

Window - Spark***

* Supported for both batch and streaming mappings.
** Supported with restrictions in batch mappings. Not supported in streaming mappings. For information about the Data
Processor transformation support on the Spark engine, see the KB article.
*** Supported for streaming mappings only. For more information, see the Data Engineering Streaming User Guide.

124 Chapter 6: Transformations

https://kb.informatica.com/faq/7/Pages/24/613978.aspx

Address Validator Transformation in a Non-native
Environment

The Address Validator transformation processing in a non-native environment depends on the engine that
runs the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported with restrictions.

Address Validator Transformation on the Blaze Engine
The Address Validator transformation is supported with the following restrictions:

• The Address Validator transformation cannot generate a certification report.

• The Address Validator transformation fails validation when it is configured to run in Interactive mode or
Suggestion List mode.

Address Validator Transformation on the Spark Engine
The Address Validator transformation is supported with the following restrictions:

• The Address Validator transformation cannot generate a certification report.

• The Address Validator transformation fails validation when it is configured to run in Interactive mode or
Suggestion List mode.

• A mapping that runs with an Address Validator transformation ignores the value on the Execution
Instances advanced property on the transformation.

Address Validator Transformation in a Streaming Mapping
Streaming mappings have the same processing rules as batch mappings on the Spark engine.

Address Validator Transformation on the Databricks Spark Engine
The Address Validator transformation is supported with the following restrictions:

• The Address Validator transformation cannot generate a certification report.

• The Address Validator transformation fails validation when it is configured to run in Interactive mode or
Suggestion List mode.

• A mapping that runs with an Address Validator transformation ignores the value on the Execution
Instances advanced property on the transformation.

Address Validator Transformation in a Non-native Environment 125

Aggregator Transformation in a Non-native
Environment

The Aggregator transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported with restrictions.

Aggregator Transformation on the Blaze Engine
Some processing rules for the Blaze engine differ from the processing rules for the Data Integration Service.

Mapping Validation

Mapping validation fails in the following situations:

• The transformation contains stateful variable ports.

• The transformation contains unsupported functions in an expression.

Aggregate Functions

If you use a port in an expression in the Aggregator transformation but you do not use the port within an
aggregate function, the run-time engine might use any row in the port to process the expression.

The row that the run-time engine uses might not be the last row in the port. Processing is distributed, and
thus the run-time engine might not be able to determine the last row in the port.

Data Cache Optimization

The data cache for the Aggregator transformation is optimized to use variable length to store binary and
string data types that pass through the Aggregator transformation. The optimization is enabled for record
sizes up to 8 MB. If the record size is greater than 8 MB, variable length optimization is disabled.

When variable length is used to store data that passes through the Aggregator transformation in the data
cache, the Aggregator transformation is optimized to use sorted input and a pass-through Sorter
transformation is inserted before the Aggregator transformation in the run-time mapping.

To view the Sorter transformation, view the optimized mapping or view the execution plan in the Blaze
validation environment.

During data cache optimization, the data cache and the index cache for the Aggregator transformation are
set to Auto. The sorter cache for the Sorter transformation is set to the same size as the data cache for the
Aggregator transformation. To configure the sorter cache, you must configure the size of the data cache for
the Aggregator transformation.

126 Chapter 6: Transformations

Aggregator Transformation on the Spark Engine
Some processing rules for the Spark engine differ from the processing rules for the Data Integration Service.

Mapping Validation

Mapping validation fails in the following situations:

• The transformation contains stateful variable ports.

• The transformation contains unsupported functions in an expression.

Aggregate Functions

If you use a port in an expression in the Aggregator transformation but you do not use the port within an
aggregate function, the run-time engine might use any row in the port to process the expression.

The row that the run-time engine uses might not be the last row in the port. Processing is distributed, and
thus the run-time engine might not be able to determine the last row in the port.

Data Cache Optimization

You cannot optimize the data cache for the transformation to store data using variable length.

Aggregator Transformation in a Streaming Mapping
Streaming mappings have additional processing rules that do not apply to batch mappings.

Mapping Validation

Mapping validation fails in the following situations:

• A streaming pipeline contains more than one Aggregator transformation.

• A streaming pipeline contains an Aggregator transformation and a Rank transformation.

• An Aggregator transformation is upstream from a Lookup transformation.

• An Aggregator transformation is in the same streaming pipeline as a passive Lookup transformation
configured with an inequality lookup condition.

Aggregator Transformation on the Databricks Spark Engine
Some processing rules for the Databricks Spark engine differ from the processing rules for the Data
Integration Service.

Mapping Validation

Mapping validation fails in the following situations:

• The transformation contains stateful variable ports.

• The transformation contains unsupported functions in an expression.

Aggregate Functions

If you use a port in an expression in the Aggregator transformation but you do not use the port within an
aggregate function, the run-time engine might use any row in the port to process the expression.

The row that the run-time engine uses might not be the last row in the port. Processing is distributed, and
thus the run-time engine might not be able to determine the last row in the port.

Data Cache Optimization

You cannot optimize the data cache for the transformation to store data using variable length.

Aggregator Transformation in a Non-native Environment 127

Case Converter Transformation in a Non-native
Environment

The Case Converter transformation processing in a non-native environment depends on the engine that runs
the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Supported without restrictions.

Classifier Transformation in a Non-native
Environment

The Classifier transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported without restrictions.

Comparison Transformation in a Non-native
Environment

The Comparison transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Supported without restrictions.

128 Chapter 6: Transformations

Consolidation Transformation in a Non-native
Environment

The Consolidation transformation processing in a non-native environment depends on the engine that runs
the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Supported with restrictions.

Consolidation Transformation on the Blaze Engine
The Consolidation transformation might process data differently in the native environment and in a non-
native environment.

The transformation is supported with the following restrictions:

• The transformation might process records in a different order in each environment.

• The transformation might identify a different record as the survivor in each environment.

Consolidation Transformation on the Spark Engine
The Consolidation transformation might process data differently in the native environment and in a non-
native environment.

The transformation is supported with the following restrictions:

• The transformation might process records in a different order in each environment.

• The transformation might identify a different record as the survivor in each environment.

Consolidation Transformation on the Databricks Spark Engine
The Consolidation transformation might process data differently in the native environment and in a non-
native environment.

The transformation is supported with the following restrictions:

• The transformation might process records in a different order in each environment.

• The transformation might identify a different record as the survivor in each environment.

Consolidation Transformation in a Non-native Environment 129

Data Masking Transformation in a Non-native
Environment

The Data Masking transformation processing in a non-native environment depends on the engine that runs
the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Not supported.

Data Masking Transformation on the Blaze Engine
The Data Masking transformation is supported with the following restrictions.

Mapping validation fails in the following situations:

• The transformation is configured for repeatable expression masking.

• The transformation is configured for unique repeatable substitution masking.

You can use the following masking techniques on this engine:

Credit Card

Email

Expression

IP Address

Key

Phone

Random

SIN

SSN

Tokenization

URL

Random Substitution

Repeatable Substitution

Dependent with Random Substitution

Dependent with Repeatable Substitution

Data Masking Transformation on the Spark Engine
The Data Masking transformation is supported with the following restrictions.

Mapping validation fails in the following situations:

• The transformation is configured for repeatable expression masking.

• The transformation is configured for unique repeatable substitution masking.

You can use the following masking techniques on this engine:

130 Chapter 6: Transformations

Credit Card

Email

Expression

IP Address

Key

Phone

Random

SIN

SSN

Tokenization

URL

Random Substitution

Repeatable Substitution

Dependent with Random Substitution

Dependent with Repeatable Substitution

To optimize performance of the Data Masking transformation, configure the following Spark engine
configuration properties in the Hadoop connection:

spark.executor.cores

Indicates the number of cores that each executor process uses to run tasklets on the Spark engine.

Set to: spark.executor.cores=1

spark.executor.instances

Indicates the number of instances that each executor process uses to run tasklets on the Spark engine.

Set to: spark.executor.instances=1

spark.executor.memory

Indicates the amount of memory that each executor process uses to run tasklets on the Spark engine.

Set to: spark.executor.memory=3G

Data Masking Transformation in a Streaming Mapping
Streaming mappings have the same processing rules as batch mappings on the Spark engine.

Data Processor Transformation in a Non-native
Environment

The Data Processor transformation processing in a non-native environment depends on the engine that runs
the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

Data Processor Transformation in a Non-native Environment 131

• Spark engine. Supported with restrictions in batch mappings. Not supported in streaming mappings.*

• Databricks Spark engine. Not supported.

* For information about the Data Processor transformation support on the Spark engine, see the KB article.

Decision Transformation in a Non-native
Environment

The Decision transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported with restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Supported with restrictions.

Decision Transformation on the Spark Engine
The Decision transformation is supported with the following restrictions:

• The transformation properties must specify that the transformation is partitionable.

Decision Transformation on the Databricks Spark Engine
The Decision transformation is supported with the following restrictions:

• The transformation properties must specify that the transformation is partitionable.

Expression Transformation in a Non-native
Environment

The Expression transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported with restrictions.

132 Chapter 6: Transformations

https://kb.informatica.com/faq/7/Pages/24/613978.aspx

Expression Transformation on the Blaze Engine
Mapping validation fails in the following situations:

• The transformation contains stateful variable ports.

• The transformation contains unsupported functions in an expression.

An Expression transformation with a user-defined function returns a null value for rows that have an
exception error in the function.

Expression Transformation on the Spark Engine
Mapping validation fails in the following situations:

• The transformation contains stateful variable ports.

• The transformation contains unsupported functions in an expression.

Note: If an expression results in numerical errors, such as division by zero or SQRT of a negative number, it
returns a null value and rows do not appear in the output. In the native environment, the expression returns an
infinite or an NaN value.

Expression Transformation in a Streaming Mapping
Streaming mappings have additional processing rules that do not apply to batch mappings.

You cannot use the EXTRACT_STRUCT function for streaming mappings.

Expression Transformation on the Databricks Spark Engine
Mapping validation fails in the following situations:

• The transformation contains stateful variable ports.

• The transformation contains unsupported functions in an expression.

Note: If an expression results in numerical errors, such as division by zero or SQRT of a negative number, it
returns a null value and rows do not appear in the output. In the native environment, the expression returns an
infinite or an NaN value.

Filter Transformation in a Non-native Environment
The Filter transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported without restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported without restrictions.

Filter Transformation in a Non-native Environment 133

Filter Transformation on the Blaze Engine
When a mapping contains a Filter transformation on a partitioned column of a Hive source, the Blaze engine
can read only the partitions that contain data that satisfies the filter condition. To push the filter to the Hive
source, configure the Filter transformation to be the next transformation in the mapping after the source.

Hierarchical to Relational Transformation in a Non-
native Environment

The Hierarchical to Relational transformation processing in a non-native environment depends on the engine
that runs the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions.

• Databricks Spark engine. Not supported.

Java Transformation in a Non-native Environment
The Java transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Not supported.

Java Transformation on the Blaze Engine
To use external .jar files in a Java transformation, perform the following steps:

1. Copy external .jar files to the Informatica installation directory in the Data Integration Service machine at
the following location: <Informatic installation directory>/services/shared/jars. Then recycle
the Data Integration Service.

2. On the machine that hosts the Developer tool where you develop and run the mapping that contains the
Java transformation:

a. Copy external .jar files to a directory on the local machine.

b. Edit the Java transformation to include an import statement pointing to the local .jar files.

c. Update the classpath in the Java transformation.

d. Compile the transformation.

Some processing rules for the Blaze engine differ from the processing rules for the Data Integration Service.

134 Chapter 6: Transformations

Partitioning
• The following restrictions apply to the Transformation Scope property:

- The value Transaction for transformation scope is not valid.

- If you enable an input port for partition key, the transformation scope must be set to All Input.

- Stateless must be enabled if the transformation scope is row.

Java Transformation on the Spark Engine
Some processing rules for the Spark engine differ from the processing rules for the Data Integration Service.

General Restrictions

The Java transformation is supported with the following restrictions on the Spark engine:

• The Java code in the transformation cannot write output to standard output when you push
transformation logic to Hadoop. The Java code can write output to standard error which appears in the
log files.

• For date/time values, the Spark engine supports the precision of up to microseconds. If a date/time value
contains nanoseconds, the trailing digits are truncated.

Partitioning

The Java transformation has the following restrictions when used with partitioning:

• The Partitionable property must be enabled in the Java transformation. The transformation cannot run in
one partition.

• The following restrictions apply to the Transformation Scope property:

- The value Transaction for transformation scope is not valid.

- If you enable an input port for partition key, the transformation scope must be set to All Input.

- Stateless must be enabled if the transformation scope is row.

Mapping Validation

Mapping validation fails in the following situations:

• You reference an unconnected Lookup transformation from an expression within a Java transformation.

• You select a port of a complex data type as the partition or sort key.

• You enable nanosecond processing in date/time and the Java transformation contains a port of complex
data type with an element of a date/time type. For example, a port of type array<data/time> is not valid if
you enable nanosecond processing in date/time.

The mapping fails in the following situations:

• The Java transformation and the mapping use different precision modes when the Java transformation
contains a decimal port or a complex port with an element of a decimal data type.

Even if high precision is enabled in the mapping, the mapping processes data in low-precision mode in
some situations, such as when the mapping contains a complex port with an element of a decimal data
type, or the mapping is a streaming mapping. If high precision is enabled in both the Java transformation
and the mapping, but the mapping processes data in low-precision mode, the mapping fails.

• Binary null characters are passed to an output port. To avoid a mapping failure, you can add code to the
Java transformation that replaces the binary null characters with an alternative character before writing
the data to the output ports.

Java Transformation in a Non-native Environment 135

Using External .jar Files

To use external .jar files in a Java transformation, perform the following steps:

1. Copy external .jar files to the Informatica installation directory in the Data Integration Service machine at
the following location:
<Informatic installation directory>/services/shared/jars

2. Recycle the Data Integration Service.

3. On the machine that hosts the Developer tool where you develop and run the mapping that contains the
Java transformation:

a. Copy external .jar files to a directory on the local machine.

b. Edit the Java transformation to include an import statement pointing to the local .jar files.

c. Update the classpath in the Java transformation.

d. Compile the transformation.

Java Transformation in a Streaming Mapping
Streaming mappings have additional processing rules that do not apply to batch mappings.

The Data Integration Service ignores the following properties:

• Partitionable. The Data Integration Service ignores the property and can process the transformation with
multiple threads.

• Stateless. The Data Integration Service ignores the property and maintains the row order of the input data.

Joiner Transformation in a Non-native Environment
The Joiner transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported with restrictions.

Joiner Transformation on the Blaze Engine
Mapping validation fails in the following situations:

• The transformation contains an inequality join and map-side join is disabled.

• The Joiner transformation expression references an unconnected Lookup transformation.

Map-side join is disabled when the Joiner transformation is configured for detail outer join or full outer join.

Joiner Transformation on the Spark Engine
Mapping validation fails in the following situation:

• The join condition is of binary data type or contains binary expressions.

136 Chapter 6: Transformations

Joiner Transformation in a Streaming Mapping
Streaming mappings have additional processing rules that do not apply to batch mappings.

Mapping Validation

Mapping validation fails in the following situations:

• A Joiner transformation is downstream from an Aggregator transformation.

• A Joiner transformation is downstream from a Rank transformation.

• A streaming pipeline contains more than one Joiner transformation.

• A Joiner transformation joins data from streaming and non-streaming pipelines.

General Guidelines

To specify a join condition, select the TIME_RANGE function from the Advanced condition type on the Join
tab and enter a join condition expression. The TIME_RANGE function determines the time range for the
streaming events to be joined.

Joiner Transformation on the Databricks Spark Engine
Mapping validation fails in the following situation:

• The join condition is of binary data type or contains binary expressions.

Key Generator Transformation in a Non-native
Environment

The Key Generator transformation processing in a non-native environment depends on the engine that runs
the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Supported with restrictions.

Key Generator Transformation on the Blaze Engine
The Key Generator transformation is supported with the following restriction:

• When you run a mapping with a Key Generator transformation on more than one node, the sequence
generation option on the transformation may not produce unique ID values.

Key Generator Transformation on the Spark Engine
The Key Generator transformation is supported with the following restriction:

• When you run a mapping with a Key Generator transformation on more than one node, the sequence
generation option on the transformation may not produce unique ID values.

Key Generator Transformation in a Non-native Environment 137

Key Generator Transformation on the Databricks Spark Engine
The Key Generator transformation is supported with the following restriction:

• When you run a mapping with a Key Generator transformation on more than one node, the sequence
generation option on the transformation may not produce unique ID values.

Labeler Transformation in a Non-native Environment
The Labeler transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Supported without restrictions.

Lookup Transformation in a Non-native Environment
The Lookup transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported with restrictions.

Lookup Transformation on the Blaze Engine
Some processing rules for the Blaze engine differ from the processing rules for the Data Integration Service.

Multiple Matches

The Lookup transformation finds values based on the condition you configure in the transformation. Choose
how to handle multiple matches in the lookup source.

Return First Row; Return Last Row

The transformation returns the first matching result or the last matching result.

The Data Integration Service orders results to identify the first and last row. The following rules
determine result order:

• Ordering depends on the lookup ports present in the lookup condition and lookup output ports.

• Numerical value sorting is by ascending order.

• String value sorting is lexographical.

138 Chapter 6: Transformations

• Date value sorting is by earliest date first.

• When mappings contain a non-equijoin(<=,>=,<,>,!=) comparison and some rows contain NULL values,
results might be different depending on the run-time engine:

- On the Spark engine, NULL results are treated as TRUE. For more information about how Spark
processes null values, see the Apache documentation: https://spark.apache.org/docs/3.0.0-
preview/sql-ref-null-semantics.html#comp-operators

- On the Blaze or native engines, NULL results are treated as FALSE.

Return Any Row

The transformation returns any of the rows that match the lookup condition. The transformation creates
an index based on the key ports instead of all Lookup transformation ports. When you choose this
option, performance can improve because the process of indexing rows is simpler.

Return All Rows

The Lookup transformation returns all rows that match the lookup condition.

Report Error

When the Lookup transformation uses a static cache or no cache, the Data Integration Service marks the
row as an error. The Lookup transformation writes the row to the session log by default, and increases
the error count by one.

When the Lookup transformation has a dynamic cache, the Data Integration Service fails the session
when it encounters multiple matches. The session fails while the Data Integration Service is caching the
lookup table or looking up the duplicate key values.

Also, if you configure the Lookup transformation to output old values on updates, the Lookup
transformation returns an error when it encounters multiple matches. The transformation creates an
index based on the key ports instead of all Lookup transformation ports.

Rules and Guidelines

Mapping validation fails in the following situations:

• Case sensitivity is disabled.

• The lookup condition contains binary data type.

• The cache is configured to be shared, named, persistent, dynamic, or uncached. The cache must be a
static cache.

• The lookup condition uses a field with a complex data type.

If you add a data object that uses Sqoop as a Lookup transformation in a mapping, the Data Integration
Service does not run the mapping through Sqoop. It runs the mapping through JDBC.

Lookup Transformation on the Spark Engine
Some processing rules for the Spark engine differ from the processing rules for the Data Integration Service.

Complex Data Types

You can use a port with a complex data type as the input port or lookup port in the lookup condition. To use a
port with a complex data type in the lookup condition, specify the condition by parameter.

Multiple Matches

The Lookup transformation finds values based on the condition you configure in the transformation. Choose
how to handle multiple matches in the lookup source.

Lookup Transformation in a Non-native Environment 139

https://spark.apache.org/docs/3.0.0-preview/sql-ref-null-semantics.html#comp-operators
https://spark.apache.org/docs/3.0.0-preview/sql-ref-null-semantics.html#comp-operators

Return First Row; Return Last Row

The transformation returns the first matching result or the last matching result.

The Data Integration Service orders results to identify the first and last row. The following rules
determine result order:

• Ordering depends on the lookup ports present in the lookup condition and lookup output ports.

• Numerical value sorting is by ascending order.

• String value sorting is lexographical.

• Date value sorting is by earliest date first.

• When mappings contain a non-equijoin(<=,>=,<,>,!=) comparison and some rows contain NULL values,
results might be different depending on the run-time engine:

- On the Spark engine, NULL results are treated as TRUE. For more information about how Spark
processes null values, see the Apache documentation: https://spark.apache.org/docs/3.0.0-
preview/sql-ref-null-semantics.html#comp-operators

- On the Blaze or native engines, NULL results are treated as FALSE.

Return Any Row

The transformation returns any of the rows that match the lookup condition. The transformation creates
an index based on the key ports instead of all Lookup transformation ports. When you choose this
option, performance can improve because the process of indexing rows is simpler.

Return All Rows

The Lookup transformation returns all rows that match the lookup condition.

Report Error

When the Lookup transformation uses a static cache or no cache, the Data Integration Service marks the
row as an error. The Lookup transformation writes the row to the session log by default, and increases
the error count by one.

When the Lookup transformation has a dynamic cache, the Data Integration Service fails the session
when it encounters multiple matches. The session fails while the Data Integration Service is caching the
lookup table or looking up the duplicate key values.

Also, if you configure the Lookup transformation to output old values on updates, the Lookup
transformation returns an error when it encounters multiple matches. The transformation creates an
index based on the key ports instead of all Lookup transformation ports.

Rules and Guidelines

Mapping validation fails in the following situations:

• Case sensitivity is disabled.

• The lookup condition contains binary data type.

• The cache is configured to be shared, named, persistent, dynamic, or uncached. The cache must be a
static cache.

The mapping fails in the following situation:

• The transformation is unconnected and used with a Joiner or Java transformation.

Note: If an HBase lookup does not result in a match, it generates a row with null values for all columns. You
can add a Filter transformation after the Lookup transformation to filter out null rows.

140 Chapter 6: Transformations

https://spark.apache.org/docs/3.0.0-preview/sql-ref-null-semantics.html#comp-operators
https://spark.apache.org/docs/3.0.0-preview/sql-ref-null-semantics.html#comp-operators

Lookup Transformation in a Streaming Mapping
Streaming mappings have additional processing rules that do not apply to batch mappings.

Mapping Validation

Mapping validation fails in the following situations:

• The lookup is a data object.

• An Aggregator transformation is in the same streaming pipeline as a passive Lookup transformation
configured with an inequality lookup condition.

• A Rank transformation is in the same streaming pipeline as a passive Lookup transformation configured
with an inequality lookup condition.

• A pipeline contains more than one passive Lookup transformation configured with an inequality condition.

The mapping fails in the following situations:

• The transformation is unconnected.

General Guidelines

Consider the following general guidelines:

• Using a float data type to look up data can return unexpected results.

• Use a Lookup transformation to look up data in a flat file, HDFS, Hive, relational, JDBC V2, and HBase
data.

• To avoid cross join of DataFrames, configure the Lookup transformation to ignore null values that match.

HBase Lookups

To use a Lookup transformation on uncached HBase tables, perform the following steps:

1. Create an HBase data object. When you add an HBase table as the resource for a HBase data object,
include the ROW ID column.

2. Create a HBase read data operation and import it into the streaming mapping.

3. When you import the data operation to the mapping, select the Lookup option.

4. On the Lookup tab, configure the following options:

• Lookup column. Specify an equality condition on ROW ID

• Operator. Specify =

5. Verify that format for any date value in the HBase tables is of a valid Java date format. Specify this
format in the Date Time Format property of the Advanced Properties tab of the data object read
operation.

Note: If an HBase lookup does not result in a match, it generates a row with null values for all columns. You
can add a Filter transformation after the Lookup transformation to filter out null rows.

Mapping validation fails in the following situations:

• The condition does not contain a ROW ID.

• The transformation contains an inequality condition.

• The transformation contains multiple conditions.

• An input column is of a date type.

JDBC V2 Lookups

You can add a JDBC V2 data object read operation as a lookup in a streaming mapping. You can run
streaming mappings with JDBC V2 lookup in Azure Databricks service in Microsoft Azure cloud services.

Lookup Transformation in a Non-native Environment 141

Lookup Transformation on the Databricks Spark Engine
Some processing rules for the Databricks Spark engine differ from the processing rules for the Data
Integration Service.

Multiple Matches

When you choose to return the first, last, or any value on multiple matches, the Lookup transformation
returns any value.

If you configure the transformation to report an error on multiple matches, the Databricks Spark engine drops
the duplicate rows and does not include the rows in the logs.

Note: If an HBase lookup does not result in a match, it generates a row with null values for all columns. You
can add a Filter transformation after the Lookup transformation to filter out null rows.

Mapping Validation

Mapping validation fails in the following situations:

• Case sensitivity is disabled.

• The lookup condition contains binary data type.

• The cache is configured to be shared, named, persistent, dynamic, or uncached. The cache must be a
static cache.

• The lookup condition uses a field with a complex data type.

• The lookup source is not Microsoft Azure SQL Data Warehouse.

Note: If an HBase lookup does not result in a match, it generates a row with null values for all columns. You
can add a Filter transformation after the Lookup transformation to filter out null rows.

Macro Transformation in a Non-native Environment
The Macro transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions for batch and streaming.

• Databricks spark engine. Supported without restrictions.

Match Transformation in a Non-native Environment
The Match transformation processing in the non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch mappings. Not supported in streaming mappings.

142 Chapter 6: Transformations

• Databricks Spark engine. Supported with restrictions.

Match Transformation on the Blaze Engine
The Match transformation is supported with the following restrictions:

• A Match transformation generates cluster ID values differently in native and non-native environments. In a
non-native environment, the transformation appends a group ID value to the cluster ID.

• Mapping validation fails when the Match transformation is configured to write identity index data to
database tables.

Match Transformation on the Spark Engine
The Match transformation is supported with the following restrictions:

• A Match transformation generates cluster ID values differently in native and non-native environments. In a
non-native environment, the transformation appends a group ID value to the cluster ID.

• Mapping validation fails when the Match transformation is configured to write identity index data to
database tables.

Match Transformation on the Databricks Spark Engine
The Match transformation is supported with the following restrictions:

• A Match transformation generates cluster ID values differently in native and non-native environments. In a
non-native environment, the transformation appends a group ID value to the cluster ID.

• Mapping validation fails when the Match transformation is configured to write identity index data to
database tables.

Merge Transformation in a Non-native Environment
The Merge transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Supported without restrictions.

Merge Transformation in a Non-native Environment 143

Normalizer Transformation in a Non-native
Environment

The Normalizer transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported without restrictions.

Parser Transformation in a Non-native Environment
The Parser transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported without restrictions.

Rank Transformation in a Non-native Environment
The Rank transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported with restrictions.

Rank Transformation on the Blaze Engine
Some processing rules for the Blaze engine differ from the processing rules for the Data Integration Service.

The data cache for the Rank transformation is optimized to use variable length to store binary and string data
types that pass through the Rank transformation. The optimization is enabled for record sizes up to 8 MB. If
the record size is greater than 8 MB, variable length optimization is disabled.

When variable length is used to store data that passes through the Rank transformation in the data cache, the
Rank transformation is optimized to use sorted input and a pass-through Sorter transformation is inserted
before the Rank transformation in the run-time mapping. To view the Sorter transformation, view the
optimized mapping or view the execution plan in the Blaze validation environment.

144 Chapter 6: Transformations

During data cache optimization, the data cache and the index cache for the Rank transformation are set to
Auto. The sorter cache for the Sorter transformation is set to the same size as the data cache for the Rank
transformation. To configure the sorter cache, you must configure the size of the data cache for the Rank
transformation.

Rank Transformation on the Spark Engine
Some processing rules for the Spark engine differ from the processing rules for the Data Integration Service.

Mapping Validation

Mapping validation fails in the following situations:

• Case sensitivity is disabled.

Data Cache Optimization

You cannot optimize the data cache for the transformation to store data using variable length.

Rank Transformation in a Streaming Mapping
Streaming mappings have additional processing rules that do not apply to batch mappings.

Mapping Validation

Mapping validation fails in the following situations:

• A Rank transformation is in the same streaming pipeline as a passive Lookup transformation configured
with an inequality lookup condition.

• A Rank transformation is upstream from a Joiner transformation.

• A streaming pipeline contains more than one Rank transformation.

• A streaming pipeline contains an Aggregator transformation and a Rank transformation.

Rank Transformation on the Databricks Spark Engine
Some processing rules for the Databricks Spark engine differ from the processing rules for the Data
Integration Service.

Mapping Validation

Mapping validation fails in the following situations:

• Case sensitivity is disabled.

Data Cache Optimization

You cannot optimize the data cache for the transformation to store data using variable length.

Rank Transformation in a Non-native Environment 145

Relational to Hierarchical Transformation in a Non-
native Environment

The Relational to Hierarchical transformation processing in a non-native environment depends on the engine
that runs the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions.

• Databricks Spark engine. Not supported.

Router Transformation in a Non-native Environment
The Router transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported without restrictions.

Rule Specification Transformation in a Non-native
Environment

A rule specification is a repository object that a user creates in the Analyst tool. You can add a rule
specification to a mapping in the same manner as you add a transformation to a mapping. Rule specification
processing in a non-native environment depends on the engine that runs the object.

Consider the support for the following non-native run-time engines:

• Blaze engine. Not supported.

• Spark engine. Not supported.

• Databricks Spark engine. Supported without restrictions.

146 Chapter 6: Transformations

Sequence Generator Transformation in a Non-native
Environment

The Sequence Generator transformation processing in a non-native environment depends on the engine that
runs the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Supported when the domain and the Databricks cluster reside in the same virtual
network in AWS or Azure Databricks environments.

Sequence Generator Transformation on the Blaze Engine
A mapping with a Sequence Generator transformation consumes significant resources when the following
conditions are true:

• You configure the transformation to maintain row order.

• The mapping runs in a single partition.

Sequence Generator Transformation on the Spark Engine
The Sequence Generator transformation does not maintain row order in output data. If you enable the
Maintain Row Order property on the transformation, the Data Integration Service ignores the property.

Note: Spark sequence generator with maintain row order works fine if the data set is relatively small and can
run or forced to run on a single partition.

Sequence Generator Transformation on the Databricks Spark
Engine

The Databricks Spark engine can process the Sequence Generator transformation on Amazon Web Services
or Azure Databricks clusters.

You can include a Sequence Generator transformation in a mapping that runs on Databricks Spark when the
Databricks cluster and the Informatica domain reside in the same virtual network.

Sorter Transformation in a Non-native Environment
The Sorter transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported with restrictions.

Sequence Generator Transformation in a Non-native Environment 147

Sorter Transformation on the Blaze Engine
Some processing rules for the Blaze engine differ from the processing rules for the Data Integration Service.

Mapping Validation

Mapping validation fails in the following situations:

• The target is configured to maintain row order and the Sorter transformation is not connected directly to a
flat file target.

Parallel Sorting

The Data Integration Service enables parallel sorting with the following restrictions:

• The mapping does not include another transformation between the Sorter transformation and the target.

• The data type of the sort keys does not change between the Sorter transformation and the target.

• Each sort key in the Sorter transformation must be linked to a column in the target.

Global Sort

The Blaze engine can perform global sorts in the following situations:

• The Sorter transformation is connected directly to flat file targets.

• The target is configured to maintain row order.

• The sort key is not a binary data type.

If any of the conditions are not true, the Blaze engine performs a local sort.

Data Cache Optimization

If a Sorter transformation is inserted before an Aggregator or Rank transformation to optimize the
Aggregator or Rank data cache, the size of the sorter cache is the same size as the data cache for the
Aggregator or Rank transformation. To configure the sorter cache, you must configure the size of the data
cache for the Aggregator or Rank transformation.

Sorter Transformation on the Spark Engine
Some processing rules for the Spark engine differ from the processing rules for the Data Integration Service.

Mapping Validation

Mapping validation fails when case sensitivity is disabled.

The Data Integration Service logs a warning and ignores the Sorter transformation in the following situations:

• There is a type mismatch in between the target and the Sorter transformation sort keys.

• The transformation contains sort keys that are not connected to the target.

• The Write transformation is not configured to maintain row order.

• The transformation is not directly upstream from the Write transformation.

Null Values

The Data Integration Service treats null values as low even if you configure the transformation to treat null
values as high.

Data Cache Optimization

You cannot optimize the sorter cache to store data using variable length.

148 Chapter 6: Transformations

Sorter Transformation in a Streaming Mapping
Streaming mappings have additional processing rules that do not apply to batch mappings.

Mapping Validation

Mapping validation fails in the following situation:

• The Sorter transformation in a streaming mapping does not have an upstream Aggregator transformation.

General Guidelines

Consider the following general guidelines:

• The mapping runs in complete output mode if it contains a Sorter transformation.

• To maintain global sort order, ensure that the target is single-partitioned. Source can be single- or multi-
partitioned.

Sorter Transformation on the Databricks Spark Engine
Some processing rules for the Databricks Spark engine differ from the processing rules for the Data
Integration Service.

Mapping Validation

Mapping validation fails when case sensitivity is disabled.

The Data Integration Service logs a warning and ignores the Sorter transformation in the following situations:

• There is a type mismatch in between the target and the Sorter transformation sort keys.

• The transformation contains sort keys that are not connected to the target.

• The Write transformation is not configured to maintain row order.

• The transformation is not directly upstream from the Write transformation.

Null Values

The Data Integration Service treats null values as low even if you configure the transformation to treat null
values as high.

Data Cache Optimization

You cannot optimize the sorter cache to store data using variable length.

Parallel Sorting

The Data Integration Service enables parallel sorting with the following restrictions:

• The mapping does not include another transformation between the Sorter transformation and the target.

• The data type of the sort keys does not change between the Sorter transformation and the target.

• Each sort key in the Sorter transformation must be linked to a column in the target.

Sorter Transformation in a Non-native Environment 149

Standardizer Transformation in a Non-native
Environment

The Standardizer transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported without restrictions.

Union Transformation in a Non-native Environment
The Union transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch mappings. Supported with restrictions in streaming
mappings.

• Databricks Spark engine. Supported without restrictions.

Union Transformation in a Streaming Mapping
Streaming mappings have mapping validation restrictions.

Mapping Validation

Mapping validation fails in the following situation:

• The transformation is configured to merge data from streaming and non-streaming pipelines.

Update Strategy Transformation in a Non-native
Environment

The Update Strategy transformation processing in a non-native environment depends on the engine that runs
the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Supported with restrictions.

150 Chapter 6: Transformations

Update Strategy Transformation on the Blaze Engine
Some processing rules for the Blaze engine differ from the processing rules for the Data Integration Service.

General Restrictions

You can use the Update Strategy transformation on the Hadoop distributions that support Hive ACID.

If the Update Strategy transformation receives multiple update rows for the same primary key value, the
transformation selects one random row to update the target.

If multiple Update Strategy transformations write to different instances of the same target, the target data
might be unpredictable.

The Blaze engine executes operations in the following order: deletes, updates, inserts. It does not process
rows in the same order as the Update Strategy transformation receives them.
Hive targets always perform Update as Update operations. Hive targets do not support Update Else Insert or
Update as Insert.

Mapping Validation and Compile Validation

Mapping validation fails in the following situations:

• The Update Strategy transformation is connected to more than one target.

• The Update Strategy transformation is not located immediately before the target.

• The Update Strategy target is not a Hive target.

• The Update Strategy transformation target is an external ACID table.

• The target does not contain a primary key.

• The Hive target property to truncate the target table at run time is enabled.

• The Hive target property to create or replace the target table at run time is enabled.

The mapping fails in the following situation:

• The target is not ORC bucketed.

• The Hive target is modified to have fewer rows than the actual table.

Compile validation errors occur and the mapping execution stops in the following situations:

• The target table is not enabled for transactions.

• The Hive version is earlier than 0.14.

Using Hive Target Tables

To use a Hive target table with an Update Strategy transformation, you must create the Hive target table with
the following clause in the Hive Data Definition Language: TBLPROPERTIES ("transactional"="true").

To use an Update Strategy transformation with a Hive target, verify that the following properties are
configured in the hive-site.xml configuration set associated with the Hadoop connection:

hive.support.concurrency true
hive.enforce.bucketing true
hive.exec.dynamic.partition.mode nonstrict
hive.txn.manager org.apache.hadoop.hive.ql.lockmgr.DbTxnManager
hive.compactor.initiator.on true
hive.compactor.worker.threads 1

Update Strategy Transformation on the Spark Engine
Some processing rules for the Spark engine differ from the processing rules for the Data Integration Service.

Update Strategy Transformation in a Non-native Environment 151

General Restrictions for Hive Targets

You can use the Update Strategy transformation on the Hadoop distributions that support Hive ACID.

You can also use the Update Strategy transformation to write mapping results to JDBC-compliant relational
targets.

The Update Strategy transformation does not forward rejected rows to the next transformation when the
target is a Hive table or JDBC-compliant table.

If the Update Strategy transformation receives multiple update rows for the same primary key value, the
transformation selects one random row to update the target.

If multiple Update Strategy transformations write to different instances of the same target, the target data
might be unpredictable.

If the mapping runs on the Spark engine, you can choose the Use Hive Merge option. The option has the
following restrictions:

• A single row for delete or update cannot match multiple rows in the target. When the mapping violates
this restriction, the mapping fails with a runtime error.

• If you configure the Update Strategy expression to update partitioning or bucketing columns, the mapping
ignores the Hive MERGE option and does not update the columns.

Note: The Developer tool and the Data Integration Service do not validate against these restrictions. If the
expression or the mapping violates these restrictions, the mapping might run, but the results will not be as
expected.

Hive targets always perform Update as Update operations. Hive targets do not support Update Else Insert or
Update as Insert.

Using Hierarchical Data in Update Strategy Expressions

You can configure the expression to use the primitive types in a complex data field.

For example, you have a nested array of struct data types defined by the following statement:

addresses array<struct<city:varchar(15), apartment:smallint, pincode:int>>

You can use the city column in the update strategy expression since it is a primitive type using the following
expression:

IIF((addresses[0].city = ’NEW YORK’), DD_INSERT, DD_UPDATE)

Mapping Validation

Update Strategy transformation output fields must exactly match the target input fields.

Mapping validation fails in the following situations.

• The Update Strategy transformation is connected to more than one target.

• The Update Strategy transformation is not located immediately before the target.

• The Update Strategy transformation target is an external ACID table.

• The target does not contain a connected primary key.

• The property to enable truncation of the target table at run time is selected.

• One of the following target strategies for the target table at run time is selected:

- Create or replace the target table

- ApplyNewColumns

152 Chapter 6: Transformations

- ApplyNewSchema

- Fail

The mapping fails in the following situations when the target is a Hive target:

• The target table is not enabled for transactions.

• The target is not ORC bucketed.

Using Hive Target Tables

To use a Hive target table with an Update Strategy transformation, you must create the Hive target table with
the following clause in the Hive Data Definition Language: TBLPROPERTIES ("transactional"="true").

To use an Update Strategy transformation with a Hive target, verify that the following properties are
configured in the hive-site.xml configuration set associated with the Hadoop connection:

hive.support.concurrency true
hive.enforce.bucketing true
hive.exec.dynamic.partition.mode nonstrict
hive.txn.manager org.apache.hadoop.hive.ql.lockmgr.DbTxnManager
hive.compactor.initiator.on true
hive.compactor.worker.threads 1

Update Strategy Transformation on the Databricks Spark Engine
You can use the Update Strategy transformation to perform INSERT, UPDATE, and other operations. You can
also perform INSERT and UPDATE operations in select Delta Lake columns.

General Restrictions

You can only use the Update Strategy transformation on the Databricks Spark Engine when you use a Delta
Lake table target.

The Update Strategy transformation is supported only on Databricks distributions that support Delta ACID.

Mapping Validation

Mapping validation fails in the following situations.

• The Update Strategy transformation is connected to more than one target.

• The Update Strategy transformation is not located immediately before the target.

• The Update Strategy transformation target is an external ACID table.

• The target does not contain a connected primary key.

• The property to enable truncation of the target table at run time is selected.

• One of the following target strategies for the target table at run time is selected:

- Create or replace the target table

- ApplyNewColumns

- ApplyNewSchema

- Fail

Update Strategy Transformation in a Non-native Environment 153

Weighted Average Transformation in a Non-native
Environment

The Weighted Average transformation processing in a non-native environment depends on the engine that
runs the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Supported without restrictions.

154 Chapter 6: Transformations

C h a p t e r 7

Python Transformation
This chapter includes the following topics:

• Python Transformation Overview, 155

• Python Transformation Ports, 157

• Python Transformation Advanced Properties, 157

• Python Transformation Components, 158

• Rules and Guidelines for the Python Transformation, 160

• Creating a Python Transformation, 160

• Example: Add an ID Column to Nonpartitioned Data, 162

• Example: Use Partitions to Find the Highest Salary, 163

• Use Case: Operationalize a Pre-Trained Model, 165

Python Transformation Overview
Use the Python transformation to execute Python code in a mapping that runs on the Spark or Databricks
Spark engine.

The Python transformation provides an interface to define transformation functionality using Python code.

Python is a language that uses simple syntax, dynamic typing, and dynamic binding, making Python an ideal
choice to increase productivity or to participate in rapid application development. When you use your Python
code in a data engineering mapping, the Python code is embedded into the generated Scala code that the
Spark or Databricks Spark engine runs to process large, diverse, and fast-changing data sets.

You can also use the Python transformation for machine learning. In the transformation, you can specify a
resource file that contains a pre-trained model and load the pre-trained model in the Python code. For
example, you can load a pre-trained model to classify input data or to create predictions.

Before you can use the Python transformation, configure the corresponding Spark advanced properties in the
Hadoop connection or Databricks connection properties. Then, ensure that the worker nodes on the cluster
contain an installation of Python.

For more information about installing Python, see the Data Engineering Integration Guide.

Note: The Data Integration Service and the Blaze engine do not support the Python transformation.

155

Active and Passive Python Transformations
A Python transformation generates output rows differently based on whether the transformation is active or
passive.

After you create the transformation, you cannot change whether the transformation is active or passive.

Active Python Transformation

An active transformation can change the number of rows that pass through it.

To define the number of rows in the output, call the generateRow() method in the code to generate each
output row. You might choose to generate multiple output rows from a single input row or generate a single
output row from multiple input rows. For example, if the transformation contains two input ports that
represent a start date and an end date, you can call the generateRow() method to generate an output row for
each date between the start date and the end date.

Passive Python Transformation

A passive transformation cannot change the number of rows that pass through the transformation. The
transformation calls the generateRow() method to generate an output row after processing each input row.

Data Type Conversion
A Python transformation converts Developer tool data types to Python data types, based on the Python
transformation port type.

When a Python transformation reads input rows, it converts input port data types to Python data types. When
a Python transformation writes output rows, it converts Python data types to output port data types.

For example, the following processing occurs for an input port with the double data type in a Python
transformation:

• The Python transformation converts the double data type in the input port to the Python float data type.

• The transformation uses the value in the input port as the value for the Python float data type.

• To generate the output row, the Python transformation converts the Python float data type to the double
data type.

The following table shows how the Python transformation maps Developer tool data types to Python data
types:

Developer Tool Data Type Python Data Type

Integer Int

Decimal Float

Double Float

Timestamp Datetime

String Str

The Python transformation does not support data types that are not listed in this table.

Deferment Notice: Support for binary ports in the Python transformation is deferred. Support will be
reinstated in a future release.

156 Chapter 7: Python Transformation

When you write code in the Python transformation, the data types of the output ports in the Python
transformation must be compatible with the data types in the Python code. Thus, if you configure an output
port in the Python transformation to be a double data type, the corresponding variable in the Python code
must be a float.

Data Types in Input and Output Ports
The data types in corresponding input and output ports in the Python transformation must be the same. If the
data types are not the same, convert the data type in the Python code.

For example, you create an input port with the integer data type and an output port with the string data type.
You define the Python code to process the data in the input port and write the data to the output port. In the
Python code, you can use the Python function str() to convert the integer data type in the input port and
write the output as a string data type in the output port.

Python Transformation Ports
A Python transformation can have input and output ports.

To create and edit ports for a non-reusable Python transformation, use the Ports tab in the editor. To create
and edit ports for a reusable Python transformation, use the Overview view in the editor. After you add ports
to the transformation, you can use the port names as variables in the Python code.

Use the following guidelines to create input and output ports:

• The port name can contain only ASCII characters.

• The port name cannot be a Python keyword. For example, do not use port names such as import, global
or class.

• The port name cannot be resourceJepFile or resourceFilesArray.

• You cannot configure user-defined default values in output ports in the Python transformation. Set user-
defined default values in the Python code.

For example, you can write output_port = 'value' to set the default value 'value' for the output port
output_port.

You can enable one or more input rows as partition keys. The Data Integration Service uses the partition keys
to repartition the data before the code runs. If you do not select an input row as a partition key, the data is
processed using its default partitioning scheme.

Python Transformation Advanced Properties
The Python transformation includes advanced properties for the transformation.

You can define the following advanced property for the Python transformation on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Python Transformation Ports 157

Is Active

Indicates whether the transformation is an active transformation. An active transformation can change
the number of rows that pass through it.

You cannot change this property after you create the transformation. If you need to change this property,
create a new transformation.

Python Transformation Components
The Python transformation uses resource files and the Python code to define transformation functionality.

The Python transformation contains the following components:
Resource File

A file that contains the resources that you access in the Python code.

The file can be a pre-trained model that has been trained on a larger data set outside the Developer tool.
You can use the pre-trained model to classify data or make predictions based on the data that you pass
to the Python transformation. You can access the pre-trained model in the Python code.

Python Code

The Python code that the Python transformation uses to process data that you pass to the
transformation. When you write Python code, you might reconstruct input variables, load a pre-trained
model, and define output variables.

Resource File
A resource file is a file that contains the resources that you use in the Python code. If you use a pre-trained
model, you specify the pre-trained model as a resource file in the Python transformation.

In the Python transformation, list the resource file path on the Data Integration Service machine. Separate
multiple resource file paths using a comma.

When you access a resource file in the Python code, you reference the array resourceFilesArray. To access
a specific resource file, you specify an index to locate the resource file according to the order that the
resource file appears in the list of resource file paths.

For example, you specify several resource files. To reference the first resource file in the Python code, use
resourceFilesArray[0].

158 Chapter 7: Python Transformation

The following image shows how you can specify a resource file in the Python transformation and access the
resource file in the Python code:

The resource files foxgloveDataMLmodel.pkl and irisDataMLmodel.pkl are listed using the resource file
paths on the Data Integration Service machine. The Python code accesses the resource files to reconstruct
the respective Python objects. To access the first resource file, the Python code references the resource file
using resourceFilesArray[0]. To access the second resource file irisDataMLmodel.pkl, the Python code
references the resource file using resourceFilesArray[1].

Python Code
The Python code defines how the Python transformation processes data. When you write Python code, you
might reconstruct input variables, load a pre-trained model, define output variables, and define additional
transformation functionality.

To write the Python code, use the following tabs:

Pre-Input

On the Pre-Input tab, define code that can be interpreted once and shared between all rows of data.

Use the Pre-Input tab to perform the following tasks:

• Declare import statements.

• Declare variables.

• Initialize variables.

• Define helper methods.

On Input

On the On Input tab, define how the Python transformation behaves when it receives an input row while
processing a partition. The Python transformation processes the code on the On Input tab for each
partition and each row in the partition.

At End

On the At End tab, define how the Python transformation behaves after it processes all input data in a
partition. You can also call the generateRow() method to generate output rows for the partition.

Python Transformation Components 159

Guidelines for Writing Python Code

Use the following rules to write Python code:

• Define variables before you use them. For example, you cannot reference a variable on the Pre-Input tab if
the variable is defined on the On Input tab.

• To access input ports, call the input port name.

• To set output ports, set the output port to a value. You must set the output port to a value for each output
port that you define in the Python transformation.

• To define how the transformation writes data from the input ports to output ports, set the output port to
the value of the input port.

For example, write output_port = input_port to write the data from the input port input_port to the
output port output_port.

• To access resource files, use the variable resourceFilesArray. Specify the resource file using an index
such as resourceFilesArray[0].

• When you run the Python transformation, the Data Integration Service does not validate the Python code.

Rules and Guidelines for the Python Transformation
Consider the following rules and guidelines when you use a Python transformation:

• You cannot pass complex ports to the Python transformation.

• Mapping validation fails if a user-defined default value is assigned to an output port.

• The mapping fails in the following situations:

- An output port is not assigned a value in the Python code.

- The data types in corresponding input and output ports are not the same, and the Python code does not
convert the data type in the input port to the data type in the output port.

- The Python transformation contains decimal ports and high precision is enabled in the mapping.

Python Transformation in a Streaming Mapping
Streaming mappings have additional processing rules that do not apply to batch mappings.

Consider the following restrictions:

• When you close a Jep instance, you might not be able to call CPython modules.

• Do not use the names inRowsList and outRowsList in the Python code. These names are reserved for the
Scala code that the Spark engine uses to interact with the Python environment.

Creating a Python Transformation
In the Developer tool, you can create a reusable or non-reusable Python transformation.

160 Chapter 7: Python Transformation

Creating a Reusable Python Transformation
You can create a reusable Python transformation to use the transformation in multiple mappings. Create a
reusable Python transformation in the Developer tool.

1. In the Object Explorer view, select a project or a folder.

2. Click File > New > Transformation.

The New dialog box appears.

3. Select the Python transformation.

4. Click Next.

5. Enter a name for the transformation.

6. Optionally, select Create as Active.

7. Click Finish.

The transformation appears in the editor.

8. In the Overview view, click the New button to add a port to the transformation.

9. Edit the port to set the name, data type, and precision.

Use port names as variables in the Python code.

Array, map, and struct data types are not available for a reusable transformation.

10. In the Python view, specify the resource files and write the Python code for the transformation.

11. In the Advanced view, edit the advanced properties for the transformation.

Creating a Non-Reusable Python Transformation
You can create a non-reusable Python transformation to use the transformation in a single mapping. Create a
non-reusable Python transformation in the Developer tool.

1. In a mapping or a mapplet, drag a Python transformation from the mapping palette to the editor.

The transformation appears in the editor.

2. In the General tab, edit the transformation name and the description.

3. In the Ports tab, click the New button to add a port to the transformation.

4. Edit the port to set the name, data type, and precision.

Use port names as variables in the Python code.

5. In the Python tab, specify the resource files and compile the Python code for the transformation.

6. In the Run-time Linking tab, create run-time links between the Python transformation and an upstream or
downstream transformation in the mapping if the ports change at run time.

7. In the Advanced tab, edit the advanced properties for the transformation.

Creating a Python Transformation 161

Example: Add an ID Column to Nonpartitioned Data
Your organization runs a solar thermal power system that uses sensors to monitor the system's health.
Currently, each sensor is identified by its location. Instead, you want to identify each sensor using an ID to
simplify future analytics on the data.

You collect the following data on sensor readings:

SensorLocation LastReadingTime

Area A 7/9/2019 11:36:09

Area B 7/9/2019 16:43:42

Area C 7/9/2019 13:23:53

To add an ID column and assign ID values to each sensor, complete the following steps:

Step 1. Create a Python transformation.

Create a passive Python transformation.

Step 2. Pass data to the Python transformation.

Pass data from upstream transformations in the mapping to the Python transformation.

After you pass the data to the Python transformation, the Python transformation contains the following
input ports:

• SensorLocation

• LastReadingTime

Step 3. Create output ports.

Use the Ports tab in the Python transformation to create the output port SensorID_out to represent the
ID column.

Additionally, create the following output ports to pass incoming data to downstream transformations:

• SensorLocation_out

• LastReadingTime_out

Step 4. Set the ID value for each row.

On the On Input tab, set the ID value for each row that is processed and write the data to the output ports
using the following code:

SensorID="".join(str(x) for x in map(ord, SensorLocation))

SensorID_out = SensorID
SensorLocation_out = SensorLocation
LastReadingTime_out = LastReadingTime

162 Chapter 7: Python Transformation

Step 5. Run the mapping.

If the output ports in the Python transformation are linked directly to a Write transformation, the target
contains the following data after you run the mapping:

SensorID_out SensorLocation_out LastReadingTime_out

65114101973265 Area A 7/9/2019 11:30:00

65114101973266 Area B 7/9/2019 11:35:00

65114101973267 Area C 7/9/2019 11:40:00

Example: Use Partitions to Find the Highest Salary
You are an HR staff member at your organization. You are working on a project to model how employee
salaries are associated with aspects of life that employees find important. You want to use the information to
better personalize the organization's wellness program.

You can use the Python transformation to complete the first part of your project to determine which
employee earns the highest salary in their department.

The following table shows the data that your organization might collect:

DepartmentName DepartmentID EmployeeName SalaryIndex EmployeeSince

HR 1 Jane Smith 500 2/16/2010

R&D 2 Ellioth Consar 150 3/29/2018

Finance 3 Concor Valashe 230 11/22/2007

Marketing 4 Manchini Voliore 800 5/17/2009

HR 1 Blaze Concave 501 8/25/2016

R&D 2 Janet Encarr 890 1/26/2019

HR 1 Chelsea Blanch 389 9/3/2018

R&D 1 Samuel Coin 10 1/26/2005

To use the Python transformation for the task, complete the following steps:

Step 1. Add a Python transformation to the mapping.

Create an active Python transformation.

Step 2. Pass data to the Python transformation.

Pass the following ports from upstream transformations in the mapping to the Python transformation:

• DepartmentName

• DepartmentID

• EmployeeName

Example: Use Partitions to Find the Highest Salary 163

• SalaryIndex

• EmployeeSince

Step 3. Partition the data by department.

Partition the data by department to track the highest salary within each department. To partition the data
by department, select the input port DepartmentID as the partition key.

Step 4. Create output ports.

On the Ports tab in the Python transformation, create the following output ports to pass data to
downstream transformations:

• DepartmentName_out

• DepartmentID_out

• EmployeeName_out

• SalaryIndex_out

• EmployeeSince_out

Step 5. Initialize a map.

Declare a map variable outputmap to associate each department ID with the employee in the department
who has the highest salary.

Add the following code on the Pre-Input tab:

print("Using partitions to find the employee with the highest salary")
outputmap = {}

Step 6. Define code to process the data.

For each input row that passes through the Python transformation, define code that checks if the
employee's salary is higher than the maximum salary of the previous rows that have been processed. If
the employee's salary is higher, update the employee who has the maximum salary in the department.

Add the following code on the On Input tab:

DepartmentID_out = DepartmentID
print("Processing rows for department ID " + str(DepartmentID_out))

outputmap.setdefault(DepartmentID, None)
updateMax = False

if outputmap.get(DepartmentID, None) is None:
 updateMax = True
else:
 max_salary = outputmap[DepartmentID]['SalaryIndex']
 if max_salary is None:
 updateMax = True
 if SalaryIndex > max_salary:
 updateMax = True

if updateMax == True:
 employee_data = {'SalaryIndex':SalaryIndex,'EmployeeName':EmployeeName,
 'EmployeeSince':EmployeeSince,'DepartmentName':DepartmentName}

 outputmap[DepartmentID] = employee_data
Step 7. Write the data to the output ports.

On the At End tab, use the data in the map variable outputmap to generate a row for the employee that
has the highest salary in each department.

164 Chapter 7: Python Transformation

Add the following code on the At End tab:

for x in outputmap:
 DepartmentID_out = x
 smap = outputmap[x]
 SalaryIndex_out = smap["SalaryIndex"]
 EmployeeName_out = smap["EmployeeName"]
 DepartmentName_out = smap["DepartmentName"]
 EmployeeSince_out = smap["EmployeeSince"]

 ## Generate the output row
 generateRow()

Step 8. Run the mapping.

If the output ports in the Python transformation are linked directly to a Write transformation, the target
contains the following data after you run the mapping:

DepartmentName DepartmentID EmployeeName SalaryIndex EmployeeSince

Finance 3 Concor Valashe 230 11/22/2007

Marketing 4 Manchini Voliore 800 5/17/2009

HR 1 Blaze Concave 501 8/25/2016

R&D 2 Janet Encarr 890 1/26/2019

Use Case: Operationalize a Pre-Trained Model
You work for a pharmaceutical company and you are studying data on flower formation in foxglove in your
research to provide a better treatment for heart diseases. You want to find out whether the common foxglove
Digitalis purpurea or the woolly foxglove Digitalis lanata can provide a better prognosis for the development
of a disease.

To perform your research, you must classify data on the length and width of the flower sepals and petals by
flower species. To classify the data, you developed a pre-trained model outside of the Developer tool.

You operationalize the pre-trained model in the Developer tool. In the Developer tool, you create a mapping
that contains a passive Python transformation. In the Python transformation, you list the pre-trained model as
a resource file. You write a Python script that accesses the pre-trained model. You pass the data on flower
sepals and petals to the Python transformation to classify the data by foxglove species.

Use Case: Operationalize a Pre-Trained Model 165

The following image shows the mapping that you might create:

The passive Python transformation uses the following components:

Resource File

Specify the path of the pre-trained model as the resource file.

For example, you might use a pre-trained model that is stored in the file foxgloveDataMLmodel.pkl in
the following path:

/data/home/dtmqa/data/foxgloveDataMLmodel.pkl
Python Code

Specify the Python code on the Pre-Input and On Input tabs.

Use the Pre-Input tab to import libraries, load the resource file, and initialize variables.

For example, you might enter the following code on the Pre-Input tab:

from sklearn import svm
from sklearn.externals import joblib
import numpy as np
clf = joblib.load(resourceFileArrays[0])
classes = ['common', 'woolly']

On the On Input tab, define how the Python transformation uses the pre-trained model to evaluate each
row of data.

For example, you might enter the following code on the On Input tab:

input = [sepal_length, sepal_width, petal_length, petal_width]
input = np.array(input).reshape(1,-1)
pred = clf.predict(input)
predicted_class = classes[pred[0]]
sepal_length_out = sepal_length
sepal_width_out = sepal_width
petal_length_out = petal_length
petal_width_out = petal_width
true_class_out = true_class

The Python transformation processes the data in the input ports according to the Python code and
writes the data to the output ports.

166 Chapter 7: Python Transformation

C h a p t e r 8

Data Preview
This chapter includes the following topics:

• Overview of Data Preview, 167

• Data Preview Process, 168

• Previewing Data, 169

• Data Preview Interface for Hierarchical Data, 170

• Data Preview on Transformations, 172

• Data Preview Logs, 173

• Rules and Guidelines for Data Preview on the Spark Engine, 174

Overview of Data Preview
You can preview data within a mapping in the Developer tool. You can choose sources and transformations in
a mapping as preview points. Previewing data helps to design and debug mappings.

Data preview jobs run on either the Data Integration Service or the Spark engine. The Spark engine runs the
job in the following cases:

• The preview point or any upstream transformation contains hierarchical data.

• The preview point or any upstream transformation is a Python transformation.

• The preview point or any upstream transformation is an Expression transformation configured for
windowing.

• The mapping contains a combination of transformations that must run on the Spark engine.

When you view the results of data preview on hierarchical data, you can view the complex data types, the
schema, and values. You can also navigate through the structure with breadcrumbs. You can export the
results to a JSON file.

Before you preview data, verify that Spark is configured as the mapping run-time environment. If you are
previewing hierarchical data in a complex file object, add the complex file object to a mapping to preview the
data. You cannot preview data in mappings configured for the Databricks Spark engine.

Monitor ad hoc data preview jobs in the Monitor tab of the Administrator tool. From the Monitor tab, you can
view job status, view job logs, and cancel jobs.

167

Connections and Cluster Distributions that Support Data Preview
When you preview data using the Spark engine, configure the mapping with a supported connection and
Hadoop distribution.

Connections

You can use the Spark engine to preview data on mappings that use the following connections:

HBase

HDFS

Hive

JDBC configured for Sqoop

When you configure a mapping that uses a JDBC connection, you can use a generic JDBC connection, or use
the specialized drivers for Oracle or Teradata.

Cluster Distributions

You can preview data in mappings configured to run with the following distributions:

Amazon EMR

Azure HDInsight

Cloudera CDH

Cloudera CDP

Hortonworks HDP

MapR

Before you preview data on Amazon EMR, you must configure the /etc/hosts file on all nodes in the cluster
to include the machine and IP address of the Data Integration Service.

Data Preview Process
When you preview data on the Spark engine, the following process occurs:

1. The Data Integration Service uses the Data Preview Service Module to determine whether to run the
preview job in the native environment or on the Spark engine.

2. The Data Preview Service Module pushes the job to the Spark engine and generates a Spark workflow
based on the preview point.

3. Based on the cluster distribution that you configure, either the Spark Jobserver or the DTM submits the
Spark workflow tasks on the Hadoop cluster to generate the preview data.

4. The run-time engine stages the data based on the configured HDFS staging directory.

5. The Data Integration Service passes the staged data to the Developer tool and then deletes the staged
data.

6. The results of the preview appear in the data viewer of the Developer tool.

Note: When you run data preview, the Data Integration Service validates the validation environments selected
in the Run-time view.

168 Chapter 8: Data Preview

Note: If you enable HTTPS protocol on the Data Integration Service, the Spark Jobserver also uses HTTPS
protocol. The Spark Jobserver uses the same HTTPS keystore configuration that you set in the Data
Integration Service process properties in the Administrator tool.

Previewing Data
When you run data preview in the Data Viewer view, you can perform tasks, such as viewing the structure and
data of a hierarchy field and filtering ports to view. You can also export the results to a JSON file.

Before you preview data, verify that Spark is configured as the mapping run-time environment. If you are
previewing hierarchical data in a complex file object, add the complex file object to a mapping to preview the
data.

1. Open a mapping in the Developer tool, and select a preview point.

2. To run the data preview, click Run in the Data Viewer view.

The output of the data preview can be viewed in the Data Viewer view.

3. To filter ports in the output, choose the ports you want to view.

4. To view the structure and the data in a hierarchy field, select the field.

The details of the hierarchy field appear on the hierarchical type panel.

5. To export the results to a JSON file, right-click the hierarchy field and select Export Data.

Previewing Data 169

Data Preview Interface for Hierarchical Data
The data preview interface consists of Data Viewer view and hierarchical type panel. Preview data in a
mapping based on the preview point that you choose.

The following image shows a mapping which has complex data types:

To view the hierarchical data after expressions have been evaluated, you use the Expression transformation
as a preview point.

170 Chapter 8: Data Preview

The following image shows the results of the data preview:

1. Hierarchy keys
2. Schema
3. Value
4. Port filter
5. Array data type
6. Map data type
7. Struct data type
8. Breadcrumbs

Data Viewer
When you preview data, you view ports in the preview point represented as columns in the Data Viewer.

To identify the hierarchical types, the following punctuation icons are used:

• [] is used to indicate array data type.

• { } is used to indicate struct data type.

• <,> is used to indicate map data type.

You can see the following information in the Data Viewer:

• View tooltips to see details regarding the type of hierarchical data. If you need to limit the number of ports
that appear, you can choose the ports you want to view in the output.

• Highlight a field to see the details in the hierarchical type panel. When you right click any hierarchy field,
you can export the data in that field in JSON format.

• If the data includes dates, note that date fields have an additional time stamp component (00:00:00).

Note: If the Data Integration Service node and the cluster node are located in different time zones, the Data
Viewer displays a date and time based on the time zone of the cluster instead of the time zone of the Data
Integration Service or Data Viewer.

Exporting Data
You can export the data that appears in the Data Viewer view to a JSON file. Export data when you want to
create a local copy of the data.

1. In the Data Viewer view, right-click the results and select Export Data.

Data Preview Interface for Hierarchical Data 171

2. Enter a file name.

3. Select the location where you want to save the file.

4. Click OK.

The following rules and guidelines apply when you export data to a JSON file:

• JSON keys must be strings. If the source data is a map that uses structures as keys, the Data Integration
Service serializes the keys when you export the data. The exported JSON file might include escape
characters before double quotation marks that are added during serialization.

• JSON does not support binary data. When you export data that includes binary keys, the Data Integration
Service replaces the key with the string "<binary>" which results in invalid JSON.

• If the source data is a map that contains duplicate keys of a complex data type, the Data Integration
Service might produce invalid JSON when you export the preview data.

Hierarchical Type Panel
When you click a hierarchy field, the details of the hierarchy field appears in the hierarchical type panel.

In the hierarchical type panel, you can see the schema and values for the hierarchical data selected. You can
navigate through the structure with the breadcrumbs. If the structure is very deep, you can expand and
collapse the fields. When you expand the structure, you can view the data within the hierarchy. For example,
when you view billing information in the hierarchical type panel, you can see the values for the billing name,
street and ZIP Code.

Note: When you expand all rows, the Developer tool expands a maximum of 500 rows. If you have more than
500 rows, you can manually expand them to view more information.

Data Preview on Transformations
When you use a transformation as the preview point, the Spark engine might process the data preview job
differently.

Note: When you choose a transformation as the preview point, the Spark engine might not maintain the
sorted order when you configure the Maintain row order property.

Rank transformation

When you choose a Rank transformation as the preview point for data preview on the Spark engine, row
order is maintained.

Sorter transformation

To maintain sorted row order when you preview data with a Sorter transformation before the preview
point in a mapping, configure preferences to show all rows.

1. From the Window menu, open Preferences.

2. Navigate to Informatica > Run Configurations > Data Viewer.

3. In the Results tab, find the Rows section and select Show all rows.

Transformations with multiple output groups

When you preview data using the Spark engine, you cannot use the following transformations as preview
points when the transformations are configured with multiple output groups:

172 Chapter 8: Data Preview

Normalizer

Router

Update Strategy

Data Preview Logs
View logs when you preview data on the Spark engine to monitor jobs and find the cause of error messages.

The Spark Jobserver logs are located in the following directory: <Informatica installation directory>/
services/DataIntegrationService/modules/DataPreviewService/spark-jobserver-0.9.0/<Data
Integration Service name>/log

You can view the following types of logs when you run data preview jobs using the Spark Jobserver:
Spark Jobserver start-up log

Messages logged when the Spark Jobserver starts.

The Spark Jobserver start-up log is persisted until you manually clear it.

Location: <Spark Jobserver log directory>/server_start.log

Spark Jobserver log

Messages logged as the Spark Jobserver runs.

The Spark Jobserver log is persisted until you manually clear it.

Location: <Spark Jobserver log directory>/spark-job-server.log

Spark context log

Messages logged when a YARN application is created.

The Spark context log is not persisted. The log is created each time a Spark context is created.

Location: <Spark Jobserver log directory>/jobserver-INFA_DATA_PREVIEW_APP_<Data
Integration Service name>8650657650347819144/spark-job-server.out

Note: When a data preview job fails, use the job ID found in the session log to locate the stacktrace in
the Spark context log that relates to the failed job.

Mapping run log

Messages logged when a mapping runs.

The mapping run logs are not persisted. The logs are created each time you run a mapping.

Location: <Informatica installation directory>/logs/<node name>/services/
DataIntegrationService/disLogs/ms

Note: To view mapping run logs, select the Show Log button in the Data Viewer view.

Data Preview Logs 173

Rules and Guidelines for Data Preview on the Spark
Engine

Consider the following rules and guidelines when you work with data preview on the Spark engine:

• You cannot preview data in mappings with dynamic complex data types, such as dynamic arrays, dynamic
maps, and dynamic structs.

• If a map data type source with primitive keys includes duplicate keys, the Data Viewer displays only one
instance of the duplicate key-value pair. If a map data type source with complex keys includes duplicate
keys, the Data Viewer displays all key-value pairs.

• You cannot preview data for a mapping that reads hierarchical data from a Hive source.

• You can run up to 10 concurrent data preview jobs on the Spark engine.

• Previewing data on the Spark engine is memory intensive. Increase the Heap memory size when you run
concurrent preview jobs.

• For high volume data preview jobs that use Spark Jobserver, configure the following Spark advanced
properties in the Hadoop connection to increase driver and executor memory:

spark.driver.cores

spark.driver.memory

spark.executor.cores

spark.executor.memory

For more information, see “Spark Advanced Properties” on page 389.

• Effective in version 10.4.0, previewing hierarchical data when the Data Integration Service runs on a grid is
available for technical preview.

Technical preview functionality is supported for evaluation purposes but is unwarranted and is not supported
in production environments or any environment that you plan to push to production. Informatica intends to
include the preview functionality in an upcoming release for production use, but might choose not to in
accordance with changing market or technical circumstances. For more information, contact Informatica
Global Customer Support.

174 Chapter 8: Data Preview

C h a p t e r 9

Cluster Workflows
This chapter includes the following topics:

• Cluster Workflows Overview, 175

• Cluster Workflow Components, 176

• Cluster Workflows Process , 177

• Create the Workflow and the Create Cluster Task, 178

• Where to Configure Parameters for Cluster Creation, 179

• Add a Mapping Task, 182

• Add a Delete Cluster Task, 185

• Deploy and Run the Workflow, 185

• Configure Databricks Clusters Using Warm Pools, 185

• Create Cluster Task Properties, 187

Cluster Workflows Overview
A cluster workflow is a workflow that automates the creation of a cluster using a Create Cluster task, and
then runs one or more mappings on that cluster. You can create a cluster workflow to run Mapping and other
tasks on a cloud platform cluster. To use an ephemeral cluster to run mappings in the workflow, include a
Delete Cluster task to terminate and delete the cluster after the mappings run.

The cluster workflow uses other elements that enable communication between the Data Integration Service
and the cloud platform, such as a cloud provisioning configuration and a cluster connection.

A cluster workflow contains a Create Cluster task that you configure with information about the cluster to
create. If you want to create an ephemeral cluster, you can include a Delete Cluster task. An ephemeral
cluster is a cloud platform cluster that you create to run mappings and other tasks, and then terminate when
tasks are complete. Create ephemeral clusters to save cloud platform resources.

You can use cluster workflows to create Hadoop clusters on the Microsoft Azure or Amazon AWS cloud
platforms in a Hadoop environment, or Databricks clusters in a Databricks environment on Azure or AWS.

Cluster Workflows Platform Support
Cluster workflow capabilities vary depending on the environment and the cloud platform.

Hadoop Clusters

On the Azure platform, you can create an ephemeral HDInsight cluster that accesses ADLS Gen2 resources.

175

On the AWS platform, you can create an ephemeral Amazon EMR cluster to access S3, Redshift, and
Snowflake resources.

On Cloudera Altus, you create a workflow with Command tasks that perform the tasks that a cluster workflow
automates. For more information about creating a cluster on Cloudera Altus, see the article
"How to Create Cloudera Altus Clusters with a Cluster Workflow" on the Informatica Documentation Portal.

Databricks Clusters

On the Azure and AWS Databricks platforms, you can configure Databricks ephemeral clusters.

Optionally, you can configure the clusters to start from sets of cached VM instances, called warm pools.
These instances wait on standby in a running state for ephemeral cluster creation. You can choose to have
the instances remain on standby when the ephemeral clusters are terminated. For more information, see the
Databricks documentation.

Enable warm pools for ephemeral Databricks clusters in the advanced properties of the Create Cluster
workflow task.

Cluster Workflow Components
The cluster workflow that creates an ephemeral cluster includes a Create Cluster task, at least one Mapping
task, and a Delete Cluster task.

The following image shows a sample cluster workflow:

A cluster workflow uses the following components:
Cloud provisioning configuration

The cloud provisioning configuration is associated with the Create Cluster task through the cluster
connection.

Cluster connection

The cluster connection to use with a cluster workflow is associated with a cloud provisioning
configuration. You can use a Hadoop or Databricks cluster connection. When you run the workflow the
Data Integration Service creates a temporary cluster connection.

176 Chapter 9: Cluster Workflows

https://docs.informatica.com/data-engineering/data-engineering-integration/h2l/1152-how-to-create-cloudera-altus-clusters-with-a-cluster-workfl.html
https://docs.informatica.com
https://docs.databricks.com/clusters/instance-pools/index.html

Create Cluster task

The Create Cluster task contains all the settings that the cloud platforms require to create a cluster with
a master node and worker nodes. It also contains a reference to a cloud provisioning configuration.
Include one Create Cluster task in a cluster workflow.

Mapping task

Add a data engineering mapping to the Mapping task. A cluster workflow can include more than one
Mapping task. You can run some mappings on an existing cluster and you can run some mappings on a
cluster that the workflow creates. You configure the mappings and Mapping tasks based on where you
want to run the task.

Delete Cluster task

The Delete Cluster task terminates the cluster and deletes the cluster and all resources that the
workflow creates.

Cluster Workflows Process
Creation of a cluster workflow requires administrator and developer tasks.

The following image shows the process to create, configure, and run a cluster workflow:

The cluster workflow development process requires tasks from the following users:
Administrator

An administrator completes the following tasks:

1. Verify prerequisites for the domain and the cloud platform.

2. Create the cloud provisioning configuration in the Administrator tool.

3. Create a cluster configuration in the Administrator tool.

4. Create a dedicated cluster connection to associate with the cluster configuration.

For information about administrator tasks, see the Data Engineering Administrator Guide.

Cluster Workflows Process 177

Developer

A developer completes the following tasks:

1. Create the workflow and the Create Cluster task.

2. Configure cluster parameters for the Create Cluster task.

3. Create Mapping tasks and other tasks as required.

4. Create a Delete Cluster task if you want to delete the cluster and resources when processing is
complete.

5. Deploy and run the workflow.

Create the Workflow and the Create Cluster Task
Create a workflow and add a Create Cluster task to it. You can add one or more Mapping tasks. You can add
a Delete Cluster task to create an ephemeral cluster.

1. In the Developer tool, choose File > New > Workflow.

2. Name the workflow.
The workflow opens with a Start_Event and an End_Event.

3. Right-click the editor pane and choose Add Workflow Object... > Create Cluster Task and click OK.
The following image shows the new workflow with the Create Cluster task:

4. Complete the Create Cluster task general properties:

Property Description

Name Task name.

Description Optional description.

178 Chapter 9: Cluster Workflows

Property Description

Connection Name Name of the cloud provisioning configuration to use with the workflow.

Connection Type Choose from the available options, which correspond to the compute platform. For example,
Amazon EMR.

5. Configure task input and output properties.

Property Description

Input properties The Create Cluster task does not require any unique values for task input properties.

Output properties Set the Cluster Identifier property to the default value, AutoDeployCluster.
Note: The Cluster Identifier property of the Create Cluster task overrides the Cluster
Identifier property of the Mapping task.

6. Connect the workflow Start_Event to the Create Cluster task.

Where to Configure Parameters for Cluster Creation
The Create Cluster task passes cluster configuration parameters to the workflow. You can choose from the
following methods to specify the parameters of the cluster that you want to create:

Configure parameters in Developer tool properties

Use the Create Cluster task properties to specify cluster creation parameters. You might choose this
method of passing parameters instead of the JSON method if your requirements for ephemeral clusters
seldom change.

Configure parameters using a JSON file

Use a JSON file to specify cluster creation parameters. You might choose this method if you want to
frequently change the parameters of an ephemeral cluster.

Restriction: You cannot create a cluster using a Docker image.

Using the Developer Tool to Configure Cluster Creation Properties
You can configure cluster creation properties in the advanced properties of the Create Cluster task.

When you use the Create Cluster task properties to specify cluster creation parameters, the task passes the
parameters to the cluster creation workflow. You might choose this method of passing parameters instead of
the JSON method if your requirements for ephemeral clusters seldom change.

See “Create Cluster Task Properties” on page 187 for lists of properties and their descriptions.

Configure properties in the Developer tool to pass parameters to the cluster workfow:

1. Set the advanced properties that correspond to your cloud platform.

• To create a cluster on Amazon Web Services, see “Advanced Properties for Amazon EMR” on page
188.

Where to Configure Parameters for Cluster Creation 179

• To create a Databricks cluster on Amazon Web Services, see “Advanced Properties for AWS
Databricks” on page 194.

• To create a cluster on Microsoft Azure HDInsight, see “Advanced Properties for Azure HDInsight” on
page 191.

• To create a Databricks cluster on Microsoft Azure, see “Advanced Properties for Azure Databricks” on
page 192.

2. Configure the Software Settings property in the advanced properties if you want to perform the following
optional tasks:

• To run mappings on the Blaze engine, see “Advanced Properties for the Blaze Engine” on page 197.

• To configure an external relational database as the Hive metastore database, see “Advanced
Properties for a Hive Metastore Database” on page 198.

Using a JSON File to Configure Cluster Creation Properties
You can use a JSON file to pass Databricks parameters to the cluster creation workflow. Because the JSON
file is easy for you to edit, you might want to use this method when your requirements for the ephemeral
cluster change frequently.

When you use the JSON file to configure cluster creation properties, you must also configure environment
variables in the Create Cluster task. The task passes the environment variables to the Data Integration
Service, and the Data Integration Service reads the properties from the JSON file.

You can include any key-value pair if you want to pass custom parameters to the cluster creation process.

The JSON file requires three properties: spark_version, node_type_id, and either num_workers or autoscale.
The following table describes the mandatory parameters:

Property Description

spark_version The version of Spark to use in the cluster. Required.

node_type_id The node type and size, expressed as one of the node types supported on AWS or Azure. Required.

num_workers The number of worker nodes in the cluster.
Required if you do not use the autoscale parameter.

autoscale Use autoscale=true to create a cluster that uses autoscale.
Required if you do not use the num_workers parameter.

You can find all of the supported parameters in the Databricks documentation.

Create the JSON File
Use a JSON file to configure cluster properties when you want to create and use an easily edited set of
properties.

1. Ask the Databricks administrator to export the existing cluster configuration as a JSON file.

2. Edit the file with parameters that reflect required configuration changes.

3. Verify that the file contains mandatory parameters. See “Using a JSON File to Configure Cluster Creation
Properties ” on page 180.

4. Save the file on all of the machines that host the Data Integration Service. For example, <Informatica
home directory>/data/Informatica/createClusterJson.json.

180 Chapter 9: Cluster Workflows

https://docs.databricks.com/dev-tools/api/latest/clusters.html#request-structure-of-the-cluster-definition

Examples

The following examples contains the mandatory parameters and others that you might want to include.
Notice that each example uses a "custom_tags" parameter to pass custom parameters.

Example of a JSON file for Databricks on the AWS platform:

{
 "cluster_name": "SampleCluster",
 "spark_version": "7.3.x-scala2.12",
 "num_workers": 1,
 "node_type_id": "i3.xlarge",
 "driver_node_type_id": "i3.xlarge",
 "custom_tags": {
 "Infa_Generated_Tag": "Infa_Generated_Tag"
 },
 "spark_env_vars": {
 "PYSPARK_PYTHON": "/databricks/python3/bin/python3"
 },
 "enable_elastic_disk": false,
 "aws_attributes": {
 "ebs_volume_count": 3,
 "zone_id": "us-east-1e",
 "ebs_volume_size": 100,
 "spot_bid_price_percent": 100,
 "first_on_demand": 1
 }
}

Example of a JSON file for Databricks on the Azure platform:

{
 "cluster_name": "SampleCluster",
 "spark_version": "7.3.x-scala2.12",
 "num_workers": 1,
 "node_type_id": "Standard_DS3_v2",
 "driver_node_type_id": "Standard_DS3_v2",
 "custom_tags": {
 "Infa_Generated_Tag": "Infa_Generated_Tag"
 },
 "spark_env_vars": {
 "PYSPARK_PYTHON": "/databricks/python3/bin/python3"
 },
 "enable_elastic_disk": false
}

Enable the JSON File
In the Create Cluster task environment variables, specify two properties to enable the JSON file to pass
Databricks parameters:

Property Description

userJson This property tells the Data Integration Service whether or not the task uses a JSON file to pass
parameters.
Choose from the following values:
- True. Enables parameter input from a JSON file. When you choose True, you must also provide the

path to the JSON file using the pathToFile property.
- False. Enables parameter input from the Developer tool properties. When you choose false, you must

configure all cluster configuration properties in the Developer tool properties. See “Create Cluster Task
Properties” on page 187.

Default is false.

pathToFile String. The file path to the JSON file, including the file name. Required if userJson is true.

Where to Configure Parameters for Cluster Creation 181

You can parameterize either property.

The following image shows the Environment Variables property on the Advanced properties tab, with the
userJson and pathToFile properties populated:

Add a Mapping Task
Add a Mapping task to the workflow to run a mapping on the cluster that the workflow created.

When you add a Mapping task to a workflow, you select a single mapping for the task to run. You can select
any mapping that has physical data objects as input and output. When you change the mapping, the Model
Repository Service tracks the effects of these changes on all Mapping tasks that include the mapping.

When you run a workflow, the workflow passes input data to a Mapping task in parameters and variables. The
Mapping task uses the input data to run the mapping. When the task finishes running the mapping, the
Mapping task passes output data back to the workflow in variables.

For more information, see the Developer Workflow Guide.

Prepare Mappings for the Cluster Workflow
Prepare mappings for inclusion in the cluster workflow by setting mapping and Mapping task properties to
specify where mappings run.

You can create a cluster workflow to run some mappings on the cluster that the workflow creates, and other
mappings on another cluster.

182 Chapter 9: Cluster Workflows

Run the mapping on the cluster that the workflow creates.

The following table describes the run-time behavior based on how you configure the mapping and
Mapping task:

Mapping
Hadoop Connection
Property

Mapping Task
Cluster Identifier
Property

Run Time Behavior

Auto Deploy Auto Deploy The Data Integration Service generates temporary
Hadoop connections based on the values in the
Hadoop connection associated with the workflow, and
uses the temporary connections to run mappings on
the cluster.

<Hadoop connection
name>

Auto Deploy The Mapping task Cluster Identifier property overrides
the mapping Hadoop connection property.
You might want to do this if you want to maintain the
mapping Hadoop connection property value.

Run the mapping on another cluster.

The following table describes the run-time behavior based on how you configure the mapping and
Mapping task:

Mapping
Hadoop Connection
Property

Mapping Task
Cluster Identifier
Property

Run Time Behavior

<Hadoop connection
name>

Blank The Mapping task Cluster Identifier property takes
input from the Hadoop connection and runs the
mapping on the cluster identified in the cloud
configuration property of the Hadoop connection.

Add Mapping and Other Tasks to the Workflow
1. Drag a Mapping task from the task list to the workflow editor.

The Mapping Task dialog box opens.

2. Name the Mapping task.

3. Select a mapping to run with the Mapping task. Click Browse next to the Mapping property, select a
mapping, and click Finish.

4. Optionally select a parameter set to associate with the Mapping task. Click Browse next to the
Parameter Set property, select a parameter set, and click Finish.

For more information on how to use parameter sets with mappings, see the Informatica Developer
Mapping Guide.

5. Optionally complete Input and Output properties.

The Mapping task does not require any unique values for input or output properties.

6. Configure the Cluster Identifier property in Advanced properties.

The Cluster Identifier property designates the cluster to use to run the Mapping task.

Add a Mapping Task 183

The following table describes values for Cluster Identifier properties:

Value Description

Blank (no value) Run the mapping runs on the cluster configured in the Hadoop connection associated with
the mapping.

AutoDeploy Run the mapping on the cluster that the workflow creates.
When you choose this option, it also populates the Cluster Identifier property in the Create
Cluster task with the value Set to AutoDeployCluster.
Default is AutoDeploy.

(Assign to task
input)

Select this option to accept input from another source than the Create Cluster task. If you
choose this option, enter a parameter value in the Cluster Identifier property of the Mapping
task Input properties tab.

7. Click Finish to the Mapping task.

8. Optionally add more Mapping and other tasks to the workflow.

You can include any other workflow tasks in a cluster workflow. For example, you might want to add a
Command task to perform tasks after a Mapping task runs.

Mapping Task Properties
Set mapping and Mapping task properties to specify where the workflow runs Mapping tasks.

When you include a Mapping task in a cluster workflow, you must identify the cluster where you want the
mapping to run.

The following table describes the Cluster Identifier property values that you can configure in the Advanced
properties of a Mapping task:

Cluster Identifier Property Description

Auto Deploy Runs the mapping on the cluster that the workflow creates. The Data
Integration Service generates a temporary cluster connection based on the
connection associate with the cluster provisioning configuration.
The connection property in the mapping must also be set to Auto Deploy.

Blank Runs the mapping on the cluster configured in the cluster connection
associated with the mapping.
The connection property in the mapping must be set to a cluster connection
associated with a cluster configuration. Validation fails if it is associated
with the cluster provisioning configuration.

Assign to task input Accept input from a source other than the Create Cluster task.
Use this option if you configure input properties to use parameters.

Note: If the Mapping task and the Create Cluster task contain different values for the cluster identifier, the
Create Cluster task value takes precedence.

184 Chapter 9: Cluster Workflows

Add a Delete Cluster Task
To create an ephemeral cluster, add a Delete Cluster task.

The Delete Cluster task terminates the cluster and deletes the cluster and other resources that the cluster
workflow creates.

If you do not add a Delete Cluster task, the cluster that the workflow creates remains running when the
workflow ends. You can delete the cluster at any time.

1. Drag a Delete Cluster task to the workflow editor.

2. In the General properties, optionally rename the Delete Cluster task.

3. Connect the final task in the workflow to the Delete Cluster task, and connect the Delete Cluster task to
the workflow End_Event.

You can also use infacmd ccps deleteCluster to delete a cloud cluster.

Note: When you create a Databricks job cluster to run mapping and other tasks, Databricks deletes the
cluster automatically after completing all tasks. You don't need to include a Delete Cluster task in the
workflow.

Deploy and Run the Workflow
After you complete the cluster workflow, deploy and run the workflow.

You can monitor AWS and Azure cluster workflows on the web console. If you configured a log location, view
the logs at the location that you configured in the Create Cluster task properties.

You can monitor Databricks cluster workflows on the Databricks workspace.

You can also monitor Data Integration Service jobs in the Administrator tool.

Note: After the workflow begins executing tasks, the task to provision the cluster may take several minutes.

Monitoring Azure HDInsight Cluster Workflow Jobs
You can access mapping log URLs through the Monitoring tab in the Administrator tool to monitor workflow
jobs that run on an Azure HDInsight cluster. The log location depends on the run-time engine that each
mapping uses.

To access the monitoring URL for mappings that run on the Blaze or Spark engine, expand the workflow and
the mapping on the Monitoring tab. Select the Grid Task and view the value for the Monitoring URL property
in the lower pane. Use this path to find the log.

Configure Databricks Clusters Using Warm Pools
On the Azure and AWS Databricks platforms, you can configure Databricks ephemeral clusters to start on
sets of cached VM instances, called warm pools. The VM instances wait on standby in a running state for

Add a Delete Cluster Task 185

ephemeral cluster creation. When you enable warm pools, you reduce the time it takes to create clusters if
the pool contains enough idle instances.

Prerequisite

Ephemeral clusters from warm pools require the Databricks administrator to create a cluster pool in the
Databricks workspace. Choose from any available instance types for the VMs in the pool.

Configure the following properties when you create pools:

Property Description

Min Idle Minimum number of instances that will remain running in the pool in an idle state. These
instances do not terminate, regardless of the setting specified in the Idle Instance Auto
Termination property.

Idle Instance Auto
Termination

The number of minutes that the pool will maintain an instance in an idle state after jobs are
complete.

Note: The idle instances in the pool do not terminate regardless of the value in the Idle Instance Auto
Termination property. Amazon charges for idle instances in a pool.

Configure the Cluster Workflow to Use Warm Pool Instances

Enable warm pools for Databricks ephemeral clusters in the Create Cluster task Advanced Properties.

The following table describes the properties to enable warm pools:

Property Description

Warm Pools Check this option to enable creation of the Databricks cluster using warm pools.
Default is unchecked (false).

Pool ID Required when you enable warm pools. Value of the DatabricksInstancePoolId property that identifies
the warm pool resource.

Note: When you enable warm pools, some of the advanced properties that allow you to specify cluster
instance details are disabled. Set cluster instance details when you configure pools in the Databricks
console.

186 Chapter 9: Cluster Workflows

Create Cluster Task Properties
When you configure a Create Cluster task, you configure options that are common for all cluster types, and
you configure advanced options for specific clusters.

General Properties for the Create Cluster Task

The following table describes the General properties for the Create Cluster task:

Property Description

Name Task name.

Description Optional description.

Connection Name Name of the cloud provisioning configuration to use with the workflow.

Connection Type Choose from the following options:
- Amazon EMR. Create an Amazon EMR cluster in the Hadoop environment.
- HDInsight. Create an Azure HDInsight cluster in the Hadoop environment.
- Databricks. Create a Databricks cluster in the Databricks environment.

Input Properties for the Create Cluster Task

You can assign task input to workflow parameters and variables.

The following table describes the Input properties for the Create Cluster task:

Property Description

Create Cluster Task Inputs Parameters or variables to use for task input.

Output Properties for the Create Cluster Task

You can assign variables to the Create Cluster task output.

The following table describes the Output properties for the Create Cluster task:

Property Description

Start Time Date and time that the task started running.

End Time Date and time that the task stopped running

Is Successful Indicates whether the task ran successfully.

Cluster Identifier The Cluster Identifier property of the Create Cluster task overrides the Cluster Identifier property of
the Mapping task.
Default is AutoDeployCluster.

Advanced Properties for the Create Cluster Task

Advanced properties for the Create Cluster task depend on the cluster type that you create.

For information about advanced properties for Microsoft Azure, see “Advanced Properties for Azure
HDInsight” on page 191.

Create Cluster Task Properties 187

For information about advanced properties for Amazon Web Services, see “Advanced Properties for Amazon
EMR” on page 188.

For information about advanced properties to run mappings on the Blaze engine, see “Advanced Properties
for the Blaze Engine” on page 197.

For information about advanced properties for Databricks, see “Advanced Properties for Azure Databricks” on
page 192.

Advanced Properties for Amazon EMR
Set the advanced properties for an Amazon EMR cluster.

General Options
The following table describes general options that you can set for an EMR cluster:

Property Description

Cluster Name Name of the cluster to create.

Release Version EMR version to run on the cluster.
Enter the AWS version tag string to designate the version. For example: emr-5.8.0
Default is Latest version supported.

Connection Name Name of the Hadoop connection that you configured for use with the cluster workflow.

S3 Log URI Optional. S3 location of logs for cluster creation. Format:

s3://<bucket name>/<folder name>
If you do not supply a location, no cluster logs will be stored.

Master Instance Group Options
The following table describes master instance group options that you can set for an EMR cluster:

Property Description

Master Instance Type Master node EC2 instance type.
You can specify any available EC2 instance type.
Default is m4.4xlarge.

Master Instance
Maximum Spot Price

Maximum spot price for the master node. Setting this property changes the purchasing
option of the master instance group to Spot instead of On-demand.

188 Chapter 9: Cluster Workflows

Core Instance Group Options
The following table describes core instance group options that you can set for an EMR cluster:

Property Description

Core Instance Type Core node EC2 instance type.
You can specify any available EC2 instance type.
Default is m4.4xlarge.

Core Instance Count Number of core EC2 instances to create in the cluster.
Default is 2.

Core Instance
Maximum Spot
Price

Maximum spot price for core nodes. Setting this property changes the purchasing option of the
core instance group to Spot instead of On-demand.

Core Auto-Scaling
Policy

Optional. Auto-scaling policy for core instances. Type the policy JSON statement here, or
provide a path to a file that contains a JSON statement.
Format: file:\\<path_to_policy_config_file>

Task Instance Group Options
The following table describes task instance group options that you can set for an EMR cluster:

Property Description

Task Instance Type Task node EC2 instance type.
You can specify any available EC2 instance type.
Default is m4.4xlarge.

Task Instance
Count

Number of task EC2 instances to create in the cluster.
Default is 2.

Task Instance
Maximum Spot
Price

Maximum spot price for task nodes. Setting this property changes the purchasing option of the
task instance group to Spot instead of On-demand.
For more information on spot pricing, see the AWS documentation.

Task Auto-Scaling
Policy

Optional. Auto-scaling policy for task instances. Type the policy JSON statement here, or
provide a path to a file that contains a JSON statement.
Format: file:\\<path_to_policy_config_file>

Create Cluster Task Properties 189

https://aws.amazon.com/ec2/spot/pricing/

Additional Options
The following table describes additional options that you can set for an EMR cluster:

Property Description

Root device EBS
volume size
(GB)

Number of GB of the EBS root device volume. Enter a value between 10 and 100.
Default is 10.

Tags Optional. Tags to propagate to cluster EC2 instances.
Tags assist in identifying EC2 instances.
Format: TagName1=TagValue1,TagName2=TagValue2

Bootstrap
Actions

Optional. Actions to perform after EC2 instances are running, and before applications are installed.
Type the JSON statement here, or provide a path to a file that contains a JSON statement. Format:
file:\\<path_to_policy_config_file>

Custom AMI ID Optional. ID of a custom Amazon Linux Amazon Machine Image (AMI). Copy the value from the
AWS console.

Security
Configuration

Optional. The name of a security configuration for authentication and encryption on the cluster.
Amazon EMR supports server-side encryption (SSE) and client-side encryption (CSE)
configurations.
You can use the following at-rest security configurations:
- SSE with Amazon S3-managed keys (SSE-S3)
- SSE with AWS KMS-managed keys (SSE-KMS)
- CSE with AWS KMS-managed keys (CSE-KMS)
- Custom CSE configurations*
You can use the following in-transit security configurations:
- PEM
- Custom in-transit configurations*
You can also use custom AMIs for local disk security.
* To use custom security configurations, manually copy the .jar file to the Data Integration Service
machine.

Applications Optional. Applications to add to the default applications that AWS installs.
AWS installs certain applications when it creates an EMR cluster. In addition, you can specify
additional applications. Select additional applications from the drop-down list.
This field is equivalent to the Software Configuration list in the AWS EMR cluster creation wizard.

Software
Settings

Optional. Custom configurations to apply to the applications installed on the cluster.
This field is equivalent to the Edit Software Settings field in the AWS cluster creation wizard. You
can use this as a method to modify the software configuration on the cluster.
Type the configuration JSON statement here, or provide a path to a file that contains a JSON
statement. Format: file:\\<path_to_custom_config_file>

Steps Optional. Commands to run after cluster creation. For example, you can use this to run Linux
commands or HDFS or Hive Hadoop commands.
This field is equivalent to the Add Steps field in the AWS cluster creation wizard.
Type the command statement here, or or provide a path to a file that contains a JSON statement.
Format: file:\\<path_to_command_file>

190 Chapter 9: Cluster Workflows

Advanced Properties for Azure HDInsight
Set the advanced properties for an Azure HDInsight cluster.

The following table describes the Advanced properties for a Microsoft Azure HDInsight cluster:

Property Description

Cluster Name Name of the cluster to create.

Azure Cluster Type Type of the cluster to be created.
Choose one of the options in the drop-down list.
Default is Hadoop.

HDInsight version HDInsight version to run on the cluster. Enter the HDInsight
version tag string to designate the version.
Default is the latest version supported.

Azure Cluster Location Use the drop-down list to choose the location in which to create
the cluster.

Head Node VM Size Size of the head node instance to create.
Default is Standard_D12_v2.

Number of Worker Node Instances Number of worker node instances to create in the cluster.
Default is 2.

Worker Node VM Size Size of the worker node instance to create.
Default is Standard_D13_v2.

Default Storage Type Primary storage type to be used for the cluster.
Choose one of the following options:
- Azure Data Lake Store
- Azure BLOB storage account
Default is BLOB storage

Default Storage Container or Root Mount Path Default container for data. Type one of the following paths:
- For ADLS storage, type the path to the storage. For example, you

can type storage-name or storage-name/folder-name.
- For blob storage, type the path to the container. Format: /path/

Log Location Optional. Path to the directory to store workflow event logs.
Default is /app-logs.

Create Cluster Task Properties 191

Property Description

Attach External Hive Metastore If you select this option, the workflow attaches an external Hive
metastore to the cluster if you configured an external Hive
metastore in the cloud provisioning configuration.

Bootstrap JSON String JSON statement to run during cluster creation. You can use this
statement to configure cluster details. For example, you could
configure Hadoop properties on the cluster, add tags to cluster
resources, or run script actions.
Choose one of the following methods to populate the property:
- Type the JSON statement. Use the following format:
{ "core-site" : { "<sample_property_key1>":
"<sample_property_val1>",
"<sample_property_key2>":
"<sample_property_val2>" }, "tags":
{ "<tag_key>": "<tag_val>" }, "scriptActions":
[{ "name": "setenvironmentvariable", "uri":
"scriptActionUri", "parameters": "headnode" }] }

- Provide a path to a file that contains a JSON statement. Format:
file://<path_to_bootstrap_file>

Using ADLS Gen2 Resources with a Cluster Workflow

When a cluster workflow accesses ADLS Gen2 resources, verify that the Data Integration Service machine is
configured to run in the same time zone that the cluster runs in.

Set the time zone environment variable on each Data Integration Service machine to the time zone of the
cluster and then restart the domain.

To set the time zone, run the following command on the Data Integration Service machine:

setenv TZ <cluster time zone>

Advanced Properties for Azure Databricks
Set general and advanced options for advanced properties of the Azure Databricks Create Cluster task.

General Options
The following table describes the general options that you can set for a Databricks cluster:

Property Description

Cluster Name Name of the cluster to create.

Databricks
Runtime Version

The Databricks version to run on the cluster.
Default is the latest supported version.
To manually enter a version, select (Assign to Task Input). The Developer tool creates a Create
Cluster Task Input called Databricks Runtime Version. Set the value of the input to the Databricks
version tag string.
For example, set the value to 5.5.x-scala2.11 to use Databricks version 5.5.

Python Version The Python version to run if you include a Python transformation.
Default is the latest supported version.

192 Chapter 9: Cluster Workflows

Property Description

Job Cluster Select to create a Databricks job cluster.
Default is false.

Warm Pool Select to create a Databricks cluster using a warm pool instance.
Default is false.

Pool ID Value of the DatabricksInstancePoolId property that identifies the warm pool resource.
To retrieve the value of this property, go to the warm pool in the Databricks workspace and
browse to Configuration > Tags.
Required when the Warm Pool option is checked.

Driver Type The type of node that you want to use for the driver node.
Default is the worker type ID.

Worker Type The type of node that you want to use for the worker node.

Workers The number of worker nodes to create for the cluster. If you configure the cluster to scale
automatically, this property is ignored.
Default is 1.

Autoscale Automatically scales the number of worker nodes based on workload.

Min Workers The minimum number of worker nodes to use when the cluster is configured to scale
automatically.
Default is 0.

Max Workers The maximum number of worker nodes to use when the cluster is configured to scale
automatically.
Default is 1.

Advanced Options
Configure advanced options such as environment variables and automatic termination.

The following table describes the advanced options that you can set for an Azure Databricks cluster:

Property Description

Auto Termination Enables automatic termination of the cluster.

Auto Termination
Time

Terminates the cluster after it is inactive for the specified number of minutes. Enter a value
between 10 and 10,000. If you do not configure this, or if you set to 0, the cluster will not
automatically terminate.

Cluster Log Conf The location to deliver logs for long-term storage. If configured, the Databricks Spark engine will
deliver the logs every five minutes.
Provide the path to DBFS.

Create Cluster Task Properties 193

Property Description

Init Scripts The Databricks workspace location to store init scripts. You can enter multiple destinations. The
scripts are run sequentially in the order that you configure them to run. If you need to install
additional Python libraries, specify the init script file location in this property.
Use the following format:

Databricks workspace 1:/<path 1 to init script>,Databricks workspace 2:/
<path 2 to init script>

Cluster Tags Labels that you can assign to resources for tracking purposes. Enter key-value pairs in the
following format: <key1>=<value1>,<key2>=<value2>. You can also provide a path to a local file
that contains the key-value pairs.
Use the following format:

file:\\<file path>

Spark
Configurations

Performance configurations for the Databricks Spark engine. Enter key-value pairs in the
following format: key1='value1' key2='value2'. You can also provide a path to a file that contains
the key-value pairs.

Environment
Variables

Environment variables that you can configure for the Databricks Spark engine. Enter key-value
pairs in the following format: key1='value1' key2='value2'
Enter the userJson and pathToFile properties in the environment variables when you use a JSON
file to configure Create Cluster task properties. See “Create the JSON File” on page 180.

Advanced Properties for AWS Databricks
Set the advanced properties for an AWS Databricks cluster.

General Options
The following table describes the general options that you can set for a Databricks cluster:

Property Description

Cluster Name Name of the cluster to create.

Databricks
Runtime Version

The Databricks version to run on the cluster.
Default is the latest supported version.
To manually enter a version, select (Assign to Task Input). The Developer tool creates a Create
Cluster Task Input called Databricks Runtime Version. Set the value of the input to the Databricks
version tag string.
For example, set the value to 5.5.x-scala2.11 to use Databricks version 5.5.

Python Version The Python version to run if you include a Python transformation.
Default is the latest supported version.

Job Cluster Select to create a Databricks job cluster.
Default is false.

Warm Pool Select to create a Databricks cluster using a warm pool instance.
Default is false.

194 Chapter 9: Cluster Workflows

Property Description

Pool ID Value of the DatabricksInstancePoolId property that identifies the warm pool resource.
To retrieve the value of this property, go to the warm pool in the Databricks workspace and
browse to Configuration > Tags.
Required when the Warm Pool option is checked.

Driver Type The type of node that you want to use for the driver node.
Default is the worker type ID.

Worker Type The type of node that you want to use for the worker node.

Workers The number of worker nodes to create for the cluster. If you configure the cluster to scale
automatically, this property is ignored.
Default is 1.

Autoscale Automatically scales the number of worker nodes based on workload.

Min Workers The minimum number of worker nodes to use when the cluster is configured to scale
automatically.
Default is 0.

Max Workers The maximum number of worker nodes to use when the cluster is configured to scale
automatically.
Default is 1.

Advanced Options
Configure advanced options such as automatic termination and on-demand instances.

The following table describes advanced options that you can set for an AWS Databricks cluster:

Property Description

Enable autoscaling
local storage

Enables Databricks to monitor available disk space on worker nodes and automatically add
additional EBS volumes.

EBS Volume Type The type of volume that Databricks can add to cluster nodes.
Set this property when you enable autoscaling.

Number of
Volumes

The number of volumes to provision for each instance. Enter a value between 0 and 10.
Set this property when you enable autoscaling and configure EBS volume type.

Size in GB The size in gigabytes of each EBS volume.
Set this property when you enable autoscaling and configure EBS volume type.

Auto Termination Enables automatic termination of the cluster.

Auto Terminate
Time

Terminates the cluster after it is inactive for the specified number of minutes. Enter a value
between 10 and 10,000. If you do not configure this, or if you set to 0, the cluster will not
automatically terminate.

Create Cluster Task Properties 195

Property Description

On-Demand/Spot
Composition

The number of on-demand nodes. Enter a value between 0 and the number of worker nodes set
in General Options. Any remaining worker nodes will be spot instances.
On-demand nodes are always available to use. Spot instances might terminate running jobs if
they become unavailable. The driver node is always an on-demand node.
Set this property when you enable Spot fall back to On-Demand.
Default is 1.

Spot fall back to
On-Demand

Enables on-demand instances to be used as a fallback.
If you are using spot instances and the market price for spot instances surges above your spot
bid price, AWS terminates the spot instances. When you enable this property, on-demand
instances are used in place of the spot instances when they terminate.

Availability Zone The AWS cluster availability zone.
Default is us-east-1e.

Spot Bid Price The maximum percent of the on-demand instance price that you bid on spot instances.
Spot instances are priced as a percentage of the on-demand price and are not always available.
If the market price for spot instances surges above the bid price set here and you do not enable
Spot fall back to On-Demand, AWS terminates the spot instance.
Default is 100%.

IAM Role ARN The instance profile ARN (Amazon Resource Name) that corresponds to the AWS IAM (Identity
and Access Management) role. Copy the value from the AWS console in the following format:

arn:aws:iam::<account-id>:instance-profile/<role-name>
IAM roles allow you to access data from Databricks clusters. Add new IAM roles in the
Administrator tool.

Spark
Configurations

Performance configurations for the Databricks Spark engine. Enter key-value pairs in the
following format: key1='value1' key2='value2'. You can also provide a path to a file that
contains the key-value pairs.

Environment
Variables

Environment variables that you can configure for the Databricks Spark engine. Enter key-value
pairs in the following format: key1='value1' key2='value2'
Enter the userJson and pathToFile properties in the environment variables when you use a
JSON file to configure Create Cluster task properties. See “Create the JSON File” on page 180.

Cluster Tags Labels that you can assign to resources for tracking purposes. Enter key-value pairs in the
following format: <key1>=<value1>,<key2>=<value2>. You can also provide a path to a local file
that contains the key-value pairs.
Use the following format:

file:\\<file path>

SSH Public Key The SSH public key to log into the driver and worker instances if you enable SSH. Copy the
value from the Databricks console.

196 Chapter 9: Cluster Workflows

Property Description

Cluster Log Conf The location to deliver logs for long-term storage. If configured, the Databricks Spark engine
will deliver the logs every five minutes.
Provide the path to DBFS.

Init Scripts The Databricks workspace location to store init scripts. You can enter multiple destinations.
The scripts are run sequentially in the order that you configure them to run. If you need to
install additional Python libraries, specify the init script file location in this property.
Use the following format:

Databricks workspace 1:/<path 1 to init script>,Databricks workspace 2:/
<path 2 to init script>

Advanced Properties for the Blaze Engine
If you want to use the Blaze engine to run mappings on the cloud platform cluster, you must set cluster
configuration properties in the Software Setting property of the Create Cluster task.

Configure the Create Cluster task to set configuration properties in *-site.xml files on the cluster. Hadoop
clusters run based on these settings.

Use a text file to specify *-site.xml file settings, and specify the path to the file in the Software Settings
property.

The following text shows sample configuration of the Software Settings property file:

[
 {
 "Classification":"yarn-site",
 "Properties":{
 "yarn.scheduler.minimum-allocation-mb":"250",
 "yarn.scheduler.maximum-allocation-mb":"8192",
 "yarn.nodemanager.resource.memory-mb":"16000",
 "yarn.nodemanager.resource.cpu-vcores":"12"
 }
 },
 {
 "Classification":"core-site",
 "Properties":{
 "hadoop.proxyuser.<DIS/OSPUSER>.groups":"<group names>",
 "hadoop.proxyuser.<DIS/OSPUSER>.hosts":"*"
 }
 }
]

yarn-site

yarn.scheduler.minimum-allocation-mb

The minimum RAM available for each container. Required for Blaze engine resource allocation.

yarn.scheduler.maximum-allocation-mb

The maximum RAM available for each container. Required for Blaze engine resource allocation.

yarn.nodemanager.resource.memory-mb

The maximum RAM available for each container. Set the maximum memory on the cluster to increase
resource memory available to the Blaze engine.

yarn.nodemanager.resource.cpu-vcores

The number of virtual cores for each container. Required for Blaze engine resource allocation.

Create Cluster Task Properties 197

core-site

hadoop.proxyuser.<proxy user>.groups

Defines the groups that the proxy user account can impersonate. On a secure cluster the <proxy user> is
the Service Principal Name that corresponds to the cluster keytab file. On a non-secure cluster, the
<proxy user> is the system user that runs the Informatica daemon.

Set to group names of impersonation users separated by commas. If less security is preferred, use the
wildcard " * " to allow impersonation from any group.

hadoop.proxyuser.<user>.hosts

Defines the host machines from which impersonated connections are allowed. On a secure cluster the
<proxy user> is the Service Principal Name that corresponds to the cluster keytab file. On a non-secure
cluster, the <proxy user> is the system user that runs the Informatica daemon.

Set the property to " * " to allow impersonation from any host. This is required to run a Blaze mapping on
a cloud platform cluster.

Advanced Properties for a Hive Metastore Database
If you want to use a relational database on the cloud platform as the Hive metastore database for the cluster,
you must set cluster configuration properties in the Software Setting property of the Create Cluster task.

Configure the Create Cluster task to set configuration properties in the hive-site.xml configuration file on the
cluster. Use a text file to specify hive-site settings, and specify the path to the file in the Software Settings
property.

Create the following properties in the Software Settings property file:
javax.jdo.option.ConnectionURL

JDBC connection string for the data store.

javax.jdo.option.ConnectionDriverName

JDBC driver class name for the data store. Specify a JDBC driver that is compatible with the cloud
platform.

javax.jdo.option.ConnectionUserName

User name to use to connect to the database.

javax.jdo.option.ConnectionPassword

Password for the database user account.

The following text shows sample configuration of the Software Settings property file:

{
 "Classification":"hive-site",
 "Properties":{
 "javax.jdo.option.ConnectionURL":"jdbc:mysql:\/\/<RDS_HOST>:<PORT>\/
<USER_SCHEMA>?createDatabaseIfNotExist=true",
 "javax.jdo.option.ConnectionDriverName":"<JDBC driver name>",
 "javax.jdo.option.ConnectionUserName":"<USER>",
 "javax.jdo.option.ConnectionPassword":"<USER>"
 }
 }

For example,

{
 "Classification":"hive-site",
 "Properties":{
 "javax.jdo.option.ConnectionURL":"jdbc:mysql:\/\/<host name>:<port number>\/

198 Chapter 9: Cluster Workflows

hive?createDatabaseIfNotExist=true",
 "javax.jdo.option.ConnectionDriverName":"org.mariadb.jdbc.Driver",
 "javax.jdo.option.ConnectionUserName":"hive",
 "javax.jdo.option.ConnectionPassword":"hive"
 }
 }

Create Cluster Task Properties 199

C h a p t e r 1 0

Profiles
This chapter includes the following topics:

• Profiles Overview, 200

• Native Environment, 200

• Hadoop Environment, 201

• Sampling Options, 202

• Creating a Single Data Object Profile in Informatica Developer, 202

• Creating an Enterprise Discovery Profile in Informatica Developer, 203

• Creating a Column Profile in Informatica Analyst, 204

• Creating an Enterprise Discovery Profile in Informatica Analyst, 206

• Creating a Scorecard in Informatica Analyst, 207

• Monitoring a Profile, 208

• Profiling Functionality Support, 208

• Troubleshooting, 209

Profiles Overview
You can create and run column profiles, enterprise discovery profiles, and scorecards in the native run-time
environment or Hadoop run-time environment.

When you create or edit a profile or scorecard, you can choose Native or Hadoop validation environment. You
can choose the Native, Blaze, or Spark run-time environment based on the validation environment. To
process the profiles quickly, you can choose the Hadoop validation environment. You can run profiles with a
Hive, Oracle, or HDFS data sources on the Spark engine in the Hadoop environment.

Native Environment
In Informatica Developer, you can run single object profiles, multiple object profiles, and enterprise discovery
profiles in the native environment. In Informatica Analyst, you can run column profiles, enterprise discovery
profiles, and scorecards in the native environment.

When you run a profile in the native run-time environment, the Analyst tool or Developer tool submits the
profile jobs to the Profiling Service Module. The Profiling Service Module then breaks down the profile jobs

200

into a set of mappings. The Data Integration Service runs these mappings on the same machine where the
Data Integration Service runs and writes the profile results to the profiling warehouse. By default, all profiles
run in the native run-time environment.

You can use native sources to create and run profiles in the native environment. A native data source is a
non-Hadoop source, such as a flat file, relational source, or mainframe source. You can also run a profile on a
mapping specification or a logical data source with a Hive or HDFS data source in the native environment.

Hadoop Environment
You can run profiles and scorecards in the Hadoop environment on the Blaze or Spark engine.

Select a Hadoop connection to push the profile logic to the Blaze or Spark engine to run a profile. When you
run a profile on the Blaze or Spark engine, the Analyst tool or Developer tool submits the profile job to the
Profiling Service Module. The Profiling Service Module then breaks down the profile jobs into a set of
mappings. The Data Integration Service pushes the mappings to the Hadoop environment through the
Hadoop connection. The Blaze or Spark engine processes the mappings and the Data Integration Service
writes the profile results to the profiling warehouse.

In the Developer tool, you can run single object profiles and multiple object profiles, and enterprise discovery
profiles on the Blaze or Spark engine. In the Analyst tool, you can run column profiles, enterprise discovery
profiles, and scorecards on the Blaze or Spark engine.

Column Profiles for Sqoop Data Sources
You can run a column profile on data objects that use Sqoop. After you choose Hadoop as a validation
environment, you can select the Blaze engine or Spark engine on the Hadoop connection to run the column
profiles.

When you run a column profile on a logical data object or customized data object, you can configure the num-
mappers argument to achieve parallelism and optimize performance. You must also configure the split-by
argument to specify the column based on which Sqoop must split the work units.

Use the following syntax:

--split-by <column_name>

If the primary key does not have an even distribution of values between the minimum and maximum range,
you can configure the split-by argument to specify another column that has a balanced distribution of data to
split the work units.

If you do not define the split-by column, Sqoop splits work units based on the following criteria:

• If the data object contains a single primary key, Sqoop uses the primary key as the split-by column.

• If the data object contains a composite primary key, Sqoop defaults to the behavior of handling composite
primary keys without the split-by argument. See the Sqoop documentation for more information.

• If a data object contains two tables with an identical column, you must define the split-by column with a
table-qualified name. For example, if the table name is CUSTOMER and the column name is FULL_NAME,
define the split-by column as follows:
--split-by CUSTOMER.FULL_NAME

• If the data object does not contain a primary key, the value of the m argument and num-mappers
argument default to 1.

When you use Cloudera Connector Powered by Teradata or Hortonworks Connector for Teradata and the
Teradata table does not contain a primary key, the split-by argument is required.

Hadoop Environment 201

Sampling Options
Sampling options determine the number of rows on which the Analyst tool or Developer tool runs a profile.
You can configure sampling options when you define a profile or run a profile.

The following table describes the sampling options for a profile:

Sampling Option Description

All rows Runs a profile on all the rows in the data object.
Supported on Native, Blaze, and Spark run-time environment.

Sample first <number>
rows

Runs a profile on the sample rows from the beginning of the rows in the data object.
You can choose a maximum of 2,147,483,647 rows.
Supported on Native and Blaze run-time environment.

Random sample <number>
rows

Runs a profile on a randomly picked number of the rows in the data object. You can
choose a maximum of 2,147,483,647 rows.
Supported on Native and Blaze run-time environment.

Random sample (auto) Runs a profile on the sample rows computed on the basis of the number of rows in the
data object.
Supported on Native and Blaze run-time environment.

Limit n <number> rows Runs a profile based on the number of rows in the data object. When you choose to run
a profile in the Hadoop validation environment, Spark engine collects samples from
multiple partitions of the data object and pushes the samples to a single node to
compute sample size. The Limit n sampling option supports Oracle, SQL Server, and
DB2 databases. You cannot apply the Advanced filter with the Limit n sampling option.
Supported on Spark run-time environment.

Random percentage Runs a profile on a percentage of rows in the data object.
Supported on Spark run-time environment.

Exclude approved data
types and data domains
from the data type and
data domain inference in
the subsequent profile run

Excludes the approved data type or data domain from data type and data domain
inference from the next profile run.

Creating a Single Data Object Profile in Informatica
Developer

You can create a single data object profile for one or more columns in a data object and store the profile
object in the Model repository.

1. In the Object Explorer view, select the data object you want to profile.

2. Click File > New > Profile to open the profile wizard.

3. Select Profile and click Next.

4. Enter a name for the profile and verify the project location. If required, browse to a new location.

202 Chapter 10: Profiles

5. Optionally, enter a text description of the profile.

6. Verify that the name of the data object you selected appears in the Data Objects section.

7. Click Next.

8. Configure the profile operations that you want to perform. You can configure the following operations:

• Column profiling

• Primary key discovery

• Functional dependency discovery

• Data domain discovery

Note: To enable a profile operation, select Enabled as part of the "Run Profile" action for that operation.
Column profiling is enabled by default.

9. Review the options for your profile.

You can edit the column selection for all profile types. Review the filter and sampling options for column
profiles. You can review the inference options for primary key, functional dependency, and data domain
discovery. You can also review data domain selection for data domain discovery.

10. Review the drill-down options, and edit them if necessary. By default, the Enable Row Drilldown option is
selected. You can edit drill-down options for column profiles. The options also determine whether drill-
down operations read from the data source or from staged data, and whether the profile stores result
data from previous profile runs.

11. In the Run Settings section, choose a validation environment. Choose Native, Hadoop or Databricks as
the validation environment. You can choose Native, Blaze or Spark as the run-time environment. After
you choose Blaze or Spark, you can select a Hadoop connection. If you choose Databricks, you can
select a Databricks connection.

12. Click Finish.

Creating an Enterprise Discovery Profile in
Informatica Developer

You can create a profile on multiple data sources under multiple connections. The Developer tool creates
individual profile tasks for each source.

1. In the Object Explorer view, select multiple data objects you want to run a profile on.

2. Click File > New > Profile to open the profile wizard.

3. Select Enterprise Discovery Profile and click Next.

4. Enter a name for the profile and verify the project location. If required, browse to a new location.

5. Verify that the name of the data objects you selected appears within the Data Objects section. Click
Choose to select more data objects, if required.

6. Click Next.

The Add Resources to Profile Definition pane appears. You can select multiple, external relational
connections and data sources from this pane.

7. Click Choose to open the Select Resources dialog box.

The Resources pane lists all the internal and external connections and data objects under the
Informatica domain.

Creating an Enterprise Discovery Profile in Informatica Developer 203

8. Click OK to close the dialog box.

9. Click Next.

10. Configure the profile types that you want to run. You can configure the following profile types:

• Data domain discovery

• Column profile

• Primary key profile

• Foreign key profile

Note: Select Enabled as part of "Run Enterprise Discovery Profile" action for the profile types that you
want to run as part of the enterprise discovery profile. Column profiling is enabled by default.

11. Review the options for the profile.

You can edit the sampling options for column profiles. You can also edit the inference options for data
domain, primary key, and foreign key profiles.

12. Select Create profiles.

The Developer tool creates profiles for each individual data source.

13. Select Run enterprise discovery profile on finish to run the profile when you complete the profile
configuration. If you enabled all the profiling operations, the Developer tool runs column, data domain,
and primary key profiles on all selected data sources. Then, the Developer tool runs a foreign key profile
across all the data sources.

14. Click Finish.

After you run an enterprise discovery profile, you need to refresh the Model Repository Service before
viewing the results. This step is required as the import of metadata for external connections happens in
the Model repository. You need to refresh the Model Repository Service so that the Developer tool
reflects the changes to the Model repository.

Creating a Column Profile in Informatica Analyst
You can create a custom profile or default profile. When you create a custom profile, you can configure the
columns, sample rows, and drill-down options. When you create a default profile, the column profile and data
domain discovery runs on the entire data set with all the data domains.

1. In the Discovery workspace, click Profile, or select New > Profile from the header area.

Note: You can right-click on the data object in the Library workspace and create a profile. In this profile,
the profile name, location name, and data object are extracted from the data object properties. You can
create a default profile or customize the settings to create a custom profile.

The New Profile wizard appears.

2. The Single source option is selected by default. Click Next.

3. In the Specify General Properties screen, enter a name and an optional description for the profile. In the
Location field, select the project or folder where you want to create the profile. Click Next.

4. In the Select Source screen, click Choose to select a data object, or click New to import a data object.
Click Next.

• In the Choose Data Object dialog box, select a data object. Click OK.

204 Chapter 10: Profiles

The Properties pane displays the properties of the selected data object. The Data Preview pane
displays the columns in the data object.

• In the New Data Object dialog box, you can choose a connection, schema, table, or view to create a
profile on, select a location, and create a folder to import the data object. Click OK.

5. In the Select Source screen, select the columns that you want to run a profile on. Optionally, select Name
to select all the columns. Click Next.

All the columns are selected by default. The Analyst tool lists column properties, such as the name, data
type, precision, scale, nullable, and participates in the primary key for each column.

6. In the Specify Settings screen, choose to run a column profile, data domain discovery, or a column
profile and data domain discovery. By default, column profile option is selected.

• Choose Run column profile to run a column profile.

• Choose Run data domain discovery to perform data domain discovery. In the Data domain pane,
select the data domains that you want to discover, select a conformance criteria, and select the
columns for data domain discovery in the Edit columns selection for data domin discovery dialog
box.

• Choose Run column profile and Run data domain discovery to run the column profile and data
domain discovery. Select the data domain options in the Data domain pane.

Note: By default, the columns that you select is for column profile and data domain discovery. Click
Edit to select or deselect columns for data domain discovery.

• Choose Data, Columns, or Data and Columns to run data domain discovery on.

• Choose a sampling option. You can choose All rows (complete analysis), Sample first, Random
sample, Random sample (auto), Limit n, or Random percentage as a sampling option in the Run
profile on pane. The sampling option applies to column profile and data domain discovery.

• Choose a drilldown option. You can choose Live or Staged drilldown option, or you can choose Off to
disable drilldown in the Drilldown pane. Optionally, click Select Columns to select columns to drill
down on. You can choose to omit data type and data domain inference for columns with an approved
data type or data domain.

• Choose Native, Blaze, Spark, or Databricks as the run-time environment. If you choose Blaze or
Spark, click Choose to select a Hadoop connection in the Select a Hadoop Connection dialog box. If
you choose Databricks, click Choose to select a Databricks connection.

7. Click Next.

The Specify Rules and Filters screen opens.

8. In the Specify Rules and Filters screen, you can perform the following tasks:

• Create, edit, or delete a rule. You can apply existing rules to the profile.

• Create, edit, or delete a filter.

Note: When you create a scorecard on this profile, you can reuse the filters that you create for the
profile.

9. Click Save and Finish to create the profile, or click Save and Run to create and run the profile.

Creating a Column Profile in Informatica Analyst 205

Creating an Enterprise Discovery Profile in
Informatica Analyst

You can run column profile and data domain discovery as part of enterprise discovery in Informatica Analyst.

1. In the Discovery workspace, select New > Profile.

The New Profile wizard appears.

2. Select Enterprise Discovery . Click Next.

The Specify General Properties tab appears.

3. In the Specify General Properties tab, enter a name for the enterprise discovery profile and an optional
description. In the Location field, select the project or folder where you want to create the profile. Click
Next.

The Select Data Objects tab appears.

4. In the Select Data Objects tab, click Choose.

The Choose Data objects dialog box appears.

5. In the Choose Data objects dialog box, choose one or more data objects to add to the profile. Click Save.

The data objects appear in the Data Objects pane.

6. Click Next.

The Select Resources tab appears.

7. In the Select Resources tab, click Choose to open the Select Resources tab.

You can import data from multiple relational data sources.

8. In the Select Resources tab, select the connections, schemas, tables, and views that you want to include
in the profile. Click Save.

The left pane in the dialog box lists all the internal and external connections, schemas, tables, and views
under the Informatica domain.

The resources appear in the Resource pane.

9. Click Next.

The Specify Settings tab appears.

10. In the Specify Settings tab, you can configure the column profile options and data domain discovery
options. Click Save and Finish to save the enterprise discovery profile, or click Save and Run to run the
profile.

You can perform the following tasks in the Specify Settings tab.

• Enable data domain discovery. Click Choose to select data domains that you want to discover from
the Choose Data Domains dialog box. The selected data domains appear in the Data Domains for
Data Domain Discovery pane.

• Run data domain on data, column name, or on both data and column name.

• Select all the rows in the data source, or choose a maximum number of rows to run domain discovery
on.

• Choose a minimum conformance percentage or specify the minimum number of conforming rows for
data domain discovery.

• Enable column profile settings and select all rows or first few rows in the data source for the column
profile. You can exclude data type inference for columns with approved data types in the column
profile.

206 Chapter 10: Profiles

• Choose Native, Blaze, Spark, or Databricks as the run-time environment. After you choose Blaze, or
Spark, select a Hadoop connection to run profiles. If you choose Databricks, select a Databricks
connection.

You can view the enterprise discovery results under the Summary and Profiles tabs.

Creating a Scorecard in Informatica Analyst
Create a scorecard and add columns from a profile to the scorecard. You must run a profile before you add
columns to the scorecard.

1. In the Library workspace, select the project or folder that contains the profile.

2. Click the profile to open the profile.

The profile results appear in the summary view in the Discovery workspace.

3. Click Actions > Add to scorecard.

The Add to Scorecard wizard appears.

4. In the Add to Scorecard screen, you can choose to create a new scorecard, or edit an existing scorecard
to add the columns to a predefined scorecard. The New Scorecard option is selected by default. Click
Next.

5. In the Step 2 of 8 screen, enter a name for the scorecard. Optionally, you can enter a description for the
scorecard. Select the project and folder where you want to save the scorecard. Click Next.

By default, the scorecard wizard selects the columns and rules defined in the profile. You cannot add
columns that are not included in the profile.

6. In the Step 3 of 8 screen, select the columns and rules that you want to add to the scorecard as metrics.
Optionally, click the check box in the left column header to select all columns. Optionally, select Column
Name to sort column names. Click Next.

7. In the Step 4 of 8 screen, you can add a filter to the metric.

You can apply the filter that you created for the profile to the metrics, or create a new filter. Select a
metric in the Metric Filters pane, and click the Manage Filters icon to open the Edit Filter: column name
dialog box. In the Edit Filter: column name dialog box, you can choose to perform one of the following
tasks:

• Choose a filter that you created for the profile. Click Next.

• Select an existing filter. Click the edit icon to edit the filter in the Edit Filter dialog box. Click Next.

• Click the plus (+) icon to create filters in the New Filter dialog box. Click Next.

Optionally, you can choose to apply the selected filters to all the metrics in the scorecard.

The filter appears in the Metric Filters pane.

8. In the Step 4 of 8 screen, click Next.

9. In the Step 5 of 8 screen, select each metric in the Metrics pane to perform the following tasks:

• Configure valid values. In the Score using: Values pane, select one or more values in the Available
Values pane, and click the right arrow button to move them to the Valid Values pane. The total
number of valid values for a metric appears at the top of the Available Values pane.

• Configure metric thresholds. In the Metric Thresholds pane, set the thresholds for Good, Acceptable,
and Unacceptable scores.

Creating a Scorecard in Informatica Analyst 207

• Configure the cost of invalid data. To assign a constant value to the cost for the metric, select Fixed
Cost. To attach a numeric column as a variable cost to the metric, select Variable Cost, and click
Select Column to select a numeric column. Optionally, click Change Cost Unit to change the unit of
cost. If you do not want to configure the cost of invalid data for the metric, choose None.

10. Click Next.

11. In the Step 6 of 8 screen, you can select a metric group to which you can add the metrics, or create a
new metric group, To create a new metric group, click the group icon. Click Next.

12. In the Step 7 of 8 screen, specify the weights for the metrics in the group and thresholds for the group.

13. In the Step 8 of 8 screen, select Native, Hadoop, or Databricks as a run-time environment to run the
scorecard. You can choose a Blaze or Spark engine in the Hadoop run-time environment. If you choose
the Databricks, Browse to choose a Databricks connection to run the profile. click If you choose the
Blaze or Spark engine, click Browse to choose a Hadoop connection to run the profile.

14. Click Save to save the scorecard, or click Save & Run to save and run the scorecard.

The scorecard appears in the Scorecard workspace.

Monitoring a Profile
You can monitor a profile in the Administrator tool.

1. In the Administrator tool, click the Monitor tab.

2. In the Navigator workspace, select Jobs.

3. Select a profiling job.

4. In the Summary Statistics tab, you can view the general properties of the profile, summary statistics, and
detailed statistics of the profile.

5. Click the Execution Statistics tab to view execution statistics for the profile.

Profiling Functionality Support
You can connect to the profiling warehouse through JDBC or native connectivity. You can perform specific
functionality in profiling based on the profiling warehouse connection.

The following table lists the functionality that you can perform based on the type of profiling warehouse
connection that you choose in Data Engineering Quality and Data Engineering Integration:

Functionality JDBC Connection Native Connection

Single data object column profile Supported Supported

Single data object data domain discovery Supported Supported

Single data object profile with primary key
discovery

Not supported Not supported

208 Chapter 10: Profiles

Functionality JDBC Connection Native Connection

Single data object profile with functional
dependency discovery

Not supported Not supported

Profile with Sample first <number> rows
sampling

Supported Supported

Profile with Random sample <number> rows
sampling

Supported Supported

Scorecard metrics and value cost Not supported Supported

Enterprise discovery profile with primary key and
foreign key discovery

Not supported Not supported

Enterprise discovery profile with join analysis
and overlap discovery

Not supported Not supported

Drill down on inferred values and value
frequencies

Supported Supported

Export profile results Supported Supported

Row count mapping* Not supported Supported

*Profiling runs Row Count Mapping when the stats helper fails to report the row count.

Troubleshooting
Can I drill down on profile results if I run a profile in the Hadoop environment?

Yes, except for profiles in which you have set the option to drill down on staged data.

I get the following error message when I run a profile in the Hadoop environment: “[LDTM_1055] The Integration Service
failed to generate a Hive workflow for mapping [Profile_CUSTOMER_INFO12_14258652520457390]." How do I resolve
this?

This error can result from a data source, rule transformation, or run-time environment that is not
supported in the Hadoop environment. For more information about objects that are not valid in the
Hadoop environment, see the Mappings in a Hadoop Environment chapter.

You can change the data source, rule, or run-time environment and run the profile again. View the profile
log file for more information on the error.

I see "N/A" in the profile results for all columns after I run a profile. How do I resolve this?

Verify that the profiling results are in the profiling warehouse. If you do not see the profile results, verify
that the database path is accurate in the Cluster Environment Variables property of the Hadoop
connection. You can also verify the database path from the Hadoop job tracker on the Monitoring tab of
the Administrator tool.

Troubleshooting 209

After I run a profile on a Hive source, I do not see the results. When I verify the Hadoop job tracker, I see the following
error when I open the profile job: "XML Parsing Error: no element found." What does this mean?

The Hive data source does not have any record and is empty. The data source must have a minimum of
one row of data for successful profile run.

After I run a profile on a Hive source, I cannot view some of the column patterns. Why?

When you import a Hive source, the Developer tool sets the precision for string columns to 4000. The
Developer tool cannot derive the pattern for a string column with a precision greater than 255. To resolve
this issue, set the precision of these string columns in the data source to 255 and run the profile again.

When I run a profile on large Hadoop sources, the profile job fails and I get an "execution failed" error. What can be the
possible cause?

One of the causes can be a connection issue. Perform the following steps to identify and resolve the
connection issue:

1. Open the Hadoop job tracker.

2. Identify the profile job and open it to view the MapReduce jobs.

3. Click the hyperlink for the failed job to view the error message. If the error message contains the
text "java.net.ConnectException: Connection refused", the problem occured because of an issue
with the Hadoop cluster. Contact your network administrator to resolve the issue.

210 Chapter 10: Profiles

C h a p t e r 1 1

Monitoring
This chapter includes the following topics:

• Overview of Monitoring, 211

• Hadoop Environment Logs, 211

• Blaze Engine Monitoring, 217

• Spark Engine Monitoring, 225

Overview of Monitoring
On the Monitor tab of the Administrator tool, you can view statistics and log events for mappings run in the
Hadoop environment. The Monitor tab displays current and historical information about mappings run on the
Blaze and Spark engines.

Use the Summary Statistics view to view graphical summaries of object state and distribution across the
Data Integration Services. You can also view graphs of the memory and CPU that the Data Integration
Services used to run the objects.

When you run a mapping in the Hadoop environment, the Data Integration Service generates log events. You
can view log events relating to different types of errors such as Hadoop connection failures, Hive query
failures, or other Hadoop job failures.

With the REST Operations Hub, you can also get monitoring statistics for deployed mappings that run on the
Data Integration Service or the Blaze or Spark engines.

Note: You cannot monitor the Databricks engine on the Monitoring tab.

Hadoop Environment Logs
The Data Integration Service generates log events when you run a mapping in the Hadoop environment.

You can view logs for the Blaze and Spark engines. You can view log events relating to different types of
errors such as Hadoop connection or job failures.

When you run a mapping on the Spark engine, you can view the Scala code in logs that the Logical Data
Translation Generator generates from the Informatica mapping.

You can view reject files in the reject file directory specified for the Data Integration Service.

211

YARN Web User Interface
You can view the applications that ran on a cluster in the YARN web user interface. Click the Monitoring URL
for Blaze or Spark jobs to access the YARN web user interface.

Blaze and Spark engines run on the Hadoop cluster that you configure in the Hadoop connection. The YARN
web user interface shows each job that the engine runs as a YARN application.

The following image shows the Application Monitoring page of the YARN web user interface:

The Application Type indicates which engine submitted the YARN application.

The application ID is the unique identifier for the application. The application ID is a link to the application
summary. The URL is the same as the Monitoring URL in the Administrator tool.

Click the Logs link in the application summary to view the application logs on the Hadoop cluster.

The amount of information in the application logs depends on the tracing level that you configure for a
mapping in the Developer tool. The following table describes the amount of information that appears in the
application logs for each tracing level:

Tracing Level Messages

None The log displays FATAL messages. FATAL messages include non-recoverable system failures
that cause the service to shut down or become unavailable.

Terse The log displays FATAL and ERROR code messages. ERROR messages include connection
failures, failures to save or retrieve metadata, service errors.

Normal The log displays FATAL, ERROR, and WARNING messages. WARNING errors include recoverable
system failures or warnings.

Verbose
initialization

The log displays FATAL, ERROR, WARNING, and INFO messages. INFO messages include
system and service change messages.

Verbose data The log displays FATAL, ERROR, WARNING, INFO, and DEBUG messages. DEBUG messages are
user request logs.

212 Chapter 11: Monitoring

Accessing the Monitoring URL
The Monitoring URL opens the Blaze Job Monitor web application or the YARN web user interface. Access
the Monitoring URL from the Execution Statistics view in the Administrator tool.

1. In the Monitor tab of the Administrator tool, click the Execution Statistics view.

2. Select Ad Hoc Jobs or select a deployed mapping job or workflow from an application in the Navigator.

The list of jobs appears in the contents panel.

3. Select a mapping job and expand the mapping to select a grid task for the mapping.

The Monitoring URL appears in the Properties view.

Viewing Hadoop Environment Logs in the Administrator Tool
You can view log events for a Blaze mapping from the Monitor tab of the Administrator tool.

1. In the Administrator tool, click the Monitor tab.

2. Select the Execution Statistics view.

3. In the Navigator, choose to open an ad hoc job, a deployed mapping job, or a workflow.

• To choose an ad hoc job, expand a Data Integration Service and click Ad Hoc Jobs.

• To choose a deployed mapping job, expand an application and click Deployed Mapping Jobs.

• To choose a workflow, expand an application and click Workflows.

The list of jobs appears in the contents panel.

Hadoop Environment Logs 213

4. Click Actions > View Logs for Selected Object to view the run-time logs for the mapping.

The log file shows the results of the Hive queries and Blaze engine queries run by the Data Integration
Service. This includes the location of Hive session logs and Hive session history file.

Monitoring a Mapping
You can monitor a mapping that runs in the Hadoop environment.

1. In the Administrator tool, click the Monitor tab.

2. Select the Execution Statistics view.

3. In the Navigator, choose to open an ad hoc job, a deployed mapping job, or a workflow.

• To choose an ad hoc job, expand a Data Integration Service and click Ad Hoc Jobs.

214 Chapter 11: Monitoring

• To choose a deployed mapping job, expand an application and click Deployed Mapping Jobs.

Hadoop Environment Logs 215

• To choose a workflow, expand an application and click Workflows.

The list of jobs appears in the contents panel.

4. Click a job to view its properties.

The contents panel shows the default Properties view for the job. For a Blaze engine mapping, the Blaze
engine monitoring URL appears in the general properties in the details panel. The monitoring URL is a
link to the YARN web user interface for Spark jobs.

5. Choose a view in the contents panel to view more information about the job:

• To view the execution plan for the mapping, select the Execution Plan view.

• To view the summary statistics for a job, click the Summary Statistics view.

• To view the detailed statistics for a job, click the Detailed Statistics view.

Note: You can view the number of rows processed in the Summary Statistics for a Hive source or target.
The remaining values do not appear for Hive sources and targets.

216 Chapter 11: Monitoring

The following table describes the mapping job states in the Administrator tool contents panel:

Job Status Rules and Guidelines

Queued The job is in the queue.

Running The Data Integration Service is running the job.

Completed The job ran successfully.

Aborted The job was flushed from the queue at restart or the node shut down unexpectedly while the job was
running.

Failed The job failed while running or the queue is full.

Canceled The job was deleted from the queue or cancelled while running.

Unknown The job status is unknown.

Blaze Engine Monitoring
You can monitor statistics and view log events for a Blaze engine mapping job in the Monitor tab of the
Administrator tool. You can also monitor mapping jobs for the Blaze engine in the Blaze Job Monitor web
application.

The following image shows the Monitor tab in the Administrator tool:

The Monitor tab has the following views:

Blaze Engine Monitoring 217

Summary Statistics

Use the Summary Statistics view to view graphical summaries of object states and distribution across the
Data Integration Services. You can also view graphs of the memory and CPU that the Data Integration
Services used to run the objects.

Execution Statistics

Use the Execution Statistics view to monitor properties, run-time statistics, and run-time reports. In the
Navigator, you can expand a Data Integration Service to monitor Ad Hoc Jobs or expand an application to
monitor deployed mapping jobs or workflows

When you select Ad Hoc Jobs, deployed mapping jobs, or workflows from an application in the Navigator of
the Execution Statistics view, a list of jobs appears in the contents panel. The contents panel displays jobs
that are in the queued, running, completed, failed, aborted, and cancelled state. The Data Integration Service
submits jobs in the queued state to the cluster when enough resources are available.

The contents panel groups related jobs based on the job type. You can expand a job type to view the related
jobs under it.

Access the following views in the Execution Statistics view:
Properties

The Properties view shows the general properties about the selected job such as name, job type, user
who started the job, and start time of the job. You can also monitor jobs on the Hadoop cluster from the
Monitoring URL that appears for the mapping in the general properties. The Monitoring URL opens the
Blaze Job Monitor in a web page. The Blaze Job Monitor displays detailed monitoring statistics for a
mapping such as the number of grid tasks, grid segments, or tasklets, and recovery attempts for each
tasklet.

Blaze Execution Plan

The Blaze execution plan displays the Blaze engine script that the Data Integration Service generates
based on the mapping logic. The execution plan includes the tasks that the script depends on. Each
script has a unique identifier.

Summary Statistics

The Summary Statistics view appears in the details panel when you select a mapping job in the contents
panel. The Summary Statistics view displays throughput and resource usage statistics for the job.

You can view the following throughput statistics for the job:

• Source. The name of the mapping source file.

• Target name. The name of the target file.

• Rows. The number of rows read for source and target. If the target is Hive, this is the only summary
statistic available.

• Average Rows/Sec. Average number of rows read per second for source and target.

• Bytes. Number of bytes read for source and target.

• Average Bytes/Sec. Average number of bytes read per second for source and target.

• First Row Accessed. The date and time when the Data Integration Service started reading the first
row in the source file.

• Dropped rows. Number of source rows that the Data Integration Service did not read.

218 Chapter 11: Monitoring

Detailed Statistics

The Detailed Statistics view appears in the details panel when you select a mapping job in the contents
panel. The Detailed Statistics view displays graphs of the throughput and resource usage statistics for
the job run.

Blaze Job Monitoring Application
Use the Blaze Job Monitor application to monitor Blaze engine jobs on the Hadoop cluster.

You configure the host that starts the Blaze Job Monitor in the Hadoop connection properties. You might
want to configure the Blaze Job Monitor address to avoid conflicts with other users on the same cluster, or if
you have access to a limited number of nodes. If you do not configure the Blaze Job Monitor address, the
Grid Manager starts the host on the first alphabetical cluster node with a default port of 9080.

The Blaze engine monitoring URL appears in the Monitor tab of the Administrator tool when you view a Blaze
engine mapping job. When you click the URL, the Blaze engine monitoring application opens in a web page.

Note: You can also access the Blaze Job Monitor through the LDTM log. After the session load summary, the
log displays a list of segments within the grid task. Each segment contains a link to the Blaze Job Monitor.
Click on a link to see the execution details of that segment.

You configure the host that starts the Blaze Job Monitor in the Hadoop connection properties. The default
address is <hostname>:9080.

The following image shows the Blaze Job Monitor:

Use the Task History panel on the left to filter Blaze mapping jobs by the following criteria:

• Grid task. A parallel processing job request sent by the Blaze engine executor to the Grid Manager. You
can further filter by all tasks, succeeded tasks, running tasks, or failed tasks.

• Grid segment. Part of a grid mapping that is contained in a grid task.

• Tasklet. A partition of a grid segment that runs on a separate DTM.

• Tasklet Attempts. The number of recovery attempts to restart a tasklet. Click Log to view the mapping
grid task log.

The Blaze Job Monitor displays the task history for mapping jobs with the same namespace. You can
monitor properties for a task such as start time, end time, elapsed time, or state of the task. You can also
view log events. If you filter mapping jobs by grid segment, you can mouse over a grid segment to view the
logical name of the segment.

By default, the Blaze Job Monitor automatically refreshes the list of tasks every five seconds and reverts to
the first page that displays tasks. Disable auto refresh if you want to browse through multiple pages. To turn
off automatic refresh, click Action > Disable Auto Refresh.

Blaze Engine Monitoring 219

The Blaze Job Monitor displays the first 100,000 grid tasks run in the past seven days. The Blaze Job Monitor
displays the grid segments, tasklets, and tasklet attempts for grid tasks that are running and grid tasks that
were accessed in the last 30 minutes.

Blaze Summary Report
The Blaze Summary Report displays more detailed statistics about a mapping job. In the Blaze Job Monitor, a
green summary report button appears beside the names of successful grid tasks. Click the button to open
the Blaze Summary Report.

Note: The Blaze Summary Report is available for technical preview. Technical preview functionality is
supported but is unwarranted and is not production-ready. Informatica recommends that you use in non-
production environments only.

Time Taken by Individual Segments
A pie chart visually represents the time taken by individual segments contained within a grid task.

When you click on a particular segment in the pie chart, the Selected Submapping table displays detailed
information about that segment. The table lists the following segment statistics:

• Task Name. The logical name of the selected segment.

• Segment Execution Time. The time taken by the selected segment.

• # Tasklets. The number of tasklets in the selected segment.

• Minimum Tasklet Execution Time. The execution time of the tasklet within the selected segment that took
the shortest time to run.

220 Chapter 11: Monitoring

• Maximum Tasklet Execution Time. The execution time of the tasklet within the selected segment that
took the longest time to run.

• Average Tasklet Execution Time. The average execution time of all tasklets within the selected segment.

Mapping Properties
The Mapping Properties table lists basic information about the mapping job.

The Mapping Properties table displays the following information:

• The DIS name under which the mapping was run.

• The Informatica version.

• The name of the mapping.

• The total number of segments for the mapping.

• The execution time of the segment that took the longest time to run.

• The execution time of the segment that took the shortest time to run.

• The average execution time of all segments.

• The total mapping execution time.

Blaze Engine Monitoring 221

Tasklet Execution Time
A time series graph displays the execution time of all tasklets within the selected segment.

The x-axis represents the tasklet start time and the y-axis represents the actual tasklet execution time. The
red dashed line represents the average execution time for all tasklets, and the two red markers show the
minimum and maximum execution times within the segment.

Selected Tasklet Information
When you select a tasklet from the Tasklet Execution Time graph, you can see more data about that
individual tasklet. This data includes source and target row counts as well as cache information for any

222 Chapter 11: Monitoring

cache-based transformation processed by the tasklet. Click the Get Detailed Log button to see a full log of
the selected tasklet.

Blaze Engine Logs
You can find information about the mapping run on the Blaze engine in the LDTM log file.

The LDTM logs the results of the mapping run on the Blaze engine. You can view the LDTM log from the
Developer tool or the Monitoring tool for a mapping job.

You can configure the Data Integration Service to log details about the mapping execution to the session log.
To enable logging of LDTM mapping execution details, set the log tracing level to verbose initialization or
verbose data. For optimal logging performance, avoid setting the tracing level to verbose data. You can set
the tracing level to verbose data if you need to debug a mapping run.

Logical mapping execution details include the following information:

• Start time, end time, and state of each task

• Blaze Job Monitor URL

• Number of total, succeeded, and failed/cancelled tasklets

• Number of processed and rejected rows for sources and targets

• Data errors, if any, for transformations in each executed segment

• Number of healthy cluster nodes used by the Grid Manager

The mapping execution details include information about the Blaze engine run-time processing, such as the
partition count for each executed segment.

Blaze Engine Monitoring 223

Viewing Blaze Logs
You can view logs for a Blaze mapping from the Blaze Job Monitor.

1. In the Blaze Job Monitor, select a job from the list of jobs.

2. In the row for the selected job, click the Logs link.

The log events appear in another browser window.

Orchestrator Sunset Time
Orchestrator sunset time is the maximum lifetime for an Orchestrator service. Sunset time determines the
maximum amount of time that the Blaze engine can run a mapping job. The default sunset time is 24 hours.
After 24 hours, the Orchestrator shuts down, which causes the Blaze Grid Manager to shut down.

You can configure the Orchestrator sunset time to be greater than or less than 24 hours. Configure the
following property in the Hadoop connection:

Property Description

infagrid.orchestrator.svc.sunset.time Maximum lifetime for an Orchestrator service, in hours. Default is
24 hours.

You can also disable sunset by setting the property to 0 or a negative value. If you disable sunset, the
Orchestrator never shuts down during a mapping run.

Troubleshooting Blaze Monitoring
When I run a mapping on the Blaze engine and try to view the grid task log, the Blaze Job Monitor
does not fetch the full log.
The grid task log might be too large. The Blaze Job Monitor can only fetch up to 2 MB of an aggregated log.
The first line of the log reports this information and provides the location of the full log on HDFS. Follow the
link to HDFS and search for "aggregated logs for grid mapping." The link to the full log contains the grid task
number.

The Blaze Job Monitor will not start.
Check the Hadoop environment logs to locate the issue. If you do not find an issue, stop the Grid Manager
with the infacmd stopBlazeService command and run the mapping again.

The Monitoring URL does not appear in the Properties view of the Administrator tool.
Locate the URL in the YARN log.

224 Chapter 11: Monitoring

When Blaze processes stop unexpectedly, Blaze does not save logs in the expected location.
When Blaze stops unexpectedly, you can access Blaze service logs through the YARN monitor. Use one of
these methods:

• The Grid Manager log contains all Blaze job container IDs and identifies the host on which Blaze ran. Alter
the Grid Manager log URL with the container ID and host name of the Blaze host.

• Run the command yarn logs -applicationID <Blaze Grid Manager Application ID>.

A Blaze Job Monitor that has been running for several days loses its connection to the
Application Timeline Server on the Hortonworks cluster.
The Blaze engine requires a running Application Timeline Server on the cluster. When the Blaze engine starts
a mapping run, the Blaze Job Monitor checks the state of the Application Timeline Server. The Grid Manager
will start it if it is not running. When the connection to the Application Timeline Server is lost, the Blaze engine
attempts to reconnect to it. If the Application Timeline Server stops during a Blaze mapping run, you can
restart it by restarting the Grid Manager.

Note: When the Application Timeline Server is configured to run on the cluster by default, the cluster
administrator must manually restart it on the cluster.

When a mapping takes more than 24 hours to execute, the mapping fails.
When mappings run on the Blaze engine for more than 24 hours, some mappings might fail because the
Orchestrator service has a default sunset time of 24 hours. After 24 hours, the Orchestrator shuts down,
which causes the Blaze Grid Manager to shut down.

To increase the sunset time to be more than 24 hours, configure the following property in the Hadoop
connection advanced properties:

infagrid.orchestrator.svc.sunset.time=[HOURS]

You can also disable sunset by setting the property to 0 or a negative value. If you disable sunset, the Blaze
Grid Manager never shuts down.

Spark Engine Monitoring
You can monitor statistics and view log events for a Spark engine mapping job in the Monitor tab of the
Administrator tool. You can also monitor mapping jobs for the Spark engine in the YARN web user interface.

The following image shows the Monitor tab in the Administrator tool:

Spark Engine Monitoring 225

The Monitor tab has the following views:

Summary Statistics

Use the Summary Statistics view to view graphical summaries of object states and distribution across the
Data Integration Services. You can also view graphs of the memory and CPU that the Data Integration
Services used to run the objects.

Execution Statistics

Use the Execution Statistics view to monitor properties, run-time statistics, and run-time reports. In the
Navigator, you can expand a Data Integration Service to monitor Ad Hoc Jobs or expand an application to
monitor deployed mapping jobs or workflows

When you select Ad Hoc Jobs, deployed mapping jobs, or workflows from an application in the Navigator of
the Execution Statistics view, a list of jobs appears in the contents panel. The contents panel displays jobs
that are in the queued, running, completed, failed, aborted, and cancelled state. The Data Integration Service
submits jobs in the queued state to the cluster when enough resources are available.

The contents panel groups related jobs based on the job type. You can expand a job type to view the related
jobs under it.

Access the following views in the Execution Statistics view:
Properties

The Properties view shows the general properties about the selected job such as name, job type, user
who started the job, and start time of the job.

Spark Execution Plan

When you view the Spark execution plan for a mapping, the Data Integration Service translates the
mapping to a Scala program and an optional set of commands. The execution plan shows the
commands and the Scala program code.

226 Chapter 11: Monitoring

Summary Statistics

The Summary Statistics view appears in the details panel when you select a mapping job in the contents
panel. The Summary Statistics view displays the following throughput statistics for the job:

• Pre Job Task. The name of each job task that reads source data and stages the row data to a
temporary table before the Spark job runs. You can also view the bytes and average bytes processed
for each second.

Note: If you enable recovery for a Sqoop mapping, the pre job task statistics does not display.

• Source. The name of the source.

• Target. The name of the target.

• Rows. For source, the number of rows read by the Spark application. For target, the sum of rows
written to the target and rejected rows.

• Post Job Task. The name of each job task that writes target data from the staged tables. You can
also view the bytes and average bytes processed for each second.

When a mapping contains a Union transformation with multiple upstream sources, the sources appear in
a comma separated list in a single row under Sources.

Note: In a Hive mapping with an Update Strategy transformation containing the DD_UPDATE condition,
the target contains only the temporary tables after the Spark job runs. The result of the mapping job
statistics appears in the post job task and indicates twice the number of records updated.

The following image shows the Summary Statistics view in the details panel for a mapping run on the
Spark engine:

You can also view the Spark run stages information in the details pane of the Summary Statistics view
on the Execution Statistics Monitor tab. It appears as a list after the sources and before the targets.

Spark Engine Monitoring 227

The Spark Run Stages displays the absolute counts and throughput of rows and bytes related to the
Spark application stage statistics. Rows refer to the number of rows that the stage writes, and bytes
refer to the bytes broadcasted in the stage.

The following image displays the Spark Run Stages:

For example, the Spark Run Stages column contains the Spark application staged information starting
with stage_<ID>. In the example, Stage_0 shows the statistics related to the Spark run stage with ID=0
in the Spark application.

Consider when the Spark engine reads source data that includes a self-join with verbose data enabled. In
this scenario, the optimized mapping from the Spark application does not contain any information on the
second instance of the same source in the Spark engine logs.

Consider when you read data from the temporary table and the Hive query of the customized data object
leads to the shuffling of the data. In this scenario, the filtered source statistics appear instead of reading
from the temporary source table in the Spark engine log.

When you run a mapping with Spark monitoring enabled, performance varies based on the mapping
complexity. It can take up to three times longer than usual processing time with monitoring enabled. By
default, monitoring is disabled.

Detailed Statistics

The Detailed Statistics view appears in the details panel when you select a mapping job in the contents
panel. The Detailed Statistics view displays a graph of the row count for the job run.

The following image shows the Detailed Statistics view in the details panel for a mapping run on the
Spark engine:

228 Chapter 11: Monitoring

Viewing Hive Tasks
When you have a Hive source with a transactional table, you can view the Hive task associated with the Spark
job.

When you run a mapping on Spark that launches Hive tasks, you can view the Hive query statistics in the
session log and in the Administrator tool for monitoring along with the Spark application. For example, you
can monitor information related to the Update Strategy transformation and SQL authorization associated to
the mapping on Spark.

You can view the Summary Statistics for a Hive task in the Administrator tool. The Spark statistics continue
to appear. When the Spark engine launches a Hive task, you can see Source Load Summary and Target Load
summary including Spark data frame with Hive task statistics. Otherwise, when you have only a Spark task,
the Source Load Summary and Target Load Summary do not appear in the session log.

Under Target Load Summary, all Hive instances will be prefixed with ‘Hive_Target_’. You can see same
instance name in the Administrator tool.

You can view the Tez job statistics in the Administrator tool when reading and writing to Hive tables that the
Spark engine launches in any of the following scenarios:

• You have resources present in the Amazon buckets.

• You have transactional Hive tables.

• You have table columns secured with fine grained authorization.

Incorrect statistics appears for all the Hive sources and targets indicating zero rows for average rows for
each second, bytes, average bytes for each second, and rejected rows. You can see that only processed rows
contain correct values, and the remaining columns will contain either 0 or N/A.

Spark Engine Monitoring 229

Spark Engine Logs
The Spark engine logs appear in the LDTM log. The LDTM logs the results of the Spark engine execution plan
run for the mapping. You can view the LDTM log from the Developer tool or the Monitoring tool for a mapping
job.

The log for the Spark engine shows the following:

• Step to translate the mapping to an internal format

• Steps to optimize the mapping

• Steps to render the mapping to Spark code

• Steps to submit the code to the Spark executor

• Scala code that the Logical Data Translation Generator creates from the mapping logic

• Total number of cluster nodes used to execute the mapping

When you run Sqoop mappings on the Spark engine, the Data Integration Service prints the Sqoop log events
in the mapping log.

Viewing Spark Logs
You can view logs for a Spark mapping from the YARN web user interface.

1. In the YARN web user interface, click an application ID to view.

2. Click the application Details.

3. Click the Logs URL in the application details to view the logs for the application instance.

The log events appear in another browser window.

Troubleshooting Spark Engine Monitoring
Do I need to configure a port for Spark Engine Monitoring?

Spark engine monitoring requires the cluster nodes to communicate with the Data Integration Service
over a socket. The Data Integration Service picks the socket port randomly from the port range
configured for the domain. The network administrators must ensure that the port range is accessible
from the cluster nodes to the Data Integration Service. If the administrators cannot provide a port range
access, you can configure the Data Integration Service to use a fixed port with the SparkMonitoringPort
custom property. The network administrator must ensure that the configured port is accessible from the
cluster nodes to the Data Integration Service.

Recovered jobs show 0 elapsed time in monitoring statistics

When a job is recovered, the Monitoring tab shows the same start and end time for the job, and the
elapsed time = 0. While this statistic is not the actual elapsed time, it enables you to identify jobs that
were recovered. For a more accurate view of the elapsed time for the job, view the Spark job logs on the
cluster or the session logs on the Data Integration Service.

I enabled data engineering recovery, but recovered jobs show missing or incorrect statistics in the monitoring tab

Consider the following behavior:

• When the Data Integration Service recovers a job, the Administrator tool might display incomplete job
statistics in the Monitoring tab when the job is complete. For example, the job statistics might not
correctly display the number of rows processed.

230 Chapter 11: Monitoring

• The Monitoring tab does not display detailed statistics if the Data Integration Service process stops
after it submits a job to the compute cluster.

Spark Engine Monitoring 231

C h a p t e r 1 2

Hierarchical Data Processing
This chapter includes the following topics:

• Overview of Hierarchical Data Processing, 232

• How to Develop a Mapping to Process Hierarchical Data, 233

• Complex Data Types, 235

• Complex Ports, 240

• Complex Data Type Definitions, 242

• Type Configuration, 247

• Complex Operators, 251

• Complex Functions, 253

• Rules and Guidelines for Processing Hierarchical Data on the Spark Engine, 255

• Midstream Parsing of Hierarchical Data, 255

Overview of Hierarchical Data Processing
The Spark and Databricks Spark engines can process mappings that use complex data types, such as array,
struct, and map. With complex data types, the run-time engine directly reads, processes, and writes
hierarchical data in complex files.

The Spark and Databricks Spark engines can process hierarchical data in Avro, JSON, ORC, and Parquet
complex files. They use complex data types to represent the native data types for hierarchical data in
complex files. For example, a hierarchical data of type record in an Avro file is represented as a struct data
type by the run-time engine.

Hierarchical Data Processing Scenarios

You can develop mappings for the following hierarchical data processing scenarios:

• To generate and modify hierarchical data.

• To transform relational data to hierarchical data.

• To transform hierarchical data to relational data.

• To convert data from one complex file format to another. For example, read hierarchical data from an
Avro source and write to a JSON target.

• To generate struct target data after parsing hierarchical JSON or XML data midstream in a mapping.

232

Hierarchical Data Processing Configuration

You create a connection to access complex files and create a data object to represent data in the complex
file. Then, configure the data object read and write operations to project columns as complex data types. To
read and write hierarchical data in complex files, you create a mapping, add a Read transformation based on
the read operation, and add a Write transformation based on the write operation. To process hierarchical
data, configure the following objects and transformation properties in a mapping:

• Complex ports. To pass hierarchical data in a mapping, create complex ports. You create complex ports
by assigning complex data types to ports.

• Complex data type definitions. To process hierarchical data of type struct, create or import complex data
type definitions that represent the schema of struct data.

• Type configuration. To define the properties of a complex port, specify or change the type configuration.

• Complex operators and functions. To generate or modify hierarchical data, create expressions using
complex operators and functions.

You can also use hierarchical conversion wizards to simplify some of the mapping development tasks.

How to Develop a Mapping to Process Hierarchical
Data

Develop a mapping with complex ports, operators, and functions to process hierarchical data on the Spark or
Databricks Spark engine.

Note: The tasks and the order in which you perform the tasks to develop the mapping depend on the mapping
scenario.

The following is an outline of the high-level tasks to develop and run a mapping to read, write, and process
hierarchical data in complex files.

Create a connection.

Create a connection to access data in complex files based on the file storage.

Create a data object.

1. Create a data object to represent the complex files as sources or targets.

2. Configure the data object properties.

3. In the read and write operations, enable the column file properties to project columns in the
complex files as complex data types.

Create a mapping and add mapping objects.

1. Create a mapping, and add Read and Write transformations.
To read from and write to a complex file, add Read and Write transformations based on the data
object read and write operations.

To write to an Avro or Parquet file, you can also create a complex file target from an existing
transformation in the mapping.

2. Based on the mapping logic, add other transformations that are supported on the run-time engine.

Generate struct data.

Based on the mapping scenario, use one of the hierarchical conversion wizards to generate struct data.
You can also perform the following steps manually:

How to Develop a Mapping to Process Hierarchical Data 233

Create or import complex data type definitions for struct ports.

1. Create or import complex data type definitions that represent the schema of the struct data.
The complex data type definitions are stored in the type definition library, which is a Model
repository object. The default name of the type definition library is m_Type_Definition_Library.

2. If a mapping uses one or more mapplets, rename the type definition libraries in the mapping
and the mapplets to ensure that the names are unique.

Create and configure struct ports in transformations.

1. Create ports in transformations and assign struct data type.

2. Specify the type configuration for the struct ports.
You must reference a complex data type definition for the struct port.

3. Create expressions with complex functions to generate struct data.

Modify struct data.

You can convert struct data to relational or hierarchical data. If the struct data contains elements of
primitive data types, you can extract the elements as relational data. If the struct data contains elements
of complex data types, you can extract the elements as hierarchical data. Based on the mapping
scenario, use one of the hierarchical conversion wizards to modify struct data. You can also perform the
following steps manually:

1. Create output ports with port properties that match the element of the struct data that you want to
extract.

2. Create expressions with complex operators or complex functions to modify the struct data.

Generate array data.

1. Create ports in transformations and assign array data type.

2. Specify the type configuration for the array ports.

3. Create expressions with complex functions to generate array data.

Modify array data.

You can convert array data to relational or hierarchical data. If the array data contains elements of
primitive data types, you can extract the elements as relational data. If the array data contains elements
of complex data types, you can extract the elements as hierarchical data. Based on the mapping
scenario, use one of the hierarchical conversion wizards to modify array data. You can also perform the
following steps manually:

1. Create output ports with port properties that match the element of the array data that you want to
extract.

2. Create expressions with complex operators or complex functions to modify the array data.

Generate map data.

1. Create ports in transformations and assign map data type.

2. Specify the type configuration for the map ports.

3. Create expressions with complex functions to generate map data.

Modify map data.

You can convert map data to relational or hierarchical data. If the map data contains elements of
primitive data types, you can extract the elements as relational data. If the map data contains elements
of complex data types, you can extract the elements as hierarchical data. Based on the mapping

234 Chapter 12: Hierarchical Data Processing

scenario, use one of the hierarchical conversion wizards to modify map data. You can also perform the
following steps manually:

1. Create output ports with port properties that match the element of the map data that you want to
extract.

2. Create expressions with complex operators or complex functions to modify the map data.

Configure the transformations.

Link the ports and configure the transformation properties based on the mapping logic.

Configure the mapping properties.

Configure the following mapping run-time properties:

• To run on the Spark engine, choose the Spark validation environment and Hadoop as the execution
environment.

• To run on the Databricks Spark engine, choose the Databricks Spark validation environment and
Hadoop as the execution environment.

Validate and run the mapping.

1. Validate the mapping to identify and correct any errors.

2. Optionally, view the engine execution plan to debug the logic.

3. Run the mapping.

Complex Data Types
A complex data type is a transformation data type that represents multiple data values in a single column
position. The data values are called elements. Elements in a complex data type can be of primitive or
complex data types. Use complex data types to process hierarchical data in mappings that run on the Spark
or Databricks Spark engine.

Transformation data types include the following data types:

Primitive data type

A transformation data type that represents a single data value in a single column position. Data types
such as decimal, integer, and string are primitive data types. You can assign primitive data types to ports
in any transformation.

Complex data type

A transformation data type that represents multiple data values in a single column position. Data types
such as array, map, and struct are complex data types. You can assign complex data types to ports in
some transformations.

Nested data type

A complex data type that contains elements of complex data types. Complex data types such as an array
of structs or a struct with an array of other structs are nested data types.

Complex Data Types 235

The following table lists the complex data types:

Complex
Data Type

Description

array An array is an ordered collection of elements.
The elements can be of a primitive or complex data type. All elements in the array must be of the
same data type.

map A map is an unordered collection of key-value pair elements.
The key must be of a primitive data type. The value can be of a primitive or complex data type.

struct A struct is a collection of elements of different data types.
The elements can be of primitive or complex data types. Struct has a schema that defines the
structure of the data.

The following image shows primitive, complex, and nested data types assigned to ports in a transformation:

1. Primitive data types
2. Complex data types
3. Nested data type

The ports emp_name and emp_sal are of primitive data types. The ports emp_phone, emp_id_dept, and
emp_address are of complex data types. The port emp_bonus is of a nested data type. The array contains
elements of type struct.

Array Data Type
An array data type represents an ordered collection of elements. To pass, generate, or process array data,
assign array data type to ports.

An array is a zero-based indexed list. An array index indicates the position of the array element. For example,
the array index 0 indicates the first element in an array. The transformation language includes operators to
access array elements and functions to generate and process array data.

An array can be one-dimensional or multidimensional. A one-dimensional array is a linear array. A
multidimensional array is an array of arrays. Array transformation data types can have up to five dimensions.

Format
array <data_type> []

236 Chapter 12: Hierarchical Data Processing

The following table describes the arguments for this data type:

Argument Description

array Name of the array column or port.

data_type Data type of the elements in an array.
The elements can be primitive data types or complex data types. All elements in the array must be of
the same data type.

[] Dimension of the array represented as subscript.
A single subscript [] represents a one-dimensional array. Two subscripts [][] represent a two-
dimensional array.
Elements in each dimension are of the same data type.

The elements of an array do not have names. The number of elements in an array can be different for each
row.

Array Examples

One-dimensional array

The following array column represents a one-dimensional array of string elements that contains
customer phone numbers:

custphone string[]
The following example shows data values for the custphone column:

custphone

[205-128-6478,722-515-2889]

[107-081-0961,718-051-8116]

[107-031-0961,NULL]

Two-dimensional array

The following array column represents a two-dimensional array of string elements that contains
customer work and personal email addresses.

email_work_pers string[][]
The following example shows data values for the email_work_pers column:

email_work_pers

[john_baer@xyz.com,jbaer@xyz.com][john.baer@fgh.com,jbaer@ijk.com]

[bobbi_apperley@xyz.com,bapperl@xyz.com][apperlbob@fgh.com,bobbi@ijk.com]

[linda_bender@xyz.com,lbender@xyz.com][l.bender@fgh.com,NULL]

Complex Data Types 237

Map Data Type
A map data type represents an unordered collection of key-value pair elements. A map element is a key and
value pair that maps one thing to another. To pass, generate, or process map data, assign map data type to
ports.

The key must be of a primitive data type. The value can be of a primitive or complex data type. A map data
type with values of a complex data type is a nested map. A nested map can contain up to three levels of
nesting of map data type.

Note: The Spark engine allows duplicate keys in the map data.

The transformation language includes subscript operator to access map elements. It also includes functions
to generate and process map data.

Format
map <primitive_type -> data_type>

The following table describes the arguments for this data type:

Argument Description

map Name of the map column or port.

primitive_type Data type of the key in a map element.
The key must be of a primitive data type.

data_type Data type of the value in a map element.
The value can be of a primitive or complex data type.

Map Example

The following map column represents map data with an integer key and a string value to map customer ids
with customer names:

custid_name <integer -> string>
The following example shows data values for the custid_name column:

custid_name

<26745 -> 'John Baer'>

<56743 -> 'Bobbi Apperley'>

<32879 -> 'Linda Bender'>

Struct Data Type
A struct data type represents a collection of elements of different data types. A struct data type has an
associated schema that defines the structure of the data. To pass, generate, or process struct data, assign
the struct data type to ports.

The schema for the struct data type determines the element names and the number of elements in the struct
data. The schema also determines the order of elements in the struct data. Informatica uses complex data
type definitions to represent the schema of struct data.

238 Chapter 12: Hierarchical Data Processing

The transformation language includes operators to access struct elements. It also includes functions to
generate, process, and parse struct data and to modify the schema of the data.

Format
struct {element_name1:value1 [, element_name2:value2, ...]}

Schema for the struct is of the following format:

schema {element_name1:data_type1 [, element_name2:data_type2, ...]}
The following table describes the arguments for this data type:

Argument Description

struct Name of the struct column or port.

schema A definition of the structure of data.
Schema is a name-type pair that determines the name and data type of the struct elements.

element_name Name of the struct element.

value Value of the struct element.

data_type Data type of the element value.
The element values can be of a primitive or complex data type. Each element in the struct can have
a different data type.

Struct Example

The following schema is for struct data to store customer addresses:

address
{st_number:integer,st_name:string,city:string,state:string,zip:string}

The following example shows struct data values for the cust_address column:

cust_address

{st_number:154,st_name:Addison Ave,city:Redwood City,state:CA,zip:94065}

{st_number:204,st_name:Ellis St,city:Mountain View,state:CA,zip:94043}

{st_number:357,st_name:First St,city:Sunnyvale,state:CA,zip:94085}

Rules and Guidelines for Complex Data Types
Consider the following rules and guidelines when you work with complex data types:

• A nested data type can contain up to 10 levels of nesting.

• A nested map can contain up to three levels of nesting of map data types.

• An array data type cannot directly contain an element of type array. Use multidimensional arrays to create
a nested array. For example, an array with two dimensions is an array of arrays.

• A multidimensional array can contain up to five levels of nesting. The array dimension determines the
levels of nesting.

• Each array in a multidimensional array must have elements of the same data type.

Complex Data Types 239

Complex Ports
A complex port is a port that is assigned a complex data type. Based on the complex data type, you must
specify the complex port properties. Use complex ports in transformations to pass or process hierarchical
data in a mapping.

The following image shows the complex ports and complex port properties on the Ports tab for a
transformation:

1. Port

2. Complex port

3. Type configuration

4. Type configuration for an array port

5. Type configuration for a map port

6. Type configuration for a struct port

7. Type configuration for a port of nested data type

Based on the data type, a transformation can include the following ports and port properties:

Port

A port of a primitive data type that you can create in any transformation.

Complex port

A port of a complex or nested data type that you can create in some transformations. Array, map, and
struct ports are complex ports. Based on the complex data type, you specify the complex port properties
in the type configuration column.

Type configuration

A set of properties that you specify for the complex port. The type configuration determines the data
type of the complex data type elements or the schema of the data. You specify the data type of the
elements for array and map ports. You specify a complex data type definition for the struct port.

Type configuration for an array port

Properties that determine the data type of the array elements. In the image, the array port emp_phone is
a one-dimensional array with an ordered collection of string elements. An array with string elements is
also called an array of strings.

240 Chapter 12: Hierarchical Data Processing

Type configuration for a map port

Properties that determine the data type of the key-value pair of the map elements. In the image, the map
port emp_id_dept is an unordered collection of key-value pairs of type integer and string.

Type configuration for a struct port

Properties that determine the schema of the data. To represent the schema, you create or import a
complex data type definition. In the image, the struct port emp_address references a complex data type
definition typedef_adrs.

Type configuration for a port of nested data type

Properties that determine the nested data type. In the image, the array port emp_bonus is a one-
dimensional array with an ordered collection of struct elements. The struct elements reference a
complex data type definition typedef_bonus. An array with struct elements is also called an array of
structs.

Complex Ports in Transformations
You can create complex ports in some transformations that are supported on the Spark and Databricks Spark
engines. Read and Write transformations can represent ports that pass hierarchical data as complex data
types.

You can create complex ports in the following transformations:

• Aggregator

• Expression

• Filter

• Java

• Joiner

• Lookup

• Normalizer

• Router

• Sorter

• Union

Note: The Databricks Spark engine does not support the Java transformation.

The Read and Write transformations can read and write hierarchical data in complex files. To read and write
hierarchical data, the Read and Write transformations must meet the following requirements:

• The transformation must be based on a complex file data object.

• The data object read and write operations must project columns as complex data types.

Rules and Guidelines for Complex Ports
Consider the following rules and guidelines when you work with complex ports:

• Aggregator transformation. You cannot define a group by value as a complex port.

• Filter transformation. You cannot use the operators >, < , >=, and <= in a filter condition to compare data in
complex ports.

• Joiner transformation. You cannot use the operators >, < , >=, and <= in a join condition to compare data in
complex ports.

Complex Ports 241

• Lookup transformation. You cannot use a complex port in a lookup condition.

• Rank transformation. You cannot define a group by or rank value as a complex port.

• Router transformation. You cannot use the operators >, < , >=, and <= in a group filter condition to
compare data in complex ports.

• Sorter transformation. You cannot define a sort key value as a complex port.

• You can use complex operators to specify an element of a complex port that is of a primitive data type.
For example, an array port "emp_names" contains string elements. You can define a group by value as
emp_names[0], which is of type string.

Creating a Complex Port
Create complex ports in transformations to pass or process hierarchical data in mappings that run on the
Spark or Databricks Spark engine.

1. Select the transformation in the mapping.

2. Create a port.

3. In the Type column for the port, select a complex data type.

The complex data type for the port appears in the Type column.

After you create a complex port, specify the type configuration for the complex port.

Complex Data Type Definitions
A complex data type definition represents the schema of the data. Use complex data type definitions to
define the schema of the data for a struct port. If the complex port is of type struct or contains elements of
type struct, you must specify the type configuration to reference a complex data type definition.

You can create or import complex data type definitions. You import complex data type definitions from
complex files. Complex data type definitions are stored in the type definition library, which is a Model
repository object.

When you create a mapping or a mapplet, the Developer tool creates a type definition library with the name
Type_Definition_Library. You can view and rename the type definition library and the complex data type
definitions in the Outline view of a mapping. The complex data type definitions appear on the type definition
library tab of the mapping editor. The tab name is based on the name of the type definition library. You create
or import complex data type definitions on the type definition library tab. When a mapping uses one or more
mapplets, rename the type definition libraries in the mapping and the mapplets to ensure that the names are
unique.

Type definition library and complex data type definitions are specific to a mapping or mapplet. A mapping or
a mapplet can have one or more complex data type definitions. You can reference the same complex data
type definition in one or more complex ports in the mapping or mapplet.

Complex Data Type Definition Example

The complex ports work_address and home_address of type struct have the following schema:

{street:string, city:string, state:string, zip:integer}

242 Chapter 12: Hierarchical Data Processing

In the mapping, you create a complex data type definition typedef_adrs that defines the schema of the data.
Then, you specify the type configuration of the struct ports work_address and home_address to use the
typedef_adrs complex data type definition.

The following image shows a complex data type definition typedef_adrs:

The following image shows two struct ports work_address and home_address that reference the complex
data type definition typedef_adrs:

Complex Data Type Definitions 243

Nested Data Type Definitions
Elements of a complex data type definition can reference one or more complex data type definitions in the
type definition library. Such complex data type definitions are called nested data type definitions.

The following image shows a nested data type definition Company on the type definition library tab:

The nested data type definition Company references the following complex data type definitions:

• In the complex data type definition Company, the array element Employees references the complex data
type definition Employee.

• In the complex data type definition Employee, the Emp_Address element references the complex data type
definition Address.

• In the complex data type definition Employee, the Emp_Contact element references the complex data type
definition Contact.

Note: In a recursive data type definition, one of the complex data type definitions at any level is the same as
any of its parents. You cannot reference a recursive data type definition to a struct port or a struct element in
a complex port.

Rules and Guidelines for Complex Data Type Definitions
Consider the following rules and guidelines when you work with complex data type definitions:

• A struct port or a struct element in a complex port must reference a complex data type definition.

• You cannot reference a complex data type definition in one mapping to a complex port in another
mapping.

• You cannot reference a recursive data type definition to a struct port or a struct element in a complex
port.

• Changes to the elements in a complex data type definition are automatically propagated to complex ports
that reference the complex data type definition.

• If you change the name of the type definition library or the complex data type definition, you must update
the name in expressions that use complex functions such as STRUCT_AS, RESPEC, and CAST.

• In a midstream parsing mapping, the source string that contains JSON or XML elements is defined with a
complex data type definition. For more information, see “Midstream Parsing of Hierarchical Data” on page
255.

244 Chapter 12: Hierarchical Data Processing

Creating a Complex Data Type Definition
A complex data type definition represents the schema of the data of type struct. You can create a complex
data type definition for a mapping or a mapplet on the Type Definition Library tab of the mapping editor.

1. In the Developer tool, open the mapping or mapplet where you want to create a complex data type
definition.

2. In the Outline view, select the Type Definition Library to view the Type_Definition_Library tab in the
mapping editor.

3. Right-click an empty area of the editor and click New Complex Data Type Definition.

An empty complex data type definition appears on the Type Definition Library tab of the mapping editor.

4. Optionally, change the name of the complex data type definition.

5. Click the New button to add elements to the data type definition with a name and a type.

The data type of the element can be of primitive or complex data type.

Importing a Complex Data Type Definition
A complex data type definition represents the schema of the data of type struct. You can import the schema
of the hierarchical data in the complex file to the type definition library as a complex data type definition.

Import complex data type definitions from an Avro, JSON, or Parquet schema file. For example, you can
import an Avro schema from an .avsc file as a complex data type definition.

1. In the Developer tool, open the mapping or mapplet where you want to import a complex data type
definition.

2. In the Outline view, select the Type Definition Library to view the Type_Definition_Library tab in the
mapping editor.

3. Right-click an empty area of the editor and click Import Complex Data Type Definitions.

Complex Data Type Definitions 245

The Import Complex Data Type Definitions dialog box appears.

4. Select a complex file format from the File Format list.

5. Click Browse to select the complex file schema from which you want to import the complex data type
definition.

6. Navigate to the complex file schema and click Open.

7. Click Next.

The Choose Complex Data Type Definitions to Import page appears.

8. Select one or more schemas from the list to import.

9. Click Next.

The Complex Data Type Definitions to Import page appears.

246 Chapter 12: Hierarchical Data Processing

10. Review the complex data type definitions that you want to import and click Finish.

The complex data type definition appears in the Type Definition Library tab of the mapping or the
mapplet.

Type Configuration
A type configuration is a set of complex port properties that specify the data type of the complex data type
elements or the schema of the data. After you create a complex port, you specify or change the type
configuration for the complex port on the Ports tab.

The type configuration for a complex port depends on the complex data type assigned to the port. You must
specify a complex data type definition for a struct port or a struct element in a complex port. Array and map
ports have a default type configuration that you can change.

The following table lists the type configuration properties for complex ports:

Complex
Port

Type Configuration Properties

array - Type. Data type of the elements of an array. Default is string.
- Array Dimension. Number of levels for an array. Default is 1.
- Precision. Maximum number of significant digits for numeric data types, or maximum number of

characters for string data types.
- Scale. Maximum number of digits after the decimal point of numeric values.

map - Type. Data type of the key-value pair. Default is string for key and value.
- Precision. Maximum number of significant digits for numeric data types, or maximum number of

characters for string data types.
- Scale. Maximum number of digits after the decimal point of numeric values.

struct - Complex data type definition. The schema of the data that you created or imported as complex data
type definition in the type definition library.

Changing the Type Configuration for an Array Port
The default type configuration for an array is string[], which is a one-dimensional array of strings. You can
change the type configuration for the array port. Specify the data type of the array elements and the array
dimension.

1. In the transformation, select the array port for which you want to specify the type configuration.

2. In the Type Configuration column, click the Open button.

Type Configuration 247

The Specify Type Configuration for Array dialog box appears.

3. In the Type drop-down menu, change the data type of the elements in the array.

For example, if the elements in the array are of type integer, select integer.

The type configuration value appears as integer [].

4. Optionally, in the Array Dimension drop-down menu, select a number to create a nested array.

For example, array dimension 3 creates a nested array of 3 levels. The type configuration value appears
as integer [] [] [].

5. Optionally, configure the following properties:

• Precision. Maximum number of significant digits for numeric data types, or maximum number of
characters for string data types.

• Scale. Maximum number of digits after the decimal point of numeric values.

6. Click OK.

On the Ports tab, the specified type configuration appears in the Type Configuration column of the array
port.

248 Chapter 12: Hierarchical Data Processing

Changing the Type Configuration for a Map Port
The default type configuration for a map is <string, string>. You can change the type configuration for a
map port. Specify the data type of the key-value pair.

1. In the transformation, select the map port for which you want to set the type configuration.

2. In the Type Configuration column, click the Open button.

The Type Configuration dialog box appears:

3. Specify the properties for the key and value of the map data type.

a. In the Type drop-down menu, select the data type.

b. Optionally, in the Precision box, specify the maximum number of significant digits for numeric data
types, or maximum number of characters for string data types.

c. Optionally, in the Scale box, specify the maximum number of digits after the decimal point of
numeric values.

4. Click OK.

On the Ports tab, the specified type configuration appears in the Type Configuration column of the map
port.

Type Configuration 249

Specifying the Type Configuration for a Struct Port
The type configuration for a struct port requires a complex data type definition in the type definition library.
Specify the complex data type definition that represents the schema of the struct data.

Before you specify the type configuration for the struct port, create or import a complex data type definition.
You can also reference an existing complex data type definition in the type definition library.

1. In the transformation, select the struct port for which you want to specify the type configuration.

2. In the Type Configuration column, click the Open button.

The Type Configuration dialog box appears:

3. Select a complex data type definition from the list of definitions in the type definition library for the
mapping or the mapplet.

4. Click OK.

On the Ports tab, the specified type configuration appears in the Type Configuration column of the struct
port.

250 Chapter 12: Hierarchical Data Processing

Complex Operators
A complex operator is a type of operator to access elements in a complex data type. The transformation
language includes complex operators for complex data types. Use complex operators to access or extract
elements in hierarchical data.

The following table lists the complex operators:

Complex Operators Description

[] Subscript operator. Use to access array and map elements.
Syntax: array[index]
- array is the array from which you want to access an element.
- index is the position of an element within an array.
For example, use [0] to access the first element in an one-dimensional array.
Syntax: map[key]
- map is the map from which you want to access the value corresponding to a key.
- key is the map key for which you want to retrieve the map value.

. Dot operator. Use to access struct elements.
Syntax: struct.element_name
- struct is the struct from which you want to access an element.
- element_name is the name of the struct element.

Use complex operators in expressions to convert hierarchical data to relational data.

For more information about the operator syntax, return values, and examples, see the Informatica Developer
Transformation Language Reference.

Complex Operator Examples
• Convert array data in a JSON file to relational data.

A JSON file has a quarterly_sales column that is of the array type with integer elements. You develop a
mapping to transform the hierarchical data to relational data. The array port quarterly_sales contains four
elements. Use subscript operators in expressions to extract the four elements into the four integer ports,
q1_sales, q2_sales, q3_sales, and q4_sales.

The expressions for the integer output port are as follows:

quarterly_sales[0]
quarterly_sales[1]
quarterly_sales[2]
quarterly_sales[3]

• Convert struct data in a Parquet file to relational data.
A Parquet file has an address column that contains customer address as a struct type. You develop a
mapping to transform hierarchical data to relational data. The struct port address contains three elements
city, state, and zip, of type string. Use dot operators in expressions to extract the three struct elements
into the three string ports, city, state, and zip.

The expressions for the string output port are as follows:

address.city
address.state
address.zip

Complex Operators 251

Extracting an Array Element Using a Subscript Operator
Use the subscript operator in expressions to extract one or more elements of an array.

1. In the transformation, create an output port of the same data type as the return value of the array
element that you want to extract.

To extract more than one element in an array, create an array output port. The data type of the elements
in the type configuration for the array port must match the data type of the return value of the array
elements.

2. In the Expression column for the output port, click the Open button.

The Expression Editor opens.

3. Delete the existing expression in the editor.

4. Click the Ports tab and select an array port.

5. Enter one or more index values within the subscript operator.

To extract array elements in a multidimensional array, enter index values within each subscript operator.

6. Click Validate to validate the expression.

7. Click OK to exit the Validate Expression dialog box.

8. Click OK to exit the Expression Editor.

Extracting a Struct Element Using the Dot Operator
Use the dot operator in expressions to extract elements of a struct.

1. In the transformation, create an output port of the same data type as the return value of the struct
element that you want to extract.

2. In the Expression column for the output port, click the Open button.

The Expression Editor opens.

3. Delete the existing expression in the editor.

4. Click the Ports tab and select the struct port.

5. Enter a dot after the port name.

252 Chapter 12: Hierarchical Data Processing

The Developer tool displays a list of elements in the struct.

6. Select the element that you want to extract.

7. Click Validate to validate the expression.

8. Click OK to exit the Validate Expression dialog box.

9. Click OK to exit the Expression Editor.

Complex Functions
A complex function is a type of pre-defined function in which the value of the input or the return type is of a
complex data type. The transformation language includes complex functions for complex data types. Use
complex functions to generate, process, and parse hierarchical data.

The following table describes the complex functions for array data type:

Complex Function Description

ARRAY (element1
[,element2] ...)

Generates an array with the specified elements. The data type of the argument
determines the data type of the array.

COLLECT_LIST (value) Returns an array with elements in the specified port. The data type of the argument
determines the data type of the array. COLLECT_LIST is an aggregate function.

CONCAT_ARRAY (' ',
array_of_strings)

Concatenates string elements in an array based on a separator that you specify and
returns a string.

SIZE (array) Returns the size of the array.

Complex Functions 253

The following table describes the complex functions for map data type:

Complex Function Description

MAP (key1, value1 [,key2,
value2] ...)

Generates a map with elements based on the specified key-value pair. The data
type of arguments determines the data type of the map elements.

MAP_FROM_ARRAYS
(key_array ,value_array)

Generates a map from the specified key and value arrays. The data type of
arguments determines the data type of the map elements.

MAP_KEYS (map) Returns an array of keys for the specified map.

MAP_VALUES (map) Returns an array of values for the specified map.

COLLECT_MAP (value) Returns a map with elements based on the specified arguments. The data type of
the argument determines the data type of the map. COLLECT_MAP is an
aggregate function.

SIZE (map) Returns the size of the map.

The following table describes the complex functions for struct data type:

Complex Function Description

STRUCT_AS
(type_definition, struct)

Generates a struct with a schema based on the specified complex data type definition
and the values you pass as argument.

STRUCT (element_name1,
value1)

Generates a struct with the specified names and values for the elements. The data type
of the value is based on the specified value argument.

RESPEC (type_definition,
struct)

Renames each element of the given struct value based on the names of the elements in
the specified complex data type definition.

CAST (type_definition,
struct)

Changes the data type and the name of each element for the given struct value based on
the corresponding data type and name of the element in the specified complex data type
definition.

The following table describes the complex functions that parse hierarchical data midstream in a mapping:

Complex Function Description

PARSE_JSON
(upstream_string, :Type.type_definition_library.type_
definition)

Parses hierarchical JSON data in a string data type and
generates a struct with a schema based on the specified
complex data type definition.

PARSE_XML
(upstream_string, :Type.type_definition_library.type_
definition)

Parses hierarchical XML data in a string data type and
generates a struct with a schema based on the specified
complex data type definition.

For more information about the function syntax, return value, and examples, see the Informatica Developer
Transformation Language Reference.

254 Chapter 12: Hierarchical Data Processing

Rules and Guidelines for Processing Hierarchical
Data on the Spark Engine

There are processing differences when you work with complex data types in a mapping that runs on the
Spark engine.

Consider the following rules and guidelines when you use complex data types in a mapping that runs on the
Spark engine:

• You cannot read hierarchical data from or write hierarchical data to a Hive source in a dynamic mapping.

• When you read hierarchical data from a Hive source, you cannot enable Hive LLAP for Hive queries.

• When you read hierarchical data from a Hive source, the Spark engine converts float type data to double.
Use the double data type when you read from and write to a Hive source to prevent precision errors.

• When you write date/time data within a complex data type to a Hive target using HDP 3.1, configure the
timezone as UTC. In the Hadoop connection Spark advanced properties, append “-Duser.timezone=UTC”
to the end of the value for the following properties:

- spark.driver.extraJavaOptions

- spark.executor.extraJavaOptions

Midstream Parsing of Hierarchical Data

Midstream Parsing Overview
You can use complex functions to parse up to 5 MB of data midstream in a mapping on the Spark engine.

The Spark engine can parse raw string source data using the following complex functions:

• PARSE_JSON

• PARSE_XML

The complex functions parse JSON or XML data in the source string and generate struct target data.

For more information about the complex functions, see the Informatica Developer Transformation Language
Reference.

Midstream Parsing Use Case
You work in the IT department for an online retailer. Your management team wants to understand and
categorize decreased conversion rates.

The online sales application team reports that there has been an increase in the number of shoppers and in
the number of shopping carts with large value items. However, the sales bottom line does not reflect that. In
fact, the marketing team reports a decrease in conversion rates. These changes are happening fast, and the
amount of data is daunting. The management team wants answers.

You have an upstream Java transformation web service that provides the shopping cart data in JSON, within
a string field. However, you are unsure of the specific data structure. The sales team is able to provide a
sample file with the JSON data.

Rules and Guidelines for Processing Hierarchical Data on the Spark Engine 255

The sales and marketing teams have some ideas about what might be causing these issues, but they want
actual shopping data to confirm their theories. The teams do not have the resources or expertise to read and
analyze raw JSON data.

With the sample JSON data, you are able to use CLAIRE® Intelligent Structure Discovery to parse the
shopping cart data, creating a complex data type definition. Now that you know the data structure, you create
a midstream mapping to parse the data, and categorize the shopping cart information. You can use the
categorized data in downstream transformations, allowing you to further refine the information for the sales
and marketing teams.

When the teams see the details you provide regarding the abandoned shopping carts, they realize what they
need to do to reduce the number of lookers, and turn them into buyers.

How to Use a Midstream Mapping to Parse Hierarchical Data
Develop a midstream mapping to parse hierarchical data in a source string on the Spark engine.

The following high-level tasks describe how to develop and run a mapping that parses hierarchical data in a
source string:

Create a connection.

Create a connection to access data in complex files based on the file storage.

Create data objects.

1. Create a data object to represent the source file with the source string that contains hierarchical
data in JSON or XML format.

2. Create a data object to represent the target that will include the hierarchical data in a struct.

3. Configure the data objects' properties.

Create or import a complex data type definition.

Intelligent Structure Discovery parses sample data and discovers the schema for hierarchical data in a
source string. The following alternatives are available:

• Create a complex data type definition using a representative sample file in Informatica Intelligent
Cloud Services Intelligent Structure Discovery.

• Import an existing Intelligent Structure Discovery .amodel complex data type definition.

• Create a complex data type definition using a representative sample file in the Developer tool.

The complex data type definitions are stored in the type definition library that is a Model repository
object. The default name of the type definition library is m_Type_Definition_Library.

Note: You cannot manually create a complex data type definition for midstream mapping.

Create a mapping and add mapping objects.

1. Create a mapping, and add Read and Write transformations.

2. Create a Read transformation to read the hierarchical data from the source string.

3. Create a Write transformation to write the hierarchical data to a target struct.

4. Create an Expression transformation for the PARSE_JSON or PARSE_XML function.

5. Based on the mapping logic, add other transformations that are supported on the run-time engine.

Create and configure ports in transformations.

1. Create the Read ports including the string Type that contains the hierarchical data.

2. Create the Write ports including the struct Type that contains the parsed hierarchical data.

256 Chapter 12: Hierarchical Data Processing

3. Create the Expression ports:
Configure the input string as input and output.

Configure the output struct as output. The Type Definition must reference the complex data type
definition you created or imported. Configure the PARSE_JSON or PARSE_XML function for the
expression.

Configure the transformations.

Link the ports and configure the transformation properties based on the mapping logic.

Configure the mapping properties.

Configure the mapping run-time properties: choose the Spark validation environment and Hadoop as the
execution environment.

Validate and run the mapping.

1. Validate the mapping to identify and correct any errors.

2. Optionally, view the engine execution plan to debug the logic.

3. Run the mapping.

Rules and Guidelines for Midstream Parsing
Consider the following rules and guidelines when you work with midstream parsing:

• For optimal performance, the size of hierarchical data to be parsed should be 5 MB or less.

• If the defined schema does not match the data, the parser ignores the unrecognized field and does not fail
the mapping job.

• Dynamic complex ports are not supported with midstream mapping.

• Intelligent Structure Discovery converts Boolean data to a string in the intelligent structure model. Use a
string field in the midstream mapping for any Boolean data.

• The midstream mapping complex functions cannot parse Avro binary boolean data types.

Troubleshooting Midstream Parsing
Consider the following troubleshooting tips when you use midstream mappings to parse hierarchical data:

The midstream mapping did not parse the complex data completely.

If the parser encounters a data field that it cannot parse, the parser ignores the unrecognized field and
does not fail the mapping job.

The PARSE_JSON and PARSE_XML complex functions ignore data in the following situations:

• The JSON or XML structure is invalid.

• The JSON or XML source file contains invalid or unrecognized data.

• The data does not match the schema provided in the type definition library.

• The complex data schema of the source string changes. For example, a software update on the
server might change automated JSON or XML input.

• The wrong element is selected as the root, which can cause the parser to flatten parent data in an
array.

To troubleshoot unparsed data, capture the data from the source string and save it in an
UnassignedData array as an unidentifiedDataItem. Then, use this information to analyze the data.

Contact Informatica Global Customer Support and refer to the internal KB 627032.

Midstream Parsing of Hierarchical Data 257

Note: This debugging tool can have an impact on system performance.

The midstream mapping loses data when parsing arrays.

Data loss occurs when the PARSE_JSON or PARSE_XML functions parse a schema that contains an
array or a multidimensional array with struct elements. The resulting data loss depends on the array
type. For example:

• Array with struct elements. The parser function returns only the first element of an array. The
remaining array elements are ignored.

• Multidimensional array with struct elements. The parser function returns a struct instead of an array,
for an intermediate array element.

When you create the intelligent structure model using sample data, Intelligent Structure Discovery
selects an intermediate element as the root node. For example, when an array contains struct elements,
Intelligent Structure Discovery selects the first struct element as the root node. This behavior causes
data loss for midstream parsing. To avoid data loss, select the top-level node as root.

Use Informatica Intelligent Cloud Services Intelligent Structure Discovery to modify the intelligent
structure model.

Select the top-level node, and then right-click and select Mark As Root. The following image shows how
to modify the root node:

Note: The brown-colored node shows the current root node. The green-colored node shows the selected
root node.

For more information, see the "Intelligent structure models" section of the Informatica Intelligent Cloud
Services Data Integration help.

The midstream mapping does not work when the data or field names contain special characters.

The input data is encoded as a UTF-8 string. Check the input flat file data object configuration in the
Developer tool.

In the Object Explorer view, navigate to the flat file data object in the Physical Data Objects Advanced
tab > Format section and set the Code page attribute to UTF-8.

258 Chapter 12: Hierarchical Data Processing

C h a p t e r 1 3

Hierarchical Data Processing
Configuration

This chapter includes the following topics:

• Hierarchical Data Conversion, 259

• Convert Relational or Hierarchical Data to Struct Data, 260

• Convert Relational or Hierarchical Data to Nested Struct Data, 262

• Extract Elements from Hierarchical Data, 270

• Flatten Hierarchical Data, 272

Hierarchical Data Conversion
In the Developer tool, use Hierarchical Conversion wizards that simplify the tasks for developing a mapping
to process hierarchical data on the Spark engine. These wizards add one or more transformations to the
mapping and create output ports. The expressions in the output ports use complex functions and operators
to convert relational data to hierarchical data or hierarchical data to relational data.

The following table lists the hierarchical conversion wizards and when to use these wizards:

Hierarchical
Conversion Wizard

When to Use

Create Struct Port To convert relational and hierarchical data to struct data. For example, you want to convert
data in one or more columns of any data type to hierarchical data column of type struct.

Create Nested
Complex Port

To convert relational and hierarchical data in two tables to a nested struct data. You can select
one or more columns of any data type. For example, you want to convert data in columns from
two tables to a hierarchical data column of type struct with a nested schema. The wizard
creates a struct with an array of structs.

259

Hierarchical
Conversion Wizard

When to Use

Extract from
Complex Port

To convert hierarchical data to relational data or modify the hierarchical data. For example,
you want to perform the following conversions:
- Convert one or more elements of primitive data types in a hierarchical data to relational data

columns.
- Convert one or more elements of complex data types in a hierarchical data to hierarchical

data columns.

Flatten Complex
Port

To convert hierarchical data to relational data. For example, you want to convert one or more
elements of a hierarchical data to relational data columns.

Convert Relational or Hierarchical Data to Struct Data
You can convert relational or hierarchical data in one or more columns to hierarchical data of type struct. Use
the Create Struct Port wizard in the Developer tool to perform the conversion.

For example, a relational table contains three columns city, state, and zip. You create a mapping to convert
the data in the three columns to one hierarchical column. Select the three ports in the transformation and use
the Create Struct Port wizard to generate struct data with the selected ports as its elements.

The wizard performs the following tasks:

• Creates a complex data type definition based on the ports that you select.

• Adds an Expression transformation to the mapping.

• Creates a struct output port to represent the struct data.

• Creates an expression that uses the STRUCT_AS function to generate struct data.

Creating a Struct Port
Use the Create Struct Port wizard to convert data that passes through one or more ports to struct data.

1. In the transformation, select one or more ports that you want to convert as elements of the struct data.

The ports you select also determine the elements of the complex data type definition.

2. Right-click the selected ports, and select Hierarchical Conversions > Create Struct Port.

260 Chapter 13: Hierarchical Data Processing Configuration

The Create Struct Port wizard appears with the list of ports that you selected.

3. Optionally, in the Name box, change the name of the complex data type definition.

For example, typedef_address.

4. Optionally, click Choose to select other ports in the transformation.

5. Click Finish.

You can see the following changes in the mapping:

• The mapping contains a new Expression transformation Create_Struct with a struct output port and a
dynamic port with ports from the upstream transformation.

• The type definition library contains the new complex data type definition.

Convert Relational or Hierarchical Data to Struct Data 261

• The struct output port references the complex data type definition.

• The struct output port contains an expression with the STRUCT_AS function. For example,

STRUCT_AS(:Type.Type_Definition_Library.typedef_address,city,state,zip)

Convert Relational or Hierarchical Data to Nested
Struct Data

You can convert relational or hierarchical data in one or more columns in two transformations to nested
struct data. Use the Create Nested Complex Port wizard in the Developer tool to perform the conversion.

The wizard converts relational data from two tables to struct data with a nested data type definition.

For example, a relational table contains employee bank account details. Another table contains the bank
details. You create a mapping to convert data in the two tables into a hierarchical format that the payment
system can process. Select the ports in the two transformations and use the Create Nested Complex Port
wizard. The wizard generates struct data that contains an array element for each bank. The array contains a
struct element for the employee bank account details.

Relational input

The Emp_Details table contains the following columns: employee ID, name, address, bank id, and bank
account number.

The Bank_Details table contains the following columns: bank id, bank name, SWIFT code.

Struct output

banks{
bank_swift:integer
[bank_name{account_number:integer,employee_id:integer,name:string,address:string]
}

The wizard performs the following tasks:

• Adds a Joiner transformation to join source data from the parent and child tables based on the join keys.
The transformation that contains ports for the parent complex data type definition is the parent
transformation, and the other transformation is the child transformation.

• Creates a child complex data type definition and adds an Expression transformation that contains the
child struct port.
The expression in the struct port generates a struct based on the child complex data type definition.

• Adds an Aggregator transformation that contains an array port.
The expression in the array port generates an array with the child struct as its element, and groups the
struct values based on the group by port.

• Creates a parent complex data type definition and adds an Expression transformation that contains the
nested complex port.
The expression in the nested complex port generates a struct with an array of structs as one of its
elements.

262 Chapter 13: Hierarchical Data Processing Configuration

Creating A Nested Complex Port
Use the Create Nested Complex Port wizard to convert data that passes through one or more ports in two
transformations to a struct data that references a nested data type definition. You specify the
transformations from which the wizard creates the parent and child complex data type definitions.

1. Open the mapping or mapplet in which you want to create a nested complex port.

2. Press Ctrl and select the ports in the two transformations that you want to convert as elements of the
nested complex port.

3. Right-click the selected ports, and select Hierarchical Conversions > Create Nested Complex Port.

Convert Relational or Hierarchical Data to Nested Struct Data 263

The Create Nested Complex Port wizard appears.

4. Choose the transformation that contains ports for the parent complex data type definition and select the
join keys to join the tables.

5. Click Next.

264 Chapter 13: Hierarchical Data Processing Configuration

The wizard page to create child complex data type definition appears.

6. Optionally, change the name of the child complex data type definition and make any changes to the
elements.

7. Click Next.

Convert Relational or Hierarchical Data to Nested Struct Data 265

The wizard page to select group by port from the parent transformation appears.

8. Click Choose.

The Ports dialog box appears.

9. Select a group by port from the parent transformation and click OK.

The selected port appears on the wizard page.

10. Click Next.

266 Chapter 13: Hierarchical Data Processing Configuration

The final wizard page to create parent complex data type definition and nested complex port appears.

11. Optionally, change the name of the parent complex data type definition and make any changes to the
elements.

You cannot delete the port that you selected as the group by port.

12. Click Finish.

Convert Relational or Hierarchical Data to Nested Struct Data 267

You can see the following changes in the mapping:

• The mapping contains a new Joiner transformation Join_<transformation1>_<transformation1> that
joins the two tables.

• The mapping contains a new Expression transformation Create_ChildStruct with a struct output port
and a dynamic port with ports from the upstream transformation.

• The type definition library contains the new child complex data type definition. The struct output port
references the child complex data type definition.

The output port contains an expression with the STRUCT_AS function:

STRUCT_AS(:Type.Type_Definition_Library.<child_typedef>,<comma_delimited_child_element
s>)

268 Chapter 13: Hierarchical Data Processing Configuration

• The mapping contains a new Aggregator transformation Agg_ArrayOfStruct with the group by port to
group the child structs into an array.

• The mapping contains a new Expression transformation Final_NestedComplexPort with a struct output
port and a dynamic port with ports from the upstream transformation.

• The type definition library contains the new parent complex data type definition, which is a nested data
type definition. The struct output port references the parent complex data type definition.

The output port contains an expression with the STRUCT_AS function:

STRUCT_AS(:Type.Type_Definition_Library.<parent_typedef>,<comma_delimited_struct_eleme
nts>)

Convert Relational or Hierarchical Data to Nested Struct Data 269

Extract Elements from Hierarchical Data
You can extract elements of a primitive or complex data type from hierarchical data. Use the Extract from
Complex Port wizard in the Developer tool to perform the conversion.

Based on the data type of the elements in the complex port that you select, the wizard performs the following
conversions:

• If the elements are of primitive data types, the wizard converts the element to a relational data.

• If the elements are of complex data types, the wizard converts the element to a hierarchical data.

The wizard adds an Expression transformation that contains one or more extracted ports. The number of
elements that you select to extract determine the number of output ports in the transformation. The data type
of the element determines the data type of the output port. The expression in the output ports use complex
operators to extract elements from the complex port.

The following table describes the wizard conversions based on the data type of the complex port that you
select:

Complex Port
Data Type

Wizard Conversion

array Relational data. If you specify an array index, the wizard extracts an element in the array. Default is
0. The wizard extracts the first element of the array.
Hierarchical data. If you do not specify an array index, the wizard extracts the entire array.

struct Relational data. The wizard extracts the element in the struct that you selected.

array of structs Relational data. If you select an element in the struct, the wizard extracts the element. The wizard
requires an array index value. Default is 0.
Hierarchical data. If you select the array and specify an array index, the wizard extracts the struct
element in the array. If you do not specify an array index, the wizard extracts the entire array.

array of maps Relational data. If you select the key or value element in the array and specify an array index, the
wizard extracts the element.
Hierarchical data. If you select the array and specify an array index, the wizard extracts the map
element in the array. If you do not specify an array index, the wizard extracts the entire array.

struct of
structs

Relational data. If you select an element in the parent or the child struct, the wizard extracts the
element.
Hierarchical data. If you select the parent struct or child struct, the wizard extracts that struct.

struct of maps Hierarchical data. If you select the map element, the wizard extracts the map data. If you select the
struct, the wizard extracts the struct data in another port.

Extracting Elements from a Complex Port
Use the Extract from Complex Port wizard to extract elements from hierarchical data.

1. In the transformation, select a complex port from which you want to extract elements.

2. Right-click the selected ports, and select Hierarchical Conversions > Extract from Complex Port.

270 Chapter 13: Hierarchical Data Processing Configuration

The Extract from Complex Port wizard appears with the list of elements in the complex port.

3. In the Select Elements column, select the check box for each element that you want to extract.

4. To extract an array element, specify an array index in the Array Index column.

If you delete the array index, the wizard extracts the entire array. To extract an element in the struct from
a complex port for an array of structs, you must specify an array index value.

5. Click Finish.

You can see the following changes in the mapping:

• The mapping contains a new Expression transformation Extract_<complex_port_name> with the
following ports:

- The complex port from which you want to extract elements as the input port.

- One or more output ports for the extracted elements. The number of elements that you selected to
extract determines the number of output ports in the transformation.

Extract Elements from Hierarchical Data 271

- A dynamic port with ports from the upstream transformation.

• The output ports contain expressions that use complex operators to extract elements.
The following image shows the expressions for the output ports in the Expression column on the Ports
tab:

Flatten Hierarchical Data
You can flatten elements of hierarchical data into relational data. Use the Flatten Complex Port wizard in the
Developer tool to perform the conversion.

The wizard converts hierarchical data to relational data. When you have hierarchical data with nested data
type, you can select specific elements or all elements of complex data type to flatten.

Based on the data type of the complex port, the wizard performs the following tasks:

struct

• Adds an Expression transformation with flattened output ports. The expression for the output ports
uses the dot operator to extract elements in the struct.

• Adds a final Expression transformation that contains a dynamic port with all ports from the upstream
transformation including the flattened struct ports.

array

Adds a Normalizer transformation with flattened output ports. The wizard flattens the array field in the
Normalizer view.

272 Chapter 13: Hierarchical Data Processing Configuration

Adds a final Expression transformation that contains a dynamic port with all ports from the upstream
transformation including the flattened array ports.

nested data type

Adds one or more Expression and Normalizer transformations with flattened output ports. If you select a
child element of a nested complex port, the wizard flattens both the parent and child elements.

Adds a final Expression transformation that contains a dynamic port with all ports from the upstream
transformation including the flattened ports.

Flattening a Complex Port
Use the Flatten Complex Port wizard to convert hierarchical data to relational data.

1. In the transformation, select a complex port that you want to flatten.

2. Right-click the selected ports, and select Hierarchical Conversions > Flatten Complex Port.

The Flatten Complex Port wizard appears with the list of elements in the complex port.

3. In the Select Elements column, select the check box for each element of a struct or an array data type
that you want to extract.

If you select a child element of a nested complex port, the wizard automatically selects the parent
element to flatten.

Flatten Hierarchical Data 273

4. Optionally, click Flatten All to flatten all elements of struct or data type in the complex port.

The wizard selects all elements of struct or data type in the complex port to flatten.

5. Click Finish.

You can see the following changes in the mapping:

• For each struct element that you selected to flatten, the mapping contains a new Expression
transformation Extract_<element_of_struct_type> with the following ports:

- The complex port from which you want to extract elements.

- One or more output ports for the extracted elements.
The output ports contain expressions that use complex operators to extract elements.

- A dynamic port with ports from the upstream transformation

• For each array element that you selected to flatten, the mapping contains a new Normalizer
transformation Flatten_<element_of_array_type> with an input group and an output group. The output
group contains the flattened normalized fields for the array element.

• A final Expression transformation Final_Flatten_Result with a dynamic port that contains the flattened
ports for the complex port and other ports in the upstream transformation.

The following image shows an example of mapping changes:

274 Chapter 13: Hierarchical Data Processing Configuration

C h a p t e r 1 4

Hierarchical Data Processing with
Schema Changes

This chapter includes the following topics:

• Overview of Hierarchical Data Processing with Schema Changes, 275

• How to Develop a Dynamic Mapping to Process Schema Changes in Hierarchical Data, 276

• Flatten Hierarchical Data with Schema Changes, 277

• Dynamic Complex Ports, 278

• Input Rules for a Dynamic Complex Port, 280

• Port Selectors for Dynamic Complex Ports, 283

• Dynamic Expressions, 283

• Complex Operators, 285

• Complex Functions, 285

• Rules and Guidelines for Dynamic Complex Ports, 285

• Optimized Mappings, 285

Overview of Hierarchical Data Processing with
Schema Changes

You can use dynamic complex ports to manage schema changes to hierarchical data. You use dynamic ports
to receive new and changed hierarchical data columns from a dynamic complex file source. Then, to manage
schema or metadata changes of a complex port, you use dynamic complex ports.

To process hierarchical data on the Spark engine, you use complex ports in transformations. To handle
metadata changes at run time, you create dynamic mappings with dynamic ports. A dynamic port can
propagate hierarchical data through a generated port of a complex data type. However, if the schema of the
hierarchical data changes at run time, you must use dynamic complex ports to pass hierarchical data in the
mapping.

Complex ports require you to specify the type configuration based on the data type of the elements in an
array or a map or the schema of a struct. With dynamic complex ports, you do not have to specify the type
configuration for a hierarchical column. For example, you do not have to specify a complex data type
definition for a dynamic struct.

275

With dynamic complex ports, you can perform the following tasks in a dynamic mapping:

• Receive new or changed elements of a complex port if the schema of the complex port changes at run
time.

• Modify hierarchical data or filter elements of hierarchical data with input rules for a dynamic complex
port.

• Extract elements of hierarchical data that might have schema changes at run time using complex
operators.

• Generate arrays and structs with dynamic expressions that use complex functions.

For more information about dynamic mappings, see the Informatica Developer Mapping Guide.

Note: You cannot perform midstream parsing in a dynamic mapping.

How to Develop a Dynamic Mapping to Process
Schema Changes in Hierarchical Data

To process hierarchical data with schema changes on the Spark engine, develop a dynamic mapping with
dynamic complex sources and targets, dynamic ports, complex ports, dynamic complex ports, complex
operators and functions, port selectors, and dynamic expressions.

Note: The tasks and the order in which you perform the tasks to develop a dynamic mapping depend on the
mapping scenario.

The following list outlines the high-level tasks to develop and run a mapping to read, write, and process
hierarchical data that can change at run time.

Create dynamic complex sources and targets.

If a complex file source changes, you can configure the Read transformation to accommodate changes.
For example, you can configure the Read transformation to use a different data source or to update the
data object based on the data source. If a complex file target changes, you can configure the Write
transformation to accommodate target changes. For example, you can configure the Write
transformation to generate columns based on the mapping flow.

You can configure a Read or a Write transformation to get columns from a complex file data object at
run time.

Create dynamic ports and define input rules.

When you configure transformations in a mapping, you create dynamic ports to receive new or changed
columns based on the data flow. You configure input rules to determine the columns that a dynamic port
receives and to rename or reorder the generated ports.

Create dynamic complex ports and define input rules.

Create a dynamic complex port to handle changes to the schema of a complex port. Configure input
rules to determine the schema or element types of a dynamic complex port. Use a user rename on the
upstream dynamic field.

Create port selectors and dynamic expressions for dynamic complex output ports.

Create a dynamic expression by using dynamic ports or port selectors in the expressions. When you
include a dynamic port, the expression generates a complex data type with elements based on each port
that the dynamic port generates. When you include a port selector, the expression generates a complex
data type with elements based on each port determined by the selection rule.

276 Chapter 14: Hierarchical Data Processing with Schema Changes

Create parameters.

You can use parameters to change values at run time. Use parameters to change values such as
sources, targets, connections, and rules within the mapping.

Create run-time links.

Transformations might change in such a way that you cannot create direct links when you design the
mapping. If you cannot create links at design time, you can configure run-time links.

Flatten Hierarchical Data with Schema Changes
You can flatten dynamic arrays, maps, and structs with schema changes into relational data. Use the flatten
action in the Normalizer transformation to flatten dynamic arrays and maps. Use the EXTRACT_STRUCT
function in dynamic expressions to extract all elements from a dynamic struct port in an Expression
transformation.

Flatten a Dynamic Struct
Use the EXTRACT_STRUCT function to flatten dynamic structs in an Expression transformation.

Use the dot operator in expressions to extract elements of a struct.

For example, you can use the EXTRACT_STRUCT function to extract all data from an address without
specifying each address field individually.

Flatten Hierarchical Data with Schema Changes 277

Dynamic Complex Ports
A dynamic complex port receives one or more elements of a complex port or a hierarchical data column
based on input rules. You can use dynamic complex ports such as dynamic array, dynamic map, and dynamic
struct in some transformations on the Spark engine.

The following image shows the ports that you can use in a mapping to process hierarchical data with schema
changes:

1. Complex port

2. Dynamic port

3. Dynamic complex port

Complex port

A port of a complex data type in a transformation that can pass or process hierarchical data. Array, map,
and struct ports are complex ports. Based on the complex data type, you specify the complex port
properties as the type configuration.

Dynamic port

A port in a transformation that can receive one or more columns from an upstream transformation.
Dynamic ports can receive new or changed columns as generated ports based on the metadata that
passes through the mapping. The input rules for a dynamic port determine the generated ports.

Dynamic complex port

A port in a transformation that can pass or process hierarchical data with new or changed elements
based on the schema changes of the hierarchical data. The input rules for a dynamic complex port
determine the data type of the hierarchical data elements or the schema of the hierarchical data.

278 Chapter 14: Hierarchical Data Processing with Schema Changes

Dynamic Ports and Dynamic Complex Ports
Dynamic complex ports are different from dynamic ports. A dynamic complex port represents one
hierarchical column of a complex data type, whereas a dynamic port represents one or more columns of any
data type.

You create dynamic ports to accommodate changes to columns at run time based on the metadata that
passes through the mapping. You create dynamic complex ports to accommodate changes to the schema of
the hierarchical column at run time.

You cannot use dynamic complex ports in a mapplet, whereas you can use dynamic ports in a mapplet. For
example, you can add a dynamic port to transformations in a mapplet. But you cannot use dynamic ports in
the input and output instances of a mapplet.

The following image shows a dynamic port From_Customer_Read:

The dynamic port From_Customer_Read in the Expression_allports transformation includes generated ports
of type string, decimal, struct, array, and map. The generated ports can change at run time based on the
columns in the upstream transformation.

Dynamic Complex Ports 279

The following image shows a dynamic complex port d_Address:

The dynamic struct port d_Address in the Expression transformation includes elements of type string and
decimal. The elements of a dynamic complex port can change at run time based on the schema changes to
the hierarchical column in the upstream transformation.

Dynamic Complex Ports in Transformations
You can create dynamic complex ports in some transformations on the Spark engine.

The following transformations support dynamic complex ports:

• Aggregator

• Expression

• Filter

• Joiner

• Lookup

• Normalizer

• Rank

• Router

• Sorter

Input Rules for a Dynamic Complex Port
Input rules for a dynamic complex port are one or more rules that determine the data type of the hierarchical
data elements or the schema of the hierarchical data. Define input rules to modify hierarchical data that is
represented as a complex port in an upstream mapping.

Based on the dynamic complex port, you define the input rules in the corresponding Input Rules dialog box as
follows:

280 Chapter 14: Hierarchical Data Processing with Schema Changes

dynamic array

Select one or more data types for the array elements. The default input rule includes elements of all data
types.

dynamic map

Select one or more data types for the key and value of map elements. The default input rules for key and
map include elements of all data types.

dynamic struct

Specify which elements to include or exclude in a struct based on the element names or data type.
Include all elements is the default input rule.

Input Rule for a Dynamic Array
An input rule for a dynamic array determines the data type of the array elements. You can select one or more
data types. The default input rule includes elements of all data types.

For example, you develop a dynamic mapping to process two different complex file sources. You expect that
an array in one of the complex files is of string elements and an array in the other complex file is of integer
elements. Then, you can select string and integer data types as input rules for the dynamic array port.

If you are not certain about the data type of the array elements, you can select all data types.

The following image shows the Dynamic Array Input Rule dialog box for a dynamic array port:

Input Rules for a Dynamic Complex Port 281

Input Rules for a Dynamic Map
An input rule for a dynamic map determines the data type of the key and value pair of a map. You can select
one or more data types for the key and value. The default input rules for key and map include elements of all
data types.

The following image shows the Input Rules dialog box for a dynamic map port:

Input Rules for a Dynamic Struct
An input rule for a dynamic struct determines the schema of the struct. You can define the input rules based
on the name or type of the struct element in an upstream transformation.

Specify which elements to include or exclude in a struct based on the element names or data type. You can
define multiple rules. The Data Integration Service applies rules in the order in which they appear in the input
rules list. Include all ports is the default input rule. Create at least one include input rule for a dynamic struct
port.

Note: You cannot use input rules to rename elements of a struct port.

282 Chapter 14: Hierarchical Data Processing with Schema Changes

The following image shows the Input Rules dialog box for a dynamic struct port:

Port Selectors for Dynamic Complex Ports
You can create port selectors for dynamic complex ports to use in a dynamic expression or a join condition.

You can use port selectors in the following transformations for complex dynamic ports:

• Expression transformation. You can reference a port selector in STRUCT and ARRAY functions as a
dynamic expression to construct a dynamic array or a dynamic struct.

• Joiner transformation. You can reference port selectors in STRUCT and ARRAY functions in a join
condition.

For more information about port selectors, see the Informatica Developer Mapping Guide.

Dynamic Expressions
You can configure a dynamic expression to construct a dynamic complex port. Use STRUCT or ARRAY
functions in dynamic expressions to construct a dynamic struct or a dynamic array. You can reference a port
selector or a dynamic port in a dynamic expression for a dynamic complex output port.

A dynamic expression for an output port of a primitive data type runs the expression against each port to
generate multiple output ports. A dynamic expression for a dynamic complex output port runs the expression
to construct a dynamic complex port and returns a single output port of a complex data type.

You must specify a base port for the dynamic expression. Base port setting determines how the elements of
the output complex port must look like. For example, elements of a port selector determine the elements of a
dynamic output array. Base port for a struct determines the types of the elements of the output struct port.

Note: When you configure a dynamic expression, the Developer tool does not validate whether you have
specified a base port.

Port Selectors for Dynamic Complex Ports 283

Example - Dynamic Expression to Construct a Dynamic Struct
An Expression transformation has a dynamic port from which you want to construct a struct.

An Expression transformation has the following generated input ports:

Name String
Street String
City String
State String
Zip Integer

The transformation contains a dynamic complex output port called d_structAddress. You want to construct a
struct and return the result to d_structAddress.

You create a port selector AddressPS and define the selection rules to include the following ports by name:

Street String
City String
State String
Zip Integer

Then, you create a dynamic expression with the STRUCT function.

The following image shows a dynamic expression that references a port selector AddressPS:

In the Output Port Settings area, specify the port selector AddressPS as the base port.

The dynamic expression creates the following struct with the elements from the port selector:

d_structAddress{
 Street String
 City String
 State String
 Zip Integer
}

284 Chapter 14: Hierarchical Data Processing with Schema Changes

Complex Operators
You can use complex operators in expressions to access or extract elements of a dynamic complex port.

For example, you can use the dot and subscript operators as follows to access elements of a dynamic
complex port:

dynamicStruct.element
dynamicArray[0]
dynamicMap[key]

For more information about complex operators, see “Complex Operators” on page 251.

Complex Functions
You can use ARRAY and STRUCT functions in dynamic expressions to construct dynamic arrays and dynamic
structs. Additionally, you can use the EXTRACT_STRUCT function in dynamic expressions to extract all
elements from a dynamic struct port in an Expression transformation. You use a dynamic port or a port
selector as the complex function argument.

When you construct a dynamic struct, the number of elements of the struct changes based on the number of
ports in the dynamic port or the port selector.

When you construct a dynamic array, the size of the array changes based on the number of ports in the
dynamic port or the port selector.

For more information about complex functions, see “Complex Functions” on page 253.

Rules and Guidelines for Dynamic Complex Ports
Consider the following rules and guidelines when you work with dynamic complex ports:

• You cannot use dynamic complex ports in a mapplet.

• You cannot use a filter condition to compare dynamic complex ports. However, you can use complex
operators to extract elements of a dynamic complex port and use them in a filter condition. For example,
you can use the following filter condition:

dynamicStruct.field == 100
• You cannot use the PARSE_JSON or PARSE_XML complex functions in dynamic expressions.

Optimized Mappings
When you develop a dynamic mapping, you might want to review the dynamic mapping and fix any issues
before you run the mapping. To review the mapping, you can view an optimized mapping. An optimized
mapping is a compiled version of the dynamic mapping.

To view the optimized mapping, right-click an empty area in the mapping editor and click Show Optimized
Mapping.

Complex Operators 285

The Data Integration Service generates the optimized mapping. The Data Integration Service compiles the
mapping to complete the following tasks:

• Expand dynamic ports and convert generated ports to static ports.

• Convert dynamic complex ports to complex ports.

• Resolve dynamic expressions.

• Resolve parameter values to default values.

• Link static ports.

• Resolve run-time links to connect the ports.

The following image shows a dynamic mapping with dynamic ports, dynamic complex ports, and a mapping
flow link:

286 Chapter 14: Hierarchical Data Processing with Schema Changes

The following image shows the optimized mapping in which the generated ports are converted to static ports,
dynamic complex ports are converted to complex ports, and the port links are resolved:

Optimized Mappings 287

C h a p t e r 1 5

Intelligent Structure Models
This chapter includes the following topics:

• Overview of Intelligent Structure Models, 288

• Intelligent Structure Discovery Process, 289

• Use Case, 290

• Using an Intelligent Structure Model in a Mapping, 290

• Rules and Guidelines for Intelligent Structure Models, 291

• How to Create a Mapping with an Intelligent Structure Model , 291

• Create an Intelligent Structure Model in Cloud Data Integration, 294

Overview of Intelligent Structure Models
You can use CLAIRE® Intelligent Structure Discovery to parse semi-structured or unstructured data in
mappings that run on the Spark engine or the Databricks Spark engine.

Long, complex files with little or no structure can be difficult to understand, much less parse. CLAIRE
Intelligent Structure Discovery can automatically discover the structure in unstructured data.

CLAIRE uses machine learning algorithms to decipher data in semi-structured or unstructured data files and
create a model of the underlying structure of the data. You can generate an intelligent structure model, a
model of the pattern, repetitions, relationships, and types of fields of data discovered in a file, in Informatica
Intelligent Cloud Services.

To use the model, you associate it with a data object that represents a complex file source in a data
engineering mapping. You can run the mapping on the Spark engine or the Databricks Spark engine to
process the data. The mapping uses the intelligent structure model to extract and parse data from input files
based on the structure expressed in the model.

To associate a model with a data object, you can perform one of the following tasks:

• Create and export an intelligent structure model in Cloud Data Integration and then select the model when
you create the data object.

• Select an XML, JSON, ORC, Avro, or Parquet sample file when you create the data object. Intelligent
Structure Discovery creates an intelligent structure model based on the sample file that you select.

Note: You cannot edit or refine a model that Intelligent Structure Discovery creates automatically. You can
only edit a model that you create in Cloud Data Integration.

288

Intelligent Structure Discovery Process
You can create a CLAIRE® intelligent structure model in Intelligent Structure Discovery. Intelligent Structure
Discovery is a service in Cloud Data Integration .

When you provide a sample file, Intelligent Structure Discovery determines the underlying structure of the
information and creates a model of the structure. After you create an intelligent structure model you can
view, edit, and refine it. For example, you can choose to exclude or combine structure elements. You can
normalize repeating groups.

You can create models from the following input types:

• Delimited files, for example, CSV files

• Machine generated files such as weblogs and clickstreams

• JSON files

• XML files

• ORC files

• Avro files

• Parquet files

• Microsoft Excel files

• Data within PDF form fields

• Data within Microsoft Word tables

• XSD files

When you finish refining the model, you can export it and then associate it with a data object that represents
a complex file source in a data engineering mapping.

Alternatively, when you create the data object, you can select an XML, JSON, ORC, Avro, or Parquet sample
file. Intelligent Structure Discovery creates an intelligent structure model based on the sample file that you
select.

Note: You cannot edit or refine a model that Intelligent Structure Discovery creates automatically. You can
only edit a model that you create in Cloud Data Integration.

The following image shows the process by which Intelligent Structure Discovery deciphers the underlying
patterns of data and creates a model of the data patterns:

Intelligent Structure Discovery Process 289

Use Case
You work in an operations group for an insurance company. Your team wants to process web logs to identify
operations and security issues.

Your back-end system collects data on system access and security activities in various branches of the
company. When the data is collected, the data is stored in the corporate data center and hosted in Amazon
S3 storage.

Your team wants to understand the types of operations issues that have caused the most errors and system
downtime in the past few weeks. You want to store data afterwards for auditing purposes.

Before your data analysts can begin working with the data, you need to parse the data in Amazon S3 input
buckets and produce actionable data. But you cannot spend the time and resources required to sift through
the data to create models of analysis. You might have to develop numerous mappings and parameter sets to
parse the data to make sure that actionable data is created from the web logs.

Instead of manually creating individual transformations, your team can use automatically generated
intelligent structure models to determine the relevant data sets. You create an intelligent structure model in
Intelligent Structure Discovery, an application in Data Integration that uses machine learning algorithms to
decipher data in structured or unstructured data files and discover the underlying structure of the data.

Intelligent Structure Discovery creates an intelligent structure model that represents the input file data
structure. You create a mapping with a data object that uses the intelligent structure model to output
actionable data sets.

After the mapping fetches data from Amazon S3 input buckets, the mapping processes the data with an
intelligent structure model to prepare the data, and can then write the data to Amazon S3 output buckets.

The following image shows the process to fetch the data from Amazon S3 input buckets, parse and prepare
the data, and then write the data to Amazon S3 output buckets. Analysts can then use the data to handle
security issues and improve operations management.

Using an Intelligent Structure Model in a Mapping
To use an intelligent structure model in a mapping, you associate it with a data object that represents a
complex file source when you create the object. The data object can be used to process files that are similar
to the one used to create the model.

When you create the data object, you either select a model that you created and exported in Cloud Data
Integration or select an XML, JSON, ORC, Avro, or Parquet sample file. Intelligent Structure Discovery creates
the model based on the sample file that you select.

290 Chapter 15: Intelligent Structure Models

You can add a Read transformation based on the data object to a mapping. If you want to process the data
any further, such as checking data quality, or structuring the data into relational format, you add relevant
downstream transformations to the mapping.

When the mapping runs, the Read transformation reads one or more input files and parses the data into
fields, arrays, and structs.

Depending on the model and input, the data object output might contain primitive data types, complex data
types, or nested data types. For more information about working with these data types in transformations,
see “Complex Data Types” on page 235.

If the input contains unidentified data, Intelligent Structure Discovery arranges the output of unidentified data
in the sample file in structured JSON format.

Rules and Guidelines for Intelligent Structure Models
Consider the following rules and guidelines when you work with an intelligent structure model:

• When you create an intelligent structure model in Cloud Data Integration , select the Data Integration
version that corresponds to your current Data Engineering Integration version.

• The model or the sample file that you select for a data object should match the structure of the expected
input files for the data object as much as possible. If an input file does not match the model that you
select or that Intelligent Structure Discovery creates based on the sample file, or partially matches the
model, there might be a large amount of unidentified data. Therefore, it is important to choose a file that
represents the expected input files.

• If you select a sample XML file that tags special characters that javax.xml.parsers can't parse, the data
object fails to load the file. For example, javax.xml.parsers can't parse the U+035D unicode character.

• You cannot use an intelligent structure model in a Write transformation.

• A data object with an intelligent structure model parses PDF forms, Microsoft Word tables, and Microsoft
Excel files whose size is less than the supported Hadoop split size of 256 MB.

• An intelligent structure model can parse the data within PDF form fields but not data outside the fields.

• An intelligent structure model can parse data within Microsoft Word tables. Other data is unidentified.

How to Create a Mapping with an Intelligent
Structure Model

You can create a mapping with a data object that incorporates an intelligent structure model to parse data.
You run the mapping on the Spark engine or the Databricks Spark engine to process the data.

The following high-level tasks describe how to develop and run a mapping to read and process data in files of
any type that an intelligent structure model can process, and then write the data to a target.
Note: The tasks and the order in which you perform the tasks to develop the mapping depend on the mapping
scenario.

Rules and Guidelines for Intelligent Structure Models 291

Optionally, create an intelligent structure model.

You can create an intelligent structure model in Cloud Data Integration . Create the model using a
sample file in Data Integration and export the model to the relevant file storage system, following the
instructions in “Create an Intelligent Structure Model in Cloud Data Integration” on page 294.

Create a connection.

Create a connection to access data in files that are stored in that system. You can create the following
types of connections that work with the data objects that can incorporate an intelligent structure model:

• Amazon S3

• Hadoop Distributed File System

• Microsoft Azure Blob

• Microsoft Azure Data Lake Store

Create a read data object.

1. Create a data object with an intelligent structure model to represent the files stored as sources. You
can create the following types of data objects with an intelligent structure model:

• Complex file

• Amazon S3

• Microsoft Azure Blob

• Microsoft Azure Data Lake Store

2. Configure the data object properties. Note the following guidelines:

• In Resource Format, select Intelligent Structure Model or Sample File.

• If you created an intelligent structure model in Data Integration , select that file.
Alternatively, select a sample file to base the model on. When you select an XML, JSON, ORC,
Avro, or Parquet sample file, Intelligent Structure Discovery creates an intelligent structure model
based on the sample file that you select.

Note: To import an intelligent structure model as a data object, you must have the relevant
Informatica Intelligent Cloud Services license. For more information about prerequisites for
creating an intelligent structure model, see “Before You Begin” on page 294.

3. In the data object read operation, configure columns to project hierarchical data as a complex data
type. Enable the Project Column as Complex Data Type property in the Column Projection
properties.

Create a write data object.

1. Create a data object to write the data to target storage.

2. Configure the data object properties.

Note: Do not associate an intelligent structure model with a data object write operation. If you use a
write operation that is associated with an intelligent structure model in a mapping, the mapping is not
valid.

Create a mapping.

1. Create a mapping.

2. Add a Read transformation based on the data object with the intelligent structure model.

3. Based on the mapping logic, add other transformations that are supported on the run-time engine.
Link the ports and configure the transformation properties based on the mapping logic.

4. Add a Write transformation based on the data object that passes the data to the target storage or
output. Link the ports and configure the transformation properties based on the mapping logic.

292 Chapter 15: Intelligent Structure Models

Configure the mapping.

1. Choose a validation environment and a run-time engine.

2. Choose an execution environment and select a connection.

Run the mapping.

1. Validate the mapping and fix any errors.

2. Optionally, view the execution plan to debug the logic.

3. Run the mapping.

Mapping Example
Your organization stores purchase order details, such as customer ID, item codes, and item quantity, in
Microsoft Excel spreadsheets in HDFS. You need to remove all private customer data and change the data
into text files for storage, so you can use the data for auditing.

Create a mapping that reads all the purchase records from the file in HDFS using a data object with an
intelligent structure. Then use the mapping to parse the data and write it to a storage target.

The following figure shows the example mapping:

You can use the following objects in the HDFS mapping:
HDFS input

The input object, Read_transformation_with_intelligent_structure_model, is a Read transformation that
processed a Microsoft Excel file stored in HDFS and creates field output.

Amazon S3 output

The output object, Write_transformation, is a Write transformation that represents an Amazon S3 bucket.

When you run the mapping, the Data Integration Service reads the file in a binary stream and passes it to the
Read transformation. The Read transformation extracts the relevant data in accordance to the intelligent
structure and passes data to the Write transformation. The Write transformation writes the data to the
storage target.

You can configure the mapping to run in a Hadoop run-time environment.

To configure the mapping, perform the following tasks:

1. Create an HDFS connection to read files from the Hadoop cluster.

2. Create a complex file data object read operation. Specify the following parameters:

• The intelligent structure as the resource in the data object. The intelligent structure was configured
so that it does not pass sensitive data.

• The HDFS file location.

• The input file folder location in the read data object operation.

3. Drag and drop the complex file data object read operation into a mapping.

4. Create an Amazon S3 connection.

5. Create a Write transformation for the Amazon S3 data object and add it to the mapping.

How to Create a Mapping with an Intelligent Structure Model 293

Create an Intelligent Structure Model in Cloud Data
Integration

Create an intelligent structure model to use in a Data Engineering Integration mapping.

You create and export the model in Data Integration , a service in Informatica Intelligent Cloud Services. For
more information, see the Data Integration Components help.

Before You Begin
Before you create intelligent structure models in Data Integration , perform the following tasks:

• Ensure that you have an active Informatica Intelligent Cloud Services account.

• In Informatica Intelligent Cloud Services, configure a separate organization to create and export models to
use in a mapping in the Developer tool.

• Verify that your Informatica Intelligent Cloud Services administrator has set the correct user-defined roles
to create and export intelligent structure models.

• Verify that the version of the license of the Informatica Intelligent Cloud Services that you use to create
intelligent structure models corresponds to your current Data Engineering Integration version.

For more information about registration and roles in Informatica Intelligent Cloud Services Administrator, see
the Administrator help.

Creating an Informatica Intelligent Cloud Services Account
Create an Informatica Intelligent Cloud Services account if you do not already have one.

1. To create an account, access the Informatica Intelligent Cloud Services login page at the following link:
https://dm-us.informaticacloud.com/identity-service/home.

2. On the Informatica Intelligent Cloud Services login page, click Don't have an account?.

3. In the setup page, enter your contact details and email address. You can select to use your email
address as a username.

Note: You will receive a registration email with access details and a link to confirm your account. You
must confirm the account within 48 hours or register again.

4. In the registration email, click the account confirmation access link.

The Informatica Intelligent Cloud Services password setup window appears.

5. On the password setup window, define your Informatica Intelligent Cloud Services password, and then
click Log In.

The Informatica Intelligent Cloud Services service picker appears. You can now access Data Integration .

Creating an Intelligent Structure Model
Create an intelligent structure model in Data Integration. It is recommended to use a simplified sample file to
generate the model. The sample file should have a representative data structure that is similar to the files
that you want to parse.

1. In the Informatica Intelligent Cloud Services My Services page, select Data Integration.

2. Click New > Components > Intelligent Structure Model > Create.

294 Chapter 15: Intelligent Structure Models

https://dm-us.informaticacloud.com/identity-service/home

3. In the Intelligent Structure Model page, enter a name for the model. The name can contain alphanumeric
characters and underscores. Optionally, enter a description of the model.

4. Select a location. Navigate to the project and folder where you want to save the model, or use the default
folder.

5. Browse for the sample file on which to base the model and click Discover Structure.

Intelligent Structure Discovery creates and displays a model of the data.

6. To refine the intelligent structure model and customize the structure of the output data, you can select a
data node and select to combine, exclude, flatten, or collapse the node. For more details about refining
and customizing a model, see the "Intelligent structure models" section of the Data Integration help.

7. Click Save.

Exporting an Intelligent Structure Model
After you create or edit a model, you can export the model to your local drive.

1. In Data Integration , select the Explore page.

2. On the Explore page, navigate to the project and folder with the intelligent structure model.

The Explore page displays all the assets in the folder.

3. Click to select the row that contains the relevant intelligent structure model. In the Actions menu, select
Edit. In the Intelligent Structure Details panel, click Edit.

The intelligent structure model appears in a separate page.

4. In the Intelligent Structure page, find the icon menu in the upper right corner of the Visual Model tab,
and click the Export model icon.

Intelligent Structure Discovery downloads the .amodel file to your local drive.

Create an Intelligent Structure Model in Cloud Data Integration 295

C h a p t e r 1 6

Blockchain
This chapter includes the following topics:

• Blockchain Overview, 296

• Blockchain Data Objects, 297

• Blockchain Data Object Operations, 301

• Use Case: Using a Blockchain Source to Improve Services in a Vehicle Lifecycle, 305

Blockchain Overview
You can read or look up data from a blockchain and transform the data according to your business needs.
You can also write data to the blockchain where the data can be stored as an immutable record.

To connect to a blockchain in a mapping, create a blockchain connection, a blockchain data object, and the
associated blockchain data object operations. A mapping that connects to a blockchain must run on the
Spark engine.

A blockchain data object represents the data on the blockchain, and a data object operation specifies the
transactions that you want to perform on the blockchain. When you run a mapping that uses a blockchain
data object operation, the Spark engine communicates with the REST web service that exposes the
blockchain to trigger the transactions according to the business rules on the blockchain.

To design a mapping that uses a blockchain data source, assess how you participate in the blockchain. As a
member, you can read from, look up, or write to blockchain data sources. As a regulator or a third party, you
can read the data into a mapping and transform the data for use in external applications.

For example, you can read from, look up, and write to blockchain data sources in the following ways:

Read

You can read the data on the blockchain and integrate it with data that you store in your corporate data
center.

Look Up

If you are a member in a supply chain that purchases materials from producers, you can develop a
mapping that looks up data about the materials from the blockchain.

Write

You store contextual data in an enterprise resource planning system and you want to store hashes of the
data on the blockchain to improve data security and trust when you share the data with other members.
You can use the contextual data as a source in the mapping and write the data to a blockchain target.

296

Technical Preview Notice: Effective in version 10.4.0, connecting to a blockchain is available for technical
preview. Technical preview functionality is supported for evaluation purposes but is unwarranted and is not
supported in production environments or any environment that you plan to push to production. Informatica
intends to include the preview functionality in an upcoming release for production use, but might choose not
to in accordance with changing market or technical circumstances. For more information, contact
Informatica Global Customer Support.

Blockchain Process
Using blockchain as a source, lookup, or target in a mapping requires administrator and developer tasks.

The blockchain process requires tasks from the following users:

Administrator

An administrator creates a blockchain connection. You can create a blockchain connection using the
Administrator tool or a command line program. The blockchain connection contains the information to
connect to the blockchain and to communicate with the blockchain through a REST API.

For information about creating a blockchain connection using the Administrator tool, see “Blockchain
Connection Properties” on page 341. For information about creating a blockchain connection using a
command line program, see the Informatica Command Reference.

Developer

A developer completes the following tasks:

1. Creates a blockchain data object to represent data on the blockchain.

2. Creates one or more blockchain data object operations.

3. Adds the blockchain data object to the mapping as a Read, Lookup, or Write transformation.

Blockchain Data Objects
A blockchain data object is a physical data object that represents data on the blockchain.

When you create a blockchain data object, you select resource URIs to specify the assets that you want to
access. After you select a resource URI, you can select the transactions that you want to use. Each
transaction is associated with an HTTP GET, POST, PUT, or DELETE request.

Response Ports
If you use a transaction that uses an HTTP GET request, the Developer tool creates response ports in
addition to the ports that contain the data that the transaction returns.

The Developer tool creates the following additional ports:

Response_200

The Response_200 port is a struct that represents the asset. To view the nested elements in the struct,
create a read or write operation.

responseCode

The responseCode port stores the HTTP status code that the request returns.

Blockchain Data Objects 297

For example, the response code 200 (OK) indicates that data was returned. You can pass the code to a
Filter transformation that uses a filter condition such as responseCode=200 to filter out data that is not
available.

Similarly, the response code 401 (Unauthorized) indicates that the client is not authorized to perform
the transaction. You might use the response code to detect issues in a security configuration on the
blockchain or in the blockchain connection properties.

Blockchain Data Object Overview Properties
Overview properties are general properties for the blockchain data object.

The properties are populated according to the REST API. If you change a property value in the Developer tool,
make the same changes on the blockchain if necessary.

General Properties

The following table describes the general properties for the blockchain data object:

Property Description

Name Name of the blockchain data object.

Description Description of the blockchain data object.

Connection Name of the blockchain connection.

Objects Properties

The following table describes the properties for each transaction:

Property Description

Name Name of the transaction in the Informatica environment.

Description Description of the transaction.

Native Name Native name of the transaction on the blockchain.

Path Information Path of the transaction on the REST web service.

Columns Properties

The following table describes the properties for the columns in an asset that a transaction operates on:

Property Description

Name Name of the column.

Native Name Native name of the column on the blockchain.
If you change the native name in the Developer tool, you must also change the name of the column
on the blockchain.

Type Data type of the column.

298 Chapter 16: Blockchain

Property Description

Precision Maximum number of significant digits for numeric data types, or the maximum number of
characters for string data types.
You can edit the precision based on your requirements. If the data exceeds the precision, the data
is truncated.

Scale Scale of the data type.

Advanced
Properties

Advanced properties that are set according to the REST API.
The advanced property isRequired=true is set for columns that are required.

Access Type Access type for the column.
The Read access type indicates that you can use the column only as a source.
The Read and Write access type indicates that you can use the column as both a source and a
target. For example, you must have read and write access to the column that you reference in a
lookup condition.
The Write access type indicates that you can use the column only as a target.

Description Description of the column.
If the REST API restricts column values, the description lists the values that are valid.

Advanced Properties

The advanced properties have the precedence level, Operation level > Object level > Connection level. The
properties configured at the operation level will override the properties configured at the object or connection
level. The following table describes advanced properties for each transaction:

Property Description

Request Type HTTP method, such as GET, POST, PUT, or DELETE.

Producer Content Type Content type of the request that is sent to the web service.
The content type must be application/json.

Consumer Content
Type

Content type of the response that the web service returns.
The content type must be application/json.

Object Location A location to access an asset on the blockchain.

Base URL The base URL to access assets on the blockchain. The base URL must match the beginning
of the object location.

Creating a Blockchain Data Object
Create a blockchain data object to represent the data that you access on the blockchain.

1. Click File > New > Data Object.

2. Select Physical Data Objects > Blockchain Data Object.

3. Enter a name for the data object.

4. Click Browse to select the location for the data object in the Model repository.

Blockchain Data Objects 299

5. Click Browse to select the blockchain connection.

6. Optionally, select an operating system profile.

7. Click Add to add resources to the data object.

8. In the Package Explorer section, expand the blockchain connection to view the resource URIs.

The following image shows the Package Explorer section:

9. Select a resource URI.

The available transactions appear on the right side of the dialog box. Each transaction uses an HTTP
GET, PUT, POST, or DELETE method.

300 Chapter 16: Blockchain

10. Select the transactions that you want to add to the data object.

For each transaction, you can preview the columns that the transaction operates on in the Entity
Information section.

The following image shows the Entity Information section:

Blockchain Data Object Operations
Create a blockchain data object operation to use a blockchain data object in a mapping.

You can create a read operation to use as a source in a mapping or to look up data on the blockchain. You
can create a write operation to use as a target in a mapping. When you run the mapping, the Spark engine
uses the transactions in the data object operation to send the appropriate HTTP requests to the REST web
service that exposes the blockchain.

Requests and responses use hierarchical data in JSON format.

Blockchain Data Object Read Operation Properties
Create a blockchain data object read operation to read or to look up data on a blockchain. Use the read
operation as a source or a lookup in a mapping.

For more information about read operations, see the Informatica Developer Mapping Guide.

Blockchain Data Object Operations 301

General Properties

The following table describes general properties for a read operation:

Property Description

Name Name of the data object operation.

Description Description of the data object operation.

Ports Properties

The following table describes the port properties in the read operation:

Property Description

Name Name of the port.

Type Data type of the port.

Detail Type configuration for the port.

Precision Maximum number of significant digits for numeric data types, or the maximum number of characters for
string data types.
You can edit the precision based on your requirements. If the data exceeds the precision, the data is
truncated.

Scale Scale of the data type.

Description Description of the port.

Run-time Properties

The following table describes the properties that the read operation uses at run time:

Property Description

Connection Name of the blockchain connection.

Advanced Properties

The following table describes the advanced properties for the read operation:

Property Description

Operation Type Type of blockchain data object operation. For a read operation, the operation type is
blockchainRead.

Advanced
Properties

Additional advanced properties for the operation. Advanced properties are name-value pairs that
are separated by a semicolon.

302 Chapter 16: Blockchain

Property Description

Pagination
Properties

A name-value pair URL property for pagination. You can add more than one name-value pair
separated by a semicolon. For example, you can add page=1 to view one page at a time and the
URL appears as https://jobs.github.com/positions.json?description=ruby&page=1.

Query
Parameters

A name-value pair URL property for querying results. You can add more than one name-value pair
separated by a semicolon. For example, you can query description=ruby to fetch results and
the URL appears as https://jobs.github.com/positions.json?
description=ruby&page=1.

Sources Properties

The following table describes the sources properties for the read operation:

Property Description

Sources Transactions that the blockchain data object operation uses to access an asset on the blockchain.

Blockchain Data Object Write Operation Properties
Create a blockchain data object write operation to write data to a blockchain. Use the write operation as a
target in a mapping.

For more information about write operations, see the Informatica Developer Mapping Guide.

When you write data to a blockchain, make sure that the target does not contain extra ports that the REST
API does not support. If the target contains an extra port, the REST API call fails at run time and reports that
there is an unexpected property. To resolve the issue, perform one of the following tasks:

• Remove the corresponding column in the swagger file.

• Do not pass data to the extra port in the target.

Target Properties

The following table describes the target properties for the write operation:

Property Description

Target Transactions that the blockchain data object operation uses to write data to the blockchain.

General Properties

The following table describes general properties for the write operation:

Property Description

Name Name of the data object operation.

Description Description of the data object operation.

Blockchain Data Object Operations 303

Ports Properties

The following table describes the port properties in the write operation:

Property Description

Name Name of the port.

Type Data type of the port.

Detail Type configuration for the port.

Precision Maximum number of significant digits for numeric data types, or the maximum number of characters for
string data types. You can edit the precision based on your requirements. If the data exceeds the
precision, the data is truncated.

Scale Scale of the data type.

Description Description of the port.

Run-time Properties

The following table describes the properties that the write operation uses at run time:

Property Description

Connection Name of the blockchain connection.

Advanced Properties

The following table describes the advanced properties for the write operation:

Property Description

Operation Type Type of blockchain data object operation. For a write operation, the operation type is
blockchainWrite.

Advanced
Properties

Additional advanced properties for the operation. Advanced properties are name-value pairs
that are separated by a semicolon.

Creating a Blockchain Data Object Operation
Create a blockchain data object operation that you can use as a source, lookup, or target in a mapping.

1. In the Object Explorer view, open the blockchain data object.

The blockchain data object appears in the Editor.

2. Select the Data Object Operations tab.

3. Click the New (Insert) icon to create a new blockchain data object operation.

The Data Object Operation dialog box appears.

4. Edit the name of the data object operation.

5. For capabilities, select either blockchainRead or blockchainWrite.

304 Chapter 16: Blockchain

The blockchainRead capability indicates that the data object operation is a read operation. The
blockchainWrite capability indicates that the data object operation is a write operation.

6. Click Add to select resources.

7. Select the resources that you want the data object operation to use.

8. Click Finish

The data object operation appears in the Editor. Edit the links between the source object and the output
object according to your requirements.

Use Case: Using a Blockchain Source to Improve
Services in a Vehicle Lifecycle

You participate as an insurance agent in a blockchain that manages the vehicle lifecycle. Your goal is to
improve how manufacturers and dealers handle vehicles as they are built and sold to consumers.

Before a manufacturer or dealer prepares insurance for a vehicle, the blockchain verifies that the
manufacturer and the dealer have the proper certificates and comply with government regulations. If
verification fails, the blockchain logs a suspicious message for the vehicle.

As an insurance agent, you access the suspicious messages to learn about the state of a vehicle and approve
the vehicle to be insured. To make sure that manufacturers and dealers handle the suspicious messages
promptly, you design a mapping that connects to the blockchain to get the suspicious message for each
vehicle and generates an alert for the manufacturer or dealer that is responsible for the vehicle.

Mapping Overview
Create a mapping that reads data from a blockchain and uses the data to generate an alert message for
vehicles that have a suspicious message.

For example, a vehicle has the following suspicious message:

Vehicle registration expired
You want to generate the following alert message:

Dear Arianne Fitzgerald, Vehicle # 1B3HB48B67D562726 in your possession has the issue:
Vehicle registration expired. Please resolve the issue in 10 days.

The mapping performs the following steps:

1. Takes a list of vehicle identification numbers as input.

2. Uses the list of vehicle identification numbers to look up vehicles on the blockchain.

3. Extracts the suspicious message and owner name for the vehicle.

4. Filters out vehicles that do not have a suspicious message.

5. Generates an alert message.

6. Writes the vehicle identification number, owner name, suspicious message, and alert message to a
target.

Use Case: Using a Blockchain Source to Improve Services in a Vehicle Lifecycle 305

The following image shows the mapping:

Step 1. Read Vehicle Numbers

Add a Read transformation to get vehicle identification numbers and pass the numbers to downstream
transformations in the mapping.

Step 2. Look Up Vehicles

To look up vehicles on the blockchain, complete the following tasks:

1. Add a blockchain data object to the mapping as a Lookup transformation and select a read operation
that uses an HTTP GET request to get vehicles by ID. For example, the read operation might send an
HTTP GET request to the following resource URI:

/org.company/vehicles/{id}
2. Configure the following lookup condition:

id = vin
Step 3. Extract Vehicle Information

To extract the suspicious message and the name of the vehicle owner, complete the following tasks:

1. Add an Expression transformation to the mapping.

2. Create the following output ports:

• owner

• suspiciousMessage

3. In the output port owner, configure the following port expression:

Response_200.owner
4. In the output port suspiciousMessage, configure the following port expression:

Response_200.suspiciousMessage
Step 4. Filter Out Vehicles

To filter out vehicles that do not have a suspicious message, complete the following tasks:

1. Add a Filter transformation to the mapping.

2. Configure the following filter condition:

suspiciousMessage != NULL
Step 5. Generate an Alert Message

To generate an alert message, complete the following tasks:

1. Add an Expression transformation to the mapping.

2. Create the output port alertMessage.

306 Chapter 16: Blockchain

3. In the output port alertMessage, configure the following port expression:

'Dear ' || owner || ', Vehicle # ' || vin || ' in your possession has the issue: '
|| suspiciousMessage || '. Please resolve the issue in 10 days.'

Step 6. Write the Data

To write the data to a target, add a Write transformation to the mapping. When the mapping runs, the Write
transformation populates the target with the vehicle identification number, owner name, suspicious message,
and alert message.

A third-party tool can use the data in the target to perform the following tasks:

1. Use the owner name to look up the owner's e-mail address.

2. Use the e-mail address and alert message to populate an e-mail.

3. Send the e-mail immediately or on a schedule.

4. Archive the data in the target for future reference.

Use Case: Using a Blockchain Source to Improve Services in a Vehicle Lifecycle 307

C h a p t e r 1 7

Stateful Computing
This chapter includes the following topics:

• Overview of Stateful Computing, 308

• Windowing Configuration, 309

• Window Functions, 312

• Windowing Examples, 317

Overview of Stateful Computing
You can use window functions in Expression transformations to perform stateful computations on the Spark
engine.

A stateful computation is a function that takes some state and returns a value along with a new state.

You can use a window function to perform stateful computations. A window function takes a small subset of
a larger data set for processing and analysis.

Window functions operate on a group of rows and calculate a return value for every input row. This
characteristic of window functions makes it easy to express data processing tasks that are difficult to
express concisely without window functions.

Use window functions to perform the following tasks:

• Retrieve data from upstream or downstream rows.

• Calculate a cumulative sum based on a group of rows.

• Calculate a cumulative average based on a group of rows.

Before you define a window function in an Expression transformation, you must describe the window by
configuring the windowing properties. Windowing properties include a frame specification, partition keys, and
order keys. The frame specification states which rows are included in the overall calculation for the current
row. The partition keys determine which rows are in the same partition. The order keys determine how rows
in a partition are ordered.

After you configure windowing properties, you define a window function in the Expression transformation.
Spark supports the window functions LEAD and LAG. You can also use aggregate functions as window
functions in an Expression transformation.

308

Windowing Configuration
When you include a window function in an Expression transformation, you configure the windowing
properties associated with the function. Windowing properties define the partitioning, ordering, and frame
boundaries associated with a particular input row.

Configure a transformation for windowing on the Windowing tab.

The following image shows the Windowing tab:

You configure the following groups of properties on the Windowing tab:

Frame

Defines the rows that are included in the frame for the current input row, based on physical offsets from
the position of the current input row.

You configure a frame if you use an aggregate function as a window function. The window functions
LEAD and LAG reference individual rows and ignore the frame specification.

Partition Keys

Separate the input rows into different partitions. If you do not define partition keys, all rows belong to a
single partition.

Order Keys

Define how rows in a partition are ordered. The ports you choose determine the position of a row within
a partition. The order key can be ascending or descending. If you do not define order keys, the rows have
no particular order.

Frame
The frame determines which rows are included in the calculation for the current input row, based on their
relative position to the current row.

If you use an aggregate function instead of LEAD or LAG, you must specify a window frame. LEAD and LAG
reference individual row sand ignore the frame specification.

The start offset and end offset describe the number of rows that appear before and after the current input
row. An offset of "0" represents the current input row. For example, a start offset of -3 and an end offset of 0
describes a frame including the current input row and the three rows before the current row.

Windowing Configuration 309

The following image shows a frame with a start offset of -1 and an end offset of 1:

For every input row, the function performs an aggregate operation on the rows inside the frame. If you
configure an aggregate expression like SUM with the preceding frame, the expression calculates the sum of
the values within the frame and returns a value of 6000 for the input row.

You can also specify a frame that does not include the current input row. For example, a start offset of 10
and an end offset of 15 describes a frame that includes six total rows, from the tenth to the fifteenth row
after the current row.

Note: The start offset must be less than or equal to the end offset.

Offsets of All Rows Preceding and All Rows Following represent the first row of the partition and the last row
of the partition. For example, if the start offset is All Rows Preceding and the end offset is -1, the frame
includes one row before the current row and all rows before that.

The following figure illustrates a frame with a start offset of 0 and an end offset of All Rows Following:

Partition and Order Keys
Configure partition and order keys to form groups of rows and define the order or sequence of rows within
each partition.

Use the following keys to specify how to group and order the rows in a window:

Partition keys

Configure partition keys to define partition boundaries, rather than performing the calculation across all
inputs. The window function operates across the rows that fall into the same partition as the current
row.

310 Chapter 17: Stateful Computing

You can specify the partition keys by value or parameter. Select Value to use port names. Choose
Parameter to use a sort key list parameter. A sort key list parameter contains a list of ports to sort by. If
you do not specify partition keys, all the data is included in the same partition.

Order keys

Use order keys to determine how rows in a partition are ordered. Order keys define the position of a
particular row in a partition.

You can specify the order keys by value or parameter. Select Value to use port names. Choose
Parameter to use a sort key list parameter. A sort key list parameter contains a list of ports to sort by.
You must also choose to arrange the data in ascending or descending order. If you do not specify order
keys, the rows in a partition are not arranged in any particular order.

Example

You are the owner of a coffee and tea shop. You want to calculate the best-selling and second best-selling
coffee and tea products.

The following table lists the products, the corresponding product categories, and the revenue from each
product:

Product Category Revenue

Espresso Coffee 600

Black Tea 550

Cappuccino Coffee 500

Americano Coffee 600

Oolong Tea 250

Macchiato Coffee 300

Green Tea 450

White Tea 650

You partition the data by category and order the data by descending revenue.

The following image shows the properties you configure on the Windowing tab:

Windowing Configuration 311

The following table shows the data grouped into two partitions according to category. Within each partition,
the revenue is organized in descending order:

Product Category Revenue

Espresso Coffee 600

Americano Coffee 600

Cappuccino Coffee 500

Macchiato Coffee 300

White Tea 650

Black Tea 550

Green Tea 450

Oolong Tea 250

Based on the partitioning and ordering specifications, you determine that the two best-selling coffees are
espresso and Americano, and the two best-selling teas are white and black.

Rules and Guidelines for Windowing Configuration
Certain guidelines apply when you configure a transformation for windowing.

Consider the following rules and guidelines when you define windowing properties for a window function:

• When you configure a frame, the start offset must be less than or equal to the end offset. Otherwise, the
frame is not valid.

• Configure a frame specification if you use an aggregate function as a window function. LEAD and LAG
operate based on the offset value and ignore the frame specification.

• You cannot use complex ports as partition or order keys.

• Assign unique port names to partition and order keys to avoid run-time errors.

• The partition and order keys cannot use both a dynamic port and one or more generated ports of the same
dynamic port. You must select either the dynamic port or the generated ports.

Window Functions
Window functions calculate a return value for every input row of a table, based on a group of rows.

A window function performs a calculation across a set of table rows that are related to the current row. You
can also perform this type of calculation with an aggregate function. But unlike regular aggregate functions, a
window function does not group rows into a single output row. The rows retain unique identities.

You can define the LEAD and LAG analytic window functions in an Expression transformation. LEAD and LAG
give access to multiple rows within a table, without the need for a self-join.

312 Chapter 17: Stateful Computing

LEAD
The LEAD function returns data from future rows.

LEAD uses the following syntax:

LEAD (Column name, Offset, Default)
LEAD returns the value at an offset number of rows after the current row. Use the LEAD function to compare
values in the current row with values in a following row. Use the following arguments with the LEAD function:

• Column name. The column name whose value from the subsequent row is to be returned.

• Offset. The number of rows following the current row from which the data is to be retrieved. For example,
an offset of "1" accesses the next immediate row, and an offset of "3" accesses the third row after the
current row.

• Default. The default value to be returned if the offset is outside the scope of the partition. If you do not
specify a default, the default is NULL.

For more information about the LEAD function, see the Informatica Transformation Language Reference.

LAG
The LAG function returns data from preceding rows.

LAG uses the following syntax:

LAG (Column name, Offset, Default)
LAG returns the value at an offset number of rows before the current row. Use the LAG function to compare
values in the current row with values in a previous row. Use the following arguments with the LAG function:

• Column name. The column name whose value from the prior row is to be returned.

• Offset. The number of rows preceding the current row from which the data is to be retrieved. For example,
an offset of "1" accesses the previous row, and an offset of "3" accesses the row that is three rows before
the current row.

• Default. The default value to be returned if the offset is outside the scope of the partition. If you do not
specify a default, the default is NULL.

For more information about the LAG function, see the Informatica Transformation Language Reference.

Aggregate Functions as Window Functions
In addition to LEAD and LAG, you can also use aggregate functions as window functions. When you use
aggregate functions like SUM and AVG as window functions, you can perform running calculations that are
similar to the stateful functions MOVINGSUM, MOVINGAVG, and CUME. Window functions are more flexible
than stateful functions because you can set a specific end offset.

To use an aggregate function as a window function, you must define a frame in the windowing properties.
You define a frame to limit the scope of the calculation. The aggregate function performs a calculation
across the frame and produces a single value for each row.

Example

You are a lumber salesperson who sold different quantities of wood over the past two years. You want to
calculate a running total of sales quantities.

Window Functions 313

The following table lists each sale ID, the date, and the quantity sold:

Sale_ID Date Quantity

30001 2016-08-02 10

10001 2016-12-24 10

10005 2016-12-24 30

40001 2017-01-09 40

10006 2017-01-18 10

20001 2017-02-12 20

A SUM function adds all the values and returns one output value. To get a running total for each row, you can
define a frame for the function boundaries.

The following image shows the frame you specify on the Windowing tab:

You configure the following windowing properties:

• Start offset: All Rows Preceding

• End offset: 0

• Order Key: Date Ascending

• Partition Key: Not specified

You define the following aggregate function:

SUM (Quantity)
SUM adds the quantity in the current row to the quantities in all the rows preceding the current row. The
function returns a running total for each row.

The following table lists a running sum for each date:

Sale_ID Date Quantity Total

30001 2016-08-02 10 10

10001 2016-12-24 10 20

10005 2016-12-24 30 50

40001 2017-01-09 40 90

314 Chapter 17: Stateful Computing

Sale_ID Date Quantity Total

10006 2017-01-18 10 100

20001 2017-02-12 20 120

Aggregate Offsets
An aggregate function performs a calculation on a set of values inside a partition. If the frame offsets are
outside the partition, the aggregate function ignores the frame.

If the offsets of a frame are not within the partition or table, the aggregate function calculates within the
partition. The function does not return NULL or a default value.

For example, you partition a table by seller ID and you order by quantity. You set the start offset to -3 and the
end offset to 4.

The following image shows the partition and frame for the current input row:

The frame includes eight total rows, but the calculation remains within the partition. If you define an AVG
function with this frame, the function calculates the average of the quantities inside the partition and returns
18.75.

Nested Aggregate Functions
A nested aggregate function in a window function performs a calculation separately for each partition. A
nested aggregate function behaves differently in a window function and an Aggregator transformation.

A nested aggregate function in an Aggregator transformation performs a calculation globally across all rows.
A nested aggregate function in an Expression transformation performs a separate calculation for each
partition.

Window Functions 315

For example, you configure the following nested aggregate function in an Aggregator transformation and an
Expression transformation:

MEDIAN (COUNT (P1))
You define P2 as the group by port in the Aggregator transformation.

The function takes the median of the count of the following set of data:

P1 P2

10 1

7 1

12 1

11 2

13 2

8 2

10 2

RETURN VALUE: 3.5

When you include nested aggregate functions in an Expression transformation and configure the
transformation for windowing, the function performs the calculation separately for each partition.

You partition the data by P2 and specify a frame of all rows preceding and all rows following. The window
function performs the following calculations:

1. COUNT (P1) produces one value for every row. COUNT returns the number of rows in the partition that
have non-null values.

2. MEDIAN of that value produces the median of a window of values generated by COUNT.

The window function produces the following outputs:

P1 P2 Output

10 1 3

7 1 3

12 1 3

11 2 4

13 2 4

8 2 4

10 2 4

You can nest aggregate functions with multiple window functions. For example:

LAG (LEAD(MAX(FIRST (p1)))

316 Chapter 17: Stateful Computing

Note: You can nest any number of the window functions LEAD and LAG, but you cannot nest more than one
aggregate function within another aggregate function.

Rules and Guidelines for Window Functions
Certain guidelines apply when you use window functions on the Spark engine.

Consider the following rules and guidelines when you define window functions in a transformation:

• Specify a constant integer as the offset argument in a window function.

• Specify a default argument that is the same data type as the input value.

• You cannot specify a default argument that contains complex data type or a SYSTIMESTAMP argument.

• To use the LEAD and LAG window functions, you must configure partition and order keys in the windowing
properties.

• To use an aggregate function as a window function in an Expression transformation, you must configure a
frame specification in the windowing properties.

Windowing Examples
The examples in this section demonstrate how to use LEAD, LAG, and other aggregate functions as window
functions in an Expression transformation.

Financial Plans Example
You are a banker with information about the financial plans of two of your customers. Each plan has an
associated start date.

For each customer, you want to know the expiration date for the current plan based on the activation date of
the next plan. The previous plan ends when a new plan starts, so the end date for the previous plan is the
start date of the next plan minus one day.

The following table lists the customer codes, the associated plan codes, and the start date of each plan:

CustomerCode PlanCode StartDate

C1 00001 2014-10-01

C2 00002 2014-10-01

C2 00002 2014-11-01

C1 00004 2014-10-25

C1 00001 2014-09-01

C1 00003 2014-10-10

Windowing Examples 317

Define partition and order keys

You partition the data by customer code and order the data by ascending start date.

You configure the following windowing properties:

Property Description

Order key StartDate Ascending. Arranges the data chronologically by ascending start date.

Partition key CustomerCode. Groups the rows according to customer code so that calculations are based on
individual customers.

Frame Not specified. Window functions access rows based on the offset argument and ignore the frame
specification.

The following image shows the windowing properties you configure on the Windowing tab:

The following table lists the data grouped by customer code and ordered by start date:

CustomerCode PlanCode StartDate

C1 00001 2014-09-01

C1 00002 2014-10-01

C1 00003 2014-10-10

C1 00004 2014-10-25

C2 00001 2014-10-01

C2 00002 2014-11-01

The start dates for each customer are arranged in ascending order so that the dates are chronological.

Define a window function

You define a LEAD function to access the subsequent row for every input.

You define the following function on the Ports tab of the Expression transformation:

LEAD (StartDate, 1, '01-Jan-2100')

318 Chapter 17: Stateful Computing

Where:

• StartDate indicates the target column that the function operates on.

• 1 is the offset. This value accesses the next immediate row.

• 01-Jan-2100 is the default value. The expression returns "01-Jan-2100" if the returned value is
outside the bounds of the partition.

Define an ADD_TO_DATE function

You use an ADD_TO_DATE function to subtract one day from the date you accessed.

You define the following expression on the Ports tab of the Expression transformation:

ADD_TO_DATE (LEAD (StartDate, 1, '01-Jan-2100'), 'DD', -1,)
By subtracting one day from the start date of the next plan, you find the end date of the current plan.

The following table lists the end dates of each plan:

CustomerCode PlanCode StartDate EndDate

C1 00001 2014-09-01 2014-09-30

C1 00002 2014-10-01 2014-10-09

C1 00003 2014-10-10 2014-10-24

C1 00004 2014-10-25 2099-12-31*

C2 00001 2014-10-01 2014-10-31

C2 00002 2014-11-01 2099-12-31*

*The LEAD function returned the default value because these plans have not yet ended. The rows were
outside the partition, so the ADD_TO_DATE function subtracted one day from 01-Jan-2100, returning
2099-12-31.

GPS Pings Example
Your organization receives GPS pings from vehicles that include trip and event IDs and a time stamp. You
want to calculate the time difference between each ping and flag the row as skipped if the time difference
with the previous row is less than 60 seconds.

You order the events chronologically and partition the events by trip. You define a window function that
accesses the event time from the previous row, and you use an ADD_TO_DATE function to calculate the time
difference between the two events.

Windowing Examples 319

Windowing Properties
You define the following windowing properties on the Windowing tab:

Property Description

Order key _event_id Ascending. Arranges the data chronologically by ascending event ID.

Partition key trip_id. Groups the rows according to trip ID so calculations are based on events from the same trip.

Frame Not specified. Window functions access rows based on the offset argument and ignore the frame
specification.

The following image shows the windowing properties you configure in the Expression transformation:

Window Function

You define the following LAG function to get the event time from the previous row:

LAG (_event_time, 1, NULL)
Where:

• _event_time is the column name whose value from the previous row is to be returned.

• 1 is the offset. This value represents the row immediately before the current row.

• NULL is the default value. The function returns NULL if the return value is outside the bounds of the
partition.

You define the following DATE_DIFF function to calculate the length of time between the two dates:

DATE_DIFF (_event_time, LAG (_event_time, 1, NULL), 'ss')
You flag the row as skipped if the DATE_DIFF is less than 60 seconds, or if the _event_time is NULL:

IIF (DATE_DIFF < 60 or ISNULL (_event_time), 'Skip', 'Valid')
The following image shows the expressions you define in the transformation properties:

320 Chapter 17: Stateful Computing

Output

The transformation produces the following outputs:

Trip ID Event ID Event Time Time Difference Flag

101 1 2017-05-03 12:00:00 NULL* Skip

101 2 2017-05-03 12:00:34 34 Skip

101 3 2017-05-03 12:02:00 86 Valid

101 4 2017-05-03 12:02:23 23 Skip

102 1 2017-05-03 12:00:00 NULL* Skip

102 2 2017-05-03 12:01:56 116 Valid

102 3 2017-05-03 12:02:00 4 Skip

102 4 2017-05-03 13:00:00 3480 Valid

103 1 2017-05-03 12:00:00 NULL* Skip

103 2 2017-05-03 12:00:12 12 Skip

103 3 2017-05-03 12:01:12 60 Valid

*The rows preceding these rows are outside the bounds of the partition, so the transformation produced
NULL values.

Aggregate Function as Window Function Example
You work for a human resources group and you want to compare each of your employees' salaries with the
average salary in his or her department:

The following table lists the department names, the employee identification number, and the employee's
salary:

Department Employee Salary

Development 11 5200

Development 7 4200

Development 9 4500

Development 8 6000

Development 10 5200

Personnel 5 3500

Personnel 2 3900

Sales 3 4800

Windowing Examples 321

Department Employee Salary

Sales 1 5000

Sales 4 4800

You set an unbounded frame to include all employees in the calculation, and you define an aggregate
function to calculate the difference between each employee's salary and the average salary in the
department.

Windowing Properties
You define the following windowing properties on the Windowing tab:

Property Description

Order key Salary Ascending. Arranges the data by increasing salary.

Partition key Department. Groups the rows according to department.

Start offset All Rows Preceding

End offset All Rows Following

With an unbounded frame, the aggregate function includes all partition rows in the calculation.

For example, suppose the current row is the third row. The third row is in the "Development" partition, so the
frame includes the third row in addition to all rows before and after the third row in the "Development"
partition.

The following image shows the windowing properties you configure in the Expression transformation:

Window Function

An aggregate function acts as a window function when you configure the transformation for windowing.

You define the following aggregate function to calculate the difference between each employee's salary and
the average salary in his or her department:

Salary - AVG (Salary) = Salary_Diff

322 Chapter 17: Stateful Computing

Output

The transformation produces the following salary differences:

Department Employee Salary Salary_Diff

Development 11 5200 -820

Development 7 4200 -520

Development 9 4500 180

Development 8 6000 180

Development 10 5200 980

Personnel 5 3500 200

Personnel 2 3900 200

Sales 3 4800 -66

Sales 1 5000 -66

Sales 4 4800 134

You can identify which employees are making less or more than the average salary for his or her department.
Based on this information, you can add other transformations to learn more about your data. For example,
you might add a Rank transformation to produce a numerical rank for each employee within his or her
department.

Windowing Examples 323

A p p e n d i x A

Connections Reference
This appendix includes the following topics:

• Connections Overview, 325

• Cloud Provisioning Configuration, 325

• Amazon Redshift Connection Properties, 335

• Amazon S3 Connection Properties, 338

• Blockchain Connection Properties, 341

• Cassandra Connection Properties, 342

• Confluent Kafka Connection, 344

• Databricks Connection Properties, 346

• Google Analytics Connection Properties, 348

• Google BigQuery Connection Properties, 349

• Google Cloud Spanner Connection Properties, 350

• Google Cloud Storage Connection Properties, 351

• Google PubSub Connection Properties, 352

• Hadoop Connection Properties, 352

• HDFS or View File System (ViewFS) Connection Properties, 359

• HBase Connection Properties, 361

• HBase Connection Properties for MapR-DB, 361

• Hive Connection Properties, 362

• JDBC Connection Properties, 365

• JDBC V2 Connection Properties, 372

• Kafka Connection Properties, 374

• Kudu Connection Properties , 377

• Microsoft Azure Blob Storage Connection Properties, 378

• Microsoft Azure Cosmos DB SQL API Connection Properties, 379

• Microsoft Azure Data Lake Storage Gen1 Connection Properties, 380

• Microsoft Azure Data Lake Storage Gen2 Connection Properties, 381

• Microsoft Azure SQL Data Warehouse Connection Properties, 382

• Snowflake Connection Properties, 384

• Creating a Connection to Access Sources or Targets, 385

324

• Creating a Hadoop Connection, 385

• Configuring Hadoop Connection Properties, 387

Connections Overview
Create a connection to access non-native environments, Hadoop and Databricks. If you access HBase, HDFS,
View File System (ViewFS), or Hive sources or targets in the Hadoop environment, you must also create those
connections. You can create the connections using the Developer tool, Administrator tool, and infacmd.

You can create the following types of connections:
Hadoop connection

Create a Hadoop connection to run mappings in the Hadoop environment.

HBase connection

Create an HBase connection to access HBase. The HBase connection is a NoSQL connection.

HDFS or ViewFS connection

Create an HDFS or ViewFS connection to read data from or write data to the HDFS or ViewFS file system
on a Hadoop cluster.

Hive connection

Create a Hive connection to access Hive as a source or target. You can access Hive as a source if the
mapping is enabled for the native or Hadoop environment. You can access Hive as a target if the
mapping runs on the Blaze engine.

JDBC connection

Create a JDBC connection and configure Sqoop properties in the connection to import and export
relational data through Sqoop.

Databricks connection

Create a Databricks connection to run mappings in the Databricks environment.

Note: For information about creating connections to other sources or targets such as social media web sites
or Teradata, see the respective PowerExchange adapter user guide for information.

Cloud Provisioning Configuration
The cloud provisioning configuration establishes a relationship between the Create Cluster task and the
cluster connection that the workflows use to run mapping tasks. The Create Cluster task must include a
reference to the cloud provisioning configuration. In turn, the cloud provisioning configuration points to the
cluster connection that you create for use by the cluster workflow.

The properties to populate depend on the Hadoop distribution you choose to build a cluster on. Choose one
of the following connection types:

• AWS Cloud Provisioning. Connects to an Amazon EMR cluster on Amazon Web Services.

• Azure Cloud Provisioning. Connects to an HDInsight cluster on the Azure platform.

• Databricks Cloud Provisioning. Connects to a Databricks cluster on the Azure Databricks platform.

Connections Overview 325

AWS Cloud Provisioning Configuration Properties
The properties in the AWS cloud provisioning configuration enable the Data Integration Service to contact
and create resources on the AWS cloud platform.

General Properties

The following table describes cloud provisioning configuration general properties:

Property Description

Name Name of the cloud provisioning configuration.

ID ID of the cloud provisioning configuration. Default: Same as the cloud provisioning
configuration name.

Description. Optional. Description of the cloud provisioning configuration.

AWS Access Key ID Optional. ID of the AWS access key, which AWS uses to control REST or HTTP query protocol
requests to AWS service APIs.
If you do not specify a value, Informatica attempts to follow the Default Credential Provider
Chain.

AWS Secret Access
Key

Secret component of the AWS access key.
Required if you specify the AWS Access Key ID.

Region Region in which to create the cluster. This must be the region in which the VPC is running.
Use AWS region values. For a list of acceptable values, see AWS documentation.
Note: The region where you want to create the cluster can be different from the region in which
the Informatica domain is installed.

Permissions

The following table describes cloud provisioning configuration permissions properties:

Property Description

EMR Role Name of the service role for the EMR cluster that you create. The role must have sufficient
permissions to create a cluster, access S3 resources, and run jobs on the cluster.
When the AWS administrator creates this role, they select the “EMR” role. This contains the default
AmazonElasticMapReduceRole policy. You can edit the services in this policy.

EC2 Instance
Profile

Name of the EC2 instance profile role that controls permissions on processes that run on the cluster.
When the AWS administrator creates this role, they select the “EMR Role for EC2” role. This includes
S3 access by default.

Auto Scaling
Role

Required if you configure auto-scaling for the EMR cluster.
This role is created when the AWS administrator configures auto-scaling on any cluster in the VPC.
Default: When you leave this field blank, it is equivalent to setting the Auto Scaling role to “Proceed
without role” when the AWS administrator creates a cluster in the AWS console.

326 Appendix A: Connections Reference

EC2 Configuration

The following table describes cloud provisioning configuration EC2 configuration properties:

Property Description

EC2 Key Pair EC2 key pair to enable communication with the EMR cluster master node.
Optional. This credential enables you to log into the cluster. Configure this property if you intend
the cluster to be non-ephemeral.

EC2 Subnet ID of the subnet on the VPC in which to create the cluster.
Use the subnet ID of the EC2 instance where the cluster runs.

Master Security
Group

Optional. ID of the security group for the cluster master node. Acts as a virtual firewall to control
inbound and outbound traffic to cluster nodes.
Security groups are created when the AWS administrator creates and configures a cluster in a
VPC. In the AWS console, the property is equivalent to ElasticMapReduce-master.
You can use existing security groups, or the AWS administrator might create dedicated security
groups for the ephemeral cluster.
If you do not specify a value, the cluster applies the default security group for the VPC.

Additional Master
Security Groups

Optional. IDs of additional security groups to attach to the cluster master node. Use a comma-
separated list of security group IDs.

Core and Task
Security Group

Optional. ID of the security group for the cluster core and task nodes. When the AWS
administrator creates and configures a cluster In the AWS console, the property is equivalent to
the ElasticMapReduce-slave security group
If you do not specify a value, the cluster applies the default security group for the VPC.

Additional Core
and Task Security
Groups

Optional. IDs of additional security groups to attach to cluster core and task nodes. Use a
comma-separated list of security group IDs.

Service Access
Security Group

EMR managed security group for service access. Required when you provision an EMR cluster in
a private subnet.

General Properties
The following table describes cloud provisioning configuration general properties:

Property Description

Name Name of the cloud provisioning configuration.

ID ID of the cloud provisioning configuration. Default: Same as the cloud provisioning
configuration name.

Description. Optional. Description of the cloud provisioning configuration.

AWS Access Key ID Optional. ID of the AWS access key, which AWS uses to control REST or HTTP query protocol
requests to AWS service APIs.
If you do not specify a value, Informatica attempts to follow the Default Credential Provider
Chain.

Cloud Provisioning Configuration 327

Property Description

AWS Secret Access
Key

Secret component of the AWS access key.
Required if you specify the AWS Access Key ID.

Region Region in which to create the cluster. This must be the region in which the VPC is running.
Use AWS region values. For a list of acceptable values, see AWS documentation.
Note: The region where you want to create the cluster can be different from the region in which
the Informatica domain is installed.

Permissions
The following table describes cloud provisioning configuration permissions properties:

Property Description

EMR Role Name of the service role for the EMR cluster that you create. The role must have sufficient
permissions to create a cluster, access S3 resources, and run jobs on the cluster.
When the AWS administrator creates this role, they select the “EMR” role. This contains the default
AmazonElasticMapReduceRole policy. You can edit the services in this policy.

EC2 Instance
Profile

Name of the EC2 instance profile role that controls permissions on processes that run on the cluster.
When the AWS administrator creates this role, they select the “EMR Role for EC2” role. This includes
S3 access by default.

Auto Scaling
Role

Required if you configure auto-scaling for the EMR cluster.
This role is created when the AWS administrator configures auto-scaling on any cluster in the VPC.
Default: When you leave this field blank, it is equivalent to setting the Auto Scaling role to “Proceed
without role” when the AWS administrator creates a cluster in the AWS console.

EC2 Configuration
The following table describes cloud provisioning configuration EC2 configuration properties:

Property Description

EC2 Key Pair EC2 key pair to enable communication with the EMR cluster master node.
Optional. This credential enables you to log into the cluster. Configure this property if you intend
the cluster to be non-ephemeral.

EC2 Subnet ID of the subnet on the VPC in which to create the cluster.
Use the subnet ID of the EC2 instance where the cluster runs.

Master Security
Group

Optional. ID of the security group for the cluster master node. Acts as a virtual firewall to control
inbound and outbound traffic to cluster nodes.
Security groups are created when the AWS administrator creates and configures a cluster in a
VPC. In the AWS console, the property is equivalent to ElasticMapReduce-master.
You can use existing security groups, or the AWS administrator might create dedicated security
groups for the ephemeral cluster.
If you do not specify a value, the cluster applies the default security group for the VPC.

328 Appendix A: Connections Reference

Property Description

Additional Master
Security Groups

Optional. IDs of additional security groups to attach to the cluster master node. Use a comma-
separated list of security group IDs.

Core and Task
Security Group

Optional. ID of the security group for the cluster core and task nodes. When the AWS
administrator creates and configures a cluster In the AWS console, the property is equivalent to
the ElasticMapReduce-slave security group
If you do not specify a value, the cluster applies the default security group for the VPC.

Additional Core
and Task Security
Groups

Optional. IDs of additional security groups to attach to cluster core and task nodes. Use a
comma-separated list of security group IDs.

Service Access
Security Group

EMR managed security group for service access. Required when you provision an EMR cluster in
a private subnet.

Azure Cloud Provisioning Configuration Properties
The properties in the Azure cloud provisioning configuration enable the Data Integration Service to contact
and create resources on the Azure cloud platform.

Authentication Details

The following table describes authentication properties to configure:

Property Description

Name Name of the cloud provisioning configuration.

ID ID of the cloud provisioning configuration. Default: Same as the cloud provisioning configuration
name.

Description Optional. Description of the cloud provisioning configuration.

Subscription ID ID of the Azure account to use in the cluster creation process.

Tenant ID A GUID string associated with the Azure Active Directory.

Client ID A GUID string that is the same as the Application ID associated with the Service Principal. The
Service Principal must be assigned to a role that has permission to create resources in the
subscription that you identified in the Subscription ID property.

Client Secret An octet string that provides a key associated with the client ID.

Storage Account Details

Choose to configure access to one of the following storage types:

• Azure Data Lake Storage (ADLS). See Azure documentation.

• An Azure Storage Account, known as general or blob storage. See Azure documentation.

Cloud Provisioning Configuration 329

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-use-data-lake-store
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-use-blob-storage

The following table describes the information you need to configure Azure Data Lake Storage (ADLS) with the
HDInsight cluster:

Property Description

Azure Data Lake Store
Name

Name of the ADLS storage to access. The ADLS storage and the cluster to create must
reside in the same region.

Data Lake Service
Principal Client ID

A credential that enables programmatic access to ADLS storage. Enables the Informatica
domain to communicate with ADLS and run commands and mappings on the HDInsight
cluster.
The service principal is an Azure user that meets the following requirements:
- Permissions to access required directories in ADLS storage.
- Certificate-based authentication for ADLS storage.
- Key-based authentication for ADLS storage.

Data Lake Service
Principal Certificate
Contents

The Base64 encoded text of the public certificate used with the service principal.
Leave this property blank when you create the cloud provisioning configuration. After you
save the cloud provisioning configuration, log in to the VM where the Informatica domain
is installed and run infacmd ccps updateADLSCertificate to populate this property.

Data Lake Service
Principal Certificate
Password

Private key for the service principal. This private key must be associated with the service
principal certificate.

Data Lake Service
Principal Client Secret

An octet string that provides a key associated with the service principal.

Data Lake Service
Principal OAUTH Token
Endpoint

Endpoint for OAUTH token based authentication.

The following table describes the information you need to configure Azure General Storage, also known as
blob storage, with the HDInsight cluster:

Property Description

Azure Storage
Account Name

Name of the storage account to access. Get the value from the Storage Accounts node in the
Azure web console. The storage and the cluster to create must reside in the same region.

Azure Storage
Account Key

A key to authenticate access to the storage account. To get the value from the Azure web
console, select the storage account, then Access Keys. The console displays the account keys.

330 Appendix A: Connections Reference

Cluster Deployment Details

The following table describes the cluster deployment properties that you configure:

Property Description

Resource
Group

Resource group in which to create the cluster. A resource group is a logical set of Azure resources.

Virtual
Network
Resource
Group

Optional. Resource group to which the virtual network belongs.
If you do not specify a resource group, the Data Integration Service assumes that the virtual network
is a member of the same resource group as the cluster.

Virtual
Network

Name of the virtual network or vnet where you want to create the cluster. Specify a vnet that resides
in the resource group that you specified in the Virtual Network Resource Group property.
The vnet must be in the same region as the region in which to create the cluster.

Subnet Name Subnet in which to create the cluster. The subnet must be a part of the vnet that you designated in
the previous property.
Each vnet can have one or more subnets. The Azure administrator can choose an existing subnet or
create one for the cluster.

External Hive Metastore Details

You can specify the properties to enable the cluster to connect to a Hive metastore database that is external
to the cluster.

If you do not specify an existing external database in this dialog box, the cluster creates its own database on
the cluster. This database is terminated when the cluster is terminated.

You can use an external relational database like MySQL or Amazon RDS as the Hive metastore database. The
external database must be on the same cloud platform as the cluster to create.

The following table describes the Hive metastore database properties that you configure:

Property Description

Database Name Name of the Hive metastore database.

Database Server
Name

Server on which the database resides.
Note: The database server name on the Azure web console commonly includes the suffix
database.windows.net. For example: server123xyz.database.windows.net. You can
specify the database server name without the suffix and Informatica will automatically append
the suffix. For example, you can specify server123xyz.

Database User
Name

User name of the account for the domain to use to access the database.

Database
Password

Password for the user account.

Cloud Provisioning Configuration 331

Authentication Details
The following table describes authentication properties to configure:

Property Description

Name Name of the cloud provisioning configuration.

ID ID of the cloud provisioning configuration. Default: Same as the cloud provisioning configuration
name.

Description Optional. Description of the cloud provisioning configuration.

Subscription ID ID of the Azure account to use in the cluster creation process.

Tenant ID A GUID string associated with the Azure Active Directory.

Client ID A GUID string that is the same as the Application ID associated with the Service Principal. The
Service Principal must be assigned to a role that has permission to create resources in the
subscription that you identified in the Subscription ID property.

Client Secret An octet string that provides a key associated with the client ID.

Storage Account Details
Choose to configure access to one of the following storage types:

• Azure Data Lake Storage (ADLS). See Azure documentation.

• An Azure Storage Account, known as general or blob storage. See Azure documentation.

The following table describes the information you need to configure Azure Data Lake Storage (ADLS) with the
HDInsight cluster:

Property Description

Azure Data Lake Store
Name

Name of the ADLS storage to access. The ADLS storage and the cluster to create must
reside in the same region.

Data Lake Service
Principal Client ID

A credential that enables programmatic access to ADLS storage. Enables the Informatica
domain to communicate with ADLS and run commands and mappings on the HDInsight
cluster.
The service principal is an Azure user that meets the following requirements:
- Permissions to access required directories in ADLS storage.
- Certificate-based authentication for ADLS storage.
- Key-based authentication for ADLS storage.

Data Lake Service
Principal Certificate
Contents

The Base64 encoded text of the public certificate used with the service principal.
Leave this property blank when you create the cloud provisioning configuration. After you
save the cloud provisioning configuration, log in to the VM where the Informatica domain
is installed and run infacmd ccps updateADLSCertificate to populate this property.

Data Lake Service
Principal Certificate
Password

Private key for the service principal. This private key must be associated with the service
principal certificate.

332 Appendix A: Connections Reference

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-use-data-lake-store
https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-use-blob-storage

Property Description

Data Lake Service
Principal Client Secret

An octet string that provides a key associated with the service principal.

Data Lake Service
Principal OAUTH Token
Endpoint

Endpoint for OAUTH token based authentication.

The following table describes the information you need to configure Azure General Storage, also known as
blob storage, with the HDInsight cluster:

Property Description

Azure Storage
Account Name

Name of the storage account to access. Get the value from the Storage Accounts node in the
Azure web console. The storage and the cluster to create must reside in the same region.

Azure Storage
Account Key

A key to authenticate access to the storage account. To get the value from the Azure web
console, select the storage account, then Access Keys. The console displays the account keys.

Cluster Deployment Details
The following table describes the cluster deployment properties that you configure:

Property Description

Resource
Group

Resource group in which to create the cluster. A resource group is a logical set of Azure resources.

Virtual
Network
Resource
Group

Optional. Resource group to which the virtual network belongs.
If you do not specify a resource group, the Data Integration Service assumes that the virtual network
is a member of the same resource group as the cluster.

Virtual
Network

Name of the virtual network or vnet where you want to create the cluster. Specify a vnet that resides
in the resource group that you specified in the Virtual Network Resource Group property.
The vnet must be in the same region as the region in which to create the cluster.

Subnet Name Subnet in which to create the cluster. The subnet must be a part of the vnet that you designated in
the previous property.
Each vnet can have one or more subnets. The Azure administrator can choose an existing subnet or
create one for the cluster.

External Hive Metastore Details
You can specify the properties to enable the cluster to connect to a Hive metastore database that is external
to the cluster.

You can use an external relational database like MySQL or Amazon RDS as the Hive metastore database. The
external database must be on the same cloud platform as the cluster to create.

If you do not specify an existing external database in this dialog box, the cluster creates its own database on
the cluster. This database is terminated when the cluster is terminated.

Cloud Provisioning Configuration 333

The following table describes the Hive metastore database properties that you configure:

Property Description

Database Name Name of the Hive metastore database.

Database Server
Name

Server on which the database resides.
Note: The database server name on the Azure web console commonly includes the suffix
database.windows.net. For example: server123xyz.database.windows.net. You can
specify the database server name without the suffix and Informatica will automatically append
the suffix. For example, you can specify server123xyz.

Database User
Name

User name of the account for the domain to use to access the database.

Database
Password

Password for the user account.

Databricks Cloud Provisioning Configuration Properties
The properties in the Databricks cloud provisioning configuration enable the Data Integration Service to
contact and create resources on the Databricks cloud platform.

The following table describes the Databricks cloud provisioning configuration properties:

Property Description

Name Name of the cloud provisioning configuration.
Tip: Because the Administrator tool lists cloud provisioning configuration objects with other
connections, use a naming convention such as "CPC" as part of the name of the object to help
identify it.

ID The cluster ID of the Databricks cluster.

Description Optional description of the cloud provisioning configuration.

Databricks domain Domain name of the Databricks deployment.

Databricks token ID The token ID created within Databricks required for authentication.
Note: If the token has an expiration date, verify that you get a new token from the Databricks
administrator before it expires.

Advanced
Properties

Advanced properties that are unique to the Databricks cloud provisioning configuration.

Advanced Properties

Configure the following properties in the Advanced Properties of the Databricks configuration section:

infaspark.pythontx.exec

Required to run a Python transformation on the Databricks Spark engine. Set to the location of the
Python executable binary on the worker nodes in the Databricks cluster.

When you provision the cluster at run time, set this property in the Databricks cloud provisioning
configuration. Otherwise, set on the Databricks connection.

334 Appendix A: Connections Reference

For example, set to:

infaspark.pythontx.exec=/databricks/python3/bin/python3
infaspark.pythontx.executorEnv.PYTHONHOME

Required to run a Python transformation on the Databricks Spark engine. Set to the location of the
Python installation directory on the worker nodes in the Databricks cluster.

When you provision the cluster at run time, set this property in the Databricks cloud provisioning
configuration. Otherwise, set on the Databricks connection.

For example, set to:

infaspark.pythontx.executorEnv.PYTHONHOME=/databricks/python3

Amazon Redshift Connection Properties
When you set up an Amazon Redshift connection, you must configure the connection properties.

The following table describes the Amazon Redshift connection properties:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the domain. You
can change this property after you create the connection. The name cannot exceed 128 characters,
contain spaces, or contain the following special characters:~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is not case sensitive. It
must be 255 characters or less and must be unique in the domain. You cannot change this property
after you create the connection. Default value is the connection name.

Description The description of the connection. The description cannot exceed 4,000 characters.

Location The domain where you want to create the connection.

Type The connection type. Select Amazon Redshift in the Database.

The Details tab contains the connection attributes of the Amazon Redshift connection. The following table
describes the connection attributes:

Property Description

Authentication Type The authentication method to log in to Amazon Redshift. You can select one of the following
authentication methods:
- Default. Uses the username and password to connect to Amazon Redshift.
- Redshift IAM Authentication via AssumeRole. Uses AssumeRole for IAM authentication to

connect to Amazon Redshift.

Username User name of the Amazon Redshift account.

Password Password for the Amazon Redshift account.

Access Key ID Amazon S3 bucket access key ID to stage data in the S3 bucket using unload and copy
commands.

Amazon Redshift Connection Properties 335

Property Description

Secret Access Key Amazon S3 bucket secret access key ID to stage the data in the S3 bucket.

Master Symmetric
Key

Optional. Provide a 256-bit AES encryption key in the Base64 format when you enable client-
side encryption. You can generate a key using a third-party tool.
If you specify a value, ensure that you specify the encryption type as client-side encryption in
the advanced target properties.

JDBC URL Amazon Redshift connection URL.

Cluster Region Optional. The AWS cluster region in which the bucket you want to access resides.
Select a cluster region if you choose to provide a custom JDBC URL that does not contain a
cluster region name in the JDBC URL connection property.
If you specify a cluster region in both Cluster Region and JDBC URL connection properties,
the Data Integration Service ignores the cluster region that you specify in the JDBC URL
connection property.
To use the cluster region name that you specify in the JDBC URL connection property, select
None as the cluster region in this property.
Select one of the following cluster regions:
- Asia Pacific (Mumbai)
- Asia Pacific (Seoul)
- Asia Pacific (Singapore)
- Asia Pacific (Sydney)
- Asia Pacific (Tokyo)
- AWS GovCloud (US)
- Canada (Central)
- China (Beijing)
- China (Ningxia)
- EU (Ireland)
- EU (Frankfurt)
- EU (London)
- EU (Paris)
- South America (Sao Paulo)
- US East (Ohio)
- US East (N. Virginia)
- US West (N. California)
- US West (Oregon)
Default is None.
You can only read data from or write data to the cluster regions supported by AWS SDK used
by PowerExchange for Amazon Redshift.

Customer Master Key
ID

Optional. Specify the customer master key ID generated by AWS Key Management Service
(AWS KMS) or the Amazon Resource Name (ARN) of your custom key for cross-account
access. You must generate the customer master key corresponding to the region where
Amazon S3 bucket resides. You can specify any of the following values:
Customer generated customer master key

Enables client-side or server-side encryption.

Default customer master key

Enables client-side or server-side encryption. Only the administrator user of the account
can use the default customer master key ID to enable client-side encryption.

336 Appendix A: Connections Reference

Property Description

IAM Assume Role
ARN

The Amazon Resource Number (ARN) of the IAM role assumed by the user to use the
dynamically generated temporary security credentials.
Set the value of this property if you want to use the temporary security credentials to access
Amazon Redshift.
For more information about how to get the ARN of the IAM role, see the AWS documentation.

Cluster Identifier The unique identifier of the cluster that hosts Amazon Redshift for which you are requesting
the security credentials.
Specify the cluster name.

Database Name Name of the Amazon Redshift database.

Auto Create DBUser Select to create a new Amazon Redshift database user at run time.
Default is disabled.
Note: Use this option to create a new Amazon Redshift database user. If you create a new
user directly using the AWS command line, the user is not created in Amazon Redshift.

Database Group Name of the database group.
Specify the database user and group details after you log in to the Amazon Redshift
database.
Note: If you do not specify a group, the user is added to a public group.

Expiration Time The time duration that the password for the Amazon Redshift database user expires.
Specify a value between 900 seconds and 3600 seconds.
Default is 900.

Use EC2 Role to
Assume Role

Select to enable the EC2 role to assume another IAM role specified in the IAM AssumeRole
ARN option.

IAM User Access Key The access key of the IAM user that has permissions to assume the IAM AssumeRole ARN.

IAM User Secret
Access Key

The secret access key of the IAM user that has permissions to assume the IAM Assume Role
ARN.

Amazon Redshift Connection Properties 337

Amazon S3 Connection Properties
When you set up an Amazon S3 connection, you must configure the connection properties.

The following table describes the Amazon S3 connection properties:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the domain.
You can change this property after you create the connection. The name cannot exceed 128
characters, contain spaces, or contain the following special characters:~ ` ! $ % ^ & * () - + = { [}] |
\ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is not case sensitive.
It must be 255 characters or less and must be unique in the domain. You cannot change this
property after you create the connection. Default value is the connection name.

Description Optional. The description of the connection. The description cannot exceed 4,000 characters.

Location The domain where you want to create the connection.

Type The Amazon S3 connection type.

Access Key Access key to access the Amazon S3 bucket. Provide the access key value based on the following
authentication methods:
- Basic authentication: provide the actual access key value.
- IAM authentication: do not provide the access key value.
- Temporary security credentials via assume role: provide access key of an IAM user with no

permissions to access Amazon S3 bucket.

Secret Key Secret access key to access the Amazon S3 bucket.
The secret key is associated with the access key and uniquely identifies the account. Provide the
access key value based on the following authentication methods:
- Basic authentication: provide the actual access secret value.
- IAM authentication: do not provide the access secret value.
- Temporary security credentials via assume role: provide access secret of an IAM user with no

permissions to access Amazon S3 bucket.

IAM Role ARN The ARN of the IAM role assumed by the user to use the dynamically generated temporary security
credentials.
Enter the value of this property if you want to use the temporary security credentials to access the
AWS resources.
If you want to use the temporary security credentials with IAM authentication, do not provide the
Access Key and Secret Key connection properties. If you want to use the temporary security
credentials without IAM authentication, you must enter the value of the Access Key and Secret Key
connection properties.
For more information about how to obtain the ARN of the IAM role, see the AWS documentation.

Folder Path The complete path to Amazon S3 objects. The path must include the bucket name and any folder
name.
Do not use a slash at the end of the folder path. For example, <bucket name>/<my folder
name>.

Master
Symmetric Key

Optional. Provide a 256-bit AES encryption key in the Base64 format when you enable client-side
encryption. You can generate a master symmetric key using a third-party tool.

338 Appendix A: Connections Reference

Property Description

S3 Account
Type

The type of the Amazon S3 account.
Select Amazon S3 Storage or S3 Compatible Storage.
Select the Amazon S3 storage option to use the Amazon S3 services. Select the S3 compatible
storage option to specify the endpoint for a third-party storage provider such as Scality RING.
By default, Amazon S3 storage is selected.

REST Endpoint The S3 storage endpoint.
Specify the S3 storage endpoint in HTTP/HTTPs format when you select the S3 compatible storage
option. For example, http://s3.isv.scality.com.

Region Name Select the AWS region in which the bucket you want to access resides.
Select one of the following regions:
- Asia Pacific (Mumbai)
- Asia Pacific (Seoul)
- Asia Pacific (Singapore)
- Asia Pacific (Sydney)
- Asia Pacific (Tokyo)
- AWS GovCloud (US)
- AWS GovCloud (US-East)
- Canada (Central)
- China (Beijing)
- China (Hong Kong)
- China (Ningxia)
- EU (Ireland)
- EU (Frankfurt)
- EU (London)
- EU (Paris)
- EU (Stockholm)
- Middle East (Bahrain)
- South America (Sao Paulo)
- US East (Ohio)
- US East (N. Virginia)
- US West (N. California)
- US West (Oregon)
Default is US East (N. Virginia).
Not applicable for S3 compatible storage.

Amazon S3 Connection Properties 339

Property Description

Customer
Master Key ID

Optional. Specify the customer master key ID or alias name generated by AWS Key Management
Service (AWS KMS) or the Amazon Resource Name (ARN) of your custom key for cross-account
access. You must generate the customer master key for the same region where Amazon S3 bucket
reside.
You can specify any of the following values:
Customer generated customer master key

Enables client-side or server-side encryption.

Default customer master key

Enables client-side or server-side encryption. Only the administrator user of the account can use
the default customer master key ID to enable client-side encryption.

Federated SSO
IdP

SAML 2.0-enabled identity provider for the federated user single sign-on to use with the AWS
account.
PowerExchange for Amazon S3 supports only the ADFS 3.0 identity provider.
Select None if you do not want to use federated user single sign-on.

Federated user single sign-on connection properties

Configure the following properties when you select ADFS 3.0 in Federated SSO IdP:

Property Description

Federated User Name User name of the federated user to access the AWS account through the identity
provider.

Federated User Password Password for the federated user to access the AWS account through the identity
provider.

IdP SSO URL Single sign-on URL of the identity provider for AWS.

SAML Identity Provider ARN ARN of the SAML identity provider that the AWS administrator created to register the
identity provider as a trusted provider.

Role ARN ARN of the IAM role assumed by the federated user.

340 Appendix A: Connections Reference

Blockchain Connection Properties
When you set up a blockchain connection, you must configure the connection properties.

The following table describes the general connection properties for a blockchain connection:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the
domain. You can change this property after you create the connection. The name cannot
exceed 128 characters, contain spaces, or contain the following special characters:
~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID The string that the Data Integration Service uses to identify the connection. The ID is not
case sensitive. It must be 255 characters or less and must be unique in the domain. You
cannot change this property after you create the connection. Default value is the
connection name.

Description The description of the connection. Enter a string that you can use to identify the
connection. The description cannot exceed 4,000 characters.

Swagger File Path The absolute path of the swagger file path that contains the REST API to communicate with
the blockchain. The swagger file must be a JSON file that is stored on the Data Integration
Service machine. If the swagger file is in a different file format, such as YAML, convert the
file to JSON format.

Base URL Required. The base URL that is used to access assets on the blockchain.

Auth Type* Authentication method that the run-time engine uses to connect to the REST server. You
can use none, basic, digest, or OAuth.

Auth User ID* User name to authenticate to the REST server.

Auth Password* Password for the user name to authenticate to the REST server.

OAuth Consumer Key* Required for the OAuth authentication type. Client key that is associated with the REST
server.

OAuth Consumer
Secret*

Required for the OAuth authentication type. Client password to connect to the REST server.

OAuth Token* Required for the OAuth authentication type. Access token to connect to the REST server.

OAuth Token Secret* Required for the OAuth authentication type. Password associated with the OAuth token.

Proxy Type* Type of proxy. You can use no proxy, platform proxy, or custom.

Proxy Details* Proxy configuration using the format <host>:<port>.

TrustStore File Path* The absolute path of the truststore file that contains the SSL certificate.

TrustStore Password* Password for the truststore file.

KeyStore File Path* The absolute path of the keystore file that contains the keys and certificates required to
establish a two-way secure connection with the REST server.

KeyStore Password* Password for the keystore file.

Blockchain Connection Properties 341

Property Description

Advanced Properties List of advanced properties to access an asset on the blockchain. Specify the advanced
properties using name-value pairs that are separated by a semicolon.
You can use the following advanced properties:
- X-API-KEY. Required if you authenticate to the REST server using an API key.
The advanced properties that you configure in the connection override the values for the
corresponding advanced properties in the blockchain data object. For example, if the
connection and the data object both specify a base URL, the value in the connection
overrides the value in the data object.
Note: The advanced properties have the precedence level,Operation level > Object level >
Connection level. The properties configured at the operation level will override the
properties configured at the object or connection level.

Cookies Required based on how the REST API is implemented. List of cookie properties to specify
the cookie information that is passed to the REST server. Specify the properties using
name-value pairs that are separated by a semicolon.
The cookie properties that you configure in the connection override the values for the
corresponding cookie properties in the blockchain data object.

* The property is ignored. To use the functionality, configure the property as an advanced property and provide a name-
value pair based on the property name in the swagger file.
For example, configure the following name-value pair to use basic authorization:

Authorization=Basic <credentials>
Note: You cannot use Test Connection to validate a Blockchain connection.

Cassandra Connection Properties
When you set up a Cassandra connection, you must configure the connection properties.

Note: The order of the connection properties might vary depending on the tool where you view them.

The following table describes the Cassandra connection properties:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the domain.
You can change this property after you create the connection. The name cannot exceed 128
characters, contain spaces, or contain the following special characters:
~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection.
The ID is not case sensitive. The ID must be 255 characters or less and must be unique in the
domain. You cannot change this property after you create the connection.
Default value is the connection name.

Description Optional. The description of the connection. The description cannot exceed 4,000 characters.

Location The domain where you want to create the connection.
Not applicable for Data Engineering Streaming.

342 Appendix A: Connections Reference

Property Description

Type The connection type.
Select Cassandra.

Host Name Host name or IP address of the Cassandra server.

Port Cassandra server port number.
Default is 9042.

User Name User name to access the Cassandra server.

Password Password corresponding to the user name to access the Cassandra server.

Default
Keyspace

Name of the Cassandra keyspace to use by default.

SQL Identifier
Character

Type of character that the database uses to enclose delimited identifiers in SQL or CQL queries. The
available characters depend on the database type.
Select None if the database uses regular identifiers. When the Data Integration Service generates
SQL or CQL queries, the service does not place delimited characters around any identifiers.
Select a character if the database uses delimited identifiers. When the Data Integration Service
generates SQL or CQL queries, the service encloses delimited identifiers within this character.

SSL Mode Select disabled.
Not applicable for PowerExchange for Cassandra JDBC.
SSL mode indicates the encryption type to use for the connection. You can choose a mode from the
following SSL modes:
- Disabled
- One way
- Two way

SSL
Truststore
Path

Not applicable for PowerExchange for Cassandra JDBC or when disabled SSL mode is selected.
Absolute path and file name of the SSL truststore file that contains certificates of the trusted SSL
server.

SSL
Truststore
Password

Not applicable for PowerExchange for Cassandra JDBC or when disabled SSL mode is selected.
Password for the SSL truststore.

SSL Keystore
Path

Not applicable for PowerExchange for Cassandra JDBC or when disabled SSL mode is selected.
Absolute path and file name of the SSL keystore file that contains private keys and certificates for
the SSL server.

Cassandra Connection Properties 343

Property Description

SSL Keystore
Password

Not applicable for PowerExchange for Cassandra JDBC or when disabled SSL mode is selected.
Password for the SSL keystore.

Additional
Connection
Properties

Enter one or more JDBC connection parameters in the following format:
<param1>=<value>;<param2>=<value>;<param3>=<value>
PowerExchange for Cassandra JDBC supports the following JDBC connection parameters:
- BinaryColumnLength
- DecimalColumnScale
- EnableCaseSensitive
- EnableNullInsert
- EnablePaging
- RowsPerPage
- StringColumnLength
- VTTableNameSeparator

Confluent Kafka Connection
The Confluent Kafka connection is a Messaging connection. Use the Confluent Kafka connection to access a
Kafka broker or a Confluent Kafka broker as a source or a target. You can create and manage a Confluent
Kafka connection in the Developer tool or through infacmd.

When you configure a Confluent Kafka connection, you configure the following properties:

• List of Kafka brokers or Confluent Kafka brokers that the connection reads from or writes to.

• Number of seconds the Integration Service attempts to reconnect to the database if the connection fails.

• Version of the Confluent Kafka messaging broker.

General Properties
The following table describes the general connection properties for the Confluent Kafka connection:

Property Description

Name Name of the connection. The name is not case sensitive and must be unique within the domain. You can
change this property after you create the connection. The name cannot exceed 128 characters, contain
spaces, or contain the following special characters:
~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID The string that the Data Integration Service uses to identify the connection. The ID is not case sensitive.
It must be 255 characters or less and must be unique in the domain. You cannot change this property
after you create the connection. Default value is the connection name.

Description Description of the connection. Enter a string that you can use to identify the connection. The
description cannot exceed 4,000 characters.

Location Domain where you want to create the connection. Select the domain name.

Type Connection type. Select Messaging/ConfluentKafka.

344 Appendix A: Connections Reference

Confluent Kafka Broker Properties
The following table describes the Kafka broker properties for the Confluent Kafka connection:

Property Description

Kafka Broker List Comma-separated list of Confluent Kafka brokers that maintain the
configuration of the Confluent Kafka messaging broker.
To specify a Confluent Kafka broker, use the following format: <IP
address>:<port>

Retry Timeout Number of seconds after which the Data Integration Service attempts to
reconnect to the Confluent Kafka broker to read or write data. If the
source or target is not available for the time you specify, the mapping
execution stops to avoid any data loss.

Kafka Broker Version Version of the Confluent Kafka messaging broker.

Additional Connection Properties Optional. Comma-separated list of connection properties to connect to
the Kafka broker.

Schema Registry URL Location and port of the schema registry provider on which to connect.

Additional Connection Properties

You can use the following syntax for specifying the additional connection properties:

request.timeout.ms=<value>,session.timeout.ms=<value>,
fetch.max.wait.ms=<value>,heartbeat.interval.ms=<value>,
security.protocol=SASL_PLAINTEXT,sasl.kerberos.
service.name=<kerberos name>,sasl.mechanism=GSSAPI,
sasl.jaas.config=com.sun.security.auth.module.
Krb5Login Modulerequired useKeyTab=true
doNotPrompt=true storeKey=true client=true
keyTab="<Keytab Location>" principal="<principal>";

SSL Properties
The following table describes the SSL properties for the Confluent Kafka connection:

Property Description

SSL Mode Optional. SSL mode indicates the encryption type to use for the connection.
You can choose one of the following SSL modes:
- Disabled
- One way
- Two way
The default value is Disabled.

SSL TrustStore File
Path

Required when One way SSL mode is selected.
Absolute path and file name of the SSL truststore file that contains certificates of the
trusted SSL server.

SSL TrustStore
Password

Required when One way SSL mode is selected.
Password for the SSL truststore.

Confluent Kafka Connection 345

Property Description

SSL KeyStore File Path Required when Two way SSL mode is selected.
Absolute path and file name of the SSL keystore file that contains private keys and
certificates for the SSL server.

SSL KeyStore
Password

Required when Two way SSL mode is selected.
Password for the SSL keystore.

Additional Security
Properties

Optional. Comma-separated list of connection properties to connect to the Confluent Kafka
broker in a secured way.

Creating a Confluent Kafka Connection Using infacmd
You can use the infacmd command line program to create a Confluent Kafka connection.

To create a Confluent Kafka connection on UNIX, run the following command:

sh infacmd.sh createConnection -dn <domain name> -un <domain user> -pd <domain password>
-cn <connection name> -cid <connection id> -ct ConfluentKafka -o
"kfkBrkList='<host1:port1>,<host2:port2>,<host3:port3>' kafkabrokerversion='<version>'
schemaregistryurl='<schema registry URL>'"

For more information about the CreateConnection command, see the Informatica Command Reference.

Databricks Connection Properties
Use the Databricks connection to run mappings on a Databricks cluster.

A Databricks connection is a cluster type connection. You can create and manage a Databricks connection in
the Administrator tool or the Developer tool. You can use infacmd to create a Databricks connection.
Configure properties in the Databricks connection to enable communication between the Data Integration
Service and the Databricks cluster.

The following table describes the general connection properties for the Databricks connection:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the
domain. You can change this property after you create the connection. The name cannot exceed
128 characters, contain spaces, or contain the following special characters:~ ` ! $ % ^ & * () - + =
{ [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is not case
sensitive. It must be 255 characters or less and must be unique in the domain. You cannot change
this property after you create the connection. Default value is the connection name.

Description Optional. The description of the connection. The description cannot exceed 4,000 characters.

Connection Type Choose Databricks.

Cluster
Configuration

Name of the cluster configuration associated with the Databricks environment.
Required if you do not configure the cloud provisioning configuration.

346 Appendix A: Connections Reference

Property Description

Cloud
Provisioning
Configuration

Name of the cloud provisioning configuration associated with a Databricks cloud platform.
Required if you do not configure the cluster configuration.

Staging Directory The directory where the Databricks Spark engine stages run-time files.
If you specify a directory that does not exist, the Data Integration Service creates it at run time.
If you do not provide a directory path, the run-time staging files are written to /<cluster staging
directory>/DATABRICKS.

Advanced
Properties

List of advanced properties that are unique to the Databricks environment.
You can configure run-time properties for the Databricks environment in the Data Integration
Service and in the Databricks connection. You can override a property configured at a high level
by setting the value at a lower level. For example, if you configure a property in the Data
Integration Service custom properties, you can override it in the Databricks connection. The Data
Integration Service processes property overrides based on the following priorities:
1. Databricks connection advanced properties
2. Data Integration Service custom properties
Note: Informatica does not recommend changing these property values before you consult with
third-party documentation, Informatica documentation, or Informatica Global Customer Support. If
you change a value without knowledge of the property, you might experience performance
degradation or other unexpected results.

Advanced Properties

Configure the following properties in the Advanced Properties of the Databricks configuration section:

infaspark.json.parser.mode

Specifies the parser how to handle corrupt JSON records. You can set the value to one of the following
modes:

• DROPMALFORMED. The parser ignores all corrupted records. Default mode.

• PERMISSIVE. The parser accepts non-standard fields as nulls in corrupted records.

• FAILFAST. The parser generates an exception when it encounters a corrupted record and the Spark
application goes down.

infaspark.json.parser.multiLine

Specifies whether the parser can read a multiline record in a JSON file. You can set the value to true or
false. Default is false. Applies only to non-native distributions that use Spark version 2.2.x and above.

infaspark.flatfile.writer.nullValue

When the Databricks Spark engine writes to a target, it converts null values to empty strings (" "). For
example, 12, AB,"",23p09udj.

The Databricks Spark engine can write the empty strings to string columns, but when it tries to write an
empty string to a non-string column, the mapping fails with a type mismatch.

To allow the Databricks Spark engine to convert the empty strings back to null values and write to the
target, configure the property in the Databricks Spark connection.

Set to: TRUE

infaspark.pythontx.exec

Required to run a Python transformation on the Databricks Spark engine. Set to the location of the
Python executable binary on the worker nodes in the Databricks cluster.

Databricks Connection Properties 347

When you provision the cluster at run time, set this property in the Databricks cloud provisioning
configuration. Otherwise, set on the Databricks connection.

For example, set to:

infaspark.pythontx.exec=/databricks/python3/bin/python3
infaspark.pythontx.executorEnv.PYTHONHOME

Required to run a Python transformation on the Databricks Spark engine. Set to the location of the
Python installation directory on the worker nodes in the Databricks cluster.

When you provision the cluster at run time, set this property in the Databricks cloud provisioning
configuration. Otherwise, set on the Databricks connection.

For example, set to:

infaspark.pythontx.executorEnv.PYTHONHOME=/databricks/python3

Google Analytics Connection Properties
When you set up a Google Analytics connection, you must configure the connection properties.

Note: The order of the connection properties might vary depending on the tool where you view them.

The following table describes the Google Analytics connection properties:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the
domain. You can change this property after you create the connection. The name cannot exceed
128 characters, contain spaces, or contain the following special characters:~ ` ! $ % ^ & * () - + =
{ [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection.
The ID is not case sensitive. The ID must be 255 characters or less and must be unique in the
domain. You cannot change this property after you create the connection.
Default value is the connection name.

Description Optional. The description of the connection. The description cannot exceed 4,000 characters.

Location The domain where you want to create the connection.

Type The connection type. Select Google Analytics.

Service Account
ID

Specifies the client_email value present in the JSON file that you download after you create a
service account.

Service Account
Key

Specifies the private_key value present in the JSON file that you download after you create a
service account.

APIVersion API that PowerExchange for Google Analytics uses to read from Google Analytics reports.
Select Core Reporting API v3.
Note: PowerExchange for Google Analytics does not support Analytics Reporting API v4.

348 Appendix A: Connections Reference

Google BigQuery Connection Properties
When you set up a Google BigQuery connection, you must configure the connection properties.

Note: The order of the connection properties might vary depending on the tool where you view them.

The following table describes the Google BigQuery connection properties:

Property Description

Service Account
ID

Specifies the client_email value present in the JSON file that you download after you create a
service account in Google BigQuery.

Service Account
Key

Specifies the private_key value present in the JSON file that you download after you create a
service account in Google BigQuery.

Connection
mode

The mode that you want to use to read data from or write data to Google BigQuery.
Select one of the following connection modes:
- Simple. Flattens each field within the Record data type field as a separate field in the mapping.
- Hybrid. Displays all the top-level fields in the Google BigQuery table including Record data type

fields. PowerExchange for Google BigQuery displays the top-level Record data type field as a
single field of the String data type in the mapping.

- Complex. Displays all the columns in the Google BigQuery table as a single field of the String
data type in the mapping.

Default is Simple.

Schema
Definition File
Path

Specifies a directory on the client machine where the Data Integration Service must create a JSON
file with the sample schema of the Google BigQuery table. The JSON file name is the same as the
Google BigQuery table name.
Alternatively, you can specify a storage path in Google Cloud Storage where the Data Integration
Service must create a JSON file with the sample schema of the Google BigQuery table. You can
download the JSON file from the specified storage path in Google Cloud Storage to a local
machine.

Project ID Specifies the project_id value present in the JSON file that you download after you create a
service account in Google BigQuery.
If you have created multiple projects with the same service account, enter the ID of the project
that contains the dataset that you want to connect to.

Storage Path This property applies when you read or write large volumes of data.
Path in Google Cloud Storage where the Data Integration Service creates a local stage file to store
the data temporarily.
You can either enter the bucket name or the bucket name and folder name.
For example, enter gs://<bucket_name> or gs://<bucket_name>/<folder_name>

Dataset ID Not applicable for PowerExchange for Google BigQuery.

Use Legacy SQL
For Custom
Query

Not applicable for PowerExchange for Google BigQuery.

Dataset Name
for Custom
Query

Not applicable for PowerExchange for Google BigQuery.

Staging Dataset The Google BigQuery dataset name where you want to create the staging table to stage the data.
You can define a Google BigQuery dataset that is different from the source or target dataset.

Google BigQuery Connection Properties 349

Property Description

Region ID The region name where the Google BigQuery dataset resides.
For example, if you want to connect to a Google BigQuery dataset that resides in Las Vegas
region, specify us-west4 as the Region ID.
Note: In the Storage Path connection property, ensure that you specify a bucket name or the
bucket name and folder name that resides in the same region as the dataset in Google BigQuery.
For more information about the regions supported by Google BigQuery, see the following Google
BigQuery documentation:https://cloud.google.com/bigquery/docs/locations

Optional
Properties

Specifies whether you can configure certain source and target functionalities through custom
properties.
You can select one of the following options:
- None. Select if you do not want to configure any custom properties.
- Required. If you want to specify custom properties to configure the source and target

functionalities.
Default is None.

Provide Optional
Properties

Comma-separated key-value pairs of custom properties to enable certain source and target
functionalities.
Appears only when you select Required in the Optional Properties.
For more information about the list of custom properties that you can specify, see the Informatica
Knowledge Base article: https://kb.informatica.com/faq/7/Pages/26/632722.aspx

Google Cloud Spanner Connection Properties
When you set up a Google Cloud Spanner connection, you must configure the connection properties.

Note: The order of the connection properties might vary depending on the tool where you view them.

The following table describes the Google Cloud Spanner connection properties:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the
domain. You can change this property after you create the connection. The name cannot exceed
128 characters, contain spaces, or contain the following special characters:~ ` ! $ % ^ & * () - + =
{ [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection.
The ID is not case sensitive. The ID must be 255 characters or less and must be unique in the
domain. You cannot change this property after you create the connection.
Default value is the connection name.

Description Optional. The description of the connection. The description cannot exceed 4,000 characters.

Location The domain where you want to create the connection.

Type The connection type. Select Google Cloud Spanner.

350 Appendix A: Connections Reference

https://cloud.google.com/bigquery/docs/locations
https://kb.informatica.com/faq/7/Pages/26/632722.aspx

Property Description

Project ID Specifies the project_id value present in the JSON file that you download after you create a service
account.
If you have created multiple projects with the same service account, enter the ID of the project
that contains the bucket that you want to connect to.

Service Account
ID

Specifies the client_email value present in the JSON file that you download after you create a
service account.

Service Account
Key

Specifies the private_key value present in the JSON file that you download after you create a
service account.

Instance ID Name of the instance that you created in Google Cloud Spanner.

Google Cloud Storage Connection Properties
When you set up a Google Cloud Storage connection, you must configure the connection properties.

Note: The order of the connection properties might vary depending on the tool where you view them.

The following table describes the Google Cloud Storage connection properties:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the
domain. You can change this property after you create the connection. The name cannot exceed
128 characters, contain spaces, or contain the following special characters:~ ` ! $ % ^ & * () - + =
{ [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection.
The ID is not case sensitive. The ID must be 255 characters or less and must be unique in the
domain. You cannot change this property after you create the connection.
Default value is the connection name.

Description Optional. The description of the connection. The description cannot exceed 4,000 characters.

Location The domain where you want to create the connection.

Type The connection type. Select Google Cloud Storage.

Project ID Specifies the project_id value present in the JSON file that you download after you create a service
account.
If you have created multiple projects with the same service account, enter the ID of the project that
contains the bucket that you want to connect to.

Service Account
ID

Specifies the client_email value present in the JSON file that you download after you create a
service account.

Service Account
Key

Specifies the private_key value present in the JSON file that you download after you create a
service account.

Google Cloud Storage Connection Properties 351

Google PubSub Connection Properties
When you create a Google PubSub connection, you must configure the connection properties.

The following table describes the Google PubSub connection properties:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the
domain. You can change this property after you create the connection. The name cannot exceed
128 characters, contain spaces, or contain the following special characters: ~ ` ! $ % ^ & *
() - + = { [}] | \ : ; " ' < , > . ? /

ID The string that the Data Integration Service uses to identify the connection. The ID is not case
sensitive. It must be 255 characters or less and must be unique in the domain. You cannot change
this property after you create the connection. Default value is the connection name.

Description The description of the connection. Enter a string that you can use to identify the connection. The
description cannot exceed 4,000 characters.

Connection Type The connection type. Select Pub Sub connection type.

Client Email The client_email value available in the JSON file that you download after you create a service
account.

Client Id The client_id value available in the JSON file that you download after you create a service
account.

Private Key Id The private_key_id value available in the JSON file that you download after you create a
service account.

Private Key The private_key value available in the JSON file that you download after you create a service
account.

Project Id The project_id value available in the JSON file that you download after you create a service
account.

Hadoop Connection Properties
Use the Hadoop connection to configure mappings to run on a Hadoop cluster. A Hadoop connection is a
cluster type connection. You can create and manage a Hadoop connection in the Administrator tool or the
Developer tool. You can use infacmd to create a Hadoop connection. Hadoop connection properties are case
sensitive unless otherwise noted.

You can configure run-time properties for the Hadoop environment in the Data Integration Service, the
Hadoop connection, and in the mapping. You can override a property configured at a high level by setting the
value at a lower level. For example, if you configure a property in the Data Integration Service custom
properties, you can override it in the Hadoop connection or in the mapping. The Data Integration Service
processes property overrides based on the following priorities:

1. Mapping custom properties set using infacmd ms runMapping with the -cp option

2. Mapping run-time properties for the Hadoop environment

352 Appendix A: Connections Reference

3. Hadoop connection advanced properties for run-time engines

4. Hadoop connection advanced general properties, environment variables, and classpaths

5. Data Integration Service custom properties

Note: When a mapping uses Hive Server 2 to run a job or parts of a job, you cannot override properties that
are configured on the cluster level in preSQL or post-SQL queries or SQL override statements. Workaround:
Instead of attempting to use the cluster configuration on the domain to override cluster properties, pass the
override settings to the JDBC URL. For example: beeline -u "jdbc:hive2://<domain
host>:<port_number>/tpch_text_100" --hiveconf hive.execution.engine=tez

Hadoop Cluster Properties
Configure properties in the Hadoop connection to enable communication between the Data Integration
Service and the Hadoop cluster.

The following table describes the general connection properties for the Hadoop connection:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the
domain. You can change this property after you create the connection. The name cannot
exceed 128 characters, contain spaces, or contain the following special characters:
~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is not case
sensitive. It must be 255 characters or less and must be unique in the domain. You cannot
change this property after you create the connection. Default value is the connection name.

Description The description of the connection. Enter a string that you can use to identify the connection.
The description cannot exceed 4,000 characters.

Cluster
Configuration

The name of the cluster configuration associated with the Hadoop environment.
Required if you do not configure the Cloud Provisioning Configuration.

Cloud Provisioning
Configuration

Name of the cloud provisioning configuration associated with a cloud platform such as
Amazon AWS or Microsoft Azure.
Required if you do not configure the Cluster Configuration.

Hadoop Connection Properties 353

Property Description

Cluster Environment
Variables*

Environment variables that the Hadoop cluster uses.
If you use a Cloudera CDH 6.x cluster or a Cloudera CDP cluster, configure the locale setting as
cluster environment variables. In Cloudera Manager, you must also add the environment
variables to the following YARN property:

yarn.nodemanager.env-whitelist
For example, the variable ORACLE_HOME represents the directory where the Oracle database
client software is installed.
You can configure run-time properties for the Hadoop environment in the Data Integration
Service, the Hadoop connection, and in the mapping. You can override a property configured at
a high level by setting the value at a lower level. For example, if you configure a property in the
Data Integration Service custom properties, you can override it in the Hadoop connection or in
the mapping. The Data Integration Service processes property overrides based on the following
priorities:
1. Mapping custom properties set using infacmd ms runMapping with the -cp option
2. Mapping run-time properties for the Hadoop environment
3. Hadoop connection advanced properties for run-time engines
4. Hadoop connection advanced general properties, environment variables, and classpaths
5. Data Integration Service custom properties
Note: When a mapping uses Hive Server 2 to run a job or parts of a job, you cannot override
properties that are configured on the cluster level in preSQL or post-SQL queries or SQL
override statements. Workaround: Instead of attempting to use the cluster configuration on the
domain to override cluster properties, pass the override settings to the JDBC URL. For
example: beeline -u "jdbc:hive2://<domain host>:<port_number>/
tpch_text_100" --hiveconf hive.execution.engine=tez

Cluster Library
Path*

The path for shared libraries on the cluster.
The $DEFAULT_CLUSTER_LIBRARY_PATH variable contains a list of default directories.

Cluster Classpath* The classpath to access the Hadoop jar files and the required libraries.
The $DEFAULT_CLUSTER_CLASSPATH variable contains a list of paths to the default jar files
and libraries.
You can configure run-time properties for the Hadoop environment in the Data Integration
Service, the Hadoop connection, and in the mapping. You can override a property configured at
a high level by setting the value at a lower level. For example, if you configure a property in the
Data Integration Service custom properties, you can override it in the Hadoop connection or in
the mapping. The Data Integration Service processes property overrides based on the following
priorities:
1. Mapping custom properties set using infacmd ms runMapping with the -cp option
2. Mapping run-time properties for the Hadoop environment
3. Hadoop connection advanced properties for run-time engines
4. Hadoop connection advanced general properties, environment variables, and classpaths
5. Data Integration Service custom properties
Note: When a mapping uses Hive Server 2 to run a job or parts of a job, you cannot override
properties that are configured on the cluster level in preSQL or post-SQL queries or SQL
override statements. Workaround: Instead of attempting to use the cluster configuration on the
domain to override cluster properties, pass the override settings to the JDBC URL. For
example: beeline -u "jdbc:hive2://<domain host>:<port_number>/
tpch_text_100" --hiveconf hive.execution.engine=tez

354 Appendix A: Connections Reference

Property Description

Cluster Executable
Path*

The path for executable files on the cluster.
The $DEFAULT_CLUSTER_EXEC_PATH variable contains a list of paths to the default
executable files.

* Informatica does not recommend changing these property values before you consult with third-party documentation,
Informatica documentation, or Informatica Global Customer Support. If you change a value without knowledge of the
property, you might experience performance degradation or other unexpected results.

Common Properties
The following table describes the common connection properties that you configure for the Hadoop
connection:

Property Description

Impersonation
User Name

Required if the Hadoop cluster uses Kerberos authentication. Hadoop impersonation user. The
user name that the Data Integration Service impersonates to run mappings in the Hadoop
environment.
Data Engineering Integration supports operating system profiles on all Hadoop distributions. In
the Hadoop run-time environment, the Data Integration Service pushes the processing to the
Hadoop cluster and the run-time engines run mappings with the operating system profile
specified Hadoop impersonation properties.

Temporary Table
Compression
Codec

Hadoop compression library for a compression codec class name.
Note: The Spark engine does not support compression settings for temporary tables. When you
run mappings on the Spark engine, the Spark engine stores temporary tables in an uncompressed
file format.

Codec Class
Name

Codec class name that enables data compression and improves performance on temporary
staging tables.

Hive Staging
Database Name

Namespace for Hive staging tables. Use the name default for tables that do not have a
specified database name.
If you do not configure a namespace, the Data Integration Service uses the Hive database name
in the Hive target connection to create staging tables.
When you run a mapping in the native environment to write data to Hive, you must configure the
Hive staging database name in the Hive connection. The Data Integration Service ignores the
value you configure in the Hadoop connection.

Environment SQL SQL commands to set the Hadoop environment. The Data Integration Service executes the
environment SQL at the beginning of each Hive script generated by a HiveServer2 job.
The following rules and guidelines apply to the usage of environment SQL:
- You can use environment SQL to define Hadoop or Hive parameters that you want to use in the

PreSQL commands or in custom queries.
- If you use multiple values for the Environment SQL property, ensure that there is no space

between the values.

Hadoop Connection Properties 355

Property Description

Engine Type The Data Integration Service uses HiveServer2 to process portions of some jobs by running
HiveServer2 tasks on the Spark engine. When you import the cluster configuration through the
Administrator tool, you can choose to create connections. The engine type property is populated
by default based on the distribution.
When you manually create a connection, you must configure the engine type.
You can specify the engine type based on the following Hadoop distributions:
- Amazon EMR. Tez
- Azure HDI. Tez
- Cloudera CDH. MRv2
- Cloudera CDP. Tez
- Dataproc. MRv2
- Hortonworks HDP. Tez
- MapR. MRv2

Advanced
Properties

List of advanced properties that are unique to the Hadoop environment. The properties are
common to the Blaze and Spark engines. The advanced properties include a list of default
properties.
You can configure run-time properties for the Hadoop environment in the Data Integration
Service, the Hadoop connection, and in the mapping. You can override a property configured at a
high level by setting the value at a lower level. For example, if you configure a property in the
Data Integration Service custom properties, you can override it in the Hadoop connection or in the
mapping. The Data Integration Service processes property overrides based on the following
priorities:
1. Mapping custom properties set using infacmd ms runMapping with the -cp option
2. Mapping run-time properties for the Hadoop environment
3. Hadoop connection advanced properties for run-time engines
4. Hadoop connection advanced general properties, environment variables, and classpaths
5. Data Integration Service custom properties
Note: When a mapping uses Hive Server 2 to run a job or parts of a job, you cannot override
properties that are configured on the cluster level in preSQL or post-SQL queries or SQL override
statements. Workaround: Instead of attempting to use the cluster configuration on the domain to
override cluster properties, pass the override settings to the JDBC URL. For example: beeline -
u "jdbc:hive2://<domain host>:<port_number>/tpch_text_100" --hiveconf
hive.execution.engine=tez
Note: Informatica does not recommend changing these property values before you consult with
third-party documentation, Informatica documentation, or Informatica Global Customer Support.
If you change a value without knowledge of the property, you might experience performance
degradation or other unexpected results.

Reject Directory Properties
The following table describes the connection properties that you configure to the Hadoop Reject Directory.

Property Description

Write Reject Files
to Hadoop

If you use the Blaze engine to run mappings, select the check box to specify a location to move
reject files. If checked, the Data Integration Service moves the reject files to the HDFS or View
File System (ViewFS) location listed in the property, Reject File Directory.
By default, the Data Integration Service stores the reject files based on the RejectDir system
parameter.

Reject File
Directory

The directory for Hadoop mapping files on HDFS or ViewFS when you run mappings.

356 Appendix A: Connections Reference

Blaze Configuration
The following table describes the connection properties that you configure for the Blaze engine:

Property Description

Blaze Staging
Directory

The HDFS file path of the directory that the Blaze engine uses to store temporary files. Verify that
the directory exists. The YARN user, Blaze engine user, and mapping impersonation user must have
write permission on this directory.
Default is /blaze/workdir. If you clear this property, the staging files are written to the Hadoop
staging directory /tmp/blaze_<user name>.

Blaze User
Name

The owner of the Blaze service and Blaze service logs.
When the Hadoop cluster uses Kerberos authentication, the default user is the Data Integration
Service SPN user. When the Hadoop cluster does not use Kerberos authentication and the Blaze user
is not configured, the default user is the Data Integration Service user.

Minimum Port The minimum value for the port number range for the Blaze engine. Default is 12300.

Maximum Port The maximum value for the port number range for the Blaze engine. Default is 12600.

YARN Queue
Name

The YARN scheduler queue name used by the Blaze engine that specifies available resources on a
cluster.
Note: If YARN preemption is enabled on the cluster, verify with the Hadoop administrator that
preemption is disabled on the queue associated with the Blaze engine.

Blaze Job
Monitor
Address

The host name and port number for the Blaze Job Monitor.
Use the following format:
<hostname>:<port>
Where
- <hostname> is the host name or IP address of the Blaze Job Monitor server.
- <port> is the port on which the Blaze Job Monitor listens for remote procedure calls (RPC).
For example, enter: myhostname:9080

Hadoop Connection Properties 357

Property Description

Blaze YARN
Node Label

Node label that determines the node on the Hadoop cluster where the Blaze engine runs. If you do
not specify a node label, the Blaze engine runs on the nodes in the default partition.
If the Hadoop cluster supports logical operators for node labels, you can specify a list of node
labels. To list the node labels, use the operators && (AND), || (OR), and ! (NOT).
Note: You cannot use node labels on a Cloudera CDH cluster.

Advanced
Properties

List of advanced properties that are unique to the Blaze engine. The advanced properties include a
list of default properties.
You can configure run-time properties for the Hadoop environment in the Data Integration Service,
the Hadoop connection, and in the mapping. You can override a property configured at a high level
by setting the value at a lower level. For example, if you configure a property in the Data Integration
Service custom properties, you can override it in the Hadoop connection or in the mapping. The Data
Integration Service processes property overrides based on the following priorities:
1. Mapping custom properties set using infacmd ms runMapping with the -cp option
2. Mapping run-time properties for the Hadoop environment
3. Hadoop connection advanced properties for run-time engines
4. Hadoop connection advanced general properties, environment variables, and classpaths
5. Data Integration Service custom properties
Note: When a mapping uses Hive Server 2 to run a job or parts of a job, you cannot override
properties that are configured on the cluster level in preSQL or post-SQL queries or SQL override
statements. Workaround: Instead of attempting to use the cluster configuration on the domain to
override cluster properties, pass the override settings to the JDBC URL. For example: beeline -u
"jdbc:hive2://<domain host>:<port_number>/tpch_text_100" --hiveconf
hive.execution.engine=tez
Note: Informatica does not recommend changing these property values before you consult with
third-party documentation, Informatica documentation, or Informatica Global Customer Support. If
you change a value without knowledge of the property, you might experience performance
degradation or other unexpected results.

Spark Configuration
The following table describes the connection properties that you configure for the Spark engine:

Property Description

Spark Staging
Directory

The HDFS file path of the directory that the Spark engine uses to store temporary files for running
jobs. The YARN user, Data Integration Service user, and mapping impersonation user must have
write permission on this directory.
If you do not specify a file path, by default, the temporary files are written to the Hadoop staging
directory /tmp/SPARK_<user name>.
When you run Sqoop jobs on the Spark engine, the Data Integration Service creates a Sqoop staging
directory within the Spark staging directory to store temporary files: <Spark staging
directory>/sqoop_staging

Spark Event
Log Directory

Optional. The HDFS file path of the directory that the Spark engine uses to log events.

358 Appendix A: Connections Reference

Property Description

YARN Queue
Name

The YARN scheduler queue name used by the Spark engine that specifies available resources on a
cluster. The name is case sensitive.

Advanced
Properties

List of advanced properties that are unique to the Spark engine. The advanced properties include a
list of default properties.
You can configure run-time properties for the Hadoop environment in the Data Integration Service,
the Hadoop connection, and in the mapping. You can override a property configured at a high level
by setting the value at a lower level. For example, if you configure a property in the Data Integration
Service custom properties, you can override it in the Hadoop connection or in the mapping. The Data
Integration Service processes property overrides based on the following priorities:
1. Mapping custom properties set using infacmd ms runMapping with the -cp option
2. Mapping run-time properties for the Hadoop environment
3. Hadoop connection advanced properties for run-time engines
4. Hadoop connection advanced general properties, environment variables, and classpaths
5. Data Integration Service custom properties
Note: When a mapping uses Hive Server 2 to run a job or parts of a job, you cannot override
properties that are configured on the cluster level in preSQL or post-SQL queries or SQL override
statements. Workaround: Instead of attempting to use the cluster configuration on the domain to
override cluster properties, pass the override settings to the JDBC URL. For example: beeline -u
"jdbc:hive2://<domain host>:<port_number>/tpch_text_100" --hiveconf
hive.execution.engine=tez
Note: Informatica does not recommend changing these property values before you consult with
third-party documentation, Informatica documentation, or Informatica Global Customer Support. If
you change a value without knowledge of the property, you might experience performance
degradation or other unexpected results.

HDFS or View File System (ViewFS) Connection
Properties

Use a Hadoop File System (HDFS) or View File System (ViewFS) connection to access data in the Hadoop
cluster. The HDFS or ViewFS connection is a file system type connection. You can create and manage an
HDFS or ViewFS connection in the Administrator tool, Analyst tool, or the Developer tool. HDFS or ViewFS
connection properties are case sensitive unless otherwise noted.

Note: The order of the connection properties might vary depending on the tool where you view them.

The following table describes HDFS connection properties:

Property Description

Name Name of the connection. The name is not case sensitive and must be unique within the domain. The
name cannot exceed 128 characters, contain spaces, or contain the following special characters:
~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is not case sensitive.
It must be 255 characters or less and must be unique in the domain. You cannot change this
property after you create the connection. Default value is the connection name.

Description The description of the connection. The description cannot exceed 765 characters.

HDFS or View File System (ViewFS) Connection Properties 359

Property Description

Location The domain where you want to create the connection. Not valid for the Analyst tool.

Type The connection type. Default is Hadoop File System.

User Name User name to access HDFS.

NameNode
URI

The URI to access the storage system. You can find the value for fs.defaultFS in the core-
site.xml configuration set of the cluster configuration.
If you create connections when you import the cluster configuration, the NameNode URI property is
populated by default, and it is updated each time you refresh the cluster configuration.
If you use a Cloudera CDP Public Cloud compute cluster and the HDFS is on a Cloudera Data Lake
cluster, set the property spark.yarn.access.hadoopFileSystems in the Spark properties of the Hadoop
Connection to the same value as set here.

Accessing Multiple Storage Types

Use the NameNode URI property in the connection parameters to connect to various storage types. The
following table lists the storage type and the NameNode URI format for the storage type:

Storage NameNode URI Format

HDFS hdfs://<namenode>:<port>
where:
- <namenode> is the host name or IP address of the NameNode.
- <port> is the port that the NameNode listens for remote procedure calls (RPC).
hdfs://<nameservice> in case of NameNode high availability.

View File
System
(ViewFS)

viewfs://<clusterX>, where clusterX is the mount table for the cluster.

MapR-FS maprfs:///

WASB in
HDInsight

wasb://<container_name>@<account_name>.blob.core.windows.net/<path>
where:
- <container_name> identifies a specific Azure Storage Blob container.

Note: <container_name> is optional.
- <account_name> identifies the Azure Storage Blob object.
Example:

wasb://infabdmoffering1storage.blob.core.windows.net/
infabdmoffering1cluster/mr-history

ADLS in
HDInsight

adl://home

When you create a cluster configuration from an Azure HDInsight cluster, the cluster configuration uses
either ADLS or WASB as the primary storage. You cannot create a cluster configuration with ADLS or WASB
as the secondary storage. You can edit the NameNode URI property in the HDFS or ViewFS connection to
connect to a local HDFS or ViewFS location.

360 Appendix A: Connections Reference

HBase Connection Properties
Use an HBase connection to access HBase. The HBase connection is a NoSQL connection. You can create
and manage an HBase connection in the Administrator tool or the Developer tool. HBase connection
properties are case sensitive unless otherwise noted.

The following table describes HBase connection properties:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique
within the domain. You can change this property after you create the connection.
The name cannot exceed 128 characters, contain spaces, or contain the following
special characters:
~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is
not case sensitive. It must be 255 characters or less and must be unique in the
domain. You cannot change this property after you create the connection. Default
value is the connection name.

Description The description of the connection. The description cannot exceed 4,000
characters.

Location The domain where you want to create the connection.

Type The connection type. Select HBase.

Database Type Type of database that you want to connect to.
Select HBase to create a connection for an HBase table.

HBase Connection Properties for MapR-DB
Use an HBase connection to connect to a MapR-DB table. The HBase connection is a NoSQL connection. You
can create and manage an HBase connection in the Administrator tool or the Developer tool. HBase
connection properties are case sensitive unless otherwise noted.

The following table describes the HBase connection properties for MapR-DB:

Property Description

Name Name of the connection. The name is not case sensitive and must be unique
within the domain. You can change this property after you create the connection.
The name cannot exceed 128 characters, contain spaces, or contain the following
special characters:
~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is
not case sensitive. It must be 255 characters or less and must be unique in the
domain. You cannot change this property after you create the connection. Default
value is the connection name.

HBase Connection Properties 361

Property Description

Description Description of the connection. The description cannot exceed 4,000 characters.

Location Domain where you want to create the connection.

Type Connection type. Select HBase.

Database Type Type of database that you want to connect to.
Select MapR-DB to create a connection for a MapR-DB table.

Cluster Configuration The name of the cluster configuration associated with the Hadoop environment.

MapR-DB Database Path Database path that contains the MapR-DB table that you want to connect to. Enter
a valid MapR cluster path.
When you create an HBase data object for MapR-DB, you can browse only tables
that exist in the MapR-DB path that you specify in the Database Path field. You
cannot access tables that are available in sub-directories in the specified path.
For example, if you specify the path as /user/customers/, you can access the
tables in the customers directory. However, if the customers directory contains
a sub-directory named regions, you cannot access the tables in the following
directory:
/user/customers/regions

Hive Connection Properties
Use the Hive connection to access Hive data. A Hive connection is a database type connection. You can
create and manage a Hive connection in the Administrator tool, Analyst tool, or the Developer tool. Hive
connection properties are case sensitive unless otherwise noted.

Note: The order of the connection properties might vary depending on the tool where you view them.

The following table describes Hive connection properties:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique
within the domain. You can change this property after you create the connection.
The name cannot exceed 128 characters, contain spaces, or contain the following
special characters:
~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is
not case sensitive. It must be 255 characters or less and must be unique in the
domain. You cannot change this property after you create the connection. Default
value is the connection name.

Description The description of the connection. The description cannot exceed 4000
characters.

362 Appendix A: Connections Reference

Property Description

Location The domain where you want to create the connection. Not valid for the Analyst
tool.

Type The connection type. Select Hive.

LDAP username LDAP user name of the user that the Data Integration Service impersonates to run
mappings on a Hadoop cluster. The user name depends on the JDBC connection
string that you specify in the Metadata Connection String or Data Access
Connection String for the native environment.
If the Hadoop cluster uses Kerberos authentication, the principal name for the
JDBC connection string and the user name must be the same. Otherwise, the user
name depends on the behavior of the JDBC driver. With Hive JDBC driver, you can
specify a user name in many ways and the user name can become a part of the
JDBC URL.
If the Hadoop cluster does not use Kerberos authentication, the user name
depends on the behavior of the JDBC driver.
If you do not specify a user name, the Hadoop cluster authenticates jobs based on
the following criteria:
- The Hadoop cluster does not use Kerberos authentication. It authenticates jobs

based on the operating system profile user name of the machine that runs the
Data Integration Service.

- The Hadoop cluster uses Kerberos authentication. It authenticates jobs based
on the SPN of the Data Integration Service. LDAP username will be ignored.

Password Password for the LDAP username.

Environment SQL SQL commands to set the Hadoop environment. In native environment type, the
Data Integration Service executes the environment SQL each time it creates a
connection to a Hive metastore. If you use the Hive connection to run profiles on
a Hadoop cluster, the Data Integration Service executes the environment SQL at
the beginning of each Hive session.
The following rules and guidelines apply to the usage of environment SQL in both
connection modes:
- Use the environment SQL to specify Hive queries.
- Use the environment SQL to set the classpath for Hive user-defined functions

and then use environment SQL or PreSQL to specify the Hive user-defined
functions. You cannot use PreSQL in the data object properties to specify the
classpath. If you use Hive user-defined functions, you must copy the .jar files to
the following directory:
<Informatica installation directory>/services/shared/hadoop/
<Hadoop distribution name>/extras/hive-auxjars

- You can use environment SQL to define Hadoop or Hive parameters that you
want to use in the PreSQL commands or in custom queries.

- If you use multiple values for the Environment SQL property, ensure that there is
no space between the values.

SQL Identifier Character The type of character used to identify special characters and reserved SQL
keywords, such as WHERE. The Data Integration Service places the selected
character around special characters and reserved SQL keywords. The Data
Integration Service also uses this character for the Support mixed-case
identifiers property.

Hive Connection Properties 363

Properties to Access Hive as Source or Target

The following table describes the connection properties that you configure to access Hive as a source or
target:

Property Description

JDBC Driver
Class Name

Name of the Hive JDBC driver class. If you leave this option blank, the Developer tool uses the
default Apache Hive JDBC driver shipped with the distribution. If the default Apache Hive JDBC
driver does not fit your requirements, you can override the Apache Hive JDBC driver with a third-
party Hive JDBC driver by specifying the driver class name.

Metadata
Connection
String

The JDBC connection URI used to access the metadata from the Hadoop server.
You can use PowerExchange for Hive to communicate with a HiveServer service or HiveServer2
service. To connect to HiveServer, specify the connection string in the following format:

jdbc:hive2://<hostname>:<port>/<db>

Where
- <hostname> is name or IP address of the machine on which HiveServer2 runs.
- <port> is the port number on which HiveServer2 listens.
- <db> is the database name to which you want to connect. If you do not provide the database

name, the Data Integration Service uses the default database details.
To connect to HiveServer2, use the connection string format that Apache Hive implements for
that specific Hadoop Distribution. For more information about Apache Hive connection string
formats, see the Apache Hive documentation.
For user impersonation, you must add hive.server2.proxy.user=<xyz> to the JDBC
connection URI. If you do not configure user impersonation, the current user's credentials are
used connect to the HiveServer2.
If the Hadoop cluster uses SSL or TLS authentication, you must add ssl=true to the JDBC
connection URI. For example: jdbc:hive2://<hostname>:<port>/<db>;ssl=true
If you use self-signed certificate for SSL or TLS authentication, ensure that the certificate file is
available on the client machine and the Data Integration Service machine. For more information,
see theData Engineering Integration Guide.
If the Hadoop cluster uses secure access to Hive on a Knox enabled cluster with a Hive
connection object, you must add KNOX_ENABLED to the JDBC connection URI.
For example:
jdbc:hive2://<hostname>:<port>/<db>;KNOX_ENABLED
Note: When you use KNOX_ENABLED, ensure that you set the impersonation user. The
KNOX_ENABLED uses the LDAP credentials for authentication. To ensure proper access control,
populate the LDAP user name and password fields.

Bypass Hive
JDBC Server

JDBC driver mode. Select the check box to use the embedded JDBC driver mode.
To use the JDBC embedded mode, perform the following tasks:
- Verify that Hive client and Informatica services are installed on the same machine.
- Configure the Hive connection properties to run mappings on a Hadoop cluster.
If you choose the non-embedded mode, you must configure the Data Access Connection String.
Informatica recommends that you use the JDBC embedded mode.

Fine Grained
Authorization

When you select the option to observe fine grained authorization in a Hive source, the mapping
observes the following:
- Row and column level restrictions. Applies to Hadoop clusters where Sentry or Ranger security

modes are enabled.
- Data masking rules. Applies to masking rules set on columns containing sensitive data by

Dynamic Data Masking.
If you do not select the option, the Blaze and Spark engines ignore the restrictions and masking
rules, and results include restricted or sensitive data.

364 Appendix A: Connections Reference

Property Description

Data Access
Connection
String

The connection string to access data from the Hadoop data store. To connect to HiveServer,
specify the non-embedded JDBC mode connection string in the following format:

jdbc:hive2://<hostname>:<port>/<db>
Where
- <hostname> is name or IP address of the machine on which HiveServer2 runs.
- <port> is the port number on which HiveServer2 listens.
- <db> is the database to which you want to connect. If you do not provide the database name,

the Data Integration Service uses the default database details.
To connect to HiveServer2, use the connection string format that Apache Hive implements for the
specific Hadoop Distribution. For more information about Apache Hive connection string formats,
see the Apache Hive documentation.
For user impersonation, you must add hive.server2.proxy.user=<xyz> to the JDBC
connection URI. If you do not configure user impersonation, the current user's credentials are
used connect to the HiveServer2.
If the Hadoop cluster uses SSL or TLS authentication, you must add ssl=true to the JDBC
connection URI. For example: jdbc:hive2://<hostname>:<port>/<db>;ssl=true
If you use self-signed certificate for SSL or TLS authentication, ensure that the certificate file is
available on the client machine and the Data Integration Service machine. For more information,
see the Data Engineering Integration Guide.
If the Hadoop cluster uses secure access to Hive on a Knox enabled cluster with a Hive
connection object, you must add KNOX_ENABLED to the JDBC connection URI.
For example:
jdbc:hive2://<hostname>:<port>/<db>;KNOX_ENABLED
Note: When you use KNOX_ENABLED, ensure that you set the impersonation user. The
KNOX_ENABLED uses the LDAP credentials for authentication. To ensure proper access control,
populate the LDAP user name and password fields.

Hive Staging
Directory on
HDFS

HDFS directory for Hive staging tables. You must grant execute permission to the Hadoop
impersonation user and the mapping impersonation users.
This option is applicable and required when you write data to a Hive target in the native
environment.

Hive Staging
Database Name

Namespace for Hive staging tables.
The Hive Staging Database Name is automatically updated from the Data Access Connection
String. If you want to override the default name, you need to configure the Hive Staging Database
Name in the Hive connection.
This option is applicable when you run a mapping in the native environment to write data to a Hive
target.
If you run the mapping on the Blaze or Spark engine, you do not need to configure the Hive
staging database name in the Hive connection. The Data Integration Service uses the value that
you configure in the Hadoop connection.

JDBC Connection Properties
You can use a JDBC connection to access tables in a database. You can create and manage a JDBC
connection in the Administrator tool, the Developer tool, or the Analyst tool.

Note: The order of the connection properties might vary depending on the tool where you view them.

JDBC Connection Properties 365

The following table describes JDBC connection properties:

Property Description

Database
Type

The database type.

Name Name of the connection. The name is not case sensitive and must be unique within the domain. The
name cannot exceed 128 characters, contain spaces, or contain the following special characters:
~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is not case sensitive.
It must be 255 characters or less and must be unique in the domain. You cannot change this property
after you create the connection. Default value is the connection name.

Description The description of the connection. The description cannot exceed 765 characters.

User Name The database user name.

Password The password for the database user name.

JDBC Driver
Class Name

Name of the JDBC driver class.
The following list provides the driver class name that you can enter for the applicable database type:
- DataDirect JDBC driver class name for Oracle:
com.informatica.jdbc.oracle.OracleDriver

- DataDirect JDBC driver class name for IBM DB2:
com.informatica.jdbc.db2.DB2Driver

- DataDirect JDBC driver class name for Microsoft SQL Server:
com.informatica.jdbc.sqlserver.SQLServerDriver

- DataDirect JDBC driver class name for Sybase ASE:
com.informatica.jdbc.sybase.SybaseDriver

- DataDirect JDBC driver class name for Informix:
com.informatica.jdbc.informix.InformixDriver

- DataDirect JDBC driver class name for MySQL:
com.informatica.jdbc.mysql.MySQLDriver

- JDBC driver for Databricks Delta Lake: the name of the driver that you downloaded from
Databricks. For information about the driver, see the topic on configuring storage access in the
"Before You Begin Databricks Integration" chapter of the Data Engineering Integration Guide.

For more information about which driver class to use with specific databases, see the vendor
documentation.

Connection
String

Connection string to connect to the database. Use the following connection string:

jdbc:<subprotocol>:<subname>
For more information about the connection string to use with specific drivers, see the vendor
documentation.

Environment
SQL

Optional. Enter SQL commands to set the database environment when you connect to the database.
The Data Integration Service executes the connection environment SQL each time it connects to the
database.
Note: If you enable Sqoop, Sqoop ignores this property.

Transaction
SQL

Optional. Enter SQL commands to set the database environment when you connect to the database.
The Data Integration Service executes the transaction environment SQL at the beginning of each
transaction.
Note: If you enable Sqoop, Sqoop ignores this property.

366 Appendix A: Connections Reference

Property Description

SQL Identifier
Character

Type of character that the database uses to enclose delimited identifiers in SQL queries. The
available characters depend on the database type.
Select (None) if the database uses regular identifiers. When the Data Integration Service generates
SQL queries, the service does not place delimited characters around any identifiers.
Select a character if the database uses delimited identifiers. When the Data Integration Service
generates SQL queries, the service encloses delimited identifiers within this character.
Note: If you enable Sqoop, Sqoop ignores this property.

Support
Mixed-case
Identifiers

Enable if the database uses case-sensitive identifiers. When enabled, the Data Integration Service
encloses all identifiers within the character selected for the SQL Identifier Character property.
When the SQL Identifier Character property is set to none, the Support Mixed-case Identifiers
property is disabled.
Note: If you enable Sqoop, Sqoop honors this property when you generate and execute a DDL script
to create or replace a target at run time. In all other scenarios, Sqoop ignores this property.

Use Sqoop
Connector

Enables Sqoop connectivity for the data object that uses the JDBC connection. The Data Integration
Service runs the mapping in the Hadoop run-time environment through Sqoop.
You can configure Sqoop connectivity for relational data objects, customized data objects, and
logical data objects that are based on a JDBC-compliant database.
Select Sqoop v1.x to enable Sqoop connectivity.
Default is None.

Sqoop
Arguments

Enter the arguments that Sqoop must use to connect to the database. Separate multiple arguments
with a space.
To run the mapping on the Blaze engine with the Teradata Connector for Hadoop (TDCH) specialized
connectors for Sqoop, you must define the TDCH connection factory class in the Sqoop arguments.
The connection factory class varies based on the TDCH Sqoop Connector that you want to use.
- To use Cloudera Connector Powered by Teradata, configure the following Sqoop argument:
-
Dsqoop.connection.factories=com.cloudera.connector.teradata.TeradataManager
Factory

- To use Hortonworks Connector for Teradata (powered by the Teradata Connector for Hadoop),
configure the following Sqoop argument:
-
Dsqoop.connection.factories=org.apache.sqoop.teradata.TeradataManagerFactor
y

To run the mapping on the Spark engine, you do not need to define the TDCH connection factory
class in the Sqoop arguments. The Data Integration Service invokes the Cloudera Connector Powered
by Teradata and Hortonworks Connector for Teradata (powered by the Teradata Connector for
Hadoop) by default.
Note: To run the mapping with a generic JDBC connector instead of the specialized Cloudera or
Hortonworks connector, you must define the --driver and --connection-manager Sqoop arguments in
the JDBC connection. If you define the --driver and --connection-manager arguments in the Read or
Write transformation of the mapping, Sqoop ignores the arguments.
If you do not enter Sqoop arguments, the Data Integration Service constructs the Sqoop command
based on the JDBC connection properties.

JDBC Connection String
Specify the connection string in the JDBC connection to connect to the database.

Specify the connection string in the following format:

jdbc:<subprotocol>:<subname>

JDBC Connection Properties 367

Use the following sample connection strings that you can enter for the applicable database type:

• DataDirect Oracle JDBC driver:

jdbc:informatica:oracle://<host>:<port>;SID=<value>
• Oracle JDBC driver:

jdbc:oracle:thin:@//<host>:<port>:<SID>
• DataDirect IBM DB2 JDBC driver:

jdbc:informatica:db2://<host>:<port>;DatabaseName=<value>
• IBM DB2 JDBC driver:

jdbc:db2://<host>:<port>/<database_name>
• DataDirect Microsoft SQL Server JDBC driver:

jdbc:informatica:sqlserver://<host>;DatabaseName=<value>
• Microsoft SQL Server JDBC driver:

jdbc:sqlserver://<host>;DatabaseName=<value>
• Netezza JDBC driver:

jdbc:netezza://<host>:<port>/<database_name>
• Pivotal Greenplum driver:

jdbc:pivotal:greenplum://<host>:<port>;/database_name=<value>
• Postgres Greenplum driver:

jdbc:postgressql://<host>:<port>/<database_name>
• Teradata JDBC driver:

jdbc:teradata://<host>/database_name=<value>,tmode=<value>,charset=<value>
• JDBC driver for Delta Lake:

jdbc:spark://<host name>:443/default;transportMode=http;ssl=1;httpPath=sql/
protocolv1/o/<cluster ID>;AuthMech=3;UID=token;PWD=<token string>

Use the following sample connection strings that you can enter for an SSL-enabled applicable database type:

• DataDirect Oracle JDBC driver:

jdbc:informatica:oracle://
<host_name>:<port>;CatalogOptions=6;ServiceName=<service_name>;trustStorePassword=<tru
ststore_password>;
keyStorePassword=<keystore_password>;CryptoProtocolVersion=TLSv1.2;keyStore=<keystore_
location_of_ewallet.p12_file>;
trustStore=<truststore_location_of_truststore.p12_file>;HostNameInCertificate=<databas
e_host_name>;encryptionMethod=SSL;
ValidateServerCertificate=True;

• Oracle JDBC driver:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)(HOST=<host>)
(PORT=<port_number>))
(CONNECT_DATA=(SERVICE_NAME=<service_name>)))"

• DataDirect Microsoft SQL Server JDBC driver:

jdbc:informatica:sqlserver://
<host_name>:<port>;databaseName=<database_name>;EncryptionMethod=SSL;
CryptoProtocolVersion=<TLSv1.2_or_TLSv1.1_or_TLSv1>;ValidateServerCertificate=false;Tr
ustStore=<truststore_location>;
TrustStorePassword=<truststore_password>

• Microsoft SQL Server JDBC driver:

jdbc:sqlserver://
<host_name>:<port>;databaseName=<database_name>;integratedSecurity=false;encrypt=true;
trustServerCertificate=true;
TrustStore=/
<truststore_location>;TrustStorePassword=<truststore_password>;user=<user_name>;passwo
rd=<password>

368 Appendix A: Connections Reference

For more information about the connection string to use with specific drivers, see the vendor documentation.

Sqoop Connection-Level Arguments
In the JDBC connection, you can define the arguments that Sqoop must use to connect to the database. The
Data Integration Service merges the arguments that you specify with the default command that it constructs
based on the JDBC connection properties. The arguments that you specify take precedence over the JDBC
connection properties.

If you want to use the same driver to import metadata and run the mapping, and do not want to specify any
additional Sqoop arguments, select Sqoop v1.x from the Use Sqoop Version list and leave the Sqoop
Arguments field empty in the JDBC connection. The Data Integration Service constructs the Sqoop command
based on the JDBC connection properties that you specify.

However, if you want to use a different driver for run-time tasks or specify additional run-time Sqoop
arguments, select Sqoop v1.x from the Use Sqoop Version list and specify the arguments in the Sqoop
Arguments field.

A mapping that contains an Update Strategy transformation cannot use a Sqoop-enabled JDBC connection to
write to a target. To run the mapping, disable the Sqoop connector in the Write transformation.

You can configure the following Sqoop arguments in the JDBC connection:

driver

Defines the JDBC driver class that Sqoop must use to connect to the database.

Use the following syntax:

--driver <JDBC driver class>

For example, use the following syntax depending on the database type that you want to connect to:

• Aurora: --driver com.mysql.jdbc.Driver
• Greenplum: --driver org.postgresql.Driver
• IBM DB2: --driver com.ibm.db2.jcc.DB2Driver
• IBM DB2 z/OS: --driver com.ibm.db2.jcc.DB2Driver
• Microsoft SQL Server: --driver com.microsoft.sqlserver.jdbc.SQLServerDriver
• Netezza: --driver org.netezza.Driver
• Oracle: --driver oracle.jdbc.driver.OracleDriver
• Teradata: --driver com.teradata.jdbc.TeraDriver

connect

Defines the JDBC connection string that Sqoop must use to connect to the database. The JDBC
connection string must be based on the driver that you define in the driver argument.

Use the following syntax:

--connect <JDBC connection string>

For example, use the following syntax depending on the database type that you want to connect to:

• Aurora: --connect "jdbc:mysql://<host_name>:<port>/<schema_name>"
• Greenplum: --connect jdbc:postgresql://<host_name>:<port>/<database_name>
• IBM DB2: --connect jdbc:db2://<host_name>:<port>/<database_name>
• IBM DB2 z/OS: --connect jdbc:db2://<host_name>:<port>/<database_name>

JDBC Connection Properties 369

• Microsoft SQL Server: --connect jdbc:sqlserver://<host_name>:<port or
named_instance>;databaseName=<database_name>

• Netezza: --connect "jdbc:netezza://<database_server_name>:<port>/
<database_name>;schema=<schema_name>"

• Oracle: --connect jdbc:oracle:thin:@<database_host_name>:<database_port>:<database_SID>
• Teradata: --connect jdbc:teradata://<host_name>/database=<database_name>

Use the following syntax to connect to an SSL-enabled database:

--connect <JDBC connection string>

For example, use the following syntax depending on the database type that you want to connect to:

• Microsoft SQL Server: --connect jdbc:sqlserver://
<host_name>:<port>;databaseName=<database_name>;integratedSecurity=false;encrypt=true;
trustServerCertificate=true;TrustStore=/
<truststore_location>;TrustStorePassword=<truststore_password>;user=<user_name>;passwo
rd=<password>

• Oracle: --connect jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCPS)(HOST=<host>)
(PORT=<port_number>))(CONNECT_DATA=(SERVICE_NAME=<service_name>)))"

connection-param-file

Defines the extra JDBC parameters through a property file that Sqoop must use to connect to the
database. The contents of this file are parsed as standard Java properties and passed into the driver
when you create a connection.

Use the following syntax:

--connection-param-file <parameter file name>

For example, use the following syntax to use the parameter file when you connect to the Oracle
database.

--connection-param-file param_file
connection-manager

Defines the connection manager class name that Sqoop must use to connect to the database.

Use the following syntax:

--connection-manager <connection manager class name>

For example, use the following syntax to use the generic JDBC manager class name:

--connection-manager org.apache.sqoop.manager.GenericJdbcManager

direct

When you read data from or write data to Oracle, you can configure the direct argument to enable Sqoop
to use OraOop. OraOop is a specialized Sqoop plug-in for Oracle that uses native protocols to connect to
the Oracle database. When you configure OraOop, the performance improves.

You can configure OraOop when you run Sqoop mappings on the Spark engine.

Use the following syntax:

--direct

When you use OraOop, you must use the following syntax to specify multiple arguments:

-D<argument=value> -D<argument=value>

370 Appendix A: Connections Reference

Note: If you specify multiple arguments and include a space character between -D and the argument
name-value pair, Sqoop considers only the first argument and ignores the remaining arguments.

If you do not direct the job to a specific queue, the Spark engine uses the default queue.

-Dsqoop.connection.factories

To run the mapping on the Blaze engine with the Teradata Connector for Hadoop (TDCH) specialized
connectors for Sqoop, you must configure the -Dsqoop.connection.factories argument. Use the
argument to define the TDCH connection factory class that Sqoop must use. The connection factory
class varies based on the TDCH Sqoop Connector that you want to use.

• To use Cloudera Connector Powered by Teradata, configure the -Dsqoop.connection.factories
argument as follows:
-Dsqoop.connection.factories=com.cloudera.connector.teradata.TeradataManagerFactory

• To use Hortonworks Connector for Teradata (powered by the Teradata Connector for Hadoop),
configure the -Dsqoop.connection.factories argument as follows:
-Dsqoop.connection.factories=org.apache.sqoop.teradata.TeradataManagerFactory

Note: To run the mapping on the Spark engine, you do not need to configure the -
Dsqoop.connection.factories argument. The Data Integration Service invokes Cloudera Connector
Powered by Teradata and Hortonworks Connector for Teradata (powered by the Teradata Connector for
Hadoop) by default.

--infaoptimize

Use this argument to disable the performance optimization of Sqoop pass-through mappings on the
Spark engine.

When you run a Sqoop pass-through mapping on the Spark engine, the Data Integration Service
optimizes mapping performance in the following scenarios:

• You read data from a Sqoop source and write data to a Hive target that uses the Text format.

• You read data from a Sqoop source and write data to an HDFS target that uses the Flat, Avro, or
Parquet format.

If you want to disable the performance optimization, set the --infaoptimize argument to false. For
example, if you see data type issues after you run an optimized Sqoop mapping, you can disable the
performance optimization.

Use the following syntax:

--infaoptimize false

For a complete list of the Sqoop arguments that you can configure, see the Sqoop documentation.

JDBC Connection Properties 371

Delta Lake JDBC Connection Properties
To enable the domain to access Delta Lake resources in the cloud platform environment, you must manually
create and configure a JDBC connection.

Configure the following connection properties:

Property Description

Name Type a name for the connection. Example: DatabricksDeltaCxn

ID Default: Automatically populated with the connection name. Changing this default value is
optional.

Username Type the following value to use the Databricks user token: token

Password Value of the token that you configured for the Databricks user.

JDBC Driver
Class Name

Type the following value: com.simba.spark.jdbc4.Driver

Connection
String

Connection to the Delta Lake resource. This connection string contains all the information that the
domain needs to connect to the resource.
The connection string contains the following elements:
- jdbc:spark://<server host name>.
- Port number.
- Transport mode.
- ssl. Use 1 to enable SSL.
- httpPath.
- UID. User ID that will be used to run jobs on the cluster. Use token.
- PWD. Value of the token that you configured for the Databricks user.
Example:

jdbc:spark://westus.azuredatabricks.net:443/
default;transportMode=http;ssl=1;httpPath=sql/protocolv1/o/
1654523072521724/0123-456789-films259;AuthMech=3;UID=token;PWD=<token
string>
To get the value of these parameters from the Advanced Options area of the cluster configuration
settings:
1. In the Databricks environment, select Clusters.
2. Select the cluster to connect to.
3. Expand the Advanced Options and click the JDBC/ODBC tab.
For more information about the JDBC connection string for Databricks, see the
Databricks documentation.

JDBC V2 Connection Properties
When you set up a JDBC V2 connection, you must configure the connection properties.

Note: The order of the connection properties might vary depending on the tool where you view them.

372 Appendix A: Connections Reference

https://docs.databricks.com/integrations/bi/jdbc-odbc-bi.html

The following table describes the JDBC V2 connection properties:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the domain. You
can change this property after you create the connection. The name cannot exceed 128 characters,
contain spaces, or contain the following special characters:~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is not case sensitive. It
must be 255 characters or less and must be unique in the domain. You cannot change this property
after you create the connection. Default value is the connection name.

Description The description of the connection. The description cannot exceed 4,000 characters.

Location The domain where you want to create the connection.

Type The connection type. Select JDBC V2.

The Details tab contains the connection attributes of the JDBC V2 connection. The following table describes
the connection attributes:

Property Description

Username The database user name.
User name with permissions to access the database that supports the Type 4 JDBC driver.

Password The password for the database user name.

Schema
Name

Optional. The schema name to connect in the database.
If you do not specify the schema name, all the schemas available in the database are listed.

JDBC Driver
Class Name

Name of the JDBC driver class.
The following list provides the driver class name that you can enter for the applicable database type:
- JDBC driver class name for Azure SQL Database:
com.microsoft.sqlserver.jdbc.SQLServerDriver

- JDBC driver class name for Aurora PostgreSQL:
org.postgresql.Driver

- JDBC driver class name for SAP HANA Database:
com.sap.db.jdbc.Driver

For more information about which driver class to use with specific databases, see the third-party
vendor documentation.

Connection
String

Connection string to connect to the database.
Use the following connection string:

jdbc:<subprotocol>:<subname>
The following list provides sample connection strings that you can enter for the applicable database
type:
- Connection string for Azure SQL Database JDBC driver:
jdbc:sqlserver://<host>:<port>;database=<database_name>

- Connection string for Aurora PostgreSQL JDBC driver:
jdbc:postgresql://<host>:<port>[/<database_name>]

- Connection string for SAP HANA Database driver:
jdbc:sap://<host>:<port>/?databaseName=<Database_Name>

For more information about the connection string to use with specific drivers, see the third-party
vendor documentation.

JDBC V2 Connection Properties 373

Property Description

Sub Type The database type to which you want to connect.
You can select from the following database types to connect:
- Azure SQL Database. Connects to Azure SQL database.
- PostgreSQL. Connects to Aurora PostgreSQL database.
- SAP HANA Database. Connects to SAP HANA database.
- Others . Connects to any database that supports the Type 4 JDBC driver.

Support
Mixed-case
Identifiers

Enable if the database uses case-sensitive identifiers. When enabled, the Data Integration Service
encloses all identifiers within the character selected for the SQL Identifier Character property.
For example, Aurora PostgreSQL database supports mixed-cased characters. You must enable this
property to connect to the Aurora PostgreSQL database.
When the SQL Identifier Character property is set to none, the Support Mixed-case Identifiers
property is disabled.

SQL
Identifier
Character

Type of character that the database uses to enclose delimited identifiers in SQL queries. The
available characters depend on the database type.
Select (None) if the database uses regular identifiers. When the Data Integration Service generates
SQL queries, the service does not place delimited characters around any identifiers.
Select a character if the database uses delimited identifiers. When the Data Integration Service
generates SQL queries, the service encloses delimited identifiers within this character.
Note: Select SQL Identifier Character as None when you specify the SAP HANA Database subtype.

Kafka Connection Properties
The Kafka connection is a messaging connection. Use the Kafka connection to access Kafka as a message
target. You can create and manage a Kafka connection in the Developer tool or through infacmd.

The following table describes the general connection properties for the Kafka connection:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the domain. You
can change this property after you create the connection. The name cannot exceed 128 characters,
contain spaces, or contain the following special characters:
~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID The string that the Data Integration Service uses to identify the connection. The ID is not case sensitive.
It must be 255 characters or less and must be unique in the domain. You cannot change this property
after you create the connection. Default value is the connection name.

Description The description of the connection. Enter a string that you can use to identify the connection. The
description cannot exceed 4,000 characters.

Location The domain where you want to create the connection.

Type The connection type.

374 Appendix A: Connections Reference

The following table describes the Kafka broker properties for the Kafka connection:

Property Description

Kafka Broker List Comma-separated list of Kafka brokers which maintains the
configuration of the Kafka messaging broker.
To specify a Kafka broker, use the following format:
<IP Address>:<port>

ZooKeeper Host Port List Optional. Comma-separated list of Apache ZooKeeper which maintains
the configuration of the Kafka messaging broker.
To specify the ZooKeeper, use the following format:
<IP Address>:<port>

Retry Timeout Number of seconds the Integration Service attempts to reconnect to the
Kafka broker to write data. If the source or target is not available for the
time you specify, the mapping execution stops to avoid any data loss.

Kafka Broker Version Configure the Kafka messaging broker version to 0.10.1.x-2.0.0.

General Properties
The following table describes the general connection properties for the Kafka connection:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the domain. You
can change this property after you create the connection. The name cannot exceed 128 characters,
contain spaces, or contain the following special characters:
~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID The string that the Data Integration Service uses to identify the connection. The ID is not case sensitive.
It must be 255 characters or less and must be unique in the domain. You cannot change this property
after you create the connection. Default value is the connection name.

Description The description of the connection. Enter a string that you can use to identify the connection. The
description cannot exceed 4,000 characters.

Location The domain where you want to create the connection. Select the domain name.

Type The connection type. Select Messaging/Kafka.

Kafka Connection Properties 375

Kafka Broker Properties
The following table describes the Kafka broker properties for the Kafka connection:

Property Description

Kafka Broker List Comma-separated list of Kafka brokers which maintain the
configuration of the Kafka messaging broker.
To specify a Kafka broker, use the following format:
<IP Address>:<port>

Retry Timeout Number of seconds after which the Integration Service attempts to
reconnect to the Kafka broker to read or write data. If the source or
target is not available for the time you specify, the mapping execution
stops to avoid any data loss.

Kafka Broker Version Configure the Kafka messaging broker version to Apache 0.10.1.1 &
above.

Additional Connection Properties Optional. Comma-separated list of connection properties to connect to
the Kafka broker.
For example, you can use the following syntax:

request.timeout.ms=<value>,session.timeout.ms=<value>,
fetch.max.wait.ms=<value>,heartbeat.interval.ms=<value
>,
security.protocol=SASL_PLAINTEXT,sasl.kerberos.
service.name=<kerberos name>,sasl.mechanism=GSSAPI,
sasl.jaas.config=com.sun.security.auth.module.
Krb5Login Modulerequired useKeyTab=true
doNotPrompt=true storeKey=true client=true
keyTab="<Keytab Location>" principal="<principal>";
To reduce the time taken to connect to the Kafka broker, ensure that
you set the following properties:
- request.timeout.ms
- session.timeout.ms
- fetch.max.wait.ms
- heartbeat.interval.ms
To connect to the Kafka broker in a secured way, ensure that you set
one of the following values for the security.protocol property:
- SASL_SSL
- SSL
The default value of security.protocol property is
SASL_PLAINTEXT.
Technical Preview: The Additional Connection Properties is available
for technical preview. Technical preview functionality is supported but
is unwarranted and is not production-ready. Informatica recommends
that you use in non-production environments only.
For more information about the connection properties, see
https://kafka.apache.org/documentation/.

376 Appendix A: Connections Reference

https://kafka.apache.org/documentation/

SSL Properties
The following table describes the SSL properties for the Kafka connection:

Property Description

SSL Mode Required. SSL mode indicates the encryption type to use for the connection.
You can choose a mode from the following SSL modes:
- Disabled
- One way
- Two way

SSL TrustStore File
Path

Required when One way SSL mode is selected.
Absolute path and file name of the SSL truststore file that contains certificates of the
trusted SSL server.

SSL TrustStore
Password

Required when One way SSL mode is selected.
Password for the SSL truststore.

SSL KeyStore File Path Required when Two way SSL mode is selected.
Absolute path and file name of the SSL keystore file that contains private keys and
certificates for the SSL server.

SSL KeyStore
Password

Required when Two way SSL mode is selected.
Password for the SSL keystore.

Creating a Kafka Connection Using infacmd
You can use the infacmd command line program to create a Kafka connection.

To create a Kafka connection on UNIX, run the following command:

sh infacmd.sh createConnection -dn <domain name> -un <domain user> -pd <domain password> -cn
<connection name> -cid <connection id> -ct Kafka -o
kfkBrkList=<host1:port1>,<host2:port2>,<host3:port3> kafkabrokerversion=<version>
additionalConnectionProperties=<additional properties>

For more information about the CreateConnection command, see the Informatica Command Reference.

Kudu Connection Properties
Use a Kudu connection to access Kudu.

Note: The order of the connection properties might vary depending on the tool where you view them.

Kudu Connection Properties 377

You can create and manage a Kudu connection in the Administrator tool or the Developer tool. The following
table describes the Kudu connection properties:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the domain. You
can change this property after you create the connection. The name cannot exceed 128 characters,
contain spaces, or contain the following special characters: ~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is not case sensitive. It
must be 255 characters or less and must be unique in the domain. You cannot change this property
after you create the connection.
Default value is the connection name.

Description The description of the connection. The description cannot exceed 4,000 characters.

Location The domain where you want to create the connection.

Type The connection type. Select Kudu.

The following table describes the properties for metadata access:

Property Description

Kudu Master URLs The URLs of the Kudu master tables.

Kudu Library Version The version number of the Kudu library.

Cluster Configuration The Hadoop cluster that you use for the connection.

Microsoft Azure Blob Storage Connection Properties
Use a Microsoft Azure SQL Blob Storage connection to access a Microsoft Azure Blob Storage.

Note: The order of the connection properties might vary depending on the tool where you view them.

You can create and manage a Microsoft Azure Blob Storage connection in the Administrator tool or the
Developer tool. The following table describes the Microsoft Azure Blob Storage connection properties:

Property Description

Name Name of the Microsoft Azure Blob Storage connection.

ID String that the Data Integration Service uses to identify the connection. The ID is not
case sensitive. It must be 255 characters or less and must be unique in the domain.
You cannot change this property after you create the connection. Default value is the
connection name.

Description Description of the connection.

378 Appendix A: Connections Reference

Property Description

Location The domain where you want to create the connection.

Type Type of connection. Select Azure Blob Storage.

The Connection Details tab contains the connection attributes of the Microsoft Azure Blob Storage
connection. The following table describes the connection attributes:

Property Description

Account Name Name of the Microsoft Azure Storage account.

Authorization Type Authorization type. You can select any of the following authorization mechanisms:
- Shared Key Authorization
- Shared Access Signatures

Account Key Microsoft Azure Storage access key. Applies when you select shared key
authorization.

SAS Token SAS URI with SAS token that you generate on Microsoft Azure portal for your
account. Applies when you select shared access signature authorization type.
Note: You must provide a valid SAS URI with a valid SAS token.

Container Name The root container or sub-folders with the absolute path.
Note: To import complex files, specify only the root container.

Endpoint Suffix Type of Microsoft Azure end-points. You can select any of the following end-
points:
- core.windows.net: Default
- core.usgovcloudapi.net: To select the US government Microsoft Azure end-

points
- core.chinacloudapi.cn: Not applicable

Microsoft Azure Cosmos DB SQL API Connection
Properties

Use a Microsoft Azure Cosmos DB connection to connect to the Cosmos DB database. When you create a
Microsoft Azure Cosmos DB connection, you enter information for metadata and data access.

The following table describes the Microsoft Azure Cosmos DB connection properties:

Property Description

Name Name of the Cosmos DB connection.

ID String that the Data Integration Service uses to identify the connection. The ID is not case sensitive.
It must be 255 characters or less and must be unique in the domain. You cannot change this
property after you create the connection. Default value is the connection name.

Microsoft Azure Cosmos DB SQL API Connection Properties 379

Property Description

Description Description of the connection. The description cannot exceed 765 characters.

Location The project or folder in the Model repository where you want to store the Cosmos DB connection.

Type Select Microsoft Azure Cosmos DB SQL API.

Cosmos DB URI The URI of Microsoft Azure Cosmos DB account.

Key The primary and secondary key to which provides you complete administrative access to the
resources within Microsoft Azure Cosmos DB account.

Database Name of the database that contains the collections from which you want to read or write JSON
documents.

Note: You can find the Cosmos DB URI and Key values in the Keys settings on Azure portal. Contact your
Azure administrator for more details.

Microsoft Azure Data Lake Storage Gen1 Connection
Properties

Use a Microsoft Azure Data Lake Storage Gen1 connection to access a Microsoft Azure Data Lake Storage
Gen1.

Note: The order of the connection properties might vary depending on the tool where you view them.

You can create and manage a Microsoft Azure Data Lake Storage Gen1 connection in the Administrator tool
or the Developer tool. The following table describes the Microsoft Azure Data Lake Storage Gen1 connection
properties:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the domain. You
can change this property after you create the connection. The name cannot exceed 128 characters,
contain spaces, or contain the following special characters: ~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is not case sensitive. It
must be 255 characters or less and must be unique in the domain. You cannot change this property
after you create the connection.
Default value is the connection name.

Description The description of the connection. The description cannot exceed 4,000 characters.

Location The domain where you want to create the connection.

Type The connection type. Select Microsoft Azure Data Lake Storage Gen1.

380 Appendix A: Connections Reference

The following table describes the properties for metadata access:

Property Description

ADLS Account Name The name of the Microsoft Azure Data Lake Storage Gen1.

ClientID The ID of your application to complete the OAuth Authentication in the Active Directory.

Client Secret The client secret key to complete the OAuth Authentication in the Active Directory.

Directory The Microsoft Azure Data Lake Storage Gen1 directory that you use to read data or write data.
The default is root directory.

AuthEndpoint The OAuth 2.0 token endpoint from where access code is generated based on based on the
Client ID and Client secret is completed.

For more information about creating a client ID, client secret, and auth end point, contact the Azure
administrator or see Microsoft Azure Data Lake Storage Gen1 documentation.

Microsoft Azure Data Lake Storage Gen2 Connection
Properties

Use a Microsoft Azure Data Lake Storage Gen2 connection to access a Microsoft Azure Data Lake Storage
Gen2.

Note: The order of the connection properties might vary depending on the tool where you view them.

You can create and manage a Microsoft Azure Data Lake Storage Gen2 connection in the Administrator tool
or the Developer tool. The following table describes the Microsoft Azure Data Lake Storage Gen2 connection
properties:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the domain. You
can change this property after you create the connection. The name cannot exceed 128 characters,
contain spaces, or contain the following special characters: ~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is not case sensitive. It
must be 255 characters or less and must be unique in the domain. You cannot change this property
after you create the connection.
Default value is the connection name.

Description The description of the connection. The description cannot exceed 4,000 characters.

Location The domain where you want to create the connection.

Type The connection type. Select Microsoft Azure Data Lake Storage Gen2.

Microsoft Azure Data Lake Storage Gen2 Connection Properties 381

The following table describes the properties for metadata access:

Property Description

Account Name The Microsoft Azure Data Lake Storage Gen2 account name or the service name.

Authentication Type Authentication type to access the Microsoft Azure Data Lake Storage Gen2 account.
Select one of the following options:
- Service Principal Authentication. Select to use the client ID, client secret, and tenant ID to

connect to Microsoft Azure Data Lake Storage Gen2.
- Shared Key Authentication. Select to use the account key to connect to Microsoft Azure

Data Lake Storage Gen2.
Note: You cannot use shared key authentication in a streaming mapping.

Client ID Applicable for Service Principal Authentication. The ID of your application to complete the
OAuth Authentication in the Azure Active Directory (AD).

Client Secret Applicable for Service Principal Authentication. The client secret key to complete the OAuth
Authentication in the Azure Active Directory.

Tenant ID Applicable for Service Principal Authentication. The Directory ID of the Azure Active Directory.

Account Key Applicable for Shared Key Authentication. The account key for the Microsoft Azure Data Lake
Storage Gen2 account.

File System Name The name of an existing file system in the Microsoft Azure Data Lake Storage Gen2.

Directory Path The path of an existing directory without the file system name. There is no default directory.
You can select one of the following syntax:
- / for root directory.
- /dir1
- dir1/dir2

Adls Gen2 End-point Type of Microsoft Azure endpoints. You can select any of the following endpoints:
- core.windows.net: Default
- core.usgovcloudapi.net: To select the Azure Government endpoints

For more information about creating a client ID, client secret, tenant ID, and file system name, contact the
Azure administrator or see Microsoft Azure Data Lake Storage Gen2 documentation.

Microsoft Azure SQL Data Warehouse Connection
Properties

Use a Microsoft Azure SQL Data Warehouse connection to access a Microsoft Azure SQL Data Warehouse.

Note: The order of the connection properties might vary depending on the tool where you view them.

382 Appendix A: Connections Reference

You can create and manage a Microsoft Azure SQL Data Warehouse connection in the Administrator tool or
the Developer tool. The following table describes the Microsoft Azure SQL Data Warehouse connection
properties:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the domain. You
can change this property after you create the connection. The name cannot exceed 128 characters,
contain spaces, or contain the following special characters: ~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is not case sensitive. It
must be 255 characters or less and must be unique in the domain. You cannot change this property
after you create the connection. Default value is the connection name.

Description The description of the connection. The description cannot exceed 4,000 characters.

Location The domain where you want to create the connection.

Type The connection type. Select Azure SQL Data Warehouse.

The following table describes the properties for metadata access:

Property Description

Azure DW JDBC
URL

Microsoft Azure Data Warehouse JDBC connection string. For example, you can enter the
following connection string:
jdbc:sqlserver:// <Server>.database.windows.net:1433;database=<Database>
The Administrator can download the URL from Microsoft Azure portal.

Azure DW JDBC
Username

User name to connect to the Microsoft Azure SQL Data Warehouse account. You must have
permission to read, write, and truncate data in Microsoft Azure SQL Data Warehouse.

Azure DW JDBC
Password

Password to connect to the Microsoft Azure SQL Data Warehouse account.

Azure DW Schema
Name

Name of the schema in Microsoft Azure SQL Data Warehouse.

Azure Storage
Type

Type of Azure storage to stage the files. You can select any of the following storage type:
- Azure Blob. Default. To use Microsoft Azure Blob Storage to stage the files.
- ADLS Gen2. To use Microsoft Azure Data Lake Storage Gen2 as storage to stage the files.

Azure Blob
Account Name

Name of the Microsoft Azure Storage account to stage the files.

Azure Blob
Account Key

The key that authenticates the access to the Blob storage account.

ADLS Gen2
Storage Account
Name

Name of the Microsoft Azure Data Lake Storage Gen2 account to stage the files.

ADLS Gen2
Account Key

Microsoft Azure Data Lake Storage Gen2 access key to stage the files.

Microsoft Azure SQL Data Warehouse Connection Properties 383

Property Description

Blob End-point Type of Microsoft Azure endpoints.
Select one of the following options:
- core.windows.net: Default
- core.usgovcloudapi.net: Select to access the US government Microsoft Azure Data

Warehouse endpoints.
- core.chinacloudapi.cn: Select to access a Microsoft Azure Data Warehouse endpoint in

the China region.
You can configure the US government Microsoft Azure end-points when a mapping runs in the
native environment and on the Spark engine.

VNet Rule Enable to connect to a Microsoft Azure SQL Data Warehouse endpoint residing in a virtual
network (VNet).

Snowflake Connection Properties
When you set up a Snowflake connection, you must configure the connection properties.

Note: The order of the connection properties might vary depending on the tool where you view them.

The following table describes the Snowflake connection properties:

Property Description

Name The name of the connection. The name is not case sensitive and must be unique within the domain.
You can change this property after you create the connection. The name cannot exceed 128
characters, contain spaces, or contain the following special characters:~ ` ! $ % ^ & * () - + = { [}] |
\ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection.
The ID is not case sensitive. The ID must be 255 characters or less and must be unique in the domain.
You cannot change this property after you create the connection.
Default value is the connection name.

Description Optional. The description of the connection. The description cannot exceed 4,000 characters.

Location The domain where you want to create the connection.

Type The connection type. Select SnowFlake.

Username The user name to connect to the Snowflake account.

Password The password to connect to the Snowflake account.

Account The name of the Snowflake account.

Warehouse The Snowflake warehouse name.

384 Appendix A: Connections Reference

Property Description

Role The Snowflake role assigned to the user.

Additional
JDBC URL
Parameters

Enter one or more JDBC connection parameters in the following format:

<param1>=<value>&<param2>=<value>&<param3>=<value>....
For example:

user=jon&warehouse=mywh&db=mydb&schema=public
To access Snowflake through Okta SSO authentication, enter the web-based IdP implementing SAML
2.0 protocol in the following format:

authenticator=https://<Your_Okta_Account_Name>.okta.com
Note: Microsoft ADFS is not supported.
For more information about configuring Okta authentication, see the following website:
https://docs.snowflake.net/manuals/user-guide/admin-security-fed-auth-configure-
snowflake.html#configuring-snowflake-to-use-federated-authentication

Creating a Connection to Access Sources or Targets
Create connections before you import data objects, preview data, and profile data.

1. Within the Administrator tool click Manage > Connections.

2. Select Actions > New > Connection.

3. Select the type of connection that you want to create:

• To select an HBase connection, select NoSQL > HBase.

• To select an HDFS or View File System (ViewFS) connection, select File Systems > Hadoop File
System.

• To select a Hive connection, select Database > Hive.

• To select a JDBC connection, select Database > JDBC.

4. Click OK.

5. Enter a connection name, ID, and optional description.

6. Configure the connection properties. For a Hive connection, you must choose the Access Hive as a
source or target option to use Hive as a source or a target.

7. Click Test Connection to verify the connection.

8. Click Finish.

Creating a Hadoop Connection
Create a Hadoop connection before you run a mapping in the Hadoop environment.

1. Click Window > Preferences.

Creating a Connection to Access Sources or Targets 385

https://docs.snowflake.net/manuals/user-guide/admin-security-fed-auth-configure-snowflake.html#configuring-snowflake-to-use-federated-authentication
https://docs.snowflake.net/manuals/user-guide/admin-security-fed-auth-configure-snowflake.html#configuring-snowflake-to-use-federated-authentication

2. Select Informatica > Connections.

3. Expand the domain in the Available Connections list.

4. Select the Cluster connection type in the Available Connections list and click Add.

The New Cluster Connection dialog box appears.

5. Enter the general properties for the connection.

6. Click Next.

7. Enter the Hadoop cluster properties, common properties, and the reject directory properties.

8. Click Next.

9. Click Next.

Effective in version 10.2.2, Informatica dropped support for the Hive engine. Do not enter Hive
configuration properties.

10. Enter configuration properties for the Blaze engine and click Next.

11. Enter configuration properties for the Spark engine and click Finish.

386 Appendix A: Connections Reference

Configuring Hadoop Connection Properties
When you create a Hadoop connection, default values are assigned to cluster environment variables, cluster
path properties, and advanced properties. You can add or edit values for these properties. You can also reset
to default values.

You can configure the following Hadoop connection properties based on the cluster environment and
functionality that you use:

• Cluster Environment Variables

• Cluster Library Path

• Common Advanced Properties

• Blaze Engine Advanced Properties

• Spark Engine Advanced Properties

Note: Informatica does not recommend changing these property values before you consult with third-party
documentation, Informatica documentation, or Informatica Global Customer Support. If you change a value
without knowledge of the property, you might experience performance degradation or other unexpected
results.

To reset to default values, delete the property values. For example, if you delete the values of an edited
Cluster Library Path property, the value resets to the default $DEFAULT_CLUSTER_LIBRARY_PATH.

Cluster Environment Variables
Cluster Environment Variables property lists the environment variables that the cluster uses. Each
environment variable contains a name and a value. You can add environment variables or edit environment
variables.

To edit the property in the text box, use the following format with &: to separate each name-value pair:

<name1>=<value1>[&:<name2>=<value2>…&:<nameN>=<valueN>]
Configure the following environment variables in the Cluster Environment Variables property:

HADOOP_NODE_JDK_HOME

Represents the directory from which you run the cluster services and the JDK version that the cluster
nodes use. Required to run the Java transformation in the Hadoop environment and Sqoop mappings on
the Blaze engine. Default is /usr/java/default. The JDK version that the Data Integration Service uses
must be compatible with the JDK version on the cluster.

Set to <cluster JDK home>/jdk<version>.

For example, HADOOP_NODE_JDK_HOME=<cluster JDK home>/jdk<version>.

Cluster Library Path
Cluster Library Path property is a list of path variables for shared libraries on the cluster. You can add or edit
library path variables.

To edit the property in the text box, use the following format with : to separate each path variable:

<variable1>[:<variable2>…:<variableN]
Configure the library path variables in the Cluster Library Path property.

Configuring Hadoop Connection Properties 387

Common Advanced Properties
Common advanced properties are a list of advanced or custom properties that are unique to the Hadoop
environment. The properties are common to the Blaze and Spark engines. Each property contains a name and
a value. You can add or edit advanced properties.

To edit the property in the text box, use the following format with &: to separate each name-value pair:

<name1>=<value1>[&:<name2>=<value2>…&:<nameN>=<valueN>]
Configure the following property in the Advanced Properties of the common properties section:

infapdo.java.opts

List of Java options to customize the Java run-time environment. The property contains default values.

If mappings in a MapR environment contain a Consolidation transformation or a Match transformation,
change the following value:

• -Xmx512M. Specifies the maximum size for the Java virtual memory. Default is 512 MB. Increase the
value to at least 700 MB.
For example, infapdo.java.opts=-Xmx700M

Blaze Engine Advanced Properties
Blaze advanced properties are a list of advanced or custom properties that are unique to the Blaze engine.
Each property contains a name and a value. You can add or edit advanced properties.

To edit the property in the text box, use the following format with &: to separate each name-value pair:

<name1>=<value1>[&:<name2>=<value2>…&:<nameN>=<valueN>]
Configure the following properties in the Advanced Properties of the Blaze configuration section:

infagrid.cadi.namespace

Namespace for the Data Integration Service to use. Required to set up multiple Blaze instances.

Set to <unique namespace>.

For example, infagrid.cadi.namespace=TestUser1_namespace

infagrid.blaze.console.jsfport

JSF port for the Blaze engine console. Use a port number that no other cluster processes use. Required
to set up multiple Blaze instances.

Set to <unique JSF port value>.

For example, infagrid.blaze.console.jsfport=9090

infagrid.blaze.console.httpport

HTTP port for the Blaze engine console. Use a port number that no other cluster processes use.
Required to set up multiple Blaze instances.

Set to <unique HTTP port value>.

For example, infagrid.blaze.console.httpport=9091

infagrid.node.local.root.log.dir

Path for the Blaze service logs. Default is /tmp/infa/logs/blaze. Required to set up multiple Blaze
instances.

Verify that all blaze users have write permission on /tmp.

388 Appendix A: Connections Reference

Set to <local Blaze services log directory>.

For example, infagrid.node.local.root.log.dir=<directory path>

infacal.hadoop.logs.directory

Path in HDFS for the persistent Blaze logs. Default is /var/log/hadoop-yarn/apps/informatica. Required
to set up multiple Blaze instances.

Set to <persistent log directory path>.

For example, infacal.hadoop.logs.directory=<directory path>

infagrid.node.hadoop.local.root.log.dir

Path in the Hadoop connection for the service log directory.

Set to <service log directory path>.

For example, infagrid.node.local.root.log.dir=$HADOOP_NODE_INFA_HOME/blazeLogs

Spark Advanced Properties
Spark advanced properties are a list of advanced or custom properties that are unique to the Spark engine.
Each property contains a name and a value. You can add or edit advanced properties. Each property contains
a name and a value. You can add or edit advanced properties.

Configure the following properties in the Advanced Properties of the Spark configuration section:

To edit the property in the text box, use the following format with &: to separate each name-value pair:

<name1>=<value1>[&:<name2>=<value2>…&:<nameN>=<valueN>]
infasjs.env.spark.context-settings.passthrough.spark.dynamicAllocation.executorIdleTimeout

Maximum time that an Spark Jobserver executor node can be idle before it is removed. Increase the
value to assist in debugging data preview jobs that use the Spark engine.

You can specify the time in seconds, minutes, or hours using the suffix s, m, or h, respectively. If you do
not specify a time unit, the property uses milliseconds.

If you disable dynamic resource allocation, this property is not used.

Default is 120s.

infasjs.env.spark.jobserver.max-jobs-per-context

Maximum number of Spark jobs that can run simultaneously on a Spark context. If you increase the
value of this property, you might need to allocate more resources by increasing spark.executor.cores and
spark.executor.memory.

Default is 10.

infasjs.env.spark.jobserver.sparkJobTimeoutInMinutes

Maximum time in minutes that a Spark job can run on a Spark context before the Spark Jobserver
cancels the job. Increase the value to assist in debugging data preview jobs that use the Spark engine.

Default is 15.

infaspark.class.log.level.map

Logging level for specific classes in the Spark driver or executor. When you configure this property, it
overrides the tracing level you set for the mapping.

Set the value of this property to a JSON string in the following format: {"<fully qualified class name":"<log
level>"}

Configuring Hadoop Connection Properties 389

Join multiple class logging level statements with a comma. You can use the following logging levels:
FATAL, WARN, INFO, DEBUG, ALL.

For example, set to:

infaspark.class.log.level.map={"org.apache.spark.deploy.yarn.ApplicationMaster":"TRAC
E","org.apache.spark.deploy.security.HadoopFSDelegationTokenProvider":"DEBUG"}

infaspark.driver.cluster.mode.extraJavaOptions

List of extra Java options for the Spark driver that runs inside the cluster. Required for streaming
mappings to read from or write to a Kafka cluster that uses Kerberos authentication.

For example, set to:

infaspark.driver.cluster.mode.extraJavaOptions=
-Djava.security.egd=file:/dev/./urandom
-XX:MaxMetaspaceSize=256M -Djavax.security.auth.useSubjectCredsOnly=true
-Djava.security.krb5.conf=/<path to keytab file>/krb5.conf
-Djava.security.auth.login.config=<path to jaas config>/kafka_client_jaas.config

To configure the property for a specific user, you can include the following lines of code:

infaspark.driver.cluster.mode.extraJavaOptions =
-Djava.security.egd=file:/dev/./urandom
-XX:MaxMetaspaceSize=256M -XX:+UseG1GC -XX:MaxGCPauseMillis=500
-Djava.security.krb5.conf=/etc/krb5.conf

infaspark.driver.log.level

Logging level for the Spark driver logs. When you configure this property, it overrides the tracing level
you set for the mapping.

Set the value to one of the following levels: FATAL, WARN, INFO, DEBUG, ALL.

infaspark.executor.extraJavaOptions

List of extra Java options for the Spark executor. Required for streaming mappings to read from or write
to a Kafka cluster that uses Kerberos authentication.

For example, set to:

infaspark.executor.extraJavaOptions=
-Djava.security.egd=file:/dev/./urandom
-XX:MaxMetaspaceSize=256M -Djavax.security.auth.useSubjectCredsOnly=true
-Djava.security.krb5.conf=/<path to krb5.conf file>/krb5.conf
-Djava.security.auth.login.config=/<path to jAAS config>/kafka_client_jaas.config

To configure the property for a specific user, you can include the following lines of code:

infaspark.executor.extraJavaOptions =
-Djava.security.egd=file:/dev/./urandom
-XX:MaxMetaspaceSize=256M -XX:+UseG1GC -XX:MaxGCPauseMillis=500
-Djava.security.krb5.conf=/etc/krb5.conf

infaspark.executor.log.level

Logging level for the Spark executor logs. When you configure this property, it overrides the tracing level
you set for the mapping.

Set the value to one of the following levels: FATAL, WARN, INFO, DEBUG, ALL.

infaspark.flatfile.writer.nullValue

When the Databricks Spark engine writes to a target, it converts null values to empty strings (" "). For
example, 12, AB,"",23p09udj.

The Databricks Spark engine can write the empty strings to string columns, but when it tries to write an
empty string to a non-string column, the mapping fails with a type mismatch.

390 Appendix A: Connections Reference

To allow the Databricks Spark engine to convert the empty strings back to null values and write to the
target, configure the property in the Databricks Spark connection.

Set to: TRUE

infaspark.json.parser.mode

Specifies the parser how to handle corrupt JSON records. You can set the value to one of the following
modes:

• DROPMALFORMED. The parser ignores all corrupted records. Default mode.

• PERMISSIVE. The parser accepts non-standard fields as nulls in corrupted records.

• FAILFAST. The parser generates an exception when it encounters a corrupted record and the Spark
application goes down.

infaspark.json.parser.multiLine

Specifies whether the parser can read a multiline record in a JSON file. You can set the value to true or
false. Default is false. Applies only to non-native distributions that use Spark version 2.2.x and above.

infaspark.pythontx.exec

Required to run a Python transformation on the Spark engine for Data Engineering Integration. The
location of the Python executable binary on the worker nodes in the Hadoop cluster.

For example, set to:

infaspark.pythontx.exec=/usr/bin/python3.4
If you use the installation of Python on the Data Integration Service machine, set the value to the Python
executable binary in the Informatica installation directory on the Data Integration Service machine.

For example, set to:

infaspark.pythontx.exec=INFA_HOME/services/shared/spark/python/lib/python3.4
infaspark.pythontx.executorEnv.LD_PRELOAD

Required to run a Python transformation on the Spark engine for Data Engineering Streaming. The
location of the Python shared library in the Python installation folder on the Data Integration Service
machine.

For example, set to:

infaspark.pythontx.executorEnv.LD_PRELOAD=
INFA_HOME/services/shared/spark/python/lib/libpython3.6m.so

infaspark.pythontx.executorEnv.PYTHONHOME

Required to run a Python transformation on the Spark engine for Data Engineering Integration and Data
Engineering Streaming. The location of the Python installation directory on the worker nodes in the
Hadoop cluster.

For example, set to:

infaspark.pythontx.executorEnv.PYTHONHOME=/usr
If you use the installation of Python on the Data Integration Service machine, use the location of the
Python installation directory on the Data Integration Service machine.

For example, set to:

infaspark.pythontx.executorEnv.PYTHONHOME=
INFA_HOME/services/shared/spark/python/

Configuring Hadoop Connection Properties 391

infaspark.pythontx.submit.lib.JEP_HOME

Required to run a Python transformation on the Spark engine for Data Engineering Streaming. The
location of the Jep package in the Python installation folder on the Data Integration Service machine.

For example, set to:

infaspark.pythontx.submit.lib.JEP_HOME=
INFA_HOME/services/shared/spark/python/lib/python3.6/site-packages/jep/

infaspark.useHiveWarehouseAPI

Enables the Hive Warehouse Connector. Set to TRUE.

For example, infaspark.useHiveWarehouseAPI=true.

spark.authenticate

Enables authentication for the Spark service on Hadoop. Required for Spark encryption.

Set to TRUE.

For example, spark.authenticate=TRUE

spark.authenticate.enableSaslEncryption

Enables encrypted communication when SASL authentication is enabled. Required if Spark encryption
uses SASL authentication.

Set to TRUE.

For example, spark.authenticate.enableSaslEncryption=TRUE

spark.datasource.hive.warehouse.load.staging.dir

Directory for the temporary HDFS files used for batch writes to Hive. Required when you enable the Hive
Warehouse Connector.

For example, set to /tmp

spark.datasource.hive.warehouse.metastoreUri

URI for the Hive metastore. Required when you enable the Hive Warehouse Connector. Use the value for
hive.metastore.uris from the hive_site_xml cluster configuration properties.

For example, set the value to thrift://mycluster-1.com:9083 .

spark.driver.cores

Indicates the number of cores that each driver uses uses to run jobs on the Spark engine.

Set to: spark.driver.cores=1

spark.driver.extraJavaOptions

List of extra Java options for the Spark driver.

When you write date/time data within a complex data type to a Hive target using a Hortonworks HDP 3.1
cluster, append the following value to the property: -Duser.timezone=UTC

spark.driver.memory

Indicates the amount of driver process memory that the Spark engine uses to run jobs.

Recommended value: Allocate at least 256 MB for every data source.

Set to: spark.driver.memory=3G

spark.executor.cores

Indicates the number of cores that each executor process uses to run tasklets on the Spark engine.

392 Appendix A: Connections Reference

Set to: spark.executor.cores=1

spark.executor.extraJavaOptions

List of extra Java options for the Spark executor.

When you write date/time data within a complex data type to a Hive target using a Hortonworks HDP 3.1
cluster, append the following value to the property: -Duser.timezone=UTC

spark.executor.instances

Indicates the number of instances that each executor process uses to run tasklets on the Spark engine.

Set to: spark.executor.instances=1

spark.executor.memory

Indicates the amount of memory that each executor process uses to run tasklets on the Spark engine.

Set to: spark.executor.memory=3G

spark.hadoop.hive.llap.daemon.service.hosts

Application name for the LLAP service. Required when you enable the Hive Warehouse Connector. Use
the value for hive.llap.daemon.service.hosts from the hive_site_xml cluster configuration properties.

spark.hadoop.hive.zookeeper.quorum

Zookeeper hosts used by Hive LLAP. Required when you enable the Hive Warehouse Connector. Use the
value for hive.zookeeper.quorum from the hive_site_xml cluster configuration properties.

spark.hadoop.validateOutputSpecs

Validates if the HBase table exists. Required for streaming mappings to write to a HBase target in an
Amazon EMR cluster. Set the value to false.

spark.scheduler.maxRegisteredResourcesWaitingTime

The number of milliseconds to wait for resources to register before scheduling a task. Default is 30000.
Decrease the value to reduce delays before starting the Spark job execution. Required to improve
performance for mappings on the Spark engine.

Set to 15000.

For example, spark.scheduler.maxRegisteredResourcesWaitingTime=15000

spark.scheduler.minRegisteredResourcesRatio

The minimum ratio of registered resources to acquire before task scheduling begins. Default is 0.8.
Decrease the value to reduce any delay before starting the Spark job execution. Required to improve
performance for mappings on the Spark engine.

Set to: 0.5

For example, spark.scheduler.minRegisteredResourcesRatio=0.5

spark.shuffle.encryption.enabled

Enables encrypted communication when authentication is enabled. Required for Spark encryption.

Set to TRUE.

For example, spark.shuffle.encryption.enabled=TRUE

spark.sql.hive.hiveserver2.jdbc.url

URL for HiveServer2 Interactive. Required to use the Hive Warehouse Connector. Use the value in Ambari
for HiveServer2 JDBC URL.

Configuring Hadoop Connection Properties 393

spark.yarn.access.hadoopFileSystems

Comma-separated list of external file systems that the Spark service can access. By default, the Spark
service has access to the file systems listed in fs.defaultFS in the core-site.xml configuration set of the
cluster configuration. Set this property to give the Spark service access to additional file systems.

If you run a mapping on a Cloudera CDP Public Cloud cluster and you use an HDFS on a Cloudera Data
Lake cluster, you must allow access to that file system. Append the value for the property fs.defaultFS
found in core-site.xml on the Data Lake cluster. For example:
spark.yarn.access.hadoopFileSystems=hdfs://infarndcdppamdl-master1.infarndc.src9-
ltfl.cloudera.site:8020

394 Appendix A: Connections Reference

A p p e n d i x B

Data Type Reference
This appendix includes the following topics:

• Data Type Reference Overview, 395

• Transformation Data Type Support in a Non-native Environment, 396

• Complex File and Transformation Data Types, 397

• Flat File and Transformation Data Types, 402

• Hive Data Types and Transformation Data Types, 403

• Sqoop Data Types, 405

Data Type Reference Overview
Informatica Developer uses the following data types in mappings that run in a non-native environment:
Native data types

Native data types are specific to the sources and targets used as a physical data object. Native data
types appear in the physical data object column properties.

Transformation data types

Transformation data types are set of data types that appear in the transformations. They are internal
data types based on ANSI SQL-92 generic data types, which the Data Integration Service uses to move
data across platforms. Transformation data types appear in all transformations in a mapping.

Transformation data types include the following data types:

• Primitive data type. Represents a single data value in a single column position.

• Complex data type. Represents multiple data values in a single column position. Use complex data
types in mappings that run on the Spark engine to process hierarchical data in complex files.

When the Data Integration Service reads source data, it converts the native data types to the comparable
transformation data types before transforming the data. When the Data Integration Service writes to a target,
it converts the transformation data types to the comparable native data types.

395

Transformation Data Type Support in a Non-native
Environment

The following table shows the Informatica transformation data type support on non-native run-time engines:

Transformation Data Type Engine

Array - Spark
- Databricks Spark

Bigint - Blaze
- Spark
- Databricks Spark

Binary - Blaze
- Spark

Date/Time - Blaze
- Spark
- Databricks Spark

Decimal - Blaze
- Spark
- Databricks Spark

Double - Blaze
- Spark
- Databricks Spark

Integer - Blaze
- Spark
- Databricks Spark

Map - Spark
- Databricks Spark

String - Blaze
- Spark
- Databricks Spark

Struct - Spark
- Databricks Spark

Text - Blaze
- Spark
- Databricks Spark

timestampWithTZ Not supported

396 Appendix B: Data Type Reference

Complex File and Transformation Data Types
You can use complex data types in mappings to process hierarchical data in complex files.

You can use complex data types in the following complex files in mappings that run on the Spark and
Databricks Spark engines:

• Avro

• JavaScript Object Notation (JSON)

• Optimized Row Columnar (ORC)

• Parquet

Avro Data Types and Transformation Data Types
Avro data types map to transformation data types that the Data Integration Service uses to move data across
platforms.

The following table compares the Avro data types that the Data Integration Service supports and the
corresponding transformation data types:

Avro Data
Type

Transformation Data
Type

Range

Array Array Unlimited number of characters.

Boolean Integer TRUE (1) or FALSE (0).

Bytes Binary Precision 4000.

Date Date/Time January 1, 0001 to December 31, 9999.

Decimal Decimal Decimal value with declared precision and scale. Scale must be less
than or equal to precision.
For transformations that support precision up to 38 digits, the
precision is 1 to 38 digits, and the scale is 0 to 38.
For transformations that support precision up to 28 digits, the
precision is 1 to 28 digits, and the scale is 0 to 28.
If you specify the precision greater than the maximum number of digits,
the Data Integration Service converts decimal values to double in high
precision mode.

Double Double Precision 15.

Fixed Binary 1 to 104,857,600 bytes.

Float Double Precision 15.

Int Integer -2,147,483,648 to 2,147,483,647 Precision 10 and scale 0.

Long Bigint -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.
Precision 19 and scale 0.

Map Map Unlimited number of characters.

Complex File and Transformation Data Types 397

Avro Data
Type

Transformation Data
Type

Range

Record Struct Unlimited number of characters.

String String 1 to 104,857,600 characters.

Time Date/Time Time of the day. Precision to microsecond.

Timestamp Date/Time January 1, 0001 00:00:00 to December 31, 9999 23:59:59.997.
Precision to microsecond.

Union Corresponding data type
in a union of
["primitive_type|
complex_type", "null"] or
["null", "primitive_type|
complex_type"].

Dependent on primitive or complex data type.

Avro Union Data Type

A union indicates that a field might have more than one data type. For example, a union might indicate that a
field can be a string or a null. A union is represented as a JSON array containing the data types.
The Developer tool only interprets a union of ["primitive_type|complex_type", "null"] or ["null", "primitive_type|
complex_type"]. The Avro data type converts to the corresponding transformation data type.

Avro Timestamp Data Type Support

The following table lists the Timestamp data type support for Avro file formats:

Timestamp Data type Native Spark

Timestamp_micros Yes Yes

Timestamp_millis Yes No

Time_millis Yes No

Time_micros Yes No

Unsupported Avro Data Types

The Developer tool does not support the following Avro data types:

• Enum

• Null

• Timestamp_tz

398 Appendix B: Data Type Reference

JSON Data Types and Transformation Data Types
JSON data types map to transformation data types that the Data Integration Service uses to move data
across platforms.

The following table compares the JSON data types that the Data Integration Service supports and the
corresponding transformation data types:

JSON Transformation Range

Array Array Unlimited number of characters.

Double Double Precision of 15 digits.

Integer Integer -2,147,483,648 to 2,147,483,647.
Precision of 10, scale of 0.

Object Struct Unlimited number of characters.

String String 1 to 104,857,600 characters.

Unsupported JSON Data Types

The Developer tool does not support the following JSON data types:

• Date

• Decimal

• Timestamp

• Enum

• Union

ORC Data Types and Transformation Data Types
ORC file data types map to transformation data types that the Data Integration Service uses to move data
across platforms.

The following table lists the ORC file data types that the Data Integration Service supports and the
corresponding transformation data types:

ORC File Data Type Transformation Data Type Range and Description

BigInt BigInt -9223372036854775808 to
9,223,372,036,854,775,807.

Boolean Integer TRUE (1) or FALSE (0).

Char String 1 to 104,857,600 characters.

Date Date/Time January 1, 0001 to December
31, 9999.

Double Double Precision of 15 digits.

Complex File and Transformation Data Types 399

ORC File Data Type Transformation Data Type Range and Description

Float Double Precision of 15 digits.

Integer Integer -2,147,483,648 to
2,147,483,647.

SmallInt Integer -32,768 to 32,767.

String String 1 to 104,857,600 characters.

Timestamp Date/Time January 1, 0001 00:00:00 to
December 31, 9999
23:59:59.997.
Precision to microsecond.

TinyInt Integer -128 to 127.

Varchar String 1 to 104,857,600 characters.

When you run a mapping on the Spark or Databricks Spark engine to write an ORC file to a target, the Data
Integration Service writes the data of the Char and Varchar data types as String.

Note: You can use ORC data types to read and write complex file objects in mappings that run on the Spark
engine only.

Unsupported ORC Data Types

The Developer tool does not support the following ORC data types:

• Map

• List

• Struct

• Union

Parquet Data Types and Transformation Data Types
Parquet data types map to transformation data types that the Data Integration Service uses to move data
across platforms.

The following table compares the Parquet data types that the Data Integration Service supports and the
corresponding transformation data types:

Parquet Transformation Range

Binary Binary 1 to 104,857,600 bytes

Binary (UTF8) String 1 to 104,857,600 characters

Boolean Integer -2,147,483,648 to 2,147,483,647
Precision of 10, scale of 0

Date Date/Time January 1, 0001 to December 31, 9999.

400 Appendix B: Data Type Reference

Parquet Transformation Range

Decimal Decimal Decimal value with declared precision and
scale. Scale must be less than or equal to
precision.
For transformations that support precision
up to 38 digits, the precision is 1 to 38
digits, and the scale is 0 to 38.
For transformations that support precision
up to 28 digits, the precision is 1 to 28
digits, and the scale is 0 to 28.
If you specify the precision greater than the
maximum number of digits, the Data
Integration Service converts decimal
values to double in high precision mode.

Double Double Precision of 15 digits.

Float Double Precision of 15 digits.

Int32 Integer -2,147,483,648 to 2,147,483,647
Precision of 10, scale of 0

Int64 Bigint -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807
Precision of 19, scale of 0

Map Map Unlimited number of characters.

Struct Struct Unlimited number of characters.

Time Date/Time Time of the day. Precision to microsecond.

Timestamp Date/Time January 1, 0001 00:00:00 to December 31,
9999 23:59:59.997.
Precision to microsecond.

group (LIST) Array Unlimited number of characters.

The Parquet schema that you specify to read or write a Parquet file must be in smaller case. Parquet does
not support case-sensitive schema.

Parquet Timestamp Data Type Support

The following table lists the Timestamp data type support for Parquet file formats:

Timestamp Data type Native Spark

Timestamp_micros Yes No

Timestamp_millis Yes No

Time_millis Yes No

Complex File and Transformation Data Types 401

Timestamp Data type Native Spark

Time_micros Yes No

int96 Yes Yes

Unsupported Parquet Data Types

The Developer tool does not support the following Parquet data types:

• Timestamp_nanos

• Time_nanos

• Timestamp_tz

Flat File and Transformation Data Types
Flat file data types map to transformation data types that the Data Integration Service uses to move data
across platforms.

The following table compares flat file data types to transformation data types:

Flat File Data type Transformation
Data type

Range

Bigint Bigint Precision of 19 digits, scale of 0

Datetime Date/Time Jan 1, 0001 A.D. to Dec 31, 9999 A.D. (precision to the nanosecond)

Double Double Precision of 15 digits

Int Integer -2,147,483,648 to 2,147,483,647

Nstring String 1 to 104,857,600 characters

Number Decimal For transformations that support precision up to 38 digits, the
precision is 1 to 38 digits, and the scale is 0 to 38.
For transformations that support precision up to 28 digits, the
precision is 1 to 28 digits, and the scale is 0 to 28.
If you specify the precision greater than the maximum number of
digits, the Data Integration Service converts decimal values to double
in high precision mode.
If the precision is greater than 15, the Data Integration Service
converts decimal values to double in low-precision mode.

402 Appendix B: Data Type Reference

Flat File Data type Transformation
Data type

Range

String String 1 to 104,857,600 characters

TimestampWithTZ TimestampWithTZ Aug. 1, 1947 A.D to Dec. 31, 2040 A.D.
-12:00 to +14:00
Precision of 36 and scale of 9.
(precision to the nanosecond)
Timestamp with Time Zone data type does not support the following
time zone regions:
- AFRICA_CAIRO
- AFRICA_MONROVIA
- EGYPT
- AMERICA_MONTREAL
Note: TimestampWithTZ is applicable only to the native environment.

When the Data Integration Service reads non-numeric data in a numeric column from a flat file, it drops the
row and writes a message in the log. Also, when the Data Integration Service reads non-datetime data in a
datetime column from a flat file, it drops the row and writes a message in the log.

Hive Data Types and Transformation Data Types
The following table lists the Hive data types that Data Integration Service supports and the corresponding
transformation data types:

Hive Data Type Transformation Data Type Range and Description

Binary Binary 1 to 104,857,600 bytes. You can read and write
data of Binary data type in a Hadoop
environment. You can use the user-defined
functions to transform the binary data type.

Tiny Int Integer -32,768 to 32,767

Integer Integer -2,147,483,648 to 2,147,483,647 Precision 10,
scale 0

Bigint Bigint -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 Precision 19, scale 0

Hive Data Types and Transformation Data Types 403

Hive Data Type Transformation Data Type Range and Description

Decimal Decimal For transformations that support precision up to
38 digits, the precision is 1 to 38 digits, and the
scale is 0 to 38.
For transformations that support precision up to
28 digits, the precision is 1 to 28 digits, and the
scale is 0 to 28.
If a mapping is not enabled for high precision,
the Data Integration Service converts all decimal
values to double values.
If a mapping is enabled for high precision, the
Data Integration Service converts decimal values
with precision greater than 38 digits to double
values.

Double Double Precision 15

Float Double Precision 15

String String 1 to 104,857,600 characters

Boolean Integer TRUE (1) or FALSE (0).
The default transformation type for boolean is
integer. You can also set this to string data type
with values of True and False.

Array Array Unlimited number of characters.

Struct Struct Unlimited number of characters.

Map Map Unlimited number of characters.

Timestamp datetime January 1, 0001 00:00:00 to December 31, 9999
23:59:59.997. Precision to microsecond.

Date datetime January 1, 0001 to December 31, 9999.

Char String 1 to 255 characters

Varchar String 1 to 65355 characters

Hive Complex Data Types
Hive complex data types such as arrays, maps, and structs are a composite of primitive or complex data
types. Informatica Developer represents complex data types with the string data type and uses delimiters to
separate the elements of the complex data type.

You can read and write hierarchical data from Hive tables in a mapping that runs on the Spark engine.

404 Appendix B: Data Type Reference

The following table lists the complex data types:

Complex Data Type Description

Array An array contains an ordered collection of elements of same data type. The
elements in an array are delimited by commas. For example, an array of fruits is
represented as [apple,banana,orange].

Map A map contains an unordered collection of key-value pairs and are represented as
pairs of strings and integers delimited by the = character. String and integer pairs
are delimited by commas. For example, a map of fruits is represented as
[1=apple,2=banana,3=orange].

Struct A struct contains a collection of elements of different data types delimited by the :
character. String and integer pairs are delimited by commas. For example, a struct
is represented as struct {1:"apple" [, "apple":"red", ...]} .

Sqoop Data Types
When you use Sqoop, some variations apply in the processing. Sqoop supports a subset of data types that
database vendors support.

Aurora Data Types
Informatica supports the following Aurora data types when you use Sqoop:

Binary

Bit

Blob (supported only for import)

Char

Date

Datetime

Decimal

Double

Enum

Float

Integer

Numeric

Real

Set

Text

Time

Timestamp

Varbinary

Varchar

Sqoop Data Types 405

IBM DB2 and DB2 for z/OS Data Types
Informatica supports the following IBM DB2 and DB2 for z/OS data types when you use Sqoop:

Bigint

Blob (supported only for import)

Char

Clob

Date

DBClob

DecFloat (supported only for import)

Decimal

Double (supported only for DB2 for z/OS)

Float (supported only for DB2)

Graphic

Integer

LongVargraphic (supported only for DB2)

Numeric

Real

Smallint

Time

Timestamp

Varchar

Vargraphic

XML (supported only for import)

Greenplum Data Types
Informatica supports the following Greenplum data types when you use Sqoop:

Bigint

Bigserial

Bytea

Date

Decimal

Double

Integer

Nchar

Numeric

Nvarchar

Real

Serial

Smallint

406 Appendix B: Data Type Reference

Text

Time

Timestamp

Microsoft SQL Server Data Types
Informatica supports the following Microsoft SQL Server data types when you use Sqoop:

Bigint

Bit

Char

Datetime

Decimal

Float

INT

Money

Numeric

Real

Smalldatetime

Smallint

Smallmoney

Text

Time

Tinyint

Varchar

Rules and Guidelines for Sqoop Microsoft SQL Server Data Types

Consider the following rules and guidelines when you configure Microsoft SQL Server data types in a Sqoop
mapping:

• If you create or replace the target table at run time and run the mapping on the Blaze or Spark engine to
export Bigint data, the mapping fails.

• If you run a Sqoop mapping to export time data, Sqoop does not export milliseconds.

Netezza Data Types
Informatica supports the following Netezza data types when you use Sqoop:

Bigint

Blob (supported only for import)

Byteint

Char

Date

Double

Float4

Sqoop Data Types 407

Float8

Number

Timestamp

Varchar

Oracle Data Types
Informatica supports the following Oracle data types when you use Sqoop:

Blob (supported only for import)

Char

Date

Float

Long

Nchar (supported if you configure OraOop)

Nvarchar (supported if you configure OraOop)

Number(P,S)

Timestamp

Varchar

Varchar2

Rules and Guidelines for Sqoop Oracle Data Types

Consider the following rules and guidelines when you configure Oracle data types in a Sqoop mapping:

• If you run a Sqoop mapping on the Blaze engine to export Oracle float data, Sqoop truncates the data.

• If you run a Sqoop mapping on the Blaze engine to export Oracle timestamp data with nanoseconds,
Sqoop writes only three digits to the target.

• If you configure OraOop and run a Sqoop mapping on the Spark engine to export Oracle timestamp data,
Sqoop writes only three digits to the target.

Teradata Data Types
Informatica supports the following Teradata data types when you use Sqoop:

Bigint (supported only for import)

Blob (supported only for import)

Byteint

Char

Clob

Date

Decimal

Double

Float

Integer

Number

408 Appendix B: Data Type Reference

Numeric

Real

Smallint

Time

Timestamp

Varchar

Note: If you run a Sqoop mapping to export data of the Time data type, Sqoop does not export milliseconds.

Teradata Data Types with TDCH Specialized Connectors for Sqoop
Informatica supports the following Teradata data types when you use the Cloudera Connector Powered by
Teradata, Hortonworks Connector for Teradata, and MapR Connector for Teradata with Sqoop:

Bigint

Byte (supported only by Hortonworks Connector for Teradata and MapR Connector for Teradata)

Byteint

Character

Date

Decimal

Double Precision/Float/Real

Integer

Number(P,S)

Numeric

Smallint

Time (supported only by Cloudera Connector Powered by Teradata and Hortonworks Connector for
Teradata)

Timestamp

Varchar

Varbyte (supported only by Hortonworks Connector for Teradata and MapR Connector for Teradata)

Vertica Data Types
Informatica supports the following Vertica data types when you use Sqoop:

Boolean (supported only on the Spark engine)

Bigint

Char

Date

Datetime

Decimal

Double precision

Float

Float (n)

Sqoop Data Types 409

Float 8

Int

Int8

Integer

Long Varchar

Money

Number

Numeric

Real

Smalldatetime

Smallint

Time

Timestamp

Tinyint

Varchar

410 Appendix B: Data Type Reference

A p p e n d i x C

Function Reference
This appendix includes the following topics:

• Function Support in a Non-native Environment, 411

• Function and Data Type Processing, 413

Function Support in a Non-native Environment
Some Informatica transformation language functions that are valid in the native environment might be
restricted or unsupported in a non-native environment, such as Hadoop or Databricks. Functions not listed in
this table are supported on all engines without restrictions.

Important: When you push a mapping to a non-native environment, the engine that processes the mapping
uses a set of rules different from the Data Integration Service. As a result, the mapping results can vary
based on the rules that the engine uses.

The following table lists functions and levels of support for functions on different engines in the non-native
environments.

Function Blaze Engine Spark Engine Databricks Spark

ABORT Not supported Not supported Not supported

ANY Supported Supported Supported

ARRAY Not supported Supported Supported

AVG Supported Supported Supported

CAST Not supported Supported Supported

COLLECT_LIST Not supported Supported Supported

COLLECT_MAP Not supported Supported Supported

CONCAT_ARRAY Not supported Supported Supported

COUNT Supported Supported Supported

CREATE_TIMESTAMP_TZ Supported Not supported Not supported

411

Function Blaze Engine Spark Engine Databricks Spark

CUME Not supported Not supported Not supported

DECOMPRESS Supported Supported Supported

ERROR Not supported Not supported Not supported

EXTRACT_STRUCT Not supported Supported Supported

FIRST Not supported Not supported Not supported

GET_TIMEZONE Supported Not supported Not supported

GET_TIMESTAMP Supported Not supported Not supported

IS_DATE Not supported Supported Supported

LAST Not supported Not supported Not supported

LAG Not supported Supported Supported

LEAD Not supported Supported Supported

MAP Not supported Supported Supported

MAP_FROM_ARRAYS Not supported Supported Supported

MAP_KEYS Not supported Supported Supported

MAP_VALUES Not supported Supported Supported

MAX (Dates) Supported Supported Supported

MAX (Numbers) Supported Supported Supported

MAX (String) Supported Supported Supported

METAPHONE Supported Supported Supported

MIN (Dates) Supported Supported Supported

MIN (Numbers) Supported Supported Supported

MIN (String) Supported Supported Supported

MOVINGAVG Not supported Not supported Not supported

MOVINGSUM Not supported Not supported Not supported

PARSE_JSON Not supported Supported Not supported

PARSE_XML Not supported Supported Not supported

PERCENTILE Supported Supported Supported

412 Appendix C: Function Reference

Function Blaze Engine Spark Engine Databricks Spark

RESPEC Not supported Supported Supported

SIZE Not supported Supported Supported

STDDEV Supported Supported Supported

STRUCT Not supported Supported Supported

STRUCT_AS Not supported Supported Supported

SUM Supported Supported Supported

SYSTIMESTAMP Supported Supported Supported

TO_DATE Supported Supported Supported

TO_DECIMAL Supported Supported Supported

TO_DECIMAL38 Supported Supported Supported

TO_TIMESTAMP_TZ Supported Not supported Not supported

UUID4 Supported Supported Supported

UUID_UNPARSE Supported Supported Supported

VARIANCE Supported Supported Supported

For more information, see the Informatica Transformation Language Reference.

Function and Data Type Processing
When you run a mapping in a Hadoop environment, the Hadoop engine might process Informatica functions
and data types differently from the Data Integration Service. Also, each of the run-time engines in the Hadoop
environment can process Informatica functions and data types differently. Therefore, some variations apply
in the processing and validity of functions and data types, and mapping results can vary.

Function and Data Type Processing 413

I n d e x

A
accessing elements

array 251
map 251
struct 251

Address Validator transformation
non-native environment 125

ADLS
complex file sources 85, 92
complex file targets 103, 111

aggregate window function
example 313
nesting 315
offsets 315

Aggregator transformation
Blaze engine 126
Databricks Spark engine 127
non-native environment 126
Spark engine 127

Amazon AWS 326
Amazon Redshift connection

properties 335
Amazon S3

complex file sources 89
complex file targets 111

Amazon S3 connection
properties 338

architecture
Data Engineering Integration 18
Data Engineering with Databricks 24
Hadoop environment 19

array
complex data type 236
accessing elements 251
dimension 236
example 236
extracting element 252
format 236
generating 253
index 236
multi-dimensional 236
one-dimensional 236

array functions
ARRAY 253
COLLECT_LIST 253
CONCAT_ARRAY 253
SIZE 253

array port
type configuration 247

audit
condition 50
configuring storage 50
overview 47
results 52
rule 48

audit (continued)
rules and guidelines 52
running an audit 51

AutoDeploy 184
Avro data types

transformation data types 397
Azure

configuration 329
Azure Blob

complex file sources 91
complex file targets 113

Azure Blob Storage
complex file sources 86
complex file targets 104

Azure Data Lake Storage Gen2
complex file sources 93
complex file targets 104, 112

AzureData Lake Storage Gen2
complex file sources 86

B
Blaze engine

Blaze engine architecture 22
connection properties 352
mapping properties 221
monitoring 217, 219, 220
segment time 220
summary report 220–223
tasklet execution time 222
tasklet information 223

Blaze execution plan
monitoring 214

Blaze Job Monitor
logging 224

blockchain
blockchain data object 297–299
blockchain data object operation 301, 304
blockchain data object read operation 301, 304
blockchain data object write operation 303, 304
connection properties 341
example 305
overview 296
Response_200 297
responseCode 297
use case 305

C
Case Converter transformation

non-native environment 128
Cassandra connections

properties 342

414

CLAIRE
insights 73
recommendations 69
recommendations and insights 68

Classifier transformation
non-native environment 128

cloud platform clusters 175
cloud provisioning configuration

Databricks properties 334
Amazon AWS properties 326
Microsoft Azure properties 329

cluster workflow
cloud provisioning connection 325

cluster workflows
Azure job monitoring 185
components 176, 184, 185
Delete Cluster task 185
external RDS as the Hive metastore db 198
mappings in cluster workflows 184
monitoring 185
Overview 175
running 185
Running mappings on Blaze engine 197
sample 176
workflow tasks 185

Comparison transformation
non-native environment 128

complex data type
array 235
map 235
struct 235

complex data type definition
creating 245
example 242
importing 245
nested data type definition 244
recursive data type definition 244
struct 242
type definition library 242

complex data types
array 236
map 238
struct 238

complex file formats
overview 397

complex file sources
ADLS 85, 92
Amazon S3 89
Azure Blob 91
Azure Blob Storage 86
Azure Data Lake Storage Gen2 86, 93
Google Cloud Storage 90
HDFS 90
Hive 90
MapR-FS 91

complex file targets
ADLS 103, 111
Amazon S3 111
Azure Blob 113
Azure Blob Storage 104
Azure Data Lake Storage Gen2 104, 112
Databricks environment 103
Google Cloud Storage 111
HDFS 114
Hive 115
MapR-FS 114

complex functions
ARRAY 253

complex functions (continued)
CAST 253
COLLECT_LIST 253
COLLECT_MAP 253
CONCAT_ARRAY 253
MAP 253
MAP_FROM_ARRAYS 253
MAP_KEYS 253
MAP_VALUES 253
RESPEC 253
SIZE 253
STRUCT 253
STRUCT_AS 253

complex operator
dot operator 251
example 251
subscript operator 251

complex port
array 240
creating 242
map 240
nested 240
Read transformation 241
struct 240
transformations 241
type configuration 240, 247
Write transformation 241

component architecture
clients and tools 18

configure a mapping
non-native 46

configuring
array port properties 247
map port properties 249

struct port
properties 250

Confluent Kafka connection
Confluent Kafka broker properties 345
create using infacmd 346
general properties 344

Connection
details 378
properties 378

connection properties
Databricks 346
blockchain 341

connections
properties 325, 352
Google PubSub 352
HBase 325
HDFS 325
Hive 325
JDBC 325

Consolidation transformation
non-native environment 129

conversion
hierarchical to relational 259

Cosmos DB connection
creating 379

Create Cluster task
properties 187

creating
Cosmos DB connection 379
Python transformation 161

creating a column profile
profiles 204

Index 415

D
data engineering

application services 18
data engineering process 25

data engineering integration
repositories 19

data engineering process
collect your data 25

Data Masking transformation
non-native environment 130

data object
processing data with an intelligent structure 290

data object profiles
creating a single profile 202
enterprise discovery 203

data preview
data preview process 168
data preview interface 170
data viewer 171
hierarchical type panel 172
overview 167
previewing hierarchical data 169
rules and guidelines for data preview 174

Data Processor transformation
non-native environment 131

data type
complex data type 235
nested data type 235
primitive data type 235

data type reference
flat files 402

data types
complex files 397
Hive 403
Hive complex data types 404
processing in a Hadoop environment 413
support 396

Databricks
cloud provisioning configuration 334
create cluster task 192, 194
warm pool support 175
warm pools, configuring 192, 194

Databricks connection properties 346
Databricks environment

flat file sources 88
flat file targets 109
complex file targets 103
Delta Lake sources 87
sources 85

Databricks integration
overview 21

Databricks job cluster 185
Databricks Spark

execution plans 56
Decision transformation

non-native environment 132
Delete Cluster task 185
Delta Lake

connection 372
schema enforcement 87, 105
schema evolution 87, 105
schema merge 87, 105
transformation support 122

dot operator
extracting struct element 252

dynamic complex port
input rules 280

E
enterprise discovery

running in Informatica Analyst 206
ephemeral clusters

cloud provisioning connection 325
Overview 175

example
aggregate window function 313
array 236
complex data type definition 242
complex operator 251
dot operator 251
map 238
nested data type definition 244
partition and order keys 310
struct 238
subscript operator 251
windowing 317, 319

execution plan
Databricks Spark engine 56
Spark engine 56

Expression transformation
Blaze engine 133
Databricks Spark engine 133
non-native environment 132
Spark engine 133

external RDS as the Hive metastore 198

F
file sources

Hadoop environment 89
file targets

Hadoop environment 110
Filter transformation

Blaze engine 134
non-native environment 133

flat file source 95
flat file sources

in Databricks environment 88
in Hadoop environment 94

flat file targets
in Databricks environment 109

functions
processing in a Hadoop environment 413

G
Google Analytics connections

properties 348
Google BigQuery connection

properties 349
Google Cloud Spanner connection

properties 350
Google Cloud Storage

complex file sources 90
complex file targets 111

Google Cloud Storage connections
properties 351

Google PubSub
connection properties 352

grid
description 64

416 Index

H
Hadoop 325
Hadoop connections

creating 385
Hadoop environment

file sources 89
file targets 110
flat file limitations 94
flat file targets 115
Hive targets 117
logs 211
optimization 67
relational sources 95
Sqoop sources restrictions 99
Sqoop targets restrictions 120

hadoop utilities
Sqoop 20

HBase connections
MapR-DB properties 361
properties 361

HDFS
complex file sources 90
complex file targets 114

HDFS connections
creating 385
properties 359

HDFS mappings
data extraction example 61
description 60

hierarchical conversion
generate nested struct 262
generate struct 260
hierarchical to hierarchical 270
hierarchical to relational 270, 272
relational to hierarchical 260, 262

hierarchical data
complex files 232
converting 259
extracting elements 270
flattening elements 272
how to process 233
modifying 270, 272
processing 232
processing semi-structured data 288
processing unstructured data 288
Spark engine 232
use midstream parsing with 256

Hierarchical to Relational transformation
non-native environment 134

high availability
description 65

Hive
complex file sources 90
complex file targets 115
target limitations 117

Hive connections
creating 385
properties 362

Hive execution plan
monitoring 214

Hive mappings
description 62

Hive metastore 198
Hive pushdown

connection properties 352
Hive query plan

viewing, for mapping 57

Hive query plan (continued)
viewing, for profile 208

Hive sources
postSQL 96
preSQL 96
with Blaze engine 97
with Informatica mappings 96

Hive target
truncate 118

Hive targets
postSQL 117
preSQL 117
with Blaze engine 119

how to
process hierarchical data 233
use midstream parsing 256

I
Informatica Data Engineering Integration

overview 17
Informatica engine

Informatica engine execution plan 55
Informatica Intelligent Cloud Services account

creating 294
input rules

dynamic array 280
dynamic complex port 280
dynamic map 280
dynamic struct 280

intelligent structure discovery
process 289

Intelligent Structure Discovery
license 294

intelligent structure mappings
data conversion example 293

intelligent structure model
creating 294
exporting 295
overview 288

intelligent structures
use case 290

J
Java transformation

Blaze engine 134
Non-native environment 134
Spark engine 135

JDBC
sources 35
targets 35

JDBC connection
to Delta Lake resource 372

JDBC connections
connection string 367
properties 365

JDBC V2 connection
properties 372

Joiner transformation
Blaze engine 136
Databricks Spark engine 137
non-native environment 136
Spark engine 136

JSON data types
transformation data types 399

Index 417

K
Kafka connection

create using infacmd 377
general properties 375
Kafka broker properties 376

Key Generator transformation
Non-native environment 137

Kudu connection
properties 377

L
Labeler transformation

Non-native environment 138
logging

mapping run on Hadoop 224
Spark engine 230

logs
Blaze engine 223
Hadoop environment 211
Spark engine 230

logs URL
YARN web user interface 230

Lookup transformation
Blaze engine 138
Databricks Spark engine 142, 147
Non-native environment 138
Spark engine 139

M
Macro transformation

non-native environment 142
map

complex data type 238
accessing elements 251
example 238
format 238
generating 253
key-value pair 238

map functions
COLLECT_MAP 253
MAP 253
MAP_FROM_ARRAYS 253
MAP_KEYS 253
MAP_VALUES 253
SIZE 253

map port
type configuration 249

mapping
audit 47
intelligent structure 290

mapping example
Hive 62
Twitter 63

mapping execution plans
overview 54

mapping optimization
insights 73
recommendations 69
recommendations and insights 68

mapping run on Hadoop
logging 213
monitoring 214

mapping run on non-native environment
overview 29

MapR-FS
complex file sources 91
complex file targets 114

Match transformation
Blaze engine 143
Non-native environment 142
Spark engine 143

Merge transformation
Non-native environment 143

Messaging connection
Confluent Kafka connection 344

Microsoft Azure 329
Microsoft Azure Data Lake Storage Gen1 connection

properties 380
Microsoft Azure Data Lake Storage Gen2 connection

properties 381
Microsoft Azure SQL Data Warehouse connection

properties 382
monitoring cluster workflow jobs 185
Monitoring URL

Blaze and Spark jobs 213
multiple matches

Lookup transformation 138

N
native environment

high availability 65
mappings 60
optimization 64
partitioning 64

nested data type definition
example 244

nested struct
generating 262

node labeling
Blaze 80

non-native environment
transformation support 122
valid sources 83

non-native execution plan
description, for mapping 29
overview 54

non-native mapping
run-time properties 30

non-native mappings
workflows 46

Normalizer transformation
Non-native environment 144

O
optimization

compress temporary staging tables 76
node labeling 79
queuing 80
scheduling 79
truncate partitions 77

ORC file data types
transformation data types 399

overview
processing hierarchical data 232

418 Index

P
Parquet data types

transformation data types 400
Parser transformation

Non-native environment 144
partitioning

description 64
optimization 65

postSQL
for Hive sources 96
for Hive targets 117
for JDBC targets 35

preSQL
for Hive sources 96
for Hive targets 117
for JDBC sources 35

processing hierarchical data
overview 232

processing with an intelligent structure
in a mapping 290
running on Spark 290

profile run on Blaze engine
Overview 200

profile run on Hadoop
monitoring 208

profile run on Hive
Overview 200

profiles
creating a column profile 204

python
guidelines 160
rules 160

Python
advanced properties 157
code 159
components 158
creating 160
data type 156
example 165

input port
data type 157

input ports 157
output port

data type 157
output ports 157
pre-trained model 158
resource file 158
script 158
use case 165

Python transformation
active transformation 156
creating 161
example 162, 163
nonpartitioned data 162
overview 155
passive transformation 156

R
Rank transformation

Blaze engine 144
Databricks Spark engine 145
Non-native environment 144
Spark engine 145

registration
Informatica Intelligent Cloud Services account 294

relational to hierarchical 259
Relational to Hierarchical transformation

non-native environment 146
Router transformation

Non-native environment 146
Rule Specification transformation

Non-native environment 146
rules and guidelines

Spark engine 43
window functions 317
windowing properties 312

run-time properties
non-native mapping 30, 31

S
semi-structured data

processing 288
Sequence Generator transformation

Blaze engine 147
Non-native environment 147
Spark engine 147

Snowflake connection
properties 384

social media mappings
description 63

Sorter transformation
Blaze engine 148
Databricks Spark engine 149
Non-native environment 147
Spark engine 148

source file name
for flat file sources 95

sources
in a non-native environment 83
Databricks environment 85
JDBC 35

Spark
execution plans 56

Spark deploy mode
Hadoop connection properties 352

Spark engine
data type processing 43
function processing 43
rules and guidelines 43
connection properties 352
hierarchical data 232
monitoring 225

Spark Event Log directory
Hadoop connection properties 352

Spark execution parameters
Hadoop connection properties 352

Spark HDFS staging directory
Hadoop connection properties 352

Sqoop arguments
parameterization 41

Sqoop configuration
mapping properties 41
profiling 201

Sqoop connection arguments
-Dsqoop.connection.factories 369
connect 369
direct 369
driver 369

Sqoop connectivity
supported data types 405

Index 419

Sqoop data types
Aurora 405
Greenplum 406
IBM DB2 406
IBM DB2 for z/OS 406
Microsoft SQL Server 407
Netezza 407
Oracle 408
Teradata 408
Teradata Data Types with TDCH Sqoop Specialized Connectors 409
Vertica 409

Sqoop incremental data extraction
--infa-incremental-key 39
--infa-incremental-type 39
--infa-incremental-value 39
--infa-incremental-value-format 39
configuring 39

Sqoop mapping arguments
batch 38
infaoptimize 38
infaownername 39
m 37
num-mappers 37
schema 39
split-by 37
verbose 39

Sqoop mappings
overview 36
supported engines 36

Sqoop sources
importing data from Vertica 99
in Hadoop environment 99

Sqoop targets
in Hadoop environment 120

Standardizer transformation
Non-native environment 150

stateful computing
overview 308

struct
complex data type 238
accessing elements 251
changing data type 253
changing schema 253
complex data type definition 242
example 238
extracting element 252
format 238
generating 253, 260
name-type pair 238
schema 238

struct functions
CAST 253
RESPEC 253
STRUCT 253
STRUCT_AS 253

struct port
complex data type definition 250
type configuration 250

subscript operator
extracting array element 252

T
targets

flat files in Hadoop mapping 115
JDBC 35

TDCH connection factory
-Dsqoop.connection.factories 369

third-party tools
hadoop cluster 20

transformations
in a non-native environment 122

type configuration
array 247
map 247
struct 247
struct port 250

type definition library
complex data type definition 242
mapping 242
mapplet 242
nested data type definition 244

U
Union transformation

Non-native environment 150
unstructured data

processing 288
Update Strategy transformation

Blaze engine 151
Non-native environment 150
Spark engine 151

utilities
hadoop cluster 20

V
validation environments

non-native mapping 31

W
warm pools 192, 194
Weighted Average transformation

Non-native environment 154
window functions

aggregate functions 313
LAG 313
LEAD 313
overview 312
rules and guidelines 317

windowing
example 317, 319, 321
overview 308
properties 309

windowing properties
frame 309, 315
order 309, 310
partition 309, 310
rules and guidelines 312

workflows
non-native mappings 46

Y
YARN

queues 79
scheduler

capacity 79

420 Index

YARN (continued)
scheduler (continued)

fair 79

YARN web user interface
description 212

Index 421

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction to Informatica Data Engineering Integration
	Informatica Data Engineering Integration Overview
	Example

	Data Engineering Integration Component Architecture
	Clients and Tools
	Application Services
	Repositories
	Hadoop Integration
	Databricks Integration

	Data Engineering Integration Engines
	Run-time Process on the Blaze Engine
	Run-time Process on the Spark Engine
	Run-time Process on the Databricks Spark Engine

	Data Engineering Process
	Step 1. Collect the Data
	Step 2. Cleanse the Data
	Step 3. Transform the Data
	Step 4. Process the Data
	Step 5. Monitor Jobs

	Data Warehouse Optimization Mapping Example

	Chapter 2: Mappings
	Overview of Mappings
	Mapping Run-time Properties
	Validation Environments
	Execution Environment
	Updating Run-time Properties for Multiple Mappings

	PreSQL and PostSQL Queries for JDBC Sources
	Sqoop Mappings in a Hadoop Environment
	Sqoop Mapping-Level Arguments
	Incremental Data Extraction for Sqoop Mappings
	Configuring Sqoop Properties in the Mapping
	Configuring Parameters for Sqoop Arguments in the Mapping

	Mapping Output Binding
	Rules and Guidelines for Mappings in a Non-native Environment
	Rules and Guidelines for Mappings on the Blaze Engine
	Rules and Guidelines for Mappings on the Spark Engine
	Rules and Guidelines for Mappings on the Databricks Spark Engine

	Workflows that Run Mappings in a Non-native Environment
	Configuring a Mapping to Run in a Non-native Environment
	Configure Mappings to Run on Dataproc

	Audits
	Creating an Audit
	Rules and Guidelines for Audits
	Example

	Mapping Execution Plans
	Blaze Engine Execution Plan Details
	Spark Engine Execution Plan Details
	Databricks Spark Engine Execution Details
	Viewing the Execution Plan

	Troubleshooting Mappings in a Non-native Environment
	Mappings in the Native Environment
	Data Processor Mappings
	HDFS Mappings
	Hive Mappings
	Social Media Mappings
	Native Environment Optimization

	Chapter 3: Mapping Optimization
	Mapping Optimization
	Mapping Recommendations and Analysis
	Recommendations
	Insights
	Example
	Enabling and Customizing Access to Sensitive Data

	Enabling Data Compression on Temporary Staging Tables
	Step 1. Enable Data Compression in the Hadoop Connection
	Step 2. Enable Data Compression on the Hadoop Environment

	Truncating Partitions in a Hive Target
	Hive Warehouse Connector and Hive LLAP
	Enabling the Hive Warehouse Connector and Hive LLAP

	Scheduling, Queuing, and Node Labeling
	Enable Scheduling and Node Labeling
	Define YARN Queues
	Configure the Blaze Engine to Use Node Labels

	Data Engineering Recovery
	Spark Engine Optimization for Sqoop Pass-Through Mappings

	Chapter 4: Sources
	Overview of Sources
	PowerExchange Adapter Sources
	Sources on Databricks
	Complex File Sources on Amazon S3
	Complex File Sources on ADLS
	Complex File Sources on Azure Data Lake Storage Gen2
	Complex File Sources on Azure Blob
	Databricks and Delta Lake Tables
	Rules and Guidelines for Databricks Sources

	File Sources on Hadoop
	Complex File Sources on Amazon S3
	Complex File Sources on Google Cloud Storage
	Complex File Sources on HDFS or View File System (ViewFS)
	Complex File Sources on Hive
	Complex File Sources on MapR-FS
	Complex File Sources on Azure Blob
	Complex File Sources on ADLS
	Complex File Sources on Azure Data Lake Storage Gen2
	Flat File Sources on Hadoop

	Relational Sources on Hadoop
	Hive Sources on Hadoop
	PreSQL and PostSQL Commands
	Rules and Guidelines for Hive Sources on the Blaze Engine

	Sqoop Sources on Hadoop
	Reading Data from Vertica Sources through Sqoop
	Rules and Guidelines for Sqoop Sources
	Rules and Guidelines for Sqoop Queries

	Chapter 5: Targets
	Overview of Targets
	PowerExchange Adapter Targets
	Targets on Databricks
	Complex File Targets on Amazon S3
	Complex File Targets on ADLS
	Complex File Targets on Azure Data Lake Storage Gen2
	Complex File Targets on Azure Blob
	Databricks and Delta Lake Tables
	Databricks Schema Evolution
	Rules and Guidelines for Databricks Targets

	File Targets on Hadoop
	Complex File Targets on Amazon S3
	Complex File Targets on Google Cloud Storage
	Complex File Targets on ADLS
	Complex File Targets on Azure Data Lake Storage Gen2
	Complex File Targets on Azure Blob
	Complex File Targets on MapR-FS
	Complex File Targets on HDFS or View File System (ViewFS)
	Complex File Targets on Hive
	Flat File Targets on Hadoop

	Message Targets on Hadoop
	Relational Targets on Hadoop
	Hive Targets on Hadoop
	PreSQL and PostSQL Commands
	Truncating Hive Targets
	Updating Hive Targets with an Update Strategy Transformation
	Rules and Guidelines for Hive Targets on the Blaze Engine

	Sqoop Targets on Hadoop
	Rules and Guidelines for Sqoop Targets

	Chapter 6: Transformations
	Overview of Transformations
	Address Validator Transformation in a Non-native Environment
	Address Validator Transformation on the Blaze Engine
	Address Validator Transformation on the Spark Engine
	Address Validator Transformation on the Databricks Spark Engine

	Aggregator Transformation in a Non-native Environment
	Aggregator Transformation on the Blaze Engine
	Aggregator Transformation on the Spark Engine
	Aggregator Transformation on the Databricks Spark Engine

	Case Converter Transformation in a Non-native Environment
	Classifier Transformation in a Non-native Environment
	Comparison Transformation in a Non-native Environment
	Consolidation Transformation in a Non-native Environment
	Consolidation Transformation on the Blaze Engine
	Consolidation Transformation on the Spark Engine
	Consolidation Transformation on the Databricks Spark Engine

	Data Masking Transformation in a Non-native Environment
	Data Masking Transformation on the Blaze Engine
	Data Masking Transformation on the Spark Engine

	Data Processor Transformation in a Non-native Environment
	Decision Transformation in a Non-native Environment
	Decision Transformation on the Spark Engine
	Decision Transformation on the Databricks Spark Engine

	Expression Transformation in a Non-native Environment
	Expression Transformation on the Blaze Engine
	Expression Transformation on the Spark Engine
	Expression Transformation on the Databricks Spark Engine

	Filter Transformation in a Non-native Environment
	Filter Transformation on the Blaze Engine

	Hierarchical to Relational Transformation in a Non-native Environment
	Java Transformation in a Non-native Environment
	Java Transformation on the Blaze Engine
	Java Transformation on the Spark Engine

	Joiner Transformation in a Non-native Environment
	Joiner Transformation on the Blaze Engine
	Joiner Transformation on the Spark Engine
	Joiner Transformation on the Databricks Spark Engine

	Key Generator Transformation in a Non-native Environment
	Key Generator Transformation on the Blaze Engine
	Key Generator Transformation on the Spark Engine
	Key Generator Transformation on the Databricks Spark Engine

	Labeler Transformation in a Non-native Environment
	Lookup Transformation in a Non-native Environment
	Lookup Transformation on the Blaze Engine
	Lookup Transformation on the Spark Engine
	Lookup Transformation on the Databricks Spark Engine

	Macro Transformation in a Non-native Environment
	Match Transformation in a Non-native Environment
	Match Transformation on the Blaze Engine
	Match Transformation on the Spark Engine
	Match Transformation on the Databricks Spark Engine

	Merge Transformation in a Non-native Environment
	Normalizer Transformation in a Non-native Environment
	Parser Transformation in a Non-native Environment
	Rank Transformation in a Non-native Environment
	Rank Transformation on the Blaze Engine
	Rank Transformation on the Spark Engine
	Rank Transformation on the Databricks Spark Engine

	Relational to Hierarchical Transformation in a Non-native Environment
	Router Transformation in a Non-native Environment
	Rule Specification Transformation in a Non-native Environment
	Sequence Generator Transformation in a Non-native Environment
	Sequence Generator Transformation on the Blaze Engine
	Sequence Generator Transformation on the Spark Engine
	Sequence Generator Transformation on the Databricks Spark Engine

	Sorter Transformation in a Non-native Environment
	Sorter Transformation on the Blaze Engine
	Sorter Transformation on the Spark Engine
	Sorter Transformation on the Databricks Spark Engine

	Standardizer Transformation in a Non-native Environment
	Union Transformation in a Non-native Environment
	Union Transformation in a Streaming Mapping

	Update Strategy Transformation in a Non-native Environment
	Update Strategy Transformation on the Blaze Engine
	Update Strategy Transformation on the Spark Engine
	Update Strategy Transformation on the Databricks Spark Engine

	Weighted Average Transformation in a Non-native Environment

	Chapter 7: Python Transformation
	Python Transformation Overview
	Active and Passive Python Transformations
	Data Type Conversion
	Data Types in Input and Output Ports

	Python Transformation Ports
	Python Transformation Advanced Properties
	Python Transformation Components
	Resource File
	Python Code

	Rules and Guidelines for the Python Transformation
	Python Transformation in a Streaming Mapping

	Creating a Python Transformation
	Creating a Reusable Python Transformation
	Creating a Non-Reusable Python Transformation

	Example: Add an ID Column to Nonpartitioned Data
	Example: Use Partitions to Find the Highest Salary
	Use Case: Operationalize a Pre-Trained Model

	Chapter 8: Data Preview
	Overview of Data Preview
	Connections and Cluster Distributions that Support Data Preview

	Data Preview Process
	Previewing Data
	Data Preview Interface for Hierarchical Data
	Data Viewer
	Exporting Data
	Hierarchical Type Panel

	Data Preview on Transformations
	Data Preview Logs
	Rules and Guidelines for Data Preview on the Spark Engine

	Chapter 9: Cluster Workflows
	Cluster Workflows Overview
	Cluster Workflows Platform Support

	Cluster Workflow Components
	Cluster Workflows Process
	Create the Workflow and the Create Cluster Task
	Where to Configure Parameters for Cluster Creation
	Using the Developer Tool to Configure Cluster Creation Properties
	Using a JSON File to Configure Cluster Creation Properties

	Add a Mapping Task
	Prepare Mappings for the Cluster Workflow
	Add Mapping and Other Tasks to the Workflow
	Mapping Task Properties

	Add a Delete Cluster Task
	Deploy and Run the Workflow
	Monitoring Azure HDInsight Cluster Workflow Jobs

	Configure Databricks Clusters Using Warm Pools
	Create Cluster Task Properties
	Advanced Properties for Amazon EMR
	Advanced Properties for Azure HDInsight
	Advanced Properties for Azure Databricks
	Advanced Properties for AWS Databricks
	Advanced Properties for the Blaze Engine
	Advanced Properties for a Hive Metastore Database

	Chapter 10: Profiles
	Profiles Overview
	Native Environment
	Hadoop Environment
	Column Profiles for Sqoop Data Sources

	Sampling Options
	Creating a Single Data Object Profile in Informatica Developer
	Creating an Enterprise Discovery Profile in Informatica Developer
	Creating a Column Profile in Informatica Analyst
	Creating an Enterprise Discovery Profile in Informatica Analyst
	Creating a Scorecard in Informatica Analyst
	Monitoring a Profile
	Profiling Functionality Support
	Troubleshooting

	Chapter 11: Monitoring
	Overview of Monitoring
	Hadoop Environment Logs
	YARN Web User Interface
	Accessing the Monitoring URL
	Viewing Hadoop Environment Logs in the Administrator Tool
	Monitoring a Mapping

	Blaze Engine Monitoring
	Blaze Job Monitoring Application
	Blaze Summary Report
	Blaze Engine Logs
	Viewing Blaze Logs
	Orchestrator Sunset Time
	Troubleshooting Blaze Monitoring

	Spark Engine Monitoring
	Viewing Hive Tasks
	Spark Engine Logs
	Viewing Spark Logs
	Troubleshooting Spark Engine Monitoring

	Chapter 12: Hierarchical Data Processing
	Overview of Hierarchical Data Processing
	How to Develop a Mapping to Process Hierarchical Data
	Complex Data Types
	Array Data Type
	Map Data Type
	Struct Data Type
	Rules and Guidelines for Complex Data Types

	Complex Ports
	Complex Ports in Transformations
	Rules and Guidelines for Complex Ports
	Creating a Complex Port

	Complex Data Type Definitions
	Nested Data Type Definitions
	Rules and Guidelines for Complex Data Type Definitions
	Creating a Complex Data Type Definition
	Importing a Complex Data Type Definition

	Type Configuration
	Changing the Type Configuration for an Array Port
	Changing the Type Configuration for a Map Port
	Specifying the Type Configuration for a Struct Port

	Complex Operators
	Extracting an Array Element Using a Subscript Operator
	Extracting a Struct Element Using the Dot Operator

	Complex Functions
	Rules and Guidelines for Processing Hierarchical Data on the Spark Engine
	Midstream Parsing of Hierarchical Data
	Midstream Parsing Overview
	Midstream Parsing Use Case
	How to Use a Midstream Mapping to Parse Hierarchical Data
	Rules and Guidelines for Midstream Parsing
	Troubleshooting Midstream Parsing

	Chapter 13: Hierarchical Data Processing Configuration
	Hierarchical Data Conversion
	Convert Relational or Hierarchical Data to Struct Data
	Creating a Struct Port

	Convert Relational or Hierarchical Data to Nested Struct Data
	Creating A Nested Complex Port

	Extract Elements from Hierarchical Data
	Extracting Elements from a Complex Port

	Flatten Hierarchical Data
	Flattening a Complex Port

	Chapter 14: Hierarchical Data Processing with Schema Changes
	Overview of Hierarchical Data Processing with Schema Changes
	How to Develop a Dynamic Mapping to Process Schema Changes in Hierarchical Data
	Flatten Hierarchical Data with Schema Changes
	Flatten a Dynamic Struct

	Dynamic Complex Ports
	Dynamic Ports and Dynamic Complex Ports
	Dynamic Complex Ports in Transformations

	Input Rules for a Dynamic Complex Port
	Input Rule for a Dynamic Array
	Input Rules for a Dynamic Map
	Input Rules for a Dynamic Struct

	Port Selectors for Dynamic Complex Ports
	Dynamic Expressions
	Example - Dynamic Expression to Construct a Dynamic Struct

	Complex Operators
	Complex Functions
	Rules and Guidelines for Dynamic Complex Ports
	Optimized Mappings

	Chapter 15: Intelligent Structure Models
	Overview of Intelligent Structure Models
	Intelligent Structure Discovery Process
	Use Case
	Using an Intelligent Structure Model in a Mapping
	Rules and Guidelines for Intelligent Structure Models
	How to Create a Mapping with an Intelligent Structure Model
	Mapping Example

	Create an Intelligent Structure Model in Cloud Data Integration
	Before You Begin
	Creating an Informatica Intelligent Cloud Services Account
	Creating an Intelligent Structure Model
	Exporting an Intelligent Structure Model

	Chapter 16: Blockchain
	Blockchain Overview
	Blockchain Process

	Blockchain Data Objects
	Response Ports
	Blockchain Data Object Overview Properties
	Creating a Blockchain Data Object

	Blockchain Data Object Operations
	Blockchain Data Object Read Operation Properties
	Blockchain Data Object Write Operation Properties
	Creating a Blockchain Data Object Operation

	Use Case: Using a Blockchain Source to Improve Services in a Vehicle Lifecycle
	Mapping Overview

	Chapter 17: Stateful Computing
	Overview of Stateful Computing
	Windowing Configuration
	Frame
	Partition and Order Keys
	Rules and Guidelines for Windowing Configuration

	Window Functions
	LEAD
	LAG
	Aggregate Functions as Window Functions
	Rules and Guidelines for Window Functions

	Windowing Examples
	Financial Plans Example
	GPS Pings Example
	Aggregate Function as Window Function Example

	Appendix A: Connections Reference
	Connections Overview
	Cloud Provisioning Configuration
	AWS Cloud Provisioning Configuration Properties
	Azure Cloud Provisioning Configuration Properties
	Databricks Cloud Provisioning Configuration Properties

	Amazon Redshift Connection Properties
	Amazon S3 Connection Properties
	Blockchain Connection Properties
	Cassandra Connection Properties
	Confluent Kafka Connection
	General Properties
	Confluent Kafka Broker Properties
	SSL Properties
	Creating a Confluent Kafka Connection Using infacmd

	Databricks Connection Properties
	Google Analytics Connection Properties
	Google BigQuery Connection Properties
	Google Cloud Spanner Connection Properties
	Google Cloud Storage Connection Properties
	Google PubSub Connection Properties
	Hadoop Connection Properties
	Hadoop Cluster Properties
	Common Properties
	Reject Directory Properties
	Blaze Configuration
	Spark Configuration

	HDFS or View File System (ViewFS) Connection Properties
	HBase Connection Properties
	HBase Connection Properties for MapR-DB
	Hive Connection Properties
	JDBC Connection Properties
	JDBC Connection String
	Sqoop Connection-Level Arguments
	Delta Lake JDBC Connection Properties

	JDBC V2 Connection Properties
	Kafka Connection Properties
	General Properties
	Kafka Broker Properties
	SSL Properties
	Creating a Kafka Connection Using infacmd

	Kudu Connection Properties
	Microsoft Azure Blob Storage Connection Properties
	Microsoft Azure Cosmos DB SQL API Connection Properties
	Microsoft Azure Data Lake Storage Gen1 Connection Properties
	Microsoft Azure Data Lake Storage Gen2 Connection Properties
	Microsoft Azure SQL Data Warehouse Connection Properties
	Snowflake Connection Properties
	Creating a Connection to Access Sources or Targets
	Creating a Hadoop Connection
	Configuring Hadoop Connection Properties
	Cluster Environment Variables
	Cluster Library Path
	Common Advanced Properties
	Blaze Engine Advanced Properties
	Spark Advanced Properties

	Appendix B: Data Type Reference
	Data Type Reference Overview
	Transformation Data Type Support in a Non-native Environment
	Complex File and Transformation Data Types
	Avro Data Types and Transformation Data Types
	JSON Data Types and Transformation Data Types
	ORC Data Types and Transformation Data Types
	Parquet Data Types and Transformation Data Types

	Flat File and Transformation Data Types
	Hive Data Types and Transformation Data Types
	Hive Complex Data Types

	Sqoop Data Types
	Aurora Data Types
	IBM DB2 and DB2 for z/OS Data Types
	Greenplum Data Types
	Microsoft SQL Server Data Types
	Netezza Data Types
	Oracle Data Types
	Teradata Data Types
	Teradata Data Types with TDCH Specialized Connectors for Sqoop
	Vertica Data Types

	Appendix C: Function Reference
	Function Support in a Non-native Environment
	Function and Data Type Processing

	Index

