
Informatica® Cloud Application Integration
May 2024

Invoke

Informatica Cloud Application Integration Invoke
May 2024

© Copyright Informatica LLC 1993, 2024

Publication Date: 2024-05-07

Table of Contents

Preface . 5

Chapter 1: Runtime tasks for processes. 6
Publishing a process. 6

Unpublishing a process. 8

Invoking Processes Deployed to the Cloud Server. 8

Web Services and SOAP Endpoints. 8

REST and Process Designer SOAP Endpoints to Access Message Events. 11

Rules and guidelines for SOAP endpoints. 12

Invoking Processes Deployed to the Secure Agent. 13

Invoking Processes Deployed to Secure Agent Groups. 14

Invoking processes using HTTP verbs. 14

HTTP verb functions. 16

REST Endpoints and Data Conversion. 16

Swagger JSON specification of a process. 17

OpenAPI JSON specification of a process. 19

Running a process. 20

Creating a process input. 21

Running a process with process inputs . 22

Deleting a process input . 23

Rules and guidelines for process inputs . 24

Activity execution limit restriction for process invocations. 25

Process termination. 25

Process retention. 26

Chapter 2: Runtime tasks for guides. 27
Publishing a guide. 27

Unpublishing a guide . 28

Running a guide. 29

Embedding a guide within a third-party application. 29

Guide termination. 29

Guide retention. 29

Chapter 3: Publishing Application Integration assets in bulk. 30

Chapter 4: Unpublishing Application Integration assets in bulk. 32
Unpublishing dependent assets . 33

Chapter 5: XML parsing. 36

Table of Contents 3

Appendix A: HTTP response status codes. 37

4 Table of Contents

Preface
Use Invoke to learn how to deploy Application Integration assets.

5

C h a p t e r 1

Runtime tasks for processes
After you create a process, you can perform the following runtime tasks:

Publish the process

You must publish a process to invoke or run the process. When you publish a process, Application
Integration generates service endpoint URLs, a Swagger file, an OpenAPI 3.0 file, and a WSDL file for the
process. You can use the service endpoint URLs to invoke the process. You can use the Swagger,
OpenAPI 3.0, and WSDL files to view the API definitions of the process.

Invoke the process

You can invoke the process by deploying it to the Cloud Server, a specific Secure Agent, or a Secure
Agent group. You can use different HTTP verbs to invoke a process.

Create process inputs and run the process with process inputs

After you publish a process and create process inputs, you can run the process with process inputs to
test it. After you run the process, you can view details of the successful and unsuccessful executions of
the process instances.

Publishing a process
You must publish a process to invoke or run the process.

You can also publish multiple processes in bulk. For more information, see Chapter 3, “Publishing Application
Integration assets in bulk” on page 30.

When you publish a process, Application Integration activates the API. It generates service URLs, a Swagger
file, an OpenAPI 3.0 file, and a WSDL file for the process. You can use the service endpoint URLs to invoke the
process. You can use the Swagger, OpenAPI 3.0, and WSDL files to view the API definitions of the process.

If you edit a published process, you must publish the process again for the changes to get reflected.
Otherwise, the process status changes to Outdated in the Property Details dialog box and on the Explore
page. The Outdated status indicates that the process contains unpublished changes.

1. On the Explore page, navigate to the process that you want to publish and click Publish.

Application Integration publishes the process and activates the API. It generates the service URLs, a
Swagger file, an OpenAPI 3.0 file, and a WSDL file.

Note: If you do not specify the allowed groups or allowed users, or allow anonymous access for the
process, Application Integration does not generate the service URLs, Swagger file, OpenAPI 3.0 file, and
WSDL file.

6

2. On the Actions menu, click Properties Detail to view the API status, generated service URLs, Swagger
file, OpenAPI 3.0 file, and WSDL file.

The Properties Detail dialog box appears.

The following image shows the Properties Detail dialog box:

The status indicates that the API is active.

Note: When you publish a process from Application Integration for the first time, the API is activated and
displayed on the APIs page in Application Integration Console. Later, when you activate or deactivate the
API from the APIs page, Application Integration also updates the API status in the Properties Detail
dialog box. Republishing a process with an inactive API status does not activate the API. You must
activate the API from the APIs page to make the API available for the user. For more information about
activating and deactivating the API, see APIs in the Monitor help.

You can also view the service URL and SOAP service URL, and use them to invoke the process. The
Endpoints section indicates if the process is configured to only accept HTTP authorization requests
from the API Gateway.

You can click the View Swagger File, View OpenAPI 3.0 File, and View WSDL File links to view the
associated Swagger file, OpenAPI 3.0 file, and WSDL file.

Publishing a process 7

Unpublishing a process
To edit the process name or API name, or disable a published process, you must unpublish the process. You
cannot call an unpublished process from the service endpoint URLs. Therefore, after you unpublish a process,
you must update the associated API clients accordingly.

1. On the Explore page, navigate to the process that you want to unpublish.

2. On the Actions menu, click Unpublish.

Application Integration unpublishes the process and removes the API from the APIs page in Application
Integration Console. It disables the service URLs, Swagger file, OpenAPI 3.0 file, and WSDL file.

After you make the necessary changes, publish the process again to activate the API, generate the service
URLs, Swagger file, OpenAPI 3.0 file, and WSDL file. After you publish the process, the process is enabled
again.

Invoking Processes Deployed to the Cloud Server
The following topics describe how you can invoke Process Designer and Process Developer processes
deployed to the Cloud Server.

Web Services and SOAP Endpoints
Process Designer exposes web services through an automatically generated WSDL interface that you can
access and use as a SOAP endpoint. Each web service you interact with contains a set of methods, also
called operations, hosted on an application server. You can invoke these operations remotely in the cloud or
over a network.

When you invoke a process that is deployed to the Cloud Server by using the SOAP Service URL, the
SOAPAction Header is set to the process name by default. However, you can provide a different value in the
header. For more information about using the SOAP endpoints, see “Rules and guidelines for SOAP
endpoints” on page 12.

When you invoke an operation, you create a SOAP message and send it to the web service, typically over
HTTP/ HTTPS. SOAP is a commonly used XML-based messaging protocol used to exchange information.

A web service has a WSDL (Web Services Definition Language) document, an XML description of the
operations and how to invoke them. Every web service you want to interact with must have a service name
and an endpoint URL (the location to which you send SOAP messages in order to invoke the operation).

The caller of the web service need not know anything about the internal details, as the SOAP interface
publishes the available operations. For each call, the web service returns a response message. The response
contains either the information requested or fault information, in case of an error.

This simple SOAP message calls the "Add" method and returns the answer:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:s='http://www.w3.org/2001/XMLSchema'>
 <SOAP-ENV:Body>
 <Add xmlns="http://www. math.org">
 <arg1 xsi:type="s:decimal">100</arg1>
 <arg2 xsi:type="s:decimal">25</arg2>

8 Chapter 1: Runtime tasks for processes

 </Add>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In this case, the response message is as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:s='http://www.w3.org/2001/XMLSchema'>
 <SOAP-ENV:Body>
 <AddResponse xmlns="http://www.math.org">
 <AddResult>125</AddResult>
 </AddResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Definition of Processes Exposed as Web Services

When you define processes with Process Designer, the SOAP endpoint is available for use by SOAP clients
that handle the "xsd:any" payload style, which means the clients can process inputs, outputs and handle
faults.

Process Designer supports the SOAP 1.1 standard with the document/literal message style and encoding
option used by most web services.

With the WSDL interface, you can:

• Define WSDL input and output types with an inline schema based on the process input and output fields or
process objects. The namespace is automatically generated.

• Display the SOAP Service URL in the process details.

• Link to the WSDL definition from the process details.

• Use basic authentication, consistent with REST.

• Generate faults using a Throw step, which allows you to share a single fault and provide a description.

• Generate correlation properties in the WSDL to handle inline message events and boundary conditions.

Invoking Processes Deployed to the Cloud Server 9

To define a SOAP endpoint in Process Designer:

1. In the process properties, choose REST/SOAP as the Start Binding.
The following image shows the Binding property set as REST/SOAP:

2. After you define and publish the process, you can see the SOAP Service URL.
The following image shows the SOAP Service URL:

10 Chapter 1: Runtime tasks for processes

3. Click View WSDL File to open the complete WSDL and view the SOAP message generated for the
process. You can copy the URL to use it as an endpoint.

Note: If a process contains Japanese characters in its name, you might see an error when you view the
WSDL file from a Chrome browser. If you see an error, right-click on the page and select View page
source to view the WSDL file.

REST and Process Designer SOAP Endpoints to Access Message
Events

You can access message events using REST and SOAP 1.1 endpoints generated by Process Designer. If
SOAP 1.2 endpoints are required please use Process Developer to generate these endpoints. To obtain
endpoints of services created using Process Developer, refer to information on policy-driven bindings in the
Process Developer Guide.

Note: When the number of REST or SOAP request exceeds the rate limit within the designated time frame, a
HTTP 429 status code appears.

The following table specifies the pattern for each REST or SOAP 1.1 endpoint based on the type of access
required when you invoke message events.

Invoking Processes Deployed to the Cloud Server 11

The process uses HTTP Basic access authentication when you uncheck Allow anonymous access in the
process Start properties or the Messages properties for message events. You can define a process to
authenticate differently than the callback it receives, in message events or subprocess calls.

Type of Access REST URL Format SOAP 1.1 URL Format

Process with HTTP Basic access
authentication

https://{host}/active-bpel/rt/
{ProcessName}

https://{host}/active-bpel/soap/
{ProcessName}

Process with OAuth2 authentication https://{host}/active-bpel/rt/
{ProcessName}

https://{host}/active-bpel/soap/
{ProcessName}

Process with Anonymous access https://{host}/active-bpel/
public/rt/{TenantName}/
{ProcessName}

https://{host}/active-bpel/public/soap/
{TenantName}/{ProcessName}

Process Message Event with
Anonymous access

https://{host}/active-bpel/
public/rt/{TenantName}/
{ProcessName}/event/
{MessageName}

https://{host}/active-bpel/public/soap/
{TenantName}/{ProcessName}/event/
{MessageName}

Process Message Event with HTTP
Basic access authentication

https://{host}/active-bpel/rt/
{ProcessName}/event/
{MessageName}

https://{host}/active-bpel/soap/
{ProcessName}/event/{MessageName}

Process Message Event in
subProcess with Anonymous
access

https://{host}/active-bpel/
public/rt/{TenantName}/
{SubProcessName}/event/
{MessageName}

https://{host}/active-bpel/public/soap/
{TenantName}/{ProcessName}/event/
{MessageName}
or
https://{host}/active-bpel/public/soap/
{TenantName}/{SubProcessName}/
event/{MessageName}

Process Message Event in
subProcess with HTTP Basic
access authentication

https://{host}/active-bpel/rt/
{SubProcessName}/event/
{MessageName}

https://{host}/active-bpel/soap/
{ProcessName}/event/{MessageName}
or
https://{host}/active-bpel/soap/
{SubProcessName}/event/
{MessageName}

Note: For SOAP requests, you can use the default process or sub process endpoint if the event has the same
access, either anonymous or HTTP Basic access authentication, as the process or sub process.

Rules and guidelines for SOAP endpoints
Consider the following rules and guidelines when a public or an authenticated process call is made:

• If the SOAP URL contains the tenant ID and the service name, the SOAPAction header can be empty or can
have any value to invoke the process.

• If the SOAP URL does not contain the tenant ID or the service name, the SOAPAction header must contain
the respective missing value to invoke the process.

• If the SOAP URL does not contain the tenant ID and the service name, the process invocation fails even if
the SOAPAction header contains a value.

12 Chapter 1: Runtime tasks for processes

Invoking Processes Deployed to the Secure Agent
If you use Secure Agent 30.0 or later, you can use HTTP and HTTPS endpoints to invoke processes deployed
to the Secure Agent.

Use the following sections to construct or access REST and SOAP endpoints to access processes deployed
to the Secure Agent through HTTP or HTTPS. When you deploy Informatica Process Designer (IPD)
processes, the endpoint URL construction for anonymous access is different from the endpoint URL
construction for non anonymous access.

Invoking Process Designer Processes

Type of Access REST Endpoint SOAP 1.2 Endpoint

Non anonymous access of an
IPD process using HTTP.

http://[host][:port]/process-engine/rt/
[serviceName]
Swagger: http://[host][:port]/process-
engine/rt/[serviceName]?swagger

http://[host][:port]/process-engine/
soap/[serviceName]
WSDL: http://[host][:port]/process-
engine/soap/[serviceName]?wsdl

Anonymous access of an IPD
process using HTTP.

http://[host][:port]/process-engine/
public/rt/[serviceName]
Swagger: http://[host][:port]/process-
engine/public/rt/[serviceName]?
swagger

http://[host][:port]/process-engine/
public/soap/[serviceName]
WSDL: http://[host][:port]/process-
engine/public/soap/[serviceName]?
wsdl

Non anonymous access of an
IPD process using HTTPS.

https://[host][:port]/process-engine/rt/
[serviceName]
Swagger: https://[host][:port]/process-
engine/rt/[serviceName]?swagger

https://[host][:port]/process-engine/
soap/[serviceName]
WSDL: https://[host][:port]/process-
engine/soap/[serviceName]?wsdl

Anonymous access of an IPD
process using HTTPS.

https://[host][:port]/process-engine/
public/rt/[serviceName]
Swagger: https://[host][:port]/process-
engine/public/rt/[serviceName]?
swagger

https://[host][:port]/process-engine/
public/soap/[serviceName]
WSDL: https://[host][:port]/process-
engine/public/soap/[serviceName]?
wsdl

Invoking Process Developer Processes

Perform the following steps to get a list of Process Developer SOAP and REST endpoint URLs that you can
invoke:

1. Open the Administrative Services page at

• https://localhost:7443/process-engine/ for HTTPS endpoint URLs.

• http://localhost:7080/process-engine/ for HTTP endpoint URLs.

2. Click Visit the Web Services Listing or Visit the REST Service.

3. Enter the user credentials of an Informatica Cloud Services administrator.

You see a list of SOAP or REST endpoint URLs. Use a SOAP or REST client to invoke these endpoint URLs.

Invoking Processes Deployed to the Secure Agent 13

Invoking Processes Deployed to Secure Agent
Groups

You can invoke a process that you deploy to a specific Secure Agent or to a Secure Agent group through a
SOAP/REST URL. If you deploy a process to a Secure Agent group, you can also invoke the process through a
load balancing URL.

You can invoke a process in the following ways:
Invoke a Process Deployed to a Specific Secure Agent

You can deploy a process to a specific Secure Agent within a Secure Agent group. To invoke such a
process, use the SOAP/REST service URLs on the Design Home page. The SOAP/REST service URLs
reflect the properties of the Secure Agent you deployed the process to.

Invoke a Process Deployed to a Secure Agent Group

You can deploy a process to a Secure Agent group. To invoke such a process, use the SOAP/REST
service URLs on the Design Home page. The SOAP/REST URLs reflect the properties of the master
Secure Agent of the Secure Agent group.

If you deploy a process to a Secure Agent group and you have a load balancer, you can create a load
balancer URL. You can invoke the process through the load balancer URL in addition to the SOAP/REST
service URLs on the Design Home page.

To learn more about Secure Agent groups, see Secure Agent Services in the Administrator help.

Invoking processes using HTTP verbs
You can use the following HTTP verbs to invoke a process:

• GET

• POST

• PATCH

• PUT

• DELETE

You can configure a single process to use different HTTP verbs and perform different CRUD operations
based on the HTTP verb that is used in a request. You can use XQuery functions to determine the HTTP verb
and the resource path segments that are used in a request.

For example, you want to update a CRM system with customer records. You might want to perform one or
more of the following tasks:

• Use the GET verb to read a customer record.

• Use the POST verb to insert a new customer record.

• Use the PATCH verb to update an existing customer record.

• Use the PUT verb to overwrite an existing customer record.

• Use the DELETE verb to delete an existing customer record.

You can configure a single process to perform all these operations as shown in the following image:

14 Chapter 1: Runtime tasks for processes

The Assignment step in the process uses the getRequestHTTPVerb function to determine the HTTP verb that
is used in the request. The following image shows the getRequestHTTPVerb function under the Request
Context section in the Expression Editor:

Based on the HTTP verb that is used, the Decision step branches out to different paths to perform different
CRUD operations.

To view a video about using different HTTP verbs to invoke a process, see the following community article:

https://www.youtube.com/watch?v=bQaQ_KmBO4o

Invoking processes using HTTP verbs 15

https://www.youtube.com/watch?v=bQaQ_KmBO4o

HTTP verb functions
Use HTTP verb functions to retrieve the HTTP verb and the resource path segments that are used in a
request. The HTTP verb functions are available under the Request Context section of the Expression Editor.

You can use the following HTTP verb functions:

getRequestHTTPVerb

Use the getRequestHTTPVerb function to determine the HTTP verb that is used in a request. The function
retrieves the HTTP verb from the request and returns one of the following responses in a string format:

• GET

• POST

• PATCH

• PUT

• DELETE

getResourcePathSegments

Use the getResourcePathSegments function to retrieve all or specific resource path segments of REST
requests. The function returns the values as a string of tokens.

For example, consider the following request URL:

https://na1.ai.dm-us.informaticacloud.com/active-bpel/rt/InitiateOrder/Orders/
OrderID_100/quantity/5

If you use the request:getResourcePathSegments() expression, you see the following response:

[Orders, OrderID_100, quantity, 5]

To retrieve a specific resource path segment, use a numeric qualifier to denote the position of the
resource path segment from the process name.

For example, to retrieve the OrderID_100 segment alone in the response, use the following expression:

request:getResourcePathSegments()[2]

Note: You cannot use the getResourcePathSegments function to fetch the resource path segments of
SOAP requests and message events. You cannot use the getResourcePathSegments function to fetch
the host context.

REST Endpoints and Data Conversion
REST Endpoints

You can expose a process as a REST service through a URL that uses the following format:

https://mySPIwebAdress:portNumber/active-bpel/services/REST/<process_name>?var=value
You can use one of the following verbs to invoke a process:

• GET

• POST

16 Chapter 1: Runtime tasks for processes

• PATCH

• PUT

• DELETE

Use JSON when you send a request with a POST verb.

For example, the following snippet shows a JSON request that is used with a POST verb:

{
 "param_A" : "abc", // NOTE: string, no $t
 "param_B" : 123, // NOTE: typed as a number
 "param_C" : true // NOTE: typed as bool
 }

The request returns the following response:

{
 "field_A" : "abc",
 "field_B" : 123,
 "field_C" : true
 }

Use query parameters when you send a request with the GET verb.

For example, the following snippet shows the same request with a GET verb:

GET/rt/ProcessName?param_A=abc¶m_B=123¶m_C=true
Simple Array Handling

You can place a JSON payload that contains an array of simple types in a process object. For example, in a
process, you can define an input field named orders of type ObjectList. In the orders input field, you can
reference a process object named OrderNumber that contains a single field.

The following snippet shows the JSON array that can be sent:

{
 "orders" : ["O-213", "O-425"]
}

Process Designer transforms this internally into:

{
 "orders" : [{OrderNumber : "O-213"},
 {OrderNumber : "O-425"}]
}

When an output field is serialized to JSON, Process Designer transforms the objects into an array of simple
types.

Swagger JSON specification of a process
You can view the Swagger JSON specification of the payload of a process that you create in Informatica
Process Designer.

The Swagger JSON specification of a process contains process payload features such as input, output, and
process objects. The Swagger JSON specification contains the standard Swagger property requirements of
version, info, host, basePath, schemes, and paths.

Swagger JSON specification of a process 17

Accessing the Swagger JSON specification of a process

To access the Swagger JSON description of a process, perform one of the following tasks:

• Open the process for which you want to view the Swagger JSON specification and click Actions >
Properties Detail. Then, click View Swagger File next to the service URL.
The following image shows the link to access the Swagger file:

• Open the process and click Actions > Properties Detail > Copy next to the service URL. Then, in a browser
window, paste the service URL and append ?Swagger to the service URL.
For example, if the service URL is https://bs1e1.rt.informaticacloud.com/active-bpel/rt/
sample_process, paste https://bs1e1.rt.informaticacloud.com/active-bpel/rt/sample_process?
Swagger in the browser window.

The Swagger JSON specification for the processes shows the HTTP response status code, step name, and
the HTTP response header name and type that you configured in the End step or the Milestone step.
However, if a process contains a Receive step, the HTTP response status code remains 200 OK irrespective
of the configuration. For more information about the response status codes that Application Integration
supports, see Appendix A, “HTTP response status codes” on page 37.

Using the Swagger JSON specification of a process

You can use the Swagger JSON specification of a process with third-party tools. For example, you can use a
Swagger JSON specification of a process with the Swagger.io codegen tool,
http://swagger.io/swagger-codegen/.

18 Chapter 1: Runtime tasks for processes

http://swagger.io/swagger-codegen/

You can use the Swagger JSON description with internal tools. For example, you can use the Swagger JSON
specification of a process to create a file that you use to import a service connector. For more details, see
Design > Creating Service Connectors > Generating Service Connectors.

OpenAPI JSON specification of a process
The OpenAPI specification, previously called Swagger specification, is a format for describing REST API
endpoints.

Application Integration supports OpenAPI specification version 3.0.1. You can view the OpenAPI specification
of the payload of a process that you create in Process Designer.

The OpenAPI JSON specification of a process contains process payload information such as input, output,
descriptions, and process objects. The OpenAPI specification specifies the standard OpenAPI property
requirements of version, info, servers, paths, and components.

The OpenAPI 3.0.1 specification is more descriptive than Swagger 2.0 and allows you to create complex
documents.

Accessing the OpenAPI JSON specification of a process

To access the OpenAPI 3.0 specification of a process, perform the following steps:

1. On the Explore page, navigate to the process for which you want to view the OpenAPI specification.

2. On the Actions menu, click Properties Detail to view the generated OpenAPI file.
The Properties Detail dialog box appears.

The following image shows the link to access the OpenAPI 3.0 file:

OpenAPI JSON specification of a process 19

3. Click View OpenAPI 3.0 File to view the associated OpenAPI file.
The OpenAPI 3.0.1 specification opens on a new tab.

The OpenAPI 3.0.1 specification for the processes shows the HTTP response status code, step name, and
the HTTP response header name and type that you configured in the End step or the Milestone step.
However, if a process contains a Receive step, the HTTP response status code remains 200 OK irrespective
of the configuration. For more information about the response status codes that Application Integration
supports, see Appendix A, “HTTP response status codes” on page 37.

Running a process
After you publish a process, you can run a process to test it. You can create process inputs and run the
process with process inputs. After you run the process, you can view details of the successful and
unsuccessful executions of the process instances.

The following video shows you how to create process inputs and test a process with process inputs:

https://knowledge.informatica.com/s/article/DOC-18509

20 Chapter 1: Runtime tasks for processes

https://knowledge.informatica.com/s/article/DOC-18509

Creating a process input
After you publish a process, you can create a process input and use it to run a process for testing purposes.
You can also create multiple process inputs and run a process with all the inputs.

You can create a process input in the JSON or XML format. Then, validate and save the process input.

When you export, copy, or move a process that contains process inputs, the process inputs are also retained.

1. On the Explore page, navigate to the process for which you want to create a process input.

2. On the Actions menu, click Run Using.

The Test Process Input Collection page opens.

The following image shows the Test Process Input Collection page:

3. Click New Input.

4. Enter a name for the process input and click Save.

The name of the process input must not exceed 80 characters.

The Process Input section is populated with the input fields required for the process.

The following image shows the Process Input section populated with input fields for an Employee
process object:

5. From the Encoding list, select JSON or XML based on the format that you want to work with and specify
the process input.

Note: If the process contains input fields with space characters in them, select JSON as the encoding
type.

6. Click the Validate icon to validate the syntax of the process input.

A confirmation message appears stating if the validation was successful or not. If the validation fails,
correct the syntax of the process input, and validate again.

7. Click Save to save the process input.

You can click Save As to save the process input with a different name. You can also click the Reset icon
reset a process input to the last saved process input.

After you create process inputs, you can run the process with the required inputs.

Running a process 21

Running a process with process inputs
After you publish a process and create process inputs, you can run the process with process inputs to test it.
After you run the process, you can view details of the successful and unsuccessful executions of the process
instances.

1. On the Explore page, navigate to the process that you want to run with one or more process inputs.

2. Perform one of the following steps:

• To run a process with the last successfully run process input, open the Actions menu, and click Run.
The Process Execution Status page opens displaying details of the successful and unsuccessful
process executions.

Note: If you had not created process inputs or run the process before, the Test Process Input
Collection page opens from where you can create process inputs and run the process.

• To run a process with a specific process input or all the process inputs, open the Actions menu and
click Run Using. The Test Process Input Collection page opens.

The following image shows the Test Process Input Collection page:

Note: The Run and Run Using options are disabled if the process contains unsaved or unpublished
changes. To run the process, you must save and publish the process again.

3. Perform one of the following steps:

• To run the process with a specific process input, select the process input and click Run.

• To run the process with all the process inputs, click Run All.

Application Integration runs the process with the specified inputs. After the process execution is
complete, the Process Execution Status page opens displaying details of the successful and
unsuccessful process executions. For long running processes, it might take some time for the Process
Execution Status page to appear.

The following image shows the Process Execution Status page:

22 Chapter 1: Runtime tasks for processes

4. Click the links under the Successful executions or Unsuccessful executions sections to view details of
the process execution.

The process run ID is appended to the link. You can use the run ID to verify the process execution details
in the Application Integration Console.

Deleting a process input
You can delete a process input if you do not need it.

1. On the Explore page, navigate to the process for which you want to delete a process input.

2. On the Actions menu, click Run Using.

The Test Process Input Collection page opens.

The following image shows the Test Process Input Collection page:

Running a process 23

3. Select the process input that you want to delete, and click the Delete icon.

A message appears prompting you to confirm the process input deletion.

4. Click Delete to proceed with the deletion or click Cancel to cancel the deletion.

Rules and guidelines for process inputs
Consider the following rules and guidelines when you create process inputs to run a process:

• If a process contains input fields with space characters in them, you cannot use the XML encoding type
while creating the process input.

• You cannot create a process input of the Image, Attachment, and Attachments data types.

• If you create a process input of the Rich Text Area data type, you must verify that the process input is
properly encoded. You must encode < > as < >.
Consider the name of the text input field as InputField and the text input value as HelloWorld in bold
font. For this example, you must edit the process input code as follows:

{ "InputField": " <bold> HelloWorld </bold> " }
• If you create a process input of the Any data type, you must specify the process input as a key value pair.

Consider the name of the input field of the Any data type as InputFieldAnyType and the value as
valueHelloWorld. For this example, the process input code with JSON encoding must be as follows:

 {{ "InputFieldText": "HelloWorld", "InputFieldAnyType": { "key": "valueHelloWorld" }}
If you select the encoding type as XML, the process input code must be as follows:

<root>
<InputFieldText>HelloWorld</InputFieldText>
<InputFieldAnyType>
<key>HelloWorld</key>
</InputFieldAnyType>
</root>

• In the Process Objects section, only the input fields that contain process objects appear.

• When you make changes to the input fields in the published process, you must manually refresh the Run
Using dialog box to see the changes.

• When you make changes to the process input and cancel the changes without saving them, the changes
persist.

• If a process contains an output field of the list of number data type with a precision greater than 7, the
value is displayed in the exponential format for JSON payloads in the advanced view of a process in
Application Integration Console.

24 Chapter 1: Runtime tasks for processes

Activity execution limit restriction for process
invocations

If the process invocation fails due to an activity limit breach of 10,000, you cannot run the process for the
next 15 minutes and no new instance of the process deployment will be created during this period.

When you run a process that does not have an appropriate retry or loop breaker mechanism, the following
error occurs:

{"error":{"code":429,"message":"The last execution of this process has exceeded the
activity execution limit at [07-Sep-2023 06:55:23 GMT]. As a result, new instances of
this process deployment will not be created for a period of [15] minutes. You can review
the process logs to find out the root cause of the activity limit breach."}}

You can review the process logs to find out the root cause of the activity limit breach.

You can resume the process execution after the 15-minute time limit expires or by republishing the process.

When you publish a process that goes into an infinite loop on a Secure Agent cluster, you might encounter a
conflict in the behavior and not see the error message every time you run the process. This is because the in-
memory cache used to store the process instances is node-specific and not broadcasted to all the nodes in
the Secure Agent cluster. The system automatically chooses the nodes, and in a multi-node cluster setup,
there might be cases where a process is rejected on one node but executed on another node. Each node
maintains its own cache, allowing for independent handling of process failures and potential retries
depending on the node where the process is executed.

Example

Process A during its execution on node 1 encounters a 429- Too Many Requests error. As a result, an entry
is added to the in-memory cache specific to node 1, indicating that process A failed due to an activity limit
breach. The new instances of process A on node 1 will not be created for a period of 15 minutes.

However, if the process A execution is routed to node 2, node 2 will attempt to execute the process again. If
process A encounters the same 429- Too Many Requests error on node 2, a new entry will be added to the
cache specific to node 2.

Note: The activity execution limit restriction for process invocations feature is in technical preview. Technical
preview functionality is supported but is unwarranted and is not production-ready. Informatica recommends
that you use in non-production environments only. Informatica intends to include the preview functionality in
an upcoming GA release for production use, but might choose not to in accordance with changing market or
technical circumstances. For more information, contact Informatica Global Customer Support.

Process termination
If a non-persistent process runs for longer than 3600 seconds, that is, 1 hour, it will automatically time out
and get terminated. The timeout ensures that system resources are not blocked.

Activity execution limit restriction for process invocations 25

Process retention
Processes follow the retention (purge) policy set by Informatica.

If automated database maintenance is enabled, the default retention days set for all processes are applied to
the process. By default, a completed process instance remains in the Process Server database for 24 hours,
that is, 1 day. A faulted process instance remains in the Process Server database for 72 hours, that is, 3 days.
The process instances are automatically deleted after the retention period expires. The server logs remain in
the Process Server database for 30 days.

The process instance retention setting configured for an individual process in Application Integration
Console takes precedence over the default retention days setting for all processes.

Note: The retention period information in this topic might change without prior notice.

For more information about process instance retention, see Process Instance Retention.

26 Chapter 1: Runtime tasks for processes

https://docs.informatica.com/integration-cloud/cloud-application-integration/current-version/monitor/processes/deployed-process-version-detail-page/process-instance-retention.html

C h a p t e r 2

Runtime tasks for guides
After you create a guide, you can perform the following runtime tasks:

Publish the guide

You must publish a guide to run the guide or embed the guide within a third-party application.

Run the guide

After you publish a guide, you can run the guide from Guide Designer to test the guide.

Embed the guide within a third-party application

After you publish a guide, Application Integration generates an embed code. You can use the embed
code to embed the guide within a third-party application.

Publishing a guide
You must publish a guide to run the guide or embed the guide within a third-party application.

You can also publish multiple guides in bulk. For more information, see Chapter 3, “Publishing Application
Integration assets in bulk” on page 30.

If you edit a published guide, you must publish the guide again for the changes to get reflected. Otherwise,
the guide status changes to Outdated in the Property Details dialog box and on the Explore page. The
Outdated status indicates that the guide contains unpublished changes.

1. On the Explore page, navigate to the guide that you want to publish and click Publish.

Application Integration publishes the guide, and generates an execution URL and embed code.

2. On the Actions menu, click Properties Detail to view the generated execution URL and embed code.

The Properties Detail dialog box appears.

The following image shows the Properties Detail dialog box:

27

3. In the Execution URL field, you can view the execution URL that you can use to run the guide.

4. In the Embed Code section, click Copy to copy the embed code.

You can then use the embed code to embed the guide within a third-party application.

Note: If the third-party application doesn't support the embed code, you can use the execution URL to run
the guide.

Unpublishing a guide
To edit the guide name or disable a published guide, you must unpublish the guide. You cannot invoke an
unpublished guide from a third-party application. Therefore, after you unpublish a guide, you must update the
third-party application accordingly.

1. On the Explore page, navigate to the guide that you want to unpublish.

2. On the Actions menu, click Unpublish.

Application Integration unpublishes the guide, and disables the guide and the embed code.

After you make the necessary changes, publish the guide again to generate the embed code and enable the
guide.

28 Chapter 2: Runtime tasks for guides

Running a guide
After you publish a guide, you can run the guide to test it.

If the guide applies to a Salesforce object, run the guide in Salesforce. For more information about running a
guide in Salesforce, see Salesforce and Application Integration Guide.

Perform the following steps to run a guide from Guide Designer:

1. On the Explore page, navigate to the guide that you want to run.

2. On the Actions menu, click Run.

Note: The Run option is disabled if the guide contains unsaved or unpublished changes. To run the
guide, you must save and publish the guide again.

The guide opens in a browser.

Embedding a guide within a third-party application
When you publish a guide, Application Integration generates an embed code for the guide. The embed code
contains an <iframe> tag, which specifies an inline frame. You can use the inline frame to embed the guide
into an HTML document of a third-party application.

Guide termination
If a user does not provide an input for a guide and leaves it running, the guide becomes inactive. Inactive
guides are automatically terminated after 7 days. If an inactive guide is at a Milestone step, the guide is
automatically terminated after 14 days.

Guide retention
Guides follow the retention (purge) policy set by Informatica.

If automated database maintenance is enabled, the default retention days set for all guides are applied to the
guides. By default, a completed guide instance remains in the Process Server database for 24 hours, that is, 1
day. A faulted guide instance remains in the Process Server database for 72 hours, that is, 3 days. The guide
instances are automatically deleted after the retention period expires. The server logs remain in the Process
Server database for 30 days.

Note: The retention period information in this topic might change without prior notice.

Running a guide 29

C h a p t e r 3

Publishing Application Integration
assets in bulk

You can use the publish resource to publish a single Application Integration asset or multiple Application
Integration assets simultaneously and save time. You can publish processes, guides, app connections, and
service connectors in bulk.

The assets are published in the same order as given in the request payload. You can publish a maximum of
199 assets at a time.

1. In a REST client, use a POST request with the following URL:

<Cloud Application Integration POD URL>/active-bpel/asset/v1/publish
2. Add the following headers:

Key Value

Accept application/vnd.api+json

Content-Type application/vnd.api+json

INFA-SESSION-ID Use the login resource to get the session ID. For more information about the login resource,
see REST API Reference in the Data Integration help.

3. In the body, use the assetPaths attribute to specify one or more locations and names of the Application
Integration assets that you want to publish.

Use the following format:

{

 "data": {
 "type": "publish",
 "attributes": {
 "assetPaths": [
 "Explore/<location-of-the-process>/<name-of-the-
process>.PROCESS.xml",
 "Explore/<location-of-the-guide>/<name-of-the-
guide>.GUIDE.xml",
 "Explore/<location-of-the-appconnection>/<name-of-the-
appconnection>.AI_CONNECTION.xml",

 "Explore/<location-of-the-serviceconnector>/<name-of-the-
serviceconnector>.AI_SERVICE_CONNECTOR.xml"
]
 }
 }
}

30

4. Send the POST request.

You see a publish job ID and a success or failure response. If the request fails, the response also gives
the error details.

The following snippet shows a sample response:

{
 "data": {
 "type": "publish",
 "id": "690465325825028096",
 "attributes": {
 "jobState": "NOT_STARTED",
 "jobStatusDetail": {},
 "startedBy": "autouser_pod1",
 "startDate": "2022-03-21T07:42:42.000+0000",
 "totalCount": 1,
 "processedCount": 0,
 "assetPaths": [
 "Explore/Default/BulkPublishProcessToPublishOnCloud.PROCESS.xml"
]
 }
 },
 "links": {
 "self": https://na1.ai.dm-us.informaticacloud.com/active-bpel/asset/v1/
publish/690465325825028096,
 "status": https://na1.ai.dm-us.informaticacloud.com/active-bpel/asset/v1/
publish/690465325825028096/Status
 }
}

The publish job ID in this example is 690465325825028096.

5. To view information about the publish status and publish job, use a GET request with the following URLs:

URL Description

<Cloud Application Integration POD URL>/active-bpel/
asset/v1/publish/<publishId>/Status

Displays the publish status.

<Cloud Application Integration POD URL>/active-bpel/
asset/v1/publish/<publishId>

Displays the publish information.

 31

C h a p t e r 4

Unpublishing Application
Integration assets in bulk

You can use the unpublish resource to unpublish a single Application Integration asset or multiple
Application Integration assets simultaneously and save time. You can unpublish processes, guides, app
connections, and service connectors in bulk.

The assets are unpublished in the same order as given in the request payload. You can unpublish a maximum
of 199 assets at a time.

1. In a REST client, use a POST request with the following URL:

<Cloud Application Integration POD URL>/active-bpel/asset/v1/unpublish
For example: https://na1.dm-us.informaticacloud.com/active-bpel/asset/v1/unpublish

2. Add the following headers:

Key Value

Accept application/vnd.api+json

Content-Type application/vnd.api+json

INFA-SESSION-ID Use the login resource to get the session ID. For more information about the login resource,
see REST API Reference in the Data Integration help.

3. In the body, use the assetPaths attribute to specify one or more locations and names of the Application
Integration assets that you want to unpublish.

Use the following format:

{

 "data": {
 "type": "unpublish",
 "attributes": {
 "assetPaths": [
 "Explore/<location-of-the-process>/<name-of-the-
process>.PROCESS.xml",
 "Explore/<location-of-the-guide>/<name-of-the-
guide>.GUIDE.xml",
 "Explore/<location-of-the-appconnection>/<name-of-the-
appconnection>.AI_CONNECTION.xml",

 "Explore/<location-of-the-serviceconnector>/<name-of-the-
serviceconnector>.AI_SERVICE_CONNECTOR.xml"
]

32

 }
 }
}

4. Send the POST request.

You see an unpublish job ID and a success or failure response. If the request fails, the response also
gives the error details.

The following snippet shows a sample response:

{
 "data": {
 "type": "unpublish",
 "id": "547654765345095786",
 "attributes": {
 "jobState": "NOT_STARTED",
 "jobStatusDetail": {},
 "startedBy": "autouser_pod1",
 "startDate": "2022-03-21T07:42:42.000+0000",
 "totalCount": 1,
 "processedCount": 0,
 "assetPaths": [
 "Explore/Default/BulkUnpublishProcessToUnpublishOnCloud.PROCESS.xml"
]
 }
 },
 "links": {
 "self": https://na1.ai.dm-us.informaticacloud.com/active-bpel/asset/v1/
unpublish/547654765345095786,
 "status": https://na1.ai.dm-us.informaticacloud.com/active-bpel/asset/v1/
unpublish/547654765345095786/Status
 }
}

The unpublish job ID in this example is 547654765345095786.

5. To view information about the unpublish status and unpublish job, use a GET request with the following
URLs:

URL Description

<Cloud Application Integration POD URL>/active-bpel/
asset/v1/unpublish/<unpublishId>/Status

Displays the unpublish status.

<Cloud Application Integration POD URL>/active-bpel/
asset/v1/unpublish/<unpublishId>

Displays the unpublish information.

Unpublishing dependent assets
When you have dependent assets, unpublishing them simultaneously might result in issues. You must first
unpublish the dependent assets, and then send the bulk unpublish request.

For example, you have an app connection that uses a service connector, and both the assets are published.
When you send a bulk unpublish request for the service connector, in the status response, the overall
jobState is set to ERROR, and the itemState and itemStatusDetail provide the error details. To resolve this
issue, you must first unpublish the dependent assets and send the bulk unpublish request again.

Note: If the itemState for an asset is NOT_FOUND, the jobState is set to WARNING. If the itemState for an
asset is ERROR, the jobState is set to ERROR. If the itemState in the response contains both the ERROR and
NOT_FOUND values, the jobState is set to ERROR.

Unpublishing dependent assets 33

The following snippet shows a sample response:

{
 "data": {
 "type": "unpublishStatus",
 "id": "937604908948291875",
 "attributes": {
 "jobState": "ERROR",
 "jobStatusDetail": {
 "itemStateSummary": {
 "NOT_FOUND": 1,
 "ERROR": 1,
 "SUCCESS": 1
 }
 },
 "startedBy": "user_na1",
 "startDate": "2024-02-01T07:07:10.000+0000",
 "endDate": "2024-02-01T07:07:15.000+0000",
 "totalCount": 3,
 "processedCount": 3,
 "itemDetail": [
 {
 "itemIndex": 0,
 "itemGUID": "5rsIMYlvQECk50YsHsOCiD",
 "itemState": "SUCCESS",
 "itemStatusDetail": "",
 "itemStartDate": "2024-02-01T07:07:10.000+0000",
 "itemEndDate": "2024-02-01T07:07:12.000+0000",
 "assetPath": "Explore/BulkPublishAndUnpublish/MyFolder/
Process1.PROCESS.xml"
 },
 {
 "itemIndex": 1,
 "itemState": "NOT_FOUND",
 "itemStatusDetail": "",
 "itemStartDate": "2024-02-01T07:07:12.000+0000",
 "itemEndDate": "2024-02-01T07:07:12.000+0000",
 "assetPath": "Explore/BulkPublishAndUnpublish/MyFolder/
Process11.PROCESS.xml"
 },
 {
 "itemIndex": 2,
 "itemGUID": "hib6l1IaggMg9GERey3NcN",
 "itemState": "ERROR",
 "itemStatusDetail": "There is/are 1 entry(ies) that should be
unpublished first. Dependent entry(ies): AppConnection1-2",
 "itemStartDate": "2024-02-01T07:07:12.000+0000",
 "itemEndDate": "2024-02-01T07:07:13.000+0000",
 "assetPath": "Explore/BulkPublishAndUnpublish/
ServiceConnectorGoogle.AI_SERVICE_CONNECTOR.xml"

 }
]
 }
 },
 "links": {
 "self": http://na1.ai.dm-us.informaticacloud.com/active-bpel/asset/v1/
unpublish/937604908948291875/Status,
 "unpublish": http://na1.ai.dm-us.informaticacloud.com/active-bpel/asset/v1/
unpublish/937604908948291875
 }
}

Alternatively, when you send a bulk unpublish request using a request payload, the assets are unpublished in
the same order as given in the request payload. You must specify the assets in the order of their dependency
to unpublish them simultaneously in the same request.

34 Chapter 4: Unpublishing Application Integration assets in bulk

For example, consider that you have a service connector that is used in an app connection and process, and
all the assets are published. You must specify the assets in the following order in the request payload to
unpublish them simultaneously:

1. Service connector

2. App connection

3. Process

Unpublishing dependent assets 35

C h a p t e r 5

XML parsing
When you invoke Application Integration assets that contain XML data, Application Integration maintains the
XML structure. However, Application Integration might not maintain the same sequence of nodes.

36

A p p e n d i x A

HTTP response status codes
The HTTP response status codes are three-digit codes generated by a server in response to client requests.
Response status codes serve as a quick and concise means of communicating how the server handled the
client's request.

The following table shows the response status codes that Application Integration supports:

Response Status Code Reason Description

100 Continue Indicates that the initial part of
a request has been received
and has not yet been rejected
by the server.

101 Switching Protocols Indicates a protocol to which
the server switches.

102 Processing Indicates that the server has
accepted the complete request
but has not yet completed it.

200 OK Indicates that the request has
succeeded.

201 Created Indicates that the request has
been fulfilled and has resulted
in one or more new resources
being created.

202 Accepted Indicates that the request has
been accepted for processing
but the processing has not
been completed.

203 Non-Authoritative Information Indicates that the request was
successful but the enclosed
payload has been modified
from the origin server's 200
(OK) response by a
transforming proxy.

204 No Content Indicates that the server has
successfully fulfilled the
request and there is no
additional content to send in
the response payload body.

37

Response Status Code Reason Description

205 Reset Content Indicates that the server has
fulfilled the request and wants
the user agent to reset the
document view to its original
state as received from the
origin server.

206 Partial Content Indicates that the request has
succeeded and the body
contains the requested ranges
of data as described in the
Range header of the request.

207 Multi-Status Conveys information about
multiple resources in situations
where multiple status codes
might be appropriate.

208 Already Reported Indicates that the members of
a Distributed Authoring and
Versioning (DAV) binding have
already been enumerated in a
preceding part of the multi-
status response and are not
being included again.

226 IM Used Indicates that the server has
fulfilled a client's request for a
given resource, and the
response is a representation of
the result of one or more
instance-manipulations applied
to the current instance.

300 Multiple Choices Indicates that the request has
more than one possible
response. The user-agent or
the user should choose one of
them.

301 Moved Permanently Indicates that the target
resource has been assigned a
new permanent URI and any
future references to this
resource must use one of the
enclosed URIs.

302 Found Indicates that the target
resource resides temporarily
under a different URI.

38 Appendix A: HTTP response status codes

Response Status Code Reason Description

303 See Other Indicates that the server is
redirecting the user agent to a
different resource, as indicated
by a URI in the Location header
field, which is intended to
provide an indirect response to
the original request.

304 Not Modified Indicates that a conditional
GET or HEAD request has been
received and would have
resulted in a 200(OK) response
if the condition had not
evaluated as false.

305 Use Proxy Indicates a deprecated status
code.

306 (Unused) Indicates a reserved code
defined in a previous version of
HTTP/1.1, which is no longer
used.

307 Temporary Redirect Indicates that the target
resource resides temporarily
under a different URI and the
user agent must not change
the request method if it
performs an automatic
redirection to that URI.

308 Permanent Redirect Indicates that the target
resource has been assigned a
new permanent URI and any
future references to this
resource must use one of the
enclosed URIs.

400 Bad Request Indicates that the server
cannot or will not process the
request due to something that
is perceived to be a client error
such as a malformed request
syntax, invalid request
message framing, or deceptive
request routing.

401 Unauthorized Indicates that the request has
not been applied because it
lacks valid authentication
credentials for the target
resource.

402 Payment Required Indicates a nonstandard
response status code that is
reserved for future use.

 39

Response Status Code Reason Description

403 Forbidden Indicates that the server
understood the request but
refuses to authorize it.

404 Not Found Indicates that the origin server
did not find a current
representation for the target
resource or is not willing to
disclose that one exists.

405 Method Not Allowed Indicates that the method
received in the request-line is
known by the origin server but
not supported by the target
resource.

406 Not Acceptable Indicates that the target
resource does not have a
current representation that is
acceptable to the user agent,
according to the proactive
negotiation header fields
received in the request content
negotiation, and the server is
unwilling to supply a default
representation.

407 Proxy Authentication Required Similar to 401 (Unauthorized)
but indicates that the client
needs to authenticate itself to
use a proxy.

408 Request Timeout Indicates that the server did
not receive a complete request
message within the time that it
was prepared to wait.

409 Conflict Indicates that the request
could not be completed due to
a conflict with the current state
of the target resource.

410 Gone Indicates that access to the
target resource is no longer
available at the origin server
and this condition is likely to
be permanent.

411 Length Required Indicates that the server
refuses to accept the request
without a defined Content-
Length.

412 Precondition Failed Indicates that one or more
conditions given in the request
header fields evaluated to false
when tested on the server.

40 Appendix A: HTTP response status codes

Response Status Code Reason Description

413 Payload Too Large Indicates that the server is
refusing to process a request
because the request payload is
larger than what the server is
willing or able to process.

414 URI Too Long Indicates that the server is
refusing to service the request
because the request-target is
longer than what the server is
willing to interpret.

415 Unsupported Media Type Indicates that the origin server
is refusing to service the
request because the payload is
in a format that is not
supported by this method on
the target resource.

416 Range Not Satisfiable Indicates that none of the
ranges in the request's Range
header field overlap the current
extent of the selected resource
or that the set of ranges
requested has been rejected
due to invalid ranges or an
excessive request of small or
overlapping ranges.

417 Expectation Failed Indicates that the expectation
given in the request's Expect
header field could not be met
by at least one of the inbound
servers.

422 Unprocessable Entity Indicates that the server
understands the content type
of the request entity, and the
syntax of the request entity is
correct, but it was unable to
process the contained
instructions.

423 Locked Indicates that the source or
destination resource of a
method is locked.

424 Failed Dependency Indicates that the method
could not be performed on the
resource because the
requested action depended on
another action that failed.

 41

Response Status Code Reason Description

426 Upgrade Required Indicates that the server
refuses to process the request
using the current protocol but
might be able to after the client
upgrades to a different
protocol.

428 Precondition Required Indicates that the server
requires the request to be
conditional. This means that a
required precondition header,
such as If-Match, is missing.

429 Too Many Requests Indicates that the user has sent
too many requests in a given
period of time.

431 Request Header Fields Too Large Indicates that the server
refuses to process the request
because the request's HTTP
headers are too long.

500 Internal Server Error Indicates that the server
encountered an unexpected
condition that prevented it
from fulfilling the request.

501 Not Implemented Indicates that the server does
not support the functionality
required to fulfil the request.

502 Bad Gateway Indicates that the server, while
acting as a gateway or proxy,
received an invalid response
from an inbound server it
accessed while attempting to
fulfil the request.

503 Service Unavailable Indicates that the server is
currently unable to handle the
request due to a temporary
overload or scheduled
maintenance, which will likely
be resolved after some time.

504 Gateway Timeout Indicates that the server, while
acting as a gateway or proxy,
did not receive a timely
response from an upstream
server it needed to access to
complete the request.

505 HTTP Version Not Supported Indicates that the server does
not support, or refuses to
support, the major version of
HTTP that was used in the
request message.

42 Appendix A: HTTP response status codes

Response Status Code Reason Description

506 Variant Also Negotiates It might be given in the context
of Transparent Content
Negotiation. This protocol
enables a client to retrieve the
best variant of a given
resource, where the server
supports multiple variants.

507 Insufficient Storage Indicates that the server is
unable to store the
representation needed to
complete the request.

508 Loop Detected Indicates that the server
terminated an operation
because it encountered an
infinite loop while processing a
request with Depth:
infinity.

510 Not Extended Indicates that the request did
not meet the policy for
accessing the resource. The
server should send back all the
information necessary for the
client to issue an extended
request. It is outside the scope
of this specification to specify
how the extensions inform the
client.

511 Network Authentication Required Indicates that the client needs
to authenticate to gain network
access.

This information is referred from RFC 7231. For more information about the response status codes, see
RFC 7231- Response Status Codes.

 43

https://datatracker.ietf.org/doc/html/rfc7231#section-6.1

	Table of Contents
	Preface
	Chapter 1: Runtime tasks for processes
	Publishing a process
	Unpublishing a process
	Invoking Processes Deployed to the Cloud Server
	Web Services and SOAP Endpoints
	REST and Process Designer SOAP Endpoints to Access Message Events
	Rules and guidelines for SOAP endpoints

	Invoking Processes Deployed to the Secure Agent
	Invoking Processes Deployed to Secure Agent Groups
	Invoking processes using HTTP verbs
	HTTP verb functions
	REST Endpoints and Data Conversion
	Swagger JSON specification of a process
	OpenAPI JSON specification of a process
	Running a process
	Creating a process input
	Running a process with process inputs
	Deleting a process input
	Rules and guidelines for process inputs

	Activity execution limit restriction for process invocations
	Process termination
	Process retention

	Chapter 2: Runtime tasks for guides
	Publishing a guide
	Unpublishing a guide
	Running a guide
	Embedding a guide within a third-party application
	Guide termination
	Guide retention

	Chapter 3: Publishing Application Integration assets in bulk
	Chapter 4: Unpublishing Application Integration assets in bulk
	Unpublishing dependent assets

	Chapter 5: XML parsing
	Appendix A: HTTP response status codes

