
Informatica®

10.2.1

Performance Tuning Guide

Informatica Performance Tuning Guide
10.2.1
May 2018

© Copyright Informatica LLC 2009, 2019

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

Informatica and the Informatica logo are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A
current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be trade
names or trademarks of their respective owners.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2019-04-29

Table of Contents

Preface . 7
Informatica Resources. 7

Informatica Network. 7

Informatica Knowledge Base. 7

Informatica Documentation. 7

Informatica Product Availability Matrixes. 8

Informatica Velocity. 8

Informatica Marketplace. 8

Informatica Global Customer Support. 8

Chapter 1: Performance Tuning Overview. 9
Performance Tuning Overview. 9

Performance Tuning Process. 9

Target Bottlenecks. 10

Source Bottlenecks. 10

Mapping Bottlenecks. 11

Computer System Bottlenecks. 11

Identifying System Bottlenecks on Windows. 11

Identifying System Bottlenecks on UNIX. 12

Run-time Bottlenecks. 12

SQL Data Service Optimization Bottlenecks. 12

Web Service Optimization Bottlenecks. 13

Connection Bottlenecks. 13

Chapter 2: Target Optimization. 14
Target Optimization Overview. 14

Flat File Target Optimization. 14

Database Checkpoint Intervals. 15

Bulk Loads. 15

Database Target Optimization. 15

Chapter 3: Source Optimization. 17
Source Optimization Overview. 17

Flat File Source Optimization. 18

Query Optimization. 18

Conditional Filters. 19

Select Distinct. 19

Hints. 19

Hints Rules and Guidelines. 20

Creating Hints. 20

Table of Contents 3

Constraints. 21

Configuring Constraints. 21

Customized Data Object Optimization. 22

Database Source Optimization. 22

Chapter 4: Transformation Optimization. 23
Transformation Optimization. 23

Aggregator Transformation Optimization. 23

Expression Optimization. 24

Java Transformation Optimization. 26

Early Selection Optimization with the Java Transformation. 26

Push-Into Optimization with the Java Transformation. 28

Joiner Transformation Optimization. 29

Lookup Transformation Optimization. 29

Sorter Transformation Optimization. 32

SQL Transformation Optimization. 32

Early Selection Optimization with the SQL Transformation. 33

Push-Into Optimization with the SQL Transformation. 33

Transformation Cache. 34

Transformation Error Elimination. 34

Transformation Side Effects. 35

Web Service Consumer Transformation Optimization. 36

Early Selection Optimization with the Web Service Consumer Transformation. 36

Push-Into Optimization with the Web Service Consumer Transformation. 37

Chapter 5: Mapping Optimization. 39
Mapping Optimization Overview. 39

Optimization Methods. 40

Optimizer Levels. 40

Filter Optimizations. 41

Early Projection Optimization Method. 41

Predicate Optimization Method. 42

Cost-Based Optimization Method. 43

Dataship-Join Optimization Method. 43

Semi-Join Optimization Method. 44

Early Selection Optimization Method. 45

Global Predicate Optimization Method. 45

Branch Pruning Optimization Method. 46

Push-Into Optimization Method. 46

Pushdown Optimization. 46

Full Pushdown Optimization. 47

Source Pushdown. 48

Pushdown Optimization Rules and Guidelines. 48

4 Table of Contents

Single-Pass Reading. 48

Filter Optimization. 49

Datatype Conversion Optimization. 49

Error Tracing. 50

Chapter 6: Partitioned Mapping Optimization. 51
Partitioned Mapping Optimization Overview. 51

Use Multiple CPUs. 51

Increase the Maximum Parallelism Value. 52

Optimize Flat Files for Partitioning. 52

Optimize Flat File Sources for Partitioning. 53

Optimize Flat File Targets for Partitioning. 53

Optimize Relational Databases for Partitioning. 53

Optimize the Source Database for Partitioning. 54

Optimize the Target Database for Partitioning. 54

Optimize Transformations for Partitioning. 55

Chapter 7: Run-time Optimization. 56
Run-time Optimization Overview. 56

Application Service Optimization. 56

Analyst Service Optimization. 56

Data Integration Service Optimization. 57

Model Repository Service Optimization. 58

Monitoring Statistics. 58

Memory Allocation. 60

Data Object Caching. 61

Data Types for Cache Tables. 61

Data Object Cache Optimization. 63

System Optimization. 64

Chapter 8: SQL Data Service Optimization. 65
SQL Data Service Optimization Overview. 65

Third-party Client Tool Optimization. 66

SQL Data Service Optimizer Levels. 66

Configuring the SQL Data Service Optimizer Level for Data Preview 67

Configuring the Optimizer Level for Deployed SQL Data Services. 67

SQL Data Service Query Plan. 68

Viewing an SQL Query Plan. 69

SQL Data Service Properties for Memory and Concurrent Requests. 69

Result Set Cache for an SQL Data Service. 71

SQL Data Service Result Set Cache Properties. 71

Enabling Result Set Caching for an SQL Data Service. 71

Persisting Virtual Data in Temporary Tables. 72

Table of Contents 5

Temporary Table Implementation. 72

Chapter 9: Web Service Optimization. 73
Web Service Optimization Overview. 73

Optimize HTTP Requests. 74

Web Service Message Compression. 74

Web Service Optimizer Level. 74

Configuring the Web Service Optimizer Level for Data Preview . 75

Configuring the Optimizer Level for Deployed Web Services. 75

Web Services Properties for Memory and Concurrent Requests . 76

Example Data Integration Service Configuration for Concurrent Web Service Requests 78

Web Service Property to Configure an Active DTM Instance. 78

Web Service Result Set Caching. 79

Enabling Result Set Caching for a Web Service. 79

Web Service Log Management. 79

Chapter 10: Connections Optimization. 81
Connections Optimization Overview. 81

Connection Pooling. 81

Pooling Properties in Connection Objects. 82

Database Network Packet Size. 82

Index. 84

6 Table of Contents

Preface
The Informatica Performance Tuning Guide is written for administrators and developers who are interested in
improving performance. This guide assumes you have knowledge of the operating systems, networks, client
tools, relational database concepts, and flat files in your environment. For more information about database
performance tuning not covered in this guide, see the documentation accompanying your database products.

Informatica Resources

Informatica Network
Informatica Network hosts Informatica Global Customer Support, the Informatica Knowledge Base, and other
product resources. To access Informatica Network, visit https://network.informatica.com.

As a member, you can:

• Access all of your Informatica resources in one place.

• Search the Knowledge Base for product resources, including documentation, FAQs, and best practices.

• View product availability information.

• Review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to search Informatica Network for product resources such as
documentation, how-to articles, best practices, and PAMs.

To access the Knowledge Base, visit https://kb.informatica.com. If you have questions, comments, or ideas
about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
To get the latest documentation for your product, browse the Informatica Knowledge Base at
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx.

If you have questions, comments, or ideas about this documentation, contact the Informatica Documentation
team through email at infa_documentation@informatica.com.

7

HTTPS://NETWORK.INFORMATICA.COM/
http://kb.informatica.com
mailto:KB_Feedback@informatica.com
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx
mailto:infa_documentation@informatica.com

Informatica Product Availability Matrixes
Product Availability Matrixes (PAMs) indicate the versions of operating systems, databases, and other types
of data sources and targets that a product release supports. If you are an Informatica Network member, you
can access PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional
Services. Developed from the real-world experience of hundreds of data management projects, Informatica
Velocity represents the collective knowledge of our consultants who have worked with organizations from
around the world to plan, develop, deploy, and maintain successful data management solutions.

If you are an Informatica Network member, you can access Informatica Velocity resources at
http://velocity.informatica.com.

If you have questions, comments, or ideas about Informatica Velocity, contact Informatica Professional
Services at ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that augment, extend, or enhance your
Informatica implementations. By leveraging any of the hundreds of solutions from Informatica developers
and partners, you can improve your productivity and speed up time to implementation on your projects. You
can access Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through Online Support on Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
http://www.informatica.com/us/services-and-training/support-services/global-support-centers.

If you are an Informatica Network member, you can use Online Support at http://network.informatica.com.

8 Preface

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/
http://network.informatica.com

C h a p t e r 1

Performance Tuning Overview
This chapter includes the following topics:

• Performance Tuning Overview, 9

• Performance Tuning Process, 9

• Target Bottlenecks, 10

• Source Bottlenecks, 10

• Mapping Bottlenecks, 11

• Computer System Bottlenecks, 11

• Run-time Bottlenecks, 12

• SQL Data Service Optimization Bottlenecks, 12

• Web Service Optimization Bottlenecks, 13

• Connection Bottlenecks, 13

Performance Tuning Overview
The goal of performance tuning is to eliminate performance bottlenecks. A bottleneck is an area in the
mapping that runs the most frequently and has the lowest throughput. A bottleneck reduces the overall
performance of the mapping.

To optimize a mapping, identify a performance bottleneck, eliminate it, and then identify the next
performance bottleneck. Optimize one mapping component at a time. You can time a mapping before and
after the change to verify that the optimization has a performance impact.

You can find and fix bottlenecks in mapping components such as sources, targets, and connections. You can
check bottlenecks in the Data Integration Service and the machine that the Data Integration Service runs on.
You can also tune properties for web services and SQL data services.

Performance Tuning Process
You can follow a set of steps to tune mapping components and increase performance.

You might optimize mapping components in the following order:

1. Targets

9

2. Sources

3. Mappings

4. Transformations

5. Informatica environment in the Administrator tool

6. The computer system

7. Data Service or web service

Use the following methods to identify performance bottlenecks:

• Run test mappings. You can configure a test mapping to read from a flat file source or to write to a flat
file target to identify source and target bottlenecks.

• Analyze performance details. Analyze performance details, such as optimization methods, to determine
where mapping performance decreases.

• Monitor system performance. You can use system monitoring tools to view the percentage of CPU use,
I/O waits, paging, and system resource usage.

Target Bottlenecks
Target bottlenecks are decreases in performance when the Data Integration Service writes to a target. Target
bottlenecks might occur when the database uses small checkpoint intervals or small database network
packet sizes.

The most common performance bottleneck occurs when the Data Integration Service writes to a target
database. If the database uses small checkpoint intervals, the database processing slows more often write a
checkpoint. Small database network packet sizes can cause bottlenecks. You can allow larger packets of
data to cross the network at one time.

To identify a target bottleneck, you can create a copy of the mapping that has a flat file target instead of a
database target. If thes performance increases significantly, you have a target bottleneck. If the mapping
already writes to a flat file target, you probably do not have a target bottleneck.

Source Bottlenecks
Source bottlenecks are performance decreases when the Data Integration Service reads from a source
database. Source bottlenecks might occur when the source query is not efficient or when the database
network packet sizes are small.

When the mapping reads from a relational source, you can use the following methods to identify source
bottlenecks:

• Add a Filter transformation to the mapping. Add the Filter transofrmation after the source. Set the Filter
condition to false so the Filter transformation does not return any data. If the amount of time that the
mapping takes is about the same, the mapping has a source bottleneck.

• Create a read test mapping. Make a copy of the mapping but remove all the transformations, joins, or
queries. Connect the source to a target. If the mapping performance is similar to the original mapping, you
have a source bottleneck.

10 Chapter 1: Performance Tuning Overview

• Run the read query directly against the source database. Copy the read query from the mapping log. Run
the query against the source database with a query tool such as isql. Measure the run time and the time it
takes for the query to return a row.

Mapping Bottlenecks
If you determine that you do not have a source or target bottleneck, you may have a mapping bottleneck.
Small cache size, low buffer memory, and small commit intervals can cause mapping bottlenecks.

To identify a mapping bottleneck, analyze the performance details in the mapping log. Performance details
include information about each transformation, such as the number of input rows, output rows, and error
rows.

You can also add a Filter transformation before each target definition. Set the filter condition to false so the
Filter transformation loads no data into the target tables. If the time it takes to run the new mapping is the
same as the original mapping, you have a mapping bottleneck.

Computer System Bottlenecks
You can view resource usage when you run Informatica services on Windows or UNIX . On Windows use the
Task Manager. UNIX has multiple tools that you can use to review performance.

Identifying System Bottlenecks on Windows
You can view the Performance and Processes tab in the Task Manager for system information. The
Performance tab in the Task Manager provides an overview of CPU usage and total memory used. Use the
Performance Monitor to view more detailed information.

The following table describes the system information that you can use in the Windows Performance Monitor
to create a chart:

Property Description

Percent processor time If you have more than one CPU, monitor each CPU for percent processor time.

Pages/second If pages/second is greater than five, you may have excessive memory pressure
known as thrashing.

Physical disks percent time The percent of time that the physical disk is busy performing read or write
requests.

Physical disks queue length The number of users waiting for access to the same disk device.

Server total bytes per second The server has sent to and received from the network.

Mapping Bottlenecks 11

Identifying System Bottlenecks on UNIX
Use the following tools to identify system bottlenecks on UNIX:

• top. View overall system performance. This tool displays CPU usage, memory usage, and swap usage for
the system and for individual processes running on the system.

• iostat. Monitor the loading operation for every disk attached to the database server. Iostat displays the
percentage of time that the disk is physically active. If you use disk arrays, use utilities provided with the
disk arrays instead of iostat.

• vmstat. Monitor disk swapping actions.

• sar. View detailed system activity reports of CPU, memory, and disk usage. You can use this tool to
monitor CPU loading. It provides percent usage on user, system, idle time, and waiting time. You can also
use this tool to monitor disk swapping actions.

Run-time Bottlenecks
Enable performance features and tune Data Integration Service properties to optimize mapping performance.
Configure optimization settings for the Data Integration Service and the Model Repository Service in the
Administrator tool.

Allocate memory for optimal system performance and configure error tracing levels to reduce the number of
log events generated by the Data Integration Service when it runs the mapping.

You can configure the maximum amount of memory that the Data Integration Service allocates for running all
the concurrent requests. You can also limit the maximum amount of memory that the Data Integration
Service allocates for any given request.

You can configure the result set cache, to enable the Data Integration Service to cache the results of the DTM
process associated with each SQL data service query and web service request.

SQL Data Service Optimization Bottlenecks
You can optimize SQL data services to improve performance when end users run SQL queries against them
using third-party client tools. If an SQL data service uses a virtual table mapping, you can optimize the
transformations and the mapping.

You can optimize the JDBC driver to improve performance when querying an SQL data service. You can also
configure the data object cache for the Data Integration Service to improve the performance of mappings and
SQL queries.

12 Chapter 1: Performance Tuning Overview

Web Service Optimization Bottlenecks
You can optimize web services to improve performance when the Data Integration Service runs web service
requests. Tune the Data Integration Service to manage memory, handle concurrent web service requests, and
keep a DTM process active so that it can process more than one web service request.

To improve web service performance, use web service message compression, optimize HTTP requests, and
configure the data object cache.

Connection Bottlenecks
You can optimize connections to improve performance. You can manage the pool of idle connection
instances for a database connection. You can increase the network packet size to allow larger packets of
data to cross the network at one time.

Web Service Optimization Bottlenecks 13

C h a p t e r 2

Target Optimization
This chapter includes the following topics:

• Target Optimization Overview, 14

• Flat File Target Optimization, 14

• Database Checkpoint Intervals, 15

• Bulk Loads, 15

• Database Target Optimization, 15

Target Optimization Overview
Optimize targets to enable the Data Integration Service to write to the targets efficiently. You can drop
indexes and key constraints before running a mapping, increase the number of checkpoint intervals in the
database, configure bulk loading in the write properties for a data object, and optimize an Oracle target
database.

Use the following optimization techniques to optimize the target:

• Optimize flat file targets.

• Increase database checkpoint intervals.

• Use bulk loads.

• Optimize Oracle target databases.

Flat File Target Optimization
You can improve mapping performance by optimizing flat file targets. You can also push transformation
tasks to a command to improve performance.

Consider the following solutions to reduce flat file target bottlenecks:
Push transformation tasks to a command instead of the Data Integration Service.

You can improve mapping performance by pushing transformation tasks to a command instead of the
Data Integration Service. You can also use a command to sort or to compress target data. In the
Developer tool, configure the Command property in the run-time properties for a flat file target.

On UNIX, use any valid UNIX command or shell script. On Windows, use any valid DOS command or
batch file. The flat file writer sends the data to the command instead of a flat file target.

14

For example, use the following command to generate a compressed file from the target data:

compress -c - > MyTargetFiles/MyCompressedFile.Z
Write to a flat file target that is local to the service process node.

If the Data Integration Service runs on a single node and writes to a flat file target, you can optimize
mapping performance by writing to a flat file target that is local to the service process node.

Database Checkpoint Intervals
The Data Integration Service performance slows each time it waits for the database to perform a checkpoint.

Consider the following solution to reduce database checkpoint bottlenecks:
Increase the checkpoint interval in the database.

To decrease the number of checkpoints and increase performance, increase the checkpoint interval in
the database.

Although you gain performance when you reduce the number of checkpoints, you also increase the recovery
time if the database shuts down unexpectedly.

Bulk Loads
When you use bulk loading, the Data Integration Service bypasses the database log, which speeds
performance.

Consider the following solutions to reduce bulk load bottlenecks:
Configure bulk loading in the write properties for a data object.

You can use bulk loading to improve the performance of a mapping that inserts a large amount of data
into a DB2, Sybase ASE, Oracle, or Microsoft SQL Server database.

Without writing to the database log, the target database cannot perform rollback. As a result, you may not be
able to perform recovery. When you use bulk loading, weigh the importance of improved mapping
performance against the ability to recover an incomplete mapping.

Database Target Optimization
You can optimize the target database by checking the storage clause, space allocation, and rollback or undo
segments.

Consider the following solutions to reduce database target bottlenecks:
Verify that the database stores rollback or undo segments in appropriate tablespaces, preferably on different disks.

When you write to the database, the database uses rollback or undo segments during loads. Ask the
database administrator to ensure that the database stores rollback or undo segments in appropriate
tablespaces, preferably on different disks. The rollback or undo segments should also have appropriate
storage clauses.

Database Checkpoint Intervals 15

Tune the database redo log.

To optimize the database, tune the database redo log. The database uses the redo log to log loading
operations. Make sure the redo log size and buffer size are optimal. For an Oracle database, you can
view redo log properties in the init.ora file.

Connect to an Oracle database with the IPC protocol.

If the Data Integration Service runs on a single node and the Oracle instance is local to the service
process node, you can optimize performance by using IPC protocol to connect to the Oracle database.
You can set up Oracle database connection in listener.ora and tnsnames.ora.

16 Chapter 2: Target Optimization

C h a p t e r 3

Source Optimization
This chapter includes the following topics:

• Source Optimization Overview, 17

• Flat File Source Optimization, 18

• Query Optimization, 18

• Conditional Filters, 19

• Select Distinct, 19

• Hints, 19

• Constraints, 21

• Customized Data Object Optimization, 22

• Database Source Optimization, 22

Source Optimization Overview
Optimize flat file, relational and custom data sources to enable the Data Integration Service to read source
data efficiently.

Use the following optimization techniques to optimize sources:

• Read source data efficiently.

• Use query optimization techniques.

• Use conditional filters with the SQL query.

• Select unique values from the source.

• Apply hints to the SQL query.

• Configure constraints on logical data objects, physical data objects, and virtual tables.

• Configure customized data objects for optimization.

• Configure Oracle, Sybase, and Microsoft SQL Server databases for optimization.

17

Flat File Source Optimization
Configure the format properties for flat file sources to enable the Data Integration Service to read source
data efficiently.

Consider the following solutions for flat file source bottlenecks:
Do not use quotes or escape characters in the format properties for a delimited flat file.

If you specify an escape character, the Data Integration Service reads the delimiter character as a
regular character embedded in the string. You can improve mapping performance slightly if the source
file does not contain quotes or escape characters.

Set the number of bytes the Data Integration Service reads per line.

If the mapping reads from a flat file source, you can improve mapping performance by setting the
number of bytes the Data Integration Service reads per line. Configure the Line Sequential Buffer Length
property in the run-time properties for flat file sources.

By default, the Data Integration Service reads 1024 bytes per line. If each line in the source file is less
than the default setting, you can decrease the line sequential buffer length in the mapping properties.

Query Optimization
If a mapping joins multiple source tables in one customized data object, you might be able to improve
performance by optimizing the query with optimizing hints. Also, single table select statements with an
ORDER BY or GROUP BY clause may benefit from optimization such as adding indexes.

Consider the following solutions for query bottlenecks:
Create optimizer hints to tell the database how to execute the query for a particular set of source tables.

Usually, the database optimizer determines the most efficient way to process the source data. However,
you might know properties about the source tables that the database optimizer does not. The database
administrator can create optimizer hints to tell the database how to execute the query for a particular set
of source tables.

Configure optimizer hints to begin returning rows as quickly as possible, rather than returning all rows at once.

Use optimizing hints if there is a long delay between when the query begins executing and when the Data
Integration Service receives the first row of data. Configure optimizer hints to begin returning rows as
quickly as possible, rather than returning all rows at once. This allows the Data Integration Service to
process rows parallel with the query execution.

Create an index on the ORDER BY or GROUP BY columns.

Queries that contain ORDER BY or GROUP BY clauses may benefit from creating an index on the ORDER
BY or GROUP BY columns. Once you optimize the query, use the SQL override option to take full
advantage of these modifications.

Configure the database to run parallel queries.

You can also configure the source database to run parallel queries to improve performance. For more
information about configuring parallel queries, see the database documentation.

The query that the Data Integration Service uses to read data appears in the virtual database in a SQL Data
Service. You can also find the query in the customized data object. Have the database administrator analyze
the query, and then create optimizer hints and indexes for the source tables.

18 Chapter 3: Source Optimization

Conditional Filters
A simple source filter on the source database can sometimes negatively impact performance because of the
lack of indexes. You can use the conditional filter in the customized data object to improve performance.

Consider the following solution for conditional filter bottlenecks:
Use the conditional filter for multiple mappings that read from the same source simultaneously.

If multiple mappings read from the same source simultaneously, the conditional filter may improve
performance.

However, some mappings may perform faster if you filter the source data on the source database. You
can test the mapping with both the database filter and the conditional filter to determine which method
improves performance.

Select Distinct
You can select unique values from sources in a customized data object through the select distinct option.
When you use select distinct, the Data Integration Service adds a SELECT DISTINCT statement to the default
SQL query.

Consider the following solution for Select Distinct bottlenecks:
Use the Select Distinct option to filter unnecessary data earlier in the data flow.

Use the Select Distinct option for the customized data object if you want the Data Integration Service to
select unique values from a source. Use the Select Distinct option to filter unnecessary data earlier in the
data flow. This can improve performance.

For example, you might use the select distinct option to extract unique customer IDs from a table that lists
total sales. When you use the customized data object in a mapping, the Data Integration Service filters out
unnecessary data earlier in the data flow, which can increase performance.

Hints
You can add hints to the source SQL query to pass instructions to a database optimizer. The optimizer uses
the hints to choose a query run plan to access the source.

The Hints field appears in the Query view of a relational data object instance or a customized data object.
The source database must be Oracle, Sybase, IBM DB2, or Microsoft SQL Server. The Hints field does not
appear for other database types.

When the Data Integration Service generates the source query, it adds the SQL hints to the query exactly as
you enter them in the Developer tool. The Data Integration Service does not parse the hints. When you run the
mapping that contains the source, the mapping log shows the query with the hints in the query.

The Data Integration Service inserts the SQL hints in a position in the query depending on the database type.
Refer to your database documentation for information about the syntax for hints.

Oracle

The Data Integration Service add hints directly after the SELECT/UPDATE/INSERT/DELETE keyword.

Conditional Filters 19

SELECT /*+ <hints> */ FROM …

The '+' indicates the start of hints.

The hints are contained in a comment (/* ... */ or --... until end of line)

Sybase

The Data Integration Service adds hints after the query. Configure a plan name in the hint.

SELECT … PLAN <plan>

select avg(price) from titles plan "(scalar_agg (i_scan type_price_ix titles)"

IBM DB2

You can enter the optimize-for clause as a hint. The Data Integration Service adds the clause at the end of the
query.

SELECT … OPTIMIZE FOR <n> ROWS

The optimize-for clause tells the database optimizer how many rows the query might process. The clause
does not limit the number of rows. If the database processes more than <n> rows, then performance might
decrease.

Microsoft SQL Server

The Data Integration Service adds hints at the end of the query as part of an OPTION clause.

SELECT … OPTION (<query_hints>)

Hints Rules and Guidelines

Use the following rules and guidelines when you configure hints for SQL queries:

• If you enable pushdown optimization or if you use a semi-join in a relational data object, then the original
source query changes. The Data Integration Service does not apply hints to the modified query.

• You can combine hints with join and filter overrides, but if you configure a SQL override, the SQL override
takes precedence and the Data Integration Service does not apply the other overrides.

• The Query view shows a simple view or an advanced view. If you enter a hint with a filter, sort, or join
override on the simple view, and you the Developer tool shows the full query override on the advanced
view.

Creating Hints
Create hints to send instructions to the database optimizer to determine a query plan.

1. Open the customized data object or the relational data object instance.

2. Select the Read view.

3. Select the Output transformation.

4. Select the Query properties.

5. Select the simple query.

6. Click Edit next to the Hints field.

The Hints dialog box appears.

7. Enter the hint in the SQL Query field.

The Developer tool does not validate the hint.

20 Chapter 3: Source Optimization

8. Click OK.

9. Save the data object.

Constraints
The Data Integration Service can read constraints from relational sources, flat file sources, logical data
objects, or virtual tables. A constraint is a conditional expression that the values on a data row must satisfy.

When the Data Integration Service reads constraints, it might drop the rows that do not evaluate to TRUE for
the data rows based on the optimization method applied.

Before you set a constraint, you must verify that the source data satisfies the condition set by the constraint.

For example, a source database has an AGE column that appears to have rows with AGE < 70. You can set a
constraint with AGE < 70 on the source database. The Data Integration reads records from the source
database with the constraint AGE < 70. If the Data Integration Service reads records with AGE >= 70, it might
drop the rows with AGE >= 70.

In the database, you can use SQL commands to set constraints on the database environment when you
connect to the database. The Data Integration Service runs the connection environment SQL each time it
connects to the database.

Use the Developer tool to set constraints on logical data objects, physical data objects, and virtual tables.
When you set a constraint, you must enter an expression that evaluates to TRUE for each data row.

Configuring Constraints
You can add constraints to relational data objects, flat file data objects, customized data objects, logical data
objects, and virtual tables. After you add a constraint, you can edit or delete the constraint.

1. From the Object Explorer view, open the mapping that contains the relational data object added as a
Read transformation. Or, open the flat file data object, customized data object, logical data object, or
virtual table.

• To set constraints on a relational data object added to a mapping as a Read transformation, select
the Read transformation in the mapping. On the Properties view, select the Advanced tab.

• To set constraints on a flat file data object, select the Advanced view and expand the Run-time: Read
section.

• To set constraints on a customized data object, select the Read view and select the Output port of
the source transformation. On the Properties view, select the Advanced tab.

• To set constraints on a logical data object, select a logical data model and select the logical data
object. On the Properties view, select the Advanced tab.

• To set constraints on a virtual table, open the virtual table from the SQL endpoint. On the Properties
view, select the Advanced tab.

2. Click the value field for constraints.

The Constraints dialog box appears.

3. Click New to open the Expression editor.

4. Configure the constraint logic and use expression functions and columns as parameters.

5. Click Validate.

Constraints 21

6. Click OK.

Customized Data Object Optimization
You can configure customized data objects to improve performance. You can optimize the SQL query, use
conditional filters, and select distinct values from the source in a customized data object.

Consider the following solutions for customized data object bottlenecks:
Create a custom query to issue a special SELECT statement for the Data Integration Service to read source data.

The custom query replaces the default query that the Data Integration Service uses to read data from
sources.

Filter rows when the Data Integration Service reads source data.

If you include a filter condition, the Data Integration Service adds a WHERE clause to the default query.

Select distinct values from the source.

If you choose Select Distinct, the Data Integration Service adds a SELECT DISTINCT statement to the
default SQL query.

Apply database hints.

You can add hints to the source SQL query to pass instructions to a database optimizer.

Configure constraints on source data.

If you configure constraints on flat files and relational tables in a customized data object, the Data
Integration Service drops the rows that do not evaluate to TRUE for the data rows.

Database Source Optimization
If the source database is Oracle, you can optimize the Data Integration Service performance, by using the IPC
protocol to connect to the Oracle database. You can also move the temporary database to a disk array to
improve performance.

Consider the following solutions for database source bottlenecks:
Use IPC protocol to connect to the Oracle database.

If the Data Integration Service runs on a single node and the Oracle instance is local to the service
process node, you can optimize performance by using IPC protocol to connect to the Oracle database.
You can set up Oracle database connection in listener.ora and tnsnames.ora.

Move the temporary database and redo logs to a disk array or faster drives.

When you join large tables on a database, you can use a redundant array of independent disks (RAID) for
the cache location. Alternatively, you can add more files to the primary file group on other disks to divide
the load between the disks.

22 Chapter 3: Source Optimization

C h a p t e r 4

Transformation Optimization
This chapter includes the following topics:

• Transformation Optimization, 23

• Aggregator Transformation Optimization, 23

• Expression Optimization, 24

• Java Transformation Optimization, 26

• Joiner Transformation Optimization, 29

• Lookup Transformation Optimization, 29

• Sorter Transformation Optimization, 32

• SQL Transformation Optimization, 32

• Transformation Cache, 34

• Transformation Error Elimination, 34

• Transformation Side Effects, 35

• Web Service Consumer Transformation Optimization, 36

Transformation Optimization
Optimize transformations to enable the Data Integration Service to process transformations in a mapping
efficiently.

Use the following optimization techniques to optimize the transformation:

• Configure transformations for optimization.

• Eliminate transformation errors.

• Configure the transformation cache.

Aggregator Transformation Optimization
Aggregator transformations often slow performance because they must group data before processing it.
Aggregator transformations need additional memory to hold intermediate group results.

Consider the following solutions for Aggregator transformation bottlenecks:

23

Group by simple columns.

You can optimize Aggregator transformations when you group by simple columns. When possible, use
numbers instead of string and dates in the columns used for the GROUP BY. Avoid complex expressions
in the Aggregator expressions.

Use sorted input.

To increase mapping performance, sort data for the Aggregator transformation. Use the Sorted Input
option to sort data.

The Sorted Input option decreases the use of aggregate caches. When you use the Sorted Input option,
the Data Integration Service assumes all data is sorted by group. As the Data Integration Service reads
rows for a group, it performs aggregate calculations. When necessary, it stores group information in
memory.

The Sorted Input option reduces the amount of data cached during the mapping and improves
performance. Use the Sorted Input option or a Sorter transformation to pass sorted data to the
Aggregator transformation.

You can increase performance when you use the Sorted Input option in mappings with multiple
partitions.

Filter data before you aggregate it.

If you use a Filter transformation in the mapping, place the transformation before the Aggregator
transformation to reduce unnecessary aggregation.

Limit port connections.

Limit the number of connected input/output or output ports to reduce the amount of data the Aggregator
transformation stores in the data cache.

Expression Optimization
Some expressions used in a transformation might decrease performance.

Consider the following solutions for expression bottlenecks:
Isolate slow expressions.

Slow expressions slow mapping performance. To isolate slow expressions, remove expressions from the
mapping one at a time, and run the mapping to determine the time it takes to run the mapping without
the expression. If there is a significant difference in mapping run time, look for ways to optimize the slow
expression.

Complete the following steps to evaluate expression performance:

1. Time the mapping with the original expressions.

2. Copy the mapping and replace half of the complex expressions with a constant.

3. Run and time the edited mapping.

4. Make another copy of the mapping and replace the other half of the complex expressions with a
constant.

5. Run and time the edited mapping.

Factor out common logic.

If the mapping performs the same task in multiple places, reduce the number of times the mapping
performs the task by moving the task earlier in the mapping. For example, you have a mapping with five

24 Chapter 4: Transformation Optimization

target tables. Each target requires a Social Security number lookup. Instead of performing the lookup
five times, place the Lookup transformation in the mapping before the data flow splits. Next, pass the
lookup results to all five targets.

Minimize aggregate function calls.

When writing expressions, factor out as many aggregate function calls as possible. Each time you use an
aggregate function call, the Data Integration Service must search and group the data. For example, in the
following expression, the Data Integration Service reads COLUMN_A, finds the sum, then reads
COLUMN_B, finds the sum, and finally finds the sum of the two sums:

SUM(COLUMN_A) + SUM(COLUMN_B)
If you factor out the aggregate function call, as below, the Data Integration Service adds COLUMN_A to
COLUMN_B, then finds the sum of both.

SUM(COLUMN_A + COLUMN_B)
Replace common expressions with local variables.

If you use the same expression multiple times in one transformation, you can make that expression a
local variable. You can use a local variable only within the transformation. However, by calculating the
variable only once, you speed performance.

Choose numeric versus string operators.

The Data Integration Service processes numeric operations faster than string operations. For example, if
you look up large amounts of data on two columns, EMPLOYEE_NAME and EMPLOYEE_ID, configuring
the lookup around EMPLOYEE_ID improves performance.

Optimize CHAR-CHAR and CHAR-VARCHAR comparisons.

When the Data Integration Service performs comparisons between CHAR and VARCHAR columns, it
slows each time it finds trailing blank spaces in the row. You can use the TreatCHARasCHARonRead
option when you configure the Data Integration Service in the Informatica Administrator so that the Data
Integration Service does not trim trailing spaces from the end of Char source fields.

Choose DECODE versus LOOKUP.

When you use a LOOKUP function, the Data Integration Service must look up a table in a database. When
you use a DECODE function, you incorporate the lookup values into the expression so the Data
Integration Service does not have to look up a separate table. Therefore, when you want to look up a
small set of unchanging values, use DECODE to improve performance.

Use operators instead of functions.

The Data Integration Service reads expressions written with operators faster than expressions with
functions. Where possible, use operators to write expressions. For example, you have the following
expression that contains nested CONCAT functions:

CONCAT(CONCAT(CUSTOMERS.FIRST_NAME, ‘ ’) CUSTOMERS.LAST_NAME)
You can rewrite that expression with the || operator as follows:

CUSTOMERS.FIRST_NAME || ‘ ’ || CUSTOMERS.LAST_NAME
Optimize IIF functions.

IIF functions can return a value and an action, which allows for more compact expressions. For example,
you have a source with three Y/N flags: FLG_A, FLG_B, FLG_C. You want to return values based on the
values of each flag.

You use the following expression:

IIF(FLG_A = 'Y' and FLG_B = 'Y' AND FLG_C = 'Y',
VAL_A + VAL_B + VAL_C,

Expression Optimization 25

IIF(FLG_A = 'Y' and FLG_B = 'Y' AND FLG_C = 'N',
VAL_A + VAL_B ,
IIF(FLG_A = 'Y' and FLG_B = 'N' AND FLG_C = 'Y',
VAL_A + VAL_C,
IIF(FLG_A = 'Y' and FLG_B = 'N' AND FLG_C = 'N',
VAL_A ,
IIF(FLG_A = 'N' and FLG_B = 'Y' AND FLG_C = 'Y',
VAL_B + VAL_C,
IIF(FLG_A = 'N' and FLG_B = 'Y' AND FLG_C = 'N',
VAL_B ,
IIF(FLG_A = 'N' and FLG_B = 'N' AND FLG_C = 'Y',
VAL_C,
IIF(FLG_A = 'N' and FLG_B = 'N' AND FLG_C = 'N',
0.0,
))))))))

Java Transformation Optimization
Some Java transformations in a mapping might decrease performance.

Consider the following solution to increase Java transformation performance:
Enable early selection or push-into filter optimization methods with the Java transformation.

You can enable early selection or push-into optimization in Java transformations. Update the code
snippets on the Optimizer Interfaces tab of the Java transformation.

Early Selection Optimization with the Java Transformation
You can enable an active or passive Java transformation for early selection optimization if the Java
transformation has no side effects. The optimizer passes the filter logic through the Java transformation and
modifies the filter condition as required.

To view the code snippets for early selection optimization, choose PredicatePushOptimization in the
navigator of the Optimizer Interfaces tab.

allowPredicatePush

Boolean. Enables early selection. Change the function to return a true result and message in order to enable
early selection. Default is false, and the function returns a message that optimization is not supported.

public ResultAndMessage allowPredicatePush(boolean ignoreOrderOfOp) {
 // To Enable PredicatePushOptimization, this function should return true
 //return new ResultAndMessage(true, "");
 return new ResultAndMessage(false, "Predicate Push Optimization Is Not
Supported");
}

canGenerateOutputFieldEvalError

Boolean. Indicates whether or not the Java transformation can return an output field error, such as a division
by zero error. Change the function to return false if the Java transformation does not generate output field
errors. When the Java transformation can generate field errors, then the Data Integration Service cannot use
early selection optimization.

public boolean canGenerateOutputFieldEvalError() {
 // If this Java transformation can never generate an output field evaluation error,
 // return false.
 return true;
}

26 Chapter 4: Transformation Optimization

getInputExpr

Returns an Informatica expression that describes which input values from input fields comprise an output
field. The optimizer needs to know which input fields comprise an output field in order to push the filter logic
through the transformation.

public InfaExpression getInputExpr(TransformationField field,
 TransformationDataInterface group) {
 // This should return an Informatica expression for output fields in terms of input
fields
 // We will only push predicate that use fields for which input expressions are
defined.
 // For example, if you have two input fields in0 and in1 and three output fields
out0, out1, out2
 // out0 is the pass-through of in1, out2 is sum of in1 and in2, and out3 is unknown,
the code should be:
 //if (field.getName().equals("out0"))
 // return new InfaExpression("in0", instance);
 //else if (field.getName().equals("out1"))
 // return new InfaExpression("in0 + in1", instance);
 //else if (field.getName().equals("out2"))
 // return null;
 return null;
}

For example, a mapping contains a filter expression, "out0 > 8". Out0 is the value of the out0 output port in
the Java transformation. You can define the value of out0 as the value of the in0 input port + 5. The optimizer
can push the following expression "(in0 + 5) > 8" past the Java transformation with early selection
optimization. You can return NULL if an output field does not have input field expression. The optimizer does
not push filter expressions past output fields with no input expression.
You might include the following code:

if (field.getName().equals("out0"))
 return new InfaExpression("in0 + 5", instance);
else if (field.getName().equals("out2"))
 return null;

inputGroupsPushPredicateTo

Returns a list of groups that can receive the filter logic. The Java transformation has one input group. Do not
modify this function for the Java transformation.

public List<TransformationDataInterface> inputGroupsPushPredicateTo(
 List<TransformationField> fields) {
 // This functions returns a list of input data interfaces to push predicates to.
 // Since JavaTx only has one input data interface, you should not have to modify
this function
 AbstractTransformation tx = instance.getTransformation();
 List<DataInterface> dis = tx.getDataInterfaces();
 List<TransformationDataInterface> inputDIs = new
ArrayList<TransformationDataInterface>();
 for (DataInterface di : dis){
 TransformationDataInterface tdi = (TransformationDataInterface) di;
 if (tdi.isInput())
 inputDIs.add(tdi);
 }
 if(inputDIs.size() == 1)
 return inputDIs;
 else
 return null;
}

Java Transformation Optimization 27

Push-Into Optimization with the Java Transformation
You can enable an active Java transformation for push-into optimization if it has no side effects and the
optimization does not affect the mapping results.

When you configure push-into optimization for the Java transformation, you define a way for the Java
transformation to store the filter condition that it receives from the optimizer. Add code that examines the
filter condition. If the Java transformation can absorb the filter logic, then the Java transformation passes a
true condition back to the optimizer. The optimizer removes the Filter transformation from the optimized
mapping.

When you configure the Java transformation you write the code that stores the filter condition as
transformation metadata during optimization. You also write the code to retrieve the filter condition at run-
time and to drop the rows according to the filter logic.

When you define the Java transformation, you add code for push-into optimization on the Java
transformation Optimizer Interfaces tab. To access the code snippets for push-into optimization, choose
FilterPushdownOptimization in the navigator of the transformation Optimizer Interfaces tab.

The Developer tool displays code snippets to enable push-into optimization and to receive the filter condition
from the optimizer. Update the code snippets to enable optimization and to save the filter logic as
transformation metadata.

isFilterSupported

Returns true to enable push-into optimization. Returns false to disable push-into optimization.
Change the function to return true in order to enable push-into optimization.

public ResultAndMessage isFilterSupported() {
 // To enable filter push-into optimization this function should return true
 // return new ResultAndMessage(true, "");
 return new ResultAndMessage(false, "Filter push-into optimization is not supported");
}

pushFilter

Receives the filter condition from the optimizer.
Add code to examine the filter and determine if the filter logic can be used in the transformation. If the
transformation can absorb the filter, then use the following method to store the filter condition as
transformation metadata:

storeMetadata(String key, String data)

The key is an identifier for the metadata. You can define any string as a key. The data is the data you want to
store in order to determine which rows to drop at run time. For example, the data might be the filter condition
that the Java transformation receives from the optimizer.

public ResultAndMessage pushFilter(InfaExpression condition) {

 // Add code to absorb the filter
 // If filter is successfully absorbed return new ResultAndMessage(true, ""); and the
optimizer
 // will remove the filter from the mapping
 // If the filter is not absorbed, return new ResultAndMessage(false, msg);
 return new ResultAndMessage(false, "Filter push-into optimization is not supported");
}

28 Chapter 4: Transformation Optimization

Joiner Transformation Optimization
Joiner transformations can slow performance because they need additional space at run time to hold
intermediary results.

Consider the following solutions for Joiner transformation bottlenecks:

Designate the master source as the source with fewer duplicate key values.

When the Data Integration Service processes a sorted Joiner transformation, it caches rows for one
hundred unique keys at a time. If the master source contains many rows with the same key value, the
Data Integration Service must cache more rows, which can decrease performance.

Designate the master source as the source with fewer rows.

The Joiner transformation compares each row of the detail source against the master source. The fewer
rows in the master, the fewer iterations of the join comparison occur, which speeds the join process.

Perform joins in a database when possible.

Performing a join in a database is faster than performing a join in during the mapping run. The type of
database join that you use can affect performance. Normal joins are faster than outer joins and result in
fewer rows. Sometimes, you cannot perform the join in the database, such as joining tables from two
different databases or flat file systems.

Join sorted data when possible.

Configure the Joiner transformation to use sorted input. The Data Integration Service increases
performance by minimizing disk input and disk output. The greatest performance increase occurs when
you work with large data sets. For an unsorted Joiner transformation, designate the source with fewer
rows as the master source.

Optimize the join condition.

The Data Integration Service attempts to decrease the size of the data set of one join operand by reading
the rows from the smaller group, finding the matching rows in the larger group, and then performing the
join operation. Decreasing the size of the data set improves mapping performance because the Data
Integration Service no longer reads unnecessary rows from the larger group source. The Data Integration
Service moves the join condition to the larger group source and reads only the rows that match the
smaller group.

Use the semi-join optimization method.

Use the semi-join optimization method to improve mapping performance when one input group has
many more rows than the other and when the larger group has many rows with no match in the smaller
group based on the join condition.

Lookup Transformation Optimization
Lookup transformations can slow performance depending on the lookup cache type and lookup conditions.

Consider the following solutions for Lookup transformation bottlenecks:
Use the optimal database driver.

The Data Integration Service can connect to a lookup table using a native database driver or an ODBC
driver. Native database drivers provide better mapping performance than ODBC drivers.

Joiner Transformation Optimization 29

Cache lookup tables for relational or flat file lookups.

To improve lookup performance for relational or flat file sources, enable lookup caching in the
transformation. When you enable caching, the Data Integration Service caches the lookup table. When
you run the mapping, the Data Integration Service queries the lookup cache instead of the lookup table.
When this option is not enabled, the Data Integration Service queries the lookup table on a row-by-row
basis.

The result of the lookup query and processing is the same, whether or not you cache the lookup table.
However, using a lookup cache can increase mapping performance for smaller lookup tables. In general,
you want to cache lookup tables that need less than 300 MB.

Cache lookup tables for logical data object lookups.

To improve lookup performance on a logical data object, you can enable data object caching on the Data
Integration Service. When you enable data object caching, the Data Integration Service caches the logical
data object. To enable data object caching, you must deploy the mapping to an application, enable
caching of the logical data object, and run the mapping with the command infacmd ms runmapping.
When you run the mapping, the Data Integration Service queries the data object cache instead of the
logical data object.

If you run the mapping from the Developer tool, the Lookup transformation queries the logical data
object on a row-by-row basis.

Use the appropriate cache type.

Use the following types of caches to increase performance:

• Shared cache. You can share the lookup cache between multiple transformations. You can share an
unnamed cache between transformations in the same mapping. You can share a named cache
between transformations in the same or different mappings.

• Persistent cache. To save and reuse the cache files, you can configure the transformation to use a
persistent cache. Use this feature when you know the lookup table does not change between
mapping runs. Using a persistent cache can improve performance because the Data Integration
Service builds the memory cache from the cache files instead of from the database.

Enable concurrent caches.

When the Data Integration Service processes mappings that contain Lookup transformations, the Data
Integration Service builds a cache in memory when it processes the first row of data in a cached Lookup
transformation. If there are multiple Lookup transformations in a mapping, the Data Integration Service
creates the caches sequentially when the first row of data is processed by the Lookup transformation.
This slows Lookup transformation processing.

You can enable concurrent caches to improve performance. When the number of additional concurrent
pipelines is set to one or more, the Data Integration Service builds caches concurrently rather than
sequentially. Performance improves greatly when the mappings contain a number of active
transformations that may take time to complete, such as Aggregator, Joiner, or Sorter transformations.
When you enable multiple concurrent pipelines, the Data Integration Service no longer waits for active
mappings to complete before it builds the cache. Other Lookup transformations in the pipeline also build
caches concurrently.

Optimize lookup condition matches.

When the Lookup transformation matches lookup cache data with the lookup condition, it sorts and
orders the data to determine the first matching value and the last matching value. You can configure the
transformation to return any value that matches the lookup condition. When you configure the Lookup
transformation to return any matching value, the transformation returns the first value that matches the
lookup condition. It does not index all ports as it does when you configure the transformation to return
the first matching value or the last matching value.

30 Chapter 4: Transformation Optimization

When you use any matching value, performance can improve because the transformation does not index
on all ports, which can slow performance.

Reduce the number of cached rows.

You can reduce the number of rows included in the cache to increase performance. Use the Lookup SQL
Override option to add a WHERE clause to the default SQL statement. When you add a WHERE clause to
a Lookup transformation that uses a dynamic cache, use a Filter transformation before the Lookup
transformation to pass rows into the dynamic cache that match the WHERE clause.

Override the ORDER BY statement.

By default, the Data Integration Service generates an ORDER BY statement for a cached lookup. The
ORDER BY statement contains all lookup ports. To increase performance, suppress the default ORDER
BY statement and enter an override ORDER BY with fewer columns.

The Data Integration Service always generates an ORDER BY statement, even if you enter one in the
override. Place two dashes ‘--’ after the ORDER BY override to suppress the generated ORDER BY
statement.

For example, a Lookup transformation uses the following lookup condition:

ITEM_ID = IN_ITEM_ID
PRICE <= IN_PRICE

The Lookup transformation includes three lookup ports used in the mapping, ITEM_ID, ITEM_NAME, and
PRICE. When you enter the ORDER BY statement, enter the columns in the same order as the ports in the
lookup condition. You must also enclose all database reserved words in quotes.

Enter the following lookup query in the lookup SQL override:

SELECT ITEMS_DIM.ITEM_NAME, ITEMS_DIM.PRICE, ITEMS_DIM.ITEM_ID FROM ITEMS_DIM ORDER
BY
ITEMS_DIM.ITEM_ID, ITEMS_DIM.PRICE --

Use a machine with more memory.

To increase mapping performance, run the mapping on a Data Integration Service node with a large
amount of memory. Increase the index and data cache sizes as high as you can without straining the
machine. If the Data Integration Service node has enough memory, increase the cache so it can hold all
data in memory without paging to disk.

Optimize the lookup condition.

If you include more than one lookup condition, place the conditions in the following order to optimize
lookup performance:

• Equal to (=)

• Less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=)

• Not equal to (!=)

Filter lookup rows.

To improve performance, create a filter condition to reduce the number of lookup rows retrieved from
the source when the lookup cache is built.

Index the lookup table.

The Data Integration Service needs to query, sort, and compare values in the lookup condition columns.
The index needs to include every column used in a lookup condition.

Lookup Transformation Optimization 31

You can improve performance for the following types of lookups:

• Cached lookups. To improve performance, index the columns in the lookup ORDER BY statement. The
mapping log file contains the ORDER BY statement.

• Uncached lookups. To improve performance, index the columns in the lookup condition. The Data
Integration Service issues a SELECT statement for each row that passes into the Lookup
transformation.

Optimize multiple lookups.

If a mapping contains multiple lookups, even with caching enabled and enough heap memory, the
lookups can slow performance. Tune the Lookup transformations that query the largest amounts of data
to improve overall performance.

If the lookup table is on the same database as the source table in your mapping and caching is not feasible,
join the tables in the source database rather than using a Lookup transformation.

Sorter Transformation Optimization
Sorter transformations can slow performance when the physical RAM on the Data Integration Service node
does not have enough memory allocated to sort data.

Consider the following solution for Sorter transformation bottlenecks:
Allocate sufficient memory.

For optimal performance, configure the Sorter cache size with a value less than or equal to the amount
of available physical RAM on the Data Integration Service node. Allocate at least 16 MB of physical
memory to sort data using the Sorter transformation. The Sorter cache size is set to 16,777,216 bytes by
default. If the Data Integration Service cannot allocate enough memory to sort data, it fails the mapping.

If the amount of incoming data is greater than the amount of Sorter cache size, the Data Integration Service
temporarily stores data in the Sorter transformation work directory. The Data Integration Service requires
disk space of at least twice the amount of incoming data when storing data in the work directory.

SQL Transformation Optimization
Each time the Data Integration Service processes a new query in a mapping, it calls a function called
SQLPrepare to create an SQL procedure and pass it to the database. When the query changes for each input
row, it might decrease performance.

Consider the following solutions for SQL transformation bottlenecks:
Do not use transaction statements in an SQL transformation query.

When an SQL query contains commit and rollback query statements, the Data Integration Service must
recreate the SQL procedure after each commit or rollback. To optimize performance, do not use
transaction statements in an SQL transformation query.

Enable early selection or push-into filter optimization methods with the SQL transformation.

To increase performance, the consider enabling the early selection or push-into optimization method
with the SQL transformation.

32 Chapter 4: Transformation Optimization

Early Selection Optimization with the SQL Transformation
The Data Integration Service can perform early selection optimization with an SQL transformation if the filter
condition references only pass-through ports and the SQL transformation does not have side effects.

The SQL transformation has side effects under the following circumstances:

• The SQL query updates a database. The SQL query contains a statement such as as CREATE, DROP,
INSERT, UPDATE, GRANT, or REVOKE.

• The transformation returns NULL rows for SELECT statements that return no results. The rows might
contain pass-through port values, SQL error information, or the NUMRowsAffected field.

Enabling Early Selection Optimization with the SQL Transformation
Enable early selection optimization in the SQL transformation if the SQL transformation has no side effects.

1. Enable the Return Database Output Only option in the SQL transformation Advanced Properties.

2. Clear Has Side Effects in the transformation Advanced Properties.

3. If the transformation has a NumAffectedRows port, remove the port.

Push-Into Optimization with the SQL Transformation
With push-into optimization, the Data Integration Service pushes the filter logic from a Filter transformation in
the mapping to the query in the SQL transformation.

Use the following rules and guidelines when you enable push-into optimization with the SQL transformation:

• The transformation SQL query must only contain SELECT statements.

• The transformation SQL query must be a valid subquery.

• The filter condition cannot refer to the SQL Error or NumRowsAffected fields.

• The names of the output ports must match the names of the columns in the SQL SELECT statement.
When you reference an output port in a filter condition, the Data Integration Service pushes the
corresponding port name to the SQL query. You can add aliases to the SQL if the columns in the query do
not match the output port names. For example, SELECT mycolname1 AS portname1, mycolname2 AS
portname2.

• The transformation cannot have side effects.

Push-Into Optimization with the SQL Transformation Example
An SQL transformation retrieves orders by customer ID. A Filter transformation that appears after the SQL
transformation returns only the rows where the order amount is greater than 1000.

The Data Integration Service pushes the following filter into a SELECT statement in the SQL transformation:

orderAmount > 1000

Each statement in the SQL query becomes a separate subquery of the SELECT statement that contains the
filter.

The following query statement shows the original query statement as a subquery in the SELECT statement:

SELECT <customerID>, <orderAmount>, … FROM (original query statements) ALIAS WHERE
<orderAmount> > 1000

If the SQL query has multiple statements, each statement is included in a separate subquery. The subquery
has the same syntax, including the WHERE clause.

SQL Transformation Optimization 33

The ports customerID and orderAmount, are the names of the output ports in the SQL transformation. The
subquery does not include pass-through ports, the SQL error, or the SQL statistics ports. If you push multiple
filters into the SQL transformation, the WHERE clause contains all the filters.

Enabling Push-Into Optimization with the SQL Transformation
Enable push-into optimization by configuring properties on the SQL transformation Advanced Properties tab.

1. Clear Has Side Effects.

2. Enable Return Database Output Only.

3. Set Max Out Row Count to zero.

4. Enable push-into optimization.

Transformation Cache
When you run a mapping that uses an Aggregator, Joiner, Lookup, Rank, or Sorter transformation, the Data
Integration Service creates caches in memory to process the transformation. If the Data Integration Service
requires more space, it stores overflow values in cache files on disk.

Consider the following solution for transformation cache bottlenecks:

Configure the transformations to allocate enough space to store the cache in memory.

To improve the processing time for the Aggregator, Joiner, Lookup, Rank, or Sorter transformation,
configure the transformations to allocate enough space to store the cache in memory. When you
configure the amount of cache memory to be equal to or greater than what is required to cache the data
and index, you increase performance by reducing the system I/O overhead. When the Data Integration
Service writes cache files to disk, the processing time increases due to system I/O overhead.

By default, the Data Integration Service automatically configures the cache memory requirements at run
time. After you run a mapping in auto cache mode, you can tune the cache sizes for the transformations.
You analyze the transformation statistics in the mapping log to determine the cache sizes required to
process the transformations in memory. When you configure the cache size to use the value specified in
the mapping log, you can ensure that no allocated memory is wasted. However, the optimal cache size
varies based on the size of the source data. Review the mapping logs after subsequent mapping runs to
monitor changes to the cache size. If you configure a specific cache size for a reusable transformation,
verify that the cache size is optimal for each use of the transformation in a mapping.

Transformation Error Elimination
In large numbers, transformation errors decrease the performance of the Data Integration Service. With each
transformation error, the Data Integration Service pauses to determine the cause of the error and to remove
the row causing the error from the data flow. The Data Integration Service typically writes the row into the
mapping log file of the Data Integration Service logs.

Consider the following solutions for transformation error bottlenecks:

34 Chapter 4: Transformation Optimization

Check the mapping log file to see where the transformation errors occur and evaluate those transformation constraints.

Transformation errors occur when the Data Integration Service encounters conversion errors, conflicting
mapping logic, and any condition set up as an error, such as null input. Check the mapping log file to see
where the transformation errors occur. If the errors center around particular transformations, evaluate
those transformation constraints.

Configure a lower tracing level.

If you need to run a mapping that generates a large number of transformation errors, it is possible to
improve performance by setting a lower tracing level. However, this is not a recommended long-term
solution to transformation errors.

Transformation Side Effects
A transformation has side effects if it returns rows and modifies an object, or if it interacts with other objects
or functions. The transformation might modify a database, add to a total, raise an exception, write an email,
or call other functions with side effects.

The Data Integration Service identifies which transformations have side effects before it optimizes a
mapping. The Data Integration Service assumes that a transformation has side effects when it cannot
determine if the transformation has side effects.

Transformations with side effects limit when the Data Integration Service can optimize the mapping. Early
selection, branch pruning, global predicate optimization, and push-into optimization alter mapping results if
the Data Integration Service applies them to a transformation that has side effects. With early selection and
push-into optimization, filter logic is moved from a Filter transformation as close to the source as possible. If
the filter occurs before the side effect function, the mapping results change.

For example, a transformation receives a customer ID and returns rows containing order information. The
transformation also writes the orders to a file. If the Data Integration Service applies a filter optimization
before it writes orders to the file, the file receives less rows than when the filter occurs later in the mapping.
The transformation side effect is the function of writing the order records to a file.

The following transformations have side effects:

• SQL transformation, Web Service Consumer transformation, and Java transformation unless the side
effects property is disabled.

• Transformations that call an ABORT() or ERROR() function, send email, or call a stored procedure.

• Transformations that write to files or databases.

• Transformations that maintain a count through a variable port. For example, COUNT=COUNT+1.

The SQL transformation, Web Service Consumer transformation, and Java transformation have side effects
by default. If you configure the transformation to process rows without side effects, you can disable the Has
Side Effects property in Advanced Properties. If the transformation does not have side effects, you can
enable optimization by configuring additional properties in these transformations.

Transformation Side Effects 35

Web Service Consumer Transformation Optimization
The Web Service Consumer transformation can decrease performance when a mapping calls the web service
multiple times.

Consider the following solution for Web Service Consumer transformation bottlenecks:
Configure the Web Service Consumer transformation to use cookie authentication.

The remote web service server tracks the web service consumer users based on the cookies. You can
increase performance when a mapping calls a web service multiple times.

When you project the cookie port to a web service request message, the web service provider returns a
cookie value in the response message. You can pass the cookie value to another transformation
downstream in the mapping or you can save the cookie value in a file. When you save the cookie value in
a file, you can configure the cookie as input to the Web Service Consumer transformation. You can
project the cookie output port to any of the Web Service Consumer transformation output groups.

Enable early selection or push-into filter optimization methods with the Web Service Consumer transformation.

To increase performance, the Data Integration Service can apply the early selection or push-into
optimization method with the Web Service Consumer transformation. To apply early selection
optimization, the web service cannot have side effects and cannot treat faults as errors. To apply push-
into optimization the web service cannot have side effects, cannot treat faults as errors, and the filter
condition must reference pass-through ports.

The web service has a side effect if it performs other functions besides returning a response to the Web
Service Consumer transformation. The web service has side effects if it modifies a database, writes to a
file, writes emails, updates a count, or calls other web services with side effects.

Configure the Web Service Consumer transformation to send multiple requests in parallel.

To increase mapping performance, configure the Web Service Consumer transformation to send multiple
requests in parallel. When you enable the Web Service Consumer transformation to create multiple
concurrent connections to the web service, you can set the memory consumption limit and the number
of concurrent connection limits.

Early Selection Optimization with the Web Service Consumer
Transformation

When the Data Integration Service applies the early selection optimization method to the Web Service
Consumer transformation, it moves filter conditions before the Web Service Consumer transformation in the
mapping closer to the source.

Enabling Early Selection Optimization with the Web Service Consumer
Transformation
Enable early selection optimization for the Web Service Consumer transformation if the transformation does
not have side effects and it does not treat faults as errors.

1. Open the Web Service Consumer transformation Advanced Properties view.

2. Clear Treat Fault as Error.

3. Clear Has Side Effects.

36 Chapter 4: Transformation Optimization

Push-Into Optimization with the Web Service Consumer
Transformation

You can configure push-into optimization with the Web Service Consumer transformation when the
transformation is in a virtual table in an SQL data service.

The mapping calls the web service to retrieve a set of data or a subset of the data based on the statements in
the end-user SQL query. The end-user SQL query contains an optional filter condition.

With push-into optimization, the Web Service Consumer transformation receives the filter value in a filter
port. The filter port is an unconnected input port that you identify as a filter port when you configure push-
into optimization. The filter port has a default value that ensures that the web service returns all rows if the
end-user query contains no filter. The filter port is not a pass-through port.

Note: The filter field must be part of the root group in the web service request.

When you configure a filter port, you identify an output port in the Web Service Consumer transformation that
receives the column data from the web service response. For example, if the filter port is an input port named
EmployeeID, the output port from the response might be a port named EmployeeNum. The Developer tool
needs to associate the input filter port and an output port in order to push the filter logic from the virtual table
read to the web service consumer request. The input ports for a web service request are usually different
than the output ports from the web service response.

The filter field cannot be a pass-through port. When you configure a filter port, the default value of the port
changes to the value of the filter condition, so the pass-though output port value changes. A filter based on
the output pass-through port returns unexpected results.

You can push multiple filter expressions to the Web Service Consumer transformation. Each filter condition
must be the following format:

<Field> = <Constant>

The filter conditions must be joined by AND. You cannot join the conditions with an OR.

Push-Into Optimization with Web Service Consumer Transformation Example
An SQL data service returns orders for all customers or it returns orders for a specific customer based on the
SQL query it receives from the user.

The data service contains a logical data object with the following components:

Customer table

An Oracle database table that contains customer information.

Web Service Consumer transformation

A transformation that calls a web service to retrieve the latest orders for customers. The Web Service
Consumer transformation has input ports for customerID and orderNum. The transformation has pass-
through ports that contain customer data that it receives from the Customer table. The orderNum port is
the filter port and is not connected. orderNum has the default value "*". When the web service receives
this value in the web service request, it returns all orders.

Orders virtual table

A virtual table that receives the customer and order data from the web service. The end-user queries this
table. Orders contains a customer column, orderID column, and customer and order data.

The end-user passes the following SQL query to the SQL data service:

SELECT * from OrdersID where customer = 23 and orderID = 56

Web Service Consumer Transformation Optimization 37

The Data Integration Service splits the query to optimize the mapping. The Data Integration Service uses
early selection optimization and moves the filter logic, customer = 23, to the Customer table read. The Data
Integration Service uses push-into optimization and pushes the filter logic, orderID = 56, into the Web
Service Consumer transformation filter port. The Web Service Consumer transformation retrieves ordersID 56
for customer 23.

Enabling Push-Into Optimization with the Web Service Consumer
Transformation
Enable push-into optimization for the Web Service Consumer transformation if the transformation does not
have side effects and it does not treat faults as errors.

1. Open the Web Service Consumer transformation Advanced Properties view.

2. Clear Treat Fault as Error.

3. Clear Has Side Effects.

4. Click the Open button in the Push-Into Optimization property.

5. Choose the filter port name in the Optimized Input dialog box.
You can choose multiple filter ports.

6. Click the Output column.

7. For each filter port, choose the output port that contains the filtered column in the web service response.

8. Enter a default value for each filter port.

Note: You cannot configure a default value for a Web Service Consumer port unless it is a filter port.

38 Chapter 4: Transformation Optimization

C h a p t e r 5

Mapping Optimization
This chapter includes the following topics:

• Mapping Optimization Overview, 39

• Optimization Methods, 40

• Pushdown Optimization, 46

• Single-Pass Reading, 48

• Filter Optimization, 49

• Datatype Conversion Optimization, 49

• Error Tracing, 50

Mapping Optimization Overview
Optimize mappings to enable the Data Integration Service to transform and move data efficiently. Mapping-
level optimization might take time to implement, but it can significantly boost mapping performance.

The optimization tasks apply to regular mappings, logical data object read and write mappings, virtual table
mappings, and operation mappings. Focus on mapping-level optimization after you optimize the targets and
sources.

To optimize a mapping, you can perform the following tasks:

• Configure the mapping with the least number of transformations and expressions to do the most amount
of work possible.

• Delete unnecessary links between transformations to minimize the amount of data moved.

• Choose an optimizer level that determines which optimization methods the Data Integration Service can
apply to the mapping. When the Data Integration Service optimizes a mapping, it attempts to reduce the
amount of data to process. For example, the Data Integration Service can use early selection optimization
to move a filter closer to the source. It can use the cost-based optimization method to change the join
processing order.

• Choose a pushdown type to enable the Data Integration Service to determine whether it can pushdown
partial or full transformation logic to the source database.

• Configure data object caching to enable the Data Integration Service cache logical data objects and
access pre-built logical data objects when it runs a mapping. By default, the Data Integration Service
extracts source data and builds required data objects when it runs a mapping. Mapping performance
increases when the Data Integration Service can access pre-built data objects.

39

• Indicate if the SQL transformation, Web Service Consumer transformation, and the Java transformation
do not have side effects when you configure these transformations. Some transformations have side
effects that restrict optimization. For example, a transformation can have a side effect if the
transformation writes to a file or database, adds to a count, raises an exception, or writes an email. In
most cases, the Data Integration Service identifies which transformations have side effects that restrict
optimization.

Related Topics:
• “Data Object Caching” on page 61

Optimization Methods
The Data Integration Service applies optimization methods to reduce the number of rows to process in the
mapping. You can configure the optimizer level for the mapping to limit which optimization methods the Data
Integration Service applies.

The Data Integration Service can apply the following optimization methods:

• Pushdown optimization

• Early projection optimization

• Early selection optimization

• Branch pruning optimization

• Push-into optimization

• Predicate optimization

• Global predicate optimization

• Cost-based optimization

• Dataship-join optimization

• Semi-join optimization

The Data Integration Service can apply multiple optimization methods to a mapping at the same time. For
example, the Data Integration Service applies the early projection optimization, predicate optimization, global
predicate optimization, branch pruning optimization, and early selection optimization or push-into
optimization methods when you select the normal optimizer level.

Optimizer Levels
The Data Integration Service optimizes mappings based on the optimizer level that you configure. Configure
the optimizer level when you want the mapping to use an optimizer level other than the normal. By default,
each mapping uses the normal optimizer level.

You can choose one of the following optimizer levels:

None

The Data Integration Service does not apply any optimization.

Minimal

The Data Integration Service applies the early projection optimization method.

40 Chapter 5: Mapping Optimization

Normal

The Data Integration Service applies the early projection, early selection, branch pruning, push-into,
global predicate optimization, and predicate optimization methods. Normal is the default optimization
level.

Full

The Data Integration Service applies the cost-based, early projection, early selection, branch pruning,
predicate, push-into, semi-join, and dataship-join optimization methods.

The Data Integration Service applies the normal optimizer level when you run a mapping from the Run menu
or mapping editor in the Developer tool. When you run the mapping from the Run menu, the Data Integration
Service applies the optimizer level in the mapping configuration. When you run the mapping from the
command line, the Data Integration Service applies the optimization level from the mapping deployment
properties in the application.

Note: The Data Integration Service does not apply the pushdown optimization method with an optimizer level.
You can configure pushdown optimization for a mapping in the mapping run-time properties.

Filter Optimizations
Filter optimization increases performance by reducing the number of rows that pass through the mapping.
The Data Integration Service can apply the early selection optimization or push-into optimization.

When the Data Integration Service applies a filter optimization method, it moves a filter as close to the source
as possible in a mapping. If the Data Integration Service cannot move a filter before a transformation in a
mapping, it might be able to push the filter logic into a transformation.

Early Projection Optimization Method
When the Data Integration Service applies the early projection optimization method, it identifies unused ports
and removes the links between those ports.

The early projection optimization method improves performance by reducing the amount of data that the
Data Integration Service moves across transformations. When the Data Integration Service processes a
mapping, it moves the data from all connected ports in a mapping from one transformation to another. In
large, complex mappings, or in mappings that use nested mapplets, some ports might not supply data to the
target. The Data Integration Service identifies the ports that do not supply data to the target. After the Data
Integration Service identifies unused ports, it removes the links between all unused ports from the mapping.

The Data Integration Service does not remove all links. For example, it does not remove the following links:

• Links connected to a transformation that has side effects.

• Links connected to transformations that call an ABORT() or ERROR() function, send email, or call a stored
procedure.

If the Data Integration Service determines that all ports in a transformation are unused, it removes all
transformation links except the link to the port with the least data. The Data Integration Service does not
remove the unused transformation from the mapping.

The Developer tool enables this optimization method by default.

Optimization Methods 41

Predicate Optimization Method
When the Data Integration Service applies the predicate optimization method, it examines the predicate
expressions that a mapping generates. It determines whether it can simpliify or rewrite the expressions to
increase mapping performance.

When the Data Integration Service runs a mapping, it generates queries against the mapping sources and
performs operations on the query results based on the mapping logic and the transformations within the
mapping. The queries and operations often include predicate expressions. Predicate expressions represent
the conditions that the data must satisfy. The filter and join conditions in Filter and Joiner transformations
are examples of predicate expressions.

With the predicate optimization method, the Data Integration Service also attempts to apply predicate
expressions as early as possible in the mapping to improve mapping performance.

The Data Integration Service infers relationships from by existing predicate expressions and creates new
predicate expressions. For example, a mapping contains a Joiner transformation with the join condition "A=B"
and a Filter transformation with the filter condition "A>5." The Data Integration Service might be able to add
"B>5" to the join condition.

The Data Integration Service applies the predicate optimization method with the early selection optimization
method when it can apply both methods to a mapping. For example, when the Data Integration Service
creates new filter conditions through the predicate optimization method, it also attempts to move them
upstream in the mapping through the early selection method. Applying both optimization methods improves
mapping performance when compared to applying either method alone.

The Data Integration Service applies the predicate optimization method if the application increases
performance. The Data Integration Service does not apply this method if the application changes the
mapping results or it decreases the mapping performance. The Data Integration Service applies this
optimization method by default.

Predicate Optimization Rules and Guidelines
When the Data Integration Service rewrites a predicate expression, it applies mathematical logic to the
expression to optimize it.

The Data Integration Service might perform any or all of the following actions:

• Identifies equivalent variables across predicate expressions in the mapping and generates simplified
expressions based on the equivalencies.

• Identifies redundant predicates across predicate expressions in the mapping and removes them.

• Extracts subexpressions from disjunctive clauses and generates multiple, simplified expressions based
on the subexpressions.

• Normalizes a predicate expression.

• Applies predicate expressions as early as possible in the mapping.

The Data Integration Service might not apply predicate optimization to a mapping when the mapping
contains transformations with a datatype mismatch between connected ports.

The Data Integration Service might not apply predicate optimization to a transformation when any of the
following conditions are true:

• The transformation contains explicit default values for connected ports.

• The transformation has side effects.

• The transformation does not allow predicates to be moved. For example, a transformation that has side
effects might have this restriction.

42 Chapter 5: Mapping Optimization

The Developer tool enables the predicate optimization method by default.

Cost-Based Optimization Method
With cost-based optimization, the Data Integration Service evaluates a mapping, generates semantically
equivalent mappings, and runs the mapping with the best possible performance. Cost-based optimization
reduces run time for mappings that perform adjacent inner-join, and full-outer join operations.

Semantically equivalent mappings are mappings that perform identical functions and produce the same
results. To generate semantically equivalent mappings, the Data Integration Service divides the original
mapping into fragments. The Data Integration Service then determines which mapping fragments it can
optimize.

During optimization, the Data Integration Service might add, remove, or reorder transformations within a
fragment. The Data Integration Service verifies that the optimized fragments produce the same results as the
original fragments and forms alternate mappings that use the optimized fragments.

The Data Integration Service can also apply a sorted merge join if it determines that the sorted merge join
performance is better than the nested loop join performance. A sorted merge join uses sort order to arrange
two data sets before performing the join. A nested loop join uses nested loops to join two data sets. The Data
Integration Service might use the sorting information in the sources or create a Sorter transformation if the
cost of sorting the data is less expensive then processing the nested loop join.

The Data Integration Service generates all or almost all of the mappings that are semantically equivalent to
the original mapping. It uses profiling statistics or database statistics to compute the cost for the original
mapping and each alternate mapping. Then, it identifies the mapping that runs most quickly. The Data
Integration Service performs a validation check on the best alternate mapping to ensure that it is valid and
produces the same results as the original mapping.

The Data Integration Service caches the best alternate mapping in memory. When you run a mapping, the
Data Integration Service retrieves the alternate mapping and runs it instead of the original mapping.

The Developer tool does not enable this method by default.

Dataship-Join Optimization Method
The dataship-join optimization method attempts to locate smaller data sets next to larger data sets to reduce
join processing time. The Data Integration Service attempts to apply the dataship-join optimization method
when there is a significant size difference between two tables.

For example, the Data Integration Service can apply the dataship-join optimization method to join a master
table that contains 10,000 rows with a detail table that contains 1,000,000 rows. To perform the dataship-
join, the Data Integration Service creates a temporary staging table in the database that contains the larger
detail table. Then, the Data Integration Service copies the smaller master table to a temporary table and joins
the data in the temporary table with the data in the larger detail table. After the Data Integration Service
performs the join operation, the Joiner transformation logic is processed in the database.

Before applying the dataship-join optimization method, the Data Integration Service performs analyses to
determine whether dataship-join optimization is possible and likely to be worthwhile. If the analyses
determine that this method is likely to improve performance, the Data Integration Service applies it to the
mapping. The Data Integration Service then reanalyzes the mapping to determine whether there are
additional opportunities for dataship-join optimization. It performs additional optimizations if appropriate.

The Developer tool does not enable this method by default.

Optimization Methods 43

Dataship-Join Requirements for Increased Performance
The dataship-join optimization method does not always increase performance. The following factors affect
mapping performance with dataship-join optimization:

• The Joiner transformation master source must have significantly fewer rows than the detail source.

• The detail source must be significantly large to justify the optimization. If the detail source is not large
enough the Data Integration Service finds it is faster to read all the data from the master and detail source
without applying the dataship-join optimization method.

Dataship-Join Optimization Rules and Guidelines
The Data Integration Service can apply dataship-join optimization to a Joiner transformation if the
transformation meets the following requirements:

• The join type must be normal, master outer, or detail outer.

• The detail pipeline must originate from a relational source.

• If the mapping uses target-based commits, the Joiner transformation scope must be All Input.

• The master and detail pipelines cannot share any transformation.

• The mapping cannot contain a branch between the detail source and the Joiner transformation.

• The Data Integration Service fails to apply the dataship-join optimization method if the database which
contains the detail side of the join is an IBM DB2 database that does not support Unicode encoding.

Semi-Join Optimization Method
The semi-join optimization method attempts to reduce the amount of data extracted from the source by
modifying join operations in the mapping.

The Data Integration Service applies the semi-join optimization method to a Joiner transformation when one
input group has many more rows than the other and when the larger group has many rows with no match in
the smaller group based on the join condition. The Data Integration Service attempts to decrease the size of
the data set of one join operand by reading the rows from the smaller group, finding the matching rows in the
larger group, and then performing the join operation. Decreasing the size of the data set improves mapping
performance because the Data Integration Service no longer reads unnecessary rows from the larger group
source. The Data Integration Service moves the join condition to the larger group source and reads only the
rows that match the smaller group.

Before applying the semi-join optimization method, the Data Integration Service performs analyses to
determine whether semi-join optimization is possible and likely to be worthwhile. If the analyses determine
that this method is likely to improve performance, the Data Integration Service applies it to the mapping. The
Data Integration Service then reanalyzes the mapping to determine whether there are additional opportunities
for semi-join optimization. It performs additional optimizations if appropriate.

The Developer tool does not enable this method by default.

Semi-Join Optimization Requirements for Increased Performance
The semi-join optimization method does not always increase performance. The following factors affect
mapping performance with semi-join optimization:

• The Joiner transformation master source must have significantly fewer rows than the detail source.

• The detail source must be large enough to justify the optimization. When the Data Integration Service
applies semi-join optimization, the method adds some overhead time to mapping processing. If the detail

44 Chapter 5: Mapping Optimization

source is small, the time required to apply the semi-join method might exceed the time required to
process all rows in the detail source.

• The Data Integration Service must be able to obtain source row count statistics for a Joiner
transformation in order to accurately compare the time requirements of the regular join operation against
the semi-join operation.

Semi-Join Optimization Rules and Guidelines
The Data Integration Service can apply semi-join optimization to a Joiner transformation if the transformation
meets the following requirements:

• The join type must be normal, master outer, or detail outer. The joiner transformation cannot perform a
full outer join.

• The detail pipeline must originate from a relational source.

• The join condition must be a valid sort-merge-join condition. That is, each clause must be an equality of
one master port and one detail port. If there are multiple clauses, they must be joined by AND.

• If the mapping does not use target-based commits, the Joiner transformation scope must be All Input.

• The master and detail pipelines cannot share any transformation.

• The mapping cannot contain a branch between the detail source and the Joiner transformation.

Early Selection Optimization Method
When the Data Integration Service applies the early selection optimization method, it splits, moves, or
removes the Filter transformations in a mapping. It moves filters up the mapping closer to the source.

The Data Integration Service might split a Filter transformation if the filter condition is a conjunction. For
example, the Data Integration Service might split the filter condition "A>100 AND B<50" into two simpler
conditions, "A>100" and "B<50." When the Data Integration Service splits a filter, it moves the simplified filters
up the mapping pipeline, closer to the source. The Data Integration Service moves the filters up the pipeline
separately when it splits the filter.

The early selection optimization method is enabled by default when you choose the normal or full optimizer
level in the Developer tool. The Data Integration Service ignores early selection optimization if a
transformation that appears before the Filter transformation has side effects. The Data Integration Service
cannot determine if the SQL transformation, Web Service Consumer transformation, and Java transformation
have side effects. You can configure early selection optimization for these transformations if they do not
have side effects.

You can disable early selection if the optimization does not increase performance. The Data Integration
Service enables this optimization method by default.

Global Predicate Optimization Method
When the Data Integration Service uses the global predicate optimization method, it removes those rows that
can be filtered out as early as possible in the mapping. This reduces the number of rows that need to be
processed by the mapping. The global predicate optimization method includes both the predicate
optimization and early selection methods.

For example, a mapping contains a Joiner transformation with the join condition "A=B" and a Filter
transformation with the filter condition "A>5." The Data Integration Service might be able to add "B>5" to the
join condition and move the Filter transformation closer to the source.

Optimization Methods 45

The global predicate optimization method applies predicate expressions more effectively than the predicate
optimization method. The global predicate optimization method determines whether it can simplify or rewrite
the expressions to increase mapping performance. It also attempts to apply predicate expressions as early
as possible in the mapping to improve mapping performance.

The global predicate optimization method infers filters and pushes them closer to the source when the
mapping contains nested joiners or branches with filters on each branch. When the Data Integration Service
uses the global predicate optimization method, it splits the filters, moves the filters closer to the source, or
removes the filters in a mapping.

Branch Pruning Optimization Method
The Data Integration Service can apply the branch pruning optimization method to transformations that do
not contribute any rows to the target in a mapping.

The Data Integration Service might remove a Filter transformation if the filter condition evaluates to FALSE
for the data rows. For example, a mapping has two Filter transformations that filter data from two relational
sources. A Filter transformation has the filter condition Country=US, and the other Filter transformation has
the filter condition Country=Canada. A Union transformation joins the two relational sources and has the
filter condition Country=US. The Data Integration Service might remove the Filter transformation with the
filter condition Country=Canada from the mapping.

The Developer tool enables the branch pruning optimization method by default when you choose the normal
or full optimizer level. You can disable branch pruning if the optimization does not increase performance by
setting the optimizer level to minimal or none.

Push-Into Optimization Method
With push-into optimization, the Data Integration Service moves the Filter transformation logic into the
transformation immediately upstream of the Filter transformation in the mapping. Push-into optimization
increases performance by reducing the number of rows that pass through the mapping.

The Data Integration Service does not move filter logic into another transformation if the transformation has
side effects. The Data Integration Service cannot determine if the SQL transformation, Web Service
Consumer transformation, and Java transformation have side effects. However, you can configure the SQL
transformation, Web Service Consumer transformation, and Java transformation for push-into optimization.

Pushdown Optimization
When the Data Integration Service applies pushdown optimization, it pushes transformation logic to the
source database. The Data Integration Service translates the transformation logic into SQL queries and
sends the SQL queries to the database. The source database runs the SQL queries to process the
transformations.

Pushdown optimization increases mapping performance when the source database can process
transformation logic faster than the Data Integration Service. The Data Integration Service also reads less
data from the source.

The amount of transformation logic that the Data Integration Service pushes to the source database depends
on the database, the transformation logic, and the mapping configuration. The Data Integration Service
processes all transformation logic that it cannot push to a database.

46 Chapter 5: Mapping Optimization

When you apply pushdown optimization, the Data Integration Service analyzes the optimized mapping from
the source to the target or until it reaches a downstream transformation that it cannot push to the source
database. The Data Integration Service generates and executes a SELECT query for each source that has
transformation logic pushed down. The Data Integration Service can also generate an INSERT query if the
target was pushed to the database. The Data Integration Service reads the results of the SQL queries and
processes the remaining transformations in the mapping.

The Data Integration Service applies pushdown optimization to a mapping when you select the pushdown
type in the mapping run-time properties.

You can select the following pushdown types:

• None. Select no pushdown type for the mapping.

• Source. The Data Integration Service tries to push down as much transformation logic as it can to the
source database.

• Full. The Data Integration Service pushes the full transformation logic to the source database.

You can also create a string parameter for the pushdown type and use the following parameter values:

• None

• Source

• Full

Full Pushdown Optimization
When the Data Integration Service applies full pushdown optimization, it pushes all the transformation logic
in the mapping to the source database. You can configure full pushdown in the mapping run-time properties.

Full pushdown optimization is ideal when the source and target are in the same database or when
transformations such as Aggregator and Filter transformations are processed in the source database and
reduce the amount of data moved. For example, if a mapping contains a Teradata source and Teradata
target, configure full pushdown optimization to push all the transformation logic for processing from a
Teradata source database to a Teradata target database.

When you configure a mapping with an Update Strategy transformation for full pushdown, you must
determine pushdown compatibility for the mapping.

The Data Integration Service can pushdown a mapping with an Update Strategy transformation in the
following scenarios:

• If the target transformation connected to the Update Strategy transformation receives multiple rows that
do not have the same key.

• If the target transformation connected to the Update Strategy transformation receives multiple rows with
the same key that can be reordered.

The Data Integration Service cannot pushdown a mapping with an Update Strategy transformation in the
following scenario:

• If the target transformation connected to the Update Strategy transformation receives multiple rows with
the same key that cannot be reordered.

You can also use a pushdown compatibility parameter in the mapping. You can use the following parameter
values:

• noMultipleRowsWithSameKeyOnTarget

• reorderAllowedForMultipleRowsWithSameKey

• reorderNotAllowedForRowsWithSameKey

Pushdown Optimization 47

The Data Integration Service can use full pushdown optimization for the following sources:

• Oracle

• IBM DB2

• Microsoft SQL Server

• Teradata

• Netezza

• Greenplum

• SAP HANA

Source Pushdown
When the Data Integration Service applies source pushdown, it analyzes the mapping from source to target or
until it reaches a downstream transformation it cannot push to the source database.

The Data Integration Service generates and executes a SELECT statement based on the transformation logic
for each transformation it can push to the database. Then, it reads the results of this SQL query and
processes the remaining transformations.

You can configure a mapping to use source pushdown if the source and target reside in different databases.
For example, if a mapping contains a Teradata source and an Oracle target, you can configure source
pushdown to push some transformation logic for processing to the Teradata source.

Pushdown Optimization Rules and Guidelines
The Data Integration Service can push transformation logic to the source database.

The following rules and guidelines apply to pushdown optimization:

• The Data Integration Service can push Lookup and Joiner transformation logic to the source database if
the sources are in the same database management system and they use identical connections.

• The Data integration Service cannot push transformation logic to a source that has a binary data type.

• The Data Integration Service disables pushdown optimization when you have an IBM DB2 data source and
the column precision is between 28 to 31 digits for the Decimal data type.

• The Data Integration Service enables pushdown optimization for an SQL Data Service or a Web Service by
default. You cannot disable pushdown optimization for an SQL Data Service or Web Service.

• The Data Integration Service cannot push an Aggregator transformation that contains an expression with
aggregate and non-aggregate functions in a port that is not group by.

Single-Pass Reading
Single-pass reading allows you to populate multiple targets with one customized data object. Consider using
single-pass reading if you have multiple mappings that use the same sources.

Consider the following solutions for single-pass reading bottlenecks:
Combine the transformation logic for each mapping in one mapping and use one customized data object for each
source.

The Data Integration Service reads each source once and then sends the data into separate pipelines. A
particular row can be used by all the pipelines, by any combination of pipelines, or by no pipelines.

48 Chapter 5: Mapping Optimization

For example, you have the Purchasing source table, and you use that source daily to perform an
aggregation and a ranking. If you place the Aggregator and Rank transformations in separate mappings,
you force the Data Integration Service to read the same source table twice. However, if you include the
aggregation and ranking logic in one mapping with one source qualifier, the Data Integration Service
reads the Purchasing source table once, and then sends the appropriate data to the separate pipelines.

Factor out common functions from mappings.

When changing mappings to take advantage of single-pass reading, you can optimize this feature by
factoring out common functions from mappings. For example, if you need to subtract a percentage from
the Price ports for both the Aggregator and Rank transformations, you can minimize work by subtracting
the percentage before splitting the pipeline. You can use an Expression transformation to subtract the
percentage, and then split the mapping after the transformation.

Filter Optimization
You can optimize mappings by filtering within a customized data object and by placing filters early in the
mapping.

Consider the following solutions for filter bottlenecks:
Use a filter in a customized data object to remove the rows at the source.

If you filter rows from the mapping, you can improve efficiency by filtering early in the data flow. Use a
filter in a customized data object to remove the rows at the source. The customized data object limits
the row set extracted from a relational source.

If you cannot use a filter in the customized data object, use a Filter transformation and move it as close
to the customized data object as possible to remove unnecessary data early in the data flow. The Filter
transformation limits the row set sent to a target.

Use a filter in an Update Strategy transformation if you do not need to keep rejected rows.

To improve mapping performance, you can also use a Filter transformation to drop rejected rows from
an Update Strategy transformation if you do not need to keep rejected rows.

Avoid complex expressions in filter conditions.

Avoid using complex expressions in filter conditions. To optimize Filter transformations, use simple
integer or true/false expressions in the filter condition.

The Filter transformation filters data within a mapping. The Filter transformation filters rows from any type of
source. The customized data object filters rows from relational sources. The Filter transformation filters
rows from any type of source.

Datatype Conversion Optimization
You can increase performance by eliminating unnecessary datatype conversions. For example, if a mapping
moves data from an Integer column to a Decimal column, then back to an Integer column, the unnecessary
datatype conversion slows performance. Where possible, eliminate unnecessary datatype conversions from
mappings.

Consider the following solutions for datatype conversion bottlenecks:

Filter Optimization 49

Use integer values in place of other datatypes when performing comparisons using Lookup and Filter transformations.

For example, many databases store U.S. ZIP code information as a Char or Varchar datatype. If you
convert the zip code data to an Integer datatype, the lookup database stores the zip code 94303-1234 as
943031234. This helps increase the speed of the lookup comparisons based on zip code.

Convert the source dates to strings through port-to-port conversions to increase mapping performance.

You can either leave the ports in targets as strings or change the ports to Date/Time ports.

Error Tracing
To improve performance, reduce the number of log events generated by the Data Integration Service when it
runs the mapping. Improve mapping performance by updating the mapping optimizer level through the
mapping configuration or mapping deployment properties. Use the cost-based optimization method to
optimize mappings.

Consider the following solutions for error tracing bottlenecks:
Set the tracing level in the mapping properties to Terse

If a mapping contains a large number of transformation errors, and you do not need to correct them, set
the tracing level in the mapping properties to Terse. At this tracing level, the Data Integration Service
does not write error messages or row-level information for reject data.

If you need to debug the mapping and you set the tracing level to Verbose, you may experience
significant performance degradation when you run the mapping. Do not use Verbose tracing when you
tune performance. The mapping tracing level overrides any transformation-specific tracing levels within
the mapping. This is not recommended as a long-term response to high levels of transformation errors.

Change the optimizer level for the mapping.

If a mapping takes an excessive amount of time to run, you might want to change the optimizer level for
the mapping. The optimizer level determines which optimization methods the Data Integration Service
applies to the mapping at run-time.

You set the optimizer level for a mapping in the mapping configuration or mapping deployment
properties. The Data Integration Service applies different optimizer levels to the mapping depending on
how you run the mapping.

Use the cost-based optimization method.

The cost-based optimization method causes the Data Integration Service to evaluate a mapping,
generate semantically equivalent mappings, and run the mapping with the best performance. This
method is most effective for mappings that contain multiple Joiner transformations. It reduces run time
for mappings that perform adjacent, unsorted, inner-join operations.

Semantically equivalent mappings are mappings that perform identical functions and produce the same
results. To generate semantically equivalent mappings, the Data Integration Service divides the original
mapping into fragments. The Data Integration Service then determines which mapping fragments it can
optimize.

50 Chapter 5: Mapping Optimization

C h a p t e r 6

Partitioned Mapping Optimization
This chapter includes the following topics:

• Partitioned Mapping Optimization Overview, 51

• Use Multiple CPUs, 51

• Increase the Maximum Parallelism Value, 52

• Optimize Flat Files for Partitioning, 52

• Optimize Relational Databases for Partitioning, 53

• Optimize Transformations for Partitioning, 55

Partitioned Mapping Optimization Overview
If you have the partitioning option, you can enable the Data Integration Service to maximize parallelism when
it runs mappings. When you maximize parallelism, the Data Integration Service dynamically divides the
underlying data into partitions and processes all of the partitions concurrently.

If mappings process large data sets or contain transformations that perform complicated calculations, the
mappings can take a long time to process and can cause low data throughput. When you enable partitioning
for these mappings, the Data Integration Service uses additional threads to process the mapping.

You can optimize the performance of partitioned mappings by performing the following tasks:

• Use multiple CPUs on the nodes that run mappings.

• Increase the maximum parallelism value for the Data Integration Service.

• Configure properties on flat file data objects.

• Configure relational databases to optimize partitioning.

• Configure properties on transformations.

Use Multiple CPUs
Increasing the number of processing threads increases the load on the nodes that run mappings. If the nodes
contain ample CPU bandwidth, concurrently processing rows of data in a mapping can optimize mapping
performance.

The Data Integration Service can use multiple CPUs to process a mapping that contains multiple partitions.
The number of CPUs that the service uses depends on factors such as the number of partition points, the

51

number of threads created for each pipeline stage, and the amount of resources required to process the
mapping. A simple mapping runs faster in two partitions, but typically requires twice the amount of CPU than
when the mapping runs in a single partition.

Increase the Maximum Parallelism Value
Maximum parallelism determines the maximum number of parallel threads that can process a single pipeline
stage. Configure the Maximum Parallelism property for the Data Integration Service based on the available
hardware resources. When you increase the maximum parallelism value, you might decrease the amount of
processing time.

Consider the following guidelines when you increase the maximum parallelism value:

Increase the value based on the number of available CPUs.

Increase the maximum parallelism value based on the number of CPUs available on the nodes where
mappings run. When you increase the maximum parallelism value, the Data Integration Service uses
more threads to run the mapping and leverages more CPUs. A simple mapping runs faster in two
partitions, but typically requires twice the amount of CPU than when the mapping runs in a single
partition.

Consider the total number of processing threads.

Consider the total number of processing threads when setting the maximum parallelism value. If a
complex mapping results in multiple additional partition points, the Data Integration Service might use
more processing threads than the CPU can handle.

The total number of processing threads is equal to the maximum parallelism value.

Consider the other jobs that the Data Integration Service must run.

If you configure maximum parallelism such that each mapping uses a large number of threads, fewer
threads are available for the Data Integration Service to run additional jobs.

Optionally change the value for a mapping.

By default, the maximum parallelism for each mapping is set to Auto. Each mapping uses the maximum
parallelism value defined for the Data Integration Service.

In the Developer tool, developers can change the maximum parallelism value in the mapping run-time
properties to define a maximum value for a particular mapping. When maximum parallelism is set to
different integer values for the Data Integration Service and the mapping, the Data Integration Service
uses the minimum value of the two.

Optimize Flat Files for Partitioning
When a mapping that is enabled for partitioning reads from a flat file source or writes to a flat file target, the
Data Integration Service can use multiple threads to read from or to write to the flat file.

52 Chapter 6: Partitioned Mapping Optimization

Optimize Flat File Sources for Partitioning
To achieve optimal performance when using multiple threads to read from a flat file, configure the flat file
data object to optimize throughput instead of preserving row order.

Consider the following solution to reduce bottlenecks for partitioned flat file sources:

Configure concurrent read partitioning for the flat file data object to optimize throughput.

In the flat file data object advanced properties, set the Concurrent Read Partitioning property to optimize
throughput. When you optimize throughput, the Data Integration Service does not preserve row order
because it does not read the rows in the file or file list sequentially.

Optimize Flat File Targets for Partitioning
To achieve optimal performance when using multiple threads to write to a flat file, configure partitions to
write the target output to separate files and configure multiple target directories.

Consider the following solutions to reduce bottlenecks for partitioned flat file targets:

Configure partitions to write the target output to separate files.

In the flat file data object advanced properties, set the Merge Type property to No merge. The Data
Integration Service concurrently writes the target output to a separate file for each partition. If you
require merged target data, the concurrent merge type optimizes performance more than the sequential
merge type.

Configure multiple target directories.

When multiple threads write to a single directory, the mapping might encounter a bottleneck due to
input/output (I/O) contention. An I/O contention can occur when threads write data to the file system at
the same time. When you configure multiple directories, the Data Integration Service determines the
output directory for each thread in a round-robin fashion.

Configure the output file directories in the advanced properties for the flat file data object. Use the
default TargetDir system parameter value if an administrator entered multiple directories separated by
semicolons for the Target Directory property for the Data Integration Service in the Administrator tool.
Or, you can enter a different value to configure multiple output file directories specific to the flat file data
object.

Optimize Relational Databases for Partitioning
When a mapping that is enabled for partitioning reads from or writes to an IBM DB2 for LUW or an Oracle
relational database, the Data Integration Service can use multiple threads to read the relational source or to
write to the relational target.

To optimize performance when using multiple threads to read from or write to a DB2 for LUW or Oracle
relational database, you can partition the source and target tables.

Note: If a mapping reads from or writes to a relational database other than DB2 for LUW or Oracle, the Data
Integration Service uses one reader thread or one writer thread.

Optimize Relational Databases for Partitioning 53

Optimize the Source Database for Partitioning
To achieve optimal performance when using multiple threads to read from a DB2 for LUW or an Oracle source
database, verify that the source table is partitioned and is configured to accept parallel queries.

To optimize the source database for partitioning, perform the following tasks:

Add database partitions to the source.

Add database partitions to the relational source to increase the speed of the Data Integration Service
query that reads the source. If the source does not have database partitions, the Data Integration Service
uses one thread to read from the source.

Enable parallel queries.

Relational databases might have options that enable parallel queries to the database. Refer to the
database documentation for these options. If these options are not enabled, the Data Integration Service
runs multiple partition SELECT statements serially.

Separate data into different tablespaces.

Each database provides an option to separate the data into different tablespaces. Each tablespace can
refer to a unique file system, which prevents any I/O contention across partitions.

Increase the maximum number of sessions allowed to the database.

The Data Integration Service creates a separate connection to the source database for each partition.
Increase the maximum number of allowed sessions so that the database can handle a larger number of
concurrent connections.

Optimize the Target Database for Partitioning
To achieve optimal performance when using multiple threads to write to a DB2 for LUW or an Oracle target
database, verify that the target table is partitioned and is configured to insert rows in parallel.

To optimize the target database for partitioning, perform the following tasks:

Add database partitions to a DB2 for LUW target.

The Data Integration Service can use multiple threads to write to a DB2 for LUW target that does not
have database partitions. However, you can optimize load performance when the target has database
partitions. In this case, each writer thread connects to the DB2 for LUW node that contains the database
partition. Because the writer threads connect to different DB2 for LUW nodes instead of all threads
connecting to the single master node, performance increases.

Enable parallel inserts.

Relational databases might have options that enable parallel inserts to the database. Refer to the
database documentation for these options. For example, set the db_writer_processes option in an Oracle
database and the max_agents option in a DB2 for LUW database to enable parallel inserts.

Separate data into different tablespaces.

Each database provides an option to separate the data into different tablespaces. Each tablespace can
refer to a unique file system, which prevents any I/O contention across partitions.

Increase the maximum number of sessions allowed to the database.

The Data Integration Service creates a separate connection to the target database for each partition.
Increase the maximum number of allowed sessions so that the database can handle a larger number of
concurrent connections.

54 Chapter 6: Partitioned Mapping Optimization

Set options to enhance database scalability.

Relational databases might have options that enhance scalability. For example, disable archive logging
and timed statistics in an Oracle database to enhance scalability.

Optimize Transformations for Partitioning
When the Data Integration Service uses multiple threads to run an Aggregator, Joiner, Rank, or Sorter
transformation, the service uses cache partitioning to divide the cache size across the threads. To optimize
performance for cache partitioning, configure multiple cache directories.

Note: A Lookup transformation can only use a single cache directory.

Consider the following solution to reduce bottlenecks for partitioned Aggregator, Joiner, Rank, and Sorter
transformations:

Configure multiple cache directories.

Cache partitioning creates a separate cache for each partition that processes an Aggregator, Joiner,
Rank, or Sorter transformation. During cache partitioning, each partition stores different data in a
separate cache. Each cache contains the rows needed by that partition. Cache partitioning optimizes
mapping performance because each thread queries a separate cache in parallel.

If the cache size is smaller than the amount of memory required to run the transformation,
transformation threads write to the cache directory to store overflow values in cache files. When
multiple threads write to a single directory, the mapping might encounter a bottleneck due to I/O
contention. An I/O contention can occur when threads write data to the file system at the same time.
When you configure multiple cache directories, the Data Integration Service determines the cache
directory for each transformation thread in a round-robin fashion.

In an Aggregator, Joiner, or Rank transformation, configure the cache directories in the Cache Directory
advanced property. Use the default CacheDir system parameter value if an administrator entered
multiple directories separated by semicolons for the Cache Directory property for the Data Integration
Service in the Administrator tool. Or, you can enter a different value to configure multiple cache
directories specific to the transformation.

In a Sorter transformation, configure the cache directories in the Work Directory advanced property. Use
the default TempDir system parameter value if an administrator entered multiple directories separated
by semicolons for the Temporary Directories property for the Data Integration Service in the
Administrator tool. Or, you can enter a different value to configure multiple cache directories specific to
the transformation.

Optimize Transformations for Partitioning 55

C h a p t e r 7

Run-time Optimization
This chapter includes the following topics:

• Run-time Optimization Overview, 56

• Application Service Optimization, 56

• Monitoring Statistics, 58

• Memory Allocation, 60

• Data Object Caching, 61

• System Optimization, 64

Run-time Optimization Overview
Enable performance features and tune Data Integration Service properties to optimize mapping performance.

Use the following optimization techniques in the Administrator tool to get the best performance results
based on your requirements:

• Optimize application service processes.

• Configure monitoring statistics to monitor system bottlenecks.

• Allocate memory for optimal system performance.

• Configure data object caching.

• Optimize the system to avoid system delays and slow disk access.

Application Service Optimization
Optimize the application service process when performance is affected. You can optimize the Analyst
Service, Data Integration Service, and the Model Repository Service.

Analyst Service Optimization
Tune the Analyst Service to optimize performance. You can configure the Analyst Service process property
for memory, minimize network latency, and configure the Analyst tool flat file upload settings to improve
service performance.

Consider the following solutions for Analyst Service bottlenecks:

56

Configure the Analyst tool to connect to a network path location to upload flat files greater than 10 MB.

The Analyst Service process performance can decrease when analysts upload flat files greater than 10
MB to the Informatica Installation directory on the machine on which the Analyst tool runs. This can
affect both disk space and network performance.

Upload flat files smaller than 10 MB to the Informatica Installation directory from the Analyst tool.

The Analyst Service process performance can decrease if analysts upload flat files greater than 10 MB
to the Informatica Installation directory from the Analyst tool. This can affect both disk space and
network performance.

Increase the Maximum Heap Size property for the Analyst Service process.

The Analyst Service process can consume large amounts of memory while processing a large number of
concurrently logged in users. This can cause a large number of network connections to be open between
the Analyst Service and other services such as the Data Integration Service or the Model Repository
Service.

Use the Administrator tool to configure the Maximum Heap Size property to a larger value in the
Advanced Properties for the Analyst Service process.

Export large mapping specifications to a table or export to a flat file and truncate the file.

The Analyst Service process can have a performance impact when analysts export large mapping
specifications as flat files from the Analyst tool.

Data Integration Service Optimization
Tune the Data Integration Service process to improve service performance. You can configure the Data
Integration Service process properties for memory. You can configure each web service and SQL data service
that runs on a Data Integration Service to handle concurrent requests.

Consider the following solutions for Data Integration Service bottlenecks:
Configure the Maximum Heap Size property for the Data Integration Service process.

The Data Integration Service can consume large amounts of memory while processing SQL data services
and web services.

Use the Administrator tool to configure the Maximum Heap Size property to a larger value in the
Advanced Properties for the Data Integration Service process.

Configure the web service DTM Keep Alive Time property for the Data Integration Service.

The Data Integration Service consumes system resources to spawn a DTM instance for each web service
request. Configure the Data Integration Service to use one DTM instance to process more than one web
service request.

Use the Administrator tool to configure the web service DTM Keep Alive Time property for the Data
Integration Service.

Configure the execution options in the Data Integration process properties and the web service and SQL data service
properties for concurrent requests.

The Data Integration Service, each SQL data service, and each web service that runs on the Data
Integration Service consumes system and memory resources for each concurrent request.

To configure the number of concurrent requests that the Data Integration Service, each SQL data service,
and each web service can accept, configure the Data Integration Service properties and the web service
properties.

Application Service Optimization 57

Use the Administrator tool to configure the following options and properties for the Data Integration
Service, web service and SQL data service:

• Configure the execution options for the Data Integration Service.

• Configure the Maximum # of Concurrent Connections property for each SQL data service in the SQL
properties for the Data Integration Service process.

• Configure the Maximum Backlog Request and the Maximum Concurrent Requests properties for each
web service in the HTTP configuration properties for the Data Integration Service process.

Turn off the web service trace level.

The number of web service log files that the Data Integration Service writes and maintains can decrease
performance.

Use the Administrator tool to configure the web service trace level to reduce the amount of web service
run-time log files that the Data Integration Service stores on disk.

Model Repository Service Optimization
Tune the Model Repository Service to improve performance. You can configure the Model Repository Service
process property for memory and minimize network latency.

Consider the following solutions for Model Repository Service bottlenecks:
Host the Model repository database on the same machine as the Model Repository Service.

The Model Repository service process performance can be affected if the Model repository database is
hosted on a remote server. Model Repository Service operations that require communication between
the Model repository and the Model Repository Service on a high-latency network could slow down the
Model Repository Service performance.

Increase the Maximum Heap Size property for the Model Repository Service process.

The Model Repository Service process can consume large amounts of memory while processing a large
number of concurrently logged in users. This can cause a large number of network connections to be
open between the Model Repository Service and other services such as the Data Integration Service or
the Analyst Service.

Use the Administrator tool to configure the Maximum Heap Size property to a larger value in the
Advanced Properties for the Model Repository Service process.

Monitoring Statistics
Monitoring is a domain function that the Service Manager performs. The Service Manager stores the
monitoring configuration in the Model repository. Use the Monitor tab in the Administrator tool to monitor
system bottlenecks such as the total number of running, failed, canceled, and completed jobs that run on a
selected service.

Consider the following solution for monitoring statistics bottlenecks:
Configure the domain to set up monitoring.

When you set up monitoring, the Data Integration Service stores persisted statistics and monitoring
reports in the Model repository. Persisted statistics are historical information about integration objects
that previously ran. The monitoring reports show key metrics about an integration object.

58 Chapter 7: Run-time Optimization

Configure monitoring settings for the domain to specify the Model repository that stores the run-time
statistics about objects deployed to Data Integration Services. Monitoring settings apply to all Data
Integration Services that in the domain and can affect service performance.

The following table describes monitoring settings that can affect services performance:

Option Description

Preserve Summary
Historical Data

Number of days that the Model repository saves averaged data. If purging is disabled, then
the Model repository saves the data indefinitely.
Default is 180. Minimum is 0. Maximum is 366.

Preserve Detailed
Historical Data

Number of days that the Model repository saves per-minute data. If purging is disabled, then
the Model repository saves the data indefinitely.
Default is 14. Minimum is 1. Maximum is 14.

Purge Statistics Every Interval, in days, at which the Model Repository Service purges data that is older than the
values configured in the Preserve Historical Data option.
Default is 1 day.

Days At Time of day when the Model Repository Service purges statistics. Default is 1:00 a.m.

Maximum Number of
Sortable Records

Maximum number of records that can be sorted in the Monitor tab. If the number of records
on the Monitor tab is greater than this value, then you can only sort by Start Time and End
Time. Default is 3,000.

Maximum Delay for
Update Notifications

Maximum time, in seconds, that the Data Integration Service buffers statistics before it
stores them in the Model repository and displays them in the Monitor tab. If the Data
Integration Service shuts down unexpectedly before it stores the statistics in the Model
repository, then the statistics are lost. Default is 10.

Show Milliseconds Include milliseconds for date and time fields in the Monitor tab.

Monitoring Statistics 59

Memory Allocation
To optimize mapping performance, configure memory properties for the Data Integration Service in the
Administrator tool.

The following table describes the maximum memory per request property for the Mapping Service Module:

Property Description

Maximum
Memory Per
Request

The behavior of Maximum Memory Per Request depends on the following Data Integration Service
configurations:
- The service runs jobs in separate local or remote processes, or the service property Maximum

Memory Size is 0 (default).
In this case, Maximum Memory Per Request is the maximum amount of memory, in bytes, that the
Data Integration Service can allocate to all transformations that use auto cache mode in a single
request. The service allocates memory separately to transformations that have a specific cache
size. The total memory used by the request can exceed the value of Maximum Memory Per
Request.

- The service runs jobs in the Data Integration Service process, and the service property Maximum
Memory Size is greater than 0.
In this case, Maximum Memory Per Request is the maximum amount of memory, in bytes, that the
Data Integration Service can allocate to a single request. The total memory used by the request
cannot exceed the value of Maximum Memory Per Request.

Default is 536,870,912.

The following table describes the execution options for the Data Integration Service:

Property Description

Maximum
Memory Size

Maximum amount of memory, in bytes, that the Data Integration Service can allocate for running all
requests concurrently when the service runs jobs in the Data Integration Service process. When the
Data Integration Service runs jobs in separate local or remote processes, the service ignores this
value. If you do not want to limit the amount of memory the Data Integration Service can allocate, set
this property to 0.
If the value is greater than 0, the Data Integration Service uses the property to calculate the
maximum total memory allowed for running all requests concurrently. The Data Integration Service
calculates the maximum total memory as follows:
Maximum Memory Size + Maximum Heap Size + memory required for loading program components
Default is 0.
Note: If you run profiles or data quality mappings, set this property to 0.

60 Chapter 7: Run-time Optimization

The following table describes the maximum heap size property for the Data Integration Service process:

Property Description

Maximum
Heap Size

Amount of RAM allocated to the Java Virtual Machine (JVM) that runs the Data Integration Service.
Use this property to increase the performance. Append one of the following letters to the value to
specify the units:
- b for bytes.
- k for kilobytes.
- m for megabytes.
- g for gigabytes.
Default is 640 megabytes.
Note: Consider increasing the heap size when the Data Integration Service needs to process large
amounts of data.

Data Object Caching
The Data Integration Service uses data object caching to access pre-built logical data objects and virtual
tables. Enable data object caching to increase performance for mappings, SQL data service queries, and web
service requests that include logical data objects and virtual tables.

By default, the Data Integration Service extracts source data and builds required data objects when it runs a
mapping, SQL data service query, or a web service request. When you enable data object caching, the Data
Integration Service can use cached logical data objects and virtual tables.

Perform the following steps to configure data object caching for logical data objects and virtual tables in an
application:

1. Configure the data object cache database connection in the cache properties for the Data Integration
Service.

2. Enable caching in the properties of logical data objects or virtual tables in an application.

By default, the Data Object Cache Manager component of the Data Integration Service manages the cache
tables for logical data objects and virtual tables in the data object cache database. When the Data Object
Cache Manager manages the cache, it inserts all data into the cache tables with each refresh. If you want to
incrementally update the cache tables, you can choose to manage the cache tables yourself using a database
client or other external tool. After enabling data object caching, you can configure a logical data object or
virtual table to use a user-managed cache table.

To use the Timestamp with Time Zone data type and to enable data object caching for IBM DB2 or for
Microsoft SQL Server, set the date time format of the deployed mapping to the "YYYY-MM-DD HH24:MI:SS"
format. The Data Integration Service writes the data up to seconds.

Data Types for Cache Tables
The Data Integration Service uses data from cache tables when it processes mappings, SQL data service
queries, and web service requests that contain cached objects. The cache table data types that the Data
Integration Service expects can differ from the cached object data types.

The Data Object Cache Manager creates the cache tables with the data types that the Data Integration
Service expects. If you use user-managed cache tables, verify that the cache tables use the data types that
the Data Integration Service expects.

Data Object Caching 61

Virtual Table Cache Data Types
The following table lists the cache table data types for virtual tables:

Virtual Table Data
Type

IBM DB2 Microsoft SQL Server Oracle

Char Vargraphic
Dbclob, for precision
greater than 32672

Nvarchar
Ntext, for precision greater
than 4000

Nvarchar2
Nclob, for precision greater
than 2000

Bigint Bigint Bigint Number

Boolean Integer Int Number

Date Time stamp Datetime2 Time stamp

Double Double Float Time stamp

Decimal Decimal Decimal Number

Int Integer Int Number

Time Time stamp Datetime2 Time stamp

Time stamp Time stamp Datetime2 Time stamp

Varbinary Blob Binary
Image, for precision greater
than 8000

Raw
Blob, for precision greater than
2000

Varchar Vargraphic
Dbclob, for precision
greater than 32672

Nvarchar
Ntext, for precision greater
than 4000

Nvarchar2
Nclob, for precision greater
than 2000

Logical Data Object Cache Data Types
The following table lists the cache table data types for logical data objects:

Logical Data
Object Data Type

DB2 Microsoft SQL Server Oracle

Bigint Bigint Bigint Number

Binary Blob Binary
Image, for precision greater
than 8000

Raw
Blob, for precision greater than
2000

Date/time Time stamp Datetime2 Time stamp

Double Double Float Number

Decimal Decimal Decimal Number

Integer Integer Int Number

62 Chapter 7: Run-time Optimization

Logical Data
Object Data Type

DB2 Microsoft SQL Server Oracle

String Vargraphic
Dbclob, for precision
greater than 32672

Nvarchar
Ntext, for precision greater than
4000

Nvarchar2
Nclob, for precision greater
than 2000

Text Vargraphic
Dbclob, for precision
greater than 32672

Nvarchar
Ntext, for precision greater than
4000

Nvarchar2
Nclob, for precision greater
than 2000

Data Object Cache Optimization
Cache performance depends on the performance of the cache database and the configuration of objects
within mappings, SQL data services, and web services.

Consider the following solutions to increase cache performance:
Optimize the cache database.

Optimal performance for the cache depends on the speed and performance of the cache database and
the cache size. Configure the cache size within the cache database.

Because the Data Object Cache Manager must maintain the old cache for a refresh operation, the cache
must be large enough to store two sets of data. Use the following formula to estimate the required
minimum cache size:

2 * average data object size * number of data objects
For example, you want to cache 20 logical data objects and 10 virtual tables. If your average object size
is 15 MB, then the required cache size is 2 * 15 MB * (20 + 10) = 900 MB.

Cache tables are read-only. End users cannot update the cache tables with SQL commands.

Define primary keys and foreign keys for logical data objects.

When the Data Integration Service generates cache for logical data objects with keys, it creates indexes.
The indexes can increase the performance of queries on the cache database.

Cache logical data objects that you join in a mapping.

When you join cached logical data objects, the Data Integration Service can push down the Joiner
transformation logic to the cache database even when the source data originates from different
databases.

Generate index cache based on columns in a logical data object or virtual table.

Configure the Data Integration Service to generate an index cache based on columns in logical data
objects or virtual tables. The index can increase the performance of queries on the cache database.

Data Object Caching 63

System Optimization
Often performance slows because the mapping relies on inefficient connections or an overloaded Data
Integration Service process system. System delays can also be caused by routers, switches, network
protocols, and usage by many users.

Slow disk access on source and target databases, source and target file systems, and nodes in the domain
can slow mapping performance. Have the system administrator evaluate the hard disks on the machines.

Consider the following solutions for system optimization bottlenecks:
Improve network speed.

Slow network connections can slow mapping performance. Have the system administrator determine if
the network runs at an optimal speed. Decrease the number of network hops between the Data
Integration Service process and databases.

Use multiple CPUs.

You can use multiple CPUs to run multiple mappings in parallel.

Reduce paging.

When an operating system runs out of physical memory, it starts paging to disk to free physical memory.
Configure the physical memory for the Data Integration Service process machine to minimize paging to
disk.

Use processor binding.

In a multi-processor UNIX environment, the Data Integration Service may use a large amount of system
resources. Use processor binding to control processor usage by the Integration Service process. Also, if
the source and target database are on the same machine, use processor binding to limit the resources
used by the database.

64 Chapter 7: Run-time Optimization

C h a p t e r 8

SQL Data Service Optimization
This chapter includes the following topics:

• SQL Data Service Optimization Overview, 65

• Third-party Client Tool Optimization, 66

• SQL Data Service Optimizer Levels, 66

• SQL Data Service Properties for Memory and Concurrent Requests, 69

• Result Set Cache for an SQL Data Service, 71

• Persisting Virtual Data in Temporary Tables, 72

SQL Data Service Optimization Overview
You can optimize SQL data services to improve performance when end users run SQL queries against them
using third-party client tools. If an SQL data service uses a virtual table mapping, you can optimize the
sources, transformations, and the mapping.

Use the following optimization techniques to optimize an SQL data service:

• Optimize third-party client tools.

• Configure the SQL data service optimizer level.

• Configure SQL data service properties for concurrency and memory for a Data Integration process.

• Configure data object caching for the SQL data service.

• Configure result set caching for the SQL data service.

• Configure constraints for virtual tables in the SQL data service.

65

Related Topics:
• “Data Object Caching” on page 61

Third-party Client Tool Optimization
Third-party client tools can affect performance when processing and running SQL queries against an SQL
data service. Optimize the third-party client tools that end users can use to run SQL queries against an SQL
data service.

Consider the following solutions for third-party client tool bottlenecks:
Send large query results to a file on disk.

A third-party client tool can affect performance if it displays large query results on the console window.

Configure the third-party client tool to disable encryption.

A third-party client tool can affect performance if it encrypts data while fetching or displaying query
results.

Configure the third-party client tool to previously fetch a set of rows.

A third-party client tool can affect performance if it fetches single rows at a time.

Configure the third-party client tool to disable the option to read contents from the table when it is first loaded.

A third-party client tool can affect performance if the datatype settings for the BLOB and CLOB datatypes
are configured to read contents from the table when it is first loaded if the BLOB and CLOB datatypes are
not used in the query.

Configure the third-party client tool to use the default format and conversion settings for Date, Time, and Timestamp.

A third-party client tool can affect performance if the Date, Time, and Timestamp format and conversion
settings are set to a user-specified format instead of the default format.

Disable the debug option or set it to no debug.

A third-party client tool can affect performance if the debug option to run the query is set to trace. This
can slow down performance as the third-party client tool writes more log messages to the debug file
while processing the query.

SQL Data Service Optimizer Levels
The Data Integration Service optimizes SQL data services based on the optimizer level that you configure.
Configure the optimizer level when you want the SQL data service to use an optimizer level other than
normal. By default, each SQL data service uses the normal optimizer level.

To understand how the optimizer level creates an optimized query for an SQL data service, view the query
plan for an SQL Data Service. When you view the query plan, the Developer tool displays a graphical
representation of the optimized query based on the optimizer level and a graphical representation of the
original query.

You can configure the following optimizer levels:

None

The Data Integration Service does not apply any optimization.

66 Chapter 8: SQL Data Service Optimization

Minimal

The Data Integration Service applies the early projection optimization method.

Normal

The Data Integration Service applies the early projection, early selection, branch pruning, push-into,
global predicate optimization, and predicate optimization methods. Normal is the default optimization
level.

Full

The Data Integration Service applies the cost-based, early projection, early selection, branch pruning,
predicate, push-into, semi-join, and dataship-join optimization methods.

You can use one or more of the following methods to configure the optimizer level for an SQL data service:

• Configure the optimizer level for data preview of SQL data services.

• Configure the optimization level for deployed SQL data services.

• Configure the optimizer level in the connection string of queries that you run against a deployed SQL data
services.

Configuring the SQL Data Service Optimizer Level for Data Preview
Configure the optimizer level that the Data Integration Service uses to execute SQL queries when you preview
the output of a SQL data service.

1. In the Developer tool, click Run > Open Run Dialog.

The Run dialog box appears.

2. Click Data Viewer Configuration.

3. Click the New button.

4. Enter a name for the data viewer configuration.

5. Click the Advanced tab.

6. Select an optimizer level.

7. Click Apply.

8. Click Close

The Developer tool creates the data viewer configuration.

Configuring the Optimizer Level for Deployed SQL Data Services
Configure the optimizer level that the Data Integration Services uses to execute SQL queries against a
deployed SQL data service. You can choose to override the optimizer level for a single query by configuring
the optimizer level in the SQL data service connection.

1. In the Administrator tool, select a Data Integration Service.

2. Click the Applications view.

3. Expand the application that contains the SQL data service for which you want to configure the optimizer
level.

SQL Data Service Optimizer Levels 67

4. Select the SQL data service and edit the following property:

Property Description

Optimization
Level

The optimizer level that the Data Integration Service applies to the object. Enter the numeric
value that is associated with the optimizer level that you want to configure. You can enter one
of the following numeric values:
- 0. The Data Integration Service does not apply optimization.
- 1. The Data Integration Service applies the early projection optimization method.
- 2. The Data Integration Service applies the early projection, early selection, push-into, and

predicate optimization methods.
- 3. The Data Integration Service applies the cost-based, early projection, early selection,

push-into, predicate, and semi-join optimization methods.

5. To override optimizer level that the Data Integration Services uses to execute a query, append the
following entry to the JDBC URL or ODBC connection string: SQLDataServiceOptions.optimizeLevel=
<numeric_optimizer_level>.

SQL Data Service Query Plan
When you view the query plan for an SQL data service, you view the graphical representation of the original
query and the graphical representation of the optimized query. The graphical representation describes how
the Data Integration Service processes the query. It includes the transformations and the order which the
Data Integration Services processes each transformation.

The Developer tool uses the optimizer level that you set in the Developer tool to generate the optimized
query. The optimized query displays the query as the Data Integration Service runs it.

For example, you want to query the CUSTOMERS virtual table in an SQL data service. In the Data Viewer view,
you choose the default data viewer configuration settings, which sets the optimizer level for the query to
normal.

You enter the following query in the Data Viewer view:

select * from CUSTOMERS where CUSTOMER_ID > 150000 order by LAST_NAME
When you view the SQL query plan, the Developer tool displays the following graphical representation of the
query:

The non-optimized view displays the query that you enter. The Developer tool displays the WHERE clause as a
Filter transformation and the ORDER BY clause as a Sorter transformation. The Developer tool uses the pass-
through Expression transformation to rename ports.

When you view the optimized query, the Developer tool displays the following graphical representation of the
query:

68 Chapter 8: SQL Data Service Optimization

The optimized view displays the query that the Data Integration Service runs. Because the optimizer level is
normal, the Data Integration Service pushes the filter condition to the source data object. Pushing the filter
condition increases query performance because it reduces the number of rows that the Data Integration
Service reads from the source data object. Similar to the non-optimized query, the Developer tool displays the
ORDER BY clause as a Sorter transformation. It uses pass-through Expression transformations to enforce the
datatypes that you specify in the logical transformations.

Viewing an SQL Query Plan
Display the SQL query plan to view a mapping-like representation of the SQL query you enter when you
preview virtual table data.

1. Open an SQL data service that contains at least one virtual table.

2. Click the Data Viewer view.

3. Enter an SQL query in the Input window.

4. Optionally, select a data viewer configuration that contains the optimizer level you want to apply to the
query.

5. Click Show Query Plan.

The Developer tool displays the SQL query plan for the query as you entered it on the Non-Optimized tab.

6. To view the optimized query, click the Optimized tab.

The Developer tool displays the optimized SQL query plan.

SQL Data Service Properties for Memory and
Concurrent Requests

To optimize SQL data service performance, configure concurrency and memory properties for the Data
Integration Service in the Administrator tool.

The following table describes the maximum memory per request property for the SQL Service Module:

Property Description

Maximum
Memory Per
Request

The behavior of Maximum Memory Per Request depends on the following Data Integration Service
configurations:
- The service runs jobs in separate local or remote processes, or the service property Maximum

Memory Size is 0 (default).
In this case, Maximum Memory Per Request is the maximum amount of memory, in bytes, that the
Data Integration Service can allocate to all transformations that use auto cache mode in a single
request. The service allocates memory separately to transformations that have a specific cache
size. The total memory used by the request can exceed the value of Maximum Memory Per
Request.

- The service runs jobs in the Data Integration Service process, and the service property Maximum
Memory Size is greater than 0.
In this case, Maximum Memory Per Request is the maximum amount of memory, in bytes, that the
Data Integration Service can allocate to a single request. The total memory used by the request
cannot exceed the value of Maximum Memory Per Request.

Default is 50,000,000.

SQL Data Service Properties for Memory and Concurrent Requests 69

The following table describes the maximum heap size property for the Data Integration Service process:

Property Description

Maximum
Heap Size

Amount of RAM allocated to the Java Virtual Machine (JVM) that runs the Data Integration Service.
Use this property to increase the performance. Append one of the following letters to the value to
specify the units:
- b for bytes.
- k for kilobytes.
- m for megabytes.
- g for gigabytes.
Default is 640 megabytes.
Note: Consider increasing the heap size when the Data Integration Service needs to process large
amounts of data.

The following table describes the SQL properties for the Data Integration Service process:

Property Description

Maximum # of Concurrent
Connections

Limits the number of database connections that the Data Integration Service can
make for SQL data services. Default is 100.

The following table describes the execution options for the Data Integration Service:

Property Description

Maximum On-
Demand
Execution Pool
Size

Maximum number of on-demand jobs that can run concurrently. Jobs include data previews,
profiling jobs, REST and SQL queries, web service requests, and mappings run from the Developer
tool. All jobs that the Data Integration Service receives contribute to the on-demand pool size.
The Data Integration Service immediately runs on-demand jobs if enough resources are available.
Otherwise, the Data Integration Service rejects the job. Default is 10.

Maximum Native
Batch Execution
Pool Size

Maximum number of deployed jobs that can run concurrently in the native environment. The Data
Integration Service moves native mapping jobs from the queue to the native job pool when
enough resources are available. Default is 10.

Maximum Hadoop
Batch Execution
Pool Size

Maximum number of deployed jobs that can run concurrently in the Hadoop environment. The
Data Integration Service moves Hadoop jobs from the queue to the Hadoop job pool when enough
resources are available. Default is 100.

Maximum
Memory Size

Maximum amount of memory, in bytes, that the Data Integration Service can allocate for running
all requests concurrently when the service runs jobs in the Data Integration Service process.
When the Data Integration Service runs jobs in separate local or remote processes, the service
ignores this value. If you do not want to limit the amount of memory the Data Integration Service
can allocate, set this property to 0.
If the value is greater than 0, the Data Integration Service uses the property to calculate the
maximum total memory allowed for running all requests concurrently. The Data Integration
Service calculates the maximum total memory as follows:
Maximum Memory Size + Maximum Heap Size + memory required for loading program
components
Default is 0.
Note: If you run profiles or data quality mappings, set this property to 0.

70 Chapter 8: SQL Data Service Optimization

Result Set Cache for an SQL Data Service
When you configure the result set cache, the Data Integration Service caches the results of the DTM process
associated with each SQL data service query and web service request. The Data Integration Service caches
the results for the expiration period that you configure. When a client makes the same query before the cache
expires, the Data Integration Service returns the cached results.

Consider the following solution for result set cache bottlenecks:
Configure the result set cache for an SQL data service.

Result set cache enables the Data Integration Service to use cached results for SQL data service queries.
Users that run identical queries in a short period of time may want to use the result set cache to
decrease the runtime of identical queries.

When you enable the Data Integration Service to use cached results, data service performance
increases. However, to further improve the data service processing time for identical queries, allocate
enough space to store the cache in memory. When you configure the amount of cache memory to be
equal to or greater than what is required to cache the results, you increase performance by reducing the
system I/O overhead. When the Data Integration Service writes cache files to disk, the data service
processing time increases due to system I/O overhead.

SQL Data Service Result Set Cache Properties
To increase performance, you can configure the result set cache properties for a Data Integration Service.
You can also configure the number of milliseconds that the result set cache is available to use for a SQL data
service.

The following table describes the result set cache properties for the Data Integration Service:

Property Description

File Name Prefix The prefix for the names of all result set cache files stored on disk. Default is
RSCACHE.

Enable Encryption Indicates whether result set cache files are encrypted using 128-bit AES
encryption. Valid values are true or false. Default is true.

The following table describes the property that configure the number of miliseconds that the result set cache
is available to the SQL data service:

Property Description

Result Set Cache
Expiration Period

The number of milliseconds that the result set cache is available for use. If set to -1, the cache
never expires. If set to 0, result set caching is disabled. Changes to the expiration period do not
apply to existing caches. If you want all caches to use the same expiration period, purge the result
set cache after you change the expiration period. Default is 0.

Enabling Result Set Caching for an SQL Data Service
To use cached results for identical SQL data service queries, configure the Data Integration Service to use
result set caching.

1. In the Administrator tool, select a Data Integration Service.

Result Set Cache for an SQL Data Service 71

2. Click the Process view to configure the result set cache properties.

3. Click the Application view and then click the SQL data service to configure the Result Set Cache
Expiration property.

Persisting Virtual Data in Temporary Tables
A temporary table is a table in a relational database that stores intermediate, temporary data. Complex
queries commonly require storage for large amounts of intermediate data, such as information from joins.
When you implement temporary tables, business intelligence tools can retrieve this data from the temporary
table instead of the SQL data service. This results in an increase in performance.

Temporary tables also provide increased security in two ways. First, only the user of the active session can
access the tables. Also, the tables persist while a session is active, and the database drops the tables when
the connection closes.

Temporary Table Implementation
You can use temporary tables to improve the performance of large, complex queries. Temporary tables
improve performance because queries to temporary tables on a relational database are faster than repeated
queries to the SQL data service for the same data set.

Implementation of temporary tables for performance improvement requires actions by the Informatica
administrator and a business intelligence tool developer.

First, the Informatica administrator creates a relational database connection, and configures the Data
Integration Service to use the connection.

Then the developer for a business intelligence tool (for example, IBM Cognos or SAP Business Objects)
creates a connection between the business intelligence tool and the Informatica SQL data service. The
connection uses the Informatica ODBC or JDBC driver.

When these connections are active, the business intelligence tool can create and use temporary tables to
process large amounts of intermediate data.

72 Chapter 8: SQL Data Service Optimization

C h a p t e r 9

Web Service Optimization
This chapter includes the following topics:

• Web Service Optimization Overview, 73

• Optimize HTTP Requests, 74

• Web Service Message Compression, 74

• Web Service Optimizer Level, 74

• Web Services Properties for Memory and Concurrent Requests , 76

• Web Service Property to Configure an Active DTM Instance, 78

• Web Service Result Set Caching, 79

• Web Service Log Management, 79

Web Service Optimization Overview
You can optimize web services to improve performance when the Data Integration Service runs web service
requests. Tune the Data Integration Service to manage memory and handle concurrent web service requests.
To improve web service performance, use web service message compression, optimize HTTP requests, and
configure the data object and result set cache, and configure error log levels.

Use the following optimization techniques to optimize a web service:

• Optimize HTTP requests.

• Compress web service messages.

• Configure the web service optimizer level.

• Configure web services properties for concurrency and memory for a Data Integration process.

• Configure the Data Integration Service to keep a DTM process active so that it can process more than one
web service request.

• Configure data object caching for the web service.

• Configure result set caching for the web services.

• Configure the web services run-time error log levels.

73

Related Topics:
• “Data Object Caching” on page 61

Optimize HTTP Requests
Optimize HTTP requests to reduce the number of requests to the web server.

Consider the following solutions for HTTP request bottlenecks:
Decrease the HTTP socket timeout for the web service client.

The socket timeout sets the amount of the time the client waits before timing out the HTTP request. The
web service client can hang if the socket timeout value is large.

Web Service Message Compression
You can optimize web service performance by compressing large web messages that are passed to and from
providers.

Consider the following solution for web service message bottlenecks:
Enable SOAP message compression for a web service client.

SOAP message compression enables the web service to compress web service to receive compressed
web service client messages. The web service can accept a SOAP message with GZip compression from
a web service client.

When the Data Integration Service receives the response from the web service, it checks the Content-
Encoding HTTP header in the SOAP message and it decodes the message.

Web Service Optimizer Level
The Data Integration Service optimizes web services based on the optimizer level that you configure.
Configure the optimizer level when you want the web service to use an optimizer level other than the normal.
By default, each web service uses the normal optimizer level.

You can choose one of the following optimizer levels:

None

The Data Integration Service does not apply any optimization.

Minimal

The Data Integration Service applies the early projection optimization method.

Normal

The Data Integration Service applies the early projection, early selection, branch pruning, push-into,
global predicate optimization, and predicate optimization methods. Normal is the default optimization
level.

74 Chapter 9: Web Service Optimization

Full

The Data Integration Service applies the cost-based, early projection, early selection, branch pruning,
predicate, push-into, semi-join, and dataship-join optimization methods.

You can use one or more of the following methods to configure the optimizer level for a web service:

• Configure the optimizer level for data preview of a web service before you deploy it to a Data Integration
Service.

• Configure the optimization level for deployed web services that run on a specific Data Integration Service.

• Configure the optimizer level in the header of the web service request for a deployed web service.

Configuring the Web Service Optimizer Level for Data Preview
Configure the optimizer level that the Data Integration Services uses to preview the output of a web service.

1. In the Developer tool, click Run > Open Run Dialog.

The Run dialog box appears.

2. Click Web Service Configuration.

3. Click the New button.

4. Enter a name for the web service configuration.

5. Click the Advanced tab.

6. Select an optimizer level.

7. Click Apply.

8. Click Close

The Developer tool creates the web service configuration.

When you run the data viewer to preview the output of an operation mapping, select the web service
configuration that includes the optimizer level that you want to use.

Configuring the Optimizer Level for Deployed Web Services
Configure the optimizer level that the Data Integration Services uses to run a deployed web service. You can
choose to override the optimizer level for a single request by configuring the optimizer level in the HTTP
header of the web service SOAP request.

1. In the Administrator tool, select a Data Integration Service.

2. Click the Applications view.

3. Expand the application that contains the web service for which you want to configure the optimizer level.

Web Service Optimizer Level 75

4. Select the web service and edit the following property:

Property Description

Optimization
Level

The optimizer level that the Data Integration Service applies to the object. Enter the numeric
value that is associated with the optimizer level that you want to configure. You can enter one
of the following numeric values:
- 0. The Data Integration Service does not apply optimization.
- 1. The Data Integration Service applies the early projection optimization method.
- 2. The Data Integration Service applies the early projection, early selection, push-into, and

predicate optimization methods.
- 3. The Data Integration Service applies the cost-based, early projection, early selection,

push-into, predicate, and semi-join optimization methods.

5. To override the web service optimization level for a web service request, include the following entry in
the HTTP header of the web service SOAP request: WebServiceOptions.optimizeLevel=
<numeric_optimizer_level>.

Web Services Properties for Memory and Concurrent
Requests

To optimize web service performance, configure concurrency and memory properties for the Data Integration
Service and each web service in the Administrator tool.

The following table describes the maximum memory per request property for the Web Service Module:

Property Description

Maximum
Memory Per
Request

The behavior of Maximum Memory Per Request depends on the following Data Integration Service
configurations:
- The service runs jobs in separate local or remote processes, or the service property Maximum

Memory Size is 0 (default).
In this case, Maximum Memory Per Request is the maximum amount of memory, in bytes, that the
Data Integration Service can allocate to all transformations that use auto cache mode in a single
request. The service allocates memory separately to transformations that have a specific cache
size. The total memory used by the request can exceed the value of Maximum Memory Per
Request.

- The service runs jobs in the Data Integration Service process, and the service property Maximum
Memory Size is greater than 0.
In this case, Maximum Memory Per Request is the maximum amount of memory, in bytes, that the
Data Integration Service can allocate to a single request. The total memory used by the request
cannot exceed the value of Maximum Memory Per Request.

Default is 50,000,000.

76 Chapter 9: Web Service Optimization

The following table describes the execution options for the Data Integration Service:

Property Description

Maximum
Memory Size

Maximum amount of memory, in bytes, that the Data Integration Service can allocate for running all
requests concurrently when the service runs jobs in the Data Integration Service process. When the
Data Integration Service runs jobs in separate local or remote processes, the service ignores this
value. If you do not want to limit the amount of memory the Data Integration Service can allocate, set
this property to 0.
If the value is greater than 0, the Data Integration Service uses the property to calculate the
maximum total memory allowed for running all requests concurrently. The Data Integration Service
calculates the maximum total memory as follows:
Maximum Memory Size + Maximum Heap Size + memory required for loading program components
Default is 0.
Note: If you run profiles or data quality mappings, set this property to 0.

The following table describes the HTTP configuration properties for the Data Integration Service process:

Property Description

Maximum Backlog
Request

Maximum number of HTTP or HTTPS connections that can wait in a queue for this Data
Integration Service process. Default is 100.

Maximum
Concurrent
Requests

Maximum number of HTTP or HTTPS connections that can be made to this Data Integration
Service process. Minimum is 4. Default is 200.
Note: For a web service, this property impacts the number of web service requests that the Data
Integration Services accepts before it sends the requests to the Data Integration Service
backlog.

The following table describes the maximum heap size property that you can configure for the Data
Integration Service process:

Property Description

Maximum
Heap Size

Amount of RAM allocated to the Java Virtual Machine (JVM) that runs the Data Integration Service.
Use this property to increase the performance. Append one of the following letters to the value to
specify the units:
- b for bytes.
- k for kilobytes.
- m for megabytes.
- g for gigabytes.
Default is 640 megabytes.
Note: Consider increasing the heap size when the Data Integration Service needs to process large
amounts of data.

Web Services Properties for Memory and Concurrent Requests 77

Example Data Integration Service Configuration for Concurrent
Web Service Requests

When you configure how the Data Integration Service processes concurrent web services requests, verify that
the value for the maximum number of concurrent requests is the same for the web service and the Data
Integration Service process.

For example, in the following configuration the Data Integration Service accepts 200 concurrent HTTP
requests but only 10 web service concurrent requests:

Property Type Property Name Configuration

Data Integration Service Process Maximum Concurrent Requests 200

Data Integration Service Process Maximum Backlog Request 500

Data Integration Service Maximum On-Demand Execution Pool Size 100

Web Service Maximum Concurrent Request 10

When the Data Integration Service receives 20 web service requests, 10 web service requests fail because
the web service can only accept 10 concurrent requests.

To avoid web service requests failing when the web service reaches its maximum number of concurrent
requests, configure the same maximum value for the Data Integration Service process and the web service.
When the number of requests sent to the Data Integration Service exceeds the maximum concurrent requests
value, the additional requests remain in the backlog until the Data Integration Service process is available to
process the requests.

Web Service Property to Configure an Active DTM
Instance

To increase performance, you can configure the Data Integration Service to keep a DTM instance active so
that it can process more than one web service request. You can configure the DTM Keep Alive Time property
for the Data Integration Service in the Administrator tool.

The following table describes the DTM Keep Alive Time property:

Property Description

DTM Keep
Alive Time

Number of milliseconds that the DTM instance stays open after it completes the last request. Web
service requests that are issued against the same operation can reuse the open instance. Use the
keep alive time to increase performance when the time required to process the request is small
compared to the initialization time for the DTM instance. If the request fails, the DTM instance
terminates.
Default is 5000.
Note: The ability to use an existing DTM instance increases performance. The DIS requires
additional resources to start a DTM instance for each request. Keeping the DTM active consumes
memory. Therefore, users should consider the memory consumption when configuring this option.

78 Chapter 9: Web Service Optimization

Web Service Result Set Caching
When you configure result set caching, the Data Integration Service caches the results of the DTM process
associated with each web service request. The Data Integration Service caches the results for the expiration
period that you configure. When an external client makes the same request before the cache expires, the
Data Integration Service returns the cached results.

Consider the following solution for result set cache bottlenecks:

Configure the result set cache for a web service.

Result set caching enables the Data Integration Service to use cached results for web service requests.
Users that run identical queries in a short period of time may want to use result set caching to decrease
the runtime of identical queries.

The Data Integration Service stores the result set cache for web services by user when the web service
uses WSSecurity. The Data Integration Service stores the cache by the user name that is provided in the
username token of the web service request. When the Data Integration Service caches the results by
user, the Data Integration Service only returns cached results to the user that sent the web service
request.

Enabling Result Set Caching for a Web Service
To use cached results for identical web service requests, configure the Data Integration Service to use result
set caching.

1. In the Administrator tool, select a Data Integration Service.

2. Click the Process view to configure the result set cache properties.

3. Click the Application view, click the web service, and then click the operation to configure the cache
expiration period in the web service operation properties. If you want the Data Integration Service to
cache the results by user, enable WS-Security in the web service properties.

4. To disable result set caching for a web service request when the web service operation is configured to
cache the result set, include the following syntax in the HTTP header of the SOAP request:

WebServiceOptions.disableResultSetCache=true

Web Service Log Management
System I/O performance can decrease when the Data Integration Service writes and maintains a large
number of log files. The Data Integration Service generates web service run-time logs based on the trace
level that you configure. Consider managing the number of log files that the Data Integration Service writes
and maintains.

Consider the following solutions for web service log bottlenecks:

Set the web service trace level to off.

When you configure web service properties for a deployed web service, you can specify the log trace
level. The trace level determines the types of logs that the Data Integration Service writes to the run-time
log location. The default web service trace level is INFO. When the trace level is set to FINEST or ALL,
performance can decrease because the Data Integration Service writes more logs to the log file. The
performance impact of setting the trace level to FINEST or ALL is the greatest when the web service
uses HTTPS and WS-Security.

Web Service Result Set Caching 79

Archive log files that are no longer required.

System I/O is affected by storing too many log files. By default, the Data Integration Services writes the
web service run-time logs in the following directory: <InformaticaInstallationDir>/tomcat/bin/
disLogs/ws

Note: If you delete the ws folder to empty the logs, you must re-create the ws folder. Stop the Data
Integration Service before you delete and re-create the ws folder.

Enable the Skip Logs property in the Data Integration Service

Enable the Skip Logs property to prevent the Data Integration Service from generating log files when the
web service request completes successfully. The tracing level for web services must be set to INFO or
higher in the Data Integration Service.

80 Chapter 9: Web Service Optimization

C h a p t e r 1 0

Connections Optimization
This chapter includes the following topics:

• Connections Optimization Overview, 81

• Connection Pooling, 81

• Database Network Packet Size, 82

Connections Optimization Overview
You can optimize connections to improve performance. You can manage the pool of idle connection
instances for a database connection. You can increase the network packet size to allow larger packets of
data to cross the network at one time.

Use the following techniques to optimize connections:

• Optimize connection pooling.

• Optimize the database network packet size.

Connection Pooling
Connection pooling is a framework to cache database connection information that is used by the Data
Integration Service. It increases performance through the reuse of cached connection information.

Consider the following solution for connections bottlenecks:

Enable connection pooling for a database connection.

Enable connection pooling to optimize connection performance. You can manage the idle connection
instances for a database connection. The connection pool retains idle connection instances based on
the pooling properties that you configure. You can adjust the maximum and minimum number of idle
connections and the maximum wait time for an idle connection.

81

Pooling Properties in Connection Objects
You can edit connection pooling properties in the Pooling view for a database connection.

The number of connection pool libraries depends on the number of running Data Integration Service
processes or DTM processes. Each Data Integration Service process or DTM process maintains its own
connection pool library. The values of the pooling properties are for each connection pool library.

For example, if you set maximum connections to 15, then each connection pool library can have a maximum
of 15 idle connections in the pool. If the Data Integration Service runs jobs in separate local processes and
three DTM processes are running, then you can have a maximum of 45 idle connection instances.

To decrease the total number of idle connection instances, set the minimum number of connections to 0 and
decrease the maximum idle time for each database connection.

The following list describes database connection pooling properties that you can edit in the Pooling view for
a database connection:

Enable Connection Pooling

Enables connection pooling. When you enable connection pooling, each connection pool retains idle
connection instances in memory. To delete the pools of idle connections, you must restart the Data
Integration Service.

If connection pooling is disabled, the DTM process or the Data Integration Service process stops all
pooling activity. The DTM process or the Data Integration Service process creates a connection instance
each time it processes a job. It drops the instance when it finishes processing the job.

Default is enabled for DB2 for i5/OS, DB2 for z/OS, IBM DB2, Microsoft SQL Server, Oracle, and ODBC
connections. Default is disabled for Adabas, IMS, Sequential, and VSAM connections.

Minimum # of Connections

The minimum number of idle connection instances that a pool maintains for a database connection after
the maximum idle time is met. Set this value to be equal to or less than the maximum number of idle
connection instances. Default is 0.

Maximum # of Connections

The maximum number of idle connection instances that a pool maintains for a database connection
before the maximum idle time is met. Set this value to be more than the minimum number of idle
connection instances. Default is 15.

Maximum Idle Time

The number of seconds that a connection instance that exceeds the minimum number of connection
instances can remain idle before the connection pool drops it. The connection pool ignores the idle time
when the connection instance does not exceed the minimum number of idle connection instances.
Default is 120.

Database Network Packet Size
If you read from or write to Oracle, Sybase ASE, or Microsoft SQL Server targets, you can improve the
performance by increasing the network packet size based on the database that you read from or write to.
Increasing the network packet size allows larger packets of data to cross the network at one time.

Consider the following solutions for database network packet size bottlenecks:

82 Chapter 10: Connections Optimization

Increase the database network packet size for an Oracle database.

You can increase the database server network packet size in listener.ora and tnsnames.ora. Consult your
database documentation for additional information about increasing the packet size, if necessary.

Increase the database network packet size for a Sybase ASE database.

Consult your database documentation for information about how to increase the packet size. You must
also change the packet size for Sybase ASE in the relational connection object in the Data Integration
Service to reflect the database server packet size.

Increase the database network packet size for a Microsoft SQL Server database.

Consult your database documentation for information about how to increase the packet size. You must
also change the packet size for Microsoft SQL Server in the relational connection object in the Data
Integration Service to reflect the database server packet size.

Database Network Packet Size 83

I n d e x

A
Active DTM instance

Web Service 78
Aggregator transformation

transformation optimization 23
Analyst Service optimization

run time optimization 56

B
bottlenecks

on UNIX 12
on Windows 11

branch pruning optimization
description 46

bulk loads
target optimization 15

C
concurrent requests

SQL Data Service 69
Web Service 76

conditional filters
source optimization 19

connection pooling
connections optimization 81
properties 82

connections optimization
connection pooling 81
database network packet size 82

constraints
configuring constraints 21
source optimization 21

cost-based optimization
description 43

customized data object
source optimization 22

D
Data Integration Service

SQL data service result set cache 71
web service result set cache 79

Data Integration Service optimization
run time optimization 57

data object cache
configuring 61
description 61
index cache 61
optimization 63
table data types 61

data object cache (continued)
user-managed tables 61

database checkpoint intervals
target optimization 15

database hints
entering in Developer tool 20

database network packet size
connections optimization 82

databases
optimizing sources for partitioning 54
optimizing targets for partitioning 54

dataship-join optimization
description 43

datatype conversion optimization
mapping optimization 49

E
early projection optimization

description 41
early selection optimization

description 45
SQL transformation 33
Web Service Consumer transformation 36

enabling the result set cache for an SQL data service
result set cache 71

error tracing
mapping optimization 50

error tracing level
Web Service log management 79

expression optimization
mapping optimization 24

F
filter optimization

mapping optimization 49
filter port

Web Service Consumer transformation 37
flat file source

source optimization 18
flat file target

target optimization 14
flat files

optimizing sources for partitioning 53
optimizing targets for partitioning 53

full optimization level
description 40

H
Has Side Effects

transformation property description 35

84

hints
Query view 20

J
Java transformation

transformation optimization 26
JDBC drivers

run time optimization 66
Joiner transformation

transformation optimization 29

L
logical data objects

caching in database 61
Lookup transformation

transformation optimization 29

M
mapping optimization

datatype conversion optimization 49
error tracing 50
expression optimization 24
filter optimization 49
single-pass reading 48

mappings
global predicate optimization method 45
optimization methods 40
partitioned optimization 51
predicate optimization method 42

maximum parallelism
increasing 52

memory allocation
Active DTM instance 78
concurrent requests 69
SQL Data Service 69
Web Service 78

minimal optimization level
description 40

Model Repository Service optimization
run time optimization 58

monitoring statistics
run time optimization 58

N
normal optimization level

description 40

O
optimization

branch pruning optimization method 46
cost-based optimization method 43
dataship-join optimization method 43
early projection optimization method 41
early selection optimization method 45
mapping performance methods 40
push-into optimization method 46
pushdown optimization method 46
semi-join optimization method 44

optimization (continued)
side effects 35

optimization levels
description 40

optimize HTTP requests
Web Service optimization 74

Oracle database optimization
source optimization 22
target optimization 15

P
partitioning

multiple CPUs 51
optimizing 51
optimizing flat file sources 53
optimizing flat file targets 53
optimizing source databases 54
optimizing target databases 54
optimizing transformations 55

performance tuning
branch pruning optimization method 46
cost-based optimization method 43
dataship-join optimization method 43
early projection optimization method 41
early selection optimization method 45
global predicate optimization method 45
optimization levels 40
optimization methods 40
predicate optimization method 42
process overview 9
push-into optimization method 46
pushdown optimization method 46
semi-join optimization method 44

push-into optimization
description 46
enabling in SQL transformation 34
SQL transformation 33
Web Service Consumer transformation 37

pushdown optimization
description 46

pushdown optimization method
full pushdown 47
source pushdown 48

Q
query optimization

source optimization 18
Query view

configuring hints 20

R
result set cache

enabling the result set cache for an SQL data service 71
result set cache properties 71

result set cache properties
run time optimization 71

run time optimization
Analyst Service optimization 56
Data Integration Service optimization 57
Model Repository Service optimization 58
monitoring statistics 58
system optimization 64

Index 85

S
select distinct

source optimization 19
semi-join optimization

description 44
side effects

description 35
SQL transformation 33
Web Service Consumer transformation 36

single-pass reading
mapping optimization 48

Sorter transformation
transformation optimization 32

source optimization
conditional filters 19
constraints 21
customized data object 22
flat file source 18
Oracle database optimization 22
query optimization 18
select distinct 19

SQL Data Service
memory allocation 69

SQL Data Service optimization
JDBC drivers 66
third-party client tools 66

SQL data service result set cache
Data Integration Service 71

SQL hints
entering in Developer tool 20

SQL query plans
viewing 69

SQL transformation
early selection optimization 33
push-into optimization 33
push-into optimization properties 34
transformation optimization 32

system
bottlenecks on UNIX, identifying 12
bottlenecks on Windows, identifying 11

system optimization
run time optimization 64

T
target optimization

bulk loads 15
database checkpoint intervals 15
flat file target 14
Oracle database optimization 15

temporary tables
description 72

third-party client tools
run time optimization 66

transformation cache
transformation optimization 34

transformation error elimination
transformation optimization 34

transformation optimization
Aggregator transformation 23
Java transformation 26
Joiner transformation 29
Lookup transformation 29
Sorter transformation 32
SQL transformation 32
transformation cache 34
transformation error elimination 34
Web Service Consumer transformation 36

transformations
optimizing for partitioning 55

U
UNIX

system bottlenecks 12

V
virtual tables

caching in database 61

W
Web Service

concurrent requests 76
memory allocation 78

Web Service Consumer transformation
early selection optimization 36
enabling push-into optimization 38
filter optimization 37
push-into optimization 37
transformation optimization 36

Web Service log management
error tracing level 79

Web Service message compression
Web Service optimization 74

Web Service optimization
optimize HTTP requests 74
Web Service message compression 74

web service result set cache
Data Integration Service 79

Windows
bottlenecks 11

86 Index

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrixes
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Performance Tuning Overview
	Performance Tuning Overview
	Performance Tuning Process
	Target Bottlenecks
	Source Bottlenecks
	Mapping Bottlenecks
	Computer System Bottlenecks
	Identifying System Bottlenecks on Windows
	Identifying System Bottlenecks on UNIX

	Run-time Bottlenecks
	SQL Data Service Optimization Bottlenecks
	Web Service Optimization Bottlenecks
	Connection Bottlenecks

	Chapter 2: Target Optimization
	Target Optimization Overview
	Flat File Target Optimization
	Database Checkpoint Intervals
	Bulk Loads
	Database Target Optimization

	Chapter 3: Source Optimization
	Source Optimization Overview
	Flat File Source Optimization
	Query Optimization
	Conditional Filters
	Select Distinct
	Hints
	Hints Rules and Guidelines
	Creating Hints

	Constraints
	Configuring Constraints

	Customized Data Object Optimization
	Database Source Optimization

	Chapter 4: Transformation Optimization
	Transformation Optimization
	Aggregator Transformation Optimization
	Expression Optimization
	Java Transformation Optimization
	Early Selection Optimization with the Java Transformation
	Push-Into Optimization with the Java Transformation

	Joiner Transformation Optimization
	Lookup Transformation Optimization
	Sorter Transformation Optimization
	SQL Transformation Optimization
	Early Selection Optimization with the SQL Transformation
	Push-Into Optimization with the SQL Transformation

	Transformation Cache
	Transformation Error Elimination
	Transformation Side Effects
	Web Service Consumer Transformation Optimization
	Early Selection Optimization with the Web Service Consumer Transformation
	Push-Into Optimization with the Web Service Consumer Transformation

	Chapter 5: Mapping Optimization
	Mapping Optimization Overview
	Optimization Methods
	Optimizer Levels
	Filter Optimizations
	Early Projection Optimization Method
	Predicate Optimization Method
	Cost-Based Optimization Method
	Dataship-Join Optimization Method
	Semi-Join Optimization Method
	Early Selection Optimization Method
	Global Predicate Optimization Method
	Branch Pruning Optimization Method
	Push-Into Optimization Method

	Pushdown Optimization
	Full Pushdown Optimization
	Source Pushdown
	Pushdown Optimization Rules and Guidelines

	Single-Pass Reading
	Filter Optimization
	Datatype Conversion Optimization
	Error Tracing

	Chapter 6: Partitioned Mapping Optimization
	Partitioned Mapping Optimization Overview
	Use Multiple CPUs
	Increase the Maximum Parallelism Value
	Optimize Flat Files for Partitioning
	Optimize Flat File Sources for Partitioning
	Optimize Flat File Targets for Partitioning

	Optimize Relational Databases for Partitioning
	Optimize the Source Database for Partitioning
	Optimize the Target Database for Partitioning

	Optimize Transformations for Partitioning

	Chapter 7: Run-time Optimization
	Run-time Optimization Overview
	Application Service Optimization
	Analyst Service Optimization
	Data Integration Service Optimization
	Model Repository Service Optimization

	Monitoring Statistics
	Memory Allocation
	Data Object Caching
	Data Types for Cache Tables
	Data Object Cache Optimization

	System Optimization

	Chapter 8: SQL Data Service Optimization
	SQL Data Service Optimization Overview
	Third-party Client Tool Optimization
	SQL Data Service Optimizer Levels
	Configuring the SQL Data Service Optimizer Level for Data Preview
	Configuring the Optimizer Level for Deployed SQL Data Services
	SQL Data Service Query Plan
	Viewing an SQL Query Plan

	SQL Data Service Properties for Memory and Concurrent Requests
	Result Set Cache for an SQL Data Service
	SQL Data Service Result Set Cache Properties
	Enabling Result Set Caching for an SQL Data Service

	Persisting Virtual Data in Temporary Tables
	Temporary Table Implementation

	Chapter 9: Web Service Optimization
	Web Service Optimization Overview
	Optimize HTTP Requests
	Web Service Message Compression
	Web Service Optimizer Level
	Configuring the Web Service Optimizer Level for Data Preview
	Configuring the Optimizer Level for Deployed Web Services

	Web Services Properties for Memory and Concurrent Requests
	Example Data Integration Service Configuration for Concurrent Web Service Requests

	Web Service Property to Configure an Active DTM Instance
	Web Service Result Set Caching
	Enabling Result Set Caching for a Web Service

	Web Service Log Management

	Chapter 10: Connections Optimization
	Connections Optimization Overview
	Connection Pooling
	Pooling Properties in Connection Objects

	Database Network Packet Size

	Index

