
Informatica® Multidomain MDM
10.3

Services Integration
Framework Guide

Informatica Multidomain MDM Services Integration Framework Guide
10.3
September 2018

© Copyright Informatica LLC 1998, 2023

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica and the Informatica logo are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A
current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be trade
names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2023-01-04

Table of Contents

Preface . 8
Informatica Resources. 8

Informatica Network. 8

Informatica Knowledge Base. 8

Informatica Documentation. 8

Informatica Product Availability Matrices. 9

Informatica Velocity. 9

Informatica Marketplace. 9

Informatica Global Customer Support. 9

Chapter 1: Introduction to Services Integration Framework. 10
Services Integration Framework (SIF). 10

SIF SDK. 11

Use Cases for SIF. 11

SiperianClient Library Classes. 12

Access Protocols. 12

Web Services. 13

XML Over HTTP. 14

Chapter 2: Setting Up the SIF SDK. 15
Before You Begin. 15

Installing the SIF SDK. 15

SIF API Reference Documentation. 16

Setting Up a Sample Eclipse Client. 16

Importing the Sample Project File. 16

Identifying the Missing Library JAR Files. 16

Adding the Missing Library JAR Files. 17

Customizing the Properties in the Library Files. 18

Sample Code to Retrieve Records. 18

Running the Sample Code to Retrieve Records. 19

Chapter 3: Request and Response Objects. 20
Request and Response Objects Overview. 20

Request Objects. 20

SiperianRequest Class. 21

Response Objects. 21

SiperianResponse Class. 22

Sample Java Class Diagram. 22

Table of Contents 3

Chapter 4: Transactions and Exception Handling. 23
Transactions Overview. 23

Business Entity Services. 23

Example EJB Transaction for WebLogic and WebSphere. 24

Example EJB Transaction for JBoss. 24

Exception Handling. 25

Chapter 5: ORS-Specific SIF API. 27
ORS-Specific SIF API Overview. 27

Supported Repository Objects. 28

ORS-Specific SIF API Properties. 28

Repository Objects Statuses. 29

Generating and Deploying an ORS-Specific SIF API. 29

Renaming an ORS-specific SIF API. 30

Downloading an ORS-Specific Client JAR File. 30

Removing an ORS-Specific SIF API. 30

Using ORS-Specific Client JAR Files with SIF SDK. 30

Archive Table. 31

ORS-Specific SIF Classes. 31

Cleanse<Resource Name>. 31

CleansePut<Resource Name>. 32

Get<Resource Name>. 33

Put<Resource Name>. 34

SearchMatchColumn<Resource Name>. 35

SearchMatchRecord<Resource Name>. 35

SearchQuery<Resource Name>. 36

ORS-Specific SIF API Field Parameters. 37

Chapter 6: Asynchronous SIF Requests. 40
Asynchronous SIF Requests Overview. 40

Architecture of JMS Message Queue for SIF. 40

Processing Asynchronous SIF Requests. 41

Chapter 7: ORS-Specific JMS Event Messages. 42
ORS-Specific JMS Event Messages Overview. 42

Elements in a Response XML Message. 43

Sample Response XML Message for an Update Event. 44

Chapter 8: Using Security Access Manager. 45
Security Access Manager Workbench Overview. 45

Using the Security Access Manager Workbench. 46

Permissions for SIF Requests. 46

4 Table of Contents

Chapter 9: Using Dynamic Data Masking. 50
Dynamic Data Masking Overview. 50

Rules. 50

Supported SIF Requests for Dynamic Data Masking. 51

Chapter 10: SIF API Reference. 52
Functional SIF API Listing. 52

Reference SIF API Listing. 56

AcceptUnmatchedRecordsAsUnique. 56

AddRelationship. 57

ApplyChangeList. 57

AssignUnmergedRecords. 58

Audit . 59

Authenticate. 60

CanUnmergeRecords. 60

CleanTable. 60

Cleanse . 61

CleansePut. 62

ClearAssignedUnmergedRecords. 66

CreateChangeList. 66

CreateTask. 67

Delete. 69

DeleteRelationship. 71

DescribeSiperianObject. 71

ExecuteBatchAutoMatchAndMerge. 72

ExecuteBatchAutomerge. 73

ExecuteBatchBVTSnapshot. 74

ExecuteBatchDelete. 74

ExecuteBatchExternalMatch. 75

ExecuteBatchGenerateMatchTokens. 76

ExecuteBatchGroup. 77

ExecuteBatchKeyMatch. 77

ExecuteBatchLoad. 78

ExecuteBatchMatch. 79

ExecuteBatchMatchAnalyze. 79

ExecuteBatchPromote. 80

ExecuteBatchRecalculateBo. 81

ExecuteBatchRecalculateBvt. 82

ExecuteBatchResetMatchTable. 82

ExecuteBatchRevalidate. 83

ExecuteBatchStage. 84

ExecuteBatchSynchronize. 84

Table of Contents 5

ExecuteBatchUnmerge. 85

ExecuteBatchValidateFKRelationships. 86

FlagForAutomerge. 86

GenerateConstraints. 87

Get. 88

GetAggregatePeriod. 90

GetAssignableUsersForTasks. 92

GetAssignedRecords. 93

GetBatchGroupStatus. 93

GetBvt. 94

GetEffectivePeriods. 95

GetEntityGraph. 96

GetLookupValue. 97

GetLookupValues. 98

GetMatchedRecords. 98

GetMergeHistory. 99

GetOneHop. 99

GetOrsList. 100

GetOrsMetadata. 101

GetSearchResults . 101

GetSiperianObjectCompatibility. 103

GetSystemTrustSettings. 103

GetTaskLineage. 104

GetTasks . 107

GetTrustGraphData. 109

GetTrustScore. 109

GetUnmergedRecordCount. 110

GetXrefForEffectiveDate. 110

Link. 112

ListSiperianObjects . 112

Merge . 114

MultiMerge. 114

PreviewBVT. 115

PromotePendingXrefs. 116

Put . 118

ReassignRecords. 123

RegisterCustomIndex. 123

RegisterCustomTableObject. 124

RegisterUsers. 125

RemoveMatchedRecords. 126

ResetBatchGroup. 126

Restore. 127

6 Table of Contents

SearchHmQuery. 128

SearchLookupValues. 128

SearchMatch . 128

SearchQuery . 133

SearchRequestBase. 135

SearchResponseBase. 136

SetPassword . 136

SetRecordState. 136

Tokenize . 138

Unlink. 139

Unmerge . 139

UnregisterUsers. 141

UpdateMatchRecord. 141

UpdateRelationship. 142

UpdateTask. 143

ValidateChangeList. 145

ValidateMetadata. 146

ValidateTasks. 147

Chapter 11: Troubleshooting. 149

Appendix A: Identifiers. 150
List of Identifiers. 150

SiperianObjectUID. 150

RecordKey. 154

Appendix B: Frequently Asked Questions. 155

Index. 157

Table of Contents 7

Preface
Use the Services Integration Framework (SIF) to integrate the Informatica® MDM Hub functionality with your
applications. The Multidomain MDM Services Integration Framework Guide explains how to access the data
that the MDM Hub provides by using APIs.

This guide assumes that you have a working knowledge of MDM Hub and are familiar with Java and APIs.

Informatica Resources
Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Network
The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:

• Search the Knowledge Base for product resources.

• View product availability information.

• Create and review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

8

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://docs.informatica.com

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Product Availability Matrices
Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and
select the eSupport option.

Preface 9

mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com

C h a p t e r 1

Introduction to Services
Integration Framework

This chapter includes the following topics:

• Services Integration Framework (SIF), 10

• SIF SDK, 11

• Use Cases for SIF, 11

• SiperianClient Library Classes, 12

• Access Protocols, 12

Services Integration Framework (SIF)
Use Services Integration Framework (SIF) to invoke the MDM Hub operations from external applications in
real time. SIF uses service-oriented architecture that provides application functionality as services to other
applications.

You can configure SIF for the MDM Hub to interface with the client programs. SIF serves as the middle tier in
the client-server model. You can use the SIF access protocols to implement the request and response
interactions.

Note: Only admin users can access private resources through the SIF requests.

The Services Integration Framework offers the following services and events:

Process Services

Process services are integration processes and people-to-system processes. For example, in a customer
domain, the process services include activities such as verifying customers and approving customers.

Business Events

Business events are rule-driven events and actions that are based on business logic. For example, you
might evaluate the impact of a new relationship.

Business Services

Business services act on base objects in the data model. For example, in a customer domain, you can
create a Customer base object or retrieve a Customer base object.

Data Services

Data services act on records in the tables. You can insert a record, retrieve a record, or update a record.

10

Data Events

Data events are events that affect master data or source data. For example, a customer last name
changes in a source record or an address changes in a master record.

The SIF requests can directly interact with each other. Data services can interact with data events, process
services with data services, data services with business services, and data events with process services.

You can use external applications or the MDM Hub to generate the data events. Use the event-driven
architecture (EDA) capabilities of the MDM Hub that include event capture, event processing, event filtering,
and event generation to handle these events. The EDA components and external applications for query and
data synchronization operations can use the services provided in the MDM Hub. You can use the existing
infrastructure, such as an enterprise service bus (ESB) and enterprise application integration (EAI)
technologies, such as TIBCO, webMethods, and message-oriented middleware with SIF.

SIF SDK
Use the SIF SDK to develop web services and Java applications that interact with the MDM Hub. The SIF SDK
includes utilities to build and deploy SIF applications, a set of Java classes to create services, and sample
codes to build web services. You can use the SIF SDK to create data objects, client services, business
services, and GUI controls for creation and deployment of web-based and rich-client applications.

The SIF SDK is packaged with the MDM Hub Resource Kit installer. You can find the directory structures,
libraries, online documentation for SIF, and build files in the following directory: <Resource Kit
Installation Directory>\hub\resourcekit\sdk\sifsdk.

You can copy the SIF SDK to any client system on which you want to develop and run programs to interact
with the MDM Hub. If you can run a Java virtual machine (JVM) on the client system, you can use the Java
classes included in the SIF SDK. You can configure the SIF SDK to use any access protocol. If you cannot run
a JVM, you must explicitly use web services, Java Message Service (JMS), or XML over HTTP.

You can use the SIF SDK for the following tasks:

• Automatic generation and deployment of data objects and data services for the web services-based
interactions.

• Generation of a client .jar file that includes data objects. You can use the data objects in external
applications.

• Creation and management of complex integration scenarios by combining data objects from different
MDM Hub schemas.

Use Cases for SIF
You can use the SIF requests to develop any of the following sample applications:

• Web services to perform operations in the MDM Hub.

• Business process modeling (BPM) and workflow integration by using the Java API or SOAP directly.

• A Java Swing UI to query, view, and edit data in the MDM Hub.

• Server components in a J2EE application server to get and update data in the MDM Hub. Enterprise
JavaBeans (EJB) can seamlessly integrate with the MDM Hub transactions.

SIF SDK 11

• An application based on JavaServer Pages (JSP) or servlet to present a portal view of the MDM Hub data.

SiperianClient Library Classes
Use the SiperianClient library classes to build custom web services that interact with the MDM Hub. You can
use the sample codes located in the following directory to build a custom web service: <Resource Kit
Installation Directory>\samples.

Use the process method of the com.siperian.sif.client.SiperianClient class to implement the request
and response interactions between the client program and the MDM Hub. The process method accepts any
subclass of the com.siperian.sif.message.SiperianRequest class as an argument. If the process method
successfully processes the request, it returns the com.siperian.sif.message.SiperianResponse object as
the response. Otherwise, it returns the com.siperian.sif.client.SiperianServerException object.

The com.siperian.sif.message.mrm and com.siperian.sif.message.hm packages include the request and
response objects to perform operations on the MDM Hub. The com.siperian.sif.client package manages
the details of the client communication with the MDM Hub. You can use the access protocols, such as
Enterprise JavaBeans (EJB), XML over HTTP, or SOAP, to communicate with the MDM Hub.

The siperian-api.jar file located in the following directories contains all the SiperianClient library classes:

• <Resource Kit Installation Directory>\sdk\sifsdk\lib
• <MDM Hub Installation Directory>\hub\server\lib

When you use the SiperianClient library classes, ensure you also have all the dependent files. The siperian-
api.jar file is dependent on the following JAR files:
siperian-common.jar

• <Resource Kit Installation Directory>\sdk\sifsdk\lib
• <MDM Hub Installation Directory>\hub\server\lib

informatica-bpm-adapter.jar

• <Resource Kit Installation Directory>\sdk\sifsdk\lib
• <MDM Hub Installation Directory>\hub\server\lib

siperian-server-pkiutil.jar

• <Resource Kit Installation Directory>\sdk\sifsdk\lib
• <MDM Hub Installation Directory>\hub\server\lib\pkiutils

If you run an external SIF client, you might also require other JAR files in the following directory:

<Resource Kit Installation Directory>\sdk\sifsdk\lib

Access Protocols
You can use one of the following access protocols for the SIF request and response interactions:

• Tightly coupled Java remote procedure calls based on Enterprise JavaBeans (EJB) in a Java development
environment.

12 Chapter 1: Introduction to Services Integration Framework

• Loosely coupled web services that use SOAP protocol. Use Web Services Description Language (WSDL) to
define the request and response XML. The development environment can be Eclipse, Microsoft Visual
Studio, or other web service client tools.

• XML over HTTP protocol, which is similar to web services but without the SOAP envelope.

• Asynchronous JMS-based messages that use the XML over HTTP protocol.

The access protocol runs on top of the native MDM Hub protocol, which accepts request in the XML or EJB
format and returns responses in the same format.

You can use a SiperianClient proxy in a Java development environment to manage the communication
protocol for the SIF requests.

The following image shows how SIF processes the request and response interactions:

When you cannot or do not want to use the SiperianClient Java classes, you can use other access protocols
to directly interact with SIF. This guide does not include information about how to directly use EJB or JMS
protocols. You can use these protocols through SiperianClient if you perform any of the following tasks:

• Use an appropriately configured AsynchronousOptions object with a SIF request.

• Place the request directly onto the siperian.sif.jms.queue message queue.

Web Services
After you install the MDM Hub on an application server, you can use the SiperianClient library classes to
create web services on that application server. You can interrogate the web service to get the Web Services
Description Language (WSDL) descriptions of the web service’s operations and arguments. The operations
and arguments are equivalent to the methods and arguments of the SiperianClient Java classes that the web
service exposes.

WSDL
WSDL is an XML-based interface definition language that describes web services and how to access them. If
you use a web service to interface with the MDM Hub, use the classes and methods described in the SIF API
reference documentation through proxies that wrap the interactions in SOAP messages. You can use a tool
based on your development environment to interpret WSDL.

Access Protocols 13

The development environment can be Eclipse, Microsoft Visual Studio, or other web service client tools. For
example, .NET has tools to read WSDL and create proxies that you can call from the programming language
you use. The Eclipse integrated development environment has a web services browser that reads the WSDL
and presents the information in a user-friendly way.

Use the following URL to access the WSDL, where host is the name of the computer that runs the application
server and port is the port on which the host computer accepts the MDM Hub requests:

http://<host>:<port>/cmx/request/wsdl
The SiperianClient proxy uses the SOAP protocol to communicate with the web service and receive requests
from your application program. The SiperianClient proxy translates the requests into SOAP messages and
send them to the web service. The web service decodes the SOAP messages and translates them to Java
calls for the SiperianClient running on the application server. The web service receives responses from the
SiperianClient, encodes them into SOAP messages, and sends them back to the SiperianClient proxy. The
SiperianClient proxy returns the responses to your application program.

The MDM Hub uses Axis version 1.3, which is an XML-based web service framework. Use Axis to configure
SIF as web services and access the web services through a URL. For example, if you use SoapUI to view a list
of web services, the tool presents the list of web services that you configured in Axis. When you deploy the
Hub Server on the application server, Axis is automatically deployed.

You can also create and deploy a web service to process ORS-specific requests.

XML Over HTTP
Use the HTTP protocol to send requests to the MDM Hub and receive responses in the XML format. You can
use the following schemas to describe and manage the requests and responses:

• siperian-core.xsd. Contains the schema elements.

• siperian-types.xsd. Contains the type definitions.

• siperian-metadata.xsd. Describes the objects used in the ListSiperianObjects and
DescribeSiperianObjects classes.

You can use the following URLs to access the schemas, where host is the name of the computer that runs
the application server and port is the port on which the host computer accepts the MDM Hub requests:

http://<host>:<port>/cmx/request/xsd/siperian-core.xsd
http://<host>:<port>/cmx/request/xsd/siperian-types.xsd
http://<host>:<port>/cmx/request/xsd/siperian-metadata.xsd

Use the schema to construct an XML request message, and use the HTTP POST method to send the request
to the following address:

http://<host>:<port>/cmx/request
The body of the HTTP response is the SIF response and is encoded in XML according to the schema
definitions.

14 Chapter 1: Introduction to Services Integration Framework

C h a p t e r 2

Setting Up the SIF SDK
This chapter includes the following topics:

• Before You Begin, 15

• Installing the SIF SDK, 15

• SIF API Reference Documentation, 16

• Setting Up a Sample Eclipse Client, 16

• Sample Code to Retrieve Records, 18

Before You Begin
Before you use the SIF SDK, you must install the following applications:

• MDM Hub

• Application server

For more information about product requirements and supported platforms, see the Product Availability
Matrix on the Informatica My Support Portal:
https://mysupport.informatica.com/community/my-support/product-availability-matrices

Note: Ensure that the date format of the application server host computer is dd-mmm-yyyy.

Installing the SIF SDK
The SIF SDK is packaged with the MDM Hub Resource Kit installer. Use the MDM Hub Resource Kit installer
to install the SIF SDK and SIF API reference documentation. After you install the Resource Kit, you can find
the directory structures, libraries, SIF API reference documentation, and build files in the following directory:
<Resource Kit Installation Directory>\hub\resourekit\sdk\sifsdk.

15

https://mysupport.informatica.com/community/my-support/product-availability-matrices

SIF API Reference Documentation
The SIF SDK includes SIF API reference documentation that describes all the SiperianClient library classes,
methods, and attributes. You can find the SIF API reference documentation in the following directory:
<Resource Kit Installation Directory>\hub\resourcekit\sdk\sifsdk\javadoc.

To open the SIF API reference documentation, double-click the index.html file.

Setting Up a Sample Eclipse Client
Use the sample .project file that is part of the SIF SDK to create a sample Eclipse client.

1. In the Eclipse IDE, import the sample .project file located in the <Resource Kit Installation
Directory>\hub\resourcekit\sdk\sifsdk directory into your Eclipse workspace.

2. Identify the missing library JAR files that are specific to the application server and add them to the build
class path. The sample .project file requires the library JAR files to set up the proper Java build path.

3. Customize the following files according to your environment:

• <Resource Kit Installation Directory>\hub\resourcekit\sdk\sifsdk\build.xml
• <Resource Kit Installation Directory>\hub\resourcekit\sdk\sifsdk\my.properties
• <Resource Kit Installation Directory>\hub\resourcekit\sdk\sifsdk\source\properties

\log4j.xml
• <Resource Kit Installation Directory>\hub\resourcekit\sdk\sifsdk\source\properties

\siperian-client.properties

Importing the Sample Project File
1. From the Eclipse IDE, click File > Import.

The Import dialog box appears.

2. Select Existing Projects into Workspace and click Next.

The Import Projects page appears.

3. Select Select root directory, and browse to the .project file located in the following directory:<Resource
Kit Installation Directory>\hub\resourcekit\sdk\sifsdk
The project name appears under Projects. The default project name is SIF-SDK-[ORS NAME].

4. Under Projects, select the project, and click Finish.

The sample project appears in the package explorer.

Identifying the Missing Library JAR Files
After you import the sample .project file, verify whether all the required library JAR files for the project are
added to the build class path. The library JAR files are specific to the application server.

1. In the Eclipse IDE, right-click the sample project, and select Properties.

The Properties dialog box appears.

2. Click Java Build Path.

3. On the Libraries tab, identify the missing JAR files that are marked with a red cross mark.

16 Chapter 2: Setting Up the SIF SDK

Required JAR Files for JBoss
The following library JAR files are required to set up an Eclipse client for a JBoss application server.:

• jboss-client.jar
• picketbox-4.0.16.Final-redhat-1.jar

The name of the JAR files might vary according to the version of JBoss, so use the equivalent JAR files
based on your environment. You can find the library JAR files in the following directory:<Resource Kit
Installation Directory>\hub\resourcekit\sdk\sifsdk\lib\jboss

Required JAR Files for WebLogic
The wlthint3client.jar library JAR file is required to set up an Eclipse client for a WebLogic application
server. The name of the JAR file might vary according to the version of WebLogic, so use the equivalent JAR
file based on your environment.

You can find the library JAR file in the following directory:<Resource Kit Installation Directory>\hub
\resourcekit\sdk\sifsdk\lib\weblogic

Required JAR Files for WebSphere
The following library JAR files are required to set up an Eclipse client for a WebSphere application server:

• admin.jar
• jmxc.jar
• rsadapterspi.jar
• wasjmx.jar
• wasx.jar

The name of the JAR files might vary according to the version of WebSphere, so use the equivalent JAR files
based on your environment. You can find the library JAR files in the following directory:<Resource Kit
Installation Directory>\hub\resourcekit\sdk\sifsdk\lib\websphere

Adding the Missing Library JAR Files
After you identify the missing library JAR files, add them to the build class path.

1. In the Eclipse IDE, right-click the sample project, and select Properties.

2. Click Java Build Path.

3. On the Libraries tab, perform one of the following tasks:

• To add a JAR file that is inside your workspace, click Add JARs.

• To add an external JAR file, click Add External JARs.

The JAR Selection dialog box appears.

4. Browse to the location of the JAR file that you want to add, and select the JAR file.

The JAR file is added to the build class path.

5. Similarly, add the other missing JAR files.

Setting Up a Sample Eclipse Client 17

Customizing the Properties in the Library Files
The SIF SDK includes some library files that contain properties related to your development environment. You
must customize the properties before you use the SIF SDK.

1. Open the following files in a text editor:

• <Resource Kit Installation Directory>\hub\resourcekit\sdk\sifsdk\build.xml
• <Resource Kit Installation Directory>\hub\resourcekit\sdk\sifsdk\my.properties
• <Resource Kit Installation Directory>\hub\resourcekit\sdk\sifsdk\source\properties

\log4j.xml
• <Resource Kit Installation Directory>\hub\resourcekit\sdk\sifsdk\source\properties

\siperian-client.properties
Note: If you do not want to use the build.xml file, use the library JAR files located in the following
directory to manually compile the code:<Resource Kit Installation Directory>\hub\resourcekit
\sdk\sifsdk\lib

2. Customize the properties according to your development environment, and comment the properties that
are not relevant to your development environment.

Sample Code to Retrieve Records
After you set up an Eclipse client, you can write code to interact with the MDM Hub. For example, create a
class and add the following sample code that uses the SearchQueryRequest and SearchQueryResponse
classes to retrieve records:

import java.io.File;
import java.util.ArrayList;
import java.util.List;

import com.siperian.sif.client.SiperianClient;
import com.siperian.sif.client.SoapSiperianClient;
import com.siperian.sif.message.Parameter;
import com.siperian.sif.message.Record;
import com.siperian.sif.message.mrm.SearchQueryRequest;
import com.siperian.sif.message.mrm.SearchQueryResponse;

public class SearchQuery {

 public static void main(String[] args) {
 File file = new File("E:\\siperian-client.properties");
 System.out.println("Reading File:" + file.getAbsolutePath());
 if (!file.exists()) {
 System.out.println("***ERROR -> Properties File does not exist in location -
");
 return;
 }
 SoapSiperianClient sipClient = (SoapSiperianClient)
SiperianClient.newSiperianClient(file);
 SearchQueryRequest request = new SearchQueryRequest();
 request.setRecordsToReturn(5);
 request.setSiperianObjectUid("BASE_OBJECT.C_PARTY");
 request.setFilterCriteria("C_PARTY.FIRST_NAME =?");
 ArrayList params = new ArrayList(2);
 params.add(new Parameter("3333"));
 request.setFilterParameters(params);
 SearchQueryResponse response = (SearchQueryResponse) sipClient.process(request);
 List <Record> records = response.getRecords();
 for (Record record : records) {

18 Chapter 2: Setting Up the SIF SDK

 System.out.println("Period Start Date: " +
record.getField("PERIOD_START_DATE").getDateValue().toString());
 System.out.println("Period End Date: " +
record.getField("PERIOD_END_DATE").getDateValue().toString());
 }
}

}

Running the Sample Code to Retrieve Records
After you create a class, run the sample class as Java application.

To run the sample class as Java application, in the Eclipse IDE, right-click the sample class, and select Run
As > Java Application. The Console View displays the output.

Sample Code to Retrieve Records 19

C h a p t e r 3

Request and Response Objects
This chapter includes the following topics:

• Request and Response Objects Overview, 20

• Request Objects, 20

• Response Objects, 21

• Sample Java Class Diagram, 22

Request and Response Objects Overview
Every operation that you perform by using SIF requires a set of request and response objects. A request
object includes methods that indicate the action that you want to perform on the MDM Hub, and a response
object includes methods that return the result of that action.

A SIF class can represent a request object or a response object. A SIF class that represents a request object
has a suffix of 'Request,' and a SIF class that represents a response object has a suffix of 'Response.' For
example, the PutRequest class represents a request object, and the PutResponse class represents the
response to the PutRequest object.

The request and response objects can have Java or XML representations. To represent request and response
objects in Java, you must internally convert an XML representation to Java.

Use EJB protocol to invoke the SIF classes if you want multiple requests to participate in a single transaction.

Request Objects
A request object includes methods that indicate the action that you want to perform on the MDM Hub. A SIF
class that represents a request object is a subclass of the SiperianRequest class and extends the
SiperianRequest class.

For example, the following sample uses the SearchQueryRequest object:

SearchQueryRequest request = new SearchQueryRequest();
request.setRecordsToReturn(5); //Required
request.setSiperianObjectUID("PACKAGE.PARTY_ADDRESS_READ_PKG");//Required
request.setFilterCriteria("PARTY_FULL_NAME LIKE ?");

The request runs the PARTY_ADDRESS_READ_PKG package, uses the PARTY_FULL_NAME LIKE filter criteria, and
returns no more than five records.

20

SiperianRequest Class
The SiperianRequest class is the base class for the all the SIF classes that represent request objects.

The SiperianRequest class includes methods that set the following information:
User Name and Password

User credentials to run the request. If the user does not have access permission to perform the
operation, the SIF request fails.

ORS ID

ID of the ORS to which the request is directed. If you do not specify the ORS, the request is directed to
the default ORS.

Interaction ID

Interaction ID to group multiple requests into a single interaction.

Asynchronous Options

Indicates whether to process the request asynchronously or synchronously. If the value of the
asynchronousOptions parameter is null, SIF processes the request synchronously. If the value is not
null, SIF processes the request synchronously or asynchronously according to the value that you set.

When you process a request asynchronously, SIF returns a dummy response with a message that the
request is asynchronously processed. The actual response goes to the JMS queue that you specify. If
you do not specify a queue, SIF discards the actual response.

The SiperianRequest class includes methods that get the following information:
Transaction Attribute Type

Specifies whether the request object can participate in the transactions. You can get any of the following
transaction attribute types:

• NOT_SUPPORTED if the request cannot participate in the transactions.

• SUPPORTS if the request can participate in the transactions.

• REQUIRED if the request requires a transaction.

• REQUIRES_NEW if the request requires a new transaction.

Name of the Request

Name of the class of which the request object is an instance. For example, if x is an instance of the
AuditRequest class, x.getRequestName() returns AuditRequest as the name of the request.

Response Objects
A response object represents the response to the corresponding request object and includes methods that
return the result of the action that you perform on the MDM Hub. A SIF class that represents a response
object is a subclass of the SiperianResponse class and extends the SiperianResponse class into it.

For example, the following sample uses the GetOrsMetadataResponse object:

GetOrsMetadataResponse getOrsMetadataResponse = (GetOrsMetadataResponse)
sifClient.process(getOrsMetadataRequest);
System.out.println("ORS Metadata (first line only): " +
getOrsMetadataResponse.getRepositoryXml().substring(0, 80));;

Response Objects 21

SiperianResponse Class
The SiperianResponse class is the base class for the all the SIF classes that represent response objects.

The SiperianResponse class includes methods that get the following information:
Interaction ID

Interaction ID for the request.

Message

Brief message that indicates the status of the request.

Sample Java Class Diagram
The sample class diagram represents the relationship and dependencies between the PutRequest and
PutResponse classes, methods, and their attributes. The class is represented by a rectangular box that has
the following components:

• Name of the class.

• Attributes that the methods use.

• List of methods.

The following image shows the relationship between the PutRequest and PutResponse classes and their
dependencies with other objects:

The PutResponse class has a dependency on the SiperianResponse class, which is the base class for all the
response objects.

22 Chapter 3: Request and Response Objects

C h a p t e r 4

Transactions and Exception
Handling

This chapter includes the following topics:

• Transactions Overview, 23

• Business Entity Services, 23

• Example EJB Transaction for WebLogic and WebSphere, 24

• Example EJB Transaction for JBoss, 24

• Exception Handling, 25

Transactions Overview
A transaction is a set of procedures or operations that you can perform on the MDM Hub.

A transaction must complete all the operations or procedures without generating any error to be a successful
transaction. If any procedure or operation in a transaction fails and generates an error, the entire transaction
is rolled back. You can use SIF requests and MDM Hub requests within a transaction. You can use
transactions in a business entity service to create a response object.

Note: You cannot use transactions in a web service.

Business Entity Services
A business entity service uses multiple requests to create an appropriate response object. For example, a
service that returns a complete client profile can use multiple requests to return a profile, one or more
addresses, emails, and phone numbers.

Use EJB access protocol to enable transactions for a business entity service. A business entity service uses
service calls to trigger server services.

Note: The MDM Hub does not control the transactions from an external business entity service, and your
service must manage these transactions.

23

Example EJB Transaction for WebLogic and
WebSphere

Use a sifClient object as an EjbSiperianClient instance for EJB transactions.

The following sample code specifies the WebLogic properties for the MDM Hub to create an
EjbSiperianClient instance:

java.naming.provider.url=t3://10.1.48.123:7001/
java.naming.security.principal=weblogic
java.naming.security.credentials=weblogic
java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.security.authentication=strong
weblogic.security.SSL.ignoreHostnameVerification=true

The following sample code uses the createTX(int) method to create a transaction:

UserTransaction tx = ((EjbSiperianClient)sifClient).createTX(30)
The following sample code commits a transaction:

tx.begin();
// sif api calls
tx.commit();

The following sample code rolls back a transaction:

tx.rollback()

Example EJB Transaction for JBoss
Create an instance of SiperianClient with ejb as the SiperianClient.SIPERIANCLIENT_PROTOCOL property
value, and start JBoss with the -Djboss.node.name=<Node Name> parameter for user transactions.

Ensure that you add the following JAR files to the CLASSPATH environment variable:

• <MDM Hub Installation Directory>\hub\server\lib\siperian-api.jar or <Resource Kit
Installation Directory>\sdk\sifsdk\lib\siperian-api.jar

• <MDM Hub Installation Directory>\hub\server\lib\siperian-common.jar or <Resource Kit
Installation Directory>\sdk\sifsdk\lib\siperian-common.jar

• <JBoss Installation Directory>\bin\jboss-client.jar
• <JBoss Installation Directory>\modules\system\layers\base\org\picketbox\main

\picketbox-4.<x>.<x>.Final-redhat-1.jar

The following sample code specifies the JBoss properties for the MDM Hub to create a SiperianClient
instance:

Properties properties = new Properties();
properties.put(SiperianClient.SIPERIANCLIENT_PROTOCOL, "ejb");
properties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.jboss.naming.remote.client.InitialContextFactory");
properties.put("java.naming.factory.url.pkgs", "org.jboss.ejb.client.naming");
properties.put(Context.PROVIDER_URL, "remote://<JBoss host name>:<JBoss port>");
properties.put("jboss.naming.client.ejb.context", true);
properties.put(Context.SECURITY_PRINCIPAL, "<User name of the MDM Hub user registered in
JBoss>");
properties.put(Context.SECURITY_CREDENTIALS, "<Password of the MDM Hub user registered
in JBoss>");
properties.put("siperian-client.orsId", "<Operational Reference Store ID>");

24 Chapter 4: Transactions and Exception Handling

properties.put("siperian-client.username", "<User name of the MDM Hub user registered in
JBoss>");
properties.put("siperian-client.password", "<Password of the MDM Hub user registered in
JBoss>");
System.setProperty("jboss.node.name", "localhost"); //Value of this property should be
the same as it was provided while starting JBoss with the -Djboss.node.name option.
client = SiperianClient.newSiperianClient(properties);

The following sample code uses the createTX(int) method to create a transaction:

UserTransaction tx = client.createTX(30);
The following sample code commits a transaction:

tx.begin();
// sif api calls
tx.commit();

The following sample code rolls back a transaction:

tx.rollback()

Exception Handling
When a SIF request fails, the SIF SDK handles exception through the
com.siperian.common.SipRuntimeException object. The SipRuntimeException object returns the same
error codes and messages that the MDM Hub returns.

The SipRuntimeException object includes methods that return the following information:
Error Code and Message

Error codes and messages that the MDM Hub returns.

Request Name

Name of the request that failed.

The following sample code uses the SipRuntimeException object to handle a SIF request failure:

public static void main(String args[]) {
 UserTransaction tx = null;
 try {

 File file = new File("E:\\siperian-client.properties");
 System.out.println("Reading File:" + file.getAbsolutePath());
 if (!file.exists()) {
 System.out.println("***ERROR -> Properties File does not exist in
location - ");
 return;
 }
 EncryptionManager en = EncryptionManager.getInstance();
 try {
 en.init();
 //System.out.println("check :" +
en.isAPIFieldEncrypted("orcl.informatica.com-MDM_SAMPLE.BASE_OBJECT", "C_PARTY",
"FIRST_NAME"));
 } catch (IOException e) {
 // TODO Auto-generated catch block
 System.out.print("Exception \n" + e);
 }
 EjbSiperianClient sipClient = (EjbSiperianClient)
SiperianClient.newSiperianClient(file);

 tx.begin();
 System.out.println("TXN BEGAN");

Exception Handling 25

 PutRequest putRequest1 = new PutRequest();

 System.out.println("Put 1");

 RecordKey recordKey1 = new RecordKey();
 recordKey1.setSourceKey("1000022");
 //recordKey1.setRowid("1970");
 recordKey1.setSystemName("Admin");

 Record record1 = new Record();
 record1.setSiperianObjectUid("BASE_OBJECT.C_PARTY");

 Field field1 = new Field();
 Field field2 = new Field();
 field1.setName("FIRST_NAME");
 field1.setStringValue("kk4");
 field2.setName("LAST_NAME");
 field2.setStringValue("kk4");
 Field field3 = new Field();
 field3.setName("PARTY_TYPE");
 field3.setStringValue("Person");
 record1.setField(field1);
 record1.setField(field2);
 record1.setField(field3);
 putRequest1.setRecord(record1);
 putRequest1.setRecordKey(recordKey1);
 System.out.println("Put 2");
 PutResponse putResponse1 = (PutResponse) sipClient.process(putRequest1);
 System.out.println("Record1 created for PUT - " + putResponse1);

 tx.commit();
 System.out.println("TXN COMMITTED");
 } catch (Exception name) {
 throw new SipRunTimeException("ERROR_CODE");
 } finally {
 System.out.println("Finally");
 }
 }
}

26 Chapter 4: Transactions and Exception Handling

C h a p t e r 5

ORS-Specific SIF API
This chapter includes the following topics:

• ORS-Specific SIF API Overview, 27

• Supported Repository Objects, 28

• ORS-Specific SIF API Properties, 28

• Repository Objects Statuses, 29

• Generating and Deploying an ORS-Specific SIF API, 29

• Renaming an ORS-specific SIF API, 30

• Downloading an ORS-Specific Client JAR File, 30

• Removing an ORS-Specific SIF API, 30

• Using ORS-Specific Client JAR Files with SIF SDK, 30

• Archive Table, 31

• ORS-Specific SIF Classes, 31

• ORS-Specific SIF API Field Parameters, 37

ORS-Specific SIF API Overview
You can generate SIF API for specific repository objects in an Operational Reference Store (ORS), such as
base objects, packages, and cleanse functions. Use the SIF Manager utility in the Hub Console to generate an
ORS-specific SIF API.

An ORS-specific SIF API acts on specific ORS objects. For example, an ORS-specific SIF API identifies data as
a name and an email address and adds the data into a customer record, as defined in the ORS. A SIF API
might place the same data in the database record that you specify.

You can use the SIF SDK to access the ORS-specific SIF API through the client JAR file or use the ORS-
specific SIF API as SOAP web services. If you use the SIF SDK, install the Java Development Kit and the
Apache Ant build system.

When you generate an ORS-specific SIF API, the performance of SIF API generation depends on the number
of objects that you select, so select only the objects for which you want to generate the SIF API. The MDM
Hub creates a unique version ID for an ORS-specific SIF API.

Note: The MDM Hub generates an ORS-specific SIF API only for the repository objects that are secure.

27

Supported Repository Objects
You can generate SIF API for specific repository objects that are secure. To secure an object, use the Secure
Resources tool in the Hub Console.

You can generate ORS-specific SIF API for the following repository objects:

• Base objects

• Packages

• Mappings

• Cleanse functions

• Match columns

• Match rule sets

Note: When you generate APIs for match columns and match rule sets, ensure that you select the associated
packages. If you do not select the associated packages, the MDM Hub does not generate the ORS-specific
SIF API for the match columns and match rule sets.

ORS-Specific SIF API Properties
Use the SIF Manager utility in the Hub Console to configure the properties of an ORS-specific SIF API.

You can configure the following properties of an ORS-specific SIF API:

Logical Name

Logical name of the ORS.

You can edit the logical name and ensure that the edited name is unique. After you edit the logical name
of an ORS-specific SIF API, regenerate and deploy the ORS-specific SIF API.

Java Name

Java name of the ORS.

The client JAR file name of the ORS-specific SIF API includes the Java name. Edit the logical name to
change the Java name. Ensure that the edited logical name is unique.

WSDL URL

URL of the WSDL file that the MDM Hub generates when it deploys the ORS-specific SIF API.

API Generation Time

The date and time when you generate the ORS-specific SIF API. The format is mm/dd/yy hh:mm tt.

Version ID

Unique ID of the ORS-specific SIF API that the MDM Hub generates and deploys.

The MDM Hub uses the version ID in the following elements:

• Properties on the Environment Report and ORS databases tabs of the Enterprise Manager tool.

• Name of the client JAR file.

• The MANIFEST.MF file in the client JAR.

28 Chapter 5: ORS-Specific SIF API

Repository Objects Statuses
The status of a repository object determines whether the MDM Hub can generate and deploy an ORS-specific
SIF API for the repository object.

In the SIF Manager utility of the Hub Console, the Selected and Out of Sync Objects table displays the status
of a repository object in the Status column. After you update an object, you can refresh the status of the
object. To refresh the status of an object, on the SIF API Manager tab in the SIF Manager utility, click Refresh
Objects Status.

A repository object can have one of the following statuses:
New

Indicates that the object is new and has no SIF API generated and deployed for it. If you generate and
deploy an ORS-specific SIF API for the object, the status changes to Up to date.

Up to date

Indicates that the object has not changed after the SIF API generation and the object is up to date.

Out of sync

Indicates that the object has changed after the SIF API generation and the object is out of sync.
Regenerate the SIF API to change the status to Up to date.

Not secure

Indicates that the object is not secure and you cannot generate SIF API for it. In the Secure Resources
tool of the Hub Console, objects with the Not secure status appear as a private resource.

Deleted

Indicates that the object is deleted and you cannot generate API for it. In the Hub Console, if you use any
tool in the Model workbench to delete an object, the status of the object becomes Deleted. When you
generate and deploy an ORS-specific SIF API, the objects with the Deleted status are removed.

Generating and Deploying an ORS-Specific SIF API
Use the SIF Manager utility in the Hub Console to generate and deploy ORS-specific SIF API for a secure
repository object. You can select specific repository objects to generate ORS-specific SIF API.

To generate and deploy ORS-specific SIF API, the MDM Hub requires access to a Java compiler on the
computer that has application server installed. Ensure that you configure the base objects and packages of
the ORS before you generate and deploy an ORS-specific SIF API.

1. Start the Hub Console, and connect to an ORS.

2. Expand the Utilities workbench, and click SIF Manager.

The SIF Manager utility appears.

3. To acquire a write lock, on the Write Lock menu, click Acquire Lock.

4. To update the status of the repository objects, on the SIF API Manager tab, click Refresh Objects Status.

The status of the repository objects is updated in the Selected and Out of Sync Objects table.

5. Select the repository objects for which you want to generate and deploy SIF API.

6. Click Generate and Deploy ORS-Specific SIF APIs.

The ORS-specific client JAR file and a WSDL file are generated.

Repository Objects Statuses 29

Renaming an ORS-specific SIF API
Use the SIF Manager utility in the Hub Console to rename an ORS-specific SIF API.

1. In the SIF Manager utility, on the Write Lock menu, click Acquire Lock.

2. On the SIF API Manager tab, in the Logical Name box, click the Edit button, and edit the logical name.

3. Click the Accept button.

The logical name is saved, and the Java name is updated to match the logical name.

4. Click Generate and Deploy ORS-Specific SIF APIs.

The ORS-specific client JAR file and the WSDL file are regenerated.

Downloading an ORS-Specific Client JAR File
After you generate an ORS-specific SIF API for the specific repository objects, download the client JAR file
that contains the SiperianClient classes and SIF API reference documentation.

1. In the SIF Manager utility, on the SIF API Manager tab, click Download Client JAR File.

The Select the directory in which to save the client JAR file dialog box appears.

2. Select the directory in which you want to save the client JAR file, and click Save.

The <Java Name>Client_<Version ID>.jar file is downloaded and saved in the selected directory.

Removing an ORS-Specific SIF API
Use the SIF Manager utility in the Hub Console to remove an ORS-specific SIF API.

1. In the SIF Manager utility, on the Write Lock menu, click Acquire Lock.

2. On the SIF API Manager tab, click Remove ORS-Specific APIs.

The ORS-specific client JAR file and the WSDL file are removed.

Using ORS-Specific Client JAR Files with SIF SDK
You can use the ORS-specific client JAR file with SIF SDK.

1. If you use an integrated development environment (IDE) and have a project file to build web services, add
the downloaded client JAR file to the build class path.

2. Open the build.xml file in the following directory:

• On Windows. <Resource Kit Installation Directory>\hub\resourcekit\sdk\sifsdk
• On UNIX. <Resource Kit Installation Directory>/hub/resourcekit/sdk/sifsdk

30 Chapter 5: ORS-Specific SIF API

3. Customize the build.xml file so that the build_war macro includes the downloaded client JAR file.

4. Save and close the build.xml file.

Archive Table
You can archive all the ORS-specific SIF APIs that you generate in the C_REPAR_SIF_ORS_CONFIG table
stored in the CMX_DATA tablespace. Use the version ID of an ORS-specific SIF API to identify the archives.

The records in the archive table contain blob data that can be larger than the character-based records and
can build up over time. The database administrator can archive or purge the archive table periodically to
clean the database.

ORS-Specific SIF Classes
An ORS-specific SIF API can include the following classes:

• Cleanse<Resource Name>
• CleansePut<Resource Name>
• Get<Resource Name>
• Put<Resource Name>
• SearchMatchColumn<Resource Name>
• SearchMatchRecord<Resource Name>
• SearchQuery<Resource Name>
The classes depend on the type of the repository object that you select to create the ORS-specific SIF API.
The classes are created for each repository object, and Resource Name indicates the name of the repository
object that you select to create the ORS-specific SIF API.

Cleanse<Resource Name>
The Cleanse<Resource Name> request invokes the cleanse function defined in the MDM Hub to cleanse the
input record. The response contains a record with the cleansed data.

Usage Examples

The following sample code uses the SOAP protocol to call the Cleanse<Resource Name> request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:urn="urn:mdmsample.siperian.api" xmlns:urn1="urn:siperian.api">
 <soapenv:Header/>
 <soapenv:Body>
 <urn:cleanseFormatDate>
 <urn1:username>siftester</urn1:username>
 <urn1:password>
 <urn1:password>password</urn1:password>
 <urn1:encrypted>false</urn1:encrypted>
 </urn1:password>
 <urn1:orsId>orcl-MDM_SAMPLE</urn1:orsId>

<urn:com.siperian.sif.dataobject.mdmsample.cleansefunctions.dataconversion.formatDateInpu

Archive Table 31

t>
 <urn:date>2014-03-17T00:00:00</urn:date>
 <urn:format>MMM dd, yyyy</urn:format>
 </
urn:com.siperian.sif.dataobject.mdmsample.cleansefunctions.dataconversion.formatDateInput
>
 </urn:cleanseFormatDate>
 </soapenv:Body>
</soapenv:Envelope>

The following sample code displays the response to the Cleanse<Resource Name> request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <soapenv:Body>
 <cleanseFormatDateReturn xmlns="urn:mdmsample.siperian.api">
 <ns1:message xmlns:ns1="urn:siperian.api">The CLEANSE was processed
successfully.</ns1:message>

<com.siperian.sif.dataobject.mdmsample.cleansefunctions.dataconversion.formatDateOutput>
 <string>Mar 17, 2014</string>
 </
com.siperian.sif.dataobject.mdmsample.cleansefunctions.dataconversion.formatDateOutput>
 </cleanseFormatDateReturn>
 </soapenv:Body>
</soapenv:Envelope>

CleansePut<Resource Name>
The CleansePut<Resource Name> request cleanses a specified record and updates or inserts it into a base
object in a single request.

Usage Example

The following sample code uses the SOAP protocol to call the CleansePut<Resource Name> request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:urn="urn:mdmsample.siperian.api" xmlns:urn1="urn:siperian.api">
 <soapenv:Header/>
 <soapenv:Body>
 <urn:cleansePutSfaAddress>
 <urn1:username>siftester</urn1:username>
 <urn1:password>
 <urn1:password>password</urn1:password>
 <urn1:encrypted>false</urn1:encrypted>
 </urn1:password>
 <urn1:orsId>orcl-MDM_SAMPLE</urn1:orsId>
 <urn:com.siperian.sif.dataobject.mdmsample.mappings.sfaAddressInput>
 <urn:lastUpdateDate>2014-03-14T00:00:00</urn:lastUpdateDate>
 <urn:addressLine>2100 Seaport Blvd</urn:addressLine>
 <urn:cityName>Redwood City</urn:cityName>
 <urn:stateCode>CA</urn:stateCode>
 <urn:zip>94063</urn:zip>
 </urn:com.siperian.sif.dataobject.mdmsample.mappings.sfaAddressInput>
 <urn:generateSourceKey>true</urn:generateSourceKey>
 </urn:cleansePutSfaAddress>
 </soapenv:Body>
</soapenv:Envelope>

The following sample code displays the response to the CleansePut<Resource Name> request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <soapenv:Body>
 <cleansePutSfaAddressReturn xmlns="urn:mdmsample.siperian.api">
 <ns1:message xmlns:ns1="urn:siperian.api">The CLEANSE PUT was processed
successfully</ns1:message>

32 Chapter 5: ORS-Specific SIF API

 <recordKey>
 <ns2:systemName xmlns:ns2="urn:siperian.api">SFA</ns2:systemName>
 <ns3:rowid xmlns:ns3="urn:siperian.api">180161</ns3:rowid>
 <ns4:sourceKey xmlns:ns4="urn:siperian.api">415</ns4:sourceKey>
 <ns5:rowidXref xmlns:ns5="urn:siperian.api">180161</ns5:rowidXref>
 </recordKey>
 <actionType>Insert</actionType>
 </cleansePutSfaAddressReturn>
 </soapenv:Body>
</soapenv:Envelope>

Get<Resource Name>
The Get<Resource Name> request retrieves a single row of data from the specified package. The row of data
can include data from a base object and its associated cross-reference (XREF) records.

Usage Example

The following sample code uses the SOAP protocol to call the Get<Resource Name> request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:urn="urn:mdmsample.siperian.api" xmlns:urn1="urn:siperian.api">
 <soapenv:Header/>
 <soapenv:Body>
 <urn:getPkgPerson>
 <urn1:username>siftester</urn1:username>
 <urn1:password>
 <urn1:password>password</urn1:password>
 <urn1:encrypted>false</urn1:encrypted>
 </urn1:password>
 <urn1:orsId>orcl-MDM_SAMPLE</urn1:orsId>
 <urn:recordKey>
 <urn1:systemName>SFA</urn1:systemName>
 <urn1:sourceKey>300001035000</urn1:sourceKey>
 </urn:recordKey>
 </urn:getPkgPerson>
 </soapenv:Body>
</soapenv:Envelope>

The following sample code displays the response to the Get<Resource Name> request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <soapenv:Body>
 <getPkgPersonReturn xmlns="urn:mdmsample.siperian.api">
 <ns1:message xmlns:ns1="urn:siperian.api">The GET was executed successfully -
retrieved 1 records</ns1:message>
 <recordKey>
 <ns2:rowid xmlns:ns2="urn:siperian.api">301952</ns2:rowid>
 </recordKey>
 <pkgPerson>
 <rowidObject>301952</rowidObject>
 <lastUpdateDate>2014-02-14T17:08:31.491-08:00</lastUpdateDate>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <partyType>Person</partyType>
 <hubStateInd>1</hubStateInd>
 </pkgPerson>
 </getPkgPersonReturn>
 </soapenv:Body>
</soapenv:Envelope>

ORS-Specific SIF Classes 33

Put<Resource Name>
The Put<Resource Name> request updates or inserts a single record identified by a key into a base object.

Note: Use the AddRelationshipRequest and UpdateRelationshipRequest objects to add or update
relationship records. If you use a PutRequest object or an ORS-specific Put<Resource Name> request to
update the relationship records, the updates might result in incorrect relationship records.

Usage Example

The following sample code uses the SOAP protocol to call the Put<Resource Name> request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:urn="urn:mdmsample.siperian.api" xmlns:urn1="urn:siperian.api">
 <soapenv:Header/>
 <soapenv:Body>
 <urn:putPkgPerson>
 <urn1:username>siftester</urn1:username>
 <urn1:password>
 <urn1:password>password</urn1:password>
 <urn1:encrypted>false</urn1:encrypted>
 </urn1:password>
 <urn1:orsId>orcl-MDM_SAMPLE</urn1:orsId>
 <urn:recordKey>
 <urn1:systemName>SFA</urn1:systemName>
 <urn1:sourceKey>u12492746345</urn1:sourceKey>
 </urn:recordKey>
 <urn:pkgPerson>
 <urn:firstName>John</urn:firstName>
 <urn:lastName>Smith</urn:lastName>
 <urn:genderCd>M</urn:genderCd>
 <urn:displayName>Mr John Smith</urn:displayName>
 <urn:partyType>Person</urn:partyType>
 <urn:hubStateInd>1</urn:hubStateInd>
 </urn:pkgPerson>
 <urn:generateSourceKey>false</urn:generateSourceKey>
 </urn:putPkgPerson>
 </soapenv:Body>
</soapenv:Envelope>

The following sample code displays the response to the Put<Resource Name> request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <soapenv:Body>
 <putPkgPersonReturn xmlns="urn:mdmsample.siperian.api">
 <ns1:message xmlns:ns1="urn:siperian.api">The PUT was processed successfully</
ns1:message>
 <recordKey>
 <ns2:systemName xmlns:ns2="urn:siperian.api">SFA</ns2:systemName>
 <ns3:rowid xmlns:ns3="urn:siperian.api">361930</ns3:rowid>
 <ns4:sourceKey xmlns:ns4="urn:siperian.api">u12492746345</ns4:sourceKey>
 <ns5:rowidXref xmlns:ns5="urn:siperian.api">361950</ns5:rowidXref>
 </recordKey>
 <actionType>Insert</actionType>
 </putPkgPersonReturn>
 </soapenv:Body>
</soapenv:Envelope>

34 Chapter 5: ORS-Specific SIF API

SearchMatchColumn<Resource Name>
The SearchMatchColumn<Resource Name> request searches for records in a package based on the match
column values. The response contains the matching records.

Usage Example

The following sample code uses the SOAP protocol to call the SearchMatchColumn<Resource Name> request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:urn="urn:datastewarddemo.siperian.api" xmlns:urn1="urn:siperian.api">
 <soapenv:Header/>
 <soapenv:Body>
 <urn:searchMatchColumnPkgParty>
 <!--Optional:-->
 <urn1:username>admin</urn1:username>
 <!--Optional:-->
 <urn1:password>
 <urn1:password>admin</urn1:password>
 <urn1:encrypted>false</urn1:encrypted>
 </urn1:password>
 <!--Optional:-->
 <urn1:securityPayload>cid:1224793701596</urn1:securityPayload>
 <!--Optional:-->
 <urn1:orsId>localhost-orcl-DS_UI1</urn1:orsId>
 <urn:sortCriteria></urn:sortCriteria>
 <urn:recordsToReturn>1</urn:recordsToReturn>
 <urn:returnTotal>true</urn:returnTotal>
 <urn:matchType>NONE</urn:matchType>
 <!--Zero or more repetitions:-->
 <urn:organizationName>?</urn:organizationName>
 <!--Zero or more repetitions:-->
 <urn:personName>John Doe</urn:personName>
 <!--Zero or more repetitions:-->
 <urn:addressPart1>?</urn:addressPart1>
 <!--Optional:-->
 <urn:matchRuleSetUid>?</urn:matchRuleSetUid>
 <!--Optional:-->
 <urn:disablePaging>?</urn:disablePaging>
 </urn:searchMatchColumnPkgParty>
 </soapenv:Body>
</soapenv:Envelope>

The following sample code displays the response to the SearchMatchColumn<Resource Name> request:

<q0:searchMatchColumnPkgParty>
…
<q0:personName>John Doe</q0:personName>
…
</q0:searchMatchColumnPkgParty>

SearchMatchRecord<Resource Name>
The SearchMatchRecord<Resource Name> request searches for match column values in a package based on
the specified record. The response contains the match column values.

Usage Example

The following sample code uses the SOAP protocol to call the SearchMatchRecord<Resource Name> request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:urn="urn:datastewarddemo.siperian.api" xmlns:urn1="urn:siperian.api">
 <soapenv:Header/>
 <soapenv:Body>
 <urn:searchMatchRecordPkgParty>
 <!--Optional:-->
 <urn1:username>admin</urn1:username>
 <!--Optional:-->

ORS-Specific SIF Classes 35

 <urn1:password>
 <urn1:password>admin</urn1:password>
 <urn1:encrypted>false</urn1:encrypted>
 </urn1:password>
 <!--Optional:-->
 <urn1:orsId>localhost-orcl-DS_UI1</urn1:orsId>
 <urn:sortCriteria>?</urn:sortCriteria>
 <urn:recordsToReturn>1</urn:recordsToReturn>
 <urn:returnTotal>true</urn:returnTotal>
 <urn:matchType>NONE</urn:matchType>
 <!--Zero or more repetitions:-->
 <urn:pkgOrganization>
 </urn:pkgOrganization>
 <!--Zero or more repetitions:-->
 <urn:pkgParty>
 <urn:partyType>?</urn:partyType>
 </urn:pkgParty>
 <!--Zero or more repetitions:-->
 <urn:pkgPerson>
 <!--Optional:-->
 <urn:firstName>John</urn:firstName>
 <!--Optional:-->
 <urn:lastName>Doe</urn:lastName>
 <urn:partyType>?</urn:partyType>
 </urn:pkgPerson>
 <!--Zero or more repetitions:-->
 <urn:dnbPartyInput>
 </urn:dnbPartyInput>
 <!--Zero or more repetitions:-->
 <urn:lgcPartyInput>
 </urn:lgcPartyInput>
 </urn:searchMatchRecordPkgParty>
 </soapenv:Body>
</soapenv:Envelope>

The following sample code displays the response to the SearchMatchRecord<Resource Name> request:

<q0:searchMatchRecordPkgParty>
…
<q0:contactPkg>
<q0:firstName>John</q0:firstName>
<q0:lastName>Doe</q0:lastName>
</q0:contactPkg>
</q0:searchMatchRecordPkgParty>

SearchQuery<Resource Name>
The SearchQuery<Resource Name> request searches for records in a package based on an SQL condition
clause. The condition clause can reference any columns in the package and can use operators that the target
database supports. The response contains matching records.

Note: To perform a search that is not case sensitive, set the case.insensitive.search property in the
cmxserver.properties.xml file to true, and use the SearchQuery<Resource Name> request to specify a
search criterion, such as lower(name)=lower('Jim').

Usage Example

The following sample code uses the SOAP protocol to call the SearchQuery<Resource Name> request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:urn="urn:datastewarddemo.siperian.api" xmlns:urn1="urn:siperian.api">
 <soapenv:Header/>
 <soapenv:Body>
 <urn:searchQueryPkgParty>
 <!--Optional:-->
 <urn1:username>admin</urn1:username>
 <!--Optional:-->
 <urn1:password>

36 Chapter 5: ORS-Specific SIF API

 <urn1:password>admin</urn1:password>
 <urn1:encrypted>false</urn1:encrypted>
 </urn1:password>
 <urn1:orsId>localhost-orcl-DS_UI1</urn1:orsId>
 <urn:recordsToReturn>10</urn:recordsToReturn>
 <urn:returnTotal>true</urn:returnTotal>
 <!--Zero or more repetitions:-->
 <urn:pkgParty>
 <!--Optional:-->
 <urn:displayName>ELIEZER MENDEZ</urn:displayName>
 </urn:pkgParty>
 </urn:searchQueryPkgParty>
 </soapenv:Body>
</soapenv:Envelope>

The following sample code displays the response to the SearchQuery<Resource Name> request:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <soapenv:Body>
 <searchQueryPkgPartyReturn xmlns="urn:datastewarddemo.siperian.api">
 <ns1:message xmlns:ns1="urn:siperian.api">The SEARCH QUERY REQUEST was
processed successfully</ns1:message>
 <pkgParty>
 <rowidObject>173</rowidObject>
 <displayName>ELIEZER MENDEZ</displayName>
 <partyType>Person</partyType>
 </pkgParty>
 <recordCount>1</recordCount>
 </searchQueryPkgPartyReturn>
 </soapenv:Body>
</soapenv:Envelope>

ORS-Specific SIF API Field Parameters
The following table lists the field parameters that the ORS-specific SIF classes use:

Note: The list of field parameters might vary based on your ORS.

Field Name Type Description

username String Optional. Name of the user who executes the request.

password String Optional. Password for the user name.

encrypted Boolean Optional. Indicates whether the password is encrypted.
Specify true if the password is encrypted, or specify false if the
password is not encrypted.

securityPayload Byte A security token or binary data used with a third-party authentication
provider.

orsID String Optional. Identifier for the ORS.

interactionId String Optional. A unique identifier for the request.

ORS-Specific SIF API Field Parameters 37

Field Name Type Description

isAsynchronous Boolean Optional. Indicates whether to place the request on a JMS queue.
Specify true to place the request on a JMS queue, or specify false to
disable asynchronous processing.

jmsReplyTo Boolean Optional. Indicates whether to post the response on the specified JMS
queue.
Specify true to post the response on the specified JMS queue, or specify
false if you perform synchronous processing.

jmsCorrelationId Boolean Optional. Indicates whether to set the JMS correlation ID to the specified
value.
Specify true to set the JMS correlation ID to the specified value, or
specify false if you do not want to set the JMS correlation ID.

sortCriteria String List of column names, separated by commas, to order the results.
The sortCriteria field is equivalent to the ORDER BY clause of an SQL
query.

recordsToReturn Int Maximum number of relationship records to return.

returnTotal Boolean Indicates whether to return the total number of records that satisfy the
search criteria.
Specify true to return the total number of records that satisfy the search
criteria, or specify false if you do not want to return the total number of
records that satisfy the search criteria.

removeDuplicates Boolean Indicates whether to remove the duplicate records from the results.
Specify true to remove the duplicate records, or specify false to retain
the records.

matchType MatchType object Indicates the type of match rules that you want to apply from the match
rule set.
You can specify one of the following match types:
- BOTH. Applies the automatic and the manual merge match rules.
- AUTO. Applies the automatic merge match rules.
- NONE. Applies the automatic and the manual merge match rules. If you

selected exact-match columns in the Selected Match Columns list,
and a selected record contains a value for that exact-match column,
the match process identifies duplicate records based on the exact-
match column plus the match rules.

matchRuleSetUid String Optional. ID of the match rule set that you want to use. Use null if you
want to use the default match rule set.

disablePaging Boolean Indicates whether to disable paging.
Specify true to disable paging to increase performance, and specify false
to return a search token that is valid for 15 minutes.

systemName String Optional. Name of the source system.

sourceKey String Optional. The value of the PKEY_SRC_OBJECT column of the XREF
record.

columnUid String UID of the Global Business Identifier (GBID) column.

38 Chapter 5: ORS-Specific SIF API

Field Name Type Description

package Boolean Optional.

xref Boolean Optional.

pendingXref Boolean Optional. Indicates whether to return the pending XREF records.
Specify true to return the pending XREF records, or specify false if you
do not want to return the pending XREF records.

deletedXref Boolean Optional. Indicates whether to return the deleted XREF records.
Specify true to return the deleted XREF records, or specify false if you do
not want to return the deleted XREF records.

history Boolean Optional.

xrefHistory Boolean Optional. Indicates whether to return XREF history records.
Specify true to return the XREF history records, or specify false if you do
not want to return the XREF history records.

raw Boolean Optional.

returnTrustScores Boolean Optional. Indicates whether to return trust scores for the trust-enabled
columns in the package and XREF records.
Specify true to return the trust scores, or specify false if you do not want
to return the trust scores.

returnLineage Boolean Optional. Indicates whether to return the lineage of the records.
Specify true to return the lineage of the records, or specify false if you
do not want to return the lineage of the records.

generateSourceKe
y

Boolean Indicates whether to generate a source key if you do not specify the key
in the record key.
Specify true to generate a source key, or specify false if you specify the
key in the record key.

lastUpdateDate Date time Optional. The date when you last updated the relationship record.

ORS-Specific SIF API Field Parameters 39

C h a p t e r 6

Asynchronous SIF Requests
This chapter includes the following topics:

• Asynchronous SIF Requests Overview, 40

• Architecture of JMS Message Queue for SIF, 40

Asynchronous SIF Requests Overview
SIF uses a message-driven bean (MDB) on a Java Message Service (JMS) queue to process the
asynchronous SIF requests from an external application. JMS queues are embedded message queues that
use the JMS providers of the application servers. An embedded message queue uses the Java Naming and
Directory Interface (JNDI) name of the connection factory and the queue name to connect with the JMS
queue. The application server sets up the JNDI name of the connection factory.

The MDM Hub installer automatically sets up the following components for the specific application server
that you use in your environment:

• Inbound message queue. siperian.sif.jms.queue
• Connection factory. siperian.mrm.jms.xaconnectionfactory

You must create an outbound message queue in the application server that has the MDM Hub installed. The
MDM Hub processes the asynchronous SIF request and posts the response to the outbound message queue.
The MDM Hub does not manage the outbound message queue. The external application retrieves the
message from the outbound queue and processes it.

Note: The siperian.sif.jms.queue queue name is reserved for the MDM Hub. You cannot use reserved
names when you create message queues.

Architecture of JMS Message Queue for SIF
The following image shows the architecture of JMS message queue and explains how an asynchronous SIF
request is processed:

40

An external application sends a message containing a service invocation request to the
siperian.sif.jms.queue inbound queue. The application server polls the queue for messages. The MDB of
the Hub Server forwards the service request to the MDM Hub for processing. The MDM Hub processes the
request and posts a response to the specified JMS outbound message queue. The external application
retrieves the message from the specified message queue and processes it.

Processing Asynchronous SIF Requests
Use one of the following methods to process a SIF request asynchronously:

• Use an appropriately configured AsynchronousOptions object with a SIF request. When you run the SIF
request, the SIF request is placed in an inbound queue for processing.

• Place the SIF request directly on the inbound message queue.

If you set the jmsReplyTo field, the response is posted to the specified JMS outbound queue. If you set the
jmsCorrelationId field, the response includes the correlation ID, and you can identify the response based on
the correlation ID that you set.

Architecture of JMS Message Queue for SIF 41

C h a p t e r 7

ORS-Specific JMS Event
Messages

This chapter includes the following topic:

• ORS-Specific JMS Event Messages Overview, 42

ORS-Specific JMS Event Messages Overview
Use the JMS Event Schema Manager tool that is part of the SIF Manager utility in the MDM Hub to generate
and deploy ORS-specific JMS event messages for the current ORS. You can use the generated URL or
download the XSD file to access the schema file for the JMS event messages. After you generate the schema
file, you can configure the message triggers to identify the MDM Hub actions that you want to communicate
to external applications and the message queue to publish the XML messages.
Note: You must have at least one secure package to generate an ORS-specific JMS event message schema.

The ORS-specific XSD file uses elements from the common XSD file, siperian-mrm-events.xsd. The format
of the ORS-specific XSD file name is <ORS Name>-siperian-mrm-event.xsd.

The ORS-specific JMS event message schema file contains the following objects for each package:

Object Name Description

<Package Name>Event A complex type element that contains the EventMetadata and <Package
Name> element types.

<Package Name>Record A complex type element that represents a package and its fields and
includes the SipMetadata element type.
The complex type element resembles the package record structures
defined in SIF.

If you have two databases that have the same schema such as CMX_ORS, use the unique database display
name as the initial logical name instead of the database logical name. Otherwise, the logical name can be
duplicated for the JMS events when you initially save the configuration.

Note: If you want to use the legacy XML event message objects, you do not require the ORS-specific JMS
event message schema.

For more information about the JMS event messages, see the Multidomain MDM Configuration Guide.

42

Elements in a Response XML Message
The following table describes the elements in a response XML message:

Field Description

siperianEvent Root node in the response XML message.

eventMetadata Root node for the event metadata.

messageId Unique ID for the siperianEvent message.

eventType Type of event. Use one of the following values:
- Insert
- Update
- Update XREF
- Accept as Unique
- Merge
- Merge Update
- Unmerge

baseObjectUid Unique ID of the base object that the event affects.

packageUid Unique ID of the package associated with the event.

messageDate Date and time when the message was generated.

orsId ID of the ORS associated with the event.

triggerUid Unique ID of the rule that triggered the event.

<Event Type>Event Root node for the event details.

sourceSystemName Name of the source system associated with the event.

sourceKey Value of the PKEY_SRC_OBJECT column associated with the event.

eventDate Date and time when the event was generated.

rowid Row ID of the base object record that the event affects.

xrefKey Root node of a cross-reference record that the event affects.

systemName System name of the cross-reference record that the event affects.

sourceKey Value of the PKEY_SRC_OBJECT column of the cross-reference record that the event affects.

<Package Name> Name of the secure package associated with the event.

<Column Name> Each column in the package is represented as an element in the XML file.
For example, rowidObject and consolidationInd.
The field is defined in the ORS-specific XSD file that you generate.

mergedRowid List of ROWID_OBJECT values of the records that are merged.
Applicable only for the merge events.

ORS-Specific JMS Event Messages Overview 43

Sample Response XML Message for an Update Event
An update event generates the following sample response XML message:

<?xml version="1.0" encoding="UTF-8"?>
<siperianEvent>
 <eventMetadata>
 <eventType>Update</eventType>
 <baseObjectUid>BASE_OBJECT.CUSTOMER</baseObjectUid>
 <packageUid>PACKAGE.CUSTOMER_PKG</packageUid>
 <messageDate>2008-04-24T15:35:51.000-07:00</messageDate>
 <orsId>localhost-mrm-CMX_ORS</orsId>
 <triggerUid>MESSAGE_QUEUE_RULE.UpdateTrigger</triggerUid>
 </eventMetadata>
 <updateEvent>
 <sourceSystemName>TestSystem123</sourceSystemName>
 <sourceKey>123-1</sourceKey>
 <eventDate>2008-04-24T15:35:51.000-07:00</eventDate>
 <rowid>1</rowid>
 <xrefKey>
 <systemName>Admin</systemName>
 <sourceKey>SVR1.161</sourceKey>
 </xrefKey>
 <xrefKey>
 <systemName>System1</systemName>
 <sourceKey>2-1</sourceKey>
 </xrefKey>
 <customerPkg>
 <rowidObject>1</rowidObject>
 <creator>admin</creator>
 <createDate>2008-04-22T15:47:04.000-07:00</createDate>
 <updatedBy>admin</updatedBy>
 <lastUpdateDate>2008-04-24T15:35:50.000-07:00</lastUpdateDate>
 <lastRowidSystem>TESTSYSTEM</lastRowidSystem>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 </customerPkg>
 </updateEvent>
</siperianEvent>

44 Chapter 7: ORS-Specific JMS Event Messages

C h a p t e r 8

Using Security Access Manager
This chapter includes the following topics:

• Security Access Manager Workbench Overview, 45

• Using the Security Access Manager Workbench, 46

• Permissions for SIF Requests, 46

Security Access Manager Workbench Overview
Use the Security Access Manager workbench to configure a security framework for protecting the MDM Hub
resources from unauthorized access. The security framework enforces the security policy decisions of your
organization for your MDM Hub implementation and handles user authentication and access authorization at
run time.

The security framework applies to the users of third-party applications who want to access the MDM Hub
resources. The Hub Console has its own security mechanisms to authenticate users and authorize access to
the Hub Console tools and resources.

If your application uses SIF requests to perform a task on your MDM Hub implementation that has the
Security Access Manager workbench configured, ensure that you have appropriate permissions to access the
MDM Hub objects.

You can also apply privileges at the column level. For example, the columns of the P_CUST package has the
following privileges:

• READ privilege on column 1

• READ and CREATE privileges on column 2

• No privileges on column 3

A GetRequest object can access data only from column 1 and column 2 because the column 3 does not have
the READ privilege. A PutRequest object can insert a record only in column 2 because column 1 and column 3
do not have the CREATE privilege. You cannot update any column because none of the columns has the
UPDATE privilege.

Note: Only admin users can access private resources through the SIF requests.

45

Using the Security Access Manager Workbench
Use the Security Access Manager workbench to set permissions for a role and assign roles to a user.

1. Use the Secure Resources tool in the Security Access Manager workbench to configure a resource as
secure. An external application can access only secure resources.

2. Use the Roles tool in the Security Access Manager workbench to define a role that can access the MDM
Hub resources. A role represents a set of privileges to access secure MDM Hub resources.

3. Use the Users and Groups tool in the Security Access Manager workbench to associate the role with a
specific user.

For more information about the Security Access Manager workbench, see the Multidomain MDM
Configuration Guide.

Permissions for SIF Requests
The following table shows the permissions that the SIF requests require to access the MDM Hub resources:

SIF Request Object Permission

AcceptUnmatchedRecordsAsUnique Package and base object Update

AddRelationship Hierarchy Manager profile Create

ApplyChangeList Repository Manager Update

AssignUnmergedRecords Package. Must grant permission to the ultimate parent
base object column.

Update

Audit Audit table Update

Authenticate - None

CanUnmergeRecords Package, base object, and cross-reference tables Read

CleanTable Repository Manager -

Cleanse Function and mapping Execute

CleansePut Base object, column, and mapping Update and Create

ClearAssignedUnmergedRecords Package and base object Update

CreateChangeList Repository Manager Read

CreateTask - -

Delete Base object if deleting a base object, cross-reference
table if deleting a cross-reference table, and base
object if deleting a base object and cross-reference
record

Delete

46 Chapter 8: Using Security Access Manager

SIF Request Object Permission

DeleteRelationship Hierarchy Manager profile Update

DescribeSiperianObject Package, Repository Manager, base object, column,
function, mapping, match rule set, and Hierarchy
Manager profile

Read

ExecuteBatchAutoMatchAndMerge - Execute

ExecuteBatchAutomerge - Execute

ExecuteBatchBVTSnapshot - Execute

ExecuteBatchExternalMatch - Execute

ExecuteBatchGenerateMatchTokens - Execute

ExecuteBatchGroup Batch group Execute

ExecuteBatchKeyMatch - Execute

ExecuteBatchLoad - Execute

ExecuteBatchMatch - Execute

ExecuteBatchMatchAnalyze - Execute

ExecuteBatchPromote - Execute

ExecuteBatchRecalculateBO - Execute

ExecuteBatchRecalculateBVT - Execute

ExecuteBatchResetMatchTable - Execute

ExecuteBatchRevalidate - Execute

ExecuteBatchStage - Execute

ExecuteBatchSynchronize - Execute

ExecuteBatchValidateFKRelationships - Execute

GenerateConstraints - Merge

Get Package, column, history, raw, cross-reference table,
and cross-reference table history

Read

GetAssignableUsersForTasks Record Update

GetAssignedRecords Package and column Read

GetAssignedUnmergedRecords Package and column Read

GetBatchGroupStatus Batch group Read

Permissions for SIF Requests 47

SIF Request Object Permission

GetBVT Package and column Read

GetEntityGraph Hierarchy Manager profile Read

GetLookupValue Column Read

GetMatchedRecords Package and column Read

GetMergedHistory Package and base object Read

GetOneHop Hierarchy Manager profile Read

GetORSList - None

GetORSMetadata Repository Manager Read

GetSearchResults Depends on the primary processor Read

GetSiperianObjectCompatibility Metadata Read

GetSystemTrustSettings Metadata Read

GetTaskLineage - -

GetTrustGraphData Metadata Read

GetTrustScore Column Read

GetUnmergedRecordCount Package and base object Read

Link Package Merge

ListSiperianObject Metadata Read

Merge Package Merge

Multimerge Package Merge

PromotePendingXrefs Package and column Update

Put Package and column Update and Create

ReassignRecords Package and base object Update

RegisterCustomIndex Repository Manager -

RegisterCustomTableObject Repository Manager -

RegisterUsers Users Create

RemoveMatchedRecords Repository Manager -

ResetBatchGroup Batch group Update

48 Chapter 8: Using Security Access Manager

SIF Request Object Permission

Restore Base object and cross-reference table Update

SearchHMQuery Package, column, and Hierarchy Manager profile Read

SearchLookupValues Base object and column Read

SearchMatch Package and match rule set Read

SearchQuery Package and column Read

SetPassword - None

SetRecordState Package Update

UpdateRelationship Hierarchy Manager profile Update

UpdateTask - -

Unlink Package Merge

Unmerge Package Merge

UnregisterUsers Users Update

Tokenize Package Update

ValidateChangeList Repository Manager Read

ValidateMetadata Repository Manager Read

ValidateTask - -

Permissions for SIF Requests 49

C h a p t e r 9

Using Dynamic Data Masking
This chapter includes the following topics:

• Dynamic Data Masking Overview, 50

• Rules, 50

• Supported SIF Requests for Dynamic Data Masking, 51

Dynamic Data Masking Overview
Informatica Dynamic Data Masking is a data security product that operates between a client and a database
to prevent unauthorized access to sensitive information. Dynamic Data Masking intercepts requests sent to
the database and applies data masking rules to the request to mask the data before it is sent back to the
client.

You can use Dynamic Data Masking to mask or prevent access to sensitive data stored in production and
non-production databases. You set up the rules to specify the database requests to intercept and the
masking actions to apply. Dynamic Data Masking monitors incoming database requests from the MDM Hub.
Dynamic Data Masking applies the data masking rules to the database request before it sends it to the
database. The database processes the modified request as normal and returns masked results to Dynamic
Data Masking. Dynamic Data Masking then sends the results to the MDM Hub.

You can use Dynamic Data Masking to mask data for specific types of database requests or you can restrict
access to data from certain groups within an organization. For example, you can create a rule to apply a
masking function to credit card numbers when the database request comes from a support team member.
When Dynamic Data Masking sends the data back to the MDM Hub, the support team member sees the
masked numbers instead of the real credit card numbers.

Rules
A rule contains conditions and actions that Dynamic Data Masking uses to process a request.

A connection rule defines the connection criteria to identify a connection and the target database. A security
rule defines the criteria to parse and rewrite an SQL request. Use security rules to mask data in a specific row
or to mask an entire column. For example, you can create a security rule that rewrites SQL requests that
reference the Social Security column from the Employee table.

50

Supported SIF Requests for Dynamic Data Masking
After you add a database that the MDM Hub implementation uses to Dynamic Data Masking, you can
configure security rules to mask data in a specific row or column. If you use SIF requests to retrieve data
from a security rule-enabled column or row, the responses might include masked data based on the security
rule that you configure.

The following SIF requests support the data masking rules:

• Get

• GetAggregatePeriod

• GetEffectivePeriods

• GetEntityGraph

• GetLookupValue

• GetMatchedRecords

• GetOneHop

• GetSearchResults

• GetXrefForEffectiveDate

• SearchHmQuery

• SearchLookupValues

• SearchMatch

• SearchQuery

• PreviewBvt

For more information about configuring Dynamic Data Masking for the MDM Hub, see the Multidomain MDM
Security Guide.

Supported SIF Requests for Dynamic Data Masking 51

C h a p t e r 1 0

SIF API Reference
This chapter includes the following topics:

• Functional SIF API Listing, 52

• Reference SIF API Listing, 56

Functional SIF API Listing
The following table describes SIF API requests organized by function:

SIF Functional Group/Class Description

Batch Group APIs Batch Group API requests enable developers to run batch groups
directly without using the MDM Hub Console or stored procedures.

“ExecuteBatchGroup” on page 77 Runs a set of batch jobs, some sequentially, and some in parallel
according to the configuration.

“GetBatchGroupStatus” on page 93 Get status of most recent execution; polls for status after executing
asynchronously.

“ResetBatchGroup” on page 126 Finds the status of the last run of a batch group, and if the status is
failed, sets it to incomplete.

Data Steward APIs Data Steward API requests facilitates developers to write
applications with a custom user interface. You can use any SIF API
request that your application requires.

“GetLookupValue” on page 97 Retrieves the lookup display name, lookup code description, for the
specific lookup values, lookup codes, for the specified lookup
columns.

“GetLookupValues” on page 98 Retrieves the list of valid lookup values (lookup codes) and lookup
display names (lookup code descriptions) for the specified lookup
columns.

“GetMatchedRecords” on page 98 Retrieves the match candidates for the specified record.

“GetMergeHistory” on page 99 Retrieves a tree that represents the history of merges for a
specified base object record.

52

SIF Functional Group/Class Description

“GetSystemTrustSettings” on page 103 Retrieves the system-specific trust settings for the specified
columns.

“GetTrustGraphData” on page 109 Retrieves the data to plot the trust decay curve for the specified
trust setting.

“GetTrustScore” on page 109 Retrieves the current trust score for the specified column in a base
object record.

“GetXrefForEffectiveDate” on page 110 Retrieves multiple XREF records for the specified effective date.

“ PreviewBVT” on page 115 Provides a preview for a base object record if a specified set of
records are merged or pending updates are applied.

“SearchLookupValues” on page 128 Searches for lookup values that match a lookup display name,
lookup code description.

“SetRecordState” on page 136 Sets the record state of base object records identified by the
specified keys.

Data APIs Data API requests enable developers to run the MDM Hub Cleanse,
Link, MultiMerge, and Unlink base object requests.

“Cleanse ” on page 61 Uses cleanse functions to transform an input record provided in the
request to the output format specified by the cleanse function
selected.

“Link” on page 112 Links two or more base object records using the specified
groupRecordKey as the group ID.

“MultiMerge” on page 114 Merges multiple base object records that are identified as
representing the same object and you can specify the field level
overrides for the merged record.

“Unlink” on page 139 Unlinks two or more base object records with the group ID specified
in the groupRecordKey field.

Data Update / Insert APIs Data update or insert API requests enable developers to run data
updates and inserts on base object records.

“AddRelationship” on page 57 Adds a relationship between two entities.

“CleansePut” on page 62 Inserts or updates a single record identified by a key into a base
object.

“DeleteRelationship” on page 71 Deletes a relationship between two entities by changing the Hub
state to deleted. DeleteRelationship does not remove the record
from the relationship table. If the relationship is a foreign key
relationship, the request sets the foreign key value to null.

“Merge ” on page 114 Merges two base object records that are identified as representing
the same object.

“Put ” on page 118 Inserts or updates a single record identified by a key into a base
object.

Functional SIF API Listing 53

SIF Functional Group/Class Description

“Tokenize ” on page 138 Generates match tokens for a base object record that is updated or
inserted.

“Unmerge ” on page 139 Unmerges base object (BO) records.

“UpdateRelationship” on page 142 Hierarchy Manager request for changing some characteristics of an
existing relationship.

Data Retrieval APIs Data Retrieval API requests enable developers to retrieve data,
including BVT, a single record or sets of records, as well as to
perform searches based on match columns.

“GetBvt” on page 94 Retrieves the best version of truth (BVT) from the specified package
using a known key.

“Get” on page 88 Retrieves a single record from the specified package using a known
key.

“GetEntityGraph” on page 96 Hierarchy Manager request for fetching a graph of entities and
relationships related to a specified set of entities.

“GetOneHop” on page 99 Hierarchy Manager request for fetching information about the
entities directly related to a specified group of entities in a
specified HM configuration.

“GetSearchResults ” on page 101 Retrieves additional data when the number of records found by the
SIF API search queries, SearchMatch and SearchQuery, exceeds the
number of records to return specified in the search API request.

“SearchHmQuery” on page 128 Provides search capabilities for Hierarchy Manager.

“SearchMatch ” on page 128 Searches for records in a package based on match columns and
rule definitions.

“SearchQuery ” on page 133 Retrieves a set of records from an MDM package satisfying the
specified criteria.

Merge Workflow APIs Merge Workflow API requests enable developers to run post-match
batch processes, such as search for unmatched or unmerged
records.

“AcceptUnmatchedRecordsAsUnique” on page 56 Once the match batch process is run and records are placed into
match groups, there are often records that did not match any other
records in the Hub. Sets the unmatched records to unique (that is,
sets CONSOLIDATION_IND=1)

“AssignUnmergedRecords” on page 58 After the match batch process has been run and records are placed
into match groups, the records that were processed and not
automatically merged are placed into the UNMERGED state. This is
to assign the unmerged records to specified user.

“CanUnmergeRecords” on page 60 Determines whether the specified cross reference (XREF) record
can be unmerged from the consolidated base object.

“ClearAssignedUnmergedRecords” on page 66 Clears the list of unmerged records that are currently assigned to
this user.

54 Chapter 10: SIF API Reference

SIF Functional Group/Class Description

“GetAssignedRecords” on page 93 Get a set of records requiring manual merge decisions that are
assigned to the user.

“GetUnmergedRecordCount” on page 110 Get the number of unmerged records.

“ReassignRecords” on page 123 Reassigns the specified records assigned for manual merge
evaluation to another user.

Metadata APIs Metadata API requests enable developers to return metadata for
specified objects.

“DeleteRelationship” on page 71 Request to describe Informatica objects by fetching their metadata.

“GetOrsList” on page 100 Retrieves a list of operational record stores (ORS) registered in the
master database.

“ListSiperianObjects ” on page 112 Returns metadata of Informatica MDM Hub objects.

“DescribeSiperianObject” on page 71 Returns metadata of Informatica MDM Hub objects.

Metadata Management APIs Metadata Management API requests enable developers to manage
ORS change lists.

“ApplyChangeList” on page 57 Applies a change list to the current repository.

“CreateChangeList” on page 66 Creates a change list in XML format for the current repository.

“ValidateChangeList” on page 145 Validates a change list against the current repository.

“ValidateMetadata” on page 146 Validates the metadata for the current repository.

Repository Manager APIs Repository Manager API requests enable developers to export
metadata.

“GetOrsMetadata” on page 101 Export metadata to a change list XML file.

State Management APIs State Management API requests enable developers to delete and
restore state-enabled records with the state set to DELETE,
additionally promotes pending cross-reference records.

“Delete” on page 69 Deletes the specified records from the MDM Hub.

“PromotePendingXrefs” on page 116 Promotes or flags for promotion the XREF records specified in the
request.

“Restore” on page 127 Restores the specified XREF records in the MDM Hub.

Task APIs Task APIs are used for task administration.

“CreateTask” on page 67 Creates a task.

“GetTasks ” on page 107 Retrieves lists of tasks and task details.

“GetTaskLineage” on page 104 Retrieves the lineage of the specified task.

Functional SIF API Listing 55

SIF Functional Group/Class Description

“GetAssignableUsersForTasks” on page 92 Retrieves a list of users whom you can assign a list of specified
tasks.

“UpdateTask” on page 143 Updates a task.

“ValidateTasks” on page 147 Checks each merge task specified in the request to verify there is a
match table record

User Management APIs User Management API requests enable developers to manage user
security.

“Authenticate” on page 60 Authenticates a user against the specified ORS.

“SetPassword ” on page 136 Changes a user password to a new password.

Miscellaneous APIs These miscellaneous API requests enable developers to run audit
requests, register and unregister users, and perform other
compatibility requests.

“Audit ” on page 59 Add a custom entry to the Hub Audit trail.

“GetSiperianObjectCompatibility” on page 103 Request to get a checksum that represents the definition of the
specified object in Informatica MDM Hub.

“RegisterUsers” on page 125 Allows for automated provisioning of users that are authenticated
externally using one of the registered JAAS login modules.

“UnregisterUsers” on page 141 Allows for previously provisioned users (see RegisterUsers) to be
unregistered.

Reference SIF API Listing
This section is an alphabetical listing for the SIF API. It provides a description and use case examples for the
various SIF API requests. Refer to the SIF Javadocs for details of how to use these API requests with the
interfaces that the Informatica Java client provides. If you are using a Web service interface to the requests,
refer to the Web Services Description Language (WSDL) descriptions of the Informatica Web service.

Note: Only admin users can access private resources through SIF requests.

AcceptUnmatchedRecordsAsUnique
AcceptUnmatchedRecordsAsUnique changes the state of records that have no match candidates from
Unmerged to Consolidated (unique). Once a record is in the Consolidated state, it will no longer appear in the
list of records that needs to be reviewed and it will not be merged by the merge batch process. These records
can still be merged manually in the Console or by using the Merge API.

The request specifies the base object table or a package on that table. It also supplies a boolean value
indicating whether or not to change only those records assigned to the user.

The response contains the number of records accepted as unique.

56 Chapter 10: SIF API Reference

Note: You can configure AcceptUnmatchedRecordsAsUnique requests only for “no system” when using the
Hub Console Audit Manager to audit requests made by external applications. Once auditing for a particular
SIF API request is enabled, Informatica MDM Hub captures each SIF request invocation and response in the
audit log. For more information, see the Multidomain MDM Configuration Guide.

Use Case

This is the common scenario for using the AcceptUnmatchedRecordsAsUnique request:

• Set unmatched records as unique — You can use the AcceptUnmatchedRecordsAsUnique request in an
application with a custom UI for the data stewards. In the screen that manages the status of records, you
might create a button that uses this request to accept all the unmatched records as unique.

AddRelationship
AddRelationship enables you to add a relationship between two entities.

The request identifies the HM configuration and hierarchy, the relationship type, the records, and a number of
optional parameters. Note that this request cannot be used to add a new Relationship with Foreign Key
Relationship Type because adding a FK Relationship really involves updating an existing record in the FK
Relationship Base Object. For more information, see “UpdateRelationship” on page 142.

The response contains the record key for the added relationship. Informatica MDM Hub infers the types of
the entities being related (and thus the base objects containing those entities) from the relationship type.

Use Case

This is the common scenario for using the addRelationship request:

• Add a relationship between two HM entities — If you have Hierarchy Manager and have populated it with
entities, you can use the addRelationship request to create a relationship between two entities.

Related SIF Requests
• “UpdateRelationship” on page 142

• “DeleteRelationship” on page 71

ApplyChangeList
The ApplyChangeList request applies all the changes in the specified change list to the current repository
(ORS).

Required Parameters

The following table describes the required parameters:

Parameter Description

ChangeListXml Contains the XML string representing the change list to apply.

Reference SIF API Listing 57

Optional Parameters

The following table describes the optional parameters:

Parameter Description

RollBackStrategy If set to FULL_ROLLBACK: No changes are applied if an error occurs during the change list
process. The default is FULL_ROLLBACK.
If set to ROLLBACK_TO_LAST_CHANGE: Only the change list item that failed is rolled back. All
other changes are applied.

OwnerPassword Contains the owner password. The default is "".

ValidateDataIntegrity If set to true, data integrity validation is required.
If set to false, data integrity validation is not required. The default is false.

Response Field

The following table describes the response fields:

Field Description

Messages Contains an array of error messages.

Success If true, the change list executed without errors.
If false, the change list executed with errors.

DataLost If true, data was lost because of a rollback.
If false, no data was lost because of a rollback.

AssignUnmergedRecords
AssignUnmergedRecords assigns records in the unmerged state to the specified user. It assigns no more
than the requested number of records. Optionally, you can specify a WHERE clause to select Unmerged
records from the package. The Unmerged state is equivalent to setting the consolidation indicator to 2 and
can also be referred to as the “ready to merge” state. Records are placed into the Unmerged state regardless
of whether they matched other records or not. This request is used to assign the records that are in the
Unmerged state to a specified user for review and processing. However, any records that are already
assigned to a user will not be reassigned by this API.

The response contains the number of records assigned.

Note: Hub Implementers can setup user exits that control how records are assigned. These user exits are
invoked when this API is run and will override the standard logic for assignment of records. For information
regarding user exits, see the Multidomain MDM Configuration Guide.

Use Case

This is the common scenario for using the AssignUnmergedRecords request:

• Assigning unmerged records to a user—You can use the AssignUnmergedRecords request in an
application with a custom UI for the data stewards. In the screen that manages the data steward’s
queues, you might create a button that uses this request to assign unmerged records.

58 Chapter 10: SIF API Reference

Audit
Audit adds an entry to the C_REPOS_AUDIT table to record information about some activity involving a record
stored in Informatica MDM Hub. You can log similar information about information in your own application
programs.

Set the attributes of the new entry (for example, component, action, status, context). Then process the
request to add the entry to the audit table. The process method returns an AuditResponse, which contains
the rowid of the resulting audit record.

To use this facility, store the name of a project or similar large entity in component, and let action be an
element of the component. For example, component might be “SIF API” and action might be AuditRequest.

You can set the audit rowid of the last previous related audit entry. In this way you can build a chain of audit
entries. You obtain the rowid of an audit entry from the AuditResponse that comes back when you process an
AuditRequest.

Use the status field to convey information useful for determining what to do with the audit record. For
example, status values might be debug, info, warn, error, and fatal.

Use the contextXML and dataXML to add XML-formatted additional information to the audit entry.

Note: You can not configure Audit API requests to audit requests made by external applications. For more
information, see the Multidomain MDM Configuration Guide.

Use Case

This is the common scenario for using the Audit request:

• Adding auditing information to the log—You can use the audit request in an application to record auditing
information in the log for reporting or compliance purposes.

Usage Example
// For example, if this is in a Servlet that receives an XML
// to update multiple Hub packages.

AuditRequest request = new AuditRequest();
request.setComponent("mycompany.customerServlet");
request.setAction("POST");
request.setStatus("info");
// from: the same system to be used in other SIF calls
request.setFromSystem("CRM");
request.setToSystem("Admin"); // to: Siperian Hub

// context: any metadata to help understand the entry
request.setContext(dataId); // example: pkeySource
// context xml: complex metadata, for debug, may impact performance
request.setContextXML("<metadata>"
+ "<url>" + httpServletRequest. getRequestURI() + "</url>"
+ "</metadata>");

// It may be helpful to identify the root package
request.setSiperianObjectUid(
SiperianObjectType.PACKAGE.makeUid("CUSTOMER_UPDATE"));

// data xml: usually for debug only, may impact performance
request.setDataXML(requestXmlAsString);

// If there was a related audit before this one:
request.setRowidAuditPrevious(prevAuditResponse.getRowidAudit());

// If the rowid_object is known:
request.setRowidObject("");

AuditResponse response = (AuditResponse)
sipClient.process(request);

Reference SIF API Listing 59

// Now decompose the request data and call other SIF API's ...

Authenticate
Authenticate allows you to determine a user’s rights to access an ORS. If the user has the right to access the
ORS, the message in the response object is STATUS_GRANTED. Otherwise it is STATUS_DENIED. The
response contains a list of the roles assigned to the user and information about the user’s password—if and
when it expires and whether it is externally authenticated using a service such as LDAP.

Use Case

This is the common scenario for using the authenticate request:

• Determine a user’s access rights to an ORS—Before using a request that requires specific access
privileges, you can use authenticate to determine if the user possesses the required rights.

CanUnmergeRecords
CanUnmergeRecords determines whether or not specified records can be unmerged from the consolidated
base object. The request contains a package and a key identifying the XREF to unmerge. The response
contains a boolean value that is true if the records can be unmerged, false if they cannot.

Cross reference records can be added to a base object record either by consolidating two base object
records or by adding them directly using the ROWID_OBJECT of a base object record. If a cross reference is
added using the ROWID_OBJECT and no PKEY_SOURCE_OBJECT, and there is not already a cross reference
for that base object record for the specified system, a new cross reference record is added that is considered
an “edit” cross reference.

An unmerge is not allowed if the specified cross reference is not an edit cross reference and all the other
cross references for that base object are edit cross references. If there are at least two cross references that
are not edit cross references, the cross reference can be unmerged.

Note: You can configure CanUnmergeRecords requests according to a specific system when using the Hub
Console Audit Manager to audit requests made by external applications. Once auditing for a particular SIF
API request is enabled, Informatica MDM Hub captures each SIF request invocation and response in the audit
log. For more information, see the Multidomain MDM Configuration Guide.

Use Case

This is the common scenario for using the CanUnmergeRecords request:

• Determining whether a given record can be unmerged—You can use the CanUnmergeRecords request in
an application with a custom UI for the data stewards to determine whether two records can be unmerged
before attempting to do so.

CleanTable
A CleanTable request removes data from an Operational Reference Store table and all its companion tables.

Request Parameters

A CleanTable request contains the following parameters:
SiperianObjectUid

Identifier of a base object or a table from which you want to remove data.

60 Chapter 10: SIF API Reference

CleanStaging

Optional. Indicates whether to remove rows in the staging tables and the dependent tables such as
<Staging Table>_CL, <Staging Table>_DLT, <Staging Table>_RAW, <Staging Table>_REJ, <Staging
Table>_OPL, and <Staging Table>_PRL.

The CleanStaging parameter uses the following values:

• True. Removes the rows in the staging tables and the dependent tables.

• False. Retains the rows in the staging tables and the dependent tables.

Default is false.

UseTruncate

Optional. Indicates whether to use the TRUNCATE or DELETE statement to remove the records.

The UseTruncate parameter uses the following values:

• True. Uses the TRUNCATE statement, which functions faster, to remove the records. In the Oracle-
distributed transaction environments, the TRUNCATE statement commits transactions that might
cause errors.

• False. Uses the DELETE statement, which functions slower, to remove the records.

Default is false.

Response Fields

The CleanTable request returns the following fields:

InteractionId

An identifier for the request.

Message

A brief message about the status of the request.

Usage Example

The following code sample uses the TRUNCATE statement to remove data from the base object C_PARTY
and the associated staging table:

CleanTableRequest request = new CleanTableRequest();
request.setSiperianObjectUid("BASE_OBJECT.C_PARTY");
request.setCleanStaging(true);
request.setUseTruncate(true);
CleanTableResponse response = (CleanTableResponse)sipClient.process(request);

Cleanse
Cleanse invokes a cleanse function defined in Informatica MDM Hub. The request specifies the record and
the cleanse function. The response contains a record containing the cleansed data.

Available cleanse functions can be viewed in the Hub Console in the Cleanse Function Manager. Additionally,
you can use the ListSiperianObject request to retrieve the list of available cleanse functions. Cleanse function
details, including parameters, can be retrieved using the DescribeSiperianObject request.

You can specify the name of the cleanse function to use in a Cleanse request in two ways:

• a cleanse function UID: “CLEANSE_FUNCTION.[Cleanse Library Name]|[Cleanse Function Name]”

• or “[Cleanse Library Name]|[Cleanse Function Name]”.

Reference SIF API Listing 61

For example, in order to use the Concatenate cleanse function that resides in the String Functions cleanse
library, the cleanse function would be identified as either “CLEANSE_FUNCTION.String Functions|
Concatenate” or “String Functions|Concatenate”.

Mappings defined in the Hub may also be accessed and used as cleanse functions. Mappings are
automatically placed in the “Mappings” library and can be accessed using the UID
“CLEANSE_FUNCTION.Mappings|[mapping name]”.

Related Topics:
• “CleansePut” on page 62

Use Cases
These are the common scenarios for using the cleanse request:

• Data cleansing for external applications — An external application can use the cleanse request
independently of the Informatica MDM Hub master record functionality. External applications can invoke
cleanse to interface with data quality facilities provided by Informatica to process input data.

• Address verification for external applications — Informatica MDM Hub provides the functionality to
validate and standardize addresses. These facilities can be used by external applications to improve the
quality of the address data that is entered into them.

• Cleanse used in combination with put — The most common use of the cleanse request is to cleanse an
individual field before the record is passed to the put request.

• Cleanse used in combination with match — The match request provides access to the matching rules and
allows you to search Informatica MDM Hub for records that contain values that are similar, but not
necessarily identical to the search criteria. To improve the quality of matches returned, you can cleanse
the search criteria before passing them to the match request.

Related SIF Requests
“CleansePut” on page 62

CleansePut
CleansePut cleanses the specified record and updates or inserts the record into the specified table in a
single request. CleansePut replicates the Stage and Load batch processes that move data from the landing
table, through the cleansing process, into the staging table, and into the base object. CleansePut can also
perform the lookups required to translate source system foreign keys into Hub foreign keys. The physical
landing and staging tables are not used by CleansePut.

The record is put into the base object based on a mapping, which defines the transformation of data from a
landing table structure to a staging table structure. The staging table associated with the mapping
determines which base object the resulting data is inserted or updated in.

You can configure CleansePut requests in all systems when using the Hub Console Audit Manager to audit
requests made by external applications. Once auditing for a particular SIF API request is enabled, the MDM
Hub captures each SIF request invocation and response in the audit log. For more information, see the
Multidomain MDM Configuration Guide.

62 Chapter 10: SIF API Reference

Filtered Requests

A CleansePut request can be filtered so that no changes are made in the ORS. If CleansePut is filtered, an
ActionType of No Action is returned in the CleansePut response. CleansePut can be filtered in two ways:

• Filtered by the mapping. The mapping can include a condition that must be true before allowing
CleansePut to process a record.

• Filtered by delta detection. In the Hub, you can enable delta detection on the staging table. With delta
detection enabled, CleansePut requests are filtered if the data does not differ from the data in the
previous request.

State Management

If a package has state management enabled, you can specify a record's initial state when you insert a record
by setting the value of HUB_STATE_IND. When you insert a new record and do not specify a HUB_STATE_IND
value, the HUB_STATE_IND is set to 1 (ACTIVE). You cannot use CleansePut to change the state of a record
by updating the HUB_STATE_IND value. State management is enabled in the Hub Console.

The possible values for HUB_STATE_IND and the state these values represent are outlined in the following
table:

HUB_STATE_IND Value State

1 ACTIVE

0 PENDING

-1 DELETED

Transaction Support

When executed within an EJB context, this request can be part of a transaction with other requests. If there is
a failure in any of the requests within a transaction, the entire transaction is rolled back.

Restrictions

Consider the following restrictions when using the CleansePut API.

• Special characters do not need to be escaped before making the CleansePut API call. However, if you
have custom code that used escaped special characters in the past, you must update your custom code
to remove the escaped special characters.

• Both Put and CleansePut requests process null values. For example, when no value is specified for a field,
the field is set to null. However, CleansePut does not process records that contain a reference not found
in a lookup table.

• You cannot insert a null value into a nonnullable column, such as a unique key column. You must provide
a value for nonnullable columns because empty fields are set to null.

• You cannot use CleansePut to insert or update a read-only column.

• You cannot use CleansePut to insert or update a system column unless it is enabled in the Hub to be
Putable. See the Column Properties in the Multidomain MDM Configuration Guide for information about
which system columns can be putable.

• You can specify a value for HUB_STATE_IND when inserting a new record, but you cannot change the
state of an existing record by changing the HUB_STATE_IND value using the Put API. If you provide a
value for the HUB_STATE_IND column when updating a record, the Put API throws an exception. To

Reference SIF API Listing 63

change the state of a record, refer to the following classes: “Delete” on page 69, “Restore” on page 127,
and “PromotePendingXrefs” on page 116.

• If you use special characters like ' and ~ in CleansePut calls, you must escape them with a backslash
character.

• If the foreign key column for a child base object is not specified or is specified as NULL in the CleansePut
request, the lookup is on the parent key of the foreign key column instead of the lookup column defined
on the staging table.

• If you use a CleansePut call to insert a lookup into a base object, the lookup will be case-sensitive. For
example, the Gender column in the lookup C_LU_GENDER|GENDER_CD only accepts values of M, F, and
UNK. Lowercase values (m, f, or unk) in the Gender column are not accepted.

• When an omitted field is mapped from the landing table to the staging table through a cleanse function,
the MDM Hub sets the field to NULL.

Required Parameters

The following table lists and describes the parameters that are required by the CleansePut API:

Parameter Description

Record This parameter contains the data to be cleansed and inserted.

SiperianObjectUid Name and type of mapping to use in the CleansePut request. The mapping defines the structure
of the record.

Optional Parameters

The following table lists and describes the optional parameters that are used by the CleansePut API:

Parameter Description

SystemName The system name of the record to be cleansed. A staging table is associated with a source
system. If the system name is not specified by this parameter, the staging table's source
system is used.

GenerateSourceKey Useful for keyless systems (for example, an application that does not persist source data).
When set to true, a source key is generated if one is not already specified.

PeriodStartDate Specifies the period start date for timeline-enabled base objects.

PeriodEndDate Specifies the period end date for timeline-enabled base objects.

PeriodReferenceTime Applicable for base objects for which you track data change events. Specifies a reference
date within an effective period to identify a record version that you want to update. Default is
null.

64 Chapter 10: SIF API Reference

Parameter Description

timelineAction Applicable for base objects for which you track data change events. Specifies the action to
perform on a record version during the load process.
Use one of the following values:
- 0. Adds a record version for a new effective period without maintaining contiguity between

the record versions.
- 1. Updates data in an existing record version. The effective period of the record does not

change.
- 2. Updates the effective period of a record version. An update to an effective period of a

record version is through an increase or decrease of the effective start or end date.
- 4. Adds a record version for a new effective period while maintaining contiguity between

the record versions.
Default is 0.

isFillOnGap Applicable for base objects for which you track data change events. Ensures that contiguity
between the effective dates of record versions is maintained when you add new record
versions.
If set to true, when you can add a new record version to the base object, the MDM Hub
maintains the contiguity between effective periods of record versions. If set to false, the
MDM Hub rejects any addition of record version that breaks the contiguity between effective
periods of record versions. Default is false.

Response Fields

The Put response can contain the information described in the following table:

Field Description

RecordKey Contains the ROWID_OBJECT of the base object affected by CleansePut.
When performing a CleansePut request using a ROWID_OBJECT for a base object record that has been
merged into another base object record, CleansePut response returns the ROWID_OBJECT of the
surviving base object record.
RecordKey also contains a new primary key created by the key generator if GenerateSourceKey in the
request was set to true.

ActionType Indicates the action that the Put performed. The possible values are:
- Insert
- Update
- Update XREF
- No Action
Tokenize requires the value of ActionType. Insert indicates that a record has not yet been tokenized
and new tokens need to be created. Update and Update XREF indicate that a record has already been
tokenized and the existing tokens need to be regenerated.

Use Case

The following is a typical scenario for using the CleansePut request:

• Cleanse a record and update or insert it in the specified table. You can cleanse a specified record and
update or insert it in the specified table in a single request. This increases performance, when compared
to doing the a Cleanse and then a Put, by reducing round trips between the client and the MDM Hub.

Reference SIF API Listing 65

• CleansePut used in combination with Tokenize. CleansePut, followed by Tokenize, cleanses the new row
of data, inserts or updates it in the base object, and then encodes the base object so it is ready for
matching. The CleansePut response contains an ActionType value used as an input to the Tokenize
request. CleansePut and Tokenize can occur in the same transaction.

Usage Example

The following example shows how a record with ROWID_OBJECT key 782 is updated by using the mapping,
Stage CRM Address:

CleansePutRequest request = new CleansePutRequest();Record record = new Record();
record.setSiperianObjectUid("MAPPING.Stage CRM Address");
record.setField(new Field("ADDRESS_ID", "782"));
record.setField(new Field("ADDRESS_LINE", "123 Main St."));
record.setField(new Field("CITY_NAME", "Anytown"));
record.setField(new Field("LAST_UPDATE_DATE", new Date()));
request.setRecord(record);
CleansePutResponse response = (CleansePutResponse) sipClient.process(request)

Related SIF Requests

“Cleanse ” on page 61, “Put ” on page 118, “Tokenize ” on page 138

ClearAssignedUnmergedRecords
ClearAssignedUnmergedRecords clears a user’s assigned unmerged records for the specified base object,
making those records available for assignment to another user.

Note: There are no parameters for this request. All the unmerged records assigned to this user making the
request will now be available to be assigned to another user. If there is a specific user that the records
should be assigned to the ReassignRecordsRequest should be used.

Use Case

This is the common scenario for using the ClearAssignedUnmergedRecords request:

• Clearing the queue of unmerged records to a given user—You can use the
ClearAssignedUnmergedRecords request in an application with a custom UI for the data stewards. In the
screen that manages the data steward’s queues, you might create a button that uses this request to
remove unmerged records from a user’s queue.

CreateChangeList
CreateChangeList creates a change list in XML format for the current ORS. The change list contains a list of
actions and a list of any messages.

66 Chapter 10: SIF API Reference

CreateChangeList Request Parameters

The following table describes the CreateChangeList parameters:

Parameter Description

SourceRepositoryId Specifies the database ID of the source repository to use for comparison.

SourceRepositoryXml Specifies the XML string representing the source repository. Contains NULL if the source
repository is a physical database.

TransactionAttributeType If set to NOT_SUPPORTED, the request does not support a transactional context.
If set to REQUIRED, the request does requires a transactional context.
If set to REQUIRES_NEW, the request requires a new transactional context.
If set to SUPPORTS, the request supports but does not require a transactional context.

Response Fields

The CreateChangeList response contains the information described in the following table:

Field Description

ChangeListXml Contains the XML string representing the change list.

CreateTask
The CreateTask request creates a new task in the C_REPOS_TASK_ASSIGNMENT table and initializes the
task data and task properties. Once a task is created, use the UpdateTask request to modify the task.

TaskData

The TaskData object contains information about a task.

The following table lists the TaskData fields that you can configure:

Field Description

TaskRecord A link to a data record associated with a task.

Comment An optional task comment.

TaskType The task type.

SubjectAreaUID The UID of the task subject area.

Title The task title.

TaskID The ROWID of the task. Cannot be set by user.

DueDate The date when the task is due.

Reference SIF API Listing 67

Field Description

Priority The priority of the task.
1: High priority.
0: Normal priority. The default is 0.
-1: Low priority.

StatusEnum The workflow status. The default is TaskStatusEnum.OPEN.

OwnerUID The user or role ID to whom the task is assigned.

InteractionID The Interaction ID.

WorkflowProcessID The ID of the workflow process that contains the task. Cannot be set by user.

CreateDate The date when the task was created. Cannot be set by user.

Creator The name of the user who created the task. Cannot be set by user.

LastUpdateDate The date when the task was updated. Cannot be set by user.

LastUpdatedBy The name of the user who updated the task. Cannot be set by user.

PreviousOwner The name of the user or role to whom the task was previously assigned. The value is Null if the
task is new or has not been assigned. Cannot be set by user.

TaskRecord

The TaskRecord object contains information about a record.

The following table describes the TaskRecord fields:

Field Description

SiperianObjectUID An identifier for an object in Informatica MDM Hub.

RecordKey An identifier for a record in Informatica MDM Hub.

MatchRuleUID An identifier for a match rule in Informatica MDM Hub. Only merge tasks require a MatchRuleUID.

Required Request Parameters

The following table describes the required parameters for a CreateTask request:

Parameter Description

TaskData Specifies the task to create.
If an owner is not specified in the TaskData parameter, the task assignment engine will attempt to
assign the task at its next scheduled execution time.

Optional Request Parameters

The CreateTask API does not have any optional request parameters.

68 Chapter 10: SIF API Reference

Response Fields

The CreateTask response contains the information described in the following table:

Parameter Description

TaskID Contains the ROWID_OBJECT of the task that was created.

interactionID Contains the interactionID that is used to protect any pending records associated with the task. Only
SIF requests having this same interactionID can update the task.
The interactionID can be set either at the request level or in the TaskData object. If an interactionID is
set in both places and the IDs do not match, an SiperianServerException will be thrown.

Use Cases

The following scenario is a common use case for using the CreateTask request:

• Create a new task and assign it to a user.

Usage Example

The code in the following example creates a new task:

CreateTaskRequest request = new CreateTaskRequest();
TaskData newTask = new TaskData();
request.setTaskData(newTask);
newTask.setTitle("Research and resolve item");
newTask.setComment("This is a new task.");
newTask.setDueDate(new Date());
newTask.setSubjectAreaUid("SUBJECT_AREA.test|Person");
newTask.setTaskType("ReviewNoApprove");
CreateTaskResponse response = (CreateTaskResponse) sipClient.process(request);

Related SIF Requests

“UpdateTask” on page 143

Delete
The Delete request sets the record state to DELETED on the specified records from the Hub. If you specify
the deleteBORecord flag, then the BO record is deleted even if only a sourceKey and systemName are
specified.

State Management

When an XREF record is deleted, the state of the BO record will be calculated as the greatest of the states of
its XREFs. The order of precedence for state is ACTIVE, PENDING, DELETED. The following list describes the
behavior of this request based on various XREF states:

• Active records will be transitioned to the DELETED state.

• Pending records will be hard deleted.

• Deleted records will remain unchanged.

Reference SIF API Listing 69

Required Parameters

The following table lists and describes the parameters that are required by the Delete API:

Parameter Description

SiperianObjectUid Name and type of the package or base object to be deleted.

SystemName Name of the system for which the record must be deleted.

RecordKey Key to uniquely identify the record to be deleted.

SourceKey Source key of the record that must be deleted.

Optional Parameters

The following table lists and describes the optional parameters that are used by the Delete API:

Parameter Description

deleteBORecord If true, the record is deleted at the base object level. The Delete API deletes the base object
record and all its cross-reference records. You must have delete privileges for the base object or
the parent base object.
If false, the Delete API deletes the record specified by the RecordKey and SourceKey parameters.

deleteAsSMOS If true, the hub state of the record is set to deleted by the state management override system, and
this takes precedence over active records from other source systems. Default is false.

Use Case

Record A has two XREFs that are ACTIVE. If one of the XREFs is deleted, then record A will have one ACTIVE
xref and one DELETED XREF. Since the ACTIVE state has higher precedence than the DELETED state, the
state of BO record A after the delete operation is ACTIVE. If the remaining ACTIVE XREF is then deleted,
record A will have two deleted XREFs and the state of BO record A will be DELETED.

Usage Example

The following example deletes the XREF record with sourceKey=1234 and system=CRM from the package
CUSTOMER_UPDATE. If the XREF record is PENDING, it will be hard deleted. If the XREF record is ACTIVE, it
will be soft deleted. If the record is already in the DELETED state, the record will remain as is.

Note: Delete throws an exception if you attempt to delete a record that is in the DELETED state.

DeleteRequest request = new DeleteRequest();
RecordKey recordKey = new RecordKey();
recordKey.setSourceKey("1234");
recordKey.setSystemName("CRM");
ArrayList recordKeys = new ArrayList();
recordKeys.add(recordKey);
request.setRecordKeys(recordKeys); // Required
request.setSiperianObjectUID("PACKAGE.CUSTOMER_UPDATE"); //Required
DeleteResponse response = (DeleteResponse) sipClient.process(request);

Related SIF Requests

“PromotePendingXrefs” on page 116, “Restore” on page 127

70 Chapter 10: SIF API Reference

DeleteRelationship
DeleteRelationship deletes a relationship between two entities. This request does not remove the record from
the relationship table. If the relationship is a foreign key relationship rather than a record in a relationship
table, the request sets the foreign key value to null.

This request behaves differently when used with Foreign Key Relationship Types. Since all Relationship
records of a Foreign Key Relationship Type use the same End Date, instead of setting the End Date this
request sets the foreign key value in the FK Relationship Base Object to null.

The request provides the Hierarchy Manager configuration, the record key, and the relationship type of the
relationship to be removed.

Required Parameters

The following table lists and describes the parameters that are required by the DeleteRelationship API:

Parameter Description

HmConfigurationUid Unique ID of the Hierarchy Manager configuration.

RelTypeUid Unique ID of the relationship type.

RecordKey Key to uniquely identify the relationship record to be deleted.

Optional Parameters

The following table lists and describes the optional parameter that is used by the DeleteRelationship API:

Parameter Description

deleteAsSMOS If true, the hub state of the relationship record is set to deleted by the state management override
system, and this takes precedence over active records from other source systems. Default is false.

Use Case

This is the common scenario for using the DeleteRelationship request:

• Delete a relationship between two HM entities — If you have Hierarchy Manager and have populated it
with data, you can use the DeleteRelationship request to delete an existing relationship between two
entities.

Related SIF Requests

“UpdateRelationship” on page 142, “AddRelationship” on page 57

DescribeSiperianObject
The DescribeSiperianObject API returns the metadata for the Informatica MDM Hub objects specified in the
request.

Reference SIF API Listing 71

Required Parameter

The following table describes the parameter required for the DescribeSiperianObject request.

Parameter Description

objectUid Each object defined in Informatica MDM Hub has a unique identifier of the form
<objectType>.<objectName>, for example, PACKAGE.CUSTOMER_READ. ObjectUid specifies which
object's metadata is returned in the DescribeSiperianObjects response.
Use the objectUid MATCH_KEY.<base_object_name> to request the match key of a base object.
For a list of valid object types, see “SiperianObjectUID” on page 150.

Response Parameters

The following table describes the information contained in the DescribeSiperianObject response.

Field Type Description

objects List A list of returned metadata for the objects specified in the request.

If you request a match key for a base object, DescribeSiperianObject returns the match column that
represents the base object, in addition to the following fields:

Field Type Description

fuzzyColumn Boolean The value is true if the match column is a fuzzy column.

columns List The list of UIDs for the columns that make up this match column. UIDs are formed as
COLUMN.<base_object_name>|<column_name>.

Use Case

The following scenario is a common use for the DescribeSiperianObject request:

• Obtaining metadata about an object before manipulating it. You can use the DescribeSiperianObject
request to gather information about an object before you perform any operations on it.

Usage Example

The following example shows how metadata is retrieved for the base objects C_PARTY and C_ADDRESS:

DescribeSiperianObjectRequest request = new DescribeSiperianObjectRequest();
request.setOrsId("orcl-VER_IDD");
ArrayList objectUids = new ArrayList();
objectUids.add(SiperianObjectType.BASE_OBJECT.makeUid("C_PARTY"));
objectUids.add(SiperianObjectType.BASE_OBJECT.makeUid("C_ADDRESS"));
request.setUids(objectUids);
DescribeSiperianObjectResponse response =
(DescribeSiperianObjectResponse)sipClient.process(request);

ExecuteBatchAutoMatchAndMerge
ExecuteBatchAutoMatchAndMerge calls the Auto Match and Merge batch job.

Request Parameters

The ExecuteBatchAutoMatchAndMerge request contains the following parameters:

72 Chapter 10: SIF API Reference

TableName

Specifies the base object table name. Required.

MatchSetName

Specifies the name of the match rule set for the batch job. Default is null. Optional.

Response Fields

The ExecuteBatchAutoMatchAndMerge API returns the following fields:

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

RetCode

Contains the return code.

Usage Example

The following example runs the Auto Match and Merge batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchAutoMatchAndMergeRequest req = new ExecuteBatchAutoMatchAndMergeRequest();
 req.setTableName(jobContext.getTableName()); // BO table name
 req.setMatchSetName(jobContext.getMatchSetName());
 ExecuteBatchAutoMatchAndMergeResponse executed =
(ExecuteBatchAutoMatchAndMergeResponse) sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

ExecuteBatchAutomerge
ExecuteBatchAutomerge calls the Automerge batch job.

Request Parameters

The ExecuteBatchAutomerge request contains the following parameters:
TableName

Specifies the base object table name. Required.

Response Fields

The ExecuteBatchAutomerge API returns the following fields:

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

RetCode

Contains the return code.

Reference SIF API Listing 73

Usage Example

The following example runs the Automerge batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchAutomergeRequest req = new ExecuteBatchAutomergeRequest();
 req.setTableName(jobContext.getTableName()); // BO table name
 ExecuteBatchAutomergeResponse executed = (ExecuteBatchAutomergeResponse)
sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

ExecuteBatchBVTSnapshot
ExecuteBatchBVTSnapshot calls the BVT Snapshot batch job.

Request Parameters

The ExecuteBatchBVTSnapshot request contains the following parameters:

TableName

Specifies the base object table name. Required.

Response Fields

The ExecuteBatchBVTSnapshot API returns the following fields:

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

RetCode

Contains the return code.

Usage Example

The following example runs the BVT Snapshot batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchBVTSnapshotRequest req = new ExecuteBatchBVTSnapshotRequest();
 req.setTableName(jobContext.getTableName()); // BO table name
 ExecuteBatchBVTSnapshotResponse executed = (ExecuteBatchBVTSnapshotResponse)
sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

ExecuteBatchDelete
The ExecuteBatchDelete API calls the Delete batch job.

Request Parameters

The ExecuteBatchDelete request contains the following parameters:

TableName

Specifies the base object table name. Required.

74 Chapter 10: SIF API Reference

SourceTableName

Specifies the name of the table that contains the list of cross-reference records to delete. Required.

Cascading

Determines if the batch delete is cascading. Set to true to run a cascading batch delete. Optional.

RecalculateBVT

Determines if the BVT is recalculated. Set to true to recalculate BVT after a batch delete. Optional.

OverrideHistory

Determines if the MDM Hub records the activity performed by the batch delete in the history tables. Set
to true to record the history of deleted records in the history table. Set to false to ignore the value of
PurgeHistory and write the last state of the data into the history tables when the record is deleted.
Optional.

PurgeHistory

Determines if the MDM Hub deletes all non-merge history records related to deleted cross-reference
record. You cannot retrieve the deleted history records. Set to true to delete the history records. Set to
false to retain the history records. Optional.

Note: If you set OverrideHistory to true and PurgeHistory to true, the batch delete removes all traces of the
deleted records from the history tables.

Response Fields

The ExecuteBatchDelete API returns the following fields:

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

RetCode

Contains the return code.

Usage Example

The following example runs the Delete batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchDeleteRequest req = new ExecuteBatchDeleteRequest();
 req.setTableName(jobContext.getTableName()); // Base object table
name
 req.setSourceTableName(jobContext.getSourceTableName()); // The table that
contains a list of cross-reference records to delete
 ExecuteBatchDeleteResponse executed = (ExecuteBatchDeleteResponse)
sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

ExecuteBatchExternalMatch
ExecuteBatchExternalMatch calls the External Match batch job.

Request Parameters

The ExecuteBatchExternalMatch request contains the following parameters:

Reference SIF API Listing 75

TableName

Specifies the base object table name. Required.

MatchSetName

Specifies the name of the match rule set for the batch job. Default is null. Optional.

Response Fields

The ExecuteBatchExternalMatch API returns the following fields:

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

RetCode

Contains the return code.

Usage Example

The following example runs the External Match batch job on a base object table:

 SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchExternalMatchRequest req = new ExecuteBatchExternalMatchRequest();
 req.setTableName(jobContext.getTableName()); // BO table name
 req.setMatchSetName(jobContext.getMatchSetName());
 ExecuteBatchExternalMatchResponse executed = (ExecuteBatchExternalMatchResponse)
sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

ExecuteBatchGenerateMatchTokens
ExecuteBatchGenerateMatchTokens calls the Generate Match Tokens batch job.

Request Parameters

The ExecuteBatchGenerateMatchTokens request contains the following parameters:

TableName

Specifies the base object table name. Required.

FullRestripInd

If the value is 1, the batch job tokenizes all records in the base object.

If the value is 0, the batch job tokenizes the records that have their ROWID_OBJECT values stored in the
dirty table.

Default is 0. Optional.

Response Fields

The ExecuteBatchGenerateMatchTokens API returns the following fields:

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

76 Chapter 10: SIF API Reference

RetCode

Contains the return code.

Usage Example

The following example runs the Generate Match Tokens batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchGenerateMatchTokensRequest req = new
ExecuteBatchGenerateMatchTokensRequest();
 req.setTableName(jobContext.getTableName()); // BO table name
 ExecuteBatchGenerateMatchTokensResponse executed =
(ExecuteBatchGenerateMatchTokensResponse) sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

ExecuteBatchGroup
ExecuteBatchGroup executes a batch group. A batch group is a set of batch jobs executed together, some
sequentially and some in parallel according to the configuration. When one job has an error, the group will
stop; that is, no more jobs will be started, but running jobs will run to completion. There are two other related
services in this request:

• “ResetBatchGroup” on page 126

• “GetBatchGroupStatus” on page 93

Use Case

This is the common scenario for using the executeBatchGroup request:

• ExecuteBatchGroup with getBatchGroupStatus — After calling ExecuteBatchGroup, wait and then use
“GetBatchGroupStatus” on page 93 to see if the batch group executed successfully.

Related SIF Requests

“GetBatchGroupStatus” on page 93, “ResetBatchGroup” on page 126

ExecuteBatchKeyMatch
ExecuteBatchKeyMatch calls the Key Match batch job.

Request Parameters

The ExecuteBatchKeyMatch request contains the following parameter:

TableName

Specifies the base object table name. Required.

Response Fields

The ExecuteBatchKeyMatch API returns the following fields:

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

RetCode

Contains the return code.

Reference SIF API Listing 77

Usage Example

The following example runs the Key Match batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchKeyMatchRequest req = new ExecuteBatchKeyMatchRequest();
 req.setTableName(jobContext.getTableName()); // BO table name
 ExecuteBatchKeyMatchResponse executed = (ExecuteBatchKeyMatchResponse)
sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

ExecuteBatchLoad
ExecuteBatchLoad calls the Load batch job.

Request Parameters

The ExecuteBatchLoad request contains the following parameters:

TableName

Specifies the staging table name. Required.

ForceUpdateInd

If the value is 0, MDM Hub only loads data that has a more recent late updated date than the data in the
hub.

If the value is 1, MDM Hub loads the data regardless of the last updated date.

Default is 0. Optional.

Response Fields

The ExecuteBatchLoad API returns the following fields:

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

RetCode

Contains the return code.

Usage Example

The following example runs the Load batch job on a staging table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchLoadRequest req = new ExecuteBatchLoadRequest();
 req.setTableName(jobContext.getTableName()); // STG table name
 ExecuteBatchLoadResponse executed = (ExecuteBatchLoadResponse) sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

78 Chapter 10: SIF API Reference

ExecuteBatchMatch
An ExecuteBatchMatch request calls a match batch job, which runs the match process.

Request Parameters

The ExecuteBatchMatch request contains the following parameters:

TableName

Name of the base object table.

MatchSetName

Optional. Name of the match rule set for the batch job. Default is null.

validateTableName

Optional. Name of the table that contains the row ID values to validate. Default is null.

Response Fields

The ExecuteBatchMatch request returns the following fields:

InteractionId

An identifier for the request.

Message

A brief message about the status of the request.

RetCode

A return code for the interaction. The RetCode field uses the following return codes:

• 0. Indicates a successful transaction.

• -21014. Indicates that the base object is empty or no records match the request.

Usage Example

The following example runs a match batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchMatchRequest req = new ExecuteBatchMatchRequest();
 req.setTableName(jobContext.getTableName());
 req.setMatchSetName(jobContext.getMatchSetName());
 while(rc==0) {
 ExecuteBatchMatchResponse executed = (ExecuteBatchMatchResponse)
sipClient.process(req);
 errMessage = executed.getMessage();
 rc = executed.getRetCode();
 completeStep((rc == -21014) ? 0 : rc, errMessage, context, jobContext);
 }
 if(rc == -21014) {
 // SIP-21014: Error registering start of Match failed during post to Cleanse
Server: Base Object C_CUSTOMER is empty or no more records to match
 // Regard it as normal completion so that test could continue the left jobs
 rc = 0;
 }

ExecuteBatchMatchAnalyze
An ExecuteBatchMatchAnalyze request conducts a search to gather match statistics, but does not perform
the match process. If areas of data with the potential for huge match requirements are discovered, the MDM

Reference SIF API Listing 79

Hub moves the records to a hold status, which allows a data steward to review the data manually before
proceeding with the match process.

Request Parameters

The ExecuteBatchMatchAnalyze request contains the following parameters:

TableName

Name of the base object table.

validateTableName

Optional. Name of the table that contains the row ID values to validate. Default is null.

Response Fields

The ExecuteBatchMatchAnalyze request returns the following fields:

InteractionId

An identifier for the request.

Message

A brief message about the status of the request.

RetCode

Return code for the interaction. The RetCode field uses the following return codes:

• 0. Indicates a successful transaction.

• -21014. Indicates that the base object is empty or no records match the request.

Usage Example

The following example runs a match analysis batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(
 new File(context.getTestPTTStartDir() + "siperian-client.properties")
);
ExecuteBatchMatchAnalyzeRequest l_req = new ExecuteBatchMatchAnalyzeRequest();
l_req.setTableName("<BO_TABLE_NAME>");
l_req.setValidateTableName("<TABLE_NAME_CONTAINING_ROWID_TO_VALIDATE>");
ExecuteBatchMatchAnalyzeResponse l_res = (ExecuteBatchMatchAnalyzeResponse)
 sipClient.process(l_req);
System.out.println(l_res.getRetCode());

ExecuteBatchPromote
A ExecuteBatchPromote request calls a promote batch job.

Request Parameters

The ExecuteBatchPromote request contains the following parameters:

TableName

Name of the base object table.

AllowCommitInd

Optional. Indicates whether the changes can be committed. Default is true.

XrefListToBePromoted

Optional. Name of the table that has the list of XREF records to promote. Default is null.

80 Chapter 10: SIF API Reference

Response Fields

The ExecuteBatchPromote request returns the following fields:

InteractionId

An identifier for the request.

Message

A brief message about the status of the request.

RetCode

A return code for the interaction.

Usage Example

The following example runs a promote batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchPromoteRequest req = new ExecuteBatchPromoteRequest();
 req.setTableName(jobContext.getTableName()); // BO table name
 ExecuteBatchPromoteResponse executed = (ExecuteBatchPromoteResponse)
sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

ExecuteBatchRecalculateBo
A ExecuteBatchRecalculateBo request calls a recalculate base object batch job.

Request Parameters

The ExecuteBatchRecalculateBo request contains the following parameters:

TableName

Name of the base object table.

RowidObjectTable

Optional. Name of the table that contains the foreign keys to the base object in the ROWID_OBJECT
column.

Response Fields

The ExecuteBatchRecalculateBo request returns the following fields:

InteractionId

An identifier for the request.

Message

A brief message about the status of the request.

RetCode

A return code for the interaction.

Usage Example

The following example runs a recalculate base object batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchRecalculateBoRequest req = new ExecuteBatchRecalculateBoRequest();
 req.setTableName(jobContext.getTableName()); // BO table name

Reference SIF API Listing 81

 ExecuteBatchRecalculateBoResponse executed = (ExecuteBatchRecalculateBoResponse)
sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

ExecuteBatchRecalculateBvt
ExecuteBatchRecalculateBvt calls the Recalculate BVT batch job.

Request Parameters

The ExecuteBatchRecalculateBvt request contains the following parameters:

TableName

Specifies the base object table name. Required.

RowidObject

Specifies the rowidObject. Required.

Response Fields

The ExecuteBatchRecalculateBvt API returns the following fields:

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

RetCode

Contains the return code.

Usage Example

The following example runs the Recalculate BVT batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchRecalculateBvtRequest req = new ExecuteBatchRecalculateBvtRequest();
 req.setTableName(jobContext.getTableName()); // BO table name
 req.setRowidObject(jobContext.getRowidObject()); // rowidObject
 ExecuteBatchRecalculateBvtResponse executed = (ExecuteBatchRecalculateBvtResponse)
sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

ExecuteBatchResetMatchTable
ExecuteBatchResetMatchTable calls the Reset Match Table batch job.

Request Parameters

The ExecuteBatchResetMatchTable request contains the following parameters:

TableName

Specifies the base object table name. Required.

Response Fields

The ExecuteBatchResetMatchTable API returns the following fields:

82 Chapter 10: SIF API Reference

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

RetCode

Contains the return code.

Usage Example

The following example runs the Reset Match Table batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchResetMatchTableRequest req = new ExecuteBatchResetMatchTableRequest();
 req.setTableName(jobContext.getTableName()); // BO table name
 ExecuteBatchResetMatchTableResponse executed = (ExecuteBatchResetMatchTableResponse)
sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

ExecuteBatchRevalidate
ExecuteBatchRevalidate calls the Revalidate BO batch job.

Request Parameters

The ExecuteBatchRevalidate request contains the following parameters:
TableName

Specifies the base object table name. Required.

OnlyCmDirtyInd

Apply only for CM_DIRTY_IND = 1. Default is false. Optional.

RecalcBvtInd

Recalculate BVT. Default is false. Optional.

Response Fields

The ExecuteBatchRevalidate API returns the following fields:

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

RetCode

Contains the return code.

Usage Example

The following example runs the Revalidate BO batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchRevalidateRequest req = new ExecuteBatchRevalidateRequest();
 req.setTableName(jobContext.getTableName()); // BO table name
 ExecuteBatchRevalidateResponse executed = (ExecuteBatchRevalidateResponse)
sipClient.process(req);

Reference SIF API Listing 83

 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

ExecuteBatchStage
ExecuteBatchStage calls the Staging batch job.

Request Parameters

The ExecuteBatchStage request contains the following parameters:
TableName

Specifies the staging table name. Required.

Response Fields

The ExecuteBatchStage API returns the following fields:

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

RetCode

Contains the return code.

Usage Example

The following example runs the Staging batch job on a staging table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchStageRequest req = new ExecuteBatchStageRequest();
 req.setTableName(jobContext.getTableName()); // STG table name
 ExecuteBatchStageResponse executed = (ExecuteBatchStageResponse)
sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

ExecuteBatchSynchronize
ExecuteBatchSynchronize calls the Synchronize batch job.

Request Parameters

The ExecuteBatchSynchronize request contains the following parameters:
TableName

Specifies the base object table name. Required.

OnlyCmDirtyInd

Apply only for CM_DIRTY_IND = 1. Default is false. Optional.

Response Fields

The ExecuteBatchSynchronize API returns the following fields:

InteractionId

Contains the interaction ID.

84 Chapter 10: SIF API Reference

Message

Contains a message regarding the status of the request.

RetCode

Contains the return code.

Usage Example

The following example runs the Synchronize batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchSynchronizeRequest req = new ExecuteBatchSynchronizeRequest();
 req.setTableName(jobContext.getTableName()); // BO table name
 ExecuteBatchSynchronizeResponse executed = (ExecuteBatchSynchronizeResponse)
sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

ExecuteBatchUnmerge
The ExecuteBatchUnmerge API calls the Unmerge batch job. You can unmerge records that were merged by a
previous process.

Request Parameters

The ExecuteBatchUnmerge request contains the following parameters:
TableName

Specifies the base object that contains the records to unmerge. Required.

SourceTableName

Specifies the cross-reference records to unmerge. Required.

Response Fields

The ExecuteBatchUnmerge API returns the following fields:

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

UnmergedXrefsCount

Number of cross-reference records that were unmerged.

RetCode

Contains the return code.

Usage Example

The following example runs the Unmerge batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchUnmergeRequest req = new ExecuteBatchUnmergeRequest();
 req.setTableName(jobContext.getTableName()); // BO table name
 req.setSourceTableName(jobContext.getSourceTableName()); // the list of XREFs to
unmerge table name
 ExecuteBatchUnmergeResponse executed = (ExecuteBatchUnmergeResponse)
sipClient.process(req);
 String errMessage = executed.getMessage();

Reference SIF API Listing 85

 int rc = executed.getRetCode();

ExecuteBatchValidateFKRelationships
ExecuteBatchValidateFKRelationships calls the Validate Foreign Key Relationships batch job.

Request Parameters

The ExecuteBatchValidateFKRelationships request contains the following parameters:
TableName

Specifies the base object table name. Required.

ListRowidColumn

Contains the Rowid list of columns participating in the FK to be validated. Optional.

CascadeValidateInd

Validates child foreign key relationships. Default is false. Optional.

Response Fields

The ExecuteBatchValidateFKRelationships API returns the following fields:

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

RetCode

Contains the return code.

Usage Example

The following example runs the Validate Foreign Key Relationships batch job on a base object table:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 ExecuteBatchValidateFKRelationshipsRequest req = new
ExecuteBatchValidateFKRelationshipsRequest();
 req.setTableName(jobContext.getTableName()); // BO table name
 ExecuteBatchValidateFKRelationshipsResponse executed =
(ExecuteBatchValidateFKRelationshipsResponse) sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

FlagForAutomerge
The FlagForAutomerge API flags a record for automerge in the match table, C_<base_object_name>_MTCH. If
a record in the match table has a AUTOMERGE_IND value of 1, the record is merged during the next automerge
process. If the FlagForAutomerge request is for a record that does not exist in the match table, the record is
created in the match table and the AUTOMERGE_IND is set to 1.

86 Chapter 10: SIF API Reference

Required Parameters

The following table describes the required parameters:

Parameter Description

MatchRuleUid Specifies the match rule that the merged records are attributed to.
The match rule UID needs to be specified in the following format:
MATCH_RULE.<TABLE_NAME>|<MATCH_RULESET_NAME>|<MATCH_RULE_NUMBER>

UnmergedRecordKey Specifies the record key of the unmerged record.

MatchedRecordKey Specifies the record key of the matched record.

Optional Parameters

The FlagForAutomerge request does not have optional parameters.

Response Fields

The following table describes the response fields:

Parameter Description

Message Contains a message indicating if the FlagForAutomerge request was processed successfully.

InteractionID Contains the interaction ID.

Usage Example

The following is a typical scenario for using the FlagForAutoMerge request:

• Queue a merge candidate for merge during the next automerge process.

FlagForAutomerge Usage Example

The following example shows how to flag record 111 to automerge with the record it matches with, in this
case record 222:

FlagForAutomergeRequest request = new FlagForAutomergeRequest();
 request.setMatchRuleUid(SiperianObjectType.MATCH_RULE.makeUid("MyMatchRule"));
 request.setUnmergedRecordKey(RecordKey.sourceKey("111", "Acme"));
 request.setMatchedRecordKey(RecordKey.sourceKey("222", "Acme"));
 FlagForAutomergeResponse response = sipClient.process(request);

GenerateConstraints
The GenerateConstraints API generates missing constraints for a table. Use the GenerateConstraints API to
create indexes after you use the RegisterCustomIndex to register an index that does not physically exist.

Request Parameters

The GenerateConstraints request contains the following parameters:
TableName

Specifies the base object table name. Required.

Reference SIF API Listing 87

Scope

Specifies the scope of the constraints of the request. Required. Scope can be one of the following
values:

• FK. Foreign keys.

• NI. Non-unique indexes.

• PK. Primary keys.

• UI. Unique indexes.

• UK. Unique keys.

• NP. Keys that are not primary keys.

• NK. Keys that are not foreign keys.

• ALL. All constraints.

AbortOnFail

If true, specifies that the job stops when it fails. Required.

SetFkDisabled

If true, sets the foreign keys to disabled. Required.

Analyze

Required.

Response Fields

The GenerateConstraints API returns the following fields:

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

RetCode

Contains the return code.

Usage Example

The following example runs the GenerateConstraints batch job on the C_CUSTOMER base object:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 GenerateConstraintsRequest req = new GenerateConstraintsRequest();
 req.setTableName(jobContext.getTableName()); // table name. e.g. C_CUSTOMER
 req.setScope("ALL");
 req.setAbortOnFail(true);
 req.setSetFkDisabled(false);
 req.setAnalyze(false);
 GenerateConstraintsResponse executed = (GenerateConstraintsResponse)
sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

Get
Get uses a record key to retrieve a single row of data from the specified package. The row can include data
from base objects and from child records (that is, content metadata such as History, Xref, Xref History, and

88 Chapter 10: SIF API Reference

Raw) associated with the base object. You can use this request against the regular MDM packages
(“PACKAGE.” SiperianObjectUid prefix).

You can also get lineage and trust information. The trust scores are returned for the package record and the
cross reference records. The lineage information returned as indicator on the trust enabled fields indicating
whether the specific field of the cross-reference record has won over other cross-references and is used on
the base object.

When performing a Get request using a ROWID_OBJECT for a base object record that has been merged into
another base object record, Get returns the surviving base object record. For example, if two base object
records are merged, one with a ROWID_OBJECT value of ROWID_A and the other with a value of ROWID_B, the
ROWID_OBJECT of the surviving base object could be ROWID_A. In this scenario, if you perform a Get request
for ROWID_B, the Get response returns ROWID_A.

For MDM packages, you can use this request to retrieve the following types of the content metadata for
underlying primary base object of the package and the trust score and the lineage information for the trust
enabled columns:

SiperianObjectType Description

XREF Cross-reference data. If state management is enabled for the parent of the package, then this
option will return only the cross reference records that are in the ACTIVE state.

PENDING_XREF Cross-reference data that is in the PENDING state. This option is only valid when state
management is enabled for the parent of the package. Otherwise, an exception is thrown.

DELETED_XREF Cross-reference data that is in the DELETED state. This option is only valid when state
management is enabled for the parent of the package. Otherwise, an exception is thrown.

XREF_HISTORY Previous values for each of the underlying cross references of the specified base object.
Note: Base object history has to be enabled

HISTORY Previous values for the specified base object record.
Note: Base object history has to be enabled.

RAW Raw records associated with the specific base object record.
Note: Raw retention needs to be enabled on at least one staging table belonging to the
specified base object.

If the package is based on a query that joins multiple base objects, content metadata is returned only for the
primary base object.

Required Parameters

The following table lists and describes the parameters that are required by the Get API:

Parameter Description

SiperianObjectUid Name and type of the package or base object to be queried.

RecordKey Key to uniquely identify the record to be fetched.

SystemName Name of the system for which XREF and XREF history must be retrieved.

RecordTypes Types of records to retrieve.

Reference SIF API Listing 89

Optional Parameters

The following table lists and describes the optional parameters that are used by the Get API:

Parameter Description

EffectiveDate The date for which you must retrieve values of the base object.
Note: EffectiveDate must be used only for timeline-enabled base objects.

HistoryDate The date for which you retrieve base object data that is effective at the specified point in time. The
Get API does not return any record with a HIST_CREATE_DATE value that is equal to, or preceded by,
the HistoryDate value.
The Get API truncates milliseconds for HistoryDate.
If you run the request on Oracle, the value of HistoryDate is adjusted for Daylight Saving Time (DST)
when DST is enabled for the operating system. If the HistoryDate value is later than a record's
HIST_CREATE_DATE value by less than one hour during DST, the API call does not return the record.
Note: Use HistoryDate for timeline-enabled base objects only.

DataFilter The SQL condition to be applied to the result set.

Use Case

The following is a common scenario for using the Get request:

• Get used to retrieve a row and its associated child records. The most common use of get is to retrieve a
single row of data, with any associated child records.

Usage Example

The following example gets a record with ROWID_OBJECT key 782 from the package
PARTY_ADDRESS_READ_PKG.

GetRequest request = new GetRequest();
RecordKey recordKey = new RecordKey();
recordKey.setRowid("782");
request.setRecordKey(recordKey); //Required
request.setSiperianObjectUID("PACKAGE.PARTY_ADDRESS_READ_PKG"); //Required
GetResponse response = sipClient.process(request);

Related SIF Requests

“GetSearchResults ” on page 101, “Put ” on page 118, “SearchQuery ” on page 133

GetAggregatePeriod
The GetAggregatePeriod API retrieves the aggregate period for multiple base objects arranged into a tree
with a specified root base object.

The aggregate period is an aggregate of the effective periods of all base object records in a request that
encompasses the specified effective date. The advantage of an aggregated effective period is there is a
minimal intersection of individual effective periods around the specified effective date.

90 Chapter 10: SIF API Reference

Required Parameters

The following table lists and describes the parameters that are required by the GetAggregatePeriod API:

Parameter Description

SiperianObjectUid Name and type of the package or base object to be queried.

RecordKey Key to uniquely identify the record to be fetched.

EffectiveDate The effective date of the calculated effective period.

JoinUids List of JoinObjectType instances. Each JoinObjectType describes a relationship between two
elements of the base object tree. Each JoinObjectType contains a match path UID for the base
object join. Optionally, each JoinObjectType can contain a list of filter fields.

Optional Parameters

The following table lists and describes the optional parameters that are used by the GetAggregatePeriod API:

Parameter Description

RecordStates The Hub state indicator to filter the records. The aggregate period depends on the effective periods of
the filtered records. By default, only records in an ACTIVE state are taken into account.

Response Fields

The following table describes the fields returned by the GetAggregatePeriod response:

Field Description

AggregatedPeriodStartDate Start date of the calculated effective period.

AggregatedPeriodEndDate End date of the calculated effective period.

Use Case

The following is a common scenario for using the GetAggregatePeriod API:

• The base object C_PHONE base object is a one-to-many child of C_ORGANIZATION. They are linked with
the match path C_MT_ORG_PHONE. GetAggregatePeriod used to retrieve the C_PHONE records that have
the value "FAX” value in the PHONE_TYPE field. In this scenario, you want to get the aggregate period for
all three records on effective date September 1, 2014.

The following table describes the relevant fields for this scenario:

Base Object Name Period Start Date Period End Date

Organization January 1, 2014

Phone 1 January 1, 2014 December 31, 2014

Phone 2 May 1, 2014

Reference SIF API Listing 91

Usage Example

The following example returns a response that contains aggregatedPeriodStartDate of May 1, 2014 and
aggregatedPeriodEndDate of December 31, 2014 from C_ORGANIZATION described in the use case.

GetAggregatePeriodRequest request = new GetAggregatePeriodRequest();
RecordKey recordKey = RecordKey.rowid("782")
request.setRecordKey(recordKey); //Required
request.setSiperianObjectUID("BASE_OBJECT.C_ORGANIZATION"); //Required
Date date=new Date(2014, 09, 01);
JoinObjectType sifJoin = new JoinObjectType();
sifJoin.setSiperianObjectUid("MATCH_PATH_COMPONENT.C_MT_ORG_PHONE");
Field filterField = new Field("C_MT_ORG_PHONE.PHONE_TYPE", "FAX");
sifJoin.setFilterFields(Collections.singletonList(filterField));
request.getJoins().add(sifJoin); //Required
GetAggregatePeriod response = sipClient.process(request);

GetAssignableUsersForTasks
The GetAssignableUsersForTasks API retrieves a list of users who can be assigned a list of specified tasks.
The algorithm relies on the task assignment configuration by default but you can customize the configuration
via the CMXUE.get_assignable_users_for_task user exit.

Required Request Parameters

The following table describes the required parameters for the GetAssignableUsersForTasks request:

Parameter Description

AssignableTaskInfoList The task type and subject area UID of a list of tasks.

Optional Request Parameters

The GetAssignableUsersForTasks request does not have optional parameters.

Response Fields

The following table describes the fields returned by the GetAssignableUsersForTasks response:

Field Description

UserUIDs Contains the UIDs of the users who are permitted to receive the tasks listed in the
GetAssignableUsersForTasks request.

Usage Example

The code in the following example retrieves users who can have Merge tasks in the Person subject area
assigned to them:

GetAssignableUsersForTasksRequest request = new GetAssignableUsersForTasksRequest();
List taskInfoList = new ArrayList();
taskInfoList.add(new AssignableTaskInfo("Merge","SUBJECT_AREA.test|Person"));
request.setAssignableTaskInfoList(taskInfoList);
GetAssignableUsersForTasksResponse response =
 (GetAssignableUsersForTasksResponse) sipClient.process(request);

92 Chapter 10: SIF API Reference

GetAssignedRecords
GetAssignedRecords fetches the current user’s records that were assigned by an
“AssignUnmergedRecords” on page 58 request. Can request records in either the Unmerged or the Onhold
state.

The request contains a package, a record state (UNMERGED or ON_HOLD), and a maximum number of
records to return. The response contains a set of records and a token to use to fetch more results. Use
“GetSearchResults ” on page 101 to get subsequent sets of records.

Use Case

This is the common scenario for using the GetAssignedRecords request:

• GetAssignedRecords used to retrieve assigned records for display in the user interface of a custom-
designed application—The most common use of GetAssignedRecords is to retrieve the records that are
assigned to a specific user for display in a custom-designed UI.

Usage Example

The following example requests the UNMERGED records for the CUSTOMER_UPDATE package that are
assigned to the user making this request.

GetAssignedRecordsRequest request = new GetAssignedRecordsRequest();
request.setSiperianObjectUID("PACKAGE.CUSTOMER_UPDATE");
request.setRecordsToReturn(10);
request.setRecordState(RecordState.UNMERGED);
request.setReturnTotal(false);

GetAssignedRecordsResponse response = (GetAssignedRecordsResponse)
sipClient.process(request);

Related SIF Requests

“AssignUnmergedRecords” on page 58, “ClearAssignedUnmergedRecords” on page 66

GetBatchGroupStatus
GetBatchGroupStatus returns the status of a batch group; polls for status after executing asynchronously. To
learn more about batch groups, see the Multidomain MDM Configuration Guide.

Note: When making an asynchronous call, the runStatus of 0 (success) means that GetBatchGroupStatus was
successfully placed in the async queue. To see the actual runStatus of the batch group, you can also specify
a value in the jmsReplyTo field when making the call. The SIF response message containing the run status of
the batch group will be returned on this queue. Alternatively, you can also use the Audit Manager in the Hub
Console to enable the audit for “No System: GetBatchGroupStatus” and enable the audit XML. Then, use the
GetBatchGroupStatus call again and then check C_REPOS_AUDIT:DATA_XML for the SIF response. The
response will show the batch group’s “failed” status. For more information regarding the Audit Manager, see
the Multidomain MDM Configuration Guide.

Use Case

This is the common scenario for using the GetBatchGroupStatus request:

• GetBatchGroupStatus with ExecuteBatchGroup — After calling “ExecuteBatchGroup” on page 77, wait and
then use GetBatchGroupStatus to see if the batch group executed successfully.

Related SIF Requests

“ExecuteBatchGroup” on page 77, “ResetBatchGroup” on page 126

Reference SIF API Listing 93

GetBvt
GetBvt retrieves the best version of truth (BVT) from the specified package using a known key. The specified
package must have a base object (BO) as its parent and the base object must be a link style BO instead of a
merge style BO. This option can be configured in the schema manager of the Hub Console. The BVT is
calculated on the set of records belonging to the same link group as the input record key.

Note: You can configure GetBvt requests in all systems when using the Hub Console Audit Manager to audit
requests made by external applications. Once auditing for a particular SIF API request is enabled, Informatica
MDM Hub captures each SIF request invocation and response in the audit log. For more information, refer to
the Multidomain MDM Configuration Guide.

State Management

You can include pending records in the BVT calculation if state management is enabled on the parent base
object by adding setIncludePending(TRUE) to the request. For more information regarding how to enable
state management, refer to the Multidomain MDM Data Steward Guide or the Multidomain MDM Configuration
Guide.

Required Parameters

The following table lists and describes the parameters that are required by the GetBVT API:

Parameter Description

SiperianObjectUid Name and type of the package or base object to be queried.

RecordKey Key to uniquely identify the record for which BVT must be retrieved.

Optional Parameters

The following table lists and describes the optional parameters that are used by the GetBVT API:

Parameter Description

EffectiveDate The date for which you must retrieve values of the base object.
Note: EffectiveDate must be used only for timeline-enabled base objects.

HistoryDate The date for which you retrieve base object data that is effective at the specified point in time. If
HistoryDate is equal to or earlier than HIST_CREATE_DATE, no records are returned.
For Oracle environments, milliseconds for the HistoryDate are truncated. If HistoryDate is later than
HIST_CREATE_DATE by less than a second, no records are returned. If you have Daylight Saving
Time (DST) enabled for the operating system and HistoryDate is later than HIST_CREATE_DATE by
less than one hour during DST, no records are returned.
Note: HistoryDate must be used only for timeline-enabled base objects.

IncludePending If set to true, it includes pending records in BVT calculation. The default is false.

Use Case

The following is a common scenario for using the GetBVT request:

GetBVT used to retrieve the most relevant customer name — A typical use of GetBVT is to retrieve the best
version of truth of a customer's first and last name.

94 Chapter 10: SIF API Reference

Usage Example

The following example gets the BVT for a record with ROWID_OBJECT key 21 from the package,
ADDRESS_UPDATE_PKG:

GetBvtRequest getBvtRequest = new GetBvtRequest();
getBvtRequest.setSiperianObjectUid(SiperianObjectType.PACKAGE.makeUid("ADDRESS_UPDATE"))
;
RecordKey recordKey = new RecordKey();
recordKey.setRowid("21");
getBvtRequest.setRecordKey(recordKey);
getBvtRequest.setIncludePending(false);
GetBvtResponse getBvtResponse = sipClient.process (getBvtRequest);

Related SIF Requests

“Get” on page 88, “Link” on page 112, “Unlink” on page 139

GetEffectivePeriods
The GetEffectivePeriods API retrieves the aggregate effective period for the specified base object record.

The GetEffectivePeriods request contains the key to the base object record for which the aggregate effective
period must be retrieved. The response contains a list that includes all effective periods for the requested
base object record.

Required Parameter

The RecordKey parameter is required to uniquely identify the record for which the aggregate effective period
must be retrieved.

Optional Parameter

The HistoryDate parameter specifies the date for which you retrieve base object data that is effective at the
specified point in time. If HistoryDate is equal to or earlier than HIST_CREATE_DATE, no records are returned.

For Oracle environments, milliseconds for HistoryDate are truncated. If HistoryDate is later than
HIST_CREATE_DATE by less than a second, no records are returned. If you have Daylight Saving Time (DST)
enabled for the operating system and HistoryDate is later than HIST_CREATE_DATE by less than one hour
during DST, no records are returned.

Note: HistoryDate must be used only for timeline-enabled base objects.

Use Case

The following is a common scenario for using the GetEffectivePeriods request:

Retrieve the period for which a customer's billing address is valid.

Usage Example

The following example gets the effective period for a record with ROWID_OBJECT key 28 from the base
object C_BO:

GetEffectivePeriodsRequest req=new GetEffectivePeriodsRequest();
RecordKey rec=new RecordKey();
rec.setRowid("28");
req.setRecordKey(rec);
req.setSiperianObjectUid("BASE_OBJECT.C_BO");
GetEffectivePeriodsResponse response =
(GetEffectivePeriodsResponse)sipClient.process(req);

Reference SIF API Listing 95

GetEntityGraph
The GetEntityGraph request fetches a graph of entities and relationships related to a specified set of entities.
The entities and relationships returned can be one or multiple hops away from the entities in the request.

Required Parameters

The following table describes the required parameters for the GetEntityGraph request.

Parameter Description

HmConfigurationUid UID of the HM Configuration.

EntityKeys List of SiperianObjectRecordKey objects identifying entities for which multiple levels of related
relationships and entities will be retrieved.

Optional Parameters

The following table describes the optional parameters for the GetEntityGraph request.

Parameter Description

RecordStates Specifies the Hub State Indicator value that the returned elements must have.
Note: Only use RecordStates if State Management is enabled for all entity and relationship base
objects.

EffectiveDate Specifies that date for which the returned elements must be in effect.
Note: Only use EffectiveDate for timeline-enabled base objects.

EntityGraphFilter Specifies the limit on the graph depth (number of hops), breadth (number of relationships at each
hop), and the total number of relationships.

Response Fields

The following table describes the fields returned by the GetEntityGraph response.

Field Description

Records A list of relationship and entity record objects.

EntityInfos Contains additional information about an entity returned by GetEntityGraph. Each entity
returned in the records has a corresponding EntityInfo.

TotalGraphReturned If true, the entire graph was returned.
If false, the entire graph was not returned.

ListNode If true, the maximum breadth limit was reached for the entity.
If false, the maximum breadth limit was not reached for the entity.

96 Chapter 10: SIF API Reference

Use Case

This is the common scenario for using the GetEntityGraph request:

• Fetch the entities and relationships associated with a specific HM entity or entities — If you have
Hierarchy Manager and have populated it with data, you can use GetEntityGraph to get the entities and
relationships associated with one or more entities.

GetEntityGraph Request Usage Example

The following example shows how to use the GetEntityGraph request:

GetEntityGraphRequest request = new GetEntityGraphRequest();
request.setHmConfigurationUid("HM_CONFIGURATION.Default|Master");

ArrayList keys = new ArrayList();
SiperianObjectRecordKey key = new SiperianObjectRecordKey();
key.setRecordKey(RecordKey.rowid("123"));
key.setSiperianObjectUid("HM_ENTITY_TYPE.Company");
keys.add(key);

key = new SiperianObjectRecordKey();
key.setRecordKey(RecordKey.rowid("456"));
key.setSiperianObjectUid("HM_ENTITY_TYPE.Company");
keys.add(key);

request.setEntityKeys(keys);

EntityGraphFilter filter = new EntityGraphFilter();
filter.setActiveRelsOnly(true); // Only get current employees

// Only get 3 levels of relationships
filter.setMaximumDepth(3);

// Only traverse Entities that have less than 10 Relationships
filter.setMaximumBreadth(10);

// Do not return more than 100 total Relationships
filter.setMaximumRelationships(100);

request.setEntityGraphFilter(filter);

GetEntityGraphResponse response =
 (GetEntityGraphResponse) sipClient.process(request);

// Get List of Record objects for Entities and Relationships.
List recs = response.getRecords();

// Get EntityInfo object for each Entity returned.
List entInfos = response.getEntityInfos();

Related SIF Requests

“GetOneHop” on page 99

GetLookupValue
GetLookupValue enables an application program to obtain the display value corresponding to a key value for
the specified object columns. This API is used to retrieve the user friendly descriptions for specific code
values when a package contains only the code value and the developer needs to display the user friendly
description of the code in the user interface. This request is also useful when displaying an individual record.

The request contains a list of LookupFields. Each LookupField contains an identifier for the column and a
foreign key value.

Reference SIF API Listing 97

The response contains a record that has a field for each LookupField. The order of the fields matches the
order of the LookupFields in the request. In each field, the name is the lookup (foreign key) value and the
value is the lookup display name.

This request is intended to be used together with the “GetLookupValues” on page 98 and
“SearchLookupValues” on page 128 requests. The difference between these APIs is that the GetLookupValue
API retrieves descriptions only for the specified code values, while the GetLookupValuesRequest and the
SearchLookupValuesRequest return the list of valid lookup code values and lookup code descriptions for the
specified lookup column.

Use Case

This is the common scenario for using the GetLookupValue request:

• Fetch the valid values for a particular field and display them in a UI—In a custom UI, you can use
GetLookupValue to fetch a list of valid values for a field. You can then display these values as a set of
selections for the user.

Related SIF Requests

“GetLookupValues” on page 98, “SearchLookupValues” on page 128, “DeleteRelationship” on page 71

GetLookupValues
GetLookupValues enables an application program to populate fields of a user interface with a list of values
for a given column. This request is similar to the “GetLookupValue” on page 97 request, but the response
contains a list of lists rather than a single list.

This request can be used on any foreign key column. A foreign key to a lookup table has a limited set of
values. Other foreign keys can have large numbers of possible values. This request is intended and most
useful for lookup tables, when you want to display the list of acceptable values to a user.

The response contains a record for each column that has fields with the lookup information. In each field, the
name is the lookup (foreign key) value and the value is the lookup display name.

Use Case

This is the common scenario for using the GetLookupValues request:

• Fetch the valid values for a set of fields and display them in a UI—In a custom UI, you can use
getLookupValues to fetch a list of valid values for a set of fields. You can then display these values as a
set of selections for the user.

Related SIF Requests

“GetLookupValue” on page 97, “SearchLookupValues” on page 128, “DeleteRelationship” on page 71

GetMatchedRecords
GetMatchedRecords returns records that are candidates to match a specified record.

The request contains a package and a record. The response contains a collection of potentially matching
records from the specified package.

You can configure GetMatchedRecords requests in all systems when using the Hub Console Audit Manager
to audit requests made by external applications. Once auditing for a particular SIF API request is enabled,
Informatica MDM Hub captures each SIF request invocation and response in the audit log. For more
information, see the Multidomain MDM Configuration Guide.

98 Chapter 10: SIF API Reference

On IBM DB2, you cannot use functions such as TRIM, LTRIM, and RTRIM in the sortCriteria field of the
GetMatchedRecords API. The select statement of the GetMatchedRecords API uses ORDER BY clause that
cannot be combined with functions such as TRIM, LTRIM, and RTRIM.

State Management

If Hub state is specified in the request (see setRecordStates(ArrayList)), the parent Base Object of the
specified package must have state management enabled. For more information about how to enable state
management, see the Multidomain MDM Cleanse Adapter Guide or the Multidomain MDM Configuration Guide.

Use Case

This is the common scenario for using the GetMatchedRecords request:

• Fetch the match candidates for a specified record, display them in a UI, and use the merge request to
merge the match candidate the user selects—After using GetMatchedRecords to retrieve candidate
matches for a record, you can display the results in a UI for a user. The user can then select a candidate.
Use merge to merge the two records.

Related SIF Requests

“Merge ” on page 114

GetMergeHistory
GetMergeHistory returns a tree representing the merge history for a specified base object record. The root
node of the tree is the surviving rowid. The child nodes represent the records that have been merged into the
surviving record. Each node contains the rowid and merge date of the record.

The request specifies a package and a key to identify the record. The response contains a tree of (rowid,
merge date) pairs.

Note: You can configure GetMergeHistory requests according to a specific system when using the Hub
Console Audit Manager to audit requests made by external applications. Once auditing for a particular SIF
API request is enabled, Informatica MDM Hub captures each SIF request invocation and response in the audit
log. For more information, see the Multidomain MDM Configuration Guide.

Use Case

This is the common scenario for using the GetMergeHistory request:

• Fetch the list of merges from which the current record was formed—get the list of merges, the product of
whose cumulative changes have resulted in this record.

Related SIF Requests

“Merge ” on page 114, “Unmerge ” on page 139

GetOneHop
The GetOneHop Hierarchy Manager request fetches information about the entities directly related to the
group of entities that you specify in a Hierarchy Manager configuration.

The request contains the Hierarchy Manager configuration, a list of entity keys, and the filtering criteria. The
response contains lists of entity records and relationships, and a search token to use for fetching additional
information. Use GetOneHop to understand relationships between records in a hierarchy.

For timeline-enabled entities, the request must include the EffectiveDate parameter value.

Reference SIF API Listing 99

When you use GetOneHop to calculate the best version of the truth for many records, increase the value of
the following properties in cmxserver.properties:

• searchQuery.buildBvtTemp.MaxRowCount
• sif.search.result.query.temptableTimeToLive.seconds
For example, if you use GetOneHop for more than 10,000 records, set the values as shown in the following
example:

sif.search.result.query.temptableTimeToLive.seconds=3600
searchQuery.buildBvtTemp.MaxRowCount=100000

If you process a higher number of records, increase the values for the
searchQuery.buildBvtTemp.MaxRowCount and sif.search.result.query.temptableTimeToLive.seconds
properties.

If you enable timeline, start with a value of 5000 for the searchQuery.buildBvtTemp.MaxRowCount property.

You must also increase the transaction timeout value of the application server.

Use Case

This following scenario uses the GetOneHop request:

Fetch one level of entities and relationships associated with a specific HM entity or entities

If the Hierarchy Manager is populated with data, use GetOneHop to get a single level of entities and
relationships associated with one or more entities.

GetOrsList
GetOrsList retrieves a list of the Operational Record Stores (ORS) registered in the master database.

Required Parameters

The GetOrsList request does not have any required parameters. The ORS ID is not required because this API
request operates on the master database.

Response Fields

The GetOrsList response can contain the information described in the following table:

Field Description

MetaDataOrs Contains the display name, the physical name, and the ID of the ORS. Each ORS in the list is
represented by a MetaDataOrs object.

Use Case

The following scenarios are common uses of the GetOrsList API:

• Retrieve the list of ORS databases to display them for selection in a custom client application.

• Retrieve the ORS ID to use as an input using MetaDataOrs.getOrsId() in subsequent calls where the ORS ID
is required but is not hard-coded.

GetOrsList Request Usage Example

The following example gets the list of all registered ORS databases:

GetOrsListRequest request = new GetOrsListRequest();
GetOrsListResponse response = (GetOrsListResponse)sipClient.process(request);

100 Chapter 10: SIF API Reference

GetOrsList Response Usage Example

The following example displays the returned list of all registered ORS databases:

for(Iterator iter=response.getOrsList().iterator(); iter.hasNext();) {
//iterate through response records
MetaDataOrs ors = (MetaDataOrs) iter.next();
System.out.println("ORS Display Name"+ ors.getDisplayName());
System.out.println(" Physical name" + ": " + ors.getName());
System.out.println(" ORS Id" + ": " + ors.getOrsId());
};

GetOrsMetadata
GetOrsMetadata retrieves the metadata for the current repository. In order to successfully export the
repository, your ORS must be in a valid state. The GetOrsMetadata request provides the same functionality as
the Export tool in the MDM Hub Console. For more information about the Export tool, see the Multidomain
MDM Repository Manager Guide.

Required Parameters

The GetOrsMetadata API does not have any required parameters.

Optional Parameters

The GetOrsMetadata API does not have any optional parameters.

Response Fields

The GetOrsMetadata response contains the information described in the following table:

Field Description

ChangeListXml Contains the XML string representing the exported repository.

Usage Example

The examples shows how to use the GetOrsMetadata API to retrieve metadata:

GetOrsMetadataRequest request = new GetOrsMetadataRequest ();
GetOrsMetadataResponse response = (GetOrsMetadataResponse) sipClient.process(request);

GetSearchResults
GetSearchResults retrieves additional pages of records for any API with paging enabled. The APIs that
support paging are:

• GetAssignedRecords

• Get Matched Records

• GetOneHop

• GetTasks

• Search LookupValues

• SearchHmQuery

• SearchMatch

• SearchQuery

Reference SIF API Listing 101

Use the SortCriteria parameter when using the preceding APIs to ensure the records are not returned in a
random order. When the DisablePaging parameter for the preceding APIs is set to the default of false, a
search token is returned.

You must use the search token within a limited period of time after you receive it. The default time limit for
search token validity is 15 minutes. To learn more about changing this limit, contact Informatica Global
Customer Support.

Required Parameters

The following table lists and describes the parameters that are required by the GetSearchResults request:

Parameter Description

SearchToken Identifies which search to return additional results for.

RecordsToReturn The number of records to return.

FirstRecord The index of the first record to return. This parameter is useful for returning subsequent pages of
results. For example, if RecordsToReturn=20 and FirstRecord=41, the third page of results is
returned (records 41 to 60).
GetSearchResults returns an error if the value of FirstRecord is 0, a negative value, or greater
than the number of records returned by the original search query.

Optional Parameters

The GetSearchResults request does not have optional parameters.

Response Fields

The GetSearchResults response contains an array list of the records specified by the required parameters.

Use Case

This is the common scenario for using the GetSearchResults request:

• Fetch the next page of a set of records returned from a request that returns multiple pages. After using
any request that returns the first of multiple pages of a set of records, you can use getSearchResults
repeatedly to get the subsequent pages.

GetSearchResults Request Usage Example

The following example requests the second page of data from a search. Ten records are displayed per page:

...
SearchQueryResponse sqResponse = (SearchQueryResponse)
sipClient.process(request);
String searchToken = sqResponse.getSearchToken();

GetSearchResultsRequest request = new GetSearchResultsRequest();
request.setSearchToken(searchToken);
request.setRecordsToReturn(10);
request.setFirstRecord(11);
GetSearchResultsResponse response = (GetSearchResultsResponse)
sipClient.process(request);

GetSearchResults Response Usage Example

The code in the following example shows how to print out the records returned by the GetSearchResults
response:

GetSearchResultsResponse response = new GetSearchResultsResponse();
int i=0;
for(Iterator iter=response.getRecords().iterator(); iter.hasNext();)

102 Chapter 10: SIF API Reference

{ //iterate through response records
 System.out.println("Printing response record " + i);
 Record record = (Record) iter.next();
 Collection fields = record.getFields();
 for(Iterator fieldIter=fields.iterator(); fieldIter.hasNext();)
{ //iterate through rest of fields
 Field f = (Field) fieldIter.next();
 System.out.println(f.getName() + ": " + f.getValue());
 }
}

Related SIF Requests
• “GetAssignedRecords” on page 93

• “GetMatchedRecords” on page 98

• “GetOneHop” on page 99

• “GetTasks ” on page 107

• “SearchHmQuery” on page 128

• “SearchLookupValues” on page 128

• “SearchMatch ” on page 128

• “SearchQuery ” on page 133

• “SearchRequestBase” on page 135

GetSiperianObjectCompatibility
GetSiperianObjectCompatibility obtains a checksum that represents the definition of the specified object in
Informatica MDM Hub. This is used with ORS-specific APIs.

This API can be used to determine if an object on the server is compatible with a class in the client library for
an ORS specific PACKAGE, MAPPING, or CLEANSE_FUNCTION. ORS specific APIs and objects are generated
in the Hub Console’s SIF Manager. This request should be used to determine if an objects definition on the
server has changed since the last time ORS specific objects were generated. To resolve an incompatibility
between a client object and its server counterpart is to regenerate the ORS specific objects. For more
information about generating ORS specific objects, see the Multidomain MDM Cleanse Adapter Guide.

Use Case

This is the common scenario for using the GetSiperianObjectCompatibility request:

• Fetch the checksum for an object to use when using ORS-specific APIs—If you are using ORS-specific
APIs, you can use GetSiperianObjectCompatibility.

GetSystemTrustSettings
GetSystemTrustSettings fetches the system-specific trust settings for the specified columns.

The request contains a list of columns and a system. The response contains a list of trust setting objects in
the same order as the list of columns.

Note: You can configure GetSystemTrustSettings requests according to a specific system when using the
Hub Console Audit Manager to audit requests made by external applications. Once auditing for a particular
SIF API request is enabled, Informatica MDM Hub captures each SIF request invocation and response in the
audit log. For more information, see the Multidomain MDM Configuration Guide.

Reference SIF API Listing 103

Use Case

This is the common scenario for using the getSystemTrustSettings request:

• Fetch the system-specific trust settings for a set of columns.

Related SIF Requests

“GetTrustGraphData” on page 109, “GetTrustScore” on page 109

GetTaskLineage
The GetTaskLineage API retrieves the following information, depending on the request parameter settings:

• The closed tasks for a specified user.

• The closed tasks for a specified user that are part of an active workflow process.

• The closed tasks for a specified user that are part of an completed workflow process.

• The open tasks that have a task in their lineage that is owned by the specified user.

• The lineage for a specific task.

TaskData

The TaskData object contains information about a task.

The following table lists the TaskData fields that you can configure:

Field Description

TaskRecord A link to a data record associated with a task.

Comment An optional task comment.

TaskType The task type.

SubjectAreaUID The UID of the task subject area.

Title The task title.

TaskID The ROWID of the task. Cannot be set by user.

DueDate The date when the task is due.

Priority The priority of the task.
1: High priority.
0: Normal priority. The default is 0.
-1: Low priority.

StatusEnum The workflow status. The default is TaskStatusEnum.OPEN.

OwnerUID The user or role ID to whom the task is assigned.

InteractionID The Interaction ID.

WorkflowProcessID The ID of the workflow process that contains the task. Cannot be set by user.

104 Chapter 10: SIF API Reference

Field Description

CreateDate The date when the task was created. Cannot be set by user.

Creator The name of the user who created the task. Cannot be set by user.

LastUpdateDate The date when the task was updated. Cannot be set by user.

LastUpdatedBy The name of the user who updated the task. Cannot be set by user.

PreviousOwner The name of the user or role to whom the task was previously assigned. The value is Null if the
task is new or has not been assigned. Cannot be set by user.

TaskRecord

The TaskRecord object contains information about a record.

The following table describes the TaskRecord fields:

Field Description

SiperianObjectUID An identifier for an object in Informatica MDM Hub.

RecordKey An identifier for a record in Informatica MDM Hub.

MatchRuleUID An identifier for a match rule in Informatica MDM Hub. Only merge tasks require a MatchRuleUID.

Required Request Parameters

The GetTaskLineage request does not have required parameters.

Optional Request Parameters

The information that the GetTaskLineage response returns is based on the values in the optional request
parameters. The following table describes the optional request parameters:

Parameter Value

TaskID The TaskID parameter identifies the task.

OwnerUID The ID of the user to whom the task belongs.

WorkflowStatus The status of the workflow process.

TaskPosition If TaskPosition=USER, the response returns the task assigned to the specified user.
If TaskPosition=WORKFLOW, the response returns the task that is currently active in the workflow
process.

Reference SIF API Listing 105

The following table describes the parameter values necessary to get the tasks completed by a specified user:

Parameter Value

TaskID NULL

OwnerUID The user ID.

WorkflowStatus ANY

TaskPosition USER

The following table describes the parameter values necessary to get the tasks completed by a specified user
that are part of an active workflow process:

Parameter Value

TaskID NULL

OwnerUID The user ID.

WorkflowStatus OPEN

TaskPosition USER

The following table describes the parameter values necessary to get the tasks completed by a specified user
that are part of a completed workflow process:

Parameter Value

TaskID NULL

OwnerUID The user ID.

WorkflowStatus CLOSED

TaskPosition USER

The following table describes the parameter values necessary to get the open tasks that have a task in their
lineage that is owned by the specified user:

Parameter Value

TaskID NULL

OwnerUID The user ID.

WorkflowStatus OPEN

TaskPosition WORKFLOW

106 Chapter 10: SIF API Reference

The following table describes the parameter values necessary to get the lineage for a specified task:

Parameter Value

TaskID The task ID.

OwnerUID The OwnerUID value is ignored.

WorkflowStatus The WorkflowStatus value is ignored.

TaskPosition The TaskPosition value is ignored.

Response Fields

The following table describes the fields returned in theGetTaskLineage response:

Field Description

Title Contains the task title.

TaskType Contains the task type.

Status Contains the task status.

GetTaskLineage Request Usage Example

The code in the following example retrieves a list of tasks belonging to the user named 'siftester' and are
overdue.

GetTaskLineageRequest request = new GetTaskLineageRequest();
request.setOwner("siftester");
GetTaskLineageResponse response = (GetTaskLineageResponse) sipClient.process(request);

GetTaskLineage Response Usage Example

The code in the following example prints out the task information that the GetTaskLineage response returns:

GetTaskLineageResponse response = (GetTaskLineageResponse) sipClient.process(request);
int i=0;
for(Iterator iter=response.getTaskList().iterator(); iter.hasNext();)
{ //iterate through response records
 System.out.println("Printing task " + i);
 TaskMetaData task = (TaskMetaData) iter.next();
 System.out.println(task.getTitle()+", "+task.getTaskType()+", "+task.getStatus());
}

GetTasks
The GetTasks API retrieves a lists of tasks and task details. Optional parameters allow you to filter the tasks
that GetTasks returns.

Required Parameters

The GetTasks request does not have required parameters.

Reference SIF API Listing 107

Optional Parameters

Use the optional parameters to filter the list of tasks that GetTasks returns. The following table describes the
optional parameters.

Parameter Description

TaskMetadata Contains the filter criteria to apply to tasks for the search.
By default, GetTasks searches for tasks with priority=NORMAL and status=OPEN. To
search for tasks with other priorities or statuses, specify the priority and status in the
TaskMetadata parameter.

OverdueOnly If set to true, GetTasks only returns tasks with due dates that have already passed.

SummaryOnly If set to true, GetTasks only returns the task metadata. The records and comments
associated with the task are not returned.

Unassigned If set to true, GetTasks only returns unassigned tasks.

CanBeAssignedToUser If set to true, GetTasks only returns tasks that can be assigned to the user specified in the
GetTasks request.

BDDApplicationName If set to true, GetTasks only returns tasks for an IDD instance.

DisablePaging The default value of DisablePaging is false.
If set to false, paging is enabled and a search token is returned. Use GetSearchResults
to fetch subsequent pages of search results.
If set to true, paging is disabled.

Response Fields

The GetTasks response returns a list of tasks that are filtered by the parameters specified in the GetTasks
request. If DisablePaging is set to false, a search token is also returned.

Use Case

This is the common scenario for using the GetTasks request:

• Fetch a set of tasks that match the criteria specified in the request.

GetTasks Request Usage Example

The following example retrieves the overdue tasks assigned to the user named 'admin'.

GetTasksRequest request = new GetTasksRequest();
TaskMetaData taskMetadata = new TaskMetaData();
taskMetadata.setOwnerUid("USER.admin");
request.setTaskMetaData(taskMetadata);
request.setOverdueOnly(true);
GetTasksResponse response = (GetTasksResponse) sipClient.process(request);

Use the following line of code to return tasks with a priority of 1:

taskMetadata.setPriority(1);
Use the following line of code to return the task that has a task ID of '1234':

taskMetadata.setTaskId("1234");

108 Chapter 10: SIF API Reference

GetTasks Response Usage Example

The code in the following example shows how to print out the records returned by the GetTasks response.

GetTasksResponse response = new GetTasksResponse();
int i=0;
for(Iterator iter=response.getTaskList().iterator(); iter.hasNext();)
{ //iterate through response records
 System.out.println("Printing task " + i);
 TaskMetaData task = (TaskMetaData) iter.next();
 System.out.println(task.getTitle()+", "+task.getTaskType()+", "+task.getStatus());
}

Related SIF Request

“GetSearchResults ” on page 101

GetTrustGraphData
GetTrustGraphData request provides the information needed to plot a trust decay curve.

The request contains a TrustSetting, which specifies the graph type, the time units, and other parameters of
the required graph. The response contains a list of trust values and dates that define the graph.

Note: You can configure GetTrustGraphData requests only for “no system” when using the Hub Console Audit
Manager to audit requests made by external applications. Once auditing for a particular SIF API request is
enabled, Informatica MDM Hub captures each SIF request invocation and response in the audit log. For more
information, see the Multidomain MDM Configuration Guide.

Use Case

This is the common scenario for using the GetTrustGraphData request:

• In an application with a custom-designed UI, display a trust graph —If you have a custom UI and must
display a trust graph, use GetTrustGraphData to get the data on which the graph is based.

Related SIF Requests

“GetSystemTrustSettings” on page 103, “GetTrustScore” on page 109

GetTrustScore
GetTrustScore computes the trust score for a specified column, based on the specified trust override. The
column must be trust-enabled in the Schema Manager of the Hub console. The trust score (type float) of the
Admin system will be returned.

The request contains a column UID and a key identifying the base object record. The response contains the
trust score.

Use Case

This is the common scenario for using the GetTrustScore request:

• Compute the trust score for a column—If you are displaying a record, you can use GetTrustScore to
display that information about a column.

Usage Example

The following example retrieves the trust score for column FIRST_NAME on base object C_CONTACT for the
record with rowid = 3:

GetTrustScoreRequest request = new GetTrustScoreRequest();
request.setColumnUid("COLUMN.C_CONTACT|FIRST_NAME"); // Required

Reference SIF API Listing 109

request.setRecordKey(RecordKey.rowid("3")); // Required
GetTrustScoreResponse response = (GetTrustScoreResponse) sipClient.process(request);

Related SIF Requests

“GetSystemTrustSettings” on page 103, “GetTrustGraphData” on page 109

GetUnmergedRecordCount
GetUnmergedRecordCount reports the number of records that are not merged—either all such records or
those assigned to the current user.

The request supplies the table and a boolean value that specifies whether or not to restrict the count to
records assigned to the user. The response contains the number of unmerged records.

Note: You can configure GetUnmergedRecordCount requests only for “no system” when using the Hub
Console Audit Manager to audit requests made by external applications. Once auditing for a particular SIF
API request is enabled, Informatica MDM Hub captures each SIF request invocation and response in the audit
log. For more information, see the Multidomain MDM Configuration Guide.

Use Case

This is the common scenario for using the GetUnmergedRecordCount request:

• In the data steward queue management screen in a custom UI, display the number of unmerged records
—If you have a custom UI with a data steward queue management screen in a custom UI, you can use this
request to display the number of unmerged records.

Related SIF Requests

“AssignUnmergedRecords” on page 58, “ReassignRecords” on page 123

GetXrefForEffectiveDate
The GetXrefForEffectiveDate API retrieves multiple XREF records for the specified effective date. The
response to a GetXrefForEffectiveDate request contains the aggregate period start date, and the aggregate
period end date. Aggregate period is the intersection of all the periods that encompass the specified
effective date.

Required Parameters

The following table lists and describes the parameters that are required by the GetXrefForEffectiveDate API:

Parameter Description

SiperianObjectUid Name and type of base object or package for which you must get the XREF for a specified
effective date.

RecordKey Key to uniquely identify the record for which you must get the XREF for a specified effective date.

SystemNames Names of systems for which XREF and XREF history must be retrieved.

EffectiveDate The date for which you must retrieve values of the base object.
Note: EffectiveDate must be used only for timeline-enabled base objects.

110 Chapter 10: SIF API Reference

Optional Parameters

The following table lists and describes the optional parameters that are used by the GetXrefForEffectiveDate
API:

Parameter Description

HistoryDate The date for which you retrieve base object data that is effective at the specified point in time. If
HistoryDate is equal to or earlier than HIST_CREATE_DATE, no records are returned.
For Oracle environments, milliseconds for HistoryDate are truncated. If HistoryDate is later than
HIST_CREATE_DATE by less than a second, no records are returned. If you have Daylight Saving Time
(DST) enabled for the operating system and HistoryDate is later than HIST_CREATE_DATE by less than
one hour during DST, no records are returned.
Note: HistoryDate must be used only for timeline-enabled base objects.

OtherPeriods Periods that do not encompass the specified effective date. If set to true, XREF records are retrieved
for all periods that do not encompass the specified effective date. The default is false and the
GetXrefForEffectiveDate API retrieves XREF records for periods that encompass the specified
effective date.

RecordStates System state of the XREF record. The record can be in ACTIVE, PENDING, or DELETED state.

DataFilter Used by IDD to apply security filter.

Use Case

The following is a typical scenario in which the GetXrefForEffectiveDate request is used:

Determining the address of residence of a client for a specific date — If your clients change their address of
residence frequently, and you need to know what their address was on a specific effective date, you can use
the GetXrefForEffectiveDate API in combination with the PreviewBVT API to get the address that was
effective on the specific date. The cross-reference records used by the PreviewBVT API to calculate the
address for the specified effective date are used by the GetXrefForEffectiveDate API to retrieve the address
that was effective on the specified effective date.

Usage Example

The following example shows how to retrieve XREFs for a record with ROWID_OBJECT = 28, for an effective
date 10/10/2011.

GetXrefForEffectiveDateRequest req=new GetXrefForEffectiveDateRequest();
req.setUsername("admin");
Password passwd=new Password();
passwd.setPassword("admin");
passwd.setEncrypted(false);
req.setOrsId("orcl.informatica.com-cmx_ors");
RecordKey rec=new RecordKey();
rec.setRowid("28");
req.setRecordKey(rec);
req.setSiperianObjectUid("BASE_OBJECT.C_BO");
Date date=new Date(2011, 10, 10);
req.setEffectiveDate(date);
GetXrefForEffectiveDateResponse response =
(GetXrefForEffectiveDateResponse)client.process(req);

Related SIF Requests

“ PreviewBVT” on page 115

Reference SIF API Listing 111

Link
Note: The Link API is deprecated.

Link links two or more base object records using the specified groupRecordKey as the group ID. Unlike a
merge operation, when records are linked, the original base object records continue to exist and the cross
reference records are not directly associated with the grouping record. However, the cross reference records
are grouped together in a link group with the rowid of the groupRecordKey specified in the LinkRequest. If the
records specified for linking have been previously linked, then nothing is changed and the API returns a
success message.

In order to be able to use the Link request on a base object, the base object must first be configured to be a
link-style BO instead of a merge-style BO. This option can be configured in the Schema Manager of the Hub
Console.

In order to use a link group, the “GetBvt” on page 94 request must be invoked. This retrieves the best version
of truth (BVT) for the specified link group accounting for the combined cross reference records of all base
object records in the link group.

Related SIF Requests

“GetBvt” on page 94, “Unlink” on page 139

ListSiperianObjects
ListSiperianObjects returns basic metadata for a list of MDM Hub objects of the specified type. The
metadata contains basic information such as SiperianObjectUID, display name, and description. To get an
object's complete metadata, use “DescribeSiperianObject” on page 71.

Restrictions

Only admin users can access private resources through SIF API requests.

Required Parameters

The ListSiperianObjects request does not have required parameters.

Optional Parameters

Use the optional parameters to filter the list of objects returned by ListSiperianObjects. The following table
describes the optional parameters.

Parameter Description

ParentUID Restricts the returned list to objects that are children of the parent specified by ParentUID.

ObjectType Restricts the returned list to objects of the type specified by ObjectType.

UserResourcesOnly When UserResourcesOnly is true, restricts the returned list to those objects for which the user
has security resource privileges enabled.
When UserResourcesOnly is false, the returned list is not restricted by security resource
privileges.

PrivilegeType Restricts the returned list to objects with a specific secure resource privilege enabled for the
user. Possible values are CREATE, DELETE, DESIGN, EXECUTE, MERGE, NONE, READ, UPDATE,
WRITE.

112 Chapter 10: SIF API Reference

Response Fields

The following table describes the response fields:

Parameter Description

Uid Contains the SiperianObjectUID.

Name Contains the object name.

DisplayName Contains the display name.

Description Contains the object description.

Use Case

The following scenario is a common use for the ListSiperianObjects request:

• For a particular base object, get a list of packages. If you have a custom UI, you can use this request to
get a list of packages for a base object so the user can select a base object for the current operation.

ListSiperianObjects Request Usage Examples

The following example shows how to request the metadata of the columns for the base object "C_PARTY":

ListSiperianObjectsRequest request = new ListSiperianObjectsRequest();
request.setObjectType(SiperianObjectType.COLUMN);
request.setParentUid(SiperianObjectType.PACKAGE.makeUid("C_PARTY"));
request.setUserResourcesOnly(false); //ignores security access configuration of object
ListSiperianObjectsResponse response = (ListSiperianObjectsResponse)
sipClient.process(request);

When retrieving a list of users, you can set the parentUID to a Role UID to restrict the list to users that belong
to a specific role. To retrieve a list of admin users, the role can be set to ROLE.REQUEST_ADMIN_USERS_ONLY
using request.setParentUid(SiperianObjectType.ROLE.makeUid("REQUEST_ADMIN_USERS_ONLY")). The
following example shows how to request the metadata of users that belong to the role of Manager.

ListSiperianObjectsRequest request = new ListSiperianObjectsRequest();
request.setObjectType(SiperianObjectType.USER);
request.setParentUid(SiperianObjectType.ROLE.makeUid("Manager"));
request.setUserResourcesOnly(false); //ignores security access configuration of object
ListSiperianObjectsResponse response = (ListSiperianObjectsResponse)
sipClient.process(request);

ListSiperianObjects Response Usage Example

The following example shows how to print out the object metadata returned by the ListSiperianObjects
response:

ListSiperianObjectsResponse response = new ListSiperianObjectsResponse();
int i=0;
for(Iterator iter=response.getMetaDataObjectList().iterator(); iter.hasNext();) { //
iterate through metadata objects
 System.out.println("Printing metadata object " + i);
 MetaDataBase metadata = (MetaDataBase) iter.next();
 System.out.println("/tuid="+metadata.getUid());
 System.out.println("/tname="+metadata.getName());
 System.out.println("/tdisplay name="+metadata.getDisplayName());
 System.out.println("/tdescription="+metadata.getDescription());
}

Related SIF Requests

“DescribeSiperianObject” on page 71

Reference SIF API Listing 113

Merge
Merge merges two base object records, creating a single, consolidated base object record by merging all the
XREF records from the two base objects.

When two records are merged, one is designated the source record, one is designated the target record. The
request merges the source record into the target record. This means that after the merge the ROWID for the
combined record is that of the target record. All foreign keys pointing to the source record now point to the
target record.

For example, there may be one base object record with the name “Alex Watson” and another with the name
“Alexander Watson”; each base object record has its own set of cross reference records. These records are
determined to represent the same person so the records are merged. The result is a single base object record
that has all the cross reference records from the original two base object records. The consolidated value for
each field in the record is determined by the trust configuration.

Important: When you merge two records, Informatica MDM Hub does not check the match status of the
records, it just merges the records as you specify. Using this class, it is possible to merge two completely
dissimilar records, resulting in a nonsense record. For more information about merging, see the Multidomain
MDM Configuration Guide.

Note: An alternate to Merge is Multimerge, which can be used to merge two or more records in a single
operation.

For more information, refer to the Merge Settings Tab on the Match/Merge Setup Details dialog in the MDM
Hub Schema Manager, the Multidomain MDM Configuration Guide, and the Multidomain MDM Data Steward
Guide.

State Management

When you merge records in a base object with state management enabled, you can merge records in any
state. The target ROWID survives in the base object regardless of the hub state. Survivorship of values are
based on the trust scores and the last updated date of the source record.

For more information on state management, see the Multidomain MDM Configuration Guide, and the
Multidomain MDM Data Steward Guide.

Use Case

The following scenario uses the merge request:

Merge used with GetMatchedRecords. You can use GetMatchedRecords to get a list of match candidates for
a specified record. You can then display that list in a UI. If the user selects one of the candidate records, you
can use merge to merge the two records.

Related SIF Requests

“GetMatchedRecords” on page 98, “Unmerge ” on page 139

MultiMerge
MultiMerge merges multiple base object records that have been identified as representing the same object
and allows specifying the field level overrides for the merged record. MultiMerge is a more generic form of
the “Merge ” on page 114 request and should be used for merging groups of records. Merge API should be
used for pair-wise merges.

For example, there may be multiple base object records with the same account number “1234567” and
account type “Personal”. Each base object record has its own set of cross reference records. When these
records are merged with the call to the MultiMerge request, the result is a single BO record with that has the
cross references from all the merged base object records. The consolidated value for each field in the

114 Chapter 10: SIF API Reference

merged record is either determined through the survivorship rules based on the cross references of the
records that are being merged or they are specified through the override values in the API.

When you use the MultiMerge API to specify an override value, a cross-reference record with a source system
of SYS0 is created for the override values. The SYS0 source system ensures that the override values have the
highest trust score.

PreviewBVT
The PreviewBVT API enables you to preview what a base object record would look like if you merge a
specified set of records or apply pending updates to the records.

Required Parameters

The following table lists and describes the parameters that are required by the PreviewBVT API:

Parameter Description

SiperianObjectUid Name and type of base object or package that you need to use for previewing BVT.

RecordKeyList Keys of records for which you need to preview the BVT.
Note: If you include multiple records in the record key list, the BVT of only the first record can be
previewed.

FilterClause An SQL WHERE clause that can be applied to an XREF table. If you specify one record key for the
RecordKeyList parameter, FilterClause is used to preview the effect of applying pending updates.

Optional Parameters

The following table lists and describes the optional parameters that are used by the PreviewBVT API:

Parameter Description

EffectiveDate The date for which values of the base object must be retrieved.
Note: EffectiveDate must be used only for timeline-enabled base objects.

HistoryDate The date for which you retrieve base object data that is effective at the specified point in time.
If HistoryDate is equal to or earlier than HIST_CREATE_DATE, no records are returned.
For Oracle environments, milliseconds for HistoryDate are truncated. If HistoryDate is later
than HIST_CREATE_DATE by less than a second, no records are returned. If you have Daylight
Saving Time (DST) enabled for the operating system and HistoryDate is later than
HIST_CREATE_DATE by less than one hour during DST, no records are returned.
Note: HistoryDate must be used only for timeline-enabled base objects.

PromotePairedXrefs Ensures that the record preview matches what a base object record would look like after the
record is promoted.
If the approval tasks might have active and pending cross-reference records from the same
source system, set the property to true. Default is false.

Use Case

The following is a typical scenario for using the PreviewBVT request:

Preview the BVT for base objects for which the trust level may change over time — Trust level for base
object columns change over time and only the latest value reflects in the base objects. You can use the
PreviewBVT request to preview the BVT value for a base object record at a specific point in time (past,
present, or future).

Reference SIF API Listing 115

Determine the value of a record for a specific effective date — If a record has cross-references with more
than one period of effectiveness, then the PreviewBVT API can be used to calculate the BVT value of the
record for a specific effective date.

Usage Example

The following example shows the merge preview of three records with ROWID_OBJECTs 1, 2, and 3 into a
record with ROWID_OBJECT = 1, using the package P_PARTY.

PreviewBvtRequest request = new PreviewBvtRequest ();
request.setSiperianObjectUid(SiperianObjectType.PACKAGE.makeUid("C_PARTY"));
ArrayList recordKeys = new ArrayList();
recordKeys.add(RecordKey.rowid("1"));
recordKeys.add(RecordKey.rowid("2"));
recordKeys.add(RecordKey.rowid("3"));
request.setRecordKeyList (recordKeys);
PreviewBvtResponse response = (PreviewBvtResponse) sipClient.process(request);

PromotePendingXrefs
PromotePendingXref promotes or flags for promotion the XREF records specified in the request.

State Management

Promote means to change the state of a record from PENDING to ACTIVE. When the flagForPromote option
is set, then this API request will queue the specified xref records for promotion using the next run of the
PROMOTE batch process. Otherwise, the request will immediately promote the specified xref records from
PENDING to ACTIVE. Here’s the behavior of this request based on various XREF states:

• ACTIVE and DELETED records will return an error.

• PENDING records will be made ACTIVE.

Required Parameters

The following table lists and describes the parameters that are required by the PromotePendingXref API:

Parameter Description

SiperianObjectUid Name and type of the package or base object to be promoted.

XrefKey Key to uniquely identify the record to be promoted.

SystemName Name of system for which XREF must be promoted.

SourceKey Source key of the cross-reference record that must be promoted.

116 Chapter 10: SIF API Reference

Optional Parameters

The following table lists and describes the optional parameters that are used by the PromotePendingXref
API:

Parameter Description

ColumnNames Names of columns that must be promoted to the ACTIVE state. Data is lost after promotion, in case
of columns that are not specified.
This parameter is only available for online promotion and is ignored when the FlagForPromote
parameter is set to true.

FlagForPromote Flags records for promote when set to true. The records are promoted when the batch process is
executed in the MDM Hub.

PeriodStartDate This parameter is used to specify the period start date for timeline-enabled base objects.

PeriodEndDate This parameter is used to specify the period end date for timeline-enabled base objects.

Usage Example

The following example immediately promotes the "FIRST_NAME" and "LAST_NAME" fields for the XREF
record with sourceKey=1234 and system=CRM in the package CUSTOMER_UPDATE. If the XREF record is
ACTIVE or DELETED, an error will be returned. If the XREF record is PENDING, it will be made ACTIVE.

PromotePendingXrefsRequest request = new PromotePendingXrefsRequest();
ArrayList columnNames = new ArrayList();
columnNames.add("FIRST_NAME");
columnNames.add("LAST_NAME");
request.setColumnNames(columnNames); // Optional
XrefKey xrefKey = new XrefKey();
xrefKey.setSourceKey("1234");
xrefKey.setSystemName("CRM");
ArrayList xrefKeys = new ArrayList();
xrefKeys.add(xrefKey);
request.setXrefKeys(xrefKeys); // Required
request.setSiperianObjectUID("PACKAGE.CUSTOMER_UPDATE"); //Required

PromotePendingXrefsResponse response = (PromotePendingXrefsResponse)
sipClient.process(request);

The following example flags the XREF record with sourceKey=1234 and system=CRM in the package
CUSTOMER_UPDATE for promotion the next time the Promote batch process is run.

PromotePendingXrefsRequest request = new PromotePendingXrefsRequest();
XrefKey xrefKey = new XrefKey();
xrefKey.setSourceKey("1234");
xrefKey.setSystemName("CRM");
ArrayList xrefKeys = new ArrayList();
xrefKeys.add(xrefKey);
request.setFlagForPromote(true); // Optional
request.setXrefKeys(xrefKeys); // Required
request.setSiperianObjectUID("PACKAGE.CUSTOMER_UPDATE"); //Required

PromotePendingXrefsResponse response = (PromotePendingXrefsResponse)
sipClient.process(request);

Related SIF Requests

“Delete” on page 69, “Restore” on page 127

Reference SIF API Listing 117

Put
Use the Put API to create or update a record. Use an insert operation to create a cross-reference record in the
cross-reference table, and then create a base object record in the base object table. Use an update operation
to update a cross-reference record. Trust rules and validation rules determine if the base object record is also
updated.

A record contains base object fields or package fields. A record can contain all fields or a subset of the
fields. For example, a package may contain the fields FIRST_NAME and LAST_NAME. If you want to update
only the LAST_NAME field, you can omit the FIRST_NAME field from the Put request. If you have not specified
a value for a field, the Put API sets the value to null.

After a Put request, MDM Hub calculates the best version of the truth for all columns in the record, even for
columns not included in the Put request.

State Management

You can enable state management in the Hub Console. If state management is enabled for a package, you
can set the value of HUB_STATE_IND to specify the initial state of a record when you insert the record.

You cannot specify a HUB_STATE_IND value to change the state of an active record to deleted. You cannot
specify a HUB_STATE_IND value to change the state of a pending record to active.

You can specify a HUB_STATE_IND value to change the state of an active record to pending. The Put call
creates a pending cross-reference record with the same source as the active cross-reference record. The two
cross-reference records have the same PKEY_SRC_OBJECT value, but one record is active and the other
record is pending.

Use the Delete, Restore, or PromotePendingXrefs APIs to change the state of a record.

The following table lists the possible values for HUB_STATE_IND and the state these values represent:

HUB_STATE_IND Value State Description

1 ACTIVE The record is approved. Default is 1.

0 PENDING The record is not approved.

-1 DELETED The record is not used in the MDM Hub processes.

Transaction Support

When executed within an EJB context, this request can be part of a transaction with other requests. If there is
a failure in any of the requests within a transaction, the Put API rolls back the entire transaction.

Validation Rule Processing

The Put API applies the applicable rule with the highest downgrade percentage.

Trust Override

You can override the trust settings for a trust-enabled column as part of the Put request. The following
portion of code sets the maximum trust to 90%, sets the minimum trust to 40%, sets the unit of time for the
trust graph to months, sets the number of units over which the trust decays to 12, and sets the trust graph
decay to linear.

field = new TrustOverrideField();
field.setName("CITY");
field.setStringValue(city);
field.setTrustOverride(TrustSetting.createTrustSettingCustom(90, 40,

118 Chapter 10: SIF API Reference

TrustTimeUnit.MONTH, 12, TrustGraphType.LINEAR));
data.setField(field);

If the Put request contains a trustOverrideField parameter, the parameter must have a value regardless of
whether trust is enabled or disabled. The Put response ignores the trustOverrideField values for columns
that do not have trust enabled.

Putable System Columns

A putable column is a system column that you can update or insert data into. A system column can be
putable, not putable, or putable enabled by the user.

The following table describes the putable status of the system columns:

System Column Putable Status

CM_DIRTY_IND Never putable.

CONSOLIDATION_IND Never putable.

CREATE_DATE You can set as putable in the base object column properties.

CREATOR You can set as putable in the base object column properties.

DELETED_BY You can set as putable in the base object column properties.

DELETED_DATE You can set as putable in the base object column properties.

DELETED_IND You can set as putable in the base object column properties.

HUB_STATE_IND You can set as putable in the base object column properties.

INTERACTION_ID Always putable.

LAST_ROWID_SYSTEM Never putable.

LAST_UPDATE_DATE Always putable.

ROWID_OBJECT Never putable.

UPDATED_BY You can set as putable in the base object column properties.

Put API Behavior for the Create_Date Column

Multiple factors can affect the behavior of the Put API request on the Create_Date column.

The Putable property affects the Put insert operation behavior for Create_Date.

If you set Create_Date to Putable, the Put API populates the base object record and the cross-reference
record with the value in the Put request. Null is a permissible value. If you do not provide a value in the
request, the Put API populates the base object record and cross-reference record with the SYSDATE
value.

If you do not set Create_Date to Putable, the Put API populates the base object record and cross-
reference record with the SYSDATE value.

Reference SIF API Listing 119

The Putable property affects the Put update operation behavior for Create_Date.

If you set Create_Date to Putable, the Put API populates the base object record and the cross-reference
record with the value in the Put request. Null is a permissible value. If you do not provide a value in the
request, the column retains the current value.

If you do not set Create_Date to Putable, the base object record and the cross-reference record column
retains the current value. If the Hub creates a cross-reference record, the Put API populates the cross-
reference record column with the SYSDATE value.

Put API Behavior for the Last_Update_Date Column

The Put API updates the LAST_UPDATE_DATE column with a value you specify in the Put request or with the
SYSDATE value.

• If LAST_UPDATE_DATE is Putable and you provide a value for the LAST_UPDATE_DATE column in the Put
request, the Put API populates the base object record and cross-reference record with this value. Null is a
permissible value.

• If you do not provide a value for the LAST_UPDATE_DATE column in the Put request, the Put API
populates the base object record and cross-reference record with the SYSDATE value.

• If LAST_UPDATE_DATE in not Putable, the Put API populates the base object record and cross-reference
record with the SYSDATE value.

Put API Behavior for the SRC_LUD Column in the Cross-Reference

Multiple factors can affect the behavior of the Put API request on the SRC_LUD column in the cross-reference
record.

• If LAST_UPDATE_DATE is Putable and you provide a LAST_UPDATE_DATE value, the Put API populates
the SRC_LUD column with the LAST_UPDATE_DATE value.

• If you do not provide LAST_UPDATE_DATE value, but the Create_Date column is putable and you provide a
Create_Date value, the Put API populates the SRC_LUD column with the Create_Date value.

• If you do not provide a LAST_UPDATE_DATE value and you do not provide a Create_Date value, the Put
API populates the SRC_LUD column with the SYSDATE value.

Put API Behavior for Foreign Key Columns that are Not Nullable

If you configure a default value for a foreign key column and either specify a null value or do not specify a
value, the Put API inserts the default value into the corresponding column of the cross-reference table.

If you do not configure a default value for a foreign key column and either specify a null value or do not
specify a value in the Put request, the MDM Hub generates an exception.

Requirements

Consider the following requirements when using the Put API.

• You must specify the SystemName field to identify the cross-reference record and the system that
provides the data.

• You must enable the Put API for the package.

Restrictions

Consider the following restrictions when using the Put API:

• You cannot insert a null value into a nonnullable column, such as a unique key column. You must provide
a value for nonnullable columns because the Put API sets empty fields to null.

• You cannot use Put to insert or update a read-only column.

• You cannot use Put to insert or update a system column unless the column is putable.

120 Chapter 10: SIF API Reference

• Validation rules only run if all columns used in the validation rule are present in the Put request.

• The Put request fails for packages that are based on base objects flagged for tokenization. A base object
record needs to be tokenized if the ROWID_OBJECT value of the base object record is present in the
associated dirty table.

• A Put request to update relationships can result in improperly formed relationship records. Use the
AddRelationship API and the UpdateRelationship API to add or update relationship records.

• Escape special characters like ' and ~ with a backslash character.

Required Parameters

Use the required parameters to specify the data to insert or update and to specify which record is to receive
the data. The following table describes the required parameters.

Parameter Description

RecordKey When you insert a record, use RecordKey to specify the system name of the record to insert. The system
generates the ROWID_OBJECT value for the record. You cannot specify the ROWID_OBJECT value for a
new record. If you specify the ROWID_OBJECT value for a record that does not exist, the Put request
fails.
When you update a record, use RecordKey to specify the system name, ROWID_OBJECT, and source key
of the record to update. You can also specify the Global Business Identifier (GBID), as applicable.

Record Contains the data to update or insert. The SiperianObjectUid field for the record specifies the type and
the name of the base object or put-enabled package used to identify the affected base object and
constrain the fields that you can set.

Optional Parameters

Use the optional parameters to specify a LastUpdateDate and request a source key.

The following table describes the optional parameters:

Parameter Description

GenerateSourceKey Use for keyless systems such as an application that does not persist source data. When set
to true, the MDM Hub generates a source key if you do not specify one.
If you insert a record from a keyless system, you can request the MDM Hub to generate a
unique PKEY_SRC_OBJECT for the record.
If you request a primary key when you insert a base object, the key generator generates a key
and passes it to the Put part of this request.
If the cross-reference ID does not exist when you update a base object, the Put API creates a
cross-reference record.
If the cross-reference ID exists when you update a base object, the Put API updates the cross-
reference record.

BypassPostLoadUE Determines if Put API calls the PostLoad user exit. Set to true to prevent recursive PostLoad
user exit calls. For example, when a batch load calls the PostLoad user exit, which then calls
a Put API that also calls the PostLoad user exit.

PeriodStartDate Applicable for base objects for which you track data change events. Specifies the period start
date for record versions.

PeriodEndDate Applicable for base objects for which you track data change events. Specifies the period end
date for record versions.

Reference SIF API Listing 121

Parameter Description

PeriodReferenceTime Applicable for base objects for which you track data change events. Specifies a reference
date within an effective period to identify a record version that you want to update. Default is
null.

timelineAction Applicable for base objects for which you track data change events. Specifies the action to
perform on a record version during the load process.
Use one of the following values:
- 0. Adds a record version for a new effective period without maintaining contiguity between

the record versions.
- 1. Updates data in an existing record version. The effective period of the record does not

change.
- 2. Updates the effective period of a record version. An update to an effective period of a

record version is through an increase or decrease of the effective start or end date.
- 4. Adds a record version for a new effective period while maintaining contiguity between

the record versions.
Default is 0.

isFillOnGap Applicable for base objects for which you track data change events. Ensures that contiguity
between the effective dates of record versions is maintained when you add new record
versions.
If set to true, when you can add a new record version to the base object, the MDM Hub
maintains the contiguity between effective periods of record versions. If set to false, the
MDM Hub rejects any addition of record version that breaks the contiguity between effective
periods of record versions. The default is false.

Response Fields

The Put response can contain the information described in the following table:

Field Description

RecordKey Contains the ROWID_OBJECT of the base object affected by the Put API.
When performing a Put request using a ROWID_OBJECT for a base object record that has merged into
another base object record, Put response returns the ROWID_OBJECT of the surviving base object
record.
RecordKey also contains a primary key if you set GenerateSourceKey to true.

ActionType Indicates the action that the Put API performed. The possible values are:
- Insert
- Update
- Update cross-reference
- No Action
The Tokenize API requires the value of ActionType. Insert indicates that a record has not yet been
tokenized and tokens need to be created. Update and Update cross-reference indicate that a
record has been tokenized and the tokens need to be regenerated.

Use Cases

The following examples are the common scenarios for using the Put request:

• The user provides data in a UI for creating or updating a record, and then the UI calls the Put API to insert
or update the record.

122 Chapter 10: SIF API Reference

• The Put API used in combination with the Tokenize API. A Put request followed by a Tokenize request
inserts or updates the record and encodes it for matching. The Put response contains an action type
string to use as an input to the Tokenize request. The Put API operation and the Tokenize operation can
occur in the same transaction.

• The Put API used in combination with the Cleanse API. The most common use of cleanse is when the
individual fields are cleansed before the record is passed on to the Put API.

Put Request Usage Example

The following example updates a record with ROWID_OBJECT key 782 using the package ADDRESS_UPDATE:

PutRequest request = new PutRequest();
request.setRecordKey(RecordKey.rowid("782", "SALES"));
Record record = new Record();
record.setSiperianObjectUid(SiperianObjectType.PACKAGE.makeUid("ADDRESS_UPDATE"));
record.setField(new Field("ADDRESS_LINE1", "123 Main St."));
record.setField(new Field("CITY", "Anytown"));
request.setRecord(record);
PutResponse response = (PutResponse) sipClient.process(request);

ReassignRecords
ReassignRecords reassigns the specified records assigned for manual merge evaluation to another user.

The new user will now be responsible for these records.

Use Case

This is the common scenario for using the ReassignRecords request:

• In a custom UI, allow data stewards to reassign the records in their queue—If you have a custom UI, in
the screen for managing data steward’s queues, you might have a button that uses this request. This
would allow data stewards to reassign the records in their queue.

Related SIF Requests

“AssignUnmergedRecords” on page 58, “ClearAssignedUnmergedRecords” on page 66

RegisterCustomIndex
A RegisterCustomIndex request registers user-defined indexes in the repository.

Some batch processes drop and re-create indexes based on the repository information. If you do not register
custom indexes, the batch processes might drop them.

Request Parameters

The RegisterCustomIndex request contains the following parameters:
TableName

Name of the repository table.

RowidColList

A list of row ID column values that have custom indexes. MDM Hub ignores leading and trailing spaces
in the row ID column. Separate each row ID column value with the tilde (~) character.

IndexType

Optional. Type of index to be registered. The IndexType parameter uses one of the following index types:

• FK. A foreign key index.

Reference SIF API Listing 123

• PK. A primary key index.

• NI. A non-unique key index.

• UI. A unique key index.

Create and register only the non-unique type indexes. Default is NI.

Response Fields

The RegisterCustomIndex request returns the following fields:

InteractionId

An identifier for the request.

Message

A brief message about the status of the request.

RetCode

A return code for the interaction.

Usage Example

The following code sample registers a custom index:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 RegisterCustomIndexRequest req = new RegisterCustomIndexRequest();
 req.setTableName(jobContext.getTableName()); // table name
 req.setRowidColList("SVR1.DA~SVR1.DB"); // column list
 RegisterCustomIndexResponse executed = (RegisterCustomIndexResponse)
sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

RegisterCustomTableObject
A RegisterCustomTableObject request calls a register custom table object. You must register a custom
stored procedure with Informatica MDM Hub to make it available to the users in the Batch Group tool. You
can register the same custom job multiple times for different tables.

Request Parameters

The RegisterCustomTableObject request contains the following parameters:
RowidTable

Foreign key to the C_REPOS_TABLE.ROWID_TABLE table.

ObjFuncTypeCode

Code for the job type. Use code A for batch group custom jobs.

ObjFuncTypeDesc

Display name for the custom batch job in the Batch Groups tool.

ObjectName

Name of the custom job.

Response Fields

The RegisterCustomTableObject request returns the following fields:

124 Chapter 10: SIF API Reference

InteractionId

An identifier for the request.

Message

A brief message about the status of the request.

RetCode

A return code for the interaction.

Usage Example

The following code sample registers the custom stored procedure CMXBG.EXAMPLE_JOB:

SiperianClient sipClient = SiperianClient.newSiperianClient(new
File(context.getTestPTTStartDir() + "siperian-client.properties"));
 RegisterCustomTableObjectRequest req = new RegisterCustomTableObjectRequest();
 req.setRowidTable(jobContext.getRowIdTable()); // rowid table. e.g. SVR1.44A
 req.setObjFuncTypeCode("A");
 req.setObjFuncTypeDesc("Custom call");
 req.setObjectName("CMXBG.EXAMPLE_JOB");
 RegisterCustomTableObjectResponse executed = (RegisterCustomTableObjectResponse)
sipClient.process(req);
 String errMessage = executed.getMessage();
 int rc = executed.getRetCode();

RegisterUsers
RegisterUsers enables an application to register selected users from the enterprise’s authentication system
(for example, LDAP) with Informatica MDM Hub. Then MDM Hub can use its existing access control
capabilities to manage tasks like role assignments.

The application provides a list of user names, and MDM Hub fetches their information from the external
system. Informatica MDM Hub ignores additional registrations of the same user profile from the external
authentication system. However, it reports errors if the username is already registered using a different, or
no, external profile, or if the name does not exist in the external authentication system.

The MDM Hub registers the users within a transaction. If an error occurs, it rolls back all changes.

Provisioned users can be grouped and assigned MDM Hub security roles using the MDM Hub Console. For
more information, see the Multidomain MDM Configuration Guide.

Automatically provisioned users can be removed from the Informatica user database either using the
Informatica Administration Console or using “UnregisterUsers” on page 141.

Transaction Support

When executed within an EJB context, this request can be part of a transaction with other requests. If there is
a failure in any of the requests within a transaction, the entire transaction is rolled back.

Use Case

This is the common scenario for using the RegisterUsers request:

• Checking external authentication—Before you start a logical unit of work, check to see what the user is
authorized to do.

Related SIF Requests

“Authenticate” on page 60

Reference SIF API Listing 125

RemoveMatchedRecords
RemoveMatchedRecords removes matches associated with a base object record from the <base
object>_MTCH table.

For example, if you decide records B and C do not match to record A, you can remove the following match
pairs from <base object>_MTCH table:

• A-B

• A-C

• B-A

• C-A

Request Parameters

The RemoveMatchedRecords request contains the following parameters:
SiperianObjectUid

Specifies the type and name of the base object or package. Required.

RecordKey

Specifies the record key that does not match with the list of record keys. Required.

RecordKeyList

Contains the list of record keys. Required.

Response Fields

The RemoveMatchedRecords API returns the following fields:

InteractionId

Contains the interaction ID.

Message

Contains a message regarding the status of the request.

Usage Example

The following code sample removes matches A-B, A-C, B-A, and C-A from C_PARTY_MTCH:

RemoveMatchedRecordsRequest request = new RemoveMatchedRecordsRequest();
 request.setSiperianObjectUid(SiperianObjectType.PACKAGE.makeUid("C_PARTY"));
 request.setRecordKey(RecordKey.sourceKey("A", "Acme"));
 ArrayList keys = new ArrayList();
 keys.add(RecordKey.sourceKey("B", "Acme"));
 keys.add(RecordKey.sourceKey("C", "Acme"));
 request.setRecordKeyList(keys);
 RemoveMatchedRecordsResponse response = sipClient.process(request);

ResetBatchGroup
ResetBatchGroupfinds the last execution status of the given batch group, and if its status is failed, sets it to
incomplete. For more information about batch groups, see the Multidomain MDM Configuration Guide.

Use Case

This is the common scenario for using the ResetBatchGroup request:

• Resetting a batch group after “GetBatchGroupStatus” on page 93 returns and unsuccessful status

126 Chapter 10: SIF API Reference

Related SIF Requests

“ExecuteBatchGroup” on page 77, “GetBatchGroupStatus” on page 93

Restore
Restore reinstates the specified XREF record(s) in the Hub. Restore changes the state of records from
DELETED to ACTIVE state. If an attempt is made to restore an active or pending record, an error is returned.
After an XREF record is restored, the state of the parent BO record will be active.

Required Parameters

The following table lists and describes the parameters that are required by the Restore API:

Parameter Description

SiperianObjectUid Name and type of the package or base object to be restored.

XrefKey Key to uniquely identify the record to be restored.

SystemName Name of the system for which the record must be restored.

SourceKey Source key of the record that must be restored.

Optional Parameters

The following table lists and describes the optional parameters that are used by the Restore API:

Parameter Description

PeriodStartDate This parameter is used to specify the period start date for timeline-enabled objects.

PeriodEndDate This parameter is used to specify the period end date for timeline-enabled base objects.

Usage Example

The following example restores the XREF record with sourceKey=1234 and system=CRM from the package
CUSTOMER_UPDATE. If the XREF record is pending or active, an error will be returned. If the XREF record is
deleted, it will be made active.

RestoreRequest request = new RestoreRequest();
XrefKey xrefKey = new XrefKey();
xrefKey.setSourceKey("1234");
xrefKey.setSystemName("CRM");
ArrayList xrefKeys = new ArrayList();
xrefKeys.add(xrefKey);
request.setXrefKeys(xrefKeys); // Required
request.setSiperianObjectUID("PACKAGE.CUSTOMER_UPDATE"); //Required

RestoreResponse response = (RestoreResponse) sipClient.process(request);
Related SIF Requests

“Delete” on page 69, “PromotePendingXrefs” on page 116

Reference SIF API Listing 127

SearchHmQuery
SearchHmQuery is used to search HM Entities or Relationships. The filter, aggregate and sort criteria can
reference any columns in the Display Packages associated with Entity Type / Relationship Type in the search
request. The criteria can use any operators supported by the underlying database.

The value stored in GETLIST_LIMIT column of CMX_SYSTEM.C_REPOS_DATABASE table for the ORS
determines the maximum number of records that can be returned. GetSearchResultsRequest can be used to
get subsequent pages of records.

The request contains the HM configuration, the type of the entity or relationship sought, and an SQL
specification of the query. The response contains the sought records and a search token to use to fetch
additional data.

Use Case

This is the common scenario for using the SearchHmQuery request:

• Search for specific HM entity or entities — If you have Hierarchy Manager and have populated it with
data, you can use SearchHmQuery to search for entities and relationships associated with one or more
entities.

Related SIF Requests

“SearchRequestBase” on page 135, “GetSearchResults ” on page 101, “SearchHmQuery” on page 128

SearchLookupValues
SearchLookupValues request searches for lookup values that match a given lookup display name (lookup
code description).

This request is typically used with foreign key columns that have a large number of possible values. The
request includes a lookup column, a lookup display value to search for, and a comparison operator. It also
includes a record whose fields contain the lookup information. In each field, the name is the lookup (foreign
key) value, and the value is the lookup display name. For detailed information on configuring relationships
and lookups in the MDM Hub, see the Multidomain MDM Configuration Guide.

This request allows search criteria to be specified on the lookup display name compared to
“GetLookupValues” on page 98 which retrieves all lookup values for a lookup column.

A system parameter determines the maximum number of records that can be returned. Use
“GetSearchResults ” on page 101 to get subsequent sets of records.

Use Case

This is the common scenario for using the SearchLookupValues request:

• Search for lookup values—In a custom UI, you can use SearchLookupValues to find that value from
amongst the available lookup values.

Related SIF Requests

“GetLookupValue” on page 97, “GetLookupValues” on page 98

SearchMatch
A SearchMatch request generates a list of search results by identifying matching records in a package or
base object using MDM Hub match columns and, optionally, match rule sets. For information on configuring
match columns and match rule sets, see the Multidomain MDM Configuration Guide.

128 Chapter 10: SIF API Reference

Records must be tokenized or the records cannot be returned as match results. Use the Tokenize API or
batch job to tokenize records.

SearchMatch returns a list of matching records. This is unlike the Hub match batch process, which creates a
list of match candidates in the Operational Reference Store that you retrieve using GetMatchedRecords.

When you perform an extended search, the default match rule set must have fuzzy match keys. If fuzzy
match keys are absent, the SearchMatch API does not return search results.

For information about performing exact matches on fuzzy base objects, see Exact Matches on Fuzzy Base
Objects.

Required Parameters

The required SearchMatch Request parameters are described in the following table:

Parameter Description

RecordsToReturn Number of records to return.

MatchColumnField or
RecordsToMatch

Specifies which match columns or match rules are used for matching:
- MatchColumnField: The name of a single match column or a list of match columns to use

in matching.
- RecordsToMatch: The Hub uses all possible match columns configured for the record or

records listed in RecordsToMatch. The Hub does not use the match columns that are
based on fields for which the records have no value. Use MatchColumnUid to restrict
match columns further. The match columns that result from using the RecordsToMatch
parameter override the match columns specified by MatchColumnField.

SiperianObjectUid Package or base object to search.

MatchType Specifies how match rules are used in the search. If you do not specify the MatchType,
SearchMatch uses the default MatchType of NONE.
You can specify one of the following match types:
- BOTH. Uses the automatic and the manual merge match rules.
- AUTO. Uses the automatic merge match rules.
- NONE. Uses the automatic and the manual merge match rules. If you selected exact-match

columns in the Selected Match Columns list, and a selected record contains a value for
that exact-match column, the match process identifies duplicate records based on the
exact-match column plus the match rules.

- DBFILTERED. Increases performance when a fuzzy search is based on a nonselective
term.

Undermatching when using MatchType AUTO and BOTH

The AUTO and BOTH MatchType may result in undermatching if the search request contains empty fields.
Users may not provide data for every field when performing a search from a custom client application. If an
empty field is configured as an exact match column in the match rules, any potential search result containing
data in these fields is excluded from the search results returned by SearchMatch.

MatchType NONE

A SearchMatch with MatchType NONE can be performed in one of two ways:

• Without using match rules. The match is performed by giving all columns equal weight, with no required
fields. Undermatching is avoided because empty fields in the search request are ignored, which prevents
relevant records from being excluded from the search results. However, overmatching and misleading
match scores can occur because nonselective fields, such as Gender, are given the same weight as
selective fields, such as Customer ID.

Reference SIF API Listing 129

• Using a match rule set that has Enable Search by Rules enabled in the Hub. The undermatching that can
occur when using MatchType AUTO and BOTH is avoided because empty fields provided by the search
request are ignored and not used to exclude search results. Overmatching and misleading match scores
are avoided because the match rules give the columns an appropriate weight.

MatchType DBFILTERED

The DBFILTERED MatchType increases performance when a fuzzy search based on a nonselective term, such
as Name="JOHN", also provides values for exact match columns. Nonselective fuzzy search terms provide
excessive search results which cause SearchMatch to take longer than expected to complete. When the
MatchType is DBFILTERED, SearchMatch performs in one of two ways:

• If the fuzzy search term is selective, for example, JONATHAN LIVINGSTONE, SearchMatch functions as it
does when MatchType is set to BOTH. Initial filtering is performed using the match key ranges generated
by the Hub, and then additional filtering is performed by the Process Server using the exact match
columns. This type of filtering reduces the number of database joins required and provides optimal
SearchMatch performance for selective fuzzy search terms.

• If the fuzzy search term is nonselective, for example, JOHN, initial filtering is done in the database on the
exact match columns and match key ranges. This results in fewer records being returned to the Process
Server for matching than would occur using the MatchType AUTO or BOTH. This type of filtering provides
optimal SearchMatch performance for nonselective fuzzy search terms.

Consider the following when using the DBFILTERED MatchType:

• A DBFILTERED match cannot be performed using the following types of exact match columns:

- Exact match columns that have match subtype, non-equal matching, null matching, or segment matching
enabled.

- Exact match columns that are based on a concatenation of base object columns.

• Ensure the lock on the schema has been released. API performance decreases when the schema is
locked.

• DBFILTERED SearchMatch performance decreases as the number of fuzzy match rules increases. Create
a match rule set to use specifically for DBFILTERED SearchMatch that is limited to the match rules
essential for database filtering.

• Ensure low cardinality (preferably 1:1) between the base object providing the match key and the exact
match columns used for filtering to increase database filtering performance.

• Add custom column indexes to some of the exact match columns used for filtering to improve database
filtering performance. Use as few custom column indexes as possible to avoid decreasing batch job
performance.

130 Chapter 10: SIF API Reference

Optional Parameters

The optional SearchMatch Request parameters are described in the following table:

Parameter Description

includePending includePending determines if SearchMatch includes pending records in the results.
true: SearchMatch includes pending records in results. "Enable match on pending records"
must be enabled for the base object in the Match Merge Hub setup.
false: SearchMatch does not include pending records in results. The default is false.
This parameter has no effect for base objects for which State Management is not enabled. See
the Multidomain MDM Configuration Guide for more information on State Management.

sortCriteria A string containing a comma-separated list of column names and a sort direction. For example,
"LAST_NAME ASC, FIRST_NAME ASC" returns the search results sorted by last name and then first
name, in ascending order. Use DESC to sort in descending order. The results are returned in
random order if you do not specify the sort order, unless the MatchType is NONE.
If the MatchType is not NONE, RecordsToReturn is specified, and sortCriteria is not specified, then
the records are sorted based on the match score.

MatchRuleSetUid A string containing the name of a match rule set. If a match rule set is not specified using this
parameter, SearchMatch uses the default match rule set. You must use one of the following
formats:
- A fully qualified SiperianObjectUid followed by the match rule set. For example,

"MATCH_RULE_SET.C_PARTY|Main". You must include the MATCH_RULE_SET prefix.
- Set to NULL to use the default match rule set. To set MatchRuleSetUid to NULL, omit

MatchRuleSetUid from the SearchMatch request.

setDisablePaging This parameter determines if paging is disabled.
true: paging is disabled.
false: paging is enabled. The default is false.
Use GetSearchResults to fetch subsequent pages of search results.

Response Fields

The SearchMatch Response contains a list of matching records as well as the information described in the
following table for each record:

Field Description

DEFINITIVE_MATCH_IND Indicates whether a match was made using a match rule enabled for automatic merging.
Matches made using auto-merge match rules typically result in closer matches than those
made using manual-merge match rules.
1: Match made using an auto-merge match rule.
0: Match made without using a manual-merge match rule.

RULESET_NAME Indicates which match rule set was used to make the match. The value for RULESET_NAME
is GENERATED SEARCH when the MatchType is NONE.

Reference SIF API Listing 131

Field Description

RULE_NUMBER Indicates the rule number of the match rule that was used to make the match. The value
for RULE_NUMBER is 1 when the MatchType is NONE.

MATCH_SCORE Indicates the match score of the result. If MatchType is equal to NONE, SearchMatch
returns the match score, if available, so that the search results can be ranked by the match
score.
The match score is ignored when sorting if you specify a sort order using the sortCriteria
parameter.

Use Case

This is the common scenario for using the SearchMatch Request:

• Generate and then return a list of the possible matches in a given package or base object. Use the
returned list of match candidates to merge or link records using Merge, MultiMerge, or Link.

• The user specifies search criteria in a UI and the UI calls SearchMatch to find similar records and display
the results to the user for editing.

SearchMatch Request Usage Example

The code in the following example searches for a match to 'EXAMPLES CORP' in the Organization_Name
match column of the PARTY_ADDRESS_READ_PKG package. The results will be sorted based on the values in
the NAME column in descending order. SearchMatch will use the default MatchType of NONE since no
MatchType is specified.

SearchMatchRequest request = new SearchMatchRequest();
request.setRecordsToReturn(5);
request.setSiperianObjectUid("PACKAGE.PARTY_ADDRESS_READ_PKG");
Field orgNameField = new Field("Organization_Name");
orgNameField.setStringValue("EXAMPLES CORP");
request.addMatchColumnField(orgNameField);
request.setSortCriteria("NAME DESC");
SearchMatchResponse response = (SearchMatchResponse) sipClient.process(request);

SearchMatch Response Usage Example

The code in the following example shows how to print out the records returned by the SearchMatch
response.

SearchMatchResponse response = new SearchMatchResponse();
int i=0;
for(Iterator iter=response.getRecords().iterator(); iter.hasNext();) {
//iterate through matched records
 System.out.println("Printing matched record " + i);
 Record record = (Record) iter.next();
 BigDecimal definitiveMatch =
record.getField("DEFINITIVE_MATCH_IND").getBigDecimalValue();
 if(definitiveMatch.intValue()==1) System.out.println("Matched on an
auto-merge rule");
 Collection fields = record.getFields();
 for(Iterator fieldIter=fields.iterator(); fieldIter.hasNext();) {
//iterate through rest of fields
 Field f = (Field) fieldIter.next();
 System.out.println(f.getName() + ": " + f.getValue());
 }
}

Related SIF Requests

“Tokenize ” on page 138, “GetMatchedRecords” on page 98, “GetSearchResults ” on page 101,
“SearchQuery ” on page 133, “Merge ” on page 114, “MultiMerge” on page 114, “Link” on page 112

132 Chapter 10: SIF API Reference

SearchQuery
SearchQuery searches for records in a package, base object, or remote package based on an SQL condition
clause. The condition clause can reference any column in the package, base object, or remote package and
can use operators supported by the target database.

If you perform a SearchQuery in which you use a ROWID_OBJECT value for a base object record that is
merged into another base object record, no records are returned. For example, two base object records, one
with a ROWID_OBJECT value of ROWID_A and the other with a value of ROWID_B are merged. After the
merge, the ROWID_OBJECT value of the surviving base object could be ROWID_A. In this case, if you perform
a SearchQuery in which you use a ROWID_OBJECT of ROWID_B, no records are returned because a base
object with a ROWID_OBJECT of ROWID_B no longer exists in the base object table.

On IBM DB2, you cannot use functions such as CAST in the sortCriteria field of the SearchQuery API. The
select statement of the SearchQuery API uses the ORDER BY clause that you cannot combined with functions
such as CAST.

On IBM DB2, you cannot use the lower function in the filterCriteria field of the SearchQuery API. IBM DB2
does not support the lower function on the graphic physical data type that corresponds to the NCHAR and
NVARCHAR data type of the MDM Hub.

When you specify the effectiveDate parameter along with the filterCriteria parameter in SearchQuery, ensure
that the columns that you specify in the filterCriteria parameter are qualified.

Informatica recommends that you use the filterCriteria parameter together with the filterParameter when
possible so that the database can reuse the cached query for better performance.

For example, if you have a filterCriteria parameter of lower(name)=lower, the following sample shows how to
combine the filterParameter in SearchQuery:

<urn:filterParameter>
<urn:stringValue>Peter</urn:stringValue>
</urn:filterParameter>

Note: Ensure that you list the parameters with the appropriate data types according to the database.

The following sample shows that the C_PARTY object qualifies the FIRST_NAME column:

<urn:orsId>orcl.informatica.com-MDM_SAMPLE</urn:orsId>
<urn:siperianObjectUid>BASE_OBJECT.C_PARTY</urn:siperianObjectUid>
<urn:filterCriteria>C_PARTY.FIRST_NAME = ?</urn:filterCriteria>
<urn:filterParameter>
<urn:stringValue>John</urn:stringValue>
</urn:filterParameter>
<urn:effectiveDate>2014-03-17T20:06:00.000</urn:effectiveDate>

Required Parameters

The following table lists and describes the parameters that the SearchQuery API requires:

Parameter Description

SiperianObjectUid Name and type of package, base object, XREF table, XREF history table, history table, or merge
history table that you need to query.

RecordsToReturn Sets the limit to the number of records that the SaerchQuery API must retrieve.

Reference SIF API Listing 133

Parameter Description

FilterCriteria SQL clause to filter search results for the columns of the package that is queried.
Use the FilterCriteria parameter to specify the literal expressions (FIRST_NAME = 'JOHN') or use
it in combination with FilterParameter.

FilterParameter Specifies the parameter values to filter as a list.

Optional Parameters

The following table describes the optional SearchQuery API parameters:

Parameter Description

EffectiveDate The date for which you must retrieve values of the base object.
Note: Use EffectiveDate only for timeline-enabled base objects.

HistoryDate The date for which you retrieve base object data that is effective at the specified point in time. If
HistoryDate is equal to or earlier than HIST_CREATE_DATE, SearchQuery does not return any
records.
For Oracle environments, SearchQuery truncates milliseconds for HistoryDate.
In the following situations, SearchQuery does not return any records:
- HistoryDate is later than HIST_CREATE_DATE by less than a second
- Daylight Saving Time (DST) is enabled for the operating system and HistoryDate is later than

HIST_CREATE_DATE by less than one hour during DST
Note: Use HistoryDate only for timeline-enabled base objects.

DisablePaging If set to true, it disables the paging mechanism and you can retrieve multiple pages of data. Set
the parameter set to true for queries that return a predictable number of rows. Use
GetSearchResults to fetch subsequent pages of search results.

RecordStates Specifies the Hub state indicator to use for filtering the search result.

JoinUids Specifies a list of UIDs to join with SiperiaObjectUID.

RemoveDuplicates If set to true, SearchQuery removes duplicates from the result set. Enable the parameter when
there is a possibility of duplicates in the result set. The default is false.

AdvancedMode If set to true, the advanced mode of search query processing is enabled. The default is false.
When AdvancedMode is true, you can use FilterCriteria with the advanced operators EXISTS and
COUNT. However, when AdvancedMode is true, you cannot use these operators in sortCriteria.

UncommittedRead If set to true, SearchQuery returns results without waiting for pending updates to commit. If set
to false, SearchQuery does not return results until all pending data changes are committed. The
default is false.

Retrieving Large Record Sets

To control multiple records that the query must return and set the data page size for paging, you need the
SearchRequestBase. The SearchRequestBase is the base class for search requests with parameters for
paging and sorting.

Case Sensitivity

The SearchQuery API is case sensitive. Use the same case as in the Operational Reference Store when you
specify a filter criteria. If the case is different from the one in the Operational Reference Store, records are

134 Chapter 10: SIF API Reference

not found. However, to control the case sensitivity of SearchQuery, you can use the CASE_INDICATOR column
in C_REPOS_TABLE. The values for the case indicator are UPPER, LOWER, and NULL. Specify a case indicator
to indicate that all data in the corresponding table is in the case that you specify. The case indicator setting
converts the filter criteria to the appropriate case. To implement searches that are not case sensitive, you do
not require queries based on functions.

The following table describes the settings for the CASE_INDICATOR column:

Name Description

UPPER Converts the WHERE clause and any parameter of the query to uppercase before you run the request.
All the data in the package in the request must be in uppercase.

LOWER Converts the WHERE clause and any parameter of the query to lowercase before you run the request.
All the data in the package in the request must be in lowercase.

NULL Query does not require case conversions before you run the request.
The case of data in the package that is in the request does not matter.

Use Case

The scenario where you search for records in a package uses the SearchQuery request. In a custom UI, use
SearchQuery to allow a data steward to find a particular record.

Usage Example

The following example shows the search for a record from the package PARTY_ADDRESS_READ_PKG, where
PARTY_FULL_NAME starts with 'WAGNER':

SearchQueryRequest request = new SearchQueryRequest();
request.setRecordsToReturn(5);
request.setSiperianObjectUid("PACKAGE.PARTY_ADDRESS_READ_PKG");
request.setFilterCriteria("PARTY_FULL_NAME LIKE ?");
ArrayList params = new ArrayList(2);
params.add(new Parameter("WAGNER%"));
request.setFilterParameter(params);
SearchQueryResponse response = (SearchQueryResponse) sipClient.process(request);

SearchRequestBase
SearchRequestBase is the base class for search requests (SearchQuery and SearchMatch) with parameters
for paging and sorting.

Paging Support

The parameters for the paging mechanism to return large result sets are as follows:

• Maximum number of records returned—This parameter can be specified at the ORS level and it is stored
in the CMX_SYSTEM.C_REPOS_DATABASE.GETLIST_LIMIT parameter. This limit takes precedence over
the values specified using setRecordsToReturn(int). The search queries will be limited to the minimum
value of the two for any search request. For SearchMatchRequest API, there are also additional
parameters that can be specified on the Process Server to control the number of matches the Hub will
attempt before returning the results.

• Number of records—setRecordsToReturn(int). When paging is enabled this parameter specifies the size
of the first page of data returned by the search API. Subsequent pages can be returned using the
GetSearchResultsRequest API. Alternatively, for requests that have paging disabled this method would
specify the limit of the total number of rows returned by the search API.

Reference SIF API Listing 135

• The paging mechanism is enabled by default— disable paging by using the setDisablePaging() methods
of APIs such as SearchQuery and SearchMatch that support paging. If the setDisablePaging() method is
set to false, then a search token is returned. The search token is used by GetSearchResults to return
additional results.

• The search token is deleted—After a period of inactivity longer than the
sif.search.result.query.timeToLive.seconds setting specified in the Hub Server properties.
GetSearchResults calls made after the token is expired would result in an error.

For more information, refer to the SIF API Javadocs.

SearchResponseBase
SearchResponseBase is the base class for search responses.

Each response contains a list of records, a search token to use to fetch more results, and an optional count
of matching records.

For more information, refer to the SIF API Javadocs.

SetPassword
SetPassword request changes the password for the user. The existing password must be specified in the
request as well as the new password. Passwords are specified as Password objects. The password specified
must adhere to the password policy configured in the Hub. After you change the password, acquire a write
lock in the Hub Console to refresh the cache for the new password to take effect.

Use Case

This is the common scenario for using the SetPassword request:

• Allow a Informatica MDM Hub administrator to set a password for a user within Informatica MDM Hub —
In an application for Informatica MDM Hub administrators, you can include functionality to allow the
administrator to change passwords for the Informatica MDM Hub users.

SetRecordState
SetRecordState enables a client application to assign one of a predefined set of state indicator values to a
specified set of base object records. The state indicator value is stored in the CONSOLIDATION_IND column.
The consolidation indicator can be one of the following values:

Indicator
Value

State Name Description

1 CONSOLIDATED This record has been consolidated (determined to be
unique) and represents the best version of the truth.

2 UNMERGED This record has gone through the match process and is
ready to be consolidated.

3 QUEUED_FOR_MATCH This record is a match candidate in the match batch that is
being processed in the currently-executing match process.

136 Chapter 10: SIF API Reference

Indicator
Value

State Name Description

4 NEWLY_LOADED This record is new (load insert) or changed (load update)
and needs to undergo the match process.

9 ON_HOLD The data steward has put this record on hold until further
notice. Any record can be put on hold regardless of its
consolidation indicator value. The match and consolidate
processes ignore on-hold records. For more information,
see the Multidomain MDM Data Steward Guide.

Restrictions

Consider the following when using the SetRecordState API:

• This request cannot be used within a transaction.

• The consolidation state can only be set for base object records with a Hub_State_Ind value of 1, meaning
the record has an ACTIVE hub status.

Required Parameters

Parameter Description

RecordKey Identifies the record that requires a state change. See “RecordKey” on page 154 for more
information.
Note: If the ROWID_OBJECT is provided, the systemName is not validated.

RecordState The name of the state to which the record will be set. The state name can be one of the
following:
- CONSOLIDATED
- UNMERGED
- QUEUED_FOR_MATCH
- NEWLY_LOADED
- ON_HOLD

SiperianObjectUID The package or base object used to identify the record that requires a state change.

Optional Parameters

The SetRecordState request does not have any optional parameters.

Response Fields

The following table describes the response fields:

Parameter Description

Messsage Contains the status message of the SetRecordState request.

Use Case

This is the common scenario for using the SetRecordState request:

• In a client application, allow a user to explicitly set the state of a record.

Reference SIF API Listing 137

SetRecordState Request Usage Example

The following example sets the record state of the record with a ROWID_OBJECT value of 782 to
QUEUED_FOR_MATCH using the ADDRESS_UPDATE package:

SetRecordStateRequest request = new SetRecordStateRequest();
request.setSiperianObjectUid("PACKAGE.ADDRESS_UPDATE");
request.setRecordState(RecordState.QUEUED_FOR_MATCH);
RecordKey recordKey = new RecordKey();
recordKey.setRowid("782");
request.addRecordKey(recordKey);
SetRecordStateResponse response = (SetRecordStateResponse) sipClient.process(request);

SetRecordState Response Usage Example

The following example prints the status message from the SetRecordState response:

//Construct the request
..
//Process the request
SetRecordStateResponse response =
(SetRecordStateResponse) sipClient.process(request);

//Print the message from the response object
System.out.println("Message: " + response.getMessage());

Tokenize
The Tokenize API generates the match keys that the match engine and the SearchMatch request use when
performing fuzzy matches. The Merge request does not use these match keys. Tokenize can also regenerate
match tokens for a record that was previously tokenized.

In Informatica MDM Hub, you can also manually generate match tokens or configure the Hub to generate
match tokens after the load process completes. For more information, see the Batch Jobs Reference in the
Multidomain MDM Configuration Guide.

If you request Tokenize to regenerate tokens for a record that has not changed since the previous Tokenize,
the request succeeds and reports that it tokenized zero records.

Transaction Support

When executed within an EJB context, Tokenize can follow a Put or CleansePut request in a single
transaction. If there is a failure in any of the requests within a transaction, the entire transaction is rolled
back.

Required Parameters

The following table describes the required Tokenize parameters.

Parameter Description

setRecordKey(RecordKey) Indicates the key of the record to be tokenized.

setActionType(String) Action type returned from a previous Put or CleansePut request.
Insert indicates that the record has not been tokenized.
Update and Update xref indicate that the record has been previously tokenized and
the tokens need regenerated.

SiperianObjectUid The name of the package or base object.

138 Chapter 10: SIF API Reference

Use Cases

The following scenarios are the common uses for the Tokenize request:

• Use Put to insert or update the record in the package. Then call Tokenize to generate match keys.

• Call CleansePut to cleanse the data and insert or update the record in the package. Then call Tokenize to
generate match keys.

Tokenize Request Usage Example

The following example shows how to generate match tokens for a record with ROWID_OBJECT 782 using the
ADDRESS_UPDATE package. This record is being tokenized for the first time, so an ActionType of Insert is
used. The Put response provides the value of ActionType.

 TokenizeRequest request = new TokenizeRequest();
 request.setSiperianObjectUid(SiperianObjectType.PACKAGE.makeUid("ADDRESS_UPDATE"));
 RecordKey recordKey = new RecordKey();
 recordKey.setRowid("782");
 request.setRecordKey(recordKey);
 request.setActionType("Insert");
 TokenizeResponse response = (TokenizeResponse) sipClient.process(request);

Related SIF Requests

“SearchMatch ” on page 128, “CleansePut” on page 62, “Put ” on page 118

Unlink
Unlink decouples two or more base object records with the group ID specified in the groupRecordKey field.
The records being unlinked must have been previously linked using the Link API.

Unmerge
Unmerge unmerges two rows in a base object. Unmerge provides the same unmerge functionality as the
Data Manager tool in the Data Steward workbench. This request restores all foreign keys updated in the
merge.

Unmerging can take a long time to complete, so you may want to run the unmerge asynchronously. You
cannot use unmerge within a transaction. For more information about unmerging and merging, see the
Multidomain MDM Configuration Guide.

If the request is unsuccessful, the program throws an Informatica request exception. If the request is
successful, then the response also indicates that the unmerge succeeded.

Note: You can configure Unmerge requests according to a specific system when using the Hub Console Audit
Manager to audit requests made by external applications. Once auditing for a particular SIF API request is
enabled, Informatica MDM Hub captures each SIF request invocation and response in the audit log. For more
information, see the Multidomain MDM Configuration Guide.

Cross-reference Added Directly to a Base Object

Typically when a new cross-reference is inserted, a new base object record is created for it. But Put or
CleansePut APIs and the “Load By ROWID” batch job can also add a cross-reference record directly to a base
object. This means that the cross-reference record was never the only cross-reference for a base object
record. When such a cross-reference record is identified to be unmerged, it is deleted from the system and
there is no independent base object record to reinstate for it.

Linear Unmerge

During a linear unmerge, no attention is paid to the process by which the records were originally merged.

Reference SIF API Listing 139

Consider a scenario where initially there are three base object records with ROWID_OBJECT values of 1, 2,
and 3. Each of these base objects has a single cross-reference record with corresponding source keys 1, 2,
and 3, and SALES as the SystemName value. If you merge ROWID_OBJECT 3 into 2, and then merge
ROWID_OBJECT 2 into 1, then as a result of the merge a single base object record with ROWID_OBJECT 1,
and three cross-reference records remain.

Now, if sourceKey 2 of the SALES system is targeted for a linear unmerge, then the base object of sourceKey
2 is reinstated and the cross-reference of sourceKey 2 is associated with the reinstated base object. The
resulting base object records are as follows:

• ROWID_OBJECT=1 has two cross-reference records with sourceKeys 1 and 3.

• ROWID_OBJECT=2 has one cross-reference records with sourceKey 2.

Tree Unmerge

During a tree unmerge, the process by which the records were originally merged determines the outcome.

Consider a scenario where initially there are three base object records with ROWID_OBJECT values of 1, 2,
and 3. Each of these base objects has a single cross-reference record with corresponding source keys 1, 2,
and 3, and SALES as the SystemName value. If you merge ROWID_OBJECT 3 into 2, and then merge
ROWID_OBJECT 2 into 1, then at the time record 2 was merged into record 1, record 3 had already been
merged into 2. So the cross-references for sourceKeys 2 and 3 are removed from the base object and the
base object record for sourceKey 2 is reinstated. The resulting base object records are as follows:

• ROWID_OBJECT=1 has one cross-reference record with sourceKey 1.

• ROWID_OBJECT=2 has two cross-reference records with sourceKeys 2 and 3.

Note: In both cases, the consolidated field values in the base object record are recalculated after the
unmerge.

Cascade Unmerge

Unmerge performs a cascade unmerge if this feature is enabled for this base object in the Schema Manager
in the Hub Console. With cascade unmerge, when records in the parent object are unmerged, Informatica
MDM Hub also unmerges affected records in the child base object.

Required Parameters

The following table lists and describes the parameters that are required by the Unmerge API:

Parameter Description

SiperianObjectUid Name and type of the package or base object containing the record to be unmerged.

SystemName Name of the system for which the record must be unmerged.

SourceKey Source key of the record that must be unmerged.

TreeUnmerge Set to true for a tree unmerge operation or false for a linear unmerge operation.

Use Case

This is the common scenario for using the Unmerge request:

• In a custom UI, use unmerge to allow a data steward to manually unmerge records. A data steward might
unmerge records when, for example, a merge of two records was done in error.

Related SIF Requests

“Merge ” on page 114

140 Chapter 10: SIF API Reference

UnregisterUsers
UnregisterUsers enables an application to unregister selected users from Informatica MDM Hub. The
application sends a list of user names, presumably representing users in the enterprise’s authentication
system (for example, LDAP).

The application provides a list of user names, and Informatica MDM Hub removes them. Informatica MDM
Hub ignores unregistrations of users that are not registered in Informatica MDM Hub.

Informatica MDM Hub unregisters the users within a transaction. If an error occurs, it rolls back all changes.

Transaction Support

When executed within an EJB context, this request can be part of a transaction with other requests. If there is
a failure in any of the requests within a transaction, the entire transaction is rolled back.

Use Case

This is the common scenario for using the UnregisterUsers request:

• Bulk unregistering with Informatica MDM Hub — Based on external authentication information, you can
use unregistreUsers to bulk unregister users.

Related SIF Requests

“RegisterUsers” on page 125

UpdateMatchRecord
UpdateMatchRecord creates or updates records in the match table. The match table contains the pairs of
matched records in a base object after you run a match process on the base object. Use the
UpdateMatchRecord request to add or update records that qualify for a merge with the record being
matched.

Request Parameters

An UpdateMatchRecord request contains the following parameters:
recordKey

Identifies the record that is a match to the record being matched.

matchedRecordKey

Identifies the record for which you add a match in the match table. The row ID of the matched record is
the row ID of the consolidated record when you perform a merge operation.

autoMerge

Optional. Indicates whether to merge the matched records when the records are matched.

Set to true to merge matched records. Default is false.

matchReverse

Optional. Indicates whether you want to reverse the order of the match.

For example, if record 1 is the matched record and record 2 matches record 1, then record 2 is merged
with record 1. The row ID of the consolidated record is that of record 1. If the matchReverse indicator is
set to true, record 1 is merged with record 2. The row ID of the consolidated record is that of record 2.

Set to true to reverse the match order. Default is false.

matchRuleUid

Optional. Identifies the match rule you use to match the records.

Reference SIF API Listing 141

taskId

Optional. Identifies the task that you want to associate with the match table record.

Response

The UpdateMatchRecord request returns a success message on updating the match table.

Usage Example

The following sample code adds a match record for the records with keys 111 and 222 in the match table:

UpdateMatchRecordRequest request = new UpdateMatchRecordRequest();
request.setMatchRuleUid(SiperianObjectType.MATCH_RULE.makeUid("MyMatchRule"));
request.setRecordKey(RecordKey.sourceKey("111", "Acme"));
request.setMatchedRecordKey(RecordKey.sourceKey("222", "Acme"));
UpdateMatchRecordResponse response = (UpdateMatchRecordResponse)
sipClient.process(request);

UpdateRelationship
UpdateRelationship Hierarchy Manager request updates a Relationship between two Entities. The existing
relationship record is updated if the Start Date, End Date, or custom columns for the Relationship record are
modified. If the update request changes the Hierarchy, Relationship Type, or one or both Entities in the
Relationship, the current Relationship record is deleted (see “DeleteRelationship” on page 71) and a new
Relationship record is added (see “AddRelationship” on page 57). When a new Relationship record is added,
the RecordKey returned in the UpdateRelationshipResponse will be different from the one specified in the
UpdateRelationshipRequest.

The request identifies the HM configuration and hierarchy, the relationship type, the records, and a number of
optional parameters. The response contains the record key for the updated relationship. Informatica MDM
Hub infers the types of the entities being related, and thus the base objects containing those entities, from
the relationship type.

Adding a New Relationship for a Foreign Key Relationship Type

Use UpdateRelationshipRequest instead of AddRelationshipRequest to add a new Relationship for a Foreign
Key Relationship Type because adding that Relationship really involves updating an existing record in the FK
Relationship Base Object. For example, if there is a FK Relationship Base Object C_PERSON with the following
columns:

• Rowid Object: Primary Key for the FK Relationship and the Entity.

• Rowid Company: FK that refers to the records in C_COMPANY Entity Base Object. The value in this column
has a non-null when there a HM FK Relationship between C_PERSON and C_COMPANY. The column value
is set to null when the Relationship between a Company and a Person is deleted.

• Any other columns needed for “Person” Entity Type and “Person To Company” FK Relationship Type.

The Put Package associated with the “Person To Company” FK Relationship Type would have the following
columns:

• Rowid Object (C_PERSON.Rowid_Object): Primary Key for the FK Relationship

• Rowid BO1 (C_PERSON.Rowid_Object): BO1 in the FK Relationship

• Rowid BO2 (C_PERSON.Rowid_Company): BO2 in the FK Relationship

In other words either rowid BO1 or rowid BO2 in the Put Package maps to the Rowid Object column in the
Base Object. Updating the FK column (Rowid BO2 / C_PERSON.Rowid_Company in the example) to a non-null
value is equivalent to adding a new FK Relationship. Also note that the RecordKey specified in
setRecordKey() and setBo1RecordKey() in this example would be the same.

142 Chapter 10: SIF API Reference

Note: UpdateRelationshipRequest cannot be used to modify Relationship Type if the old or the new
Relationship Type is a FK Relationship Type. To do that, use DeleteRelationshipRequest to delete the old
Relationship. Then use UpdateRelationshipRequest if the new Relationship is a FK Relationship Type or
AddRelationshipRequest if the new Relationship is not a FK Relationship Type.

Use Case

This is the common scenario for using the UpdateRelationship request:

• Update a relationship between two HM entities — If you have Hierarchy Manager and have populated it
with entities, you can use the UpdateRelationship request to modify a relationship between two entities.

Related SIF Requests

“AddRelationship” on page 57, “DeleteRelationship” on page 71

UpdateTask
Use the UpdateTask API to do one of the following:

• Reassign a task.

• Change the task data.

• Append to the task comment.

TaskData

The TaskData object contains information about a task.

The following table lists the TaskData fields that you can configure:

Field Description

TaskRecord A link to a data record associated with a task.

Comment An optional task comment.

TaskType The task type.

SubjectAreaUID The UID of the task subject area.

Title The task title.

TaskID The ROWID of the task. Cannot be set by user.

DueDate The date when the task is due.

Priority The priority of the task.
1: High priority.
0: Normal priority. The default is 0.
-1: Low priority.

StatusEnum The workflow status. The default is TaskStatusEnum.OPEN.

OwnerUID The user or role ID to whom the task is assigned.

InteractionID The Interaction ID.

Reference SIF API Listing 143

Field Description

WorkflowProcessID The ID of the workflow process that contains the task. Cannot be set by user.

CreateDate The date when the task was created. Cannot be set by user.

Creator The name of the user who created the task. Cannot be set by user.

LastUpdateDate The date when the task was updated. Cannot be set by user.

LastUpdatedBy The name of the user who updated the task. Cannot be set by user.

PreviousOwner The name of the user or role to whom the task was previously assigned. The value is Null if the
task is new or has not been assigned. Cannot be set by user.

TaskRecord

The TaskRecord object contains information about a record.

The following table describes the TaskRecord fields:

Field Description

SiperianObjectUID An identifier for an object in Informatica MDM Hub.

RecordKey An identifier for a record in Informatica MDM Hub.

MatchRuleUID An identifier for a match rule in Informatica MDM Hub. Only merge tasks require a MatchRuleUID.

Required Request Parameters

The following table describes the required UpdateTask request parameters:

Parameter Description

TaskData Specifies the task to update.

Optional Request Parameters

The UpdateTask API does not have any optional request parameters.

Response Fields

The following table describes the fields the UpdateTask response returns:

Parameter Description

Message Contains a message indicating if the UpdateTask request was processed successfully.

InteractionID The interaction ID.

144 Chapter 10: SIF API Reference

Use Cases

The following scenario is a common use case for using the UpdateTask request:

• Change existing task data.

Usage Example

The following example updates an existing task:

UpdateTaskRequest request = new UpdateTaskRequest();
TaskData task = new TaskData();
request.setTaskData(task);
task.setTaskId("1234");
task.setTitle("Research and resolve item");
task.setComment("This task has been updated.");
task.setDueDate(new Date());
task.setSubjectAreaUid("SUBJECT_AREA.test|Person");
task.setTaskType("ReviewNoApprove");
UpdateTaskResponse response = (UpdateTaskResponse) sipClient.process(request);

ValidateChangeList
ValidateChangeList validates a change list against the current ORS. It applies the specified change list to the
current repository, executing all of the changes in simulation mode without modifying the ORS, and then
returns any errors.

Required Parameters

The following table describes the required parameters:

Parameter Description

ChangeListXml Contains the XML string representing the change list to validate.

Optional Parameters

The following table describes the optional parameters:

Parameter Description

OwnerPassword Contains the owner password. The default is "".

TransactionAttributeType If set to NOT_SUPPORTED, the request does not support a transactional context.
If set to REQUIRED, the request does requires a transactional context.
If set to REQUIRES_NEW, the request requires a new transactional context.
If set to SUPPORTS, the request supports but does not require a transactional context.

ValidateDataIntegrity If set to true, data integrity validation is required.
If set to false, data integrity validation is not required. The default is false.

Reference SIF API Listing 145

Response Field

The following table describes the response fields:

Field Description

Messages Contains an array of error messages.

Success If true, the change list executed without errors.
If false, the change list executed with errors.

ValidateMetadata
The ValidateMetadata API validates the metadata for the current ORS and returns a list of issues.
ValidateMetadata only returns a message if metadata issues are found. You must iterate through the list of
messages to determine:

• If the ValidateMetadata request ran without exceptions.

• If there are any metadata issues.

Required Parameters

The ValidateMetadata request does not have required parameters.

Optional Parameters

The following table describes the optional parameters:

Parameter Description

Checks Contains the Checklet IDs that specify which validation checks to perform.

TransactionAttributeType If set to NOT_SUPPORTED, the request does not support a transactional context.
If set to REQUIRED, the request does requires a transactional context.
If set to REQUIRES_NEW, the request requires a new transactional context.
If set to SUPPORTS, the request supports but does not require a transactional context.

Response Fields

The following table describes the response fields:

Parameter Description

Message Contains a message indicating if the ValidateMetadata request was processed successfully.

ErrorID Contains an Error ID if any errors are returned.

Level Contains the error level if any errors are returned. The possible error levels are:
- FATAL ERROR
- ERROR
- WARNING
- INFORMATIONAL

Text Contains the error message if any errors are returned.

146 Chapter 10: SIF API Reference

ValidateTasks
The ValidateTasks API checks each merge task specified in the request to verify there is a match table
record. The ValidateTasks API can also validate external workflow engine merge tasks in addition to Hub
merge tasks.

TaskData

The TaskData object contains information about a task.

The following table lists the TaskData fields that you can configure:

Field Description

TaskRecord A link to a data record associated with a task.

Comment An optional task comment.

TaskType The task type.

SubjectAreaUID The UID of the task subject area.

Title The task title.

TaskID The ROWID of the task. Cannot be set by user.

DueDate The date when the task is due.

Priority The priority of the task.
1: High priority.
0: Normal priority. The default is 0.
-1: Low priority.

StatusEnum The workflow status. The default is TaskStatusEnum.OPEN.

OwnerUID The user or role ID to whom the task is assigned.

InteractionID The Interaction ID.

WorkflowProcessID The ID of the workflow process that contains the task. Cannot be set by user.

CreateDate The date when the task was created. Cannot be set by user.

Creator The name of the user who created the task. Cannot be set by user.

LastUpdateDate The date when the task was updated. Cannot be set by user.

LastUpdatedBy The name of the user who updated the task. Cannot be set by user.

PreviousOwner The name of the user or role to whom the task was previously assigned. The value is Null if the
task is new or has not been assigned. Cannot be set by user.

TaskRecord

The TaskRecord object contains information about a record.

Reference SIF API Listing 147

The following table describes the TaskRecord fields:

Field Description

SiperianObjectUID An identifier for an object in Informatica MDM Hub.

RecordKey An identifier for a record in Informatica MDM Hub.

MatchRuleUID An identifier for a match rule in Informatica MDM Hub. Only merge tasks require a MatchRuleUID.

Required Request Parameters

The following table describes the required ValidateTasks request parameters:

Parameter Description

TaskData Specifies the task to validate.

Optional Request Parameters

The ValidateTasks API does not have any optional request parameters.

Response Fields

The ValidateTasks response returns the TaskValidationResult which contains the following information for
each task specified in the request:

Parameter Description

TaskID This parameter identifies the task.

isValid If true, the task is valid.
If false, the task is not valid.

errorCode Contains an error code, if any errors are returned.

errorMessage Contains an error message, if any errors are returned.

Use Cases

The following scenario is a common use case for using the ValidateTasks request:

• Validate a merge task to ensure there is a match table record.

Usage Example

The code in the following example validates a task:

ValidateTasksRequest request = new ValidateTasksRequest();
TaskMetaData task = new TaskMetaData();
task.setTaskId("1234");
task.setTitle("Research and resolve item");
task.setDueDate(new Date());
task.setSubjectAreaUid("SUBJECT_AREA.test|Person");
task.setTaskType("Merge");
ArrayList tasks = new ArrayList();
tasks.add(task);
request.setTasks(tasks);
ValidateTasksResponse response = (ValidateTasksResponse) sipClient.process(request);

148 Chapter 10: SIF API Reference

C h a p t e r 1 1

Troubleshooting

149

A p p e n d i x A

Identifiers
This appendix includes the following topics:

• List of Identifiers, 150

• SiperianObjectUID, 150

• RecordKey, 154

List of Identifiers
The SIF SDK uses the following identifiers to identify the MDM Hub resources:

• SiperianObjectUID

• RecordKey

SiperianObjectUID
SiperianObjectUID is a string identifier that the MDM Hub uses to identify an object.

Use the following syntax to specify a SiperianObjectUID:

<Object Type>.<Object Name>|<Child Object Name>
The object type in SiperianObjectUID varies based on the SIF request. For example, a CleanseRequest object
uses the CLEANSE_FUNCTION object type.

The following table lists the object types that you can use in a SiperianObjectUID:

Object Type Syntax Example

AUDIT_TABLE AUDIT_TABLE.<Audit Table Name> -

BASE_OBJECT BASE_OBJECT.<Base Object Table
Name>

BASE_OBJECT.C_CONSUMER

BATCH_GROUP BATCH_GROUP.<Job Group Name> BATCH_GROUP.SAM Batch Group

CASCADE_UNMERGE - -

150

Object Type Syntax Example

CLEANSE_FUNCTION CLEANSE_FUNCTION.<Cleanse
Function Library Name>|<Cleanse
Function Name>

CLEANSE_FUNCTION.Data Conversion|Format Boolean

CLEANSE_LIBRARY CLEANSE_LIBRARY.<Cleanse
Function Library Name>

CLEANSE_LIBRARY.Data Conversion

CO_CHILD_MANY - -

CO_CHILD_ONE - -

CO_CONFIGURATION - -

CO_FIELD - -

CO_LOOKUP_OBJECT - -

CO_ORS_SCHEMA - -

CO_REFERENCE_MANY - -

CO_REFERENCE_ONE - -

CO_ROOT_OBJECT - -

COLUMN COLUMN.<Base Object Table
Name>|<Column Name>

COLUMN.C_CONSUMER|DOB

CS_CONFIGURATION - -

CS_EXCEPTION_HANDLER - -

CS_EXECUTE - -

CS_INPUT - -

CS_ORS_SCHEMA - -

CS_OUTPUT - -

CS_PARAMETER - -

CS_PARAMETER_DEFINITION - -

CS_SERVICE - -

CS_STEP - -

CUSTOM_RESOURCE - -

DATA_SECURITY_FILTER - -

DISTINCT_SYSTEM - -

SiperianObjectUID 151

Object Type Syntax Example

GROUP - -

HISTORY HISTORY.<Base Object Table Name> HISTORY.C_CONSUMER

HM_BLOB - -

HM_CONFIGURATION HM_CONFIGURATION.<HM Profile
Name>|<HM Sandbox Name>

HM_CONFIGURATION.Default|Master

HM_ENTITY_OBJECT - -

HM_ENTITY_TYPE - -

HM_HIERARCHY HM_HIERARCHY.<HM Hierarchy
Code Name>

HM_HIERARCHY.Default

HM_PACKAGE - -

HM_PACKAGE_COLUMN - -

HM_PROFILE HM_PROFILE.<HM Profile Name> HM_PROFILE.Default

HM_RELATIONSHIP_OBJECT - -

HM_RELATIONSHIP_TYPE HM_RELATIONSHIP_TYPE.<HM
Relationship Type>

HM_RELATIONSHIP_TYPE.Org To Person

HM_SANDBOX HM_SANDBOX.<HM Sandbox Name> HM_SANDBOX.Master

IMMUTABLE_SYSTEM - -

INDEX - -

LANDING_TABLE - -

MAPPING MAPPING.<Map Name> MAPPING.Stage CRM Customer

MATCH_COLUMN MATCH_COLUMN.<Base Object
Table Name>|<Match Column
Name>

MATCH_COLUMN.C_CUSTOMER|Person_Name

MATCH_KEY - -

MATCH_PATH_COMPONENT MATCH_PATH_COMPONENT.<Match
Path Component Name>

MATCH_PATH_COMPONENT.C_MT_MATCH_1_CHILD

MATCH_PATH_COMPONENT_FILTER - -

MATCH_POPULATION - -

MATCH_RULE MATCH_RULE.<Base Object Table
Name>|<Match Rule Set Name>|
<Rule Number>

MATCH_RULE.C_CUSTOMER|Main|1

152 Appendix A: Identifiers

Object Type Syntax Example

MATCH_RULE_SET MATCH_RULE_SET.<Base Object
Table Name>|<Match Rule Set
Name>

MATCH_RULE_SET.C_CUSTOMER|Main

MERGE_HISTORY - -

MESSAGE_QUEUE_RULE - -

METADATA - -

METADATA_MANAGER - -

METSYSTEM - -

OTHER_TABLE - -

PACKAGE PACKAGE.<Package or View Object
Name>

PACKAGE.CUSTOMER_UPDATE

PRIMARY_KEY_INDEX - -

PRIMARY_KEY_MATCH_RULE -

QUERY QUERY.<Query Group Name>|<Query
Name>

QUERY.Read-Only Queries|Constant And Function Test

QUERY_GROUP QUERY_GROUP.<Query Group Name> QUERY_GROUP.Read-Only Queries

RAW RAW.<Base Object Table Name> RAW.C_CONSUMER

RELATIONSHIP RELATIONSHIP.<Reference by Base
Object Table Name>(<Column
Name>).<Reference to Base Object
Table Name>(<Column Name>)

RELATIONSHIP.C_ADDRESS(CONSUMER_FKEY).C_CONSUMER(ROWID_OBJECT)

REMOTE_PACKAGE REMOTE_PACKAGE.<Remote View
Name>

REMOTE_PACKAGE.CUSTOMER_VIEW

REPOSITORY_SETTINGS - -

RESOURCE - -

ROLE ROLE.<Role Name> ROLE.B_READ

SEQUENCE - -

STAGING_TABLE - -

SUBJECT_AREA - -

SYSTEM SYSTEM.<System Name> SYSTEM.CRM

SYSTEM_COLUMN_TRUST - -

SiperianObjectUID 153

Object Type Syntax Example

TABLE - -

TASK_ASSIGNMENT_CONF - -

TASK_TYPE - -

UNIQUE_KEY_INDEX - -

USER USER.<User Name> USER.p_b_read_user

VALIDATION_RULE - -

WORKFLOW_ENGINE - -

XREF XREF.<Base Object Table Name> XREF.C_CONSUMER

XREF_HISTORY XREF_HISTORY.<Base Object Table
Name>

XREF_HISTORY.C_CONSUMER

RecordKey
A RecordKey uniquely identifies a record in the MDM Hub. A record is a collection of fields that include a list
of names and values. Each name in the record must be unique.

You can use a combination of the following parameters to identify a record:

• rowid. The ROWID_OBJECT column value of the record.

• systemName. Name of the system to which the record belongs.

• sourceKey. The PKEY_SRC_OBJECT column value of the record.

• GBID. Global Business Identifier of an object. You can use one or more GBIDs.

The following sample code uses the PutRequest object to insert a record based on the recordKey identifier:

…
RecordKey recordKey = new RecordKey();
 recordKey.setSystemName(systemName);
recordKey.setSourceKey(sourceKey);
 …
putRequest.setRecordKey(recordKey);
…

154 Appendix A: Identifiers

A p p e n d i x B

Frequently Asked Questions
How can I perform exact matches on fuzzy base objects?

To perform exact matches on fuzzy base objects, manually add the following property to the <MDM Hub
Installation Directory>\hub\cleanse\resources\cmxcleanse.properties file:

cmx.server.match.exact_match_fuzzy_bo_api=1
Note: Restart the application server after setting the cmx.server.match.exact_match_fuzzy_bo_api
property.

Where can I find the debug log file for SIF requests?

You can find the cmxserver.log file in the following directory:

<MDM Hub Installation Directory>\hub\server\log

How can I change the processing time periods of SIF search requests?

You can add the following properties to the <MDM Hub Installation Directory>\hub\cleanse
\resources\cmxserver.properties file to change the processing time periods of the SIF search
requests:

Properties Description Default

sif.search.result.refresh.inter
val.seconds

Specifies the time interval to run the cleanup process for
cached search requests.
The cleanup process also cleans the temporary tables that the
unmerge process creates.

1 second

sif.search.result.query.timeT
oLive.seconds

Specifies the number of seconds for an unused search request
to remain cached.
After the specified time period, the cleanup process removes
the cached search requests.

900 seconds

sif.search.result.drop.batch.r
ecord.count

Specifies the number of cached search requests to process.
The number of searches that you specify are fetched until all
the expired searches are processed.

200 searches

155

Properties Description Default

sif.search.result.drop.batch.i
nterval.milliseconds

Specifies the number of milliseconds to wait after processing
each batch of search results.
Use the
sif.search.result.drop.batch.interval.millisecon
d property to insert a delay after processing each batch of
search results.

0
milliseconds

cmx.server.match.max_time_
searcher

Specifies the maximum time period for a search request to run.
If a search request does not complete within the specified time
period, the search stops.

99999999
seconds

How to optimize the performance of a SearchMatch request?

• Multi-threaded range processing:

- Use multiple parallel threads to process the search ranges. By default, multi-threaded range
processing is disabled. Set the following property to true in the <MDM Hub Installation
Directory>\hub\cleanse\resources\cmxcleanse.properties file:

cmx.server.match.searcher.database.worker.multithreaded
- Change the number of threads to use to process a SearchMatch request. Set the following property

in the <MDM Hub Installation Directory>\hub\cleanse\resources\cmxcleanse.properties file:

cmx.server.match.searcher_thread_count
Set to 1 to use one thread for the SearchMatch API. Restart the application server after you set the
cmx.server.match.searcher_thread_count property.

• Fine-tuning the DBFILTERED feature:

- By default, DBFILTERED is invoked when the SearchMatch record has only one SSA_KEY for fuzzy
match key column. Set the following DBFILTERED threshold property in the <MDM Hub Installation
Directory>\hub\cleanse\resources\cmxcleanse.properties file:

cmx.server.match.searcher.dbfiltered.max.key.size
The DBFILTERED feature is invoked when the SearchMatch record has a SSA_KEY that is less than
or equal to the value of the cmx.server.match.searcher.dbfiltered.max.key.size property.

- Specify the resultset size in number of rows: Set the following property to an optimal value in the
<MDM Hub Installation Directory>\hub\cleanse\resources\cmxcleanse.properties file:

cmx.server.match.searcher.resultset.size
• Routinely determine if the match key tables that are associated with base objects need to be

reorganized. Reorganize match key tables based on their primary key column, SSA_KEY.

156 Appendix B: Frequently Asked Questions

I n d e x

A
AcceptUnmatchedRecordsAsUnique request 56
access protocols

using SIF 12
addRelationship operation 57
AddRelationship request 57
APIs

RegisterCustomIndex 123
RegisterCustomTableObject 124
RemoveMatchedRecord 126

ApplyChangeList
rollbackStrategy field 57

applyChangeList call 57
ApplyChangeList request 57
AssignUnmergedRecords request 58
asynchronous requests

making 40
Audit request 59
Authenticate request 60

B
batch APIs

ExecuteAutoMatchAndMerge 72
ExecuteBatchAutomerge 73
ExecuteBatchBVTSnapshot 74
ExecuteBatchDelete 74
ExecuteBatchExternalMatch 75
ExecuteBatchGenerateMatchTokens 76
ExecuteBatchKeyMatch 77
ExecuteBatchLoad 78
ExecuteBatchMatch 79
ExecuteBatchMatchAnalyze 80
ExecuteBatchPromote 80
ExecuteBatchRecalculateBo 81
ExecuteBatchRecalculateBvt 82
ExecuteBatchResetMatchTable 82
ExecuteBatchRevalidate 83
ExecuteBatchStage 84
ExecuteBatchSynchronize 84
ExecuteBatchUnmerge 85
ExecuteBatchValidateFKRelationships 86

Batch Group APIs, about 52
build_war macro 30
business entity services

about 23

C
CanUnmergeRecords request 60
cascade unmerge

Unmerge 139
Cleanse 31

cleanse request 61
CleansePut

state management 62
cleansePut request 32, 62
CleanTable

about 60
ClearAssignedUnmergedRecords request 66
consolidation

indicator 136
state 136

content metadata
DELETED_XREF 88
HISTORY 88
PENDING_XREF 88
RAW 88
XREF 88
XREF_HISTORY 88

createChangeList call 66
CreateChangeList request 66
CreateTask 67

D
Data APIs, about 52
Data Retrieval APIs, about 52
Data Steward APIs, about 52
Data Update / Insert APIs, about 52
Delete

state management 69
DELETED_XREF

content metadata 88
DeleteRelationship request 71
Deleterequest 69
DescribeSiperianObject request 71

E
Eclipse 13
ExecuteBatchAutoMatchAndMerge

about 72
ExecuteBatchAutomerge

about 73
ExecuteBatchBVTSnapshot

about 74
ExecuteBatchDelete

about 74
ExecuteBatchExternalMatch

about 75
ExecuteBatchGroup request 77
ExecuteBatchKeyMatch

about 77
ExecuteBatchLoad

about 78

157

ExecuteBatchMatch
about 79

ExecuteBatchMatchAnalyze
about 80

ExecuteBatchPromote
about 80

ExecuteBatchRecalculateBo
about 81

ExecuteBatchRecalculateBvt
about 82

ExecuteBatchResetMatchTable
about 82

ExecuteBatchRevalidate
about 83

ExecuteBatchStage
about 84

ExecuteBatchSynchronize 84
ExecuteBatchUnmerge

about 85
ExecuteBatchValidateFKRelationships

about 86
ExecuteGenerateMatchTokens

about 76

F
FlagForAutomerge 86
foreign key relationship type

adding new relationship, UpdateRelationship 142

G
GenerateConstraints

about 87
Get 33
Get request 88
GetAggregatePeriod request 90
GetAssignableUsersForTasks 92
GetAssignedRecords request 93
GetBatchGroupStatus request 93
GetBvt

state management 94
GetBvt request 94
GetEffectivePeriods API 95
GetEntityGraph request 96
GetLookupValue request 97
GetLookupValues request 98
GetMatchedRecords

state management 98
GetMatchedRecords request 98
GetMergeHistory request 99
GetOneHop request 99
GetOrsList request 100
getOrsMetadata call 101
GetOrsMetadata request 101
GetSearchResults request 101
GetSiperianObjectCompatibility request 103
getSystemTrustSettings request 103
GetTaskLineage 104
GetTasks request 107
GetTrustGraphData request 109
GetTrustScore request 109
GetUnmergedRecordCount request 110
GetXrefForEffectiveDate

optional parameters 110
required parameters 110

GetXrefForEffectiveDate (continued)
usage example 110
use case 110

GetXrefForEffectiveDate API 110
GetXrefForEffectiveDate request 110

H
HISTORY

content metadata 88

I
index.html 16

J
JAR files

ORS-Specific, downloading 30
ORS-Specific, using 30

Javadoc
about 16

JMS event message schema
elements 43

JMS Event Messages
about 42

L
linear unmerge

Unmerge 139
Link request 112
ListSiperianObjects request 112
Load Process vs. SIF Put

validation rules 118

M
Merge

state management 114
Merge request 114
Merge Workflow APIs, about 52
Metadata APIs, about 52
Metadata Management APIs, about 52
Miscellaneous APIs, about 52
MultiMerge request 114

O
ORS-specific API

properties 28
ORS-Specific API

API archive table
maintenance 31

archive table 31
build_war macro 30
downloading client JAR 30
SIF parameters 37
using 30

ORS-specific APis
repository object statuses 29

158 Index

ORS-specific APIs
repository objects 28
using 27

ORS-Specific SIF API
classes 31
generating and deploying 29

P
paging support

SearchRequestBase 135
PENDING_XREF

content metadata 88
PreviewBVT

optional parameters 115
required parameters 115
usage example 115
use case 115

PreviewBVT API 115
PreviewBVT request 115
PromotePendingXref request 116
PromotePendingXrefs

state management 116
proxies 13
Put

state management 118
transaction support 118

Put request 118

R
RAW

content metadata 88
ReassignRecords request 123
RecordKey

about 154
RegisterCustomIndex

about 123
RegisterCustomTableObject

about 124
RegisterUsers

transaction support 125
RegisterUsers request 125
RemoveMatchedRecords

about 126
Repository Manager APIs, about 52
ResetBatchGroup request 126
Restore request 127
rollbackStrategy field (ApplyChangeList) 57

S
SearchHmQuery request 128
SearchLookupValues request 128
SearchMatch request 128
SearchMatchColumn 35
SearchMatchRecord 35
searchQuery

case sensitivity 133
retrieving large record sets 133

SearchQuery 36
searchQuery request 133
SearchRequestBase

paging support 135
SearchRequestBase request 135

SearchResponseBase request 136
Security Access Manager workbench

permissions 46
using with SIF 45

Services Integration Framework (SIF) 10
SetPassword request 136
SetRecordState request 136
SIF

access protocols 12
asynchronous requests, making 40
Javadoc, about 16
using Security Access Manager workbench 45

SIF API
ORS-Specific, removing 30
ORS-Specific, renaming 30

SIF calls
applyChangeList 57
createChangeList 66
getOrsMetadata 101

SIP_HOME environment variable 15
siperian-sifsdk.zip, about 15
siperian.sif.jms.queue

about 40
SiperianObjectUID

about 150
SOAP protocol 13
state management

CleansePut 62
Delete 69
GetBvt 94
GetMatchedRecords 98
Merge 114
PromotePendingXrefs 116
Put 118

State Management APIs, about 52

T
Task APIs, about 52
Tokenize request 138
transaction support

Put 118
RegisterUsers 125
UnregisterUsers 141

transactions
using 23

tree unmerge
Unmerge 139

U
Unlink request 139
Unmerge

cascade unmerge 139
linear unmerge 139
tree unmerge 139
XREF added directly to BO 139

Unmerge request 139
UnregisterUsers

transaction support 141
UnregisterUsers request 141
UpdateMatchRecord 141
UpdateMatchRecord request 141
UpdateRelationship

adding new relationship for foreign key type 142
UpdateRelationship request 142

Index 159

UpdateTask 143
User Management APIs, about 52

V
ValidateChangeList request 145
ValidateMetadata 146
ValidateTasks 147
validation rules

Load Process vs. SIF Put 118

W
Web Services Description Language (WSDL), about 13

web services, about 13

X
XML over HTTP

using 14
XREF

content metadata 88
XREF_HISTORY

content metadata 88

160 Index

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction to Services Integration Framework
	Services Integration Framework (SIF)
	SIF SDK
	Use Cases for SIF
	SiperianClient Library Classes
	Access Protocols
	Web Services
	XML Over HTTP

	Chapter 2: Setting Up the SIF SDK
	Before You Begin
	Installing the SIF SDK
	SIF API Reference Documentation
	Setting Up a Sample Eclipse Client
	Importing the Sample Project File
	Identifying the Missing Library JAR Files
	Adding the Missing Library JAR Files
	Customizing the Properties in the Library Files

	Sample Code to Retrieve Records
	Running the Sample Code to Retrieve Records

	Chapter 3: Request and Response Objects
	Request and Response Objects Overview
	Request Objects
	SiperianRequest Class

	Response Objects
	SiperianResponse Class

	Sample Java Class Diagram

	Chapter 4: Transactions and Exception Handling
	Transactions Overview
	Business Entity Services
	Example EJB Transaction for WebLogic and WebSphere
	Example EJB Transaction for JBoss
	Exception Handling

	Chapter 5: ORS-Specific SIF API
	ORS-Specific SIF API Overview
	Supported Repository Objects
	ORS-Specific SIF API Properties
	Repository Objects Statuses
	Generating and Deploying an ORS-Specific SIF API
	Renaming an ORS-specific SIF API
	Downloading an ORS-Specific Client JAR File
	Removing an ORS-Specific SIF API
	Using ORS-Specific Client JAR Files with SIF SDK
	Archive Table
	ORS-Specific SIF Classes
	Cleanse<Resource Name>
	CleansePut<Resource Name>
	Get<Resource Name>
	Put<Resource Name>
	SearchMatchColumn<Resource Name>
	SearchMatchRecord<Resource Name>
	SearchQuery<Resource Name>

	ORS-Specific SIF API Field Parameters

	Chapter 6: Asynchronous SIF Requests
	Asynchronous SIF Requests Overview
	Architecture of JMS Message Queue for SIF
	Processing Asynchronous SIF Requests

	Chapter 7: ORS-Specific JMS Event Messages
	ORS-Specific JMS Event Messages Overview
	Elements in a Response XML Message
	Sample Response XML Message for an Update Event

	Chapter 8: Using Security Access Manager
	Security Access Manager Workbench Overview
	Using the Security Access Manager Workbench
	Permissions for SIF Requests

	Chapter 9: Using Dynamic Data Masking
	Dynamic Data Masking Overview
	Rules
	Supported SIF Requests for Dynamic Data Masking

	Chapter 10: SIF API Reference
	Functional SIF API Listing
	Reference SIF API Listing
	AcceptUnmatchedRecordsAsUnique
	AddRelationship
	ApplyChangeList
	AssignUnmergedRecords
	Audit
	Authenticate
	CanUnmergeRecords
	CleanTable
	Cleanse
	CleansePut
	ClearAssignedUnmergedRecords
	CreateChangeList
	CreateTask
	Delete
	DeleteRelationship
	DescribeSiperianObject
	ExecuteBatchAutoMatchAndMerge
	ExecuteBatchAutomerge
	ExecuteBatchBVTSnapshot
	ExecuteBatchDelete
	ExecuteBatchExternalMatch
	ExecuteBatchGenerateMatchTokens
	ExecuteBatchGroup
	ExecuteBatchKeyMatch
	ExecuteBatchLoad
	ExecuteBatchMatch
	ExecuteBatchMatchAnalyze
	ExecuteBatchPromote
	ExecuteBatchRecalculateBo
	ExecuteBatchRecalculateBvt
	ExecuteBatchResetMatchTable
	ExecuteBatchRevalidate
	ExecuteBatchStage
	ExecuteBatchSynchronize
	ExecuteBatchUnmerge
	ExecuteBatchValidateFKRelationships
	FlagForAutomerge
	GenerateConstraints
	Get
	GetAggregatePeriod
	GetAssignableUsersForTasks
	GetAssignedRecords
	GetBatchGroupStatus
	GetBvt
	GetEffectivePeriods
	GetEntityGraph
	GetLookupValue
	GetLookupValues
	GetMatchedRecords
	GetMergeHistory
	GetOneHop
	GetOrsList
	GetOrsMetadata
	GetSearchResults
	GetSiperianObjectCompatibility
	GetSystemTrustSettings
	GetTaskLineage
	GetTasks
	GetTrustGraphData
	GetTrustScore
	GetUnmergedRecordCount
	GetXrefForEffectiveDate
	Link
	ListSiperianObjects
	Merge
	MultiMerge
	PreviewBVT
	PromotePendingXrefs
	Put
	ReassignRecords
	RegisterCustomIndex
	RegisterCustomTableObject
	RegisterUsers
	RemoveMatchedRecords
	ResetBatchGroup
	Restore
	SearchHmQuery
	SearchLookupValues
	SearchMatch
	SearchQuery
	SearchRequestBase
	SearchResponseBase
	SetPassword
	SetRecordState
	Tokenize
	Unlink
	Unmerge
	UnregisterUsers
	UpdateMatchRecord
	UpdateRelationship
	UpdateTask
	ValidateChangeList
	ValidateMetadata
	ValidateTasks

	Chapter 11: Troubleshooting
	Appendix A: Identifiers
	List of Identifiers
	SiperianObjectUID
	RecordKey

	Appendix B: Frequently Asked Questions
	Index

