
Informatica® B2B Data Transformation
10.5.6

User Guide

Informatica B2B Data Transformation User Guide
10.5.6
June 2024

© Copyright Informatica LLC 2001, 2024

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

Informatica, the Informatica logo, PowerCenter, and PowerExchange are trademarks or registered trademarks of Informatica LLC in the United States and many
jurisdictions throughout the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company
and product names may be trade names or trademarks of their respective owners.

Subject to your opt-out rights, the software will automatically transmit to Informatica in the USA information about the computing and network environment in which the
Software is deployed and the data usage and system statistics of the deployment. This transmission is deemed part of the Services under the Informatica privacy policy
and Informatica will use and otherwise process this information in accordance with the Informatica privacy policy available at https://www.informatica.com/in/
privacy-policy.html. You may disable usage collection in Administrator tool.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

This software and documentation contain proprietary information of Informatica LLC and are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright law. Reverse engineering of the software is prohibited. No part of this document may be reproduced or transmitted in any
form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC. This Software may be protected by U.S. and/or
international Patents and other Patents Pending.

See patents at https://www.informatica.com/legal/patents.html.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product.

Publication Date: 2024-06-06

https://www.informatica.com/in/privacy-policy.html
https://www.informatica.com/in/privacy-policy.html
https://www.informatica.com/legal/patents.html

Table of Contents

Preface . 18
Informatica Resources. 18

Informatica Network. 18

Informatica Knowledge Base. 18

Informatica Documentation. 19

Informatica Product Availability Matrices. 19

Informatica Velocity. 19

Informatica Marketplace. 19

Informatica Global Customer Support. 19

Chapter 1: Introduction to Data Transformation. 20
Data Transformation Overview. 20

Data Transformation Process Architecture. 21

Data Transformation Components. 22

Chapter 2: Data Processor Transformation. 23
Data Processor Transformation Overview. 23

Data Processor Transformation Views. 24

Data Processor Transformation Ports. 25

Data Processor Transformation Input Ports. 25

Data Processor Transformation Output Ports. 26

Pass-Through Ports. 27

Startup Component. 27

References. 27

Data Processor Transformation Settings. 28

Character Encoding. 28

Rules and Guidelines for Character Encoding. 31

Output Settings. 31

Processing Settings. 32

XMap Settings. 33

XML Output Configuration. 33

Events. 35

Event Types. 35

Data Processor Events View. 35

Logs. 36

Design-Time Event Log. 36

Run-Time Event Log. 37

Viewing an Event Log in the Data Processor Events View. 37

User Log. 37

Data Processor Transformation Development. 38

Table of Contents 3

Create the Data Processor Transformation. 38

Select the Schema Objects . 39

Create Objects in a Blank Data Processor Transformation. 39

Create the Ports. 41

Testing the Transformation. 42

Data Processor Transformation Export and Import. 42

Exporting the Data Processor Transformation as a Service. 42

Importing Multiple Data Transformation Services. 43

Importing a Data Transformation Service . 43

Exporting a Mapping with a Data Processor Transformation to PowerCenter. 44

Data Processor Transformation Validation. 44

Using a Speed-enhanced Data Transformation Engine for VRL Validations. 45

Data Processor Transformation in a Non-native Environment. 45

Chapter 3: Wizard Input and Output Formats. 46
Wizard Input and Output Formats Overview. 46

Avro. 46

Avro Input and Complex File Reader. 47

Avro Data Compression with the Snappy Codec. 47

Configure a Transformation with Avro Input. 48

Configure a Transformation with Avro Output. 50

COBOL Processing Library. 51

Creating a Transformation for COBOL. 51

COBOL Data Definitions. 52

Test Procedures. 52

Editing a Transformation for COBOL. 53

Optimizing Large COBOL File Processing in the Hadoop Environment. 53

JSON. 54

JSON Schemas. 54

Sample JSON Schema. 54

Creating a Transformation with JSON. 56

Parquet. 56

Creating a Transformation with Parquet Input or Output. 57

Configure the Complex File Reader For Parquet Input. 57

Configure a Transformation with Parquet Output. 58

XML. 58

Creating a Transformation that Transforms XML. 59

Chapter 4: Relational Input and Output. 60
Relational Input and Output Overview. 60

Relational Input. 60

Relational Input Port Configuration. 61

Guidelines to Link Input Ports. 62

4 Table of Contents

Define Input Relational Ports with the Overview View. 62

Clustering_Key Ports. 63

Normalized Relational Input . 64

Pivoted Relational Input. 64

Denormalized Relational Input. 65

Mapping Relational Ports to Hierarchical Nodes. 65

Relational Output. 66

Relational Output Port Configuration. 66

Define Output Relational Ports with the Overview View. 67

Normalized Relational Output. 68

Pivoted Relational Output. 68

Denormalized Relational Output. 69

Chapter 5: Using the IntelliScript Editor. 70
IntelliScript Editor Overview. 70

Creating a Script. 70

Opening an IntelliScript Editor. 71

IntelliScript and Data Viewer. 71

Finding Anchors. 71

Components and Properties. 71

Basic and Advanced Properties. 72

Editing Procedures. 72

Basic Procedure for Editing. 72

Copy and Paste. 72

Drag and Drop. 73

Find and Replace. 73

Inserting Components in the IntelliScript. 73

Editing the Properties of a Component. 73

Inserting Tabs, Newlines, and Other Special Characters. 73

Defining a Global Component. 74

Viewing Help About a Component. 74

IntelliScript Icons. 75

Saving the IntelliScript. 75

IntelliScript Editor Menus. 76

Chapter 6: XMap. 78
XMap Overview. 78

XMap Schemas. 79

Mapping Statements. 80

Mapping Statement Types. 80

Map Statements. 81

Group Statements. 83

Repeating Group Statements. 84

Table of Contents 5

Router Statements. 86

Option Statements. 88

Default Statements. 89

Run XMap Statements. 90

RunMapplet Statement. 91

MappletInput Statement. 92

MappletOutput Statement. 93

Creating an XMap. 94

Using the XMap Editor Grid. 94

Creating Mapping Statements. 95

Mapping Statements Grid Interface. 95

XPath Expressions. 96

Predicates. 97

XPath Expression Editor. 100

Data Processor Functions. 101

XPath Expressions Example. 102

Creating An Expression. 103

XMap Variables. 103

Creating a Variable in the XMap Editor. 103

XMap Example. 103

XML Input Schema Example. 104

XML Output Schema Example. 105

XML Input Data. 105

Input and Output XML Hierarchies. 106

Mapping Statements in the Example. 107

Group Statements Example. 108

Chapter 7: Libraries. 110
Libraries Overview. 110

Library Structure. 111

Element Properties. 111

Library Management. 111

Edit Libraries with the Library Editor. 112

Adding an Element with the Library Editor. 113

Editing the Element Properties with the Library Editor. 113

Testing a Library. 113

Generating the Library Objects. 114

Discarding the Library Objects. 114

Edit Libraries with the IntelliScript Editor. 114

Chapter 8: Schema Object. 115
Schema Object Overview. 115

Schema Files. 115

6 Table of Contents

Schema Object Overview View. 116

Schema Object Schema View. 117

Namespace Properties. 118

Element Properties. 118

Simple Type Properties. 120

Complex Type Properties . 121

Attribute Properties. 121

Schema Object Advanced View. 122

Creating a Schema Object. 123

Schema Updates. 123

Schema Synchronization. 124

Schema File Edits. 124

Chapter 9: Command Line Interface. 127
Command Line Interface Overview. 127

CM_console. 127

Chapter 10: Scripts. 130
Scripts Overview. 130

Script Components. 131

Component Types. 131

Component Names. 132

Adding a Global Component. 132

Adding a Local Component. 132

Script Component Properties. 133

Simple Properties. 133

Advanced Properties. 133

Component Property Values. 134

Script Startup Components. 134

Setting the Startup Component with the IntelliScript Editor. 134

Example Sources. 135

Example Source Highlighting. 135

Setting an Example Source in the IntelliScript Editor. 135

Viewing an Example Source. 136

IntelliScript Editor. 136

Validate a Script. 137

Sample Scripts. 137

Importing a Sample Script. 138

Chapter 11: Parsers. 139
Parsers Overview. 139

Platform-Independent Parsers. 139

Newline Markers. 139

Table of Contents 7

File Paths. 139

Parser Component Reference. 140

Parser. 140

Chapter 12: Script Ports. 143
Script Ports Overview. 143

Script Port Component Reference. 143

AdditionalInputPort. 143

AdditionalOutputPort. 145

DocList. 148

FileSearch. 148

InputPort. 149

LocalFile. 149

OutputPort. 149

Text. 149

URL. 150

Chapter 13: Document Processors. 151
Document Processors Overview. 151

Defining a Document Processor. 151

Display of Document Processor Output. 152

Document Processor Component Reference. 152

AsnToXml. 152

ExcelToDataXml. 152

ExcelToXml. 153

ExcelToXml_03_07_10. 154

ExpandFrameSet. 155

ExternalJavaPreProcessor. 155

HIPAAValidator. 155

PdfFormToXml_1_00. 156

PdfToTxt_3_02. 156

PdfToTxt_4. 157

PowerpointToTextML. 157

ProcessByTransformers. 157

ProcessorPipeline. 158

RtfToTextML. 158

WordToXml. 158

XmlToDocument_372. 158

XmlToDocument_45. 159

XmlToExcel. 160

XmlToXlsx. 160

TextML XML Schema. 161

PdfToTxt_4 Table Configuration Editor. 162

8 Table of Contents

Editor Options. 163

PDF Conversion Example. 164

Chapter 14: Formats. 166
Formats Overview. 166

Standard Format Properties. 167

Format Component Reference. 167

BinaryFormat. 168

CustomFormat. 169

HtmlFormat. 170

RtfFormat. 171

TextFormat. 171

XmlFormat. 172

Delimiters Component Reference. 173

CommaDelimited. 174

Delimiter. 174

DelimiterHierarchy. 175

EnclosingDelimiters. 175

HL7. 176

Positional. 176

PostScript. 177

RTF. 177

SGML. 177

SpaceDelimited. 177

TabDelimited. 177

Format Preprocessor Component Reference. 178

HtmlProcessor. 178

RtfProcessor. 178

Chapter 15: Data Holders. 179
Data Holders Overview. 179

XML Schemas. 179

Schema Encoding. 180

Included Schema Files. 180

Namespaces. 180

Mixed Content. 180

Unsupported Schema Features. 180

Precision of Numerical Data. 181

Using a Schema to Map Anchors. 182

IntelliScript Representation of Data Holders. 182

Mapping Mixed Content. 182

Mapping XSI Types. 182

Generating Valid XML. 183

Table of Contents 9

Role of Schemas in Parsing. 183

Role of Schemas in Serialization and Mapping. 184

Variables. 184

Creating a User-Defined Variable. 185

System Variables. 185

Mapping Anchors to Variables. 187

Using Variables in Actions. 187

Initializing Variables at Runtime. 188

Variable Component Reference. 188

Variable. 188

Multiple-Occurrence Data Holders. 189

Attributes. 189

Indexing. 189

Destroying the Occurrences. 190

Chapter 16: Anchors. 191
Anchors Overview. 191

Marker and Content Anchors. 191

Other Anchor Types. 191

How Anchors and Delimiters Work Together. 192

Mapping Content Anchors to Data Holders. 192

Mapping to Variables. 193

Mapping to Multiple-Occurrence Data Holders. 193

Mapping to Mixed-Content Elements. 193

Defining Anchors. 193

Where to Define Anchors. 193

Sequence of Anchors. 194

Adding a Marker or Content Anchor. 194

Defining an Anchor. 194

Standard Anchor Properties. 195

How a Parser Searches for Anchors. 196

Search Phases. 196

Search Scope and Search Criteria. 197

Adjusting the Search Phase. 198

Adjusting the Search Scope. 198

Adjusting the Search Criteria. 200

Using Data Types to Narrow the Search Criteria. 201

Anchors that Contain Nested Anchors. 202

Anchor Component Reference. 202

Alternatives. 203

Content. 205

DelimitedSections. 208

EmbeddedParser. 211

10 Table of Contents

EnclosedGroup. 212

ExtractRecord. 214

FindReplaceAnchor. 215

Group. 217

Marker. 220

RepeatingGroup. 222

StructureDefinition. 226

Searcher Component Reference. 230

AttributeSearch. 230

LearnByExample. 231

NewlineSearch. 231

OffsetSearch. 231

PatternSearch. 232

SegmentSearch. 232

TextSearch. 233

TypeSearch. 234

Anchor Subcomponent Reference. 234

AllStructure. 234

AllStructureLocal. 235

ChoiceStructure. 235

ChoiceStructureLocal. 236

Connect. 237

EmbeddedStructure. 237

RecordStructure. 238

RecordStructureLocal. 239

SequenceStructure. 239

SequenceStructureLocal. 240

Chapter 17: Transformers. 242
Transformers Overview. 242

Defining Transformers. 242

Using Transformers in Anchors. 242

Sequences of Transformers. 243

Default transformers. 243

Using Transformers as Document Processors. 243

Using Transformers in Serialization Anchors. 244

Using Transformers in Actions. 244

Standard Transformer Properties. 244

Transformer Component Reference. 244

AbsURL. 245

AddEmptyTagsTransformer. 245

AddString. 246

Base64Decode. 246

Table of Contents 11

Base64Encode. 247

BidiConvert. 247

CDATADecode. 248

CDATAEncode. 248

ChangeCase. 249

CreateGuid. 250

CreateUUID. 250

DateFormatICU. 250

Dos96HebToAscii. 253

DynamicTable. 253

EbcdicToAscii. 253

EDIFACTValidation. 253

EncodeAsUrl. 254

Encoder. 254

FormatNumber. 255

FromFloat. 256

FromInteger. 257

FromPackDecimal. 258

FromSignedDecimal. 258

hebrewBidi. 259

HebrewDosToWindows. 259

HebrewEBCDICOldCodeToWindows. 259

hebUniToAscii. 259

hebUtf8ToAscii. 259

HtmlEntitiesToASCII. 259

HtmlProcessor. 260

InjectFP. 260

InjectString. 261

InlineTable. 261

JavaTransformer. 262

LookupTransformer. 262

NormalizeClosingTags. 264

RegularExpression. 265

RemoveMarginSpace. 267

RemoveRtfFormatting. 267

RemoveTags. 267

Replace. 268

Resize. 269

ReverseTransformer. 269

RtfProcessor. 270

RtfToASCII. 270

SubString. 270

12 Table of Contents

ToFloat. 271

ToInteger. 272

ToPackDecimal. 272

TransformationStartTime. 273

TransformByParser. 274

TransformByProcessor. 275

TransformByService. 275

TransformerPipeline. 276

XMLLookupTable. 277

XSLTTransformer. 277

Chapter 18: Actions. 279
Actions Overview. 279

How Actions Work. 279

Comparison Between Actions and Transformers. 280

Defining Actions. 280

Standard Action Properties. 280

Action Component Reference. 281

AddEventAction. 281

AggregateValues. 282

AppendListItems. 284

AppendValues. 285

CalculateValue. 286

CombineValues. 288

CreateList. 289

CustomLog. 290

DateAddICU. 291

DateDiffICU. 292

DownloadFileToDataHolder. 293

DumpValues. 294

EnsureCondition. 295

ExcludeItems. 298

Map. 298

Notify. 300

ResetVisitedPages. 300

RunMapper. 301

RunMapplet. 302

RunParser. 303

RunPCWebService. 305

RunSerializer. 305

RunXMap. 306

SetValue. 307

Sort. 308

Table of Contents 13

ValidateValue. 309

WriteValue. 310

XSLTMap. 312

Action Subcomponent Reference. 313

OutputDataHolder. 313

OutputFile. 313

ResultFile. 314

StandardErrorLog. 314

Chapter 19: Serializers. 315
Serializers Overview. 315

Controlling How the Create Serializer Command Works. 315

Troubleshooting an Auto-Generated Serializer. 317

Creating a Serializer by Editing the Script. 318

Creating a Serializer within a RunSerializer Action. 318

Serialization Anchors. 318

Example of Serialization Anchors. 319

Sequence of Serialization Anchors. 319

Standard Serializer Properties. 320

Serializer Component Reference. 320

Serializer. 320

Serialization Anchor Component Reference. 321

AlternativeSerializers. 322

ContentSerializer. 323

DelimitedSectionsSerializer. 324

EmbeddedSerializer. 326

GroupSerializer. 327

RepeatingGroupSerializer. 328

StringSerializer. 330

Chapter 20: Mappers. 332
Creating a Mapper. 332

Components Nested within a Mapper. 332

Mapper Example. 333

Source XML. 333

Output XML. 333

Mapper Configuration. 334

Standard Mapper Properties. 334

Mapper Component Reference. 335

Mapper. 335

Mapper Anchor Component Reference. 336

AlternativeMappings. 337

EmbeddedMapper. 338

14 Table of Contents

GroupMapping. 339

RepeatingGroupMapping. 340

Chapter 21: Locators, Keys, and Indexing. 342
Overview of Locators, Keys, and Indexing. 342

Example of Locators. 343

Input and Output. 343

Incorrect Solution. 343

Correct Solution. 344

Example of Indexing by Key. 344

Input. 344

Output. 345

Outline of the Transformation Approach. 345

Mapper Configuration. 345

Use of Indexing. 347

Source and Target Properties. 347

Source Property. 348

Target Property. 351

Standard Locator and Key Properties. 353

Locator and Key Component Reference. 353

Key. 353

Locator. 355

LocatorByKey. 356

LocatorByOccurrence. 357

Chapter 22: Streamers. 358
Streamers Overview. 358

Text Streamers. 359

Segments. 359

Simple Segments. 359

Complex Segments. 359

Example. 360

Header Concatenation. 360

Output of a Streamer. 360

Using Markers and Variables in Streamers. 361

Creating a Streamer. 361

XML Streamers. 363

Standard Streamer Properties. 365

Streamer Component Reference. 365

ComplexSegment. 366

ComplexXmlSegment. 366

JsonStreamer. 367

MarkerStreamer. 367

Table of Contents 15

SimpleSegment. 369

SimpleXmlSegment. 370

Streamer. 371

StreamerVariable. 372

XmlSegment. 372

XmlStreamer. 373

Streamer Subcomponent Reference. 374

AddHeaderModifier. 374

AddStringModifier. 375

DoNothingModifier. 376

WellFormedModifier. 376

WriteSegment. 377

Chapter 23: Validators, Notifications, and Failure Handling. 378
Overview of Validators, Notifiers, and Failure Handling. 378

Failure Handling. 379

Using the Optional Property to Handle Failures. 379

Writing a Failure Message to the User Log. 380

Validators. 382

Standard Validator Properties. 382

Validator Component Reference. 383

AlternativeValidators. 383

EDIFACTValidation. 384

Enumeration. 385

LengthEquals. 386

MaxLength. 387

MaxNumber. 388

MinLength. 389

MinNumber. 390

NumberEquals. 391

ValidateByExpression. 392

ValidateByPattern. 393

ValidateByTransformer. 394

ValidateByType. 395

ValidateDate. 396

ValidatorPipeline. 397

Notifications. 398

Notification Component Reference. 399

Notification. 399

NotificationGroup. 399

NotificationHandler. 399

NotifyFailure. 400

16 Table of Contents

Chapter 24: Validation Rules. 402
Validation Rules Overview. 402

Validation Rules Element Reference. 403

Assert Element Attributes. 403

List Element Attributes. 404

Lookup Element Attributes. 404

Rule Element Attributes. 405

Trace Element Attributes. 405

Variable Element Attributes. 405

XPath Editor. 406

XPath Extensions. 406

Edit the Validation Rules in an External Editor. 409

Create a Validation Rules Object. 409

Import a Data Transformation Service with Validation Rules. 409

Chapter 25: Custom Script Components. 411
Custom Script Components Overview. 411

Custom Component Example. 411

Custom Component Properties. 412

Developing a Custom Component. 412

Java Interface Example. 412

Sample Custom Java Components. 413

Configuring a Custom Component. 413

Sample Scripts Containing Custom Components. 414

Index. 415

Table of Contents 17

Preface
Use the Data Transformation User Guide to learn how to design, configure, test, and deploy the Data
Processor transformation. This guide contains detailed reference sections documenting the transformation
components and properties.

The Data Transformation User Guide is written for developers, analysts, and other Data Transformation users
who design and implement transformations. It assumes that you have a basic knowledge of using
Informatica Developer. It also assumes that you understand XML, schemas, and basic programming
techniques.

Informatica Resources
Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Network
The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:

• Search the Knowledge Base for product resources.

• View product availability information.

• Create and review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

18

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com

Informatica Documentation
Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Product Availability Matrices
Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and
select the eSupport option.

Preface 19

https://docs.informatica.com
mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com

C h a p t e r 1

Introduction to Data
Transformation

This chapter includes the following topics:

• Data Transformation Overview, 20

• Data Transformation Process Architecture, 21

• Data Transformation Components, 22

Data Transformation Overview
Data Transformation is an application that processes complex files, such as messaging formats, HTML
pages and PDF documents. Data Transformation also transforms formats such as ACORD, HIPAA, HL7, EDI-
X12, EDIFACT, and SWIFT.

Data Transformation installs by default when you install Informatica Developer (the Developer tool). You can
define a Data Processor transformation to transform complex files in a mapping. When you run a mapping
with the Data Processor transformation, the Data Integration Service calls the Data Transformation Engine to
process the data.

The Data Transformation application has the following elements:

Data Processor transformation

A transformation that processes complex files in a mapping. Define a Data Transformation Script, XMap,
Library, or Validation Rules object in the Developer tool to process the data. You can include the
transformation in an SQL data service mapping, web service, or mapping profile.

Data Transformation service

A set of Data Transformation objects that you can export from Data Processor transformation and run
standalone. You export a service to a Data Transformation repository and run the service from there.

Data Transformation repository

A directory that stores executable services that you export from a Data Processor transformation. The
repository directory name is ServiceDB.

Data Processor Engine

A processor that runs objects in the Data Processor transformation or services that you create in
Developer tool.

20

Data Transformation Process Architecture
You must install Data Transformation in order to configure and run a Data Processor transformation in the
Developer tool. The Data Processor transformation can contain multiple Scripts or XMap objects to
transform complex files. The Data Transformation Engine runs Scripts, Libraries or XMaps to transform the
data. You can use a Data Processor transformation in a data service, web service, or profile.

The following figure shows the components in the Data Transformation application and the components that
you use to create the same functionality in the Developer tool:

1. Create a Data Processor transformation in the Developer tool. Save the transformation in the Model
repository.

2. Export the Data Processor transformation as a Data Transformation service. Export the service to the
Data Transformation repository. You can run the service from the repository.

3. You can deploy an application that contains a Data Processor transformation to a Data Integration
Service.

4. The Data Integration Service runs the application and calls the Data Processor Engine to process the
transformation logic.

Data Transformation Process Architecture 21

5. The Data Processor Engine also runs services from the Data Transformation repository.

Data Transformation Components
When you define a Data Transformation service or a Data Processor transformation, you can combine
multiple components to transform the data.

Data Transformation has the following types of components that transform data:

Library

Transform an industry message type input into other formats.

Mapper

Converts an XML source document to another XML document.

Parser

Converts source documents to XML. The input can have any format. The output of a Parser is XML.

Serializer

Converts an XML file to another document. The output can be any format.

Streamer

Splits large input documents, such as multiple gigabyte data streams, into segments. The Streamer
splits documents that have multiple messages or multiple records in them.

Transformer

Modifies data in any format. Adds, removes, converts, or changes text. Use Transformers with a Parser,
Mapper, or Serializer. You can also run a Transformer as standalone component.

XMap

Converts a hierarchical source to another hierarchical structure. XMap has the same functionality as
Mapper, but you can use a grid in the Developer tool to define the mapping.

22 Chapter 1: Introduction to Data Transformation

C h a p t e r 2

Data Processor Transformation
This chapter includes the following topics:

• Data Processor Transformation Overview, 23

• Data Processor Transformation Views, 24

• Data Processor Transformation Ports, 25

• Startup Component, 27

• References, 27

• Data Processor Transformation Settings, 28

• Events, 35

• Logs, 36

• Data Processor Transformation Development, 38

• Data Processor Transformation Export and Import, 42

• Data Processor Transformation Validation, 44

• Data Processor Transformation in a Non-native Environment, 45

Data Processor Transformation Overview
The Data Processor transformation processes unstructured and semi-structured file formats in a mapping.
Configure the transformation to process messaging formats, HTML pages, XML, JSON, and PDF documents.
You can also convert structured formats such as ACORD, HIPAA, HL7, EDI-X12, EDIFACT, and SWIFT.

A mapping uses a Data Processor transformation to change documents from one format to another. The
Data Processor transformation processes files of any format in a mapping. When you create a Data
Processor transformation, you define components that convert the data.

A Data Processor transformation can contain multiple components to process data. Each component might
contain other components.

For example, you might receive customer invoices in Microsoft Word files. You configure a Data Processor
transformation to parse the data from each word file. Extract the customer data to a Customer table. Extract
order information to an Orders table.

When you create a Data Processor transformation, you define an XMap, Script, or Library. An XMap converts
an input hierarchical file into an output hierarchical file of another structure. A Library converts an industry
messaging type into an XML document with a hierarchy structure or from XML to an industry standard
format. A Script can parse source documents to hierarchical format, convert hierarchical format to other file
formats, or map a hierarchical document to another hierarchical format.

23

Define Scripts in the Data Processor transformation IntelliScript editor. You can define the following types of
Scripts:

• Parser. Converts source documents to XML. The output of a Parser is always XML. The input can have
any format, such as text, HTML, Word, PDF, or HL7.

• Serializer. Converts an XML file to an output document of any format. The output of a Serializer can be
any format, such as a text document, an HTML document, or a PDF.

• Mapper. Converts an XML source document to another XML structure or schema. You can convert the
same XML documents as in an XMap.

• Transformer. Modifies the data in any format. Adds, removes, converts, or changes text. Use
Transformers with a Parser, Mapper, or Serializer. You can also run a Transformer as stand-alone
component.

• Streamer. Splits large input documents, such as multi-gigabyte data streams, into segments. The
Streamer processes documents that have multiple messages or records in them, such as HIPAA or EDI
files.

Data Processor Transformation Views
The Data Processor transformation has multiple views that you access when you configure the
transformation and run it in the Developer tool.

Some of the Data Processor transformation views do not appear in the Developer tool by default. To change
the views for the transformation, click Window > Show View > Other > Informatica. Select the views you want
to see.

The Data Processor transformation has the following fixed views:

Overview view

Configure ports and define the startup component.

References view

Add or remove schemas from the transformation.

Settings view

Configure transformation settings for encoding, output control, and XML generation.

Objects view

Add, modify, or delete Script, XMap and Library objects from the transformation.

You can also access the following views for the Data Processor transformation:

Data Processor Hex Source view

Shows an input document in hexadecimal format.

Data Processor Events view

Shows information about events that occur when you run the transformation in the Developer tool.
Shows initialization, execution, and summary events.

Script Help view

Shows context-sensitive help for the Script editor.

24 Chapter 2: Data Processor Transformation

Data Viewer view

View example input data, run the transformation, and view output results.

Data Processor Transformation Ports
Define the Data Processor transformation ports on the transformation Overview view.

A Data Processor transformation can read input from a file, a buffer, or a streamed buffer from a complex file
reader. You can use a flat file reader as a buffer to read an entire file at one time. You can also read an input
file from a database.

A Data Processor transformation can read input from a file, a buffer, or a streamed buffer from a complex file
reader. You can use a flat file reader as a buffer to read an entire file at one time. You can also read an input
file from a database.

The output ports that you create depend on whether you want to return a string, complex files, or rows of
relational data from the transformation.

Data Processor Transformation Input Ports
When you create a Data Processor transformation, the Developer tool creates a default input port. When you
define an additional input port in a Script startup component, the Developer tool creates an additional input
port in the transformation.

The input type determines the type of data that the Data Integration Service passes to the Data Processor
transformation. The input type determines whether the input is data or a source file path.

Configure one of the following input types:

Buffer

The Data Processor transformation receives rows of source data in the Input port. Use the buffer input
type when you configure the transformation to receive data from a flat file or from an Informatica
transformaton.

File

The Data Processor transformation receives the source file path in the Input port. The Data Processor
startup component opens the source file. Use the file input type to parse binary files such as Microsoft
Excel or Microsoft Word files. You can also use the File input type for large files that might require a lot
of system memory to process with a buffer input port.

Service Parameter

The Data Processor transformation receives values to apply to variables in the service parameter ports.
When you choose the variables to receive input data, the Developer tool creates a service parameter port
for each variable.

Output_Filename

When you configure the default output port to return a file name instead of row data, the Developer tool
creates an Output_Filename port. You can pass a file name to the Output_Filename port from a mapping.

When you define an input port you can define the location of the example input file for the port. An example
input file is a small sample of the input file. Reference an example input file when you create Scripts. You
also use the example input file when you test the transformation in the Data Viewer view. Define the example
input file in the Input Location field.

Data Processor Transformation Ports 25

Service Parameter Ports
You can create input ports that receive values for variables. The variables can contain can contain any
datatype such a string, a date, or a number. A variable can also contain a location for a source document.
You can reference the variables in a Data Processor component.

When you create an input port for a variable, the Developer tool shows a list of variables that you can choose
from.

Creating Service Parameter Ports
You can create input ports that receive values for variables. You can also remove the ports that you create
from variables.

1. Open the Data Processor transformation Overview view.

2. Click Choose.

The Developer tool displays a list of variables and indicates which variables already have ports.

3. Select one or more variables.

The Developer tool creates a buffer input port for each variable that you select. You cannot modify the
port.

4. To remove a port that you create from a variable, disable the selection from the variable list. When you
disable the selection, the Developer tool removes the input port.

Data Processor Transformation Output Ports
The Data Processor transformation has one output port by default. If you define additional output ports in a
Script, the Developer tool adds the ports to the Data Processor transformation. You can create groups of
ports if you configure the transformation to return relational data. You can also create service parameter
ports and pass-through ports.

Default Output Port
The Data Processor transformation has one output port by default. When you create relational output, you
can define groups of related output ports instead of the default output port. When you define an additional
output port in a Script component, the Developer tool adds an additional output port to the transformation.

Configure one of the following output types for a default output port:

Buffer

The Data Processor transformation returns XML through the Output port. Choose the Buffer file type
when you parse documents or when you map XML to other XML documents in the Data Processor
transformation.

File

The Data Integration Service returns an output file name in the Output port for each source instance or
row. The Data Processor transformation component writes the output file instead of returning data
through the Data Processor transformation output ports.

When you select a File output port, the Developer tool creates an Output_Filename input port. You can
pass a file name into the Output filename port. The Data Processor transformation creates the output
file with a name that it receives in this port.

If the output file name is blank, the Data Integration Service returns a row error. When an error occurs,
the Data Integration Service writes a null value to the Output port and returns a row error.

26 Chapter 2: Data Processor Transformation

Choose the File output type when you transform XML to a binary data file such as a PDF file or a
Microsoft Excel file.

Pass-Through Ports
You can configure pass-through ports to any Data Processor transformation. Pass-through ports are input
and output ports that receive input data and return the same data to a mapping without changing it.

You can configure pass-through ports in a Data Processor transformation instance that is in a mapping.

To add a pass-through port, drag a port from another transformation in the mapping. You can also add ports
in the Ports tab of the Properties view. Click New to add a pass-through port.

Note: When you add pass-through ports to a Data Processor transformation with relational input and
hierarchical output, add the ports to the root group of the relational structure.

Data Processor transformations can include pass-through ports with custom data types.

Startup Component
A startup component defines the component that starts the processing in the Data Processor transformation.
Configure the startup component on the Overview view.

A Data Processor transformation can contain multiple components to process data. Each component might
contain other components. You must identify which component is the entry point for the transformation.

When you configure the startup component in a Data Processor transformation, you can choose an XMap,
Library, or a Script component as the startup component. In terms of Scripts, you can select one of the
following types of components:

• Parser. Converts source documents to XML. The input can have any format, such as text, HTML, Word,
PDF, or HL7.

• Mapper. Converts an XML source document to another XML structure or schema.

• Serializer. Converts an XML file to an output document of any format.

• Streamer. Splits large input documents, such as multi-gigabyte data streams, into segments.

• Transformer. Modifies the data in any format. Adds, removes, converts, or changes text. Use
Transformers with a Parser, Mapper, or Serializer. You can also run a Transformer as stand-alone
component.

Note: If the startup component is not an XMap or Library, you can also configure the startup component in a
Script instead of in the Overview view.

References
You can define transformation references, such as schema or mapplet references, by selecting a schema or
mapplet to serve as a reference. Some Data Processor transformations require a hierarchical schema to
define the input or output hierarchy for relevant components in the transformation. To use the schema in the
transformation, you define a schema reference for the transformation. You can also use a specialized action

Startup Component 27

named the RunMapplet action to call a mapplet from a Data Processor transformation. To call a mapplet, you
must first define a mapplet reference for the transformation.

You can define transformation references, such as schema or mapplet references, in the transformation
References view.

Schema References

The Data Processor transformation references schema objects in the Model repository. The schema objects
can exist in the repository before you create the transformation. You can also import schemas from the
transformation References view.

The schema encoding must match the input encoding for Serializer or Mapper objects. The schema encoding
must match the output encoding for Parser or Mapper objects. Configure the working encoding in the
transformation Settings view.

A schema can reference additional schemas. The Developer tool shows the namespace and prefix for each
schema that the Data Processor transformation references. When you reference multiple schemas with
empty namespaces the transformation is not valid.

Mapplet References

You can call a mapplet from a Data Processor transformation with the RunMapplet action. Before you add
the RunMapplet action to a Data Processor transformation component, you must first define a reference to
the mapplet that you want to call.

Data Processor Transformation Settings
Configure code pages, XML processing options, and logging settings in the Data Processor transformation
Settings view.

Character Encoding
A character encoding is a mapping of the characters from a language or group of languages to hexadecimal
code.

When you design a Script, you define the encoding of the input documents and the encoding of the output
documents. Define the working encoding to define how the IntelliScript editor displays characters and how
the Data Processor transformation processes the characters.

Working Encoding

The working encoding is the code page for the data in memory and the code page for the data that appears in
the user interface and work files. You must select a working encoding that is compatible with the encoding of
the schemas that you reference in the Data Processor transformation.

28 Chapter 2: Data Processor Transformation

The following table shows the working encoding settings:

Setting Description

Use the Data Processor Default
Code Page

Uses the default encoding from the Data Processor transformation.

Other Select the encoding from the list.

XML Special Characters Encoding Determines the representation of XML special characters. You can select None
or XML.
- None.

Leave as & < > " '
Entity references for XML special characters are interpreted as text. For
example, the character > appears as
>
Default is none.

- XML. Convert to & < > " '
Entity references for XML special characters are interpreted as regular
characters. For example, > appears as the following character:
>

Input Encoding

The input encoding determines how character data is encoded in input documents. You can configure the
encoding for additional input ports in a Script.

The following table describes the encoding settings in the Input area:

Setting Description

Use Encoding
Specified in Input
Document

Use the codepage that the source document defines, such as the encoding attribute of an XML
document.
If the source document does not have an encoding specification, the Data Processor
transfomation uses the encoding settings from the Settings view.

Use Working
Encoding

Use the same encoding as the working encoding.

Other Select the input encoding from a drop-down list.

Data Processor Transformation Settings 29

Setting Description

XML Special
Characters
Encoding

Determines the representation of XML special characters. You can select None or XML.
- None.

Leave as & < > " '
Entity references for XML special characters are interpreted as text, for example, the
character > appears as
>
Default in None.

- XML. Convert to & < > " '
Entity references for XML special characters are interpreted as regular characters. For
example, > appears as the following character:
>

Byte Order Describes how multi-byte characters appear in the input document. You can select the following
options:
- Little-endian. The least significant byte appears first. Default.
- Big-endian. The most significant byte appears first.
- No binary conversion.

Output Encoding

The output encoding determines how character data is encoded in the main output document.

The following table describes the encoding settings in the Output area:

Setting Description

Use Working
Encoding

The output encoding is the same as the working encoding.

Other The user selects the output encoding from the list.

XML Special
Characters
Encoding

Determines the representation of XML special characters. You can select None or XML.
- None.

Leave as & < > " '
Entity references for XML special characters are interpreted as text, for example, the
character > appears as
>
Default.

- XML. Convert to & < > " '
Entity references for XML special characters are interpreted as regular characters. For
example, > appears as the following character:
>

Same as Input
Encoding

The output encoding is the same as the input encoding.

Byte order Describes how multi-byte characters appear in the input document. You can select the
following options:
- Little-endian. The least significant byte appears first. Default.
- Big-endian. The most significant byte appears first.
- No binary conversion.

30 Chapter 2: Data Processor Transformation

Rules and Guidelines for Character Encoding
Use the following rules and guidelines when you configure encodings:

• To increase performance, set the working encoding to be the same encoding as the output document.

• Set the input encoding to the same encoding as the input document.

• Set the output encoding to the same encoding as the output document.

• For languages that have multiple-byte characters, set the working encoding to UTF-8. For the input and
output encoding, you can use a Unicode encoding such as UTF-8 or a double-byte code page such as Big5
or Shift_JIS.

Output Settings
Configure output control settings to control whether the Data Processor transformation creates event logs
and saves output documents.

You can control the types of messages that the Data Processor transformation writes to the design-time
event log. If you save the parsed input documents with the event logs, you can view the context where the
error occurred in the Event view.

The following table describes the settings in the Design-Time Events area:

Setting Description

Log design-time
events

Determines whether to create a design-time event log. By default, the Data Processor
transformation logs notifications, warnings, and failures in the design-time event log. You can
exclude the following event types:
- Notifications
- Warnings
- Failures

Save parsed
documents

Determines when the Data Processor transformation saves a parsed input document. You can
select the following options:
- Always.
- Never
- On failure
The default is always.

The following table describes the settings in the Run-Time Events area:

Setting Description

Log run-time events Determines whether an event log is created when you run the transformation from a mapping.
- Never.
- On failure
The default is Never.

Data Processor Transformation Settings 31

The following table describes the settings in the Output area:

Setting Description

Disable automatic
output

Determines whether the Data Processor transformation writes the output to the standard output
file. Disable standard output in the following situations:
- You pass the output of a Parser to the input of another component before the transformation

creates an output file.
- You use a WriteValue action to write data directly to the output from a Script instead of

passing data through the output ports.

Disable value
compression

Determines whether the Data Processor transformation uses value compression to optimize
memory use.
Important: Do not disable value compression except when Informatica Global Customer Support
advises you to disable it.

The following table describes the settings in the Binary output port collection mode area. You can select one
of these options for binary output for a relational to hierarchical transformation with XML, Avro, or Parquet
output, or for a Data Processor transformation Parser with Avro or Parquet output.

Setting Description

Collect input rows to a single output Determines whether the Data Processor transformation accumulates the
relational input to a single binary output port.

Split output when size exceeds Determines whether the Data Processor transformation divides the output into
chunks based on a maximum stated output size.

Output row for each row (do not
collect)

Determines whether the Data Processor transformation passes the output in
separate rows.

Processing Settings
The processing settings define how the Data Processor transformation processes an element without a
defined datatype. The settings affect Scripts. The settings do not affect elements that an XMap processes.

The following table describes the processing settings that affect XML processing in Scripts:

Setting Description

Treat as xs:string The Data Processor transformation treats an element with no type as a string. In the Choose
XPath dialog box, the element or attribute appears as a single node.

Treat as
xs:anyType

The Data Processor transformation treats an element with no type as anyType. In the Choose
XPath dialog box, the element or attribute appears as a tree of nodes. One node is of xs:string
type, and all named complex data types appear as tree nodes.

The following table describes a processing setting that affects Streamer processing:

Setting Description

Streamer chunk
size

This setting defines the amount of data that the Streamer reads each time from an input file
stream. The Data Processor transformation applies this setting to a Streamer with a file input.

32 Chapter 2: Data Processor Transformation

The following table describes a processing setting that affects hierarchical to relational transformation
processing:

Setting Description

Enforce strict
validation

This setting determines if the Data Processor transformation performs strict validation for
hierarchical input. When strict validation applies, the hierarchical input file must conform strictly to
its schema. This option can be applied when the Data Processor mode is set to Output Mapping,
which creates output ports for relational output.
This option does not apply to mappings with JSON input from versions previous to version 10.2.1.

Normalize XML
input

This setting determines if the Data Processor transformation normalizes XML input. By default, the
transformation performs normalization for XML input. In some cases, you might choose to skip
automatic normalization to increase performance.

XMap Settings
The XMap setting defines how the Data Processor transformation processes XMap input elements that are
not transformed to output elements. The unread elements are passed to a dedicated port named
XMap_Unread_Input_Values. The setting takes affect only when the XMap is selected as the start-up
component. The setting does not affect elements that the XMap processes.

To pass unread XMap elements to a dedicated port, enable the setting Write unread elements to an
additional output port.

XML Output Configuration
The XML generation settings define characteristics of XML output documents.

The following table describes the XML generation settings in the Schema Title area:

Setting Description

Schema location Defines the schemaLocation for the root element of the main output document.

No namespace schema
location

Defines the xsi:noNamespaceSchemaLocation attribute of the root element of the main
output document.

Data Processor Transformation Settings 33

Configure XML Output Mode settings to determine how the Data Processor transformation handles missing
elements or attributes in the input XML document. The following table describes the XML generation settings
in the XML Output Mode area:

Setting Description

As is Do not add or remove empty elements. Default is enabled.

Full All required and optional elements defined in the output schema are written to the output. Elements that
have no content are written as empty elements.

Compact Removes empty elements from the output.
If Add for Elements is enabled, then the Data Processor transformation removes only the optional
elements.
If Add for Elements is disabled, the Data Processor transformation removes all empty elements. The XML
output might not be valid.

The following table describes the XML generation settings in the Default Values for Required Nodes area:

Setting Description

Add for elements When the output schema defines a default value for a required element, the output includes the
element with a default value. Default is enabled.

Add for attributes When the output schema defines a default value for a required attribute, the output includes the
attribute with its default value. Default is enabled.

Validate added
values

Determines whether the Data Processor transformation validates empty elements that are added
by the Full mode output. Default is disabled.
If Validate added values is enabled and the schema does not allow empty elements, the XML
output might not be valid.

The following table describes the XML generation settings in the Processing Instructions area:

Setting Description

Add XML
processing
instructions

Defines the character encoding and XML version of the output document. Default is selected.

XML version Defines the XML version. The XML version setting has the following options:
- 1.0
- 1.1
Default is 1.0.

Encoding Defines the character encoding that is specified in the processing instruction. The Encoding
setting has the following options:
- Same as output encoding. The output encoding in the processing instruction is the same as

the output encoding defined in the Data Processor transformation settings.
- Custom. Defines the output encoding in the processing instruction. The user types the value

in the field.

Add custom
processing
instructions

Adds other processing instructions to the output document. Enter the processing instruction
exactly as it appears in the output document. Default is Disabled.

34 Chapter 2: Data Processor Transformation

The following table describes the XML generation settings in the XML Root area:

Setting Description

Add XML root
element

Adds a root element to the output document. Use this option when the output document
contains more than one occurrence of the root element defined in the output schema. Default
is Disabled.

Root element name Defines a name for the root element to add to the output document.

Events
An event is a record of a processing step from a component in the Data Processor transformation. In a Script
or Library, each anchor, action, or transformer generates an event. In an XMap, each mapping statement
generates an event.

You can view events in the Data Processor Events view.

Event Types
The Data Processor transformation writes events in log files. Each event has an event type that indicates if
the event was successful, the event failed, or if the event ran with errors.

A component can generate one or more events. The component can pass or fail depending on whether the
events succeed or fail. If one event fails, a component fails.

The following table describes the types of events that the Data Processor transformation generates:

Event Type Description

Notification Normal operation.

Warning The Data Processor transformation ran, but an unexpected condition occurred. For example, the
Data Processor transformation wrote data to the same element multiple times. Each time the
element is overwritten, the Data Processor transformation generates a warning.

Failure The Data Processor transformation ran, but a component failed. For example, a required input
element was empty.

Optional Failure The Data Processor transformation ran, but an optional component failed. For example, an optional
anchor was missing from the source document.

Fatal Error The Data Processor transformation failed because of a serious error. For example, the input
document did not exist.

Data Processor Events View
The Data Processor Events view displays events when you run a Data Processor transformation from the
Developer tool.

The Data Processor Events view has a Navigation panel and a Details panel. The Navigation panel contains a
navigation tree. The navigation tree lists the components that the transformation ran in chronological order.

Events 35

Each node has an icon that represents the most serious event below it in the tree. When you select a node in
the Navigation panel, events appear in the Details panel.

The navigation tree contains the following top-level nodes:

• Service Initialization. Describes the files and the variables that the Data Processor transformation
initializes.

• Execution. Lists the components that the Script, Library or XMap ran.

• Summary. Displays statistics about the processing.

When you run an XMap, each node name in the navigation panel has a number in square brackets, such as
[5]. To identify the statement that generated the events for the node, right-click in the statements grid and
select Go to Row Number. Enter the node number.

When you run a Script and double-click an event in the Navigation panel or the Details panel, the Script editor
highlights the Script component that generated the event. The Input panel of the Data Viewer view highlights
the part of the example source document that generated the event.

Logs
A log contains a record of the Data Processor transformation. The Data Processor transformation writes
events to logs.

The Data Processor transformation creates the following types of logs:

Design-time event log

The design-time event log contains events that occur when you run the Data Processor transformation in
the Data Viewer view. View the design-time log in the Events view.

Run-time event log

The run-time event log contains events that occur when you run the Data Processor transformation in a
mapping. You can view the run-time event log in a text editor or you can drag a run-time event log into
the Events view of the Data Processor transformation.

User log

The user log contains events that you configure for components in a Script. The Data Processor
transformation writes to the user log when you run it from the Data Viewer view and when you run it in a
mapping. You can view the user log in a text editor.

Design-Time Event Log
The design-time event log contains the events that occur when you run the Data Processor transformation
from the Data Viewer in the Developer tool.

When you run a Data Processor transformation from the Data Viewer view, the design-time event log appears
in the Data Processor Events view. By default, the design-time event log contains notifications, warnings, and
failures. In the transformation settings, you can configure the Data Processor transformation to exclude one
or more event types from the log.

When you save the input documents with the log, you can click an event in the Data Processor Events view to
find the location in the input document that generated the event. When you configure the Data Processor
transformation settings, you can choose to save the input files for every run or only on failure.

36 Chapter 2: Data Processor Transformation

The design-time event log is named events.cme. You can find the design-time event log for the last run of the
Data Processor transformation in the following directory:

C:\<Installation_directory>\clients\DT\CMReports\Init\events.cme

The Data Processor transformation overwrites the design-time event log every time you run the
transformation in the Data Viewer. Rename the design-time event log if you want to view it after a later run of
the transformation,or if you want to compare the logs of different runs. When you close the Developer tool,
the Developer does not save any files in the

Run-Time Event Log
The run-time event log records the events that occur when you run the Data Processor transformation in a
mapping.

If the Data Processor transformation completes the run with no failures, it does not write an event log. If
there are failures in the run, Data Processor transformation runs a second time and writes an event log during
the second run. The run-time event log is named events.cme.

On a Windows machine, the run-time event log in in the following directory:

C:<Installation_Directory>\clients\DT\CMReports\Tmp\
On a Linux or UNIX machine, the run-time event log for a root user in the following directory:

/root/<Installation_Dirctory>/clients/DT/CMReports/Tmp
On a Linux or UNIX machine, you can find the run-time event log for a non-root user in the following directory:

/home/[UserName]/<Installation_Directory>/DT/CMReports/Tmp
Use the configuration editor to change the location of the run-time event log.

Viewing an Event Log in the Data Processor Events View
Use the Data Processor Events view to view a design-time event log or a run-time event log.

Open Windows Explorer, and then browse to the event log file you want to view. Drag the log from the
Windows Explorer window to the Data Processor Events view. Right-click in the Data Processor Events view,
and then select Find to search the log.

Note: To reload the most recent design-time event log, right-click the Data Processor Events view, and then
select Reload Project Events.

User Log
The user log contains custom messages that you configure about failures of components in a Script.

The Data Processor transformation writes messages to the user log when you run a Script from the Data
Viewer view and when you run it in a mapping.

When a Script component has the on_fail property, you can configure it to write a message to the user log
when it fails. In the Script, set the on_fail property to one of the following values:

• LogInfo

• LogWarning

• LogError

Logs 37

Each run of the Script produces a new user log. The user log file name contains the transformation name
with a unique GUID:

<Transformation_Name>_<GUID>.log
For example, CalculateValue_Aa93a9d14-a01f-442a-b9cb-c9ba5541b538.log

On a Windows machine, you can find the user log in the following directory:

c:\Users\[UserName]\AppData\Roaming\Informatica\DataTransformation\UserLogs
On a Linux or UNIX machine, you can find the user log for the root user in the following directory:

/<Installation_Directory>/DataTransformation/UserLogs
On a Linux or UNIX machine, you can find the user log for a non-root user in the following directory:

home/<Installation_Dirctory>/DataTransformation/UserLogs

Data Processor Transformation Development
Use the New Transformation wizard to auto-generate a Data Processor transformation, or create a blank Data
Processor transformation and configure it later. If you create a blank Data Processor transformation, you
must select to create a Script, XMap, Library, or Validation Rules object in the transformation. A Script can
parse source documents to hierarchical format, convert hierarchical format to other file formats, or map a
hierarchical document to another hierarchical format. An XMap converts an input hierarchical file into an
output hierarchical file of another structure. A Library converts an industry messaging type into an XML
document with a hierarchy structure or from XML to an industry standard format. Choose the schemas that
define the input or output hierarchies.

1. Create the transformation in the Developer tool.

2. For a blank Data Processor transformation, perform the following additional steps:

a. Add schema references that define the input or output XML hierarchies.

b. Create a Script, XMap, Library, or Validation Rules object.

3. Configure the input and output ports.

4. Test the transformation.

Create the Data Processor Transformation
Create a Data Processor transformation in the Developer tool. If you create a blank Data Processor
transformation, you must then create a Script, XMap, Library, or Validation Rules object in the transformation.
Alternatively, you can use the New Transformation wizard to auto-generate a Data Processor transformation.

1. In the Developer tool, click File > New > Transformation.

2. Select the Data Processor transformation and click Next.

3. Enter a name for the transformation and browse for a Model repository location to put the
transformation.

4. Select whether to create Data Processor transformation with a wizard or to create a blank Data
Processor transformation.

5. If you selected to create a blank Data Processor transformation, click Finish.

The Developer tool creates the empty transformation in the repository. The Overview view appears in the
Developer tool.

38 Chapter 2: Data Processor Transformation

6. If you selected to create an Data Processor transformation with a wizard, perform the following steps:

a. Click Next.

b. Select an input format.

c. Browse to select a schema, copybook, example file, or specification file if required for certain input
formats such as COBOL or JSON.

d. Select an output format.

e. Browse to select a schema, copybook, example file, or specification file if required for the output
format.

f. Click Finish. The wizard creates the transformation in the repository.

The transformation might contain a Parser, Serializer, Mapper, or an object with common components. If
you selected a schema, copybook, example file, or specification file the wizard also creates a schema in
the repository that is equivalent to the hierarchy in the file.

Select the Schema Objects
Choose the schema objects that define the input or output hierarchies for each XMap or Script component
that you plan to create.

You can add schema references on the References view or you can add the schema references when you
create Script or XMap objects. A schema object must exist in the Model repository before you can reference
it in a Script or XMap.

1. In the Data Processor transformation Refererences view, click Add.

2. If the schema object exists in the Model repository, browse for and select the schema.

3. If the schema does not exist in the Model repository, click Create a new schema object and import a
schema object from a hierarchical schema file.

4. Click Finish to add the schema reference to the Data Processor transformation.

Create Objects in a Blank Data Processor Transformation
Create a Script, Library, XMap, or Validation Rules object on the Data Processor transformation Objects view.
After you create the object, you can open the object from the Objects view in order to configure it.

Creating a Script
Create a Script object and define the type of Script component to create. Optionally, you can define a schema
reference and example source file.

1. In the Data Processor transformation Objects view, click New.

2. Enter a name for the Script and click Next.

3. Choose to create a Parser or Serializer. Select Other to create a Mapper, Transformer, or Streamer
component.

4. Enter a name for the component.

5. If the component is the first component to process data in the transformation, enable Set as startup
component.

6. Click Next if you want to enter a schema reference for this Script. Click Finish if you do not want to enter
the schema reference.

Data Processor Transformation Development 39

7. If you choose to create a schema reference, select Add reference to a Schema Object and browse for
the Schema object in the Model repository. Click Create a new schema object to create the Schema
object in the Model repository.

8. Click Next to enter an example source reference or to enter example text. Click Finish if you do not want
to define an example source.

Use a example source to define sample data and to test the Script.

9. If you choose to select an example source, select File and browse for the sample file.

You can also enter sample text in the Text area. The Developer tool uses the text to test a Script.

10. Click Finish.

The Script view appears in the Developer tool editor.

Creating an XMap
Create an XMap on the Data Transformation Objects view. When you create an XMap, you must have a
schema that describes the input and the output hierarchal documents. You select the element in the schema
that is the root element for the input hierarchy.

1. In the Data Processor transformation Objects view, click New.

2. Select XMap and click Next.

3. Enter a name for the XMap.

4. If the XMap component is the first component to process data in the transformation, enable Set as
startup component.

Click Next.

5. If you choose to create a schema reference, select Add reference to a Schema Object, and browse for
the Schema object in the Model repository.

To import a new Schema object, click Create a new schema object.

6. If you have a sample hierarchical file that you can use to test the XMap with, browse for and select the
file from the file system.

You can change the sample hierarchical file.

7. Choose the root for the input hierarchy.

In the Root Element Selection dialog box, select the element in the schema that is the root element for
the input hierarchal file. You can search for an element in the schema. You can use pattern searching.
Enter *<string> to match any number of characters in the string. Enter ?<character>to match a single
character.

8. Click Finish.

The Developer tool creates a view for each XMap that you create. Click the view to configure the
mapping.

Creating a Library
Create a Library object on the Data Transformation Objects view. Select the message type, component and
name. Optionally, you can define a sample message type source file that you can use to test the Library
object.

Before you create a Library in the Data Processor transformation, install the library software package on your
computer.

1. In the Data Processor transformation Objects view, click New.

40 Chapter 2: Data Processor Transformation

2. Select Library and click Next.

3. Browse to select the message type.

4. Choose to create a Parser or Serializer.

Create a Parser if the Library object input is a message type and the output is XML. Create a Serializer if
the Library object input is XML and the output is a message type.

5. If the Library is the first component to process data in the Data Processor transformation, enable Set as
startup component.

Click Next.

6. If you have a sample message type source file that you can use to test the Library with, browse for and
select the file from the file system.

You can change the sample file.

7. Click Finish.

The Developer tool creates a view for each message type that you create. Click the view to access the
mapping.

Creating Validation Rules
Create a Validation Rules object in the Data Processor transformation Objects view.

1. In the Data Processor transformation Objects view, click New.

2. Select Validation Rules and click Next.

3. Enter a name for the Validation Rules.

4. If you have a sample XML file that you can use to test the Validation Rules with, browse for and select
the file from the file system.

You can change the sample XML file.

5. Click Finish.

The Developer tool creates a Validation Rules object and opens it in the Validation Rules editor.

Adding an Example Source
Choose the example source to test the Script, XMap, Library, or Validation Rules that you plan to create.

You can add an example source when you create a Script, XMap, Library, or Validation Rules. Once selected,
the example source is added to the Model repository. Due to Model repository limitations, the example
source file size is limited to 5 MB.

You can change the example source.

Create the Ports
Configure the input and output ports in the Overview view.

When you configure additional input or output ports in a Script, the Developer tool adds additional input ports
and additional output ports to the transformation by default. You do not add input ports on the Overview
view.

1. If you want to return rows of output data instead of XML, enable Relational Output.

When you enable relational output, the Developer tool removes the default output port.

2. Select the input port datatype, port type, precision and scale.

Data Processor Transformation Development 41

3. If you are not defining relational output ports, define the output port datatype, port type, precision, and
scale.

4. If a Script has additional input ports, you can define the location of the example input file for the ports.
Click the Open button in the Input Location field to browse for the file.

5. If you enabled relational output, click Output Mapping to create the output ports.

6. On the Ports view, map nodes from the Hierarchical Output area to fields in the Relational Ports area.

Testing the Transformation
Test the Data Processor transformation in the Data Viewer view.

Before you test the transformation, verify that you defined the startup component. You can define the startup
component in a Script or you can select the startup component on the Overview tab. You also need to have
chosen an example input file to test with.

1. Open the Data Viewer view.

2. Click Run.

The Developer tool validates the transformation. If there is no error, the Developer tool shows the
example file in the Input area. The output results appear in the Output panel.

3. Click Show Events to show the Data Processor Events view.

4. Double-click an event in the Data Processor Events view in order to debug the event in the Script editor.

5. Click Synchronize with Editor to change the input file when you are testing multiple components, each
with a different example input file.

If you modify the example file contents in the file system, the changes appear in the Input area.

Data Processor Transformation Export and Import
You can export a Data Processor transformation as a service and run it from a Data Transformation
repository. You can also import a Data Transformation service to the Developer tool. When you import a Data
Transformation service, the Developer tool creates a Data Processor transformation from the service.

Note: When you import a Data Transformation service to the Model repository, the Developer tool imports the
associated schemas to the repository. If you modify the schema in the repository, sometimes the changes do
not appear in the transformation schema references. You can close and open the Model repository
connection, or close and open the Developer tool to cause the schema changes to appear in the
transformation.

Exporting the Data Processor Transformation as a Service
You can export the Data Processor transformation as a Data Transformation service. Export the service to
the file system repository of the machine where you want to run the service. You can run the service with
PowerCenter, user-defined applications, or the Data Transformation CM_console command.

1. In the Object Explorer view, right-click the Data Processor transformation you want to export, and select
Export.

The Export dialog box appears.

2. Select Informatica > Export Data Processor Transformation and click Next.

42 Chapter 2: Data Processor Transformation

The Select page appears.

3. Click Next.

The Select Service Name and Destination Folder page appears.

4. Choose a destination folder:

• To export the service on the machine that hosts the Developer tool, click Service Folder.

• To deploy the service on another machine, click Folder. Browse to the \ServiceDB directory on the
machine where you want to deploy the service.

5. Click Finish.

Importing Multiple Data Transformation Services
You can import a directory of Data Transformation services from the machine where you saved the directory.
When you import Data Transformation services to the Developer Model repository, the Developer tool imports
the transformations, schemas and example data with the . cmw files. If you need to import many services,
import a directory of services instead of one service at a time.

1. Click File > Import.

The Import dialog box appears.

2. Select InformaticaImport Data Transformation Services (Folder) and click Next.

The Import Data Transformation Service page appears.

3. Browse to the directory that you want to import.

4. Browse to a location in the Repository where you want to save the transformations, then click Finish.

The Developer tool imports the transformations, schemas and example data with the .cmw file.

Importing a Data Transformation Service
You can import a Data Transformation service .cmw file to the Model repository to create a Data Processor
transformation. The Developer tool imports the transformation, schemas and example data with the .cmw
file.

1. Click File > Import.

The Import dialog box appears.

2. Select Informatica Import Data Transformation Service (Single) and click Next.

The Import Data Transformation Service page appears.

3. Browse to the service .cmw file that you want to import.

The Developer tool names the transformation according to the service file name. You can change the
name.

4. Browse to a location in the Repository where you want to save the transformation, then click Finish.

The Developer tool imports the transformation, schemas and example data with the .cmw file.

5. To edit the transformation, double-click the transformation in the Object Explorer view.

Data Processor Transformation Export and Import 43

Exporting a Mapping with a Data Processor Transformation to
PowerCenter

When you export a mapping with a Data Processor transformation to PowerCenter, you can export the
objects to a local file, and then import the mapping into PowerCenter. Alternatively, you can export the
mapping directly into the PowerCenter repository.

1. In the Object Explorer view, select the mapping to export. Right-click and select Export.

The Export dialog box appears.

2. Select Informatica > PowerCenter.

3. Click Next.

The Export to PowerCenter dialog box appears.

4. Select the project.

5. Select the PowerCenter release.

6. Choose the export location, a PowerCenter import XML file or a PowerCenter repository.

7. Specify the export options.

8. Click Next.

The Developer tool prompts you to select the objects to export.

9. Select the objects to export and click Finish.

The Developer tool exports the objects to the location you selected. If you exported the mapping to a
location, the Developer tool also exports the Data Processor transformations in the mapping, as
services, to a folder at the location that you specified.

10. If you exported the mapping to a PowerCenter repository, the services are exported to the following
directory path: %temp%\DTServiceExport2PC\
The export function creates a separate folder for each service with the following name:
<date><serviceFullName>
If the transformation includes relational mapping, a folder is created for relational to hierarchical
mapping, and a separate folder for hierarchical to relational mapping.

11. Copy the folder or folders with Data Processor transformation services from the local location where you
exported the files to the PowerCenter ServiceDB folder.

12. If you exported the mapping to a PowerCenter import XML file, import the mapping to PowerCenter. For
more information about how to import an object to PowerCenter, see the PowerCenter 9.6.0 Repository
Guide.

Data Processor Transformation Validation
After you export a Data Processor transformation as a service, you can run VRL validations on the service
from the Data Transformation repository.

You can use a speed-enhanced Data Transformation engine for VRL validations. The speed-enhanced Data
Transformation engine supports the following VRL functions:

• dt:exist
• dt:empty

44 Chapter 2: Data Processor Transformation

• dt:date-valid
• dt:next-sequence
• dt:all-equal
• dt:lookup
• dt:regex-match

The speed-enhanced Data Transformation engine produces the output ValidateValue. ValidateValue contains
the property max_error_count, with a default of 200 errors. When the number of errors exceeds the
max_error_count, the validation stops.

Note: The speed-enhanced Data Transformation engine VRL syntax does not support the <list> tag.

Using a Speed-enhanced Data Transformation Engine for VRL
Validations

After you export a Data Transformation service, you can use a speed-enhanced Data Transformation engine
for VRL validations with the service.

u Set the following flag in the service .cmw file optimize_vrl.

Add the optimize_vrl flag to the ServiceConfigProf instance, as shown in the following example:

instance ServiceConfig = ServiceConfigProf<add_required_xml_elements,
add_required_xml_attributes, optimize_vrl>

Data Processor Transformation in a Non-native
Environment

The Data Processor transformation processing in a non-native environment depends on the engine that runs
the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported with restrictions in batch mappings. Not supported in streaming mappings.*

• Databricks Spark engine. Not supported.

* For information about the Data Processor transformation support on the Spark engine, see the KB article.

Data Processor Transformation in a Non-native Environment 45

https://kb.informatica.com/faq/7/Pages/24/613978.aspx

C h a p t e r 3

Wizard Input and Output Formats
This chapter includes the following topics:

• Wizard Input and Output Formats Overview, 46

• Avro, 46

• COBOL Processing Library, 51

• JSON, 54

• Parquet, 56

• XML, 58

Wizard Input and Output Formats Overview
You can use a wizard to create an auto-generated Data Processor transformation with input and output
formats such as COBOL, XML, relational, or JSON. You can also use the wizard to transform user-defined
formats.

Create a Data Processor transformation and select the input and output formats through the Data Processor
transformation wizard. Select from existing formats or create user defined formats. For certain formats, such
as XML, JSON, or COBOL, add a schema, specification file, example file or copybook that defines the
expected structure for the input or output.

The wizard creates a transformation with relevant Script, XMap, or Library objects that serve as templates to
transform the input format to the output format. The Data Processor transformation creates a transformation
solution according to the formats selected and the specification file, the example file, or the copybook. The
transformation might not be complete, but it contains components that you connect and customize to
complete the transformation definition.

Avro
Use the wizard to create a transformation with Avro input or output. When you create a Data Processor
transformation to transform the Avro format, you select an Avro schema or example file that defines the
expected structure of the Avro data. The wizard creates components that transform Avro format to other
formats, or from other formats to Avro format. These components can include a relational to hierarchical

46

mapping, a hierarchical to relational mapping, and an XMap. After the wizard creates the transformation, you
can further configure the transformation to determine the mapping logic.

Apache Avro is a data serialization system in binary or other data formats. Avro data is in a format that might
not be directly human-readable. For more information about Avro, see http://avro.apache.org/

Note: Use binary encoded Avro to create a transformation with Avro input or output. Avro input or output in
other formats is not processed.

A transformation that reads Avro input or output relies on a schema. When the transformation reads or writes
Avro data, the transformation uses the schema to interpret the hierarchy.

When you select an example file to define the Avro hierarchy, the wizard also saves the first record in the file
as a separate test file. You can use this file to test the transformation. To find the file, in the Ports panel of
the Overview view, check the path file listed in the Input Location field.

When you create a Data Processor transformation that transforms Avro to hierarchical format, or hierarchical
format to Avro, the wizard creates an XMap component in the transformation. The XMap editor shows the
hierarchical schema nodes and the Avro schema nodes. Use the XMap editor to link the nodes and define the
transformation logic. For more information about the XMap object and editor, see “XMap Overview” on page
78.

When you create a transformation that transforms Avro to relational format, or relational format to Avro, the
wizard creates a relational mapping. The Ports panel in the Overview view shows the Avro hierarchical
schema nodes and the relational ports. Use the Ports panel to link the hierarchical elements to the relational
ports and groups. For more information about transforming relational data, see “Relational Input and Output
Overview” on page 60.

After you create a Data Processor transformation for Avro input, you add it to a mapping with a complex file
reader. The complex file reader passes Avro input to the transformation. For a Data Processor transformation
with Avro output, you add a complex file writer to the mapping to receive the output from the transformation.

Avro Input and Complex File Reader
In order for Data Processor transformation to transform Avro input, the transformation receives data input
from a complex file reader object. After you create and configure the transformation, you add the
transformation to a mapping and connect the input port to the output port of the complex file reader.

The complex file reader provides input to a Streamer component that the Data Processor transformation
wizard creates as part of the transformation. If the transformation transforms Avro input to a custom format
or relational format, there is no need to change the Streamer settings. You specify a custom output format by
selecting Other as the output format in the wizard.

If the transformation transforms Avro input to JSON, XML, or Avro format, the wizard creates an XMap to
map the output format. You must identify the XMap to the Streamer, so that the transformation processes
data correctly.

You must also configure the complex file reader to process Avro input. The output port for the complex file
reader should be set to binary format. Similarly, the input port for the Data Processor transformation should
be set to binary input.

Avro Data Compression with the Snappy Codec
You can compress Avro data with the complex file reader. If you use the Snappy codec for Avro data
compression, you must update the Snappy codec .jar file before you test or run the transformation.

To use the Snappy codec, replace the default Snappy .jar file in the Informatica server installation and in the
Hadoop environment with the updated version. The updated snappy-java-1.0.4.1.jar file is available at the
following link: http://mvnrepository.com/artifact/org.xerial.snappy/snappy-java/1.1.0.1

Avro 47

HTTP://AVRO.APACHE.ORG/
http://mvnrepository.com/artifact/org.xerial.snappy/snappy-java/1.1.0.1

Updating the Snappy Codec to Enable Avro Data Compression
To enable Avro data compression with the Snappy codec, replace the default Snappy .jar file with the updated
version.

1. On the machine where you installed the Informatica server, replace the snappy-java-1.0.4.1.jar file in
the server installation with the snappy-java-1.1.0.1.jar file. Replace the .jar at the following path:
<Server_Installation>\services\shared\hadoop\<Hadoop_Distribution>\lib

2. On the machines where you installed and run Hadoop, replace the snappy-java-1.0.4.1.jar file with
the snappy-java-1.1.0.1.jar file. Replace the .jar at the following path: <Hadoop_rpm>\services
\shared\hadoop\<Hadoop_Distribution>\lib

Configure a Transformation with Avro Input
To create a Data Processor transformation for Avro input, use the Data Processor transformation wizard. The
wizard creates the transformation in the Model repository with the components you need to transform Avro
input. Use the IntelliScript editor to edit the Streamer, and the XMap editor to edit an XMap, if included in the
transformation. Add the transformation to a mapping with a complex file reader.

1. Create the Data Processor transformation with the New Transformation wizard. Add an Avro schema or
example file that defines the expect input structure.

2. If the transformation has XML, JSON, or another structured format as output, use the XMap editor to edit
the XMap in the transformation.

3. Use the IntelliScript editor to edit and customize the Streamer in the transformation. If the
transformation has XML, JSON, or another structured format output, edit the Streamer to identify the
XMap in the transformation.

4. Add the Data Processor transformation to a mapping with a complex file reader. The transformation
should remain set to binary input, the default setting for Avro input. Configure the complex file reader to
process Avro. The output setting remains set to binary, the default setting. Link the complex file reader
output port to the Data Processor transformation input port to provide the Avro input to the
transformation.

Step 1. Create a Transformation that Transforms Avro
Create a Data Processor transformation with Avro input, Avro output, or both.

1. In the Developer tool, click File > New > Transformation.

2. Select the Data Processor transformation and click Next.

3. Enter a name for the transformation and browse for a Model Repository location to put the
transformation.

4. Select Create a data processor using a wizard and click Next.

5. Select Avro or another input format and click Next.

6. If you selected Avro as the input format, browse to select an .xsd schema file or sample Avro file. Click
Next.

Developer adds an .xsd schema file representing the Avro hierarchy to the Model Repository. If you
select a sample file, Developer creates a test file from the first record in the sample file. You can use this
file to test the transformation. To find the file, in the Ports panel of the Overview view, check the path file
listed in the Input Location field.

7. Select Avro or another output format and click Next.

8. If you select Avro as an output format, browse to select a related schema or sample Avro file. Click Next.

48 Chapter 3: Wizard Input and Output Formats

9. Click Finish.

The Developer tool creates the transformation in the repository with the relevant components, such as
an XMap to transform the Avro hierarchy into another hierarchy format. The Overview view appears in
the Developer tool.

10. To edit the components in the transformation, in the Objects view, double click the transformation
component to open it in the relevant editor.

Step 2. Edit the XMap
To configure a Data Processor transformation XMap object, add mapping statements.

1. To open the XMap editor, on the Data Processor transformation Objects click the XMap object.

2. To create a Map, Group, or Repeating Group mapping statement, in the XMap editor drag and drop from
a node in the input hierarchical schema to a node in the output hierarchical schema.

The XMap editor creates a map link between the nodes. The mapping statement appears in the grid. The
XMap editor automatically completes the mapping statement fields.

3. To create conditional logic in the grid, add a Router mapping statement as follows:

a. Under the Router mapping statement, create Option mapping statements. Drag and drop input and
output schema nodes into the Option statement fields in the grid.

b. Under the Router mapping statement create one Default mapping statement to specify what
happens if no Option mapping statement applies.

c. Under the Option mapping statements, create Map mapping statements to specify conditions to
map the input node to the output node.

4. To provide a common context for a group of statements, add a Group mapping statement. Nest Map
mapping statements under the Group mapping statement.

5. To call another XMap object, add a Run XMap statement.

6. To change the context and logic for a mapping statement, edit mapping statement properties as follows:

a. Demote statements to be child statements, or promote statements to be parent statements.

b. Create XPath expressions to change the context or add predicates using the XPath editor.

Step 3. Configure the Streamer
If the transformation has XML output, JSON output, or another structured format selected as output, the
wizard creates a Streamer component and XMap object in the wizard. Edit the Streamer to identify the XMap
in the transformation.

1. In the Objects view, double-click the Streamer, a Script object, to open it in the IntelliScript editor.

2. To configure the Streamer to identify the XMap in the transformation, perform the following steps:

a. To configure the necessary element, expand the contains element, in the IntelliScript editor. Couble-
click the double-right arrows >> near the element.

b. Expand the repeating_segment element. Double-click the double-right arrows >> near the element.

c. In the run_component element select the relevant XMap object from the list of components.

3. To configure the Streamer to read data from locations in the source document and write the data to
XML, right-click

4. To configure the Streamer further, within the Streamer element, nest ComplexSegment and
SimpleSegment components corresponding to the source structure.

Avro 49

5. For each SimpleSegment, define the opening marker and closing marker if required. Define the
transformation that processes the segment.

Step 4. Configure the Complex File Reader
Add a Data Processor transformation that transforms Avro to a mapping with a complex file reader.
Configure the complex file reader to process Avro input.

1. In the Mapping editor, create a complex file reader object.

2. To configure the complex file reader, perform the following steps:

a. In the Advanced tab of the Properties view, select the File Format property, and then choose
Custom Input.

b. Select the Input Format property, and then type com.informatica.avro.AvroToXML.

c. To optimize performance, use the Input Format Parameters property to tune the
MaxOutputAccumulation parameter. By default, the MaxOutputAccumulation parameter, which
defines the expected number of output records, is set to 50,000. To change the setting to 250,000
for example, enter "MaxOutputAccumulation"="250000".

d. By default, the complex file reader adds the schema to the complex file reader output within a single
element directly after the root element. If you do not want to add the schema to the output, select
the Input Format Parameters property, then type "InjectSchema"="false".

Use a semi-colon to separate multiple parameters, for example
"MaxOutputAccumulation"="250000";"InjectSchema"="false".

3. Add the Data Processor transformation to the mapping. The transformation input port should remain set
to binary input, the default setting for Avro input.

4. Link the complex file reader output port to the Data Processor transformation input port. The complex
file reader output port should remain set to binary output.

Configure a Transformation with Avro Output
To create a Data Processor transformation for Avro output, use the Data Processor transformation wizard.
The wizard creates the transformation in the Model repository with the components you need to transform
Avro output. Use the XMap editor to edit the XMap, if included. Add the transformation to a mapping with a
complex file writer.

1. Create the Data Processor transformation with the New Transformation wizard. Add an Avro schema or
example file that defines the expect output structure.

2. If the transformation has XML, JSON, or another structured format as input, use the XMap editor to edit
and customize the XMap that the wizard created in the transformation.

3. To configure the output settings for the Data Processor transformation, in the Output Control panel of
the Settings view, select the relevant output option in the Binary output port collection mode area.

Note: To configure the output to send one record at a time with the schema, select the Output row for
each row option. To collect all the records with the schema into one output stream, select the Collect
input rows to a single output option.

4. Add the Data Processor transformation to a mapping. The transformation remains set to binary output,
the default setting for Avro output.

5. Create and link a complex file writer to the Data Processor transformation in the mapping to receive the
Avro output from the transformation.

Note: The input setting remains set to binary, the default setting. The complex file writer does not
support compression for Avro output.

50 Chapter 3: Wizard Input and Output Formats

6. Configure the Complex File Writer. In the Data Object Operation, in the Advanced tab, for the File Format,
select Custom Output. For Output Format, enter com.informatica.avro.XMLToAvro.

COBOL Processing Library
The COBOL library transforms COBOL data to and from XML. When you use the wizard to create a
transformation with COBOL input or output, you select a COBOL copybook to define the expected structure of
the input or output data.

When you create a Data Processor transformation with COBOL input or output with the wizard, Developer
adds the following objects to the transformation:

• A schema object that defines an XML representation of the COBOL data structure.

• For COBOL input, Developer adds a Parser that transforms input data from the COBOL data definition to
XML.

• For COBOL output, Developer adds a Serializer that transforms XML to COBOL.

Note: You can create a Data Processor transformation that uses COBOL input or output, but not both. To
process EBCDIC encoded COBOL, ensure that you change the encoding settings for the Data Processor
transformation to EBCDIC.

Creating a Transformation for COBOL
Use the Data Processor transformation wizard to create a Data Processor transformation with COBOL input
or output.

1. In the Developer tool, click File > New > Transformation.

2. Select the Data Processor transformation and click Next.

3. Enter a name for the transformation and browse for a Model Repository location to put the
transformation.

4. Select Create a data processor using a wizard and click Next.

5. Select an input format and click Next.

6. If you select COBOL as an input format, browse to select a COBOL copybook. Click Next.

The copybook specification file generally has an *.txt extension. Developer adds an XSD schema file
representing the copybook to the Model repository.

7. Select an output format and click Next.

8. If you select COBOL as an output format, browse to select an COBOL copybook. Click Next.

If you selected COBOL as the input format, you do not have the option to select COBOL as the output
format.

9. Click Finish.

The Developer tool creates the transformation in the repository. The Overview view appears in the
Developer tool.

10. In the Objects view, double-click the Parser to open it in the IntelliScript editor.

11. If the COBOL data is encoded in EBCDIC, in the Settings view change the input or output encoding to the
relevant EBCDIC codepage.

COBOL Processing Library 51

COBOL Data Definitions
The COBOL copybook that you use to create a Data Processor transformation can contain data definitions of
any complexity. The COBOL copybook and input must comply with data definition rules described in this
section.

Supported Data Definitions

The COBOL import supports data definitions of any complexity. For example, the data definitions can use the
packed decimal (COMP-3), binary (COMP-1, COMP-2, or COMP-4), and logical decimal point (99v99) data types.
They can contain features such as REDEFINES, OCCURS, and OCCURS DEPENDING ON clauses.

Data Definition Rules

A COBOL data definition must comply with the following rules:

• No more than 72 characters for each line, and no text beyond column 72

• The first line must be a remark, with a * in column 7, or it must start with a level number

• The first level number must be in column 1 or 8.

Unsupported Data Definitions

The Data Processor transformation does not support the following COBOL data definitions:

• The special level numbers 66, 77, and 88

• USAGE clauses at a group level

• INDEXED BY clauses

• POINTER and PROCEDURE-POINTER

Test Procedures
When you test the COBOL Parser you transform sample COBOL data to XML and verify the output. After you
test the Parser, you can run the COBOL serializer on the output of the Parser.

Testing a COBOL Parser
To test the COBOL Parser you need an input file that contains sample COBOL data. The data structure must
conform to the data definition that you imported. The Parser transforms sample COBOL data to XML and you
verify the output.

1. In the Object view, double-click the COBOL Parser.

The Parser appears in the script panel of the IntelliScript editor.

2. Right-click the Parser name, and then click Set as Startup Component.

3. Expand the IntelliScript tree, and then edit the example_source property of the Parser. Change its value
from Text to LocalFile.

The wizard configures the COBOL Parser in a way that does not require an example source document.
When you finish testing, you can remove the example source. The example source has no effect on the
transformation at run-time.

4. To assign an example file, expand the LocalFile component by clicking the double right arrows >>.
Double-click the file_name property and browse to the input file that contains the sample COBOL data.

5. In the Data Viewer view Input panel, you can examine the example file. If the document does not display,
right-click the Parser name in the IntelliScript, and click Open Example Source.

6. Click Run > Run Data Viewer to test the Parser.

52 Chapter 3: Wizard Input and Output Formats

7. In the Data Viewer view Output panel, examine the Parser output.

8. To confirm that the Parser ran without error, in the Data Viewer view Output panel, click the Show Events
button. Examine the execution log in the Data Processor Events view.

Testing a COBOL Serializer
After you test a COBOL Parser, you can run the COBOL Serializer on the output of the Parser.

1. In the Data Transformation Explorer, double-click the TGP script file of the Serializer.

The Serializer appears in the script panel of the IntelliScript editor.

2. Right-click the Serializer name, and then click Set as Startup Component.

3. Click Run > Run to activate the Serializer. At the prompt, browse to the Results\output.xml file, which
you generated when you ran the Parser.

4. Examine the execution log in the Events view. Confirm that the Serializer ran without error.

5. To view the Serializer output, double-click the Results\output.xml file in the Data Transformation
Explorer.

The display should be the same as the original input on which you ran the Parser.

Editing a Transformation for COBOL
You can edit a transformation for COBOL that you generate with the Data Processor transformation wizard.

If you do this, document your editing. The documentation might be essential if you later revise the COBOL
data definition, re-import it to a new transformation, and need to reproduce your editing.

Optimizing Large COBOL File Processing in the Hadoop
Environment

You can optimize how a mapping with a complex file reader and a Data Processor transformation processes
large COBOL files in the Hadoop environment.

In order to optimize large COBOL file processing, you must be able to use a regular expression to split the
records. If the COBOL file can be split with a regular expression, you can define an input parameter for the
complex file reader that provides a regular expression that determines how to split record processing in the
Hadoop environment.

Configuring the Complex File Reader for COBOL
Add a Data Processor transformation that transforms COBOL input to a mapping with a complex file reader.
Configure the complex file reader to optimize how the mapping processes COBOL input in a Hive
environment. The input encoding for the complex file reader must be EBCDIC.

1. In the Mapping editor, create a complex file reader object.

2. To configure the complex file reader, perform the following steps:

a. On the Advanced tab of the Properties view, select the File Format property, then choose Input
Format.

b. Select the Input Format property, then type com.informatica.hadoop.reader.RegexInputFormat.

c. To optimize performance, use the Input Format Parameters property to define the regular
expression in the form Regex="<regular expression>".

COBOL Processing Library 53

3. Create a Data Processor transformation for COBOL input using the wizard.

4. Add the Data Processor transformation to the mapping. The transformation input port should remain set
to binary input, the default setting for COBOL input.

5. Link the complex file reader output port to the Data Processor transformation input port. The complex
file reader output port should remain set to binary output.

JSON
When you create a Data Processor transformation with JSON input or output, you select a JSON schema or
sample file for the transformation. The schema or sample file defines the expected structure of the input or
output data hierarchy.

JavaScript Object Notation (JSON) is a hierarchical data-interchange format similar to XML. The JSON
format is often used to transmit structured data over a network connection. A Mapper or Serializer uses a
JSON input schema or input document in the same way as an XML input schema and input document to
define the expected input data hierarchy. A Parser uses a JSON output schema or output document to define
the expected output data hierarchy.

When you use the Data Processor transformation wizard to create a transformation with JSON input or
output, the transformation can contain a Parser, Mapper, Transformer, or a Serializer associated with the
JSON hierarchy. The JSON schema is converted into an .xsd file that defines the hierarchical structure of the
JSON file. You can use this .xsd schema with any JSON document that has the same hierarchical format.

JSON Schemas
When you create a Data Processor transformation with the wizard, you use a JSON schema or example
source to define the JSON input or output hierarchy.

The Data Processor transformation wizard generates an XML schema in the Model repository that specifies
the JSON structure that the transformation components use. The transformation contains a transformer
associated with the schema, and can contain other components, depending on the input or output you
selected in the wizard.

Scripts use schemas to define the input and output hierarchical structures. A JSON input schema must
comply with the JSON Schema Internet Draft, published by the Internet Engineering Task Force.

For more information about the JSON schema syntax, see the following websites:

• Introduction to JSON: http://www.json.org

• Convert a JSON document to a JSON Schema: http://jsonschema.net

Sample JSON Schema
The following example is a sample JSON schema:

{"type":"object",
 "$schema": "http://json-schema.org/draft-03/schema",
 "id": "#",
 "required":false,
 "properties":{
 "OrgId": {
 "type":"string",
 "id": "OrgId",
 "required":false

54 Chapter 3: Wizard Input and Output Formats

http://www.w3schools.com/
HTTP://JSONSCHEMA.NET

 },
 "metrics": {
 "type":"array",
 "id": "metrics",
 "required":false,
 "items": {
 "type":"object",
 "id": "0",
 "required":false,
 "properties":{
 "name": {
 "type":"string",
 "id": "name",
 "required":false
 },
 "valueTrend": {
 "type":"array",
 "id": "valueTrend",
 "required":false,
 "items": {
 "type":"object",
 "id": "0",
 "required":false,
 "properties":{
 "date": {
 "type":"string",
 "id": "date",
 "required":false
 },
 "val": {
 "type":"string",
 "id": "val",
 "required":false
 }
 }
 }
 }
 }
 }
 }
 }
}

The schema defines the elements and attributes that can occur in a JSON document. The schema uses the
JSON syntax to specify the hierarchy and sequence of elements, whether elements are required, the element
type, and possible values.

The previous sample schema defines the following JSON input document:

{"OrgId": "ORG000000000001",
 "metrics": [
 {
 "name": "COL1",
 "valueTrend": [
 {
 "date": "2011-11-01",
 "val": "122.456"
 },
 {
 "date": "2011-11-02",
 "val": "215.1"
 }
]
 },
 {
 "name": "COL2",
 "valueTrend": [
 {
 "date": "2011-11-01",
 "val": "122.456"
 },

JSON 55

 {
 "date": "2011-11-02",
 "val": "215.1"
 }
]
 }
]
}

If you trace through the schema, you can determine the relationship between the elements of the schema and
input document.

The schema hierarchy contains the metrics object that nests the valueTrend array. The array contains the
fields date and val that are of the string data type.

Creating a Transformation with JSON
Create a Data Processor transformation with JSON input or output.

1. In the Developer tool, click File > New > Transformation.

2. Select the Data Processor transformation and click Next.

3. Enter a name for the transformation and browse for a Model Repository location to put the
transformation.

4. Select Create a data processor using a wizard and click Next.

5. Select an input format and click Next.

6. If you select JSON as an input format, browse to select a JSON schema or sample JSON file. Click Next.

Typically, the JSON file has an *.json extension. Developer adds an XSD schema file representing the
JSON hierarchy to the Model Repository.

7. Select an output format and click Next.

8. If you select JSON as an output format, browse to select a JSON schema or sample JSON file. Click
Next.

If you selected JSON as the input format, you will not have the option to select JSON as the output
format.

9. Click Finish.

The Developer tool creates the transformation in the repository. The Overview view appears in the
Developer tool.

10. In the Objects view, double click the transformation component to open it in the IntelliScript editor.

Parquet
Use the wizard to create a transformation with Parquet input or output. When you create a Data Processor
transformation to transform the Parquet format, you select a Parquet schema or example file that defines the
expected structure of the Parquet data. The wizard creates components that transform Parquet format to
other formats, or from other formats to Parquet format. After the wizard creates the transformation, you can
further configure the transformation to determine the mapping logic.

Apache Parquet is a columnar storage format that can be processed in a Hadoop environment. Parquet is
implemented to address complex nested data structures, and uses a record shredding and assembly

56 Chapter 3: Wizard Input and Output Formats

algorithm. For more information about Parquet, see
http://parquet.incubator.apache.org/documentation/latest//.

A transformation that reads Parquet input or output relies on a schema. When the transformation reads or
writes Parquet data, the transformation uses the schema to interpret the hierarchy.

After you create a Data Processor transformation for Parquet input, you add it to a mapping with a complex
file reader. The complex file reader passes Parquet input to the transformation. For a Data Processor
transformation with Parquet output, you add a complex file writer to the mapping to receive the output from
the transformation.

Creating a Transformation with Parquet Input or Output
Create a Data Processor transformation with Parquet input or output.

1. In the Developer tool, click File > New > Transformation.

2. Select the Data Processor transformation and click Next.

3. Enter a name for the transformation and browse for a Model repository location to put the
transformation.

4. Select Create a data processor using a wizard and click Next.

5. Select an input format and click Next.

6. If you select Parquet as an input format, browse to select a Parquet schema or sample Parquet file. Click
Next.

The Developer tool adds a schema object file representing the Parquet hierarchy to the Model repository.

7. Select an output format and click Next.

8. If you select Parquet as an output format, browse to select a Parquet schema or sample Parquet file.
Click Next.

If you selected Parquet as the input format, you will not have the option to select Parquet as the output
format.

9. Click Finish.

The Developer tool creates the transformation in the repository. The Overview view appears in the
Developer tool.

10. In the Objects view, double click the transformation component to open it in the IntelliScript editor.

To configure the transformation component, add mapping statements.

Configure the Complex File Reader For Parquet Input
After you create a Data Processor transformation that converts Parquet input, add the transformation to a
mapping with a complex file reader. Configure the complex file reader to process Parquet input.

1. In the Mapping editor, create a complex file reader object.

2. To configure the complex file reader, perform the following steps:

a. In the Advanced tab of the Properties view, select the File Format property, and then choose Input
Format.

b. In the Advanced tab, select the Input Format property, and then type
com.informatica.parquet.ParquetToXML.

c. To optimize performance, use the Input Format Parameters property to tune the
MaxOutputAccumulation parameter. By default, the MaxOutputAccumulation parameter, which

Parquet 57

http://parquet.incubator.apache.org/documentation/latest/

defines the expected number of output records, is set to 50,000. To change the setting to 250,000
for example, enter "MaxOutputAccumulation"="250000".

d. By default, the complex file reader adds the schema to the complex file reader output within a single
element directly after the root element. If you do not want to add the schema to the output, select
the Input Format Parameters property, then type "InjectSchema"="false".

Use a semi-colon to separate multiple parameters, for example
"MaxOutputAccumulation"="250000";"InjectSchema"="false".

3. Add the Data Processor transformation to the mapping. The transformation input port should remain set
to binary input, the default setting for Parquet input.

4. Link the complex file reader output port to the Data Processor transformation input port. The complex
file reader output port should remain set to binary output.

Configure a Transformation with Parquet Output
To create a Data Processor transformation for Parquet output, use the Data Processor transformation
wizard. The wizard creates the transformation in the Model repository with the components you need to
transform Parquet output. Use the XMap editor to edit the XMap, if included. Add the transformation to a
mapping with a complex file writer.

1. Create the Data Processor transformation with the New Transformation wizard. Add a Parquet schema
or example file that defines the expect output structure.

2. If the transformation has XML, JSON, or another structured format as input, use the XMap editor to edit
and customize the XMap that the wizard created in the transformation.

3. To configure the output settings for the Data Processor transformation, in the Output Control panel of
the Settings view, select the relevant output option in the Binary output port collection mode area.

Note: To configure the output to send one record at a time with the schema, select the Output row for
each row option. To collect all the records with the schema into one output stream, select the Collect
input rows to a single output option.

4. Add the Data Processor transformation to a mapping. The transformation remains set to binary output,
the default setting for Parquet output.

5. Create and link a complex file writer to the Data Processor transformation in the mapping to receive the
Parquet output from the transformation.

Note: The input setting remains set to binary, the default setting. The complex file writer does not
support compression for Parquet output.

6. Configure the Complex File Writer. In the Data Object Operation, in the Advanced tab, for the File Format,
select Custom Output. For Output Format, enter com.informatica.parquet.XMLToParquet.

XML
Use the wizard to create a transformation with XML input or output. When you create a Data Processor
transformation with XML input or output, you select an .xsd schema or XML sample file for the
transformation. The schema or sample file defines the expected structure of the input or output data
hierarchy. If you select a sample file, the wizard creates a schema from the sample file data hierarchy.

The wizard creates a Data Processor transformation that can contain a Parser, Mapper, XMap, or a Serializer
associated with the XML hierarchy. A Mapper, XMap, or Serializer uses an input schema to define the

58 Chapter 3: Wizard Input and Output Formats

expected input data hierarchy. An XMap, Mapper, or Parser uses an output schema to define the expected
output data hierarchy. For more information about the schema syntax, see http://www.w3.org.

The wizard creates the basic components or relational mapping that the transformation requires based on
the input and output types. The transformation might be complete, or can serve as a starting point for further
configuration.

If the transformation has structured input and output, the wizard might create an XMap that you configure to
transform data from one hierarchy to another. Use the XMap editor to link the input and output schema
hierarchy nodes and define the transformation logic. For more information about the XMap object and editor,
see “XMap Overview” on page 78.

If the transformation has relational input or output that you want to transform from structured data or to
structured data, the wizard creates a relational mapping. The Ports panel in the Overview view shows the
hierarchical schema nodes and the relational ports. Use the Ports panel to link the hierarchical elements to
the relational ports and groups. For more information about transforming relational data, see “Relational
Input and Output Overview” on page 60.

Creating a Transformation that Transforms XML
Create a Data Processor transformation with XML input, XML output, or both.

1. In the Developer tool, click File > New > Transformation.

2. Select the Data Processor transformation and click Next.

3. Enter a name for the transformation and browse for a Model Repository location to put the
transformation.

4. Select Create a data processor using a wizard and click Next.

5. Select XML or another input format and click Next.

6. If you selected XML as the input format, browse to select a schema or sample XML file. Click Next.

Developer adds an .xsd schema file representing the hierarchy to the Model Repository.

7. Select XML or another output format and click Next.

8. If you select XML as an output format, browse to select a schema or sample XML file. Click Next.

9. Click Finish.

The Developer tool creates the transformation in the repository. The Overview view appears in the
Developer tool.

10. To edit a specific component in the transformation, in the Objects view, double click the transformation
component to open it in the IntelliScript editor.

XML 59

http://www.w3.org/

C h a p t e r 4

Relational Input and Output
This chapter includes the following topics:

• Relational Input and Output Overview, 60

• Relational Input, 60

• Relational Output, 66

Relational Input and Output Overview
A Data Processor transformation can read relational database input from input ports and transform it into
other formats. A transformation can output rows of relational data to output ports. You can define the
mapping with Data Processor transformation ports on the transformation Overview view. Or you can use the
Data Processor transformation wizard to automatically map relational data.

You can transform relational data to hierarchical data. To transform input groups into hierarchal data, map
nodes from group of relational ports to the hierarchical ports. You can pass the data from the hierarchical
output ports to another transformation in the mapping.

You can return relational output from the Data Processor transformation. If a component returns relational
data, you create groups of output ports by mapping nodes from the hierarchical input to groups of relational
ports. You can pass the data from the relational output ports to another transformation in a mapping.

Relational Input
A Data Processor transformation can convert relational input into hierarchical output. A relational database is
a database that has a collection of tables of data, organized according to a relational model. Tables might
have additional relationships with each other.

In the relational model, each table schema identifies a column called the primary key, to uniquely identify
each row. You identify the relationship between each row in the table and a row in another table with a
foreign key. A foreign key is a column in one table that points to the primary key of another table.

To convert relational port data into hierarchical data, you must define the structure of the mapping based on
an hierarchical schema. You import a schema to the Model repository. After you import the schema, you can
view the schema components in the Developer tool. If the hierarchical schema has multiple elements that
can be a root element, choose one node to be the root element.

60

In the Ports panel of the Overview view, you can map the relational input ports to schema nodes. To the left
side of the panel is the Transformation input area and to the right side of the tab is the Service input area.

When you drag a node from a Service input node to Transformation input port, you map from a schema node
to a relational input node. The Developer tool creates the input ports to map the data. You can define groups,
define ports, and map nodes from the input to the output ports.

A Data Processor transformation with relational input can contain pass-through ports. You add pass-through
ports to the root group of the relational structure.

Relational Input Port Configuration
To map relational input ports to hierarchal output, select a schema to define the output. You must also define
the relational input ports. On the Ports panel, create and define groups of ports, and map the nodes from the
hierarchal nodes to the ports.

To define an input mapping, select the Data processor mode to be Input Mapping or Input Mapping and
Service. The mapping uses a schema to define the output. If the schema has more than one element that can
be a root element, you can choose a node from the schema to be the root element.

To define an a node as a root, click Choose Hierarchy. The Developer tool displays only the nodes from the
root level and below the root level in the Transformation output area. Click Show As Hierarchy to display the
output nodes in a hierarchy. Each child group appears underneath the parent group.

Create and define relational input ports with one of the following methods:

Drag nodes to ports

Drag nodes from the Transformation output area to the Transformation input area. If you drag a node to
a group, the Developer tool adds a port to the group. Otherwise, it creates a group with the port in it.

Manually create the ports

To create a port, select an empty field in the Transformation input area and click New > Field. If you do
not select a field inside a group, the Developer tool creates a group and adds the port to the group.

Automatically create the ports

Click Auto Map. The Developer tool creates input groups and adds ports to the groups based on the
output hierarchy.

When you drag nodes to the Transformation input area, the Developer tool updates the location field with the
location of the node in the hierarchy. If you manually create ports, you must map a node to the port. Click the
Location column and select a node from the list.

When you drag a multiple-occurring node into a group that contains the parent element, you can configure the
number of child element occurrences to include. Or, you can replace the parent group with the multiple-
occurring child group in the transformation output.

To create a relational group, drag an output node to an empty column in the Transformation input area. If you
drag a multiple-occurring child node to an empty input column, the Developer tool asks you to relate the
group to other groups. When you select a group, the Developer tool creates keys to relate the groups.

You can also create a new relational group by clicking New > Group in the Transformation input area. Enter a
name for the group. Configure related groups of input ports in the Transformation input area. When the
Developer tool prompts you to relate output groups, it adds the keys to the groups. You can also manually
add ports to represent keys.

To view lines that connect the ports with the hierarchical nodes, click Show Lines. Select to view all the
connection lines or the lines for selected ports.

Relational Input 61

Guidelines to Link Input Ports
When you use the New Transformation wizard to auto-generate a Data Processor transformation, the
Developer tool creates relational ports based on the schema hierarchy, and then links the relational ports to
the hierarchical nodes.

Consider the following rules and guidelines when you link relational input ports to hierarchical output nodes:

• You can link an input relational port to a node in the hierarchy.

• Link a primary key from the relevant element or attribute in the hierarchy to a relational group in the input.
The primary key identifies each row in the relational tables.

• Link a foreign key from the relevant element or attribute in the hierarchy to a relational group in the input.
A foreign key in the relational input is a column in one table that points to the primary key of another table.

• The input relational port and the hierarchical node must have compatible data types.

• Keys might be of the string type or the integer type.

Define Input Relational Ports with the Overview View
To transform relational data to hierarchical data in the Data Processor transformation, map nodes from
group of relational ports to the hierarchical nodes. Use the Overview View to link relational ports to
hierarchical ports.

To transform relational input to hierarchal output, enable relational input from the Overview view. The
Developer tool removes the default input port on the view.

Select Input Mapping. The Ports panel appears in the Overview view.

The following iamge shows the Ports panel:

To the left of the Ports panel is the Transformation output area that contains the hierarchical schema nodes.
To the right is the Transformation input area that contains the relational elements and groups.

62 Chapter 4: Relational Input and Output

You can create ports in the Transformation input area, and link relational elements to the schema nodes. You
can also drag the pointer from a node in the schema to an empty field in the Transformation input area to
create a port. When you connect a relational port to a schema node, the Developer tool shows a link between
them.

Clustering_Key Ports
When you create a relational to hierarchical Data Processor transformation with multiple groups in the Hive
environment, enable input data partitioning to ensure that data for each row processes correctly. The Data
Integration System partitions the input rows according to a port that functions as a partitioning key named
the Clustering_Key.

To partition input data to a Data Processor transformation in a mapping, select the transformation in the
mapping, and in the Advanced tab of the Properties view, select to enable partitioning. When you enable
partitioning, the Developer creates a Clustering_Key port in the Data Processor transformation for each input
group.

Each input group must use the same foreign key to the input root group to help partitioning. To sort data
according to a key, connect the selected foreign key relational input port of each Data object to the relevant
Clustering_Key port in the Data Processor transformation. The Data Integration Service uses the
Clustering_Key to partition and process the data.

You must use the same key in all of the relational input groups. If needed, you can use a Joiner
transformation to add the key to a relational input group that does not have that key.

The following image shows a mapping with the foreign key Company_ID in the relational input groups linked
to the Clustering_Key ports in the Data Processor transformation:

Relational Input 63

Normalized Relational Input
When you normalize the relational input data in the hierarchical output, the data values do not repeat in the
hierarchical group. You create a one-to-one relationship between the hierarchy levels in the hierarchal output
data and the input groups of ports.

Normalized Relational Input Example

You want to transform relational input with a group that contains details of managers from several
companies to separate XML hierarchies. In the input, each manager record contains company details. In the
output, one XML hierarchy contains details for companies, and a separate XML hierarchy contains details for
managers.

In the relational input, the Company_ID and Company_Name elements repeat for each manager in the
company:

Company_ID Company_Name Manager_ID Manager_Name
100 Percy Accounting 76500 Cindy Jacques
100 Percy Accounting 46501 Tom Jorry
100 Percy Accounting 86509 Delilah Smith

If you define the XML output to contain a Company parent hierarchy level and an Managers child hierarchy
level, you might use the following hierarchy groups:

Companies
 Company_Key
 Company_ID
 Company_Name

Managers
 Company_Key
 Manager_ID
 Manager_Name

The Company_Key element relates the Managers hierarchy to the Companies hierarchy.

Pivoted Relational Input
You can include a specific number of multiple-occurring elements in an output group.

To pivot multiple-occurring elements, map the multiple-occurring port element to specific output nodes.

Pivoted Relational Input Example

You want to transform relational input that contains a table of telephone numbers to an XML hierarchy with
separate elements for different types of telephone numbers.

In the relational input, the Telephone_type element defines the type of phone number listed for each person:

Telephone_Number Telephone_Type Last_Name First_Name
9173327437 Mobile Sandrine Jacques
9174562342 Mobile Race Tom
8484526471 Home Race Tom
7023847265 Work Smith Delilah
9174596725 Mobile Smith Delilah

In the Telephones output XML hierarchy, different types of telephone numbers in the parent group have
separate elements:

Telephones
 Telephone_Number

64 Chapter 4: Relational Input and Output

 Last_Name
 First_Name
 Work_Telephone
 Mobile_Telephone
 Home_Telephone

Denormalized Relational Input
You can denormalize hierarchical output for relational input. When you denormalize the input data, the
element values from the parent group repeat for each child element.

To denormalize input data, map nodes from a group of ports to a child hierarchy level. All the elements
repeat at the child hierarchy level.

Denormalized Relational Input Example

You want to transform relational input with separate groups for manager details and company details into a
JSON hierarchy that contains both manager and company details.

The Company_Name element does not appear in the group with manager details. The Company_ID element is
the foreign key in the first relational group.

Company_ID Manager_ID Manager_Name
100 56673 Kathy Jason
100 23501 Jackie Lyons
100 44509 Bob Terrence

The second relational group contains company details.

Company_ID Company_Name
100 Percy Accounting
102 Sandy Auto Sales
410 Movers Inc.

The Managers element in the JSON output contains both the Company_ID and the Company_Name elements:

Managers
 Company_ID
 Company_Name
 Manager_ID
 Manager_Name

The Company_ID and Company_Name elements repeat for each manager in the department.

Mapping Relational Ports to Hierarchical Nodes
On the Ports panel, define groups of ports and map the nodes from the hierarchical schema to the ports.

1. To add a schema, in the References view , click Add. Browse to and select a schema.

2. To create an input mapping, in the Overview view General area, select Input Mapping for the Data
Processor mode.

3. In the Ports area select Input Mapping.

4. Select a node as a root.

5. To define a mapping automatically, click Auto Map. To manually define a mapping, you define a primary
key for the root input group, then define input groups and ports.

6. To add an input group or port to the Transformation input area, use one of the following methods:

Relational Input 65

• Drag a hierarchical group node or a child node in the Transformation output area to an empty column
in the Transformation input area. If the node is a group node, the Developer tool adds a relational
group without ports.

• To add a relational group, select a row and right-click to select New > Group.

• To add a relational port, right-click to select New > Field.

7. To map nodes as a primary key, use one of the following methods:

• Select two or more hierarchy nodes and drag them to a key in the Transformation input area.

• Click the Location column of a key in the Transformation output area and then select the relational
input port in the Transformation input area.

8. To clear the hierarchical node settings for locations of ports, use one of the following methods:

• Select one or more nodes in the Transformation output area, right-click and select Clear.

• Select one or more lines that connect the relational input ports to the hierarchical nodes in the
Transformation output area, right-click and select Delete.

Relational Output
When you configure relational output, you can configure a separate output group for each multiple-occurring
input node. You can also create groups that contain denormalized data. You can pivot multiple-occurring
elements and limit the number of occurrences in an output group.

Relational Output Port Configuration
To transform hierarchical input to relational output, select a schema to define the hierarchical data. You must
also define the relational output ports. On the Ports panel, define groups of ports and map the nodes from
the hierarchical schema to the ports.

To define an output mapping, select the Data processor mode to be Output Mapping or Output Mapping and
Service.

The mapping uses a schema to define the hierarchical input. If the schema has more than one element that
can be a root element, choose a node to be the root element. To define a node as a root, click Choose
Hierarchy. The Developer tool displays only the nodes from the root level and below the root level in the
Transformation input area.

Click Show As Hierarchy to display the output ports in a hierarchy. Each child group appears underneath the
parent group.

Create ports with one of the following methods:

Drag nodes to ports

Drag nodes from the Transformation input area to the Transformation output area. If you drag a node to
a group, the Developer tool adds a port to the group. Otherwise, it creates a group with the port in it.

Manually create the ports

To create a port, select an empty field in the Transformation output area and click New > Field. If you do
not select a field inside a group, the Developer tool creates a group and adds the port to the group.

66 Chapter 4: Relational Input and Output

When you drag nodes to the Transformation output area, the Developer tool updates the location field with
the location of the node in the hierarchy. If you manually create ports, you must map a node to the port. Click
the Location column and select a node from the list.

When you drag a multiple-occurring node into a group that contains the parent element, you can configure the
number of child element occurrences to include. Or, you can replace the parent group with the multiple-
occurring child group in the transformation output.

To create a group, drag a node to an empty column in the Transformation output area. If you drag a multiple-
occurring child node to an empty input or output column, the Developer tool asks you to relate the group to
other output groups. When you select a group, the Developer tool creates keys to relate the groups.

You can also create a new group by clicking New > Group. Enter a name for the group.

Configure related groups of output ports in the Transformation output area. When the Developer tool
prompts you to relate output groups, it adds the keys to the groups. You can also manually add ports to
represent keys.

To view lines that connect the ports with the hierarchical nodes, click Show Lines. Select to view all the
connection lines or just the lines for selected ports.

Define Output Relational Ports with the Overview View
To convert hierarchical data to relational output in the Data Processor transformation, link hierarchical nodes
to relational ports. Use the Overview View to link relational ports to hierarchical ports. You create groups of
output ports by linking nodes from the hierarchical output to groups of ports.

To return relational groups of ports, enable relational output from the Overview view. The Developer tool
removes the default output port on the view.

Select Output Mapping. The Ports panel appears in the Overview view.

The following image shows the Ports panel:

The Transformation input area, which shows the output schema, is to the left. The Transformation output
area, which shows the relational output ports, is to the right.

Relational Output 67

Define relational output ports in the Transformation output area and link nodes from the schema to the ports.
You can also drag the pointer from a node in the schema to an empty field in the Transformation output area
to create a port. When you drag a node from the output schema to a port, the Developer tool shows a link
between them.

Normalized Relational Output
When you create normalized output data, the data values do not repeat in an output group. You create a one-
to-one relationship between the hierarchy levels in the input hierarchal data and the output groups of ports.

Normalized Relational Output Example

You want to transform a JSON hierarchy that defines department and employee details into relational output
with separate groups for department and employee details.

The JSON input contains a Staff hierarchy with elements that contain employee and department details.

Staff
 Department_ID
 Department_Name
 Employee_ID
 Employee_Name

You might create the following groups of relational ports:

Department_Key Employee_ID Employee_Name
100 2673 Jason Stuart
100 1501 Lila Rose
100 4309 Sarah Jacobs

Department_Key Department_ID Department_Name
100 1982 Accounting
102 3297 Sales
410 8276 Logistics

The Department_Key is a generated key that relates the Employees group to a Department group in the
output.

Pivoted Relational Output
You can include a specific number of multiple-occurring elements in an output group.

To pivot multiple-occurring elements, map the multiple-occurring child element to the parent group of output
ports. The Developer tool prompts you to define the number of child elements to include in the parent.

Pivoted Relational Output Example

You want to transform an XML hierarchy that contains employee details with multiple IDs to a relational
output group with separate output elements for the employee IDs.

The following example shows two instances of Employee_ID in the Departments relational output group:

Departments
 Department_ID
 Department_Name
 Employee_ID1
 Employee_ID2

68 Chapter 4: Relational Input and Output

Denormalized Relational Output
You can denormalize relational output. When you denormalize the output data, the element values from the
parent group repeat for each child element.

To denormalize output data, link nodes from the parent hierarchy level to the child group of output ports.

Denormalized Relational Output Example

You want to transform an XML hierarchy with separate groups for employee details and department details
into a relational group that contains both employee and department details.

The XML hierarchies separate the Department details from the Employee details:

Department
 Department_ID
 Department_Name

Employees
 Department_ID
 Employee_ID
 Employee_Name

The following example shows the Department_ID and the Department_Name in the Employees output group:

Department_ID Department_Name Employee_ID Employee_Name
100 Accounting 56500 Kathy Jones
100 Accounting 56501 Tom Lyons
100 Accounting 56509 Bob Smith

The Department_ID and Department_Name elements repeat for each employee in the department.

Relational Output 69

C h a p t e r 5

Using the IntelliScript Editor
This chapter includes the following topics:

• IntelliScript Editor Overview, 70

• Opening an IntelliScript Editor, 71

• Editing Procedures, 72

• IntelliScript Editor Menus, 76

IntelliScript Editor Overview
The IntelliScript editor is the main editor where you can configure a Script component, such as Parser,
Mapper, or Serializer.

The IntelliScript editor has a tree structure. The top, global level of the tree displays the runnable
transformation components such as Parsers. These components are called runnable because you can set
them as the startup component of the transformation.

You can also define non-runnable components, such as variables or actions, at the global level. This allows
you to use the components at other locations in the project.

At the nested levels of the IntelliScript editor, you can define components such as anchors and actions. You
can click the + or - symbols to expand the IntelliScript editor tree and display the nested levels.

Creating a Script
Create a Script object and define the type of Script component to create. Optionally, you can define a schema
reference and example source file.

1. In the Data Processor transformation Objects view, click New.

2. Enter a name for the Script and click Next.

3. Choose to create a Parser or Serializer. Select Other to create a Mapper, Transformer, or Streamer
component.

4. Enter a name for the component.

5. If the component is the first component to process data in the transformation, enable Set as startup
component.

6. Click Next if you want to enter a schema reference for this Script. Click Finish if you do not want to enter
the schema reference.

70

7. If you choose to create a schema reference, select Add reference to a Schema Object and browse for
the Schema object in the Model repository. Click Create a new schema object to create the Schema
object in the Model repository.

8. Click Next to enter an example source reference or to enter example text. Click Finish if you do not want
to define an example source.

Use a example source to define sample data and to test the Script.

9. If you choose to select an example source, select File and browse for the sample file.

You can also enter sample text in the Text area. The Developer tool uses the text to test a Script.

10. Click Finish.

The Script view appears in the Developer tool editor.

Opening an IntelliScript Editor
The IntelliScript editor displays a Script component in the Data Processor transformation. To open an
IntelliScript editor, double-click a Script component in the Data Processor transformation. You can view the
Data Processor transformation components in the Outline tab.

IntelliScript and Data Viewer
The IntelliScript editor displays one or more Script components. This is where you define the transformation
components.

You can view the example source document of a transformation in the Data Viewer tab. You can use this
pane to help view, configure, or test a transformation

The Data Viewer example pane is read-only. You cannot edit the example source document in Data
Transformation Studio.

You can view the Script in script mode, with a code representation of the Script, or in IntelliMode, using the
IntelliScript Editor. By default, you view the Script in IntelliMode.

Finding Anchors
When you edit a parser, it is easy to find the corresponding anchors in the IntelliScript and example panes.

• Right-click an anchor in the IntelliScript, and click View Marking. This finds the anchor in the example
pane.

• Click an anchor in the example pane. The anchor is automatically selected in the IntelliScript.

Components and Properties
The IntelliScript contains two kinds of items:

• Components. Items that you can insert and delete in the IntelliScript tree. Some examples of components
are parsers, serializers, anchors, actions, and transformers.

• Properties. Items that you can edit, but you cannot insert or delete, except by inserting or deleting a
component that contains them. Some examples of properties are the example_source property of a parser
or the search property of a marker anchor.

The IntelliScript editor displays the components and properties in different colors.

Opening an IntelliScript Editor 71

Basic and Advanced Properties
To help simplify the display, the IntelliScript organizes the properties in two categories:

• Basic properties. Properties that are important in most uses of the component. You usually need to assign
these properties to use the component.

• Advanced properties. Properties that you often do not need to assign. The properties may have default
values that you usually do not need to change, or the properties may implement options that you often do
not need to use.

The IntelliScript always displays the basic properties. It hides the advanced properties until you choose to
display them.

The distinction is for display purposes only. Advanced properties are just as easy to use as basic properties.
Do not hesitate to use them if they are needed in your projects.

Displaying the Advanced Properties of a Component
u Click the >> icon at the right of the component name.

The >> icon changes to << and the advanced properties appear.

Hiding the Advanced Properties
u Click the << icon at the right of the component name.

The << icon changes back to >> and the advanced properties disappear. However, if you assigned a non-
default value to an advanced property, it remains visible.

Editing Procedures
To edit the IntelliScript, follow the procedures described in this section.

Basic Procedure for Editing
To edit the IntelliScript:

1. Click the component or property that you want to edit.

2. Press ENTER to enter the editing mode. In most locations, you can also double-click instead of pressing
ENTER.

3. Assign the component name or the property value.

4. Press ENTER again to complete the editing operation.

Copy and Paste
You can copy and paste components in the IntelliScript.

To copy multiple components simultaneously, press CTRL or SHIFT while you select with the mouse. The
components must all be at the same level of nesting in the IntelliScript.

You can paste components only in locations where they make sense. For example, you can paste
serialization anchors under a serializer but not under a parser.

72 Chapter 5: Using the IntelliScript Editor

Drag and Drop
You can move components from one location to another by dragging with the mouse. For example, you can
use this method to alter the sequence of anchors within a parser.

To move multiple components, press CTRL or SHIFT while you select with the mouse. Release CTRL or
SHIFT and then drag with the mouse.

To copy the selected components, instead of moving them, hold SHIFT down while you drag.

Find and Replace
To find or replace text in the IntelliScript, select Edit > Find or Edit > Replace.

Inserting Components in the IntelliScript
Under many components, the IntelliScript displays a horizontal line, usually bearing a label such as contains.
The line is followed by an arrow and three dots (...). You can insert nested components at the three dots.

Inserting a Component
1. Select the three dots and press ENTER.

A list of the components appears

2. Select a component from the list.

Alternatively, start typing the component name. The name auto-completes after you type the first few
letters.

3. Press ENTER again to complete the insertion.

Deleting a Component
u Select the component and press DELETE.

Editing the Properties of a Component
1. Select the value of a property and press ENTER.

Depending on the type of property, a text box, list, or dialog box appears.

2. Type or select the new property value.

3. Press ENTER to complete the assignment.

Inserting Tabs, Newlines, and Other Special Characters
When you assign a textual property, you can insert special characters by typing their numeric ASCII codes.

1. Select a property and press ENTER to start editing.

2. Press CTRL+A.

A small dot appears, indicating that the character is an ASCII code.

Editing Procedures 73

3. Type the three-digit ASCII code. For example, you can type:

ASCII Code Character

009 Tab

010 New line

013 Carriage return

4. To enter a string of ASCII codes, repeat steps 2 and 3.

You can intersperse ASCII codes and regular text.

5. Press ENTER to complete the editing.

A tab appears as a « symbol. Other characters appear as their ASCII character codes.

Defining a Global Component
You can insert components in either a global or local scope.

Scope Description

Global scope The component is defined at the top level of the IntelliScript. It can be accessed or used at any
location in the project.

Local scope The component is defined at a nested level of the IntelliScript. It can be accessed or used only at the
particular nested location.

Most Data Transformation components can be either global or local.

For example, anchors are usually defined locally. You might define an anchor as a global component,
however, if you want to use the same anchor configuration in several parsers or several times in the same
parser. In each desired location, you can reference the globally-defined anchor by its identifier.

A parser can then use MyMarker, instead of repeating the configuration of the marker anchor every time it is
needed. You can select MyMarker from the component list at the appropriate location within the parser, or
you can drag MyMarker to the location.

Naming Restrictions
The names that you assign to IntelliScript components must contain only English characters (A-Z, a-z),
numerals (0-9), and underscores (_). They must begin with a letter. They can be up to 127 characters long.

Viewing Help About a Component
You can view the online help topics describing a component or property while you edit the IntelliScript.

1. Display the Help view.

2. Select the component or property.

The help scrolls to the location that describes the selected item.

74 Chapter 5: Using the IntelliScript Editor

IntelliScript Icons
The IntelliScript displays each component type with a characteristic icon. The following table describes the
most common icons that appear in the IntelliScript.

Icon Component

Parser

Serializer

Mapper

Transformer

Marker

Content
ContentSerializer

Group

RepeatingGroup

StringSerializer

Handle

Key

Other anchors

Actions

Default icon, used when there is no specific icon for a component

Saving the IntelliScript
If an asterisk (*) appears on the title tab of an IntelliScript editor, the editor has unsaved changes. If you
attempt to close the editor or exit with unsaved changes, you are prompted to save the Script.

Editing Procedures 75

IntelliScript Editor Menus
Right-click in an IntelliScript editor to display a menu. The menu options depend upon the context in which
you click.

Table 1. Menu of the IntelliScript Pane

Option Description

View Marking Highlights the selected anchor in the example source.

Set as Setup Component Defines the selected component as the startup component of the project.

Cut Allows you to cut components in the IntelliScript.

Copy Allows you to copy components in the IntelliScript.

Paste Allows you to paste components in the IntelliScript.

Insert Allows you to insert components in the IntelliScript.

Delete Allows you to delete components in the IntelliScript.

Make Optional Selects the optional property of a component. If a component is optional, a
failure of the component does not cause its parent component to fail. For more
information, see the Data Transformation Studio User Guide.

Make Mandatory Deselects the optional property of a component. If a component is optional, a
failure of the component does not cause its parent component to fail. For more
information, see the Data Transformation Studio User Guide.

Enable Selects the disabled property of a component. A disabled component is ignored.
This feature is useful to disable a component temporarily for testing and
debugging.

Disable Deselects the disabled property of a component. A disabled component is
ignored. This feature is useful to disable a component temporarily for testing and
debugging.

Script Mode The Script mode displays the raw content of the *.tgp file. This mode is intended
for advanced troubleshooting only.

Intelli Mode The Intelli mode displays the IntelliScript in a readable, graphical representation.
This is the mode illustrated throughout this book and the other Data Transformation
documentation.

76 Chapter 5: Using the IntelliScript Editor

Option Description

Open Example Source Opens the example source file of the selected parser, serializer, or mapper.

Create Serializer Creates a serializer from the selected parser. The serializer and the parser perform
inverse transformations.

Table 2. Menu of the Example Pane

Option Description

Copy Copies a string to the clipboard.

Insert Marker Defines the selected text as a Marker anchor. The anchor is added to the IntelliScript.

Insert Content Defines the selected text as a Content anchor. The anchor is added to the IntelliScript.

Insert Offset Content Defines the selected location as a Content anchor. The anchor is added to the
IntelliScript.

Insert RepeatingGroup Defines the selected text as the separator of a RepeatingGroup anchor. The anchor is
added to the IntelliScript.

View Instance Finds the selected anchor in the IntelliScript.

View Event Finds the corresponding event in the Events view.

Find Finds a string in the example source document.

Logical Encoding If the example source contains text in a right-to-left language, such as Hebrew or Arabic,
this command toggles the display from left-to-right to right-to-left.

Line Wrap Wraps long lines.

Save Source As Saves the example source in a specified location under a specified name.

IntelliScript Editor Menus 77

C h a p t e r 6

XMap
This chapter includes the following topics:

• XMap Overview, 78

• XMap Schemas, 79

• Mapping Statements, 80

• XPath Expressions, 96

• XMap Variables, 103

• XMap Example, 103

XMap Overview
An XMap is a Data Processor transformation object that changes a hierarchical input document into another
hierarchical document with a different hierarchy structure.

An XMap uses input and output schemas to define the expected hierarchy of input and output documents.
Use the XMap editor to define and manage mapping statements. The XMap editor contains the input schema
hierarchy and the output schema hierarchy. Mapping statements link input schema elements to output
schema elements.

An XMap can transform any input hierarchical document whose elements match the input schema hierarchy
into an output document with the hierarchy of the output schema.

For example, an XMap can transform customer invoices to a list of customer orders filtered by month of the
year. The input is an JSON document that contains a hierarchy of customer elements. The output is an XML
document that contains a hierarchy of month elements. The output XML document groups customer order by
month and includes contact information and order totals.

78

The following image shows the XMap editor.

1. The XMap editor contains input and output hierarchical schemas. Drag and drop between the schema elements to
create mapping statements.

2. The XMap editor grid shows mapping statements. Use the grid to manage and edit the mapping statements.

An XMap uses mapping statements to define how to transform an input schema element to an output
schema element. You can drag from a node in the input schema to a node in the output schema to create a
link. When you create links, these are mapping statements. The XMap editor shows the mapping statement in
the grid.

You can edit the mapping statements in the grid. You can define conditions to transform and filter the data
according to different mapping statement types and XPath expressions. XPath is a query language used to
select nodes in a hierarchical document and perform computations.

You can use XPath expressions to define the context for a mapping statement. You can also add various
arithmetic calculations to a mapping statement using XPath expressions.

XMap Schemas
An XMap requires hierarchical schemas that define the input and output hierarchical hierarchies. An XMap
uses input and output hierarchical schemas to determine what type of data is expected in the input source
document and output document. You link input and output schema nodes to create mapping statements.

A schema element is the basic building block of a mapping statement. When you define a mapping statement
you might want to use a series of input schema elements in the statement, or add a variable. You can change
the input and output root, add variables, and customize the schema view, but cannot edit the schema.

You can use the following options to manage the schemas and search for elements:

Customize view

Changes the way the schema appears so you can quickly search for relevant elements. You can search
for a sequence of nodes, all nodes, or a choice of nodes. View these nodes to understand the schema
logic. This view do not affect the mapping.

Search

Search for elements in the schema. You can search in the input and output schemas separately.

XMap Schemas 79

Variables

Define variables to store data. You can map nodes to variables and map variables to nodes. You can
also map variables to variables. When you create a variable, the variable appears at the bottom of both
schemas.

Select Input or Output Root

Change the root element in the input or output schema. You might change the root element in order to
reference a different part of the schema.

Choose the example source

Define the example source file. Use an example source to test the transformation and to test XPath
expressions.

Mapping Statements
A mapping statement determines how to map data from the input hierarchical document to the output
hierarchical document. When you drag a node from the input schema to the output schema, the XMap editor
creates mapping statements in the grid.

You can use the grid to create simple or detailed mapping statements. You can drag elements from the input
or output schemas into fields in the grid to include them in mapping statements.

You can check the element that a mapping statement references. When you click a mapping statement in the
grid, the XMap editor highlights the nodes in the schemas.

Add XPath expressions to determine the context or add computations to a mapping statement. When an
XPath expression identifies the context for a mapping statement, the Data Processor transformation runs the
mapping statement for each occurrence of the input element or expression in the input document.

Nest mapping statements to make them dependent on other mapping statements. A mapping statement can
be a parent to a group of child statements. Each time that the Data Processor transformation runs the parent
statement, it runs the child statements also. Child statements appear indented from the parent in the XMap
editor.

Mapping Statement Types
Mapping statement types define XMap mapping logic. Define the mapping statement type based on whether
you want to map a simple input value to an output value, iterate over an element, or perform the mapping
based on a condition.

Create a statement by dragging an input schema element to an output schema element, or adding a mapping
statement to the grid. When you create a statement, the Data Processor transformation identifies a mapping
statement type based on whether the element is a simple element, a complex element, or a repeating
element.

The basic mapping statement type is a Map, which maps a simple input value to a simple output value. Other
mapping statements identify conditions or alternatives for mapping logic, or group a set of logical
statements.

You can define the following types of mapping statements in the grid:

80 Chapter 6: XMap

Map

Maps a simple input element to a simple output element. A Map statement is the basic building block of
the XMap.

Group

A logical group of statements. Other mapping statement types are nested under the Group statement.

Repeating Group

A group statement that the Data Processor transformation performs each time the input element
appears in the input document. The Repeating Group contains Map statements which are iterated. The
Repeating Group identifies the element used to iterate the group.

Router

Contains a group of Option statements, and selects only the Option statement whose condition criteria
matches the input. If none of the Options apply, a Default action is taken, if there is a Default statement.
If none of the Options apply and there is no Default statement, the Router fails.

Option

One or more Option statements are nested under the Router statement. The Option statement is like a
Group statement, and contains a logical group of statements. The Option statement defines a condition
to map the input element to the output element.

Default

One Default statement can be nested under the Router statement. The Default statement is performed
when none of the Option statements apply. If the all the Option statements fail and there is no Default
statement, the Router fails.

Run XMap

Calls another XMap object in the Data Processor transformation.

RunMapplet

Calls a mapplet from the Data Processor transformation.

MappletInput

One or more MappletInput statements can be nested under the RunMapplet statement. Values are
mapped to the mapplet input ports in the same order that they are listed in the MappletInput statements.

MappletOutput

One or more MappletOutput statements can be nested under the RunMapplet statement. The values in
the mapplet output ports are mapped to the MappletOutput statement in the same order that they are
listed in the mapplet ports.

Mapping statements contain fields that you can configure to customize the statement. You can configure the
input, output, and condition for mapping an input element to an output element.

Configure whether to skip a mapping statement when it fails or there is no input. Configure whether the Data
Processor transformation adds an output element or matches an existing element with a value from a
mapping statement.

Map Statements
A Map statement is the basic building block of an XMap object and maps a simple input value to a simple
output value. The input must be a single value or a constant value. You must define the input and output in a
Map statement.

Mapping Statements 81

When you drag and drop between a simple, non-repeating input schema node and a simple, non-repeating
output schema node, a Map statement is automatically created.

A Group, Repeating Group, Option or Default statement can contain one or more Map child statements.

Map Statement Properties
A Map statement contains properties that you can configure to customize the statement. You can configure
the input, output, and a condition for mapping an input element to an output element.

A Map statement has the following properties:

Condition

Optional. An XPath expression that defines a condition for mapping the element. A condition is similar to
a predicate expression in the Input column. If you define an Input XPath expression and a Condition
XPath expression for the same mapping statement, the Data Processor transformation applies the
Condition XPath to the result of the Input XPath.

Default

Optional. The default value to use when an element is missing from the input. For example, you can
define a default value to initialize a counter.

Input

Required. An XPath expression that defines the input element. The expression can evaluate to a node or
value.

Mode

Required. Determines whether the Data Processor transformation adds an output element or matches an
existing element with a value from a mapping statement. Choose one of the following options:

• Add. Creates an element in the output hierarchical document. If the element in not multiple-occurring,
and the same values exists in the output, the mapping statement fails.

• Match. The statement expects to find a match for the element in the output elements. The statement
fails if the element does not exist in the output hierarchical document.

• Match or Add. If a matching element exists in the output hierarchical document, the Data Processor
transformation does not add an output element. If the element does not exist in the output
hierarchical document, the transformation creates an output element.

Name

Optional. A name for the statement. You can change the name at any time. The name identifies
statements so you can find them in the mapping grid or in an event log. Statement names do not have to
be unique.

On Fail

Required. Determines the action taken if the statement fails. Choose one of the following options:

• Skip. If the statement fails, skip the statement.

• Propagate. If the statement fails, force the parent statement to also fail.

Output

Required. An XPath expression that defines the value of the element in the output hierarchical based on
the results of the Input XPath expression.

82 Chapter 6: XMap

Skip Missing Input

Optional. Determines whether to skip the statement if there is no match for the Input value. Choose one
of the following options:

• Enabled. If the element is not in the input hierarchical document, the Data Processor transformation
skips the statement without error.

• Disabled. The statement fails when the element is not in the input hierarchical document.

Statement Type

Required. Identifies the statement as a Map statement.

Group Statements
A Group statement contains a logical group of statements. A parent Group statement contains child
statements. The child statements are nested underneath the Group statement in the XMap editor grid.

You can use a Group statement to provide a common context or common condition for success or failure to
a group of statements. You can use a Group mapping statement if you want a set of statements to either all
pass or all fail. You can use a Group mapping statement to group a set of statements to organize and
simplify an XMap grid.

When you link between a complex single-occurring element to a complex single- or multiple-occurring
element, the XMap editor creates a Group statement. A single-occurring element has a Max. Occurs value of
1.

Group Statement Example

You want to map from an input hierarchical document with manager employee data to an output hierarchical
document with worker data. There is only one manager so the input employee element is single-occurring.

A Group mapping statement is used when one element is a complex, single-occurring element. The schema
has a single occurring Employee element. Employee has FirstName and LastName child elements:

 Employee
 FirstName
 LastName

You create a group mapping statement and configure Employee as the input. Each mapping statement that
you include in the group is within the context of Employee.

In the following figure, statement 1 is the Group statement:

The Input column for the Group statement shows that the input is the parent element of FirstName and
LastName. Statement 2 and statement 3 are child statements of statement 1. The child statements appear
indented from the parent statement. For each input Employee element, map the FirstName element and the
LastName element to the output.

Group Statement Properties
The Group statement contains properties that you can configure to customize the statement. You can
configure the input, output, and a condition for mapping an input element to an output element.

Mapping Statements 83

The Group statement has the following properties:

Condition

Optional. An XPath expression that defines the entry condition for the Group statement and all its child
statements. A condition is similar to a predicate expression in the Input column. If you define an Input
XPath expression and a Condition XPath expression for the same mapping statement, the Data
Processor transformation applies the Condition XPath to the result of the Input XPath.

Input

Optional. An XPath expression that evaluates to zero or one element or value. If left empty, the
statement uses the current context. If the expression evaluates to more than one value, the first is used.

Mode

Required. Determines whether the Data Processor transformation adds an output element or matches an
existing element with a value from a mapping statement. Choose one of the following options:

• Add. Creates an element in the output hierarchical document. If the element in not multiple-occurring,
and the same values exists in the output, the mapping statement fails.

• Match. The statement expects to find a match for the element in the output elements. The statement
fails if the element does not exist in the output hierarchical document.

• Match or Add. If a matching element exists in the output hierarchical document, the Data Processor
transformation does not add an output element. If the element does not exist in the output
hierarchical document, the transformation creates an output element.

Name

Optional. A name for the statement. You can change the name at any time. The name identifies
statements so you can find them in the mapping grid or in an event log. Statement names do not have to
be unique.

On Fail

Optional. Determines the action taken if the statement fails. Choose one of the following options:

• Skip. If the statement fails, skip the statement.

• Propagate. If the statement fails, force the parent statement to also fail.

Output

Optional. An XPath expression that defines the value of the element in the output hierarchical based on
the results of the Input XPath expression. If left empty, the statement uses the current context.

Skip Missing Input

Optional. Determines whether to skip the statement if there is no match for the Input value. Choose one
of the following options:

• Enabled. If the element is not in the input hierarchical document, the Data Processor transformation
skips the statement without error.

• Disabled. The statement fails when the element is not in the input hierarchical document.

Statement Type

Required. Identifies the statement as a Group statement.

Repeating Group Statements
A Repeating Group statement is a group statement that can occur multiple times. The input is an XPath
expression that can evaluate to a sequence of elements or values.

84 Chapter 6: XMap

The Data Processor transformation performs the Repeating Group statement for each element or value that
is a result of the Input XPath expression.

When you link between a repeating input schema element and a repeating output schema element, the XMap
editor creates a Repeating Group statement in the grid. A element repeats if the Max. Occurs value for the
element is greater than 1.

Repeating Group Statement Example

An input schema has the following hierarchy:

Employees
 Employee (Unbounded)
 LastName
 FirstName

When you drag Employee to an output element in the XMap Editor, the Developer tool creates a Repeating
Group mapping statement by default. A repeating group might contain mapping statements to return
LastName and FirstName for each Employee in the input hierarchical document.

Repeating Group Statement Properties
The Repeating Group statement contains properties that you can configure to customize the statement. You
can configure the input, output, and a condition for mapping an input element to an output element.

The Repeating Group statement has the following properties:

Condition

Optional. An XPath expression that defines a condition for mapping the element. A condition is similar to
a predicate expression in the Input column. If you define an Input XPath expression and a Condition
XPath expression for the same mapping statement, the Data Processor transformation applies the
Condition XPath to the result of the Input XPath.

Input

Required. An XPath expression that evaluates to a sequence of nodes or values.

Mode

Required. Determines whether the Data Processor transformation adds an output element or matches an
existing element with a value from a mapping statement. Choose one of the following options:

• Add. Creates an element in the output hierarchical document. If the element in not multiple-occurring,
and the same values exists in the output, the mapping statement fails.

• Match. The statement expects to find a match for the element in the output elements. The statement
fails if the element does not exist in the output hierarchical document.

• Match or Add. If a matching element exists in the output hierarchical document, the Data Processor
transformation does not add an output element. If the element does not exist in the output
hierarchical document, the transformation creates an output element.

Name

Optional. A name for the statement. You can change the name at any time. The name identifies
statements so you can find them in the mapping grid or in an event log. Statement names do not have to
be unique.

On Fail

Optional. Determines the action taken if the statement fails. Choose one of the following options:

• Skip Iteration. If a statement nested within the Repeating Group fails, and its On Fail property is set to
Propagate, the current iteration of the Repeating Group is skipped.

Mapping Statements 85

• Propagate. If the statement fails, force the parent statement to also fail.

Output

Optional. An XPath expression that defines the value of the node in the output hierarchical based on the
results of the Input XPath expression.

Skip Missing Input

Optional. Determines whether to skip the statement if there is no match for the Input value. Choose one
of the following options:

• Enabled. If the element is not in the input hierarchical document, the Data Processor transformation
skips the statement without error.

• Disabled. The statement fails when the element is not in the input hierarchical document.

Statement Type

Required. Identifies the statement as a Repeating Group statement.

Router Statements
A Router statement provides alternatives for the mapping logic based on conditions in the input document.

The Router statement contains one or more Option statements and can contain one Default statement. When
the Data Processor transformation performs a Router statement, it tests each Option nested below the
Router statement.

The first Option statement that matches is performed. The Option statement can contain one or more child
statements of any type. If no Option statement matches, the Default statement is performed. If there is no
Default statement, the Router statement fails.

You can configure multiple Option statements in the same Router group. The Data Processor transformation
performs the first Option statement that it accepts. The Data Processor transformation does not perform any
Option statement below it in the group. When the Data Processor transformation does not accept an Option
statement, it tests the next Option statement.

When the transformation does not accept any Option statement and there is no Default statement, the Router
statement fails. If the Option statement has a condition that is true but the mapping statements inside it fail
and propagates the failure, the Router fails. You can configure the mapping to skip the Router if the Router
fails.

If a Router contains no Option statement but does contain a Default statement, then the Default statement is
always performed.

Router Statement Example

An XMap contains a repeating group under the context of Employee. The first child statement in the group is
a Router statement. The Router statement has one Option statement. The Option statement contains a
condition that checks if the value of Role is equal to the value of Manager. If the role equals manager, the
Option statement evaluates to true. The mapping evaluates the Run XMap statement nested under the Option
statement. The Data Processor transformation calls the EmployeeToWorker XMap to map elements to
Manager.

If the role is not equal to manager, the Default statement is true. The mapping evaluates the next statement
for the Default option. The default mapping statement calls EmployeeToWorker XMap to map the elements
to Worker.

86 Chapter 6: XMap

The following figure shows the Router statement with an Option statement and a Default statement:

Router Statement Properties
The Router statement contains properties that you can configure to customize the statement. You can
configure the input, output, and a condition for mapping an input element to an output element.

The Router statement has the following properties:

Condition

Optional. An XPath expression that defines a condition for mapping the element. A condition is similar to
a predicate expression in the Input column. If you define an Input XPath expression and a Condition
XPath expression for the same mapping statement, the Data Processor transformation applies the
Condition XPath to the result of the Input XPath.

Default

Required. The default value to use when an element is missing from the input. For example, you can
define a default value to initialize a counter.

Input

Required. An XPath expression that evaluates to a sequence of nodes or values.

Mode

Required. Determines whether the Data Processor transformation adds an output element or matches an
existing element with a value from a mapping statement. Choose one of the following options:

• Add. Creates an element in the output hierarchical document. If the element in not multiple-occurring,
and the same values exists in the output, the mapping statement fails.

• Match. The statement expects to find a match for the element in the output elements. The statement
fails if the element does not exist in the output hierarchical document.

• Match or Add. If a matching element exists in the output hierarchical document, the Data Processor
transformation does not add an output element. If the element does not exist in the output
hierarchical document, the transformation creates an output element.

Name

Optional. A name for the statement. You can change the name at any time. The name identifies
statements so you can find them in the mapping grid or in an event log. Statement names do not have to
be unique.

On Fail

Optional. Determines the action taken if the statement fails. Choose one of the following options:

• Skip. If the statement fails, skip the statement.

• Propagate. If the statement fails, force the parent statement to also fail.

Output

Required. An XPath expression that defines the value of the element in the output hierarchical based on
the results of the Input XPath expression. The Output field provides the context for the child statements.

Mapping Statements 87

Statement Type

Required. Identifies the statement as a Router statement.

Option Statements
The Option statement provides the condition to map the input node to the output node. An Option statement
must be nested below a Router statement. The Router statement must have an Input XPath expression or a
Condition XPath expression. Or, the Option statement can include an Input XPath expression and a Condition
XPath expression.

The Data Processor transformation accepts an Option statement when the results of the Input field
expression and a Condition field expression evaluate to a single node. If you do not define an Input field
expression, the Data Processor transformation accepts the Option statement when the Condition field
expression evaluates to true.

The Option statement can contain one or more child statements of any type including Map, Group, Repeating
Group, Run XMap, and other Router statements. For example, an Option statement might contain the
following condition:

EmployeeID="100"
When the EmployeeID is 100, the condition is true. The child statement in the grid defines the mapping
statement to evaluate when the condition is true.

Option Statement Properties
The Option statement contains properties that you can configure to customize the statement. You can
configure the input, output, and a condition for mapping an input element to an output element.

The Option statement has the following properties:

Condition

Required if Input is not defined. An XPath expression that defines a condition for mapping the element. A
condition is similar to a predicate expression in the Input column. The Data Processor transformation
applies the Condition XPath to the result of the Input XPath.

Input

Required if Condition is not defined. An XPath expression that defines the input element. The expression
can evaluate to a node or value.

Mode

Optional. Determines whether the Data Processor transformation adds an output element or matches an
existing element with a value from a mapping statement. Choose one of the following options:

• Add. Creates an element in the output hierarchical document. If the element in not multiple-occurring,
and the same values exists in the output, the mapping statement fails.

• Match. The statement expects to find a match for the element in the output elements. The statement
fails if the element does not exist in the output hierarchical document.

• Match or Add. If a matching element exists in the output hierarchical document, the Data Processor
transformation does not add an output element. If the element does not exist in the output
hierarchical document, the transformation creates an output element.

Name

Optional. A name for the statement. You can change the name at any time. The name identifies
statements so you can find them in the mapping grid or in an event log. Statement names do not have to
be unique.

88 Chapter 6: XMap

On Fail

Optional. Determines the action taken if the statement fails. Choose one of the following options:

• Skip. If the statement fails, skip the statement.

• Propagate. If the statement fails, force the parent statement to also fail.

Output

Optional. An XPath expression that defines the value of the element in the output hierarchical based on
the results of the Input XPath expression.

Statement Type

Required. Identifies the statement as a Option statement.

Default Statements
A Default statement is a child statement of a Router statement. The Router statement contains one or more
Option statements and can contain one Default statement. The Data Processor transformation performs the
Default statement when none of the Option statements apply.

You can define only one Default statement in a Router statement group. The Default statement must be the
last statement for the Router statement group. The Default statement cannot have Input or Condition XPath
expressions.

Default Statement Properties
The Default statement contains properties that you can configure to customize the statement. You can
configure the default value if an input element is missing.

The Default statement has the following properties:

Default

Required. The default value to use when an element is missing from the input. For example, you can
define a default value to initialize a counter.

Mode

Optional. Determines whether the Data Processor transformation adds an output element or matches an
existing element with a value from a mapping statement. Choose one of the following options:

• Add. Creates an element in the output hierarchical document. If the element in not multiple-occurring,
and the same values exists in the output, the mapping statement fails.

• Match. The statement expects to find a match for the element in the output elements. The statement
fails if the element does not exist in the output hierarchical document.

• Match or Add. If a matching element exists in the output hierarchical document, the Data Processor
transformation does not add an output element. If the element does not exist in the output
hierarchical document, the transformation creates an output element.

Name

Optional. A name for the statement. You can change the name at any time. The name identifies
statements so you can find them in the mapping grid or in an event log. Statement names do not have to
be unique.

Output

Optional. An XPath expression that defines the value of the node in the output hierarchical based on the
results of the Input XPath expression.

Mapping Statements 89

Statement Type

Required. Identifies the statement as a Default statement.

Run XMap Statements
A Run XMap statement calls another XMap.

When you create a Run XMap mapping statement, the Developer tool lists the XMap objects in the
transformation. Select the XMap to call. The Developer tool creates a mapping statement with the XMap
name in the Statement Type field.

The input and output root elements in the called XMap must be the same type as the input and output values
being passed to it from the calling XMap. You can call an XMap to perform mapping logic that is repeated.

Run XMap Statement Properties
The Run XMap statement contains properties that you can configure to customize the statement. You can
configure the input, output, and a condition for mapping an input element to an output element.

The Run XMap statement has the following properties:

Condition

Optional. An XPath expression that defines a condition for mapping the element. A condition is similar to
a predicate expression in the Input column. If you define an Input XPath expression and a Condition
XPath expression for the same mapping statement, the Data Processor transformation applies the
Condition XPath to the result of the Input XPath.

Input

Optional. An XPath expression that evaluates to a sequence of nodes or values. The mapping statement
type determines how the Data Processor transformation uses the nodes or values in the mapping.

Mode

Required. Determines whether the Data Processor transformation adds an output element or matches an
existing element with a value from a mapping statement. Choose one of the following options:

• Add. Creates an element in the output hierarchical document. If the element in not multiple-occurring,
and the same values exists in the output, the mapping statement fails.

• Match. The statement expects to find a match for the element in the output elements. The statement
fails if the element does not exist in the output hierarchical document.

• Match or Add. If a matching element exists in the output hierarchical document, the Data Processor
transformation does not add an output element. If the element does not exist in the output
hierarchical document, the transformation creates an output element.

Name

Optional. A name for the statement. You can change the name at any time. The name identifies
statements so you can find them in the mapping grid or in an event log. Statement names do not have to
be unique.

On Fail

Required. Determines the action taken if the statement fails. Choose one of the following options:

• Skip. If the statement fails, skip the statement.

• Propagate. If the statement fails, force the parent statement to also fail.

90 Chapter 6: XMap

Output

Optional. An XPath expression that defines the value of the node in the output hierarchical based on the
results of the Input XPath expression.

Skip Missing Input

Required. Determines whether to skip the statement if there is no match for the Input value. Choose one
of the following options:

• Enabled. If the element is not in the input hierarchical document, the Data Processor transformation
skips the statement without error.

• Disabled. The statement fails when the element is not in the input hierarchical document.

Statement Type

Required. Identifies the statement as a Run XMap statement.

RunMapplet Statement
A RunMapplet statement calls a mapplet.

When you create a RunMapplet mapping statement, the Developer tool lists the mapplet reference objects
associated with the transformation. Select the mapplet to call. The Developer tool creates an XMap
statement with the mapplet name in the Statement Type field.

The input and output ports in the called mapplet must be the same type as the values being passed to it from
the calling XMap. You can call a mapplet to perform tasks such as data masking, data quality, data lookup,
and other activities usually related to relational transformation, without the necessity to convert data to
relational format and then back to hierarchical format.

Note: The RunMapplet action can be used to call passive mapplets only.

RunMapplet Statement Properties
The RunMapplet statement contains properties that you can configure to customize the statement. You can
configure the input, output, and a condition for executing the RunMapplet statement. The RunMapplet
statement can contain the MappletInput statement and the MappletOutput statement.

The RunMapplet statement has the following properties:

Condition

Optional. An XPath expression that defines a condition for executing the RunMapplet statement. A
condition is similar to a predicate expression in the Input column. If you define an Input XPath
expression and a Condition XPath expression for the same mapping statement, the Data Processor
transformation applies the Condition XPath to the result of the Input XPath.

Input

Optional. An XPath expression that evaluates to a sequence of nodes or values. The mapping statement
type determines how the Data Processor transformation uses the nodes or values in the mapping.

Mode

Required. Determines whether the Data Processor transformation adds an output element or matches an
existing element with a value from a mapping statement. Choose one of the following options:

• Add. Creates an element in the output hierarchical document. If the element in not multiple-occurring,
and the same values exists in the output, the mapping statement fails.

Mapping Statements 91

• Match. The statement expects to find a match for the element in the output elements. The statement
fails if the element does not exist in the output hierarchical document.

• Match or Add. If a matching element exists in the output hierarchical document, the Data Processor
transformation does not add an output element. If the element does not exist in the output
hierarchical document, the transformation creates an output element.

Name

Optional. A name for the statement. You can change the name at any time. The name identifies
statements so you can find them in the mapping grid or in an event log. Statement names do not have to
be unique.

On Fail

Optional. Determines the action taken if the statement fails. Choose one of the following options:

• Skip. If the statement fails, skip the statement.

• Propagate. If the statement fails, force the parent statement to also fail.

Output

Required. An XPath expression that defines the value of the node in the output hierarchy based on the
results of the Input XPath expression.

Skip Missing Input

Optional. Determines whether to skip the statement if there is no match for the Input value. Choose one
of the following options:

• Enabled. If the element is not in the input hierarchical document, the Data Processor transformation
skips the statement without error.

• Disabled. The statement fails when the element is not in the input hierarchical document.

Statement Type

Required. Identifies the statement as a RunMapplet statement. The field identifies the name of the
referenced mapplet.

MappletInput Statement
The MappletInput statement contains properties that you can configure to customize the statement. You can
configure the input to map an input element to the mapplet input port. One or more MappletInput statements
can be nested under the RunMapplet statement.

The MappletInput statement is performed to provide a value to be passed to the mapplet input. The values in
the RunMapplet statement are passed to the mapplet ports in the same order that they are listed in the
RunMapplet statement. If a statement is skipped, a null value is passed to the mapplet input port.

A MappletInput statement passes a single value. When the RunMapplet executes, the values from the nested
MappletInput statements are collected and passed to the mapplet in the same order as the MappletInput
statements.

MappletInput Statement Properties
The MappletInput statement contains properties that you can configure to customize the statement.

The RunMapplet statement has the following properties:

Default

Optional. The default value to use when an element is missing from the mapplet port input.

92 Chapter 6: XMap

Input

Required. An XPath expression that evaluates to a sequence of nodes or values. The values are passed
to the mapplet input ports.

Name

Optional. A name for the statement. You can change the name at any time. The name identifies
statements so you can find them in the mapping grid or in an event log. Statement names do not have to
be unique.

Skip Missing Input

Optional. Determines whether to skip the statement if there is no mapplet input port match for the input
value. Choose one of the following options:

• Enabled. If the element is not in the input hierarchical document, the Data Processor transformation
skips the statement without error.

• Disabled. The statement fails when the element is not in the input hierarchical document.

MappletOutput Statement
The MappletOutput statement is performed to obtain a value passed from the mapplet output. The values are
passed from the mapplet ports to the RunMapplet output ports in the same order that they are listed in the
RunMapplet statement. One or more MappletOutput statements can be nested under the RunMapplet
statement.

A MappletOutput statement obtains a single value. When the RunMapplet executes, the values from the
mapplet are collected to the nested MappletOutput statements in the same order as the MappletOutput
statements.

MappletOutput Statement Properties
The MappletOutput statement contains properties that you can configure to customize the statement.

The RunMapplet statement has the following properties:

Default

Optional. The default value to use when testing the Data Processor transformation without actual
mapping input. The default value is not used when there is mapping input.

Mode

Optional. Determines whether the transformation adds an output element or matches an existing
element with a value from a mapping statement. Choose one of the following options:

• Add. Creates an element in the output hierarchical document. If the element in not multiple-occurring,
and the same values exists in the output, the mapping statement fails.

• Match. The statement expects to find a match for the element in the output elements. The statement
fails if the element does not exist in the output hierarchical document.

• Match or Add. If a matching element exists in the output hierarchical document, the Data Processor
transformation does not add an output element. If the element does not exist in the output
hierarchical document, the transformation creates an output element.

Name

Optional. A name for the statement. You can change the name at any time. The name identifies
statements so you can find them in the mapping grid or in an event log. Statement names do not have to
be unique.

Mapping Statements 93

Output

Required. An XPath expression that evaluates to a sequence of nodes or values. The mapplet output port
values are passed to the sequence of nodes.

Creating an XMap
To create a Data Processor XMap object, choose the input and output schemas and add mapping
statements.

1. On the Data Processor transformation Objects view create an XMap. Select an input schema, an
example source, and an output schema.

2. To open the XMap editor, click the XMap object.

3. To create a Map, Group, or Repeating Group mapping statement, in the XMap editor drag and drop from
a node in the input hierarchical schema to a node in the output hierarchical schema.

The XMap editor creates a map link between the nodes. The mapping statement appears in the grid. The
XMap editor automatically completes the mapping statement fields.

4. To create conditional logic in the grid, add a Router mapping statement as follows:

a. Under the Router mapping statement, create Option mapping statements. Drag and drop input and
output schema nodes into the Option statement fields in the grid.

b. Under the Router mapping statement create one Default mapping statement to specify what
happens if no Option mapping statement applies.

c. Under the Option mapping statements, create Map mapping statements to specify conditions to
map the input node to the output node.

5. To provide a common context for a group of statements, add a Group mapping statement. Nest Map
mapping statements under the Group mapping statement.

6. To call another XMap object, add a Run XMap statement.

7. To change the context and logic for a mapping statement, edit mapping statement properties as follows:

a. Demote statements to be child statements, or promote statements to be parent statements.

b. Create XPath expressions to change the context or add predicates using the XPath editor.

Using the XMap Editor Grid
When you drag a node from the input schema to the output schema, the Developer tool creates a Map, Group,
or Repeating Group mapping statement in the grid. You can update the mapping statement. The Input and
Output fields contain the elements from the schema. If you want to create mapping statements to provide
context or to define Router options, you can type statements in the grid.

When you select a mapping statement in the grid, the XMap editor highlights the nodes from the input and
output schemas that are in the grid statement.

You can copy a statement from one row to another row in the grid. If the row is not valid for the location in
which you copy it, the XMap editor displays a dialog box with a validation error. You can change the input and
the output XPath statements on the dialog box to adjust the mapping statement context, or you can change
the input and output XPath fields in the grid.

94 Chapter 6: XMap

Creating Mapping Statements
Create mapping statements in the XMap editor. You can create mapping statements by dragging nodes from
the input schema to the output schema and you can define the statements in the mapping statement grid.

Use the following steps to define mapping statements in the grid:

1. To create a mapping statement, in the grid options, click New.

2. Select the type of mapping statement from the list.

If you choose Run XMap, the Developer tool shows a list of the XMap objects in the transformation.

3. Type a name for the mapping statement.

4. To define the input for the mapping statement, drag an element from the input schema to the Input field.
Or, you can configure an XPath expression or a constant in the Input field.

5. To select the output node for the mapping statement, drag an element from the output schema to the
Output field. You can also configure an XPath expression in the Output field.

6. To create an XPath expression with the XPath Expression editor for an Input, Output, or Condition field,
click the Open button in the field.

7. To change the mapping statement type, click the Open button in the Statement Type field. Choose the
mapping statement type from the list.

Mapping Statements Grid Interface
Edit mapping statements in the mapping statement grid in the XMap editor. You must create a statement
before you can modify fields in the mapping statement grid.

You can perform the following tasks in the mapping statement grid:

• Drag nodes from the input or output schema to fields in the mapping statements.

• Copy elements into the mapping statement fields, or you can type values into the fields.

• You can move a mapping statement up or down in the Grid. Select the row and click the Up or Down arrow
options.

• You can click Demote to indent a mapping statement under another statement. Click Promote if you want
to move a statement up in the hierarchy.

• Click Go to Row Number to navigate to a row. Enter the row to navigate to. The Developer tool highlights
the row for you.

Linking Schema Nodes
You can link an input schema node to an output schema node by dragging with the mouse. You can drag and
drop to map a simple node to a simple node, a simple node to a complex node, a complex node to a simple
node, or a complex node to a complex node.

The XMap editor creates a map link between the input schema node to the output schema node. The XMap
editor also creates a mapping statement in the grid.

You can move drag and drop a mapping statement from one row in the grid to another row to change the
XMap logic. For example, you can use this method to alter the sequence of Option statements within a
Router.

Mapping Statements 95

Cut and Paste Mapping Statements
You can cut and paste mapping statements in the mapping statement grid in the XMap editor.

You can move statements up or down. You can paste mapping statements even within nested statements.
You can promote a statement to be a parent statement, or demote a statement to be a child statement.

Pasted statements must usually be corrected as their logic is often out of context. After you paste a
statement, you can modify fields in the mapping statement grid.

XPath Expressions
XPath expressions identify specific elements or nodes in hierarchical documents or check for conditions in
the data. Use XPath expressions to define the Input, Condition, or Output fields of a mapping statement.

XPath is a syntax that defines parts of an hierarchical document. Use XPath to select sequences of nodes or
values in an hierarchical document. XPath includes a library of standard functions that you can use to select
data.

You can define XPath 2.0 expressions in the Data Processor transformation. When you configure Output
XPath expressions, you can use a subset of the XPath 2.0 syntax when you define mapping statements for
Add mode or Match or Add mode.

For more information about XPath, refer to your XPath documentation.

The following table describes some XPath expressions:

XPath Expression Description

nodename Selects all child nodes of the given name in the context.

. (dot) Selects current node.

.. Selects parent of current node.

@ Selects attribute.

/ Selects from root node or child of current node if preceded by node. When the path starts with a
slash (/) it represents an absolute path to an element.

// Selects nodes anywhere in the document or descendants of current node if preceded by node.

The following table lists some XPath expressions and the result of each expression:

XPath Expression Result

/bookstore Selects the root bookstore node.

bookstore/book Selects book nodes that are children of all bookstore nodes.

//book Selects the book nodes in the document in all locations.

bookstore//book Selects all book nodes that are descendants of the bookstore nodes.

96 Chapter 6: XMap

XPath Expression Result

/bookstore/* Selects all child nodes of bookstore root element.

//* Returns a sequence of all elements in the document.

Predicates
A predicate is an expression that you configure to find a node in a hierarchical document. You can configure
the expression to find a specific value. Create a predicate in an Input, Condition, or Output field of a mapping
statement.

When you define a predicate, enclose the expression in square brackets [] after the node.

/<node>[expression]

For example, the following expression selects the book elements that are children of bookstore and have a
price element with a value greater than 55.00:

/bookstore/book[price>55.00]

The following expression selects the title elements of the book elements that are children of bookstore with a
price element value greater than 55.00:

/bookstore/book[price>55.00]/title

The following expression selects the title elements that have an attribute lang with a value of "eng":

//title[@lang="eng"]

Note: The Data Processor transformation cannot accept all XPath statements in the Output field when you
configure a mapping statement with the Add mode or the Match or Add mode.

XPath Predicates Reference
XPath predicates find a matching node or sequence of nodes in a hierarchical document. A predicate
expression defines the value of an Input, Condition, or Output field of a mapping statement. The XPath
expression determines the context in which a mapping statement is run.

Use the following XPath expressions in predicates to select a node or sequence of nodes:

ancestor

Selects all ancestors, such as parent or grandparent, of the current node. For example, the predicate
expression "ancestor::book" selects all book ancestors of the current node.

ancestor-or-self

Selects all ancestors, such as parent or grandparent, of the current node, as well as the current node. For
example, the predicate expression "ancestor-or-self::book" selects all book ancestors of the current
node, and the current node also.

attribute

Selects all attributes of the current node. For example, the predicate expression "attribute::lang" selects
the lang attribute of the current node.

child

Selects all children of the current node. For example, the predicate expression "child::book" selects all
book nodes that are children of the current node.

XPath Expressions 97

descendant

Selects all descendants, such as children or grandchildren, of the current node. For example, the
predicate expression "descendant::book" selects all book descendants of the current node.

descendant-or-self

Selects all descendants, such as children or grandchildren, of the current node, as well as the current
node. For example, the predicate expression "descendant-or-self::book" selects all book descendants of
the current node, and the current node as well if it is a book node.

following

Selects everything in the document after the closing tag of the current node. For example, the predicate
expression "following::book" selects everything in the document after the closing tag of the book node.

following-sibling

Selects all siblings following after the current node. For example, the predicate expression "following-
sibling::book" selects all the siblings in the document after the book node.

namespace

Selects all namespace nodes of the current node.

parent

Selects the parent of the current node. For example, the predicate expression "parent::book" selects the
lang attribute of the current node.

preceding

Selects all nodes that appear before the current node in the document, except ancestors, attribute nodes
and namespace nodes. For example, the predicate expression "preceding::book" selects the nodes
before the book node.

preceding-sibling

Selects all siblings that appear before the current node in the document. For example, the predicate
expression "preceding-sibling::book" selects the sibling nodes before the book node.

self

Selects the current node. For example, the predicate expression "self::book" selects the current book
node.

XPath Arithmetic Operators
To perform calculations, add arithmetic operators that evaluate hierarchical document nodes. You can add
arithmetic operators to XPath expressions in the Input, Condition, or Output fields of a mapping statement.

The following table describes XPath arithmetic operators that you can use in XMap expressions:

XPath
Expression

Description

| Selects two node sets in context. For example, the predicate expression "//book | //cd" returns a
node set with all book and cd elements.

+ Adds the elements. For example, the predicate expression "1+2" returns 3.

- Subtracts the elements. For example, the predicate expression "2-1" returns 1.

98 Chapter 6: XMap

XPath
Expression

Description

* Multiplies the elements. For example, the predicate expression "2*1" returns 2.

div Divides the elements. For example, the predicate expression "6 div 3" returns 2.

= Selects the elements that equal the expression. For example, the predicate expression "cost=1.50"
returns true if the cost is 1.50, and false if the cost is 1.60.

!= Selects the elements that are not equal to the expression. For example, the predicate expression
"cost!=1.50" returns true if the cost is 1.60, and false if the cost is 1.50.

< Selects the elements that are less than the expression. For example, the predicate expression
"tax<1.50" returns true if the tax is 1.00, and false if the tax is 1.50.

<= Selects the elements that are equal to or less than the expression. For example, the predicate
expression "tax<=1.50" returns true if the tax is 1.50, and false if the tax is 1.80.

> Selects the elements that are greater than the expression. For example, the predicate expression
"tax>1.50" returns true if the tax is 1.90, and false if the tax is 1.50.

>= Selects the elements that are equal to or greater than the expression. For example, the predicate
expression "tax>=1.50" returns true if the tax is 1.50, and false if the tax is 1.00.

or Selects the elements that can satisfy one or more conditions. For example, the predicate
expression "tax=1.50 or tax=1.70" returns true if the tax is 1.50, and false if the tax is 1.00.

and Selects the elements that can satisfy all the given conditions. For example, the predicate
expression "price>1.00 and price<1.90" returns true if the price is 1.50, and false if the price is 1.00.

mode Performs division and provides the remainder. For example, the predicate expression "3 mod 2"
returns 1.

Output XPath Expressions
The Data Processor transformation accepts a subset of XPath statements in the Output field when the Mode
field set to is Add or Match or Add. When you select these mode settings, the Data Processor transformation
creates elements as needed to match the XPath expression in the Output field.

You can use a simple XPath expression in the Output field. A simple expression has child axes, parent axes,
or variables. Simple expressions do not have predicates, functions or complex axes. For example, you can
use the following Output field expressions:

person/data

/root/ceo/name

$var/name

person/../ceo

You can use a simple predicate with cardinality for an element with several instances. For example, you can
use the following Output field expression:

person/phone[4]

You can use a simple predicate with a formula with an equal sign, with simple XPaths on the left-hand side of
the equal sign. For example, you can use the following Output field expressions:

XPath Expressions 99

Person[id=10]

Person[id=$id]

Person[id=@dp:input()/ID]

Company[name=upper-case($compName)]

Person[role="manager" and id=1]

You can also use a combination of a simple expression with cardinality and a formula that uses a simple
XPath on the left-hand side of the equal sign. For example, you can use the following Output field
expressions:

company[4]/details[id=$myid]/phone

Note: When the Mode field is set to Match, the Output field can also accept complex XPath expressions.

XPath Expression Editor
Create expressions in the XPath Expression Editor. XPath is a query language used to select nodes in an
hierarchical document and perform computations.

You can use XPath expressions to define the context for a mapping statement. You can define conditions to
transform and filter the data using different XPath expressions in mapping statement properties. You can
add various arithmetic calculations to a mapping statement using XPath expressions.

When you click the Open button in the Input, Condition, or Output field, the Expression Editor appears. The
following figure shows the XPath Expression Editor:

100 Chapter 6: XMap

Create expressions in the Expression panel.

The XPath Expression Editor has a Navigation panel with a function library that you can use to create XPath
expressions. The functions are standard for the W3C XML Path Language. The function library also includes
some functions that are specific to the Data Processor transformation.

Data Processor Functions
The Expression Editor has Data Processor functions that you can use for the Data Processor transformation.

The Data Processor transformation uses the following XPath functions:

dp:as_xml

Receives a node as an input and returns the node value and the value of all the children as an XML string
recursively. The as_xml function uses the following syntax: dp:as_XML(<node>)

dp:get_id

Generates a unique ID associated with a node and returns it. You can use the ID to create primary key-
foreign key relationships in the data. Map the ID to a node in the schema and map it to keys in relational
data. The get_id function uses the following syntax: dp:get_id(<node>)

dp:input

Returns the node that provides the current input context. Use the function in the Output field to refer to a
node from the Input schema. The input function uses the following syntax: dp:input()

dp:transform

Call a Data Processor transformation transformer that you define in a Script. You can perform an inline
or external transformation. The function uses the following syntax: dp:transform(<transform-
name>,<transform-value>)

The transform function uses the following parameters:

• Transform-name. The name of the transformer in the Script.

• Transform-value. The transform value upon which to perform the transformation.

Note: The lookup function is available through the use of the dp:transform function.

dp:output

Returns the node that provides the current output context. Use the function in the Input field to refer to a
node in the output schema. The output function uses the following syntax: dp:output()

XPath Expressions 101

XPath Expressions Example
Use XPath expressions in mapping statements. XPath expressions identify the elements in the input
document to be mapped and transformed in the output document. An XPath expression is also used to
perform an arithmetic operation.

The following figure shows XPath expressions in the grid:

The XMap input document is a list of children and their hobbies. The input root is Children. Child is a multiple-
occurring element within Children. Each child has a Name and multiple-occurring hobbies. Name consists of
First, Initial, and Last elements.

The output is a list of the classes with the number of children in each class. The output root is Classes.
Classes has an attribute that contains the total number of classes. Each input Hobby element maps to a
output Class element. A Map statement concatenates the First, Initial, and Last elements into the Child
output element. Another Map statement counts the number of chldren in each class. Another statement
counts the number of classes.

The XMap contains the following expressions:

Grid row 2 expression <Class[@name = dp:input()]>

Adds a Class element or find a Class that matches Hobby. The dp:input() is required because the
expression refers to an input element.

Grid row 3 expression <concat(../Name/First,' ',../Name/Initial,' ',../Name/Last)>

Concatenates the first name, middle initial, and last name and adds spaces between them.

Grid row 4 expression <dp:output()/@noOfChildren + 1>

For each Hobby that occurs, add 1 to the number of children for that class. The dp:output() function is
required because the expression refers to an output element.

Grid row 5 expression <count(dp:output()/Class)>

Counts the Class elements. The dp:output() function is required because the expression refers to an
output element.

102 Chapter 6: XMap

Creating An Expression
Create XPath expressions in the Expression Editor.

1. In the XMap statement, click the Open button in the Input, Condition, or Output field.

The Expression Editor appears.

2. To add an element to an expression, double-click elements in the Navigation panel.

3. Click Validate to validate the expression.

4. If the expression is for the Input field, click Test Expression to test the expression against the example
data.

Results appear each time the Developer tool evaluates the expression using the example data. The
XPath expression can return a sequence of zero or more nodes or values. The Sequence Length
indicates how many nodes the XPath expression returns.

XMap Variables
You can add variables in the XMap editor. You can map values to variables and use the variables in
predicates or as temporary holders for values. You can map variables to output elements.

When you create a variable, it appears in the input and the output schemas in the XMap view. The Developer
tool adds a dollar sign ($) to the variable name to indicate that it is a variable.

You can create a variable that is a list of multiple values. You can use a list variable for the same purpose as
a multiple-occurring schema element. Configure a list variable as input for a repeating group or configure a
predicate to search for a value in the list variable.

For example, you have an XML document that contains addresses. You need to create a list of all the
countries from the addresses. Map the country element into a $countries variable that you define as a list.

Creating a Variable in the XMap Editor
You can create variables in the XMap editor.

1. Click Variables above the input or output schema in the XMap editor.

The Variables dialog box appears.

2. To create a variable, click New.

3. Enter a variable name and a datatype.

4. Enable List to create a multiple-occurring variable.

XMap Example
An XML document contains employee data that includes the employee role in the company. You need to
create an XML document that has the managers and employees in separate groups. You create two XMap
objects in the Data Processor transformation to restructure the XML document.

XMap Variables 103

The startup component is an XMap object that contains a Router statement. An Option statement checks if
the Employee role is "Manager." If the role is manager, the XMap maps the employee elements to a manager
output group. Otherwise, the XMap maps the employee elements to a worker group in the output XML.

The startup component XMap calls another XMap to map the Employee elements to output elements.

XML Input Schema Example
The XML Input schema for the XMap example has the following structure:

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2012 sp1 (x64) (http://www.altova.com) by Informatica
Corporation (Informatica Corporation) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="company"
targetNamespace="company" elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="Employee" type="EmployeeType"/>

<xs:element name="Input">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Company" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Company">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element ref="Department" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Department">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element ref="Employee" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:complexType name="EmployeeType">
 <xs:sequence>
 <xs:element name="FirstName" type="xs:string" minOccurs="0"/>
 <xs:element name="LastName" type="xs:string" minOccurs="0"/>
 <xs:element name="Role" type="xs:string" minOccurs="0"/>
 <xs:element name="StartDate" type="xs:date" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string"/>
</xs:complexType>

</xs:schema>
The schema root is Input. Input has multiple-occurring Companies. With in each Company are multiple
Departments. Each Department has Employees. Employee has a Role that determines whether the employee
is a manager or not.

104 Chapter 6: XMap

XML Output Schema Example
The XML Output schema for the XMap example has the following structure:

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2012 sp1 (x64) (http://www.altova.com) by Informatica
Corporation (Informatica Corporation) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="organization"
targetNamespace="organization" elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:element name="Worker" type="WorkerType"/>

<xs:element name="Output">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Organization" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="Organization">
 <xs:complexType>
 <xs:sequence>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="Worker" type="WorkerType"/>
 <xs:element name="Manager" type="WorkerType"/>
 </xs:choice>
 <xs:element name="Department" type="xs:string" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="noOfEmployees" type="xs:int"/>
 </xs:complexType>
</xs:element>

<xs:complexType name="WorkerType">
 <xs:sequence>
 <xs:element name="FirstName" type="xs:string" minOccurs="0"/>
 <xs:element name="LastName" type="xs:string" minOccurs="0"/>
 <xs:element name="FullName" type="xs:string" minOccurs="0"/>
 <xs:element name="Id" type="xs:string"/>
 <xs:element name="YearsOfService" type="xs:int" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

</xs:schema>

The schema root is Output. Output has multiple-occurring Organizations. Within each Organization are
Workers and Managers. Workers and Managers are WorkerTypes. A Worker and a Manager contain the same
elements. The WorkerType includes a YearsOfService element that the XMap calculates based on the
StartDate.

XML Input Data
The following text shows sample data from the input XML document:

<?xml version="1.0" encoding="windows-1252"?>
<Input xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="company
Company.xsd" xmlns="company">
 <Company>
 <Name>Hypostores</Name>

 <Department>
 <Name>Customer Service</Name>

 <Employee id="25721195">
 <FirstName>Blair</FirstName>
 <LastName>Conner</LastName>

XMap Example 105

 <Role>Manager</Role>
 <StartDate>1993-04-21</StartDate>
 </Employee>

 <Employee id="238036220">
 <FirstName>Karina</FirstName>
 <LastName>Rasmussen</LastName>
 <Role>Worker</Role>
 <StartDate>1993-08-15</StartDate>
 </Employee>
 </Department>

 <Department>
 <Name>Research and Development</Name>

 <Employee id="259089785">
 <FirstName>Thaddeus</FirstName>
 <LastName>Burt</LastName>
 <Role>Consultant</Role>
 <StartDate>1998-02-26</StartDate>
 </Employee>

 <Employee id="289021615">
 <FirstName>Christen</FirstName>
 <LastName>Fulton</LastName>
 <Role>Worker</Role>
 <StartDate>1997-11-16</StartDate>
 </Employee>

 <Employee id="761338290">
 <FirstName>Felix</FirstName>
 <LastName>Boyd</LastName>
 <Role>Worker</Role>
 <StartDate>2009-12-29</StartDate>
 </Employee>

 </Department>
</Company>

The data can include multiple companies. Each company has multiple departments. Each employee in a
department has a role that is either a manager or another type of worker.

Input and Output XML Hierarchies
The XMap editor shows the input hierarchy in the left area of the view and the output XML hierarchy in the
right area of the view.

106 Chapter 6: XMap

The following figure shows the input and output XML hierarchies:

Mapping Statements in the Example
Use the grid area of the XMap editor to define statements that map the input XML elements to the output
XML elements. Create and edit mapping statements in the grid. Define the context, condition and expected
input and output for a mapping statement. You can add variables to mapping statements.

The following figure shows the mapping statements in the grid:

The grid contains the following mapping statements:

Grid row 1, Repeating Group statement named Company

The Company statement is a Repeating Group statement. It repeats for each the Company element. The
statement provides a context for the rest of the statements in the grid. For each company, the Data
Processor transformation evaluates the child statements.

Grid row 2, Repeating Group statement named Department

The Department statement is a Repeating Group statement. It repeats for each Department element. The
statement provides a context for the rest of the statements in the grid. For each department, the Data
Processor transformation evaluates the child statements.

Grid row 3, Map statement named NametoDepartment

The NametoDepartment statement is a Map statement. It maps the Name element to a variable
$deptName.

Grid row 4, Repeating Group statement named MatchOrganization

The MatchOrganization statement is a Repeating Group statement. It has an output expression:

tns0:Organization[tns0:Department=$deptName]

XMap Example 107

The statement finds the Organization element in the output that contains a Department child element
with the value in $deptName. Or, if the Department element does not exist, the element is created.

Grid row 5, Repeating Group statement named EmployeeToWorker

The EmployeeToWorker statement is a Repeating Group statement. It repeats for each Employee
element.

Grid row 6, Router statement named Employee

The Employee statement is a Router statement. The statement has no input or output.

Grid row 7, Option statement named EmployeeToMgr

The EmployeeToMgr statement is an Option statement. The Option statement contains the following
condition:

tns0:Role="Manager".

When the Role is Manager, the statement is true, and the Data Processor transformation evaluates the
statements nested inside the Option statement.

Grid row 8, Run XMap statement named EmployeeToWorker

The EmployeeToWorker statement is a Run XMap statement. It calls the XMap_EmployeesToRoles XMap
to pass the Employee elements to the Manager type.

Grid row 9, Default statement named EmployeeToWorker

The EmployeeToWorker statement is a Default statement. The Data Processor transformation performs
the child statements when the employee role is not a manager.

Grid row 10, Run XMap statement named EmployeeToWorker

The EmployeeToWorker statement is a Run XMap statement. It calls the XMap_EmployeesToRoles XMap
to pass the Employee elements to the Worker type.

Grid row 11, Map statement named IncrementEmployeeCount

The IncrementEmployeeCount statement is a Map statement. It calls the Data Processor transformation
to add 1 to @noOfEmployees for each Employee that it iterates. The Map statement contains the
following input expression:

dp:output()/@ noOfEmployees + 1.

Group Statements Example
The EmployeeToWorker XMap moves elements from an employee to a worker. The XMap processes one
employee.

The following figure shows the EmployeeToWorker XMap in the XMap editor:

108 Chapter 6: XMap

The grid contains the following mapping statements:

Grid row 1, Group statement named EmployeeToWorker

The EmployeeToWorker statement is a Group statement. It provides context for the rest of the mapping
statements.

Grid row 2, Map statement named FirstNametoFirstName

The FirstNametoFirstName statement is a Map statement. It maps the first name to the first name.

Grid row 3, Map statement named LastNametoLastName

The LastNametoLastName statement is a Map statement. It maps the last name to the last name.

Grid row 4, Map statement named Employee/@IDtoID

The Employee/@IDtoID statement is a Map statement. It maps the employee ID to the employee ID.

Grid row 5, Map statement named StartDatetoYearsofService

The StartDatetoYearsofService statement is a Map statement. It determines the number of years of
service by subtracting a start-date from the current-date.

XMap Example 109

C h a p t e r 7

Libraries
This chapter includes the following topics:

• Libraries Overview, 110

• Library Structure, 111

• Element Properties, 111

• Library Management, 111

• Edit Libraries with the Library Editor, 112

• Edit Libraries with the IntelliScript Editor, 114

Libraries Overview
A Library is a Data Processor transformation object that contains predefined components used to transform
a range of industry messaging standards. A Data Processor transformation uses a Library to transform an
industry message type input into other formats. You can create Library objects for all libraries.

A Library contains a large number of objects and components, such as Parsers, Serializers, and XML
schemas, that transform the industry standard input and specific application messages into XML output. A
Library might contain objects for message validation, acknowledgments, and diagnostic displays. A Library
uses objects to transform the messaging type from industry standard input to XML and from XML to other
formats.

You can create Library objects for ACORD, BAI, CREST, DTCC-NSCC, EDIFACT, EDIT-UCS & WINS, EDI_VICS,
EDI-X12, FIX, FpML, HIPAA, HIX, HL7, IATA, IDS, MDM Mapping, NACHA, NCPDP, SEPA, SWIFT, and Telekurs
libraries.

You can use a dedicated Library editor to edit the Library specifications for the DTCC-NSCC, EDIFACT, EDI-
X12, HIPAA, HL7, and SWIFT libraries. A Library message contains a root element, container elements, and
data elements. The types of container and data elements vary according to message type. You can add and
delete elements and configure the properties of elements to change validation settings.

For more information about industry message types, see Data Transformation Libraries Guide.

110

Library Structure
A Library is a set of transformations. All Libraries contain Parsers, Serializers, and XML schemas. Some
Libraries contain additional components for message validation, acknowledgments, and diagnostic displays.
A Library object is a set of components that convert a specific industry message type.

When you create a Data Processor transformation, you can include a Library object instead of creating your
own Scripts to transform a standard industry message type. You can use a Library object without
modification, or you can edit it based on your requirements.

Each Library object transforms a particular industry standard. For example, the HL7 Library contains
components for each of the message types or data structures available in the HL7 messaging standard for
medical information systems.

The Library contains specific types of message types. For example, the HL7 Library contains messages such
as:

ADT_A01_Admit_a_Patient
ADT_A02_Transfer_a_Patient

Element Properties
A Library message contains a root element, container elements, and data elements. The types of container
and data elements vary according to message type. You can configure both container element and data
element properties with the Library editor.

Properties have the following categories:

Global Settings

Properties that have the same value for an element with more than one instance, each occupying a
different position in the hierarchy. Any change to a Global Settings property appears in all instances of
the element.

Positional Settings

Properties whose value can differ for each instance of the element in the hierarchy.

Element properties are named in accordance to industry standards. The Library editor displays different
properties for different Libraries.

Library Management
You can use the Library editor to customize the message type structures and elements for the DTCC-NSCC,
EDIFACT, EDI-X12, HIPAA, HL7, and SWIFT libraries. To change the structure of the message type, use the
Library editor to add, edit and delete elements from the Library message.

You might want to change the way that a message type is transformed. A Library transformation contains a
large number of objects and components, such as Scripts with Parsers, Serializers, and XML schemas, that
define the transformation. A Library transformation might contain objects for message validation,
acknowledgments, and diagnostic displays.

Library Structure 111

A Library transformation uses its objects to transform the messaging type from industry standard input to
XML and from XML to other formats. To access and edit the Scripts, XMaps and schemas that you created
with the Library editor, you must generate the Library objects. Generate the Library objects only if you need to
make a change to the Library objects that you cannot do with the Library editor.

After you generate the Library objects, use the IntelliScript editor to edit Parsers, Serializers, and Mappers.
For example, you want to change the output structure to suit your requirements. You generate the Library
objects and edit the Scripts with the IntelliScript editor.

When you create a Library for library packages that do not support the Library editor, the Library objects are
pre-generated. You do not need to generate the Library objects. You can use the IntelliScript editor to directly
edit the Script components for these libraries.

After you generate Library objects, or if the Library objects were pre-generated, you cannot edit the Library
elements with the Library editor. To use the Library editor again, you must discard the generated Library
objects for those libraries that you can edit with the Library editor. For example, you might decide that you
want to add input fields but not change the structure of the output. Discard the Library objects and after that
add custom elements with the Library editor.

Note: Any changes that you made to the generated Library objects are lost when you discard the generated
objects.

Library Example for EDI-X12

You and your suppliers use the X12 850 Purchase Order standard to document and process orders. You want
to change the library message type specifications from the industry standards to support your internal
processes.

The furniture manufacturing business needs standard elements such as model, color, and size, and a custom
element for the fabric type. It does not need a batch number or expiration date. Use the Library editor to
remove elements and add custom elements.

You can also use the Library editor to change element properties, add segments, and copy elements. For
example, change the element property which defines the list of colors to add new colors. To add a
manufacturer code element to the fabric segment and hardware segment, you can copy it.

You run a Data Processor transformation that contains your customized Library. The text input from your
suppliers is formatted in a modified version of the X12 850 Purchase Order standard. The modified input
format matches the changes that you made to the Library. The text is transformed into hierarchical output
that can be sent to other transformations for further processing.

Edit Libraries with the Library Editor
You can use a dedicated Library editor to edit the Library specifications for the EDI-X12, SWIFT, HL7, HIPAA,
DTCC-NSCC, and EDIFACT libraries.

The Library editor lets you customize the message type structures and elements with an editor that is
customized for each message type. You can add, edit and delete elements from the Library object with the
Library Editor.

112 Chapter 7: Libraries

Adding an Element with the Library Editor
A Library message contains a root element, container elements, and data elements. Use the Library editor to
add an element to a message.

1. In the Objects view, select the Library editor object and click Open.

The Library editor appears.

2. Click the Add element icon and choose where you want to add the element.

• New. Append the element to the end of the list of elements.

• Insert Above. Insert the element above the element selected in the Library editor.

• Insert Below. Insert the element below the element selected in the Library editor.

• Insert Within. Insert the element within the container element selected in the Library editor.

3. Select whether to copy an existing element or create a new element and click OK.

Editing the Element Properties with the Library Editor
Use the Library editor to edit a container element or data element in a Library. When you change the
properties of an element, you change the specifications for the message type.

1. In the Message Definition window of the Library editor, select the element to edit.

The Properties window displays the element properties.

2. In the Properties window, select a property and enter the new property value.

If you enter an incorrect value type or an out-of-range value, you will be prompted to correct the value.

Testing a Library
Test the Library object in the Data Viewer view.

Before you test the Library, select a sample input file to test.

1. To select a sample input file, in the Library editor General panel, near the Sample input field, browse to
select a sample input file.

2. Open the Data Viewer view.

3. To select the Library message type that you edited as the component to run, click Synchronize with
Editor.

4. Click Run.

The Developer tool runs the Library object Parser. The output results appear in the Output window.

5. If there are validation errors, the Output Errors panel in the Output window lists the errors and their
location. To find the source of the error, double-click the error.

6. To view the validation error files, click the file names in the Additional Outputs panel in the Output
window.

When you click the ErrorsFound.txt or Errors.xml file name, the file opens in an external browser.

Edit Libraries with the Library Editor 113

Generating the Library Objects
Generate the Library objects so that you can access them directly with the Data Processor transformation
editors. After you generate the Library objects, you cannot use the Library editor to edit the Library.

You must generate Library objects to access and edit the pre-configured parsers, mappers, serializers, and
XML schemas associated with the Library.

1. In the Objects view, right-click the Library and select Generate Library Objects.

2. To access the Library objects, select Yes.

The Developer tool creates a Generated Library Objects folder that contains the Library objects. The
startup component is generated.

Note: If you want to change which Library objects are generated, select a different component.

3. To edit a Script or schema, select it and click Open.

Use the IntelliScript editor to edit the Script.

Discarding the Library Objects
To edit the Library elements with the Library editor, you must remove the Library objects that you generated.
When you discard the Library objects, any change that you made to the them is lost.

1. In the Objects view, right-click the Library and select Discard Generate Library Objects.

2. To discard the Library objects from the Data Processor transformation editors, select Yes.

The Generated Library Objects folder that is discarded. The Library components and objects still exist,
but are not accessible through the Data Processor transformation editors.

Edit Libraries with the IntelliScript Editor
When you create a Library for the ACORD, BAI, FIX, HIX, IATA, IDS, NACHA, NCPDP, Telekurs, Bloomberg,
SEPA, FpML, and Thompson Reuters libraries, you can use the IntelliScript editor to directly edit the Script
components for these libraries. You do not need to generate the Library objects.

For the EDI-X12, SWIFT, HL7, HIPAA, DTCC-NSCC, Edifact, SEPA, and FpML libraries, you must generate the
Library objects to access and edit the Scripts, XMaps, and schemas that you created with the Library editor
with the IntelliScript editor.

The IntelliScript editor is a graphical tool that you use to edit Scripts. Use the IntelliScript editor to add Script
components to the Script and configure Script component properties. For more information about Scripts
and the IntelliScript editor, see “Scripts Overview” on page 130.

If you imported a Library project from a previous version as a Data Transformation service, you can edit the
Script components with the IntelliScript editor.

114 Chapter 7: Libraries

C h a p t e r 8

Schema Object
This chapter includes the following topics:

• Schema Object Overview, 115

• Schema Files, 115

• Schema Object Overview View, 116

• Schema Object Schema View, 117

• Schema Object Advanced View, 122

• Creating a Schema Object, 123

• Schema Updates, 123

Schema Object Overview
A schema object is a hierarchical schema that you import to the Model repository. After you import the
schema, you can view the schema components in the Developer tool. You can import an Avro, Parquet, XML,
or JSON schema. The Developer tool converts the schema to an .xsd file in the Model repository.

When you create a SOAP web service, you can define the structure of the web service based on a hierarchical
schema. When you create a web service without a WSDL, you can define the operations, the input, the output,
and the fault signatures based on the types and elements that the schema defines.

When you import a schema you can edit general schema properties in the Overview view. Edit advanced
properties in the Advanced view. View the schema file content in the Schema view.

Schema Files
You can add multiple root-level .xsd files to a schema object. You can also remove root-level .xsd files from a
schema object.

When you add a schema file, the Developer tool imports all .xsd files that are imported by or included in the
file you add. The Developer tool validates the files you add against the files that are part of the schema
object. The Developer tool does not allow you to add a file if the file conflicts with a file that is part of the
schema object.

For example, a schema object contains root schema file "BostonCust.xsd." You want to add root schema file
"LACust.xsd" to the schema object. Both schema files have the same target namespace and define an

115

element called "Customer." When you try to add schema file LACust.xsd to the schema object, the Developer
tool prompts you to retain the BostonCust.xsd file or overwrite it with the LACust.xsd file.

You can use the xsd:nillable attribute to mark XSD elements as nillable. When you mark an element as
nillable, the corresponding element in the XML file permits null values.

You can remove any root-level schema file. If you remove a schema file, the Developer tool changes the
element type of elements that were defined by the schema file to xs:string.

To add a schema file, select the Overview view, and click the Add button next to the Schema Locations list.
Then, select the schema file. To remove a schema file, select the file and click the Remove button.

Schema Object Overview View
Select the Overview view to update the schema name or schema description, view namespaces, and manage
schema files.

The Overview view shows the name, description, and target namespace for the schema. You can edit the
schema name and the description. The target namespace displays the namespace to which the schema
components belong. If no target namespace appears, the schema components do not belong to a
namespace.

The following figure shows the Overview view of a schema object:

The Schema Locations area lists the schema files and the namespaces. You can add multiple root .xsd files.
If a schema file includes or imports other schema files, the Developer tool includes the child .xsd files in the
schema.

116 Chapter 8: Schema Object

Schema Object Schema View
The Schema view shows an alphabetic list of the groups, elements, types, attribute groups, and attributes in
the schema. When you select a group, element, type, attribute group, or attribute in the Schema view,
properties display in the right panel. You can also view each .xsd file in the Schema view.

The Schema view provides a list of the namespaces and the .xsd files in the schema object.

The following figure shows the Schema view of a schema object:

You can perform the following actions in the Schema view:

• To view the list of schema constructs, expand the Directives folder. To view the namespace, prefix, and
the location, select a schema construct from the list.

• To view the namespace prefix, generated prefix, and location, select a namespace. You can change the
generated prefix.

• To view the schema object as an .xsd file, select Source. If the schema object includes other schemas,
you can select which .xsd file to view.

• To view an alphabetic list of groups, elements, types, attribute groups, and attributes in each namespace
of the schema, select Design. You can enter one or more characters in the Name field to filter the groups,
elements, types, attribute groups, and attributes by name.

• To view the element properties, select a group, element, type, attribute group, or attribute. The Developer
tool displays different fields in the right panel based on the object you select.

When you view types, you can see whether a type is derived from another type. The interface shows the
parent type. The interface also shows whether the child element inherited values by restriction or extension.

Schema Object Schema View 117

Namespace Properties
The Namespace view shows the prefix and location for a selected namespace.

The namespace associated with each schema file differentiates between elements that come from different
sources but have the same names. A Uniform Resource Identifier (URI) reference defines the location of the
file that contains the elements and attribute names.

When you import a schema that contains more than one namespace, the Developer tool adds the
namespaces to the schema object. When the schema file includes other schemas, the namespaces for those
schemas are also included.

The Developer tool creates a generated prefix for each namespace. When the schema does not contain a
prefix, the Developer tool generates the namespace prefix tns0 and increments the prefix number for each
additional namespace prefix. The Developer tool reserves the namespace prefix xs. If you import a schema
that contains the namespace prefix xs, the Developer tool creates the generated prefix xs1. The Developer
tool increments the prefix number when the schema contains the generated prefix value.

For example, Customer_Orders.xsd has a namespace. The schema includes another schema, Customers.xsd.
The Customers schema has a different namespace. The Developer tool assigns prefix tns0 to the
Customer_Orders namespace and prefix tns1 to the Customers namespace.

To view the namespace location and prefix, select a namespace in the Schema view.

When you create a web service from more than one schema object, each namespace must have a unique
prefix. You can modify the generated prefix for each namespace.

Element Properties
An element is a simple or a complex type. A complex type contains other types. When you select an element
in the Schema view, the Developer tool lists the child elements and the properties in the right panel of the
screen.

The following table describes element properties that appear when you select an element:

Property Description

Name The element name.

Description Description of the type.

Type The element type.

The following table describes the child element properties that appear when you select an element:

Property Description

Name The element name.

Type The element type.

Minimum Occurs The minimum number of times that the element can occur at one point in an instance.

Maximum Occurs The maximum number of times that the element can occur at one point in an instance.

Description Description of the element.

118 Chapter 8: Schema Object

To view additional child element properties, click the double arrow in the Description column to expand the
window.

The following table describes the additional child element properties that appear when you expand the
Description column:

Property Description

Fixed Value A specific value for an element that does not change.

Nillable The element can have nil values. A nil element has element tags but has no value and no content.

Abstract The element is an abstract type. An instance must include types derived from that type. An
abstract type is not a valid type without derived element types.

Minimum Value The minimum value for an element in an instance.

Maximum Value The maximum value for an element in an instance.

Minimum Length The minimum length of an element. Length is in bytes, characters, or items based on the element
type.

Maximum Length The maximum length of an element. Length is in bytes, characters, or items based on the element
type.

Enumeration A list of all legal values for an element.

Pattern An expression pattern that defines valid element values.

Advanced Element Properties
To view advanced properties for a element, select the element in the Schema view. Click Advanced.

The following table describes the element advanced properties:

Property Description

Abstract The element is an abstract type. A SOAP message must include types derived from that type. An
abstract type is not a valid type without derived element types.

Block Prevents a derived element from appearing in the hierarchy in place of this element. The block
value can contain "#all" or a list that includes extension, restriction, or substitution.

Final Prevents the schema from extending or restricting the simple type as a derived type.

Substitution
Group

The name of an element to substitute with the element.

Nillible The element can have nil values. A nil element has element tags but has no value and no content.

Schema Object Schema View 119

Simple Type Properties
A simple type element is an element that contains unstructured text. When you select a simple type element
in the Schema view, information about the simple type element appears in the right panel.

The following table describes the properties you can view for a simple type:

Property Description

Type Name of the element.

Description Description of the element.

Variety Defines if the simple type is union, list, anyType, or atomic. An atomic element contains no
other elements or attributes.

Member types A list of the types in a UNION construct.

Item type The element type.

Base The base type of an atomic element, such as integer or string.

Minimum Length The minimum length for an element. Length is in bytes, characters, or items based on the
element type.

Maximum Length The maximum length for an element. Length is in bytes, characters, or items based on the
element type.

Collapse whitespace Strips leading and trailing whitespace. Collapses multiple spaces to a single space.

Enumerations Restrict the type to the list of legal values.

Patterns Restrict the type to values defined by a pattern expression.

Simple Type Advanced Properties
To view advanced properties for a simple type, select the simple type in the Schema view. Click Advanced.

The advanced properties appear below the simple type properties.

The following table describes the advanced property for a simple type:

Property Description

Final Prevents the schema from extending or restricting the simple type as a derived type.

120 Chapter 8: Schema Object

Complex Type Properties
A complex type is an element that contains other elements and attributes. A complex type contains elements
that are simple or complex types. When you select a complex type in the Schema view, the Developer tool
lists the child elements and the child element properties in the right panel of the screen.

The following table describes complex type properties:

Property Description

Name The type name.

Description Description of the type.

Inherit from Name of the parent type.

Inherit by Restriction or extension. A complex type is derived from a parent type. The complex type might reduce
the elements or attributes of the parent. Or, it might add elements and attributes.

To view properties of each element in a complex type, click the double arrow in the Description column to
expand the window.

Complex Type Advanced Properties
To view advanced properties for a complex type, select the element in the Schema view. Click Advanced.

The following table describes the advanced properties for a complex element or type:

Property Description

Abstract The element is an abstract type. A SOAP message must include types derived from that type. An
abstract type is not a valid type without derived element types.

Block Prevents a derived element from appearing in the schema in place of this element. The block
value can contain "#all" or a list that includes extension, restriction, or substitution.

Final Prevents the schema from extending or restricting the simple type as a derived type.

Substitution
Group

The name of an element to substitute with the element.

Nillible The element can have nil values. A nil element has element tags but has no value and no content.

Attribute Properties
An attribute is a simple type. Elements and complex types contain attributes. Global attributes appear as part
of the schema. When you select a global attribute in the Schema view, the Developer tool lists attribute
properties and related type properties in the right panel of the screen.

The following table describes the attribute properties:

Property Description

Name The attribute name.

Schema Object Schema View 121

Property Description

Description Description of the attribute.

Type The attribute type.

Value The value of the attribute type. Indicates whether the value of the attribute type is fixed or has a default
value. If no value is defined, the property displays default=0.

The following table describes the type properties:

Property Description

Minimum Length The minimum length of the type. Length is in bytes, characters, or items based on the type.

Maximum Length The maximum length of the type. Length is in bytes, characters, or items based on the type.

Collapse Whitespace Strips leading and trailing whitespace. Collapses multiple spaces to a single space.

Enumerations Restrict the type to the list of legal values.

Patterns Restrict the type to values defined by a pattern expression.

Schema Object Advanced View
View advanced properties for the schema object.

The following table describes advanced properties for a schema object:

Name Value Description

elementFormDefault Qualified or
Unqualified

Determines whether or not elements must have a namespace. The
schema qualifies elements with a prefix or by a target namespace
declaration. The unqualified value means that the elements do not
need a namespace.

attributeFormDefault Qualified or
Unqualified

Determines whether or not locally declared attributes must have a
namespace. The schema qualifies attributes with a prefix or by a
target namespace declaration. The unqualified value means that the
attributes do not need a namespace.

File location Full path to the .xsd
file

The location of the .xsd file when you imported it.

122 Chapter 8: Schema Object

Creating a Schema Object
You can import a hierarchical schema file or sample file to create a schema object in the repository.

1. Select a project or folder in the Object Explorer view.

2. Click File > New > Schema.

The New Schema dialog box appears.

3. To import a schema file, select Create from schema, and then browse to and select a hierarchical
schema file.

You can enter a URI or a location on the file system to browse. The Developer tool validates the schema
you choose. Review validation messages. You can select an Avro, Parquet, JSON, or .xsd schema file.

Note: If the URI contains non-English characters, the import might fail. Copy the URI to the address bar in
any browser. Copy the location back from the browser. The Developer tool accepts the encoded URI from
the browser.

4. To create a schema from a sample file, select Create from a sample file, and then browse to and select
a hierarchical file.

You can select an Avro, Parquet, JSON, or XML file.

Note: If you select a file with a different extension that contains Avro, Parquet, JSON, or XML content, the
wizard recognizes the file content.

5. Optionally, change the schema name.

6. Click Next to view a list of the elements and types in the schema.

7. Click Finish to import the schema.

The schema appears under Schema Objects in the Object Explorer view. The Developer tool stores the
schema as an .xsd file.

8. To change the generated prefix for a schema namespace, select the namespace in the Object Explorer
view. Change the Generated Prefix property in the Namespace view.

Schema Updates
You can update a schema object when elements, attributes, types, or other schema components change.
When you update a schema object, the Developer tool updates objects that use the schema.

You can update a schema object through the following methods:

Synchronize the schema.

Synchronize a schema object when you update the schema files outside the Developer tool. When you
synchronize a schema object, the Developer tool reimports all of the schema .xsd files that contain
changes.

Edit a schema file.

Edit a schema file when you want to update a file from within the Developer tool. When you edit a
schema file, the Developer tool opens the file in the editor you use for .xsd files. You can open the file in
a different editor or set a default editor for .xsd files in the Developer tool.

You can use a schema to define element types in a web service. When you update a schema that is included
in the WSDL of a web service, the Developer tool updates the web service and marks the web service as

Creating a Schema Object 123

changed when you open it. When the Developer tool compares the new schema with the old schema, it
identifies schema components through the name attributes.

If no name attribute changes, the Developer tool updates the web service with the schema changes. For
example, you edit a schema file from within the Developer tool and change the maxOccurs attribute for
element "Item" from 10 to unbounded. When you save the file, the Developer tool updates the maxOccurs
attribute in any web service that references the Item element.

If a name attribute changes, the Developer tool marks the web service as changed when you open it. For
example, you edit a schema outside the Developer tool and change the name of a complex element type from
"Order" to "CustOrder." You then synchronize the schema. When you open a web service that references the
element, the Developer tool marks the web service name in the editor with an asterisk to indicate that the
web service contains changes. The Developer tool adds the CustOrder element type to the web service, but it
does not remove the Order element type. Because the Developer tool can no longer determine the type for the
Order element, it changes the element type to xs:string.

Schema Synchronization
You can synchronize a schema object when the schema components change. When you synchronize a
schema object, the Developer tool reimports the object metadata from the schema files.

Use schema synchronization when you make complex changes to the schema object outside the Developer
tool. For example, you might synchronize a schema after you perform the following actions:

• Make changes to multiple schema files.

• Add or remove schema files from the schema.

• Change import or include elements.

The Developer tool validates the schema files before it updates the schema object. If the schema files
contain errors, the Developer tool does not import the files.

To synchronize a schema object, right-click the schema object in the Object Explorer view, and select
Synchronize.

Schema File Edits
You can edit a schema file from within the Developer tool to update schema components.

Edit a schema file in the Developer tool to make minor updates to a small number of files. For example, you
might make one of the following minor updates to a schema file:

• Change the minOccurs or maxOccurs attributes for an element.

• Add an attribute to a complex type.

• Change a simple object type.

When you edit a schema file, the Developer tool opens a temporary copy of the schema file in an editor. You
can edit schema files with the system editor that you use for .xsd files, or you can select another editor. You
can also set the Developer tool default editor for .xsd files. Save the temporary schema file after you edit it.

The Developer tool validates the temporary file before it updates the schema object. If the schema file
contains errors or contains components that conflict with other schema files in the schema object, the
Developer tool does not import the file.

Note: When you edit and save the temporary schema file, the Developer tool does not update the schema file
that appears in the Schema Locations list. If you synchronize a schema object after you edit a schema file in
the Developer tool, the synchronization operation overwrites your edits.

124 Chapter 8: Schema Object

Setting a Default Schema File Editor
You can set the default editor that the Developer tool opens when you edit a schema file.

1. Click Window > Preferences.

The Preferences dialog box appears.

2. Click Editors > File Associations.

The File Associations page of the Preferences dialog box appears.

3. Click Add next to the File types area.

The Add File Type dialog box appears.

4. Enter .xsd as the file type, and click OK.

5. Click Add next to the Associated editors area.

The Editor Selection dialog box appears.

6. Select an editor from the list of editors or click Browse to select a different editor, and then click OK.

The editor that you select appears in the Associated editors list.

7. Optionally, add other editors to the Associated editors list.

8. If you add multiple editors, you can change the default editor. Select an editor, and click Default.

9. Click OK.

Editing a Schema File
You can edit any schema file in a schema object.

1. Open a schema object.

Schema Updates 125

2. Select the Overview view.

The Overview view of the schema object appears.

3. Select a schema file in the Schema Locations list.

4. Click Open with, and select one of the following options:

Option Description

System Editor The schema file opens in the editor that your operating system uses for .xsd files.

Default Editor The schema file opens in the editor that you set as the default editor in the Developer tool. This
option appears if you set a default editor.

Other You select the editor in which to open the schema file.

The Developer tool opens a temporary copy of the schema file.

5. Update the temporary schema file, save the changes, and close the editor.

The Developer tool prompts you to update the schema object.

6. To update the schema object, click Update Schema Object.

The Developer tool updates the schema file with the changes you made.

126 Chapter 8: Schema Object

C h a p t e r 9

Command Line Interface
This chapter includes the following topics:

• Command Line Interface Overview, 127

• CM_console, 127

Command Line Interface Overview
You can run a Data Transformation service from the command line of the machine that hosts the service.

Export a Data Processor transformation as a service to the /ServiceDB directory on the machine where you
want to run the Data Transformation service. Run the CM_console command.

CM_console
Runs a Data Transformation service.

The CM_console command uses the following syntax:

CM_console <ServiceName>

[< -f | -u | -t >InputDocument]

[-aServiceParameter=InitialValue]

[-o<[Path]FileName | FileName>]

[-r<curr | res | spec=OutputDirectory | guid>]

[-lUserName -pPassword]

[-v]

[-S]

[-x<f | u | t>InputPortName=InputDocument]

[-xoOutputPortName=OutputDocument]

[-e]
Note: Do not include a space between an option and its argument.

127

The following table describes CM_console options and arguments:

Option Argument Description

- ServiceName Required. Specifies the name of the service.

-f InputDocument Optional. Specifies a path and file name on the local file system. By
default, the service uses the document defined in the example_source
property of the startup component.

-t InputDocument Optional. Specifies a string surrounded by double quotes.

-u InputDocument Optional. Specifies a URL.

-a ServiceParameter=InitialValue Optional. Specifies an input parameter for the service.
ServiceParameter is the name of a variable as defined in the service.
InitialValue must be of a data type that is valid for the defined
variable. You can enter multiple input parameters, separated by
spaces.

-o FileName
[Path]FileName

Optional. Directs output to Path/FileName. If you enter only FileName,
you must define the Path with the -r option. By default, the
CM_console command directs output to the screen.

-r curr Optional. Specifies the directory from which you ran the CM_console
command.

-r res Optional. Specifies the results subdirectory under the directory that
holds the service in the filesystem repository.

-r spec=OutputDirectory Optional. Specifies a directory on the local file system.

-r guid Optional. Specifies a directory with a unique name under the
CMReports/tmp directory. You can use the configuration editor to
change the location of this directory.

-l UserName Required when you use HTTP authentication. Specifies the user name
for HTTP authentication.
Note: This option is a lower-case L.

-p Password Required when you use HTTP authentication. Specifies the password
for HTTP authentication.

-v - Optional. Displays verbose information about the Data Transformation
version, the version of the Data Transformation syntax, the setup
package identifier, the license, and other information.

-S - Required if the startup component of the service is a streamer. You
must also use the -f option to define the input file.

-xf InputPortName=InputDocument Optional. InputPortName specifies the name of an
AdditionalInputPort defined in the service. InputDocument specifies a
path and file name on the local file system. You can enter multiple
input ports, separated by spaces.

-xt InputPortName=InputDocument Optional. InputPortName specifies the name of an
AdditionalInputPort defined in the service. InputDocument specifies a
string surrounded by double quotes. You can enter multiple input
ports, separated by spaces.

128 Chapter 9: Command Line Interface

Option Argument Description

-xu InputPortName=InputDocument Optional. InputPortName specifies the name of an
AdditionalInputPort defined in the service. InputDocument specifies a
URL. You can enter multiple input ports, separated by spaces.

-xo OutputPortName=OutputDocument Optional. OutputPortName specifies the name of an
AdditionalOutputPort defined in the service. OutputDocument
specifies a path and file name on the local file system. You can enter
multiple output ports, separated by spaces.

-e - Optional. By default, the CM_console command terminates with an
exit code of 1 for success and greater than 1 for error. When you
include the -e option, the CM_console command terminates with an
exit code of 0 for success and greater than 1 for error.

For example:

CM_console XYZparser -fInputFile.txt -aMaxLines=1000 -oResults.xml -rcurr
This example calls the XYZparser service, using InputFile.txt as the main input document. It gives the
value of 1000 to the MaxLines parameter, and writes the output to the Results.xml file in the directory from
which you ran the CM_console command.

CM_console 129

C h a p t e r 1 0

Scripts
This chapter includes the following topics:

• Scripts Overview, 130

• Script Components, 131

• Script Component Properties, 133

• Script Startup Components, 134

• Example Sources, 135

• IntelliScript Editor, 136

• Validate a Script, 137

• Sample Scripts, 137

Scripts Overview
A Script performs complex transformations on input data, and writes output data. Create a Script on the
Objects tab of the Data Processor transformation. Use the IntelliScript editor to view a Script, add and
configure components, and set the startup component for a Script.

Use a Script to read one or more documents in any format, such as HL7, PDF, XML, or Word. You can write
one or more documents in any format. You can write the output of a Script to the local file system, or you can
return the output through output ports of the Data Processor transformation.

A Script is made up of components that define input and output documents, business logic, variables that
temporarily hold data, and configuration settings. The components are arranged in a hierarchical tree. When
the transformation runs a Script, it begins processing in the component that you set as the startup
component.

When you configure a Script, you set example sources that contain sample data for each input port. When
you run the transformation from the Data Viewer view, the transformation reads the example source
documents. When you run the transformation in a mapping, the transformation reads the documents that it
receives through its input ports.

The Data Processor transformation that contains the Script must reference a schema for each XML
document that the Script reads or writes.

130

Script Components
A Script component is a line or a group of lines in a Script that define input and output documents, business
logic, variables that temporarily hold data, and configuration settings. The components of a Script appear in a
hierarchical tree. Some components appear at the global level of the Script, and others appear as child
components.

The global level of the Script contains startup components, variables, and other components such as
additional input ports and Transformers. A component at the global level must have a name.

A component can have properties that control the behavior of the component. The properties of a component
appear nested within it. A property can appear on one line, or it can appear as a hierarchy of properties. You
can configure the properties of some components to override default settings that apply to the Data
Processor transformation.

Some components, such as Parsers or Mappers, can contain other components such as Transformers or
RunParser actions. Optionally, you can configure the name property of a child component.

Component Types
The context of the Script determines the types of components you can add.

For example, anchors must appear nested within Parsers, Mappers, or Serializers. Also, additional input ports
and additional output ports can appear only at the global level of the Script.

The following table describes the types of components that you can add to a Script:

Component Type Description

Action Takes data from a data holder and performs an operation on it. For example, the RunParser
action runs a Parser.

Anchor Identifies a section of the input document.

Document
processor

Performs a complex transformation on an input document. For example, the PdfToTxt_4
document processor converts a PDF document to plain text.

Format Defines the format of the documents for a Parser to process.

Locator Isolates a single occurrence of a multiple-occurrence data holder.

Mapper Reads XML documents and writes XML documents. Can be set as the startup component.

Notification Writes a message to the standard output or to a log. For example, the XsdValidationError
notification indicates that the input document is not valid as against the schema that defines it.

Parser Reads documents in any format and writes documents in any format. Can be set as the startup
component.

Script Port Defines an input or output document.

Serializer Reads XML documents and writes documents in any format. Can be set as the startup
component.

Streamer Breaks large input files into chunks and passes the chunks to a Parser, Mapper, or Serializer. Can
be set as the startup component.

Script Components 131

Component Type Description

Transformer Transforms an input string to an output string. Can be set as the startup component.

Validator Determines whether input data conforms to a specific data definition.

Variable Holds data that the Script receives through a service parameter, or holds data from component in
the Script.

Component Names
The name of a component identifies it in the Script, the Data Processor Events view and the log.

When the Data Processor transformation performs the instructions in a component, the component
generates an event that appears in the Data Processor Events view and the log. A component that appears at
the global level of the Script must have a name. A component that appears as the child of another
component can have a name that you configure with the name property.

The name of a component must begin with a letter, must contain only English characters (A-Z, a-z), numerals
(0-9), and underscores (_), and must contain no more than 127 characters.

Adding a Global Component
Define a component globally when you need to use it in two or more places in the Script, or when the
component can only appear at the global level.

1. At the bottom of the global level of the Script, double-click the left ellipsis (...).

A text box appears.

2. Enter the name of the component, and then press ENTER.

3. Double-click the right ellipsis.

A list box appears.

4. Click the down arrow and select the type of component that you want to add.

The global component appears in the Script.

5. Set the properties of the component, if any.

Adding a Local Component
Define a component locally when you plan to use it in only one location in the Script, or when the component
can only appear as a child component.

1. At the place in the Script where you want to insert a component, double-click the ellipsis.

A list box appears.

2. Click the down arrow at the right of the list box.

A list of available components appears, including named global components.

3. Select a component.

The component appears in the Script.

4. Set the properties of the component, if any.

132 Chapter 10: Scripts

Script Component Properties
The properties of a Script component define the component functionality. A component can have one or
more properties. The properties appear nested within the component. All components of the same type have
the same properties.

For example, the example_source property of a Parser defines sample text that the Parser uses when you run
the transformation from the Data Viewer view.

Simple Properties
The simple properties of a component are the properties that the IntelliScript editor always displays.

Most users need to modify only the simple properties.

The following figure shows the simple properties of a Parser component:

Advanced Properties
The advanced properties of a component are normally set to default values that users normally do not
change.

The IntelliScript editor normally displays only the advanced properties that you have set to a non-default
value.

To show properties that are not displayed, click the double right arrow on the first line.

The following figure shows all the properties of a Parser component:

Script Component Properties 133

Component Property Values
You set the values for the properties of a component.

When the value of a property is Boolean, it appears as a check box to the left of the property name. For
example, the optional property of a Content component is Boolean.

When the value is a string, it appears to the right of the property name, surrounded by double quotes. Valid
values are strings of valid alphanumeric characters, symbols, or control characters, but not including null
characters. To enter a non-keyboard character in a text field, press CTRL+A, and then type the three-digit
decimal code for the character. For example, type CTRL+A 010 for a line feed, or CTRL+A 255 for the
Icelandic letter "thorn" (þ). For example, the value of the expression property of a CalculateValue component
is a string.

When the value is a selection, it appears to the right of the property name. When you edit the value, a list box
appears. For example, the val_type property of a Variable component is a selection.

When the value is a hierarchical tree of properties, it appears to the right and below the property name. For
example, when you set the format property of a Parser component to CustomFormat, a tree of additional
properties appears.

The following figure shows the format property of a Parser component, which appears as a tree:

Script Startup Components
The startup component of a Script defines the entry point where the Data Processor transformation begins to
process the Script. The startup component must appear at the global level of the Script.

You can set a Parser, Mapper, Serializer, Streamer, or Transformer as the startup component.

You can set the startup component from the Overview tab of a Data Processor transformation. When you use
the IntelliScript editor to set the startup component of a Script, the Script startup component becomes the
Data Processor transformation startup component.

Setting the Startup Component with the IntelliScript Editor
You can use the IntelliScript editor to set a Script component as the startup component of the Data
Processor transformation. You must set the startup component to run the Script. You must set the startup
component to display the example source in the Input panel of the Data Viewer view.

1. Open a Script in the IntelliScript editor.

134 Chapter 10: Scripts

2. Right-click a component that appears at the global level of the Script, and then select Set as Startup
Component.

Example Sources
An example source is a document that contains sample input data for the Script to process during design
time. You configure an example source for each Parser, Mapper, Serializer, or additional input port. The
example source contains the same type of data that the Data Processor transformation receives from an
input port.

By default, the Data Viewer view displays the example source defined for the startup component. You can
also view the example source of any other component that defines an example source. When you run a Script
from the Data Viewer view, the Data Processor transformation reads the example source documents.

You can configure the following types of example source document:

• LocalFile. A file on the local file system.

• Text. A string hard-coded into the Script.

• URL. A file on the local network or the Internet.

Note: When you run a Script in a mapping and an input document is missing, the transformation uses the
example source. If no example source is configured and there is no input document, the Data Processor
transformation halts and generates a fatal error.

Example Source Example

The following sample text illustrates a part of a local file that you might use for an example source when you
parse HL7 documents:

MSH|^~\&|ADT1|MCM|FINGER|MCM|198808181126|SECURITY|ADT^A01|MSG00001|P|2.3.1
EVN|A01|198808181123
PID|1||PATID1234^5^M11^ADT1^MR^MCM~123456789^^^USSSA^SS||
SMITH^WILLIAM^A^III||19610615|M||C|1200 N ELM STREET^^JERUSALEM^TN^99999?
1020|GL|(999)999?1212|(999)999?3333||S||PATID12345001^2^M10^ADT1^AN^A|
123456789|987654^NC
NK1|1|SMITH^OREGANO^K|WI^WIFE||||NK^NEXT OF KIN
PV1|1|I|2000^2012^01||||004777^CASTRO^FRANK^J.|||SUR||||ADM|A0

Example Source Highlighting
The Input panel of the Data Viewer view highlights parts of the example source document.

The Data Viewer view uses different colors to highlight the content anchors of the example source, marker
anchors that define where the transformation finds content, and repeating groups of anchors.

Setting an Example Source in the IntelliScript Editor
When you run a Script from the Data Viewer view, you must have an example source for the main input and
for each additional input port. Set the example source in the IntelliScript editor. You can also select the
example source when you create a Script in the Data Processor transformation.

1. Select the component for which you want to define an example source, and expand it to show its
properties.

2. Next to the example_source property, double-click the ellipsis.

Example Sources 135

3. Select an input format. The following table describes the input format options:

Option Description

LocalFile The file_name property appears under the example_source property. Double-click the ellipsis, and
then browse to a file on the local file system.

Text The quote property appears under the example_source property. Enter a string.

URL The stable_url property appears under the example_source property. Enter a string.

Viewing an Example Source
You can view the example source of a Parser, Mapper, Serializer, or additional input port in the Input panel of
the Data Viewer view.

1. Open a Script in the IntelliScript editor.

2. Set the one of the components of the Script as the startup component.

3. In the IntelliScript editor, select the component that has the example source that you want to view.

4. In the Data Viewer view, click Synchronize with Editor.

IntelliScript Editor
The IntelliScript editor is a graphical tool that you use to edit Scripts. Use the IntelliScript editor to add
components to the Script, configure component properties, and set the startup component.

When you open a Script, the IntelliScript editor appears in the editor area at the center of the Developer tool
interface. By default, the IntelliScript editor displays Scripts in Intelli Mode, which displays the Script in an
expandable hierarchical tree format, or Script Mode, which displays the Script as text. You can view or edit a
Script in Intelli Mode. Some advanced properties are hidden by default, but you can show them by clicking a
graphical double arrow on the first line of the component.

You can insert only components that are valid for the context. You can drag a component to move it, or you
can cut and paste it with CTRL+C and CTRL+V. You can select multiple components with mouse clicks and
the CTRL and SHIFT keys.

When you use the IntelliScript editor, the following views display relevant information:

• Data Viewer, Input panel. Displays the example source for the startup component or the component
selected in the IntelliScript editor.

• Data Viewer, Output panel. Displays the output when you run the Data Processor transformation from the
Data Viewer view.

• Data Processor Events. Displays the events that occur when you run a Data Processor transformation.
Use the Data Processor Events view for troubleshooting.

• Data Processor Script Help. Displays documentation relevant to the component or property currently
selected in the IntelliScript editor.

• Data Processor Hex Source. Displays the example source document in hexadecimal form. Use the Data
Processor Hex Source view to find non-printing characters such as tabs.

To view the source of a Script, right-click in the IntelliScript editor, and then select Script Mode. To return to
Intelli Mode, right-click in the IntelliScript editor, and then select Intelli Mode.

136 Chapter 10: Scripts

Validate a Script
When you create a Script, you can validate the Script before you run it. When you validate a Script, the
Developer tool checks if there are any failures that could prevent a component from processing data in the
expected way.

To validate a Script, in the Developer tool Outline view, select the Script, then right-click and select Validate.
If there are any errors, the Validation Log view appears and displays errors or warnings about failures that the
validation processor discovered.

If you double-click an error in the Validation Log view, the relevant line in the Script is highlighted in the
IntelliScript editor.

Sample Scripts
Informatica provides sample Scripts as examples of tasks that you can accomplish with a Script.

You can find the sample Scripts in the following subdirectory of the installation directory:

\DataTransformation\samples\Projects
To view, modify, or copy a sample Script, you must first import it.

The following table describes the sample Scripts:

Script Name Description

Alternatives Demonstrates branching and the Alternatives anchor.

AppendListItems Concatenates strings in a multiple-occurrence data holder and demonstrates the
AppendListItems action.

CalculateValue Performs a complex numerical computation and demonstrates the CalculateValue
action.

CombineValues Concatenates strings and demonstrates the CombineValues and DumpValue actions.

Content Demonstrates the Content anchor and the finding content in the source document by
searching for a specific string, by calculating an offset from the last anchor, and by
searching for an attribute in a name=value pair.

CopyValue Copies an entire complex XML element with the Map action.

DelimitedSections Demonstrates the DelimitedSections anchor in a Parser.

DocumentOrder Demonstrates branching and the Alternatives anchor, with the selector option set to
DocumentOrder.

Dynamic_And_RepeatingGroup Iterates over the lines of a document and demonstrates the RepeatingGroup anchor.
Reads data from another location in the document based on content in the current
scope.

EmbeddedParser Uses an embedded secondary Parser to parse the content of the main Parser and
demonstrates the EmbeddedParser anchor.

Validate a Script 137

Script Name Description

EnsureCondition Evaluates a Boolean JavaScript expression to select alternatives and demonstrates
the EnsureCondition action.

ManualSerializer Demonstrates a custom Serializer.

Markers Demonstrates Marker anchors that use the TextSearch, OffsetSearch, TypeSearch,
and PatternSearch options.

Marking_Mode Demonstrates multiple methods of configuring Marker anchors.

NonMarker Demonstrates a Parser that uses only Content anchors and searching backward
through the input document.

Pattern Demonstrates extraction of data that matches a restriction defined in the schema.

persistent_search Demonstrates the on_partial_match property of a Group and the adjacent property of
a Marker.

ResetListVariable Resets a list variable using a targetLocator.

RunSerializer Demonstrates a Parser that calls a secondary Serializer.

HL7 Converts an HL7 file to XML.

TabDelimited Converts a tab-delimited HL7 file to XML.

Splitter Splits a file into two files, and demonstrates the WriteValue action.

TransformByParser Uses a Parser to transform specific text to carriage return line feed and
demonstrates the TransformByParser action.

Transformers_Example Demonstrates the Content anchor with the value property set to LearnByExample.

Importing a Sample Script
Import a sample Script to view it or to copy parts into another Script.

1. Click File > Import.

The Import dialog box appears.

2. Select Informatica > Import DT Service, and then click Next.

The Import DT Service page appears.

3. Next to the Service file field, click the Browse button and browse to the CMW file for the service.

4. Click Finish.

The sample Script appears in a Data Processor transformation.

138 Chapter 10: Scripts

C h a p t e r 1 1

Parsers
This chapter includes the following topics:

• Parsers Overview, 139

• Platform-Independent Parsers, 139

• Parser Component Reference, 140

Parsers Overview
Parsers are Script components that read source documents in any format.

The output of a Parser is always XML. The input can have any format, such as text, HTML, Word, PDF, or HL7.
The input can be an XML document that the Parser processes as string data.

Platform-Independent Parsers
Parser Scripts run on Microsoft Windows and UNIX systems. Most Parser features run equally well on both
platforms.

There are a few exceptions to this rule. If you plan to run a Parser on Windows and UNIX, here are a few tips
that can help ensure platform independence.

Newline Markers
Avoid defining Marker anchors that search for a newline character followed by a carriage return character (\n
\r). This combination is commonly used in Windows but often not in UNIX.

Instead, configure a Marker with the built-in NewlineSearch component, which searches for both the \n\r
sequence and the \n or \r character alone.

File Paths
Use relative, as opposed to absolute, file paths. Remember that file paths on UNIX are case-sensitive.

139

Parser Component Reference
A Parser component converts a source document to XML.

Parser
A Parser reads a source document in any format. You can add child components to perform transformations
on the data.

Define Parsers at the global level of the Script. Set a main Parser as the startup component. Call a secondary
Parser with the RunParser action. For more information, see “RunParser” on page 303.

The properties of the Parser appear above the contains line. Below the line, you can insert child components
such as anchors and actions.

The following table describes the properties of the Parser component:

Property Description

example_source Defines a sample source document to process in the development environment. You can
choose one of the following options:
- Empty. The Developer tool prompts you for a source document when you run the Parser.
- InputPort. Defines an input port.
- LocalFile. Defines a file on the local file system.
- Text. Defines a string.
- URL. Defines a URL.
Default is empty.
Note: If the sources_to_extract property is set, the example_values property is ignored in the
design environment.

example_values Defines simulated values that another transformation might pass to the Parser. Use this
property to design a Parser that is called by another Parser. A Parser uses the
example_values property only when it processes the example source. It ignores the property
when it parses a source document.
In the nested ExampleValue components, specify the data holders that the calling Parser
passes to this Parser and their simulated values.

ExampleValue Defines an example value under the example_values property.

format Defines the format of the source document. You can choose one of the following options:
- BinaryFormat
- CustomFormat
- HtmlFormat
- Rtf Format
- TextFormat
- XmlFormat
Default is CustomFormat. For more information, see “Format Component Reference” on page
167.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

no_initial_phase Determines whether the Script searches for nested anchors in the main phase. You can
choose one of the following options:
- Cleared. Search for nested anchors according to their individual properties.
- Selected. Search for nested anchors in the main phase.
Default is cleared.

140 Chapter 11: Parsers

Property Description

notifications Defines a list of NotificationHandler components that the Parser runs on notifications
triggered by nested components. For more information, see “Notifications” on page 398.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

reject_recurring_pages Determines the number of times the Parser parses the same page. You can choose one of
the following options:
- Selected. The Parser parses a page only once.
- Cleared. The Parser parses a page each time it follows a link to the page.
Use reject_recurring_pages when a web site contains many links to the same page.
Note: The ResetVisitedPages action resets the history list and allows a Parser to process a
page again, even if reject_recurring_pages is selected.

remark A user-defined comment that describes the purpose or action of the component.

serialization_mode Defines how the Script processes portions of the example source that the Parser does not
output to XML, when you create a serializer from a Parser. For more information, see
“Controlling How the Create Serializer Command Works” on page 315.
You can choose one of the following options:
- Full. Causes the Create Serializer command to copy the non-XML text to the serializer

configuration.
- Outline. Causes the Create Serializer command to copy only the delimiters of the non-

XML text to the serializer configuration. When Outline is selected, you can set the
use_markers property.

source Defines a sequence of data holders for input to the Parser. Each data holder is identified by
one of the following properties:
- Locator. Identifies a single-occurrence or a multiple-occurrence data holder. For multiple-

occurrence data holders, each iteration accesses a new occurrence.
- LocatorByKey. Identifies a multiple-occurrence data holder by key.
- LocatorByOccurence. Identifies a multiple-occurrence data holder by sequence number.
In a secondary Parser, set Parser > source > Locator > data_holder to the data holder
defined in the associated AdditionalInputPort > data_holder. For more information, see
“Source Property” on page 348.

sources_to_extract Defines a hard-coded list of source documents that the Parser processes. You can choose
one of the following options:
- DocList. Defines a list of LocalFile, Text, and URL components.
- Empty. The Parser processes the example_source.
- FileSearch. Defines a folder on the local file system and a file name filter.
- InputPort. Defines an input port. Do not use this option.
- LocalFile. Defines a file on the local file system.
- Text. Defines a string.
- URL. Defines a URL.
Default is empty.
Note: Use the sources_to_extract property only in the design environment.

Parser Component Reference 141

Property Description

target Defines a sequence of data holders for output from the Parser. If the data holder does not
yet exist, the Parser creates it. Each data holder is identified by one of the following
properties:
- Locator. Identifies a single-occurrence or a multiple-occurrence data holder. For multiple-

occurrence data holders, each iteration creates a new occurrence.
- LocatorByKey. Identifies a multiple-occurrence data holder by key.
- LocatorByOccurence. Identifies a multiple-occurrence data holder by sequence number.
Use the target property when the output of the Parser is used by another component. For
more information, see “Target Property” on page 351.

use_markers Determines whether the Create Serializer command copies the content of the Marker
anchors but only the delimiters of other non-XML text. use_markers is an option under the
serialization_mode property when outline is selected. Default is selected.

142 Chapter 11: Parsers

C h a p t e r 1 2

Script Ports
This chapter includes the following topics:

• Script Ports Overview, 143

• Script Port Component Reference, 143

Script Ports Overview
A Script port specifies the input or output of a Script, such as a source document or an output document.

For example, in a Parser component, the values of the example_source and sources_to_extract properties
are input ports.

In some components, the Script ports are implicitly defined. For example, the default output file of a Parser is
the output.xml file. You do not need to define an output port that refers to the output.xml file.

By default, each Script has one input port and one output port. You can configure additional input and output
ports. When you create additional input or output ports in a Script, the Developer tool adds additional ports in
the Data Processor transformation.

Script Port Component Reference
A Script port component specifies an input or output of a transformation, such as a source document or an
output document.

AdditionalInputPort
The AdditionalInputPort port defines an additional input port.

143

The following table describes the properties of the AdditionalInputPort port:

Property Description

code_page Determines the input encoding for the port. When no value is set, the AdditionalInputPort uses the
input encoding defined in the Data Processor transformation settings. Default is blank.

data_holder Defines a data holder where the port stores the content of the input document. Use the same data
holder in Parser > source > Locator > data_holder property of the associated secondary Parser,
Mapper, or Serializer.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

encode_as_xml Determines whether special characters are converted to XML entities. You can choose one of the
following options:
- Selected. Special characters are converted to XML entities.
- Cleared. Special characters are not converted.
The encode_as_xml property is a child of the input_encoding property when it is set to
PortEncoding. Default is cleared.

example_source Defines the location of a source to process during testing. You can choose one of the following
options:
- LocalFile. Defines a file on the local computer.
- Text. Defines a string.
- URL. Defines the URL of a web page.
Caution: Do not define a document processor under the AdditionalInputPort > example_source >
pre_processor property. Define it under AdditionalInputPort > pre_processor.

input_encoding Defines the encoding of the input.

PortEncoding Defines custom settings for the additional input. The PortEncoding property has the following
options:
- code_page
- encode_as_xml

pre_processor Defines the name of a document processor to apply to the input before the document processor
defined under RunParser > pre_processor. For more information, see “Document Processor
Component Reference” on page 152.
Caution: Do not define a document processor under the AdditionalInputPort > example_source >
pre_processor property. Define it under AdditionalInputPort > pre_processor.

Define the AdditionalInputPort port at the global level of the Script and assign it a name.

Example of AdditionalInputPort
Suppose you have two text files:

• IdsAndSalaries.txt is a table of employee IDs and salaries.

• IdsAndNames.txt is a table of employee IDs and names.

You want to parse these files jointly, generating an XML output file containing the employee names and
salaries. You can configure the transformation in the following way:

• The main Parser, called EmployeeParser, processes IdsAndSalaries.txt.

144 Chapter 12: Script Ports

• The main Parser activates a secondary Parser, called IdsToNamesParser, which processes
IdsAndNames.txt and stores the result in an XML table.

• The main Parser uses a LookupTransformer to convert the IDs to names. The lookup table is the output of
the secondary Parser.

The following figure shows an example of a Script with a secondary Parser that references an
AdditionalInputPort to retrieve the IdsAndNames.txt file:

AdditionalOutputPort
The AdditionalOutputPort port defines an additional output port. Use this component to define output in
multiple locations or multiple documents.

The following table describes the properties of the AdditionalOutputPort port:

Property Description

add_BOM_prefix Adds a byte-order mark (BOM) prefix to the output. The type of BOM prefix is determined
by the output encoding defined in the output_encoding property. Default is cleared.

code_page Defines the encoding attribute of the additional output. If this property is not set, the
additional output is generated with the output encoding defined in the Data Processor
transformation settings. The code_page property is a child of the output_encoding
property when it is set to PortEncoding. Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components.
Use this property to test, debug, and modify a Script. You can choose one of the
following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

Script Port Component Reference 145

Property Description

encode_as_xml Determines whether special characters are converted to XML entities. You can choose
one of the following options:
- Selected. Special characters are converted to XML entities.
- Cleared. Special characters are not converted.
The encode_as_xml property is a child of the output_encoding property when it is set to
PortEncoding. Default is cleared.

file_extension Defines the file extension for the additional output file in the design environment. The
name of the file is the name assigned to the AdditionalOutputPort component. This
setting has no effect in the production environment. Default is .xml.

other_properties Defines encoding properties when it is set to XmlHeader. You can choose one of the
following options:
- XmlHeader. Defines the XML header. The XmlHeader property has the following

options:
- add_BOM_prefix
- process_instruction
- process_instruction_string
- root_element
- xml_version
- XSLT_stylesheet_name

- Cleared. Output properties are determined by the Data Processor transformation
settings.

Default is cleared.

output_encoding Defines encoding properties when it is set to PortEncoding. You can choose one of the
following options:
- PortEncoding. The additional output has custom settings for code_page and

encode_as_xml.
- Cleared. The Data Processor transformation settings control the output encoding and

conversion of XML entities.
Default is cleared.

PortEncoding Defines custom settings for the additional output. You can choose one of the following
options:
- code_page
- encode_as_xml

process_instruction Defines a processing instruction in the output XML file. You can choose one of the
following options:
- None. Does not write a processing instruction to the XML output.
- UseOutputCodePage. Outputs the code page defined in the output_encoding property.
- FreeEncodingString. Outputs the string defined in the process_instruction_string

property.
Default is UseOutputCodePage.

process_instruction_string Defines a user-defined processing instruction. The process_instruction_string property
has an effect only when the process_instruction property is set to FreeEncodingString.

root_element Defines the name of the root element that is wrapped around the entire output.

xml_version Defines the version attribute of the processing instruction. Default is 1.0.

XSLT_stylesheet_name Defines an XSLT stylesheet that is written to the processing instruction.

146 Chapter 12: Script Ports

Defining an Additional Output Port
1. At the global level of the Script, insert an AdditionalOutputPort component, and assign it a name.

2. Nested under the startup component of the Data Processor transformation, insert a WriteValue action,
set the output property to OutputPort, and set port to the name of the additional output port.

3. In the Data Processor transformation settings, select Output Control and then check Disable Automatic
Output.

File Name of Additional Output
When you run the transformation in the Developer tool, the system defines a file name for the additional
output, and it stores the file in the results folder of the project. For example, if the port is called
MyOutputPort, the file name might be output_MyOutputPort.xml.

To determine the file name:

1. Click Run > Run.

2. Click Details to display the I/O Ports table.

The table displays the name of each AdditionalOutputPort and its output file.

When you deploy the transformation as a service, an application that runs the service can pass the additional
output location as a parameter. For example, the location might be a buffer.

Example of AdditionalOutputPort
A Parser generates the following XML structure:

<Person gender="M">
 <Name>
 <First>Ron</First>
 <Last>Lehrer</Last>
 </Name>
 <Id>547329876</Id>
 <Age>27</Age>
</Person>

The following figure shows a Parser that uses two WriteValue actions to generate output.

The first WriteValue writes the entire <Person> element to the default results file.

<Person gender="M">
 <Name>
 <First>Ron</First>
 <Last>Lehrer</Last>
 </Name>
 <Id>547329876</Id>
 <Age>27</Age>
</Person>

Script Port Component Reference 147

The second WriteValue references an AdditionalOutputPort to write the nested <Name> element to another
file.

<Name>
 <First>Ron</First>
 <Last>Lehrer</Last>
</Name>

DocList
The DocList port defines a list of the following types of input ports:

• LocalFile

• Text

• URL

The following table describes the properties of the DocList port:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

pre_processor Defines the name of the preprocessor to apply to the input files. For more information, see “Document
Processor Component Reference” on page 152.

FileSearch
The FileSearch port defines input files on a computer in the local network. Use the FileSearch port in the
sources_to_extract property of a Parser.

The following table describes the properties of the FileSearch port:

Property Description

directory Defines a folder that contains the input files.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

pre_processor Defines the name of a document processor to apply to the input files. For more information, see
“Document Processor Component Reference” on page 152.

recursive Determines whether the input files can occur in subfolders of the specified folder. Default is cleared.

wildcard Defines a criterion for filtering the files in the specified folder. Use * as a wildcard character. For
example, *.txt finds all TXT files. Default is *.*.

148 Chapter 12: Script Ports

InputPort
The InputPort port defines a named input port that is defined with the AdditionalInputPort component.

The following table describes the properties of the InputPort port:

Property Description

input Defines the name of the AdditionalInputPort component that defines the input.

LocalFile
The LocalFile port defines a file on the local network.

The following table describes the properties of the LocalFile port:

Property Description

file_name Defines the path and filename of a file on the local network.

pre_processor Defines the name of a document processor to apply to the file. For more information, see
“Document Processor Component Reference” on page 152.

simulated_url Defines a URL to assign to the file. This property causes the Parser to treat the file as if it
were located on a web server. If the file contains relative links, the Parser resolves the
links relative to the URL.
The host name portion of the URL is not case sensitive.

OutputPort
The OutputPort port defines a named output port that is defined with the AdditionalOutputPort component.
You can use an OutputPort port in a WriteValue action.

The following table describes the properties of the OutputPort port:

Property Description

port Determines the name of the AdditionalOutputPort.

Text
The Text port defines a text string that is used as input of a transformation.

The following table describes the properties of the Text port:

Property Description

pre_processor Defines the name of a document processor to apply to the string. For more information,
see “Document Processor Component Reference” on page 152.

quote Defines a text string.

Script Port Component Reference 149

Property Description

simulated_url Defines a URL to assign to the string. This property causes the Parser to treat the string
as if it were a file located on a web server. If the string contains relative links, the Parser
resolves the links relative to the URL.

size Defines a static size for the text buffer. Use the size property with binary sources. Default
is -1, which means that the buffer is dynamically sized.

URL
The URL port defines the URL of a document that is available on a web server.

The following table describes the properties of the URL port:

Property Description

post_data Defines data that the transformation posts to the URL.

pre_processor Defines the name of a document processor to apply to the files.

retries Defines the number of retries that the Parser performs before it reports a failure. Default is 0.

seconds_to_wait Defines the number of seconds to wait between retries. Default is 60.

stable_url Defines a URL address that contains an input document.

Note: This component is provided for compatibility with projects created in earlier Data Transformation
versions. It is being phased out of the Data Transformation system. Do not use it when you develop
transformations. Note that a Data Transformation fails to process an HTTPS URL in a Linux environment.

150 Chapter 12: Script Ports

C h a p t e r 1 3

Document Processors
This chapter includes the following topics:

• Document Processors Overview, 151

• Defining a Document Processor, 151

• Document Processor Component Reference, 152

• TextML XML Schema, 161

• PdfToTxt_4 Table Configuration Editor, 162

Document Processors Overview
Document processors are components that convert the format of a complete document to another format for
processing.

You can use a document processor as a pre-processor that converts the format of a source document before
a transformation. For example, if the source document of a parser is in the PDF format, you might apply the
PdfToTxt_4 processor. This converts the source document to text, which is much easier to parse than the
binary PDF format.

Do not confuse document processors with format preprocessors. For more information about format
preprocessors, see “Formats Overview” on page 166.

Defining a Document Processor
You can pre-process the source document with any document processor.

1. Assign the example_source property of the transformation. The value of the example_source is an input
port, such as LocalFile or Text.

2. Assign the pre_processor property of the input port.

The Script applies the processor that you define under example_source to all sources on which you run
the transformation.

Note: You can also define a pre-processor in the sources_to_extract property of a Parser. The processor that
you define there applies only to the source documents that you define in sources_to_extract, and not to any
other document that the Parser processes.

151

Display of Document Processor Output
If you assign a document processor to the example source, the source panel of the Data Viewer view displays
the processor output.

Document Processor Component Reference
Document processors convert a complete document from one format to another before it is processed by a
Parser, Mapper, or Serializer.

AsnToXml
The AsnToXml document processor converts a binary ASN.1 file to XML.

The following table describes the properties of the AsnToXml document processor:

Property Description

asn_file Defines an ASN.1 specification file.

header Defines a header to exclude from the XML. You can choose one of the following options:
- NewlineSearch. The header is a newline.
- OffsetSearch. The header is defined by the number of characters from the beginning of

the file.
- PatternSearch. The header is defined by a regular expression.
- TextSearch. The header is defined by an explicit string or a string that you retrieve

dynamically from the source document.

no_constraints Determines whether the ASN file is processed with constraints. You can choose one of the
following options:
- true. The ASN file is processed without constraints.
- false. The ASN file is processed with constraints.
Default is false.

pdu_type Defines the PDU type. Use this property to clarify an ambiguity.

process_first_message Determines whether the entire CDR file is processed. You can choose one of the following
options:
- true. Only the first record is processed.
- false. The entire CDR file is processed.
Default is false.

separator Defines text to ignore between records. You can choose one of the following options:
- NewlineSearch. The separator is a newline.
- OffsetSearch. The separator is defined by the number of characters from the end of the

previous record.
- PatternSearch. The separator is defined by a regular expression.
- TextSearch. The separator is defined by an explicit string or a string that you retrieve

dynamically from the source document.

ExcelToDataXml
The ExcelToDataXml document processor converts Microsoft Excel documents to XML.

152 Chapter 13: Document Processors

The following table describes the properties of the ExcelToDataXml document processor:

Property Description

enabled Determines the content of the output. The enabled property has the following options:
- Selected. The output contains raw data and formatted data.
- Cleared. The output contains only formatted data.
Default is selected.

param1 Determines whether raw data appears in the output of the document processor when the raw data differs
from the formatted data. param1 is named Display_raw_data_when_different and has only one property,
enabled.

param2 Determines whether to add elements to the output when a source table contains empty cells in the middle
of a row or rows. For example:
A source table includes three columns and two rows. In the first row, the three columns are populated. In
the second row, the first and last columns are populated and the second column is empty.
When param2 is disabled, the processor creates two elements for the second row with the values of the
two populated column cells.
When param2 is enabled, the processor creates three elements for the second row: two elements with the
values of the populated column cells and one empty element for the empty column cell.
Default is disabled.

param3 Determines whether to add elements to the output when a source table contains empty cells at the end of
a row or rows. For example:
A source table includes three columns and two rows. In the first row, the three columns are populated. In
the second row, the first column is populated and the second and third columns are empty.
When param3 is disabled, the processor creates one element for the second row, with the value of the
populated column cell.
When param3 is enabled, the processor creates three elements for the second row: one element with the
value of the populated column cell and two empty elements for the two empty column cells.
Default is disabled.

The XML contains the data and the results of formulas that existed in the original Excel document. It does
not preserve the formulas themselves, formatting information, or macro code. If you need to use macro code,
use ExcelToXml rather than ExcelToDataXml.

The XML representation conforms to a subset of the ExcelToXml.xsd schema, which you can find in the doc
subdirectory of the installation directory.

The processor output is in the UTF-8 encoding. If a transformation receives input from the processor, you
must set the input encoding to UTF-8.

The processor supports Excel version 97 and later. It accesses its input directly, not through the Excel
application. You do not need to install Excel on the computer. The processor supports both the XLS format
and the XLSX format.

This component is implemented in Java and requires correct configuration of the Java Runtime Environment
(JRE).

ExcelToXml
The ExcelToXml document processor converts Microsoft Excel documents to XML.

Document Processor Component Reference 153

The following table describes the properties of the ExcelToXml document processor:

Property Description

enabled Defines the value of param2 or param3.

param1 Defines the sheets of the Excel workbook to include in the XML. In the XML output, each sheet is
represented by a <sheet> element. param1 is named include_sheets and has the property value.

param2 Determines whether the document processor includes empty cells in the output XML if the cells are
formatted or merged. param2 is named include_empty_cells and has the property enabled, which has the
following options:
- Selected. The output includes empty cells.
- Cleared. The output omits empty cells.
Default is selected.

param3 Determines whether the document processor includes Excel macro code in the output XML. param3 is
named include_macro_information and has the property enabled, which has the following options:
- Selected. The document processor includes macro code.
- Cleared. The document processor omits macro code.
Default is cleared.

param4 Determines whether the document processor includes unformatted empty cells in the output XML for
cells. param4 is named include_empty_non_formatted_cells and has the property enabled, which has the
following options:
- Selected. The output includes empty cells.
- Cleared. The output omits empty cells.
Default is cleared.

value Defines a list of the following options:
- The string "All". The output includes all sheets.
- Data holders containing the sheet names. The output includes only the named sheets.
If you list a sheet that does not exist in the workbook, the processor generates a <sheet> element
containing a warning message. The other sheets are processed normally. Default is All.

The XML preserves the data, formulas, formatting, and macro code that existed in the original Excel
document. If only the data is required, use the ExcelToDataXml processor, which offers smaller output and
better performance.

The XML representation conforms to the ExcelToXml.xsd schema, which is in the doc subdirectory of the
installation directory.

The processor output is in the UTF-8 encoding. If a transformation receives input from the processor, you
must set the input encoding to UTF-8.

The processor supports Excel version 97-2003. The processor accesses input directly, not through Excel. You
do not need to install Excel on the computer.

This component is implemented in Java and requires correct configuration of the Java Runtime Environment
(JRE).

ExcelToXml_03_07_10
The ExcelToXml_03_07_10 document processor converts the following files to XML:

• XLSX files created with Microsoft Excel 2007, 2010, or 2013

• XLS files created with Microsoft Excel 2003, 2007, 2010, or 2013

154 Chapter 13: Document Processors

ExpandFrameSet
The ExpandFrameSet document processor opens all the frames of an HTML document. Use this document
processor when the source document of a Parser is an HTML frameset. The Parser runs on the content of all
the frames.

ExternalJavaPreProcessor
The ExternalJavaPreProcessor document processor runs a user-defined document processor that is
implemented in Java.

The following table describes the properties of the ExternalJavaPreProcessor document processor:

Property Description

jclass Defines the path of the Java class.

jmethod Defines the method to run.

This component is implemented in Java and requires correct configuration of the Java Runtime Environment
(JRE).

Note: This component is deprecated. The IntelliScript editor displays it for legacy scripts. Do not use it in new
Scripts. Instead, create a custom Java document processor. For more information, see “Developing a Custom
Component” on page 412.

HIPAAValidator
The HIPAAValidator document processor validates HIPAA messages and generates HIPAA
acknowledgments. The HIPAA_Validation project of the HIPAA library uses this processor.

The following table describes the properties of the HIPAAValidator document processor:

Property Description

param1 The param1 property is named validation_params and has only one property, value, which has the
following options:
- LDNSB
- Validator

param2 Defines the validation type. The param2 property is named types_to_validate and has only one property,
value. Valid values are 1 to 7.

param3 Defines the format for error report output. The param3 property is named report_formats and has only one
property, value, which has the following options:
- HTML. Use for display in the Developer tool.
- XML. Use for further processing.

Document Processor Component Reference 155

Property Description

param4 Defines the acknowledgment type. The param4 property is named generate_acknowledgments and has
only one property, value, which has the following options:
- 277
- 824
- 997
- 999
- TA1

value Defines the value of param1, param2, param3, or param4.

Note: This document processor operates on Windows and Linux x64 platforms. Before you can use it, you
must install and configure the HIPAA validation add-on package on every computer where you run
HIPAAValidator.

PdfFormToXml_1_00
The PdfFormToXml_1_00 document processor converts PDF forms to XML. The processor supports forms
that conform to the Adobe AcroForms standard.

PdfToTxt_3_02
The PdfToTxt_3_02 document processor converts PDF files to text.

The following table describes the properties of the PdfToTxt_3_02 document processor:

Property Description

enabled Defines the value of param2 or param4.

param1 Defines a string or variable that contains the word spacing factor. The param1 property is named
WordSpacingFactor and has only one property, value, which contains the string or variable. Default is 1.8.

param2 Determines whether the output document is optimized for tables. The param2 property is named
OptimizeForTables and has only one property, enabled, which has the following options:
- Selected. The output document is optimized for tables.
- Cleared. The output document is not optimized for tables.
Default is cleared.

param3 Defines a string or variable that contains the password. The param3 property is named Password and has
only one property, value, which contains the string or variable.

param4 The param4 property is named HideNewPageChar and has only one property, enabled, which has the
following options:
- Selected. New page characters are hidden.
- Cleared. New page characters are not hidden.
Default is cleared.

param5 Defines a string or variable that contains advanced optimizations. The param5 property is named
AdvancedOptimizations and has only one property, value, which contains the string or variable.

value Defines the value of param1, param3, or param5.

156 Chapter 13: Document Processors

The PdfToTxt pre-processor might not support certain PDFs with embedded fonts. If the pre-processor fails,
copy the text from the input PDF into Notepad to check for embedded fonts. If you cannot paste the text or if
is corrupted, the PDF probably contains embedded fonts.

Note: This component is deprecated. The IntelliScript editor displays it for legacy projects. Do not use it in
new Scripts.

PdfToTxt_4
The PdfToTxt_4 document processor converts PDF files to text or XML.

The following table describes the properties of the PdfToTxt_4 document processor:

Property Description

param1 Defines the PDF table layout. The param1 property has only one option: PdfLayout

value Defines the PDF table layout. Double-click the value property to open the table configuration editor.

The table configuration editor customizes the way tables are read. Use it to correct problems with column
alignment, word wrapping, line spacing, and overflow from one cell to another. For more information, see
“PdfToTxt_4 Table Configuration Editor” on page 162.

The PdfToTxt_4 document processor generates text output by default. Use the table configuration editor to
select XML output. The XML conforms to the PDF4.xsd schema, which you can find in the following directory:

<INSTALL_DIR>\DataTransformation\doc

When you use the PdfToTxt_4 document processor, set the input encoding to UTF-8 to enable the Parser,
Mapper, or Serializer to correctly read the document.

Note: The PdfToTxt pre-processor might not support certain PDFs with embedded fonts. If the pre-processor
fails, copy the text from the input PDF into Notepad to check for embedded fonts. If you cannot paste the text
or if is corrupted, the PDF probably contains embedded fonts.

PowerpointToTextML
The PowerpointToTextML document processor converts Microsoft PowerPoint (PPT) presentations to the
TextML XML schema. For more information, see “TextML XML Schema” on page 161.

This component supports PowerPoint version 97 and higher. It accesses its input directly, not through
PowerPoint. You do not need to install PowerPoint on the computer.

This component is implemented in Java and requires correct configuration of the Java Runtime Environment
(JRE).

ProcessByTransformers
The ProcessByTransformers document processor runs a transformer or a sequence of transformers on the
entire document. A transformation can then run on the output of the transformers.

Define the list of transformers under the transformers line.

Document Processor Component Reference 157

ProcessorPipeline
The ProcessorPipeline document processor defines a sequence of document processors to run on a
document. Use this component when you need to run two or more document processors.

Define the list of document processors under the pre_processor_list line.

RtfToTextML
The RtfToTextML document processor converts RTF files to the TextML XML schema. For more information,
see “TextML XML Schema” on page 161.

The processor output is in the UTF-8 encoding. If a transformation receives input from the processor, you
must set the input encoding to UTF-8.

WordToXml
The WordToXml document processor converts Microsoft Word documents to XML.

The processor output is in the UTF-8 encoding. If a transformation receives input from the processor, you
must set the input encoding to UTF-8.

This component supports Word version 97 and higher. It accesses its input directly, not through Microsoft
Word. You do not need to install Word on the computer.

This component is implemented in Java and requires correct configuration of the Java Runtime Environment
(JRE).

XmlToDocument_372
The XmlToDocument_372 document processor converts XML data to document formats, such as PDF or
Excel. You can use it as a post-processor to convert Parser or Mapper output to various document types.

This component uses the Business Intelligence and Reporting Tool (BIRT) Eclipse add-on to generate the
output documents. In BIRT, you must configure a report that converts the XML to the desired document
format. The XmlToDocument_372 processor runs the report.

You can download BIRT from the location mentioned in the readme_BIRT.txt file at <Data Transformation
engine installation directory>/readme_Birt.txt.

For more information about BIRT, see http://www.eclipse.org/birt.

Note: To use BIRT version 4.5, use the XmlToDocument_45 preprocessor instead of the
XmlToDocument_372 preprocessor.

158 Chapter 13: Document Processors

http://www.eclipse.org/birt

The following table describes the properties of the XmlToDocument_372 document processor:

Property Description

param1 The path and file name of the BIRT *.rptdesign file. The param1 property is named report_file and
contains the property value, which contains the path and file name.

param2 The format of the output document. The param2 property is named output_format and contains the
property value, which has the following options:
- pdf. PDF document.
- doc. Microsoft Word document.
- xls. Microsoft Excel workbook.
- ppt. Microsoft PowerPoint presentation.
- html. HTML web page.
- ps. PostScript document.
Default is pdf.

param3 A variable that holds the location of the *.rptdesign file. The param3 property is named report_location
and contains the property value, which points to the variable. Default is $VarServiceInfo/*s/
ServiceLocation.

value Contains the value of param1, param2, or param3.

Note: Effective in version 9.5.1, the XmlToDocument processor is deprecated. The IntelliScript editor still
displays the XmlToDocument preprocessor in existing Scripts, but you can no longer add the preprocessor to
new Scripts. Use the XmlToDocument_372 preprocessor instead.

XmlToDocument_45
The XmlToDocument_45 document processor converts XML data to document formats, such as PDF or
Excel. You can use it as a post-processor to convert Parser or Mapper output to various document types.

This component uses the Business Intelligence and Reporting Tool (BIRT) version 4.5 Eclipse add-on to
generate the output documents. In BIRT, you configure a report that converts the XML to the desired
document format. The XmlToDocument_45 processor runs the report.

You can download BIRT from the location mentioned in the readme_BIRT.txt file at <Data Transformation
engine installation directory>/readme_Birt.txt.

For more information about BIRT, see http://www.eclipse.org/birt.

The following table describes the properties of the XmlToDocument_45 document processor:

Property Description

param1 The path and file name of the BIRT *.rptdesign file. The param1 property is named report_file and
contains the property value, which contains the path and file name.

param2 The format of the output document. The param2 property is named output_format and contains the
property value, which has the following options:
- pdf. PDF document.
- doc. Microsoft Word document.
- xls. Microsoft Excel workbook.
- ppt. Microsoft PowerPoint presentation.
- html. HTML web page.
- ps. PostScript document.
Default is pdf.

Document Processor Component Reference 159

http://www.eclipse.org/birt

Property Description

param3 A variable that holds the location of the *.rptdesign file. The param3 property is named report_location
and contains the property value, which points to the variable. Default is $VarServiceInfo/*s/
ServiceLocation.

value Contains the value of param1, param2, or param3.

XmlToExcel
The XmlToExcel document processor converts XML documents to Microsoft Excel format.

The processor operates on an XML representation of an Excel workbook. The XML representation must be in
the UTF-8 encoding and it must conform to the ExcelToXml.xsd schema. You can find the schema in the doc
subdirectory of the installation directory. The schema file is provided for your information. You can use the
processor without adding the schema to your project.

The processor reverses the operation of ExcelToXml. For example, you can use ExcelToXml to convert an
Excel workbook to XML. You can then alter some of the XML data and use XmlToExcel to convert the data
back to an Excel workbook.

This component supports Excel version 97 and higher. It writes its output directly, not through Microsoft
Excel. You do not need to install Excel on the computer.

This component is implemented in Java and requires correct configuration of the Java Runtime Environment
(JRE).

XmlToXlsx
The XmlToXlsx document processor converts XML documents to Microsoft Excel .xlsx format. The
XmlToXlsx document processor can optionally use an .xlsx template to generate the .xlsx document.

The processor operates on an XML representation of an Excel workbook. The XML representation must be in
the UTF-8 encoding and it must conform to the ExcelToXml_03_07_10.xsd schema. You can find the schema
in the doc subdirectory of the installation directory. The schema file is provided for your information.

The processor reverses the operation of ExcelToXml_03_07_10. Use the ExcelToXml_03_07_10 processor in
a Data Processor transformation to transform an Excel workbook to XML. After you process the XML data,
use the XmlToXlsx processor to transform the data back to an Excel workbook.

This component supports Excel version 2007 and higher. It writes its output directly, not through Microsoft
Excel. You do not need to install Excel on the computer.

This component is implemented in Java and requires correct configuration of the Java Runtime Environment
(JRE).

The following table describes the properties of the XmlToXlsx document processor:

Property Description

param1 A variable that holds the name of the *.xlsx template file. The param1 property has the property
template_file that specifies the template file name.

param2 A variable that holds the location of the *.xlsx template file. The param2 property has the property
template_location that specifies the template file path.

160 Chapter 13: Document Processors

Note: Excel sheets that exist solely in the template are represented as in the template in the .xlsx output.
Excel sheets that are defined in both the template and the XML receive cell styles from the template and cell
values from the XML.

To apply a cell style from a different cell in the template, you can use the attribute style_as in the XML as
part of the cell element.

Example

To use the style_as attribute to apply a cell style from a cell in the current sheet, set the style_as attribute
equal to the cell number that contains the style. In the following example, the style from field A1 in the current
sheet applies to the cell defined by the XML context, namely row 3 and cell 2.

<row rownumber="3" firstcol="1" lastcol="12" height="405" zeroheight="false" >
 <cell number="2" type="string" style_index="3" font_index="3" style_as="A1">
 <data>Informatica</data>
 </cell>
</row>

To apply a cell style from a cell in a different sheet, set the style_as attribute equal to the sheet and cell
number that contains the style. In the following example, the style is applied from the field A1 in the workbook
sheet named Summary.

<row rownumber="3" firstcol="1" lastcol="12" height="405" zeroheight="false" >
 <cell number="2" type="string" style_index="3" font_index="3"
style_as="Summary:A1">
 <data>Informatica</data>
 </cell>
</row>

TextML XML Schema
Some of the document processors convert documents to an XML vocabulary called TextML. This is a simple
XML vocabulary for saving document content without layout.

The TextML schema, textML.xsd, is available in the \doc subfolder of the installation folder.

The following is a sample TextML document.

<?xml version="1.0" encoding="UTF-8"?>
<document>
 <docinfo>
 <title>TextML Sample</title>
 <author>Tex Tomiller</author>
 <company>Acme Gizmos, Inc.</company>
 <modified>2004-03-14T14:39:00</modified>
 <created>2004-03-12T09:15:00</created>
 <last_author>Tex Tomiller</last_author>
 <word_count>16</word_count>
 <char_count>105</char_count>
 <version>2</version>
 </docinfo>
 <docbody>
 <p>This is a sample of the TextML XML vocabulary.</p>
 <p>TextML saves document content without layout information.<p>
 </docbody>
</document>

TextML XML Schema 161

PdfToTxt_4 Table Configuration Editor
The table configuration editor customizes the way the PdfToTxt_4 document processor converts tables in
PDF documents.

Use the table configuration editor when default settings of the PdfToTxt_4 document processor do not
correctly render column alignment, word wrapping, line spacing, or overflow from one cell to another.

Note: The user interface for the table configuration editor appears only in English.

1. Add a Parser, Mapper, Serializer, or AdditionalInputPort to the Script.

2. Under the example_source property, set the pre_processor property to PdfToTxt_4.

3. Under the pre_processor property, double-click the value property.

The table configuration editor appears. The upper panel displays the input PDF document, and the lower
panel displays the PdfToTxt_4 output.

Table editing commands appear in the toolbar at the top of the window. You can right-click to display an
editing menu.

4. Browse to a table in the PDF document and click Add Table.

The name of the table appears in the Tables field and in the Name field.

5. Select Use Regular Expressions. In the Table Start field, enter a regular expression that defines the
upper left corner of the table.

Tip: Use the headings of the first two columns as the regular expression. Add more column headings as
needed to make Table Start unique. Separate the headings by a single space character, even if the
columns are widely separated.

6. In the Table End field, enter a regular expression that defines the text immediately after the table.

Note: The value of Table End must appear in the body of the document, not in a page footer.

7. Click Process.

The editor displays the table configuration that PdfToTxt_4 detects. The top and bottom of the table
appear as horizontal blue lines. The default column borders appear as vertical red lines.

8. To edit the column borders, perform one or more of the following steps:

• Drag a column border to the right or left to change its position.

• Click Add Column to add a column.

• Click Remove Column and select a column border to delete a column.

Note: If the table contains horizontally merged cells, PdfToTxt_4 might truncate the entries.

9. Examine the output window to confirm that the table is converted properly. If not, correct the table
definitions.

10. Repeat steps 1-9 for each table in the PDF document.

11. Click OK to return to the Developer tool.

An XML string that defines the table configuration appears in the value property of the PdfToTxt_4
document processor.

162 Chapter 13: Document Processors

Editor Options
The following table describes the controls and fields in the PdfToTxt_4 table configuration editor.

Control or Field Description

Zoom In Make the PDF display larger.

Zoom Out Make the PDF display smaller.

Fit Width Display the PDF document according to the width of the window.

Prev Page Go to the previous page.

Next Page Go to the next page.

Find Search for a string in the PDF.

Add Table Add a table to the configuration.

Rem. Table Remove a table from the configuration.

Add Column Add a column border to the current table.

Rem. Column Delete the currently selected column border.

Process Apply the current table definitions. Click Process after every table and column-related action
to apply that action.

Tables A list of tables defined in the input PDF. You can select a table by clicking it.

Name Name of the currently selected table.

Table Start An expression defining the upper left corner of the table.

Table End An expression defining the first text after the table.

Page Header An expression defining the end of the page header. Use this option to exclude the header
from the table processing.

Page Footer An expression defining the end of the page footer. Use this option to exclude the footer from
the table processing.

Use Regular
Expressions

If selected, the processor interprets the Table Start, Table End, Page Header, and Page
Footer as regular expressions and searches for matching text. If not selected the processor
interprets these fields as literal text.

Recalculate at
Runtime

If you select this option, PdfToTxt_4 ignores the table configurations that you specified using
the table configuration editor. This feature is useful if the tables in a PDF are simple enough
for the PdfToTxt_4 to process without special configuration.
For example, suppose a simple PDF financial statement contains a table whose columns may
vary slightly from month to month. Select the Recalculate at Runtime option to have
PdfToTxt_4 adjust the column widths at runtime.

Recalculate Now If you have changed the table definition, for example by changing column borders or adding a
Page Header or Page Footer, click Recalculate Now to update the table definition.

PdfToTxt_4 Table Configuration Editor 163

Control or Field Description

Page Number of the PDF page that is currently displayed.

Output as XML Generates the PdfToTxt_4 output as XML instead of text.

Delimiter Enter a character to use as the column separator in the text output. The default is a vertical
bar (|).

OK Click to save the table configuration and return to the Developer tool.

Cancel Click to return to the Developer tool without saving the table configuration.

Table Navigation Aid The table navigation aid displays the number of times a table is found in the PDF document.
An example of a navigation aid is Table ‘Table 1’ found 2 times. The arrows next to
this information let you jump back and forth among the instances of the same table structure.

PDF Conversion Example
This example illustrates the PdfToTxt_4 table configuration procedure using a sample Parser project and a
sample PDF document.

The processor input is a small financial report in PDF format. The report contains some text and two tables.
Use the table configuration editor to ensure that the processor converts the tables correctly to text.

Configuring the First Table
1. Configure a Parser and assign the PDF document as the example_source. Double-click on the value

property to open the table configuration editor.

2. In the PDF display, browse to the first table.

3. Set Table Start = GID RMS ID, the headings of the first two columns of the table. Note that the expression
is case sensitive.

4. Set Table End = Forward exchange transactions, the first text following the table. The editor displays the
table configuration.

5. If necessary, adjust the table definition and the columns. You can drag, add, or remove column borders.

Configuring the Second Table
The second table extends over multiple pages.

1. Click Add Table.

The system displays Table 2 in the Tables and Name fields.

2. Set Table Start = Ticker Shares Traded.

3. Set Table End = Conclusion, the first body text after the table.

4. Click Process to configure the table.

5. Adjust the right borders of the Shares Traded and Currency columns.

6. Perform the following steps to eliminate the page header and footer from the output document:

a. Set Page Header = Gain/Loss.

b. Set Page Footer = Page [1-9].

164 Chapter 13: Document Processors

c. Click Process.

PdfToTxt_4 Table Configuration Editor 165

C h a p t e r 1 4

Formats
This chapter includes the following topics:

• Formats Overview, 166

• Standard Format Properties, 167

• Format Component Reference, 167

• Delimiters Component Reference, 173

• Format Preprocessor Component Reference, 178

Formats Overview
The format property of a Parser defines the format of the documents for the transformation to process. The
value of the property is one of the following format components:

BinaryFormat
CustomFormat
HtmlFormat
RtfFormat
TextFormat
XmlFormat

The format has properties of its own, which further define how the Parser interprets and processes the input.

The following table describes the sub-components that you can nest in a format:

Subcomponent Description

Delimiter Defines a hierarchy of characters or strings that organize the information in the document,
such as newlines and tabs.

Format preprocessor Cleans up the source before the Parser starts searching for anchors.

Default transformer Performs predefined operations on the output of each anchor.

166

Standard Format Properties
The following table describes standard properties of the format components:

Property Description

default_Transformers Defines a list of Transformers that the Parser applies to the output of each content anchor.

delimiters Defines the structure of information in the document. You can choose one of the following
options:
- CommaDelimited. Data fields are separated by commas.
- DelimiterHierarchy. Data fields are separated or surrounded by text characters.
- HL7. Data fields are separated as defined in the HL7 standard.
- Positional. Data fields are defined by the number of characters between them.
- PostScript. Data fields are defined according to the PostScript format.
- RTF. Data fields are defined according to the RTF format.
- SGML. Data fields are defined according to the SGML format.
- SpaceDelimited. Data fields are separated by spaces.
- TabDelimited. Data fields are separated by tabs.
For more information, see “Delimiters Component Reference” on page 173.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

pre_processor Defines a format preprocessor that processes the input after any document processor that
you defined for the pre_processor property of the example_source. You can choose one of
the following options:
- HtmlProcessor. Converts all combinations of tab, space, or newline to a single space

character. It is not restricted to HTML documents.
- RtfProcessor. Normalizes RTF files.
Default is blank.

remark A user-defined comment that describes the purpose or action of the component.

Format Component Reference
Format components define the format of input documents. Define format components under the format
property of a Parser.

Standard Format Properties 167

BinaryFormat
The BinaryFormat format processes binary files and text files that you want to treat as a buffer of binary
bytes.

The following table describes the properties of the BinaryFormat format:

Property Description

default_transformers Defines a list of Transformers that the Parser applies to the output of each content anchor.
Default is empty.

delimiters Defines the structure of information in the document. You can choose one of the following
options:
- CommaDelimited. Data fields are separated by commas.
- DelimiterHierarchy. Data fields are separated or surrounded by text characters.
- HL7. Data fields are separated as defined in the HL7 standard.
- Positional. Data fields are defined by the number of characters between them.
- PostScript. Data fields are defined according to the PostScript format.
- RTF. Data fields are defined according to the RTF format.
- SGML. Data fields are defined according to the SGML format.
- SpaceDelimited. Data fields are separated by spaces.
- TabDelimited. Data fields are separated by tabs.
For more information, see “Delimiters Component Reference” on page 173.
Default is Positional.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

pre_processor Defines a format preprocessor that processes the input after any document processor that
you defined for the pre_processor property of the example_source. You can choose one of the
following options:
- HtmlProcessor. Converts all combinations of tab, space, or newline to a single space

character. It is not restricted to HTML documents.
- RtfProcessor. Normalizes RTF files.
Default is empty.

remark A user-defined comment that describes the purpose or action of the component.

168 Chapter 14: Formats

CustomFormat
The CustomFormat format is a user-defined format for processing any type of source document.

The following table describes the properties of the CustomFormat format:

Property Description

default_transformers Defines a list of Transformers that the Parser applies to the output of each content anchor.
Default is empty.

delimiters Defines the structure of information in the document. You can choose one of the following
options:
- CommaDelimited. Data fields are separated by commas.
- DelimiterHierarchy. Data fields are separated or surrounded by text characters.
- HL7. Data fields are separated as defined in the HL7 standard.
- Positional. Data fields are defined by the number of characters between them.
- PostScript. Data fields are defined according to the PostScript format.
- RTF. Data fields are defined according to the RTF format.
- SGML. Data fields are defined according to the SGML format.
- SpaceDelimited. Data fields are separated by spaces.
- TabDelimited. Data fields are separated by tabs.
For more information, see “Delimiters Component Reference” on page 173.
Default is DelimiterHierarchy.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

pre_processor Defines a format preprocessor that processes the input after any document processor that
you defined for the pre_processor property of the example_source. You can choose one of
the following options:
- HtmlProcessor. Converts all combinations of tab, space, or newline to a single space

character. It is not restricted to HTML documents.
- RtfProcessor. Normalizes RTF files.
Default is empty.

remark A user-defined comment that describes the purpose or action of the component.

Example
A source document has the following structure:

Ron Lehrer && 547329876:27
Evelyn Kern && 9875424: 53

Each line of the document is a record containing a person's name, ID number, and age. The fields are
separated by the symbols && and:. The fields contain multiple space characters at random locations.

One way to parse this document is by using CustomFormat. In the delimiters property of the format, assign a
DelimiterHierarchy containing the symbols:

newline
&&
:

In the default_transformers property, assign the HtmlProcessor, which removes the extra spaces from the
output.

Format Component Reference 169

HtmlFormat
The HtmlFormat format defines the format of HTML files.

The following table describes the properties of the HtmlFormat format:

Property Description

default_transformers Defines a list of Transformers that the Parser applies to the output of each content anchor.
Default is the following list of Transformers:
- RemoveTags. Removes HTML tags.
- HtmlEntitiesToASCII. Converts HTML entities to their ASCII equivalents.
- HtmlProcessor. Converts all combinations of tab, space, or newline to a single space

character.
- RemoveMarginSpace. Removes leading and trailing space.

delimiters Defines the structure of information in the document. You can choose one of the following
options:
- CommaDelimited. Data fields are separated by commas.
- DelimiterHierarchy. Data fields are separated or surrounded by text characters.
- HL7. Data fields are separated as defined in the HL7 standard.
- Positional. Data fields are defined by the number of characters between them.
- PostScript. Data fields are defined according to the PostScript format.
- RTF. Data fields are defined according to the RTF format.
- SGML. Data fields are defined according to the SGML format.
- SpaceDelimited. Data fields are separated by spaces.
- TabDelimited. Data fields are separated by tabs.
For more information, see “Delimiters Component Reference” on page 173.
Default is SGML.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

pre_processor Defines a format preprocessor that processes the input after any document processor that
you defined for the pre_processor property of the example_source. You can choose one of
the following options:
- HtmlProcessor. Converts all combinations of tab, space, or newline to a single space

character. It is not restricted to HTML documents.
- RtfProcessor. Normalizes RTF files.
Default is HtmlProcessor.

remark A user-defined comment that describes the purpose or action of the component.

170 Chapter 14: Formats

RtfFormat
The RtfFormat format defines the format of RTF files.

The following table describes the properties of the RtfFormat format:

Property Description

default_Transformers Defines a list of Transformers that the Parser applies to the output of each content anchor.
Default is the following list of Transformers:
- RtfToASCII. Removes RTF control words from the output.
- RemoveRtfFormatting. Removes RTF formatting instructions from the text.
- HtmlProcessor. Converts all combinations of tab, space, or newline to a single space

character.
- RemoveMarginSpace. Removes leading and trailing space.

delimiters Defines the structure of information in the document. You can choose one of the following
options:
- CommaDelimited. Data fields are separated by commas.
- DelimiterHierarchy. Data fields are separated or surrounded by text characters.
- HL7. Data fields are separated as defined in the HL7 standard.
- Positional. Data fields are defined by the number of characters between them.
- PostScript. Data fields are defined according to the PostScript format.
- RTF. Data fields are defined according to the RTF format.
- SGML. Data fields are defined according to the SGML format.
- SpaceDelimited. Data fields are separated by spaces.
- TabDelimited. Data fields are separated by tabs.
For more information, see “Delimiters Component Reference” on page 173.
Default is RTF.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

pre_processor Defines a format preprocessor that processes the input after any document processor that
you defined for the pre_processor property of the example_source. You can choose one of
the following options:
- HtmlProcessor. Converts all combinations of tab, space, or newline to a single space

character. It is not restricted to HTML documents.
- RtfProcessor. Normalizes RTF files.
Default is RtfProcessor.

remark A user-defined comment that describes the purpose or action of the component.

TextFormat
The TextFormat format defines the format of text files.

Use this format in combination with a document processor to process other types of documents. For
example, you can use it with the PdfToTxt_4 document processor to process PDF documents.

Format Component Reference 171

The following table describes the properties of the TextFormat format:

Property Description

default_transformers Defines a list of Transformers that the Parser applies to the output of each content anchor.
Default is the following list of Transformers:
- HtmlProcessor. Converts all combinations of tab, space, or newline to a single space

character.
- RemoveMarginSpace. Removes leading and trailing space.

delimiters Defines the structure of information in the document. You can choose one of the following
options:
- CommaDelimited. Data fields are separated by commas.
- DelimiterHierarchy. Data fields are separated or surrounded by text characters.
- HL7. Data fields are separated as defined in the HL7 standard.
- Positional. Data fields are defined by the number of characters between them.
- PostScript. Data fields are defined according to the PostScript format.
- RTF. Data fields are defined according to the RTF format.
- SGML. Data fields are defined according to the SGML format.
- SpaceDelimited. Data fields are separated by spaces.
- TabDelimited. Data fields are separated by tabs.
For more information, see “Delimiters Component Reference” on page 173.
Default is DelimiterHierarchy.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

pre_processor Defines a format preprocessor that processes the input after any document processor that
you defined for the pre_processor property of the example_source. You can choose one of
the following options:
- HtmlProcessor. Converts all combinations of tab, space, or newline to a single space

character. It is not restricted to HTML documents.
- RtfProcessor. Normalizes RTF files.
Default is empty.

remark A user-defined comment that describes the purpose or action of the component.

XmlFormat
The XmlFormat format defines the format of XML files.

The Parser treats the XML input document as ordinary text. You can define delimiters, anchors, and other
components just as you do for a regular text document.

172 Chapter 14: Formats

The following table describes the properties of the XmlFormat format:

Property Description

default_transformers Defines a list of Transformers that the Parser applies to the output of each content anchor.
Default is the following list of Transformers:
- RemoveTags. Removes XML tags from the output.
- HtmlEntitiesToASCII. Converts XML entities to their ASCII equivalents.
- HtmlProcessor. Converts all combinations of tab, space, or newline to a single space

character.
- RemoveMarginSpace. Removes leading and trailing space.

delimiters Defines the structure of information in the document. You can choose one of the following
options:
- CommaDelimited. Data fields are separated by commas.
- DelimiterHierarchy. Data fields are separated or surrounded by text characters.
- HL7. Data fields are separated as defined in the HL7 standard.
- Positional. Data fields are defined by the number of characters between them.
- PostScript. Data fields are defined according to the PostScript format.
- RTF. Data fields are defined according to the RTF format.
- SGML. Data fields are defined according to the SGML format.
- SpaceDelimited. Data fields are separated by spaces.
- TabDelimited. Data fields are separated by tabs.
For more information, see “Delimiters Component Reference” on page 173.
Default is SGML.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

pre_processor Defines a format preprocessor that processes the input after any document processor that
you defined for the pre_processor property of the example_source. You can choose one of
the following options:
- HtmlProcessor. Converts all combinations of tab, space, or newline to a single space

character. It is not restricted to HTML documents.
- RtfProcessor. Normalizes RTF files.
Default is HtmlProcessor.

remark A user-defined comment that describes the purpose or action of the component.

Delimiters Component Reference
A delimiters component defines a hierarchy of characters or strings that organize the information in a
document, such as newlines, spaces, tabs, commas, or vertical bars. You can also use a wildcard pattern to
define the delimiters.

The delimiter concept is applicable both to rigidly structured documents that use predefined delimiter
characters to separate the data fields, and to loosely structured text or HTML documents that are delimited
by newlines and syntactic markup. The delimiter concept also encompasses positionally-structured data,
where the fields are located at fixed offsets from one another.

The Parser uses the delimiters to determine the search criteria of Content anchors configured with the
LearnByExample option.

Delimiters Component Reference 173

For example, suppose you configure a format with the TabDelimited delimiters component. This defines a
hierarchy using the following characters as delimiters:

Newline
Tab

You might define a Content anchor that is located two tab characters after the preceding Marker anchor in
the example source, like this:

MARKER<tab>abc<tab>CONTENT
When a Parser processes a source document, it searches for the Content two tabs after the Marker.

In a second example, you might define a Content anchor that is located three newlines and one tab after a
Marker anchor, in the example source.

MARKER
abc<tab>de
fghi<tab>jkl<tab>mnop
pqrst<tab>CONTENT

Within the intermediate lines, the tabs are not counted because the newlines are higher in the hierarchy.

Many of the delimiters components, such as TabDelimited or CommaDelimited, display a predefined
hierarchy of delimiters, which you can edit as required.

The DelimiterHierarchy component does not have a predefined hierarchy. You can insert whatever
delimiters you need.

CommaDelimited
The CommaDelimited delimiters component defines the following delimiter hierarchy:

Newline
Comma

Use CommaDelimited when each line of a text file contains a record and each record contains data fields
separated by commas.

You can add additional delimiters or edit the predefined hierarchy. Use the same procedure that you use to
edit the DelimiterHierarchy component.

Example
In the source document, a Content anchor follows a Marker anchor by two lines. In the third line, there are
three commas, plus any other text, before the Content anchor:

MARKER
abcdef, ghij
abc, def,ghi,CONTENT

If you assign the CommaDelimited component, the Parser learns from the example source that the Content
anchor always follows the Marker by two newlines and three commas. In another source document, the
Parser will successfully find the following Content anchor:

MARKER
 xyz, uvw, rst
,,,CONTENT

Delimiter
The Delimiter subcomponent defines a delimiter character or string that separates anchors. You can add
Delimiter subcomponents within a delimiter hierarchy.

174 Chapter 14: Formats

The following table describes the properties of the Delimiter subcomponent:

Property Description

search Defines the delimiter. You can choose one of the following options:
- NewlineSearch. The delimiter is a newline.
- PatternSearch. The delimiter is defined by a regular expression.
- TextSearch. The delimiter is an explicit string or a string that you retrieve dynamically from the source

document.
For more information, see “Searcher Component Reference” on page 230.

Example
The TabDelimited component contains two Delimiter subcomponents. The first uses NewlineSearch to
define the newline character as a delimiter. The second uses TextSearch to define the tab character as a
delimiter. The tab is graphically represented as a « character.

The SpaceDelimited component also contains two Delimiter subcomponents. The first is identical to that
of TabDelimited. The second uses a PatternSearch to define any string of one or more spaces as a
delimiter. The regular expression []+ means “one or more space characters.” Note the space between the
square brackets.

DelimiterHierarchy
The DelimiterHierarchy delimiters component allows you to define a custom delimiter hierarchy.

Under DelimiterHierarchy, you can nest any number of Delimiter or EnclosingDelimiters components.

Example
In the example source document, suppose that the anchors are separated by commas and surrounded by
brackets, like this:

MARKER,,[CONTENT]
You might define a DelimiterHierarchy that contains:

comma //defined as a Delimiter component
[] //defined as an EnclosingDelimiters component

From this example, the Parser learns that the Content anchor follows the Marker by two commas and is
surrounded by brackets. In another source document, the Parser will find the following Content anchor:

MARKER,abc,def[CONTENT]

Online Sample
For an online sample, see samples\Projects\EDI\EDI.cmw. The sample uses a DelimiterHierarchy to define
the newline and asterisk (*) characters as delimiters, in an EDI source document.

EnclosingDelimiters
The EnclosingDelimiters subcomponent defines a pair of delimiter characters or strings, which surround
anchors. You can add EnclosingDelimiters subcomponents under a delimiter hierarchy.

You can use this component to define the curly brace ({}) delimiters that surround blocks of C program code.

Delimiters Component Reference 175

The following table describes the properties of the EnclosingDelimiters subcomponent:

Property Description

opening Defines the opening delimiter.

closing Defines the closing delimiter.

escape_sequence Defines a prefix that causes the Parser to ignore an instance of the opening or closing
delimiter in the source document.

HL7
The HL7 delimiters component defines the following hierarchy of delimiters for parsing HL7 messages:

newline
vertical bar (|)
caret (^) or tab

You can add additional delimiters or edit the predefined hierarchy. The procedure is the same as for the
DelimiterHierarchy component.

The HL7 messaging standard permits a message to define its own delimiters. You can parse the delimiter
declaration of an HL7 message and create a dynamic delimiter definition in the following way:

1. Use Content anchors to retrieve the delimiter characters from the HL7 message header. Store the
characters in variables.

2. Add Delimiter components under the HL7 component.

3. To each Delimiter component, assign TextSearch.

4. Under the TextSearch component, assign one of the variables to the text property.

Positional
The Positional delimiters component causes the Parser to find content anchors by counting the characters
from the beginning of the search scope. For more information about search scope, see “Anchors
Overview” on page 191.

Example
In the example source document, suppose that a Content anchor follows a Marker anchor by five characters,
possibly including spaces, tabs, and so forth:

MARKERab cdCONTENTefg
If you assign the Positional component, the Parser learns from the example source that the Content anchor
always follows the Marker by five characters, and that it is seven characters long. In another source
document, the Parser will successfully find the following Content anchor:

MARKERd<tab>cbaCONTENTzy,xwv

Using Positional Parsing Together with Delimiters
You cannot add delimiters to the Positional component.

Sometimes, you might want to define a Parser that uses delimiters to locate some anchors, and uses a
positional definition for other anchors. To do this, select one of the other delimiters components. Do not use

176 Chapter 14: Formats

Positional. To define the location of an anchor positionally, you can assign the OffsetSearch option in the
anchor properties.

PostScript
The PostScript delimiters component defines a delimiter hierarchy that is used for parsing Adobe PostScript
documents.

You cannot edit the delimiter hierarchy of the PostScript component.

RTF
The RTF delimiters component defines a delimiter hierarchy for parsing RTF documents.

You cannot edit the delimiter hierarchy of the RTF component.

SGML
The SGML delimiters component defines a delimiter hierarchy for parsing SGML, HTML, and XML documents.

You cannot edit the delimiter hierarchy of the SGML component.

SpaceDelimited
The SpaceDelimited delimiters component defines the following delimiter hierarchy:

Newline
String of one or more space characters

SpaceDelimited is used when each line of a text file contains a record and each record contains data fields
separated by spaces.

You can add additional delimiters or edit the predefined hierarchy. The procedure is the same as for the
DelimiterHierarchy component.

Example
In the example source document, suppose that a Content anchor follows a Marker anchor by two lines. In the
third line, there are two space characters and one string containing multiple spaces before the Content
anchor, like this:

MARKER
abcdef
abc def ghi CONTENT

If you assign the SpaceDelimited component, the Parser learns from the example source that the Content
anchor always follows the Marker by two lines and three strings of spaces. In another source document, the
Parser will successfully find the following Content anchor:

MARKER
 xyz
ghi def abc CONTENT

TabDelimited
The TabDelimited delimiters component defines the following delimiter hierarchy:

Newline
Tab

Delimiters Component Reference 177

TabDelimited is used when each line of a text file contains a record and each record contains data fields
separated by tabs.

You can add additional delimiters or edit the predefined hierarchy. The procedure is the same as for the
DelimiterHierarchy component.

Example
In the example source document, suppose that a Content anchor follows a Marker anchor by two lines. In the
third line, there are three tab characters, plus any other text, before the Content anchor, like this:

MARKER
abcdef
abc<tab> de,f<tab>ghi<tab>CONTENT

If you assign the TabDelimited component, the Parser learns from the example source that the Content
anchor always follows the Marker by two lines and three tabs. In another source document, the Parser will
successfully find the following Content anchor:

MARKER
 xyz
<tab><tab><tab>CONTENT

Format Preprocessor Component Reference
The following list describes the differences between format preprocessors and document processors:

• You can assign a document processor to the pre_processor property of an input port, located under the
example_source or sources_to_extract property of a Parser. You can assign a format preprocessor only to
the pre_processor property of a format.

• A document processor runs on the source document before it performs any other operations.

• A format preprocessor runs on the text before it searches for anchors. The output of the format
preprocessor is not displayed.

For more information, see “Document Processors Overview” on page 151.

HtmlProcessor
The HtmlProcessor format preprocessor, which also functions as a transformer, normalizes whitespace
according to HTML conventions. It reduces any combination of tabs, line breaks, and space characters to a
single space character.

Use this preprocessor to normalize whitespace in any type of text. It is not restricted to HTML documents.

RtfProcessor
The RtfProcessor format preprocessor normalizes the code of RTF files.

178 Chapter 14: Formats

C h a p t e r 1 5

Data Holders
This chapter includes the following topics:

• Data Holders Overview, 179

• XML Schemas, 179

• Using a Schema to Map Anchors, 182

• Generating Valid XML, 183

• Variables, 184

• Variable Component Reference, 188

• Multiple-Occurrence Data Holders, 189

Data Holders Overview
A data holder is an object that has one of the following types:

• An XML element

• An XML attribute

• A variable

XML elements and attributes are typically used for permanent storage. A Parser, for example, stores its
output in data holders of these types.

Variables are used for temporary storage. For example, a Parser can store data that it extracts from a source
document in a variable. It can process the data further before creating the output.

Every data holder has a data type. In the case of elements and attributes, the data holders are defined in an
XML schema that you must supply. Variables are defined in an internal schema, which you can customize by
adding user-defined variables.

XML Schemas
When you create a Parser, Serializer, XMap, or Mapper, you must supply one or more XML schemas that
define the structure of the XML. The schema defines the elements and attributes that the transformation can
use.

Add the schema to the Model repository. You can then map the content of a document to elements and
attributes that are defined in the schema.

179

Schema Encoding
Save the schema in one of the supported input encodings.

The schema encoding must be compatible with the working encoding that you use in the IntelliScript editor.
This means that:

• The schema encoding is identical to the working encoding,

or

• Every character in the schema has an equivalent in the working encoding. For example, if the schema uses
the UTF-8 encoding, and the working encoding is Windows-1252, the schema must not contain Unicode
characters that have no Windows-1252 equivalent.

When you add a schema from an external location to a project, the Script translates the project copy of the
schema to the working encoding.

Included Schema Files
A schema can reference additional schema files. This feature lets you maintain a large schema in a modular
fashion.

Namespaces
If you plan to work with XML namespaces, assign the targetNamespace attribute of the schema. You can edit
the alias that is assigned to the namespace.

You cannot add two schemas that use an empty alias for different namespaces, or two schemas that use the
same alias for different namespaces.

Mixed Content
Elements can contain both character data and nested elements. You can use the mixed attribute in a
schema.

The Script distinguishes between character data before and after each element. For more information, see
“Mapping Mixed Content” on page 182.

Unsupported Schema Features
The current version does not support certain uses of schema features. The following table lists the known
limitations:

Feature Limitation

Uniqueness constraints The unique, key, and keyref elements are ignored. The event log includes a warning.

Default values for
elements of mixed type

The Script ignores the default. The event log includes a warning.

Default data type If the type of an element is undefined, the Script processes it as xs:string. The event
log includes a warning.
You can change the default to xs:anyType.

180 Chapter 15: Data Holders

Feature Limitation

Regular expressions There are minor discrepancies between the regular expression processor and the schema
standard.

Sequence defining
multiple elements having
the same name

If an xs:sequence contains multiple xs:element definitions having the same name,
the Script processes only the first xs:element. The event log includes a warning.
To resolve the problem, wrap each xs:element in an independent xs:sequence.

Minimum and maximum
dates

If a facet defines a minimum or maximum value for an xs:date element, the
transformation fails.

Lax or skip validation
options

In an xs:any or xs:anyAttribute element, the Script ignores a processContents value
of lax or skip. It behaves as if the value were strict.

Substitution group The Script permits a substitutionGroup, even if a block or blockDefault attribute forbids
substitutions.

XSI type The Script permits an xsi:type attribute even if a block attribute of forbids it.

Built-in types Some built-in types do not have correct patterns, for example, when they include
characters above ASCII 127.

Substitution group
without a type

The Script sometimes fails when a substitution group does not have a type.

Empty namespace When the namespace is empty, the Script adds an alias to all elements in the source file,
but the alias does not appear on the Locator and the Locator fails.

List The Script reads a space-separated xs:list as a single item, which might fail if its
length exceeds the stated limit for individual items in the list.

Floats and doubles xs:float and xs:double do not accept valid values of INF, -INF, or NaN.

Element with both fixed
and mixed attributes

The Script does not read all parts of an element that has both fixed and mixed attributes.

max_occurs=0 The Script creates output even when max_occurs=0.

Token The Script does not parse xs:token that contains tabs, carriage returns, or line feeds.

Normalized string The Script does not load an XML when an xs:normalizedString contains tabs,
carriage returns, or line feeds.

Precision of Numerical Data
The Script stores xs:decimal and xs:float data as strings, preserving the precision of the data.

In calculations, the Script converts decimal and float data to double-precision floating point, and it rounds the
result to 15 decimal digits. This means that decimal data may lose some precision. For example, the result of
xs:decimal 5.28 * 1 may be displayed as 5.28000000000001.

The Script normalizes xs:decimal values. For example, it stores 0004 as 4, -0 as 0, and 1.200 as 1.2.

XML Schemas 181

Using a Schema to Map Anchors
When you define a Parser, you map Content anchors to output data holders. When you define a Serializer,
you map input data holders to ContentSerializer serialization anchors.

IntelliScript Representation of Data Holders
In the Script, data holders are identified by a modified XPath expression, such as:

data_holder = /Person/*s/Name/*s/First
To change this value, select the data_holder property and press ENTER. This opens a Choose XPath dialog
box, where you can select the new value.

The XPath syntax is slightly different from the standard XPath syntax, which is Person/Name/First. The
Script inserts *s, *c, and *a, which refer to the schema terms sequence, choice, and all. The modifications
resolve ambiguities when the Script uses the schema to help construct XML output.

Mapping Mixed Content
If the schema supports mixed content, each element has before and after data holders. For example,
consider the following mixed content:

<Deal>
 We are pleased to offer you a price of
 <Price>34</Price>
 dollars. This is a special price for
 <Partner>
 <Name>Acme Gizmos, Inc.</Name>
 <ID>98765</ID>
 </Partner>
 valid only until December 31.
</Deal>

This structure contains data holders in the following locations:

• Immediately after the <Deal> tag, before any of the sub-elements.

• Before the Price element

• The Price element

• After the Price element

• Before the Partner element

• The Partner/Name and Partner/ID elements

• After the Partner element

• Immediately before the </Deal> tag, after all the sub-elements.

You can map the text "We are pleased to offer you a price of" to the data holder before the Price
element. You can map "dollars. " to the data holder after Price, and "This is a special price for " to
the data holder before Partner.

The following example shows mixed content:

data_holder = /Deal/*s/Price/$text_before

Mapping XSI Types
A schema can define derived data types that can be used in place of a base type. In such cases, an XML
document can define the actual data type of an element by specifying an xsi:type attribute.

182 Chapter 15: Data Holders

For example, a schema defines a Person element having a type PersonT1 and containing string content. It
defines a type called PersonT2 that extends PersonT1 by adding an Id attribute. The following are valid
Person elements:

<!-- base type PersonT1 -->
<Person>Ron Lehrer</Person>

<!-- derived type PersonT2 -->
<Person Id="547329876" xsi:type="PersonT2">Ron Lehrer</Person>

The Script interprets xsi:type attributes in input XML documents. It adds xsi:type attributes where
necessary to output XML documents.

Select the appropriate type according to the data that the transformation processes. For example, if you want
a Content anchor to store data in a Person element having type PersonT2, select xsi:type=PersonT2. The
selection appears in the Script as follows:

data_holder=/Person/*c/xsi:type=PersonT2
In cases where the content might require either a PersonT1 or PersonT2 data holder, you can configure an
Alternatives anchor that contains two Content anchors. One of the Content anchors is mapped to PersonT1,
and the other to PersonT2. For more information, see “Alternatives” on page 203.

If you map a data holder to the unqualified element Person, the data holder defaults to the base type
PersonT1. Thus the following mappings are equivalent:

data_holder=/Person
data_holder=/Person/*c/xsi:type=PersonT1

Generating Valid XML
The Script generates XML that is valid according to the output schema that you have defined.

The schema is used as a guide while the XML is being generated. The schema is applied during the
generation, and not afterwards. This approach helps transformations to succeed. It ensures the validity
continually as the transformation proceeds.

Role of Schemas in Parsing
This section explains some of the ways in which a Parser uses the schema to ensure that it outputs valid
XML.

The discussion presents examples of the behavior.

Sequence of Elements
When the Script runs a Parser, it organizes the output in the sequence that is required by the schema.

For example, a schema may require that a LastName element precede a FirstName element. The Script
creates the output in the locations defined by the schema, even if the anchors that produce the output are
defined in the opposite sequence.

Number of Occurrences
A Parser may attempt to insert multiple instances of an element in the output XML. The Script uses the
schema to determine whether to append new instances or overwrite existing elements. The Parser deletes
any excess elements beyond those that the schema permits, and it writes warnings in the event log.

Generating Valid XML 183

In another example, suppose the schema defines an element without specifying a minOccurs or maxOccurs
attribute. The default minOccurs and maxOccurs values are 1, which means that the element must occur
exactly once in the Parser output. If the element is missing from the output, the Parser can add it.

For more information, see “Multiple-Occurrence Data Holders” on page 189.

Missing or Empty Elements
In the Data Processor transformation settings, you can configure whether a Parser inserts empty elements to
comply with a schema.

Data Types
The Script ensures that the text it stores in a data holder has the required data type. For example, if a Content
anchor retrieves the string "oranges 5 for a dollar", and the type of the data holder is xs:integer, the
anchor stores only the integer 5 in the data holder.

For more information, see “Using Data Types to Narrow the Search Criteria” on page 201.

Role of Schemas in Serialization and Mapping
A serializer or mapper checks that its input is valid according to the XML schema. There are two validation
modes:

• Partial validation. Some deviations are allowed between the XML source document and the schema.
Default.

• Strict validation. The XML source document must conform strictly to its schema.

To define the validation level, assign the validate_source_document property of the Serializer or Mapper
component.

If you use the strict mode, a validation error causes the serializer or mapper to fail. The Events view displays
the errors.

If you use the partial mode, the transformation might proceed despite certain validation errors. For example,
if there are more occurrences of an element than the schema permits, a serializer typically ignores the
excess elements and processes the valid ones, and it writes a warning in the event log. Similarly, it might
ignore an element containing an invalid data type.

The Script uses the Xerces C XML Parser, version 3.1, to perform validation.

Variables
Variables are temporary data holders that you can use in place of XML elements or attributes. Variables are
useful if you need to store a value temporarily during the operation of a transformation, and you do not need
to output the value in the XML.

For example, suppose you want a Parser to read two Content anchors and concatenate their values. You
might map each Content anchor to a user-defined variable. You can then use an action to concatenate the
variables and output the result to an XML element.

The Script also uses pre-defined system variables to store information that is needed in certain operations.

184 Chapter 15: Data Holders

Creating a User-Defined Variable

1. Add a Variable component at the global level of the Script.

2. Enter a name for the variable, and then press ENTER.

3. Select the data type that the variable can store.

You can select a standard type such as xs:string or xs:integer, or a global type defined in a schema
referenced in the project.

System Variables
The following paragraphs describe the system variables and the ways in which they are used.

Variables Used to Access Source Documents
Several of the system variables store data that actions can use to access source documents. For example,
the RunParser action can use VarLinkURL, which contains a file path.

The following variable is used in the XmlToDocument processor:

Variable

Description

VarServiceInfo > ServiceLocation The directory path of the Script or service that is currently running.

Read-Only Access Variables
The following variables are read-only. A transformation can use them to visit a source document more than
one time.

Variable Description

VarRequestedURL The path of the source document that a Parser is processing.

VarCurrentURL The path of the current file that a Parser is processing.
Usually, this is the same as VarRequestedURL. If the Parser is configured with certain
preprocessors, VarCurrentURL might point to a temporary file rather than the original source
document. VarRequestedURL always points to the source document.

VarCurrentPost The form data that a Parser submitted to retrieve the current page.

Read-Only System Time Variables
VarSystem is a read-only variable that returns system information. It is a structure containing several nested
variables:

Variable Description

VarSystem > ExecStartTime > Year Year when the transformation began execution

VarSystem > ExecStartTime > Month Numerical month

Variables 185

Variable Description

VarSystem > ExecStartTime > MonthName Name of month

VarSystem > ExecStartTime > Day Day of month

VarSystem > ExecStartTime > DayName Day of week

VarSystem > ExecStartTime > Hour Hour

VarSystem > ExecStartTime > Minute Minute

VarSystem > ExecStartTime > Second Second

VarSystem > ExecStartTime > Millisecond Millisecond

You can use VarSystem to insert a timestamp in the output of a transformation.

Variables Used for Failure Handling
VarLastFailure stores the most recent component failure that occurred in a transformation. For example, it
might record an instance of a Marker anchor that failed to find the marker text. You can configure a
component to write VarLastFailure to a user log when a failure occurs. For more information, see “Failure
Handling” on page 379.

Note: When you use VarLastFailure, the service runs in special mode, which requires about three times more
CPU time.

VarServiceInfo stores the service name, directory location of the user log, and the file name of the user log.

VarLastFailure and VarServiceInfo are structures containing the following nested variables:

Variable Description

VarLastFailure > InternalId Failure identifier

VarLastFailure > Text Failure description

VarLastFailure > Location Location of the failure in the Script

VarLastFailure > AnchorName Name of the component that failed

VarLastFailure > Data Additional information about the failure

VarServiceInfo > ServiceName Name of the service

VarServiceInfo > StandardError > StandardErrorDir Directory path of the user log

VarServiceInfo > StandardError > StandardErrorName File name of the user log

186 Chapter 15: Data Holders

Variables Used for Structured Parsing
VarStructureDetails keeps track of the current record that a StructureDefinition anchor is parsing. It contains
the following nested variables:

Variable Description

VarStructureDetails > Name The name property of the subelement that matches the record.

VarStructureDetails > Repetitions The iteration number of the record.

VarStructureDetails > RecordIndex The index number of the record in the overall StructureDefinition input.

VarStructureDetails > RecordId The recorfd identifier. If there are multiple identifiers, the variable contains a
comma-separated list.

VarStructureDetails > InternalPath Internal information, not for use.

For more information, see “StructureDefinition” on page 226.

Variables Used in Notifications
VarNotificationDetails stores information about the most recent notification that was triggered in a
transformation:

Variable Description

VarNotificationDetails > Name The name of the notification.

VarNotificationDetails > Path The XPath of the data holder to which the notification applies. For example, if a
validator triggers a notification in a Content anchor, the Path is the data holder
where the Content anchor stores its output.

VarNotificationDetails > Value The input value that caused the notification. If a validator triggers the notification,
the Value is the invalid input data. If a Notify action triggers the notification, you
can specify the Value in the Notify configuration.

VarNotificationDetails > Creator The location in the Script that triggered the notification.

For more information, see “Notifications” on page 398.

Mapping Anchors to Variables
You can map a Content anchor to a variable in the same way that you map to any other data holder.

Do not map an anchor to a read-only system variable.

Using Variables in Actions
Variables are often used as the input of actions. You can use a variable in the same way as you use other
data holders. For more information, see “Actions Overview” on page 279.

Variables 187

Initializing Variables at Runtime
You can initialize the values of variables in the following ways:

• In the Script, you can configure the initialization property of the Variable.

The initial values that you set by this approach are used when you run the transformation in the Developer
tool or as a service.

• An application can pass the initial values as service parameters to a service at runtime.

The service parameters override the initialization property of the variables. If the Script specifies an initial
value, and you also pass a value from an application, the latter value is used.

Variable Component Reference
A Variable component is a user-defined variable.

For more information about system variables, see “System Variables” on page 185.

Variable
A Variable component is a user-defined variable that you use in a Script.

Use variables for temporary storage in the same way that you use an XML element or attribute. For example,
you can map a Content anchor to a variable, and you can use a variable as the input of an action.

Variables appear at the global level of the Script. A variable can have any data type that is defined in the
schemas associated with the project, including standard types and custom types. A custom type can be
either simple or complex. A complex variable is a structure containing nested fields. Initialization of complex
variables is not supported. For more information, see “Initializing Variables at Runtime” on page 188.

The following table describes the properties of the Variable component:

Property Description

initialization Defines an initial value for the variable. You can initialize variables that have simple data types. Default
is empty.

InitialValue Defines an initial value for the variable. InitialValue has one property, value.

list Determines whether the variable is single-occurrence or multiple-occurrence variable. You can choose
one of the following options:
- Selected. Determines a multiple-occurrence variable.
- Cleared. Determines a single-occurrence variable.
Default is cleared. For more information, see “Multiple-Occurrence Data Holders” on page 189.

val_type Defines the data type that the variable can store. Legal values are defined in the schema. Default is
xs:string.

value Defines the initial value.

188 Chapter 15: Data Holders

Multiple-Occurrence Data Holders
In a schema, you can use the maxOccurs attribute to set the maximum number of times that sibling elements
can occur in an XML document. Likewise, you can define a variable that can occur either once or multiple
times. An element or variable that can occur only once is called a single-occurrence data holder. An element
or variable that can occur more than once is called a multiple-occurrence data holder.

Single- and multiple-occurrence data holders behave differently when the Script stores data in them, for
example, when you map Content anchors to a data holder.

• In a single-occurrence data holder, each assignment overwrites the preceding assignment.

• In a multiple-occurrence data holder, each assignment generates a new occurrence of the data holder.

To understand this, suppose that a schema defines an XML element called <FirstName>. If maxOccurs = 1,
this is a single-occurrence data holder. If a Parser maps more than one Content anchor to the <FirstName>
element, the output contains only the final mapping.

Consider what would happen if you parse a source document that is a list of first names:

Jack Jennie Larissa
We assume that each name is a Content anchor mapped to FirstName. Each name overwrites the value of
FirstName. The output contains only the mapping:

<FirstName>Larissa</FirstName>
Now suppose that maxOccurs = unbounded. This means that FirstName is a multiple-occurrence data holder.
If you map multiple Content anchors to the element, the Parser generates a list of names. The output is:

<FirstName>Jack</FirstName>
<FirstName>Jennie</FirstName>
<FirstName>Larissa</FirstName>

The same principle applies to variables. If you map multiple anchors to a multiple-occurrence variable, each
anchor generates a new occurrence of the variable. You can use this feature, for example, to prepare input for
the AppendListItems and CombineValues actions, which concatenate the occurrences.

Note: The behavior described here assumes that the multiple-occurrence data holder has a simple data type.
Under certain circumstances, if the type is complex, each anchor might not generate a new occurrence. To
control this behavior, you can use a locator. For more information, see “Overview of Locators, Keys, and
Indexing” on page 342.

Attributes
An XML attribute is always a single-occurrence data holder. An attribute cannot be multiple-occurrence
because XML does not permit the same attribute to appear more than once in the same element.

An attribute can have a data type that is a space-separated list. The names attribute in the following element
is an example:

<Countries names=”USA Canada Mexico”/>
The Script treats the attribute as a single-occurrence data holder with a list type. For more information, see
“Using Data Types to Narrow the Search Criteria” on page 201.

Indexing
By default, the Script accesses the instances of a multiple-occurrence data holder sequentially. You can
access the instances non-sequentially by using the indexing feature. For more information, see “Overview of
Locators, Keys, and Indexing” on page 342.

Multiple-Occurrence Data Holders 189

Destroying the Occurrences
Under certain circumstances, you might want to destroy all existing occurrences of a multiple-occurrence
data holder, and start creating new occurrences from the beginning of the list. This is useful, for example, if
you are parsing an iterative structure, and you want to keep only the last iteration. You can destroy the
occurrences that store data from the earlier iterations.

You can achieve this effect by defining a single-occurrence data holder that contains a nested, multiple-
occurrence element. When you re-use the single-occurrence data holder, the nested occurrences are
destroyed.

The following scenario is a typical example.

1. Add the following schema to a project:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:complexType name="MyListType">
 <xs:sequence>
 <xs:element name="item" type="xs:string" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

The schema defines a custom data type called MyListType. The type contains a nested, multiple-
occurrence element called item.

2. Define a single-occurrence variable called MyList, which has the data type MyListType.

3. Use the variable as the target of an iterative structure.

For more information, see “Overview of Locators, Keys, and Indexing” on page 342.

Each iteration re-uses the single occurrence of MyList. At the start of the iteration, the nested item
elements are destroyed. Anchors within the iterative structure, such as a nested RepeatingGroup, start
assigning the item elements from the beginning of the list.

Online Sample
For an example of how to destroy multiple occurrences of a data holder, see the following online sample:

samples\Projects\ResetListVariable\ResetListVariable.cmw

190 Chapter 15: Data Holders

C h a p t e r 1 6

Anchors
This chapter includes the following topics:

• Anchors Overview, 191

• Mapping Content Anchors to Data Holders, 192

• Defining Anchors, 193

• Standard Anchor Properties, 195

• How a Parser Searches for Anchors, 196

• Anchor Component Reference, 202

• Searcher Component Reference, 230

• Anchor Subcomponent Reference, 234

Anchors Overview
Anchors are the components that let a Parser hook into specific locations in a source document, for the
purpose of finding data and storing it in data holders. An anchor is a signpost that you place in a document,
indicating the position of the data.

This chapter explains the different types of anchors and how you can use them in Parsers.

Marker and Content Anchors
The most commonly used anchors are called Marker and Content anchors. These anchors are often used as
a pair:

• A Marker anchor labels a location in a document.

• A Content anchor retrieves text from the location.

To understand these anchors, imagine a printed questionnaire. The first line typically asks for the person's
last name and first name, with each label followed by a blank space to receive the information. The printed
labels Last Name and First Name are Marker anchors, and the blank spaces are Content anchors. The
anchors provide a means to home in on the data and extract it from the source document.

Other Anchor Types
In addition to Marker and Content anchors, there are many other anchor types that you can use to parse
documents. For example, Group and RepeatingGroup anchors help you specify the organization of the data

191

fields. An Alternatives anchor lets you specify multiple kinds of data that might occur at a particular location
in a source document.

How Anchors and Delimiters Work Together
You can define the anchors in the example source document. The Parser learns how to parse the document
by examining the anchors and the delimiters that separate them. For more information about delimiters, see
“Formats Overview” on page 166.

For example, suppose you have specified that your document uses a tab-delimited format. A line in the
example source reads

First name:<tab>Ron
where <tab> is a tab character.

You can define First name: as a Marker anchor. You can define Ron as a Content anchor. The Parser learns
from these definitions that it should search a source document for the string First name:. It should then
skip over a single tab delimiter and retrieve the text that follows the tab.

Suppose you run the Parser on another source document, which contains the following text:

First name:<tab>Jack
The Parser finds the anchors as above and retrieves the text Jack.

Now suppose that the source document reads:

First name:<tab>Jack<tab>Age:<tab>34
The Parser still retrieves the text Jack, rather than Jack<tab>Age<tab>34. This works because you have
defined the tab character as a delimiter. The Script understands that the Content anchor starts after the first
tab and ends before the second tab. Of course, you might define additional anchors that retrieve Jack's age,
which is 34.

Note: The above examples describe one possible behavior of the anchors and delimiters. The anchors have
many properties that let you alter this behavior. For instance, you can define a Content anchor that ignores
tabs, even in a tab-delimited format. For more information, see “How a Parser Searches for Anchors” on page
196.

Mapping Content Anchors to Data Holders
A Content anchor stores the text that it extracts from a source document in a data holder. For example, you
might configure a Content anchor to store its result in an XML element called FirstName. If the Content
anchor retrieves the text Jack, the Parser produces the following output:

<FirstName>Jack</FirstName>
More precisely, you might specify that the anchor should store the retrieved text at the path /Person/*s/
FirstName, which refers to an element defined in the XML schema. The actual Parser output would be:

<Person>
 <FirstName>Jack</FirstName>
</Person>

On the other hand, suppose that the schema defines FirstName as an attribute of the Person element. You
might map the Content anchor to /Person/@FirstName. The output would be:

<Person FirstName="Jack" />

192 Chapter 16: Anchors

You must map to a data holder that has an appropriate data type. For example, do not map Jack to an XML
element that has an xs:integer data type, or to an XML element that has a complex data type containing
nested elements. For more information about this rule, see “Using Data Types to Narrow the Search
Criteria” on page 201.

Mapping to Variables
You can map an anchor to a data holder that is an XML element, an XML attribute, or a variable. The variable
option is useful if you want to use the data in a subsequent processing step, but you do not want to include
the raw data in the Parser output.

For example, suppose you want to extract several numbers from a source document and output their sum in
the XML. You do not want the individual numbers in the output. You can map the Content anchors that
retrieve the numbers to variables, and use a CalculateValue action to compute and output the sum.

You might also map to a variable that you use in a subsequent anchor, for example, to define a dynamic
search text for a Marker anchor.

Mapping to Multiple-Occurrence Data Holders
If you map Content anchors to a single-occurrence data holder, each assignment of the data holder
overwrites the previous assignment.

If you map to a multiple-occurrence data holder, each assignment generates a new occurrence of the data
holder. For example, if each Content anchor retrieves a person's name, the output is a list of names:

<FirstName>Jack</FirstName>
<FirstName>Jennie</FirstName>
<FirstName>Larissa</FirstName>

For more information, see “Multiple-Occurrence Data Holders” on page 189.

Mapping to Mixed-Content Elements
The term mixed content refers to an XML element that contains both character data and nested elements. If
the schema permits an element to have mixed content, the Schema view displays before and after data
holders for the elements. This lets you map a Content anchor to character data that is located before or after
a particular nested element. For more information, see “Mapping Mixed Content” on page 182.

Defining Anchors
When you define a Parser component, you must add a sequence of anchors. The parser operates by
searching for the anchors in the source document and by running the operations that you have configured the
anchors to perform.

Where to Define Anchors
In the Script, the anchors are nested within a Parser.

If you press ENTER at the indicated location, the IntelliScript editor displays a drop-down list that includes the
anchors and other components that you can add.

After you add the anchors, the Developer tool highlights the anchors in the example source.

Defining Anchors 193

Some types of anchors can contain nested anchors. For example, you can nest anchors within an
Alternatives, Group, or RepeatingGroup anchor.

Sequence of Anchors
The sequence of the anchors should be the sequence of text in the source document.

For example, suppose that the source document is:

First Name: Ron
Last Name: Lehrer

Assuming that you define First Name and Last Name as Marker anchors, and that you define Ron and Lehrer
as Content anchors, the required sequence of anchors in the Parser configuration is:

Anchor Text in the Source Document

Marker First Name

Content Ron

Marker Last Name

Content Lehrer

Exception: Variable Source Sequence
Some source documents may have a variable sequence. For example, suppose that the source document
may have either of the following formats:

First Name: Ron
Last Name: Lehrer

or

Last Name: Lehrer
First Name: Ron

In such cases, you can use the marking property to change the search scope of the anchors. For more
information, see “How a Parser Searches for Anchors” on page 196.

Adding a Marker or Content Anchor
You can add Marker and Content anchors by a select-and-click approach.

1. Select the anchor text in the example source file.

2. Right-click the selected text, and then click Insert Marker or Insert Content.

3. Set the anchor properties.

Defining an Anchor
You can create any type of anchor by editing the Script. The procedure is identical to editing any other
component.

1. At the desired anchor location, select the ellipsis (...), and then press ENTER.

2. Select or type the anchor name.

194 Chapter 16: Anchors

3. Press ENTER again to confirm your selection.

4. Edit the anchor properties.

Standard Anchor Properties
The following table describes standard properties of anchors:

Property Description

direction A search direction for the anchor within the search scope. You can choose one of the following
options:
- backward. Search from the end of the search scope and finds the last instance of the anchor.
- forward. Search from the start of the search scope and finds the first instance of the anchor.
For a Marker anchor, you can modify this behavior by using the count property. For example, if
direction = backward and count = 2, the Script finds the second-to-last instance.
Default is forward. For more information, see “How a Parser Searches for Anchors” on page 196.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

marking Determines whether an anchor is used as the start of the search scope for the succeeding anchor.
You can choose one of the following options:
- begin position. Place a reference point before the current anchor.
- end position. Place a reference point after the current anchor.
- full. Place a reference point before and after the current anchor.
- none. Do not create a reference point.
For more information, see “How a Parser Searches for Anchors” on page 196.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

no_initial_phase Determines whether the Script searches for nested anchors in the main phase. You can choose one
of the following options:
- Cleared. Search for nested anchors according to their individual properties.
- Selected. Search for nested anchors in the main phase.
Default is cleared.

notifications A list of NotificationHandler components that handle notifications from nested components. For
more information, see “Notifications” on page 398.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

Standard Anchor Properties 195

Property Description

optional Determines whether a component failure causes the parent component to fail. You can choose one
of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.

remark A user-defined comment that describes the purpose or action of the component.

When it is not certain that an anchor exists in a source document, select the optional property. If the anchor
does not exist, the Parser in which the anchor is nested continues.

If the anchor is nested within a Group anchor, the optional property prevents the Group from failing. If the
anchor is in a RepeatingGroup, the property prevents an iteration of the RepeatingGroup from failing.

How a Parser Searches for Anchors
To design a Parser correctly, it is important that you understand how the Script searches for the anchors in
the Parser. There are three main concepts:

• Search phase

• Search scope

• Search criteria

This section explains the concepts, and how you can control each of them by setting the anchor properties.

Search Phases
The Script searches for a sequence of anchors in three phases:

• Initial

• Main

• Final

By default, all Marker anchors are in the initial phase and all Content anchors are in the main phase. This
means that the Script first finds the Marker anchors, and then it finds the Content anchors between them.

To understand this, consider a Parser that processes the following source document:

First name: Ron Last name: Lehrer

196 Chapter 16: Anchors

Suppose you have defined the anchors in the following way, with default anchor properties:

Anchor Text in the Source Document Phase

Marker First name: Initial

Content Ron Main

Marker Last name: Initial

Content Lehrer Main

In the initial phase, the Script searches for the Marker anchors:

• It searches for First name:.

• It searches for Last name: at a location that follows First name:.

In the main phase, the Script searches for the Content anchors:

• It searches for the Ron anchor at a location between First name: and Last name:.

• It searches for the Lehrer anchor at a location after Last name:.

Nested Phases
Anchors that have nested anchors, such as Group, have nested phases. For example, if a Group anchor runs
in the main phase of a Parser, a Marker anchor that is nested in the Group runs in a nested initial phase. The
nested initial phase is part of the Parser main phase, but it is before the other anchors in the Group.

Another example is a RepeatingGroup anchor, which searches for both separators and for nested anchors. In
order to identify the nested anchors correctly, it searches for the separators before it searches for the nested
anchors.

Search Scope and Search Criteria
The above example of search phases illustrates the concepts of search scope and search criteria. The search
scope is the portion of a document where the Script searches for an anchor. The search criteria are the rules
by which the Script finds the anchor within the search scope.

In the initial phase, the Script starts searching for the Marker anchor containing First name: at the beginning
of the document. The search scope for this anchor is the entire document. The search criterion is that the
anchor must contain the text First name:.

The search scope for the Last name: anchor starts at the end of First name:, and extends to the end of the
document. The search criterion is that the anchor must contain the text Last name:.

In the main phase, the Parser interpolates the Content anchors between the Marker anchors. The search
scope for the Ron anchor extends from the end of the First name: anchor to the beginning of the Last
name: anchor. Assuming that the Parser uses a space-delimited format, the search criteria are to retrieve all
the text in the search scope, after the leading space character and before the second space character.

The search scope for the Lehrer anchor is from the end of Last Name: to the end of the document. The
search criteria are similar to those for the Ron anchor.

How a Parser Searches for Anchors 197

We can add this analysis to the anchor table that we presented above. The table now describes the complete
method by which the Parser finds the anchors.

Anchor Text in the
Source
Document

Phase Search Scope Search Criteria

Marker First name: Initial Entire document Text = First name:

Content Ron Main End of First name: to
start of Last name:

After the leading space
Before the next space

Marker Last name: Initial End of First name: to
end of document

Text = Last name:

Content Lehrer Main End of Last name: to
end of document

After the leading space
Before the next space

Adjusting the Search Phase
By assigning the phase property of an anchor, you can change the phase in which the Script searches for the
anchor.

Consider the following source document:

CONTENT<10 characters>MARKER
In this example, the Marker anchor is located 10 characters after the Content anchor.

By default, the Script searches for the Marker in the initial phase, and it searches for the Content in the main
phase. This will not work here because the Script cannot find the Marker unless it has already found the
Content!

The solution is to change the phase property of one of the anchors. You can change the Content to the initial
phase, or the Marker to the main phase. In either case, the Script finds the anchors.

Adjusting the Search Scope
There are two ways to adjust the search scope for an anchor:

• By setting the phase property of the anchor or the surrounding anchors

• By setting the marking property of the surrounding anchors

Phase Property
If a Content anchor lies between two Marker anchors, then by default, the search scope for the Content is the
segment between the Marker anchors.

If you change all the anchors to the same phase, the search scope of the Content is no longer bounded by
the second Marker. It is from the end of the first Marker to the end of the document.

As an example, consider the following source document:

Tree Fig Date<tab>October 27, 2003 (pruned)
Tree Date Palm Date April 27, 2003<tab>(planted)

198 Chapter 16: Anchors

The example assumes that the source document has a loose structure, containing varying numbers of
spaces, tabs, or other symbols interspersed in the text, so we cannot easily use the spaces and tabs as
delimiters. An example like this might arise in parsing word-processor documents.

We can parse this document using a RepeatingGroup anchor, which contains nested Marker and Content
anchors. The Marker anchors are the strings Tree and Date. The Content anchors are everything between the
Marker anchors, including the spaces and tabs.

The problem in parsing this document is in the second iteration of the RepeatingGroup, which parses the
second line. If we leave the Marker anchors in the initial phase, the Script incorrectly considers the first
instance of the word Date to be a Marker. In the main phase, it fails to find Date Palm because the search
scope is between the two Marker anchors, and there is no text between them.

A possible solution is to move the Marker for Date to the main phase, and to define the Content anchor, Date
Palm, using an expression that searches for a tree name of one or two words. In the initial phase of the
RepeatingGroup, the Script finds the Marker for Tree. In the main phase, it finds Date Palm followed by the
Marker for Date.

With the new phase setting, we have changed the search scope for the tree name. The scope is now from
Tree to the end of the iteration, and the Script finds Date Palm successfully.

Marking Property
Consider the following source-document structure:

MARKER
%%%CONTENT A
^^^CONTENT B

Suppose that the sequence of Content A and Content B varies among the source documents. In some
documents, Content B precedes Content A.

In that case, the search criteria are:

• Content A and Content B both follow the Marker anchor.

• Content A begins with %%%, and Content B begins with ^^^.

By default, the search scope for Content A is from the end of the Marker to the end of the document. The
search scope for Content B is from the end of Content A to the end of the document. This does not work
because in some source documents, Content A and Content B are reversed.

The solution is to change the search scope for Content B. You can do this by setting the marking property of
Content A. The marking property specifies where the Script places the reference points that determine the
start and end of the search scope.

The default setting is marking = full, which means that the Script places reference points before and after
each anchor. The search scope for Content B begins at the last reference point, which is the one following
Content A. This leads to incorrect parsing, as we have seen.

To prevent the Script from placing reference points around Content A, set the marking property of Content
A to none. As a result, the search scope for Content B starts at the end of the Marker. This allows the Script
to find Content B, even if it precedes Content A.

How a Parser Searches for Anchors 199

The following table describes all four possible values of the marking property. The Result column assumes
that you assign the marking value to Content A in the above example.

Marking
Property

Explanation Result

full The Script places reference marks at the
beginning and end of the current anchor.
This is the default behavior.

The Script seeks the next anchor after the end of the
current anchor. Content B follows Content A.

begin
position

The Script places a reference mark only at
the start of the current anchor.

The Script seeks the next anchor after the start of the
current anchor. Content B overlaps or follows
Content A.

end position The Script places a reference mark only at
the end of the current anchor.

The Script seeks the next anchor after the end of the
current anchor. Content B follows Content A.

none The Script does not place any reference
marks at the current anchor.

The Script seeks the next anchor after the end of the
preceding anchor. Content B follows Marker,
without regard to ContentA.

Note: There are a few circumstances where you must use an anchor that marks a reference point. An
example is the separator of a RepeatingGroup. If the separator does not mark, it does nothing. A warning
appears if you attempt to use a non-marking anchor in a location where marking is required.

Online Samples
For an online sample of the marking property, open the project samples\Projects\Marking_Mode
\Marking_Mode.cmw. The sample uses the property to alter the search scope of a Content anchor.

For another example, see samples\Projects\NonMarker\NonMarker.cmw. This sample uses the marking =
none option, permitting two Content anchors to overlap. The sample also illustrates the use of direction =
backward to search from the end of the scope.

Adjusting the Search Criteria
The Script can search for anchors according to a large number of search criteria, for example:

• According to the delimiter locations, which the Script learns from the example source

• According to a positional offset, in other words, the number of characters from a reference point

• By searching for particular text

• By searching for a pattern or regular expression

• By searching for a specified data type

• By searching for an attribute value

You can combine these search criteria in almost any way. For example, you might specify that a Content
anchor begins two tabs after a Marker anchor, and that it is 10 characters long. If you do this, you are using a
delimiter criterion to define the beginning of the Content anchor, and an offset criterion to define the end.

The components that perform these searches are called searcher components. For more information, see
“Searcher Component Reference” on page 230.

200 Chapter 16: Anchors

Using Data Types to Narrow the Search Criteria
By default, in addition to the other search criteria, the Script searches for a Content anchor according to the
data type of its data holder.

For example, suppose that the search scope of a Content anchor is the following string:

The students' grades were 81, 56, and 95, respectively.
Further suppose that you define no other search criteria for the anchor. If you map the anchor to a data
holder that has a type of xs:string, the anchor retrieves the entire string.

If the data holder has a type of xs:integer, the Script searches for the first substring that matches the data
type. Assuming that you configure the anchor with direction = forward, the anchor retrieves the integer 81.
If direction = backward, the anchor retrieves 95.

Now suppose the data holder has a type of xs:integer, and the schema restricts the data holder to values
less than 60. The Script searches for an integer that conforms to the restriction and retrieves 56.

Data Types in Combination with Other Search Criteria
You can combine a data-type criterion with other search criteria. In the above example, suppose you
configure the Content anchor to search for the following regular expression:

[",.*,"]
The expression searches for two commas, separated by any characters other than a newline. The search
finds the substring

, 56,
If the type of the data holder is xs:integer, the anchor retrieves 56.

List Data Types
A data holder can be a space-separated list. The Script filters the text retrieved by the Content anchor to
match the types of the list items.

Suppose that the schema defines an attribute called grades, which is a list of xs:integer items. In teh above
example, if you map the Content anchor to grades, the anchor returns a list of the integers in the string:

81 56 95
If the grades attribute belongs to an element called Students, the XML output is:

<Students grades=”81 56 95" />
If you define the Content anchor with direction = backward, the list is reversed:

<Students grades=”95 56 81" />

Decimal Type
If a data holder has the xs:decimal type, the Script assumes that the decimal separator is a period. If your
locale setting uses a comma as the decimal separator, an xs:decimal search might fail.

Type Search with Closing Marker
If a Content anchor has a closing_marker property but does not have an opening_marker, the Script returns
the substring closest to the closing_marker that matches the type of the data holder.

In the above example, if you define the word respectively as the closing_marker, and the data holder has a
type of xs:integer, the anchor retrieves 95.

How a Parser Searches for Anchors 201

Online Sample
For an online example of searching by a data type, open the project samples\Projects\Pattern
\Pattern.cmw. The sample is a Parser containing a single Content anchor that is mapped to an XML
element. The schema uses an xs:pattern to restrict the element to certain character sequences. The anchor
outputs the portion of the source document that matches the pattern.

Disabling the Data-Type Search
You can disable the data-type search by selecting the disable_XSD_type_search property of the Content
anchor. If you do that, the anchor searches according to the other criteria, without regard to the type of the
data holder.

If the result does not have the proper type, it cannot be stored in the data holder and the anchor fails. You can
use transformers to convert the result to the proper type and prevent the failure. For more information, see
“Transformers Overview” on page 242.

For example, suppose that the source document contains a date in the dd-mm-yyyy format, and you want to
store the date in an xs:date data holder. You can handle this situation in the following way:

1. Define a Content anchor that retrieves the dd-mm-yyyy data, ignoring the mismatch with the xs:date
type.

2. Configure the anchor with a DateFormatICU transformer that converts the result to xs:date.

Anchors that Contain Nested Anchors
An interesting question is how a Parser searches for an anchor that has nested anchors, such as a Group
anchor.

The Script does not search for a Group, and then search for the nested anchors. Rather, it searches for the
nested anchors. The extent of the Group is defined by the nested anchors that the Script finds.

For example, suppose a Parser has the following sequence of anchors. We assume that the anchors have
default phase, marking, and optional properties.

Marker A
Group
 Marker B
 Content C
 Marker D
Marker E

The Script searches first for Marker A and Marker E. The search scope of the Group is the region between
Marker A and Marker E.

Then, within the search scope of the Group, the Script searches for Marker B and Marker D. The region
between these Marker anchors is the search scope for Content C.

Within the latter search scope, the Script searches for Content C.

Anchor Component Reference
Anchor components indicate the locations of data in the source documents.

202 Chapter 16: Anchors

Alternatives
The Alternatives anchor defines a set of alternative, nested anchors. You can define a criterion for selecting
one alternative from the set.

The following table describes the properties of the Alternatives anchor:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

marking Determines whether an anchor is used as the start of the search scope for the succeeding anchor. You can
choose one of the following options:
- begin position. Place a reference point before the current anchor.
- end position. Place a reference point after the current anchor.
- full. Place a reference point before and after the current anchor.
- none. Do not create a reference point.
For more information, see “How a Parser Searches for Anchors” on page 196.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure Handling” on page
379.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

phase Determines when the Script processes the component. You can choose one of the following options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

Anchor Component Reference 203

Property Description

remark A user-defined comment that describes the purpose or action of the component.

selector Determines the criterion for selecting an anchor from among the anchors nested below the Alternatives
anchor. You can choose one of the following options:
- ScriptOrder. The Parser tests the nested anchors in the sequence defined in the Script. It accepts the

first anchor that succeeds. If all the anchors fail, the Alternatives anchor fails.
- DocumentOrder. The Parser tests all the nested anchors. It accepts either the first or last successful

anchor, according to the locations of the anchors in the source document, as determined in the select
property. If all the anchors fail, the Alternatives anchor fails.

- NameSwitch. The Parser searches for the anchor whose name property is specified in the data holder
defined in option_name. It ignores the other anchors. If the named nested anchor fails, the Alternatives
anchor fails.

Example
You are parsing a document in which a date can appear in either of the following patterns:

21/10/03
October 21, 2003

To process this content, you can define an Alternatives anchor that contains two Content anchors that
store their output in different XML elements. Each XML element is constrained to accept one of the date
patterns. The Alternatives anchor is configured with selector = ScriptOrder.

When the Parser runs the Alternatives anchor, it tests the first Content anchor. If the date matches the
pattern of the first anchor, the first Content anchor succeeds. If the date does not match the pattern, the first
Content anchor fails, and the Alternatives anchor tests the second Content anchor. In this way, the Parser
can process both date patterns.

How to Define an Alternatives Anchor
Add an Alternatives anchor by editing the Script. Nested within the Alternatives anchor, add the alternative
anchors.

Using Alternatives to Select a Secondary Parser
You can use an Alternatives anchor to control which of several secondary parsers processes a document.
The main Parser can use this feature to process source documents of multiple types.

For example, suppose that the home page of a newspaper web site has links to articles. Following each link,
the article is labeled News, Business, or Sports. You want to parse the articles, using a different Parser for
each type, like this:

Norwegian Princess Weds - News
Local Banks to Merge - Business
Bears Trounce Antelopes - Sports

You can support this situation in the following way:

1. The main Parser retrieves the filename of an article and stores it in a variable.

2. The main Parser contains an Alternatives anchor that is configured with the DocumentOrder option.

3. The Alternatives anchor contains nested Group anchors.

204 Chapter 16: Anchors

4. Each Group anchor is configured with a Marker anchor and a RunParser action, as follows:

• The first Group contains a Marker that searches for the string News. The Group is configured with a
RunParser action that runs a secondary Parser called NewsParser.

• The second Group contains a Marker that searches for Business and runs BusinessParser.

• The third Group contains a Marker that searches for the Sports and runs SportsParser.

The Alternatives anchor tests all three Group anchors. It accepts the Group containing the first Marker that
occurs after the filename. The Group runs the appropriate Parser on the file.

Online Sample
For an online sample of this anchor, open the project samples\Projects\Alternatives\Alternatives.cmw.
The sample uses Alternatives anchors to parse different name and date formats that may exist in a source
document.

Content
A Content anchor retrieves text from the source document. The Parser searches in a defined region
according to specified search criteria and stores the retrieved text in a data holder.

The following table describes the properties of the Content anchor:

Property Description

allow_empty_values Determines whether the Content anchor can be empty. You can choose one of the
following options:
- Selected. The data_holder is assigned an empty value.
- Cleared. Empty values are not allowed.
allow_empty_values must be selected in the following situations:
- When the anchor is configured with value = LearnByExample and there is nothing

between the delimiters.
- When there is nothing between the opening_marker and the closing_marker.

closing_marker Defines the end of a region where the Parser searches for the Content anchor. You can
choose one of the following options:
- NewlineSearch. The end of the Content anchor is the next newline character.
- OffsetSearch. The end of the Content anchor is the number of characters specified

in offset.
- PatternSearch. The end of the Content anchor is the first text that matches a

specified regular expression.
- TextSearch. The end of the Content anchor is a specified text string.

data_holder Defines a data holder where the Content anchor stores the retrieved text.

direction A search direction for the anchor within the search scope. You can choose one of the
following options:
- backward. Search from the end of the search scope and finds the last instance of

the anchor.
- forward. Search from the start of the search scope and finds the first instance of the

anchor.
For a Marker anchor, you can modify this behavior by using the count property. For
example, if direction = backward and count = 2, the Script finds the second-to-last
instance.
Default is forward. For more information, see “How a Parser Searches for Anchors” on
page 196.

Anchor Component Reference 205

Property Description

disable_XSD_type_search Determines whether the Parser searches for content that matches the data type of the
data holder. You can choose one of the following options:
- Selected. The Parser searches without regard to the data type. After transformers

are applied to the content, if the result does not match the data type of the data
holder, the anchor fails.

- Cleared. The Parser searches for content that matches the data type.
Default is cleared. For more information, see “Using Data Types to Narrow the Search
Criteria” on page 201.

disabled Determines whether the Script ignores the component and all of the child components.
Use this property to test, debug, and modify a Script. You can choose one of the
following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

ignore_default_transformers Determines whether the Parser applies the default transformers to the content. Default
is cleared.
For more information, see “Transformers Overview” on page 242.

marking Determines whether an anchor is used as the start of the search scope for the
succeeding anchor. You can choose one of the following options:
- begin position. Place a reference point before the current anchor.
- end position. Place a reference point after the current anchor.
- full. Place a reference point before and after the current anchor.
- none. Do not create a reference point.
For more information, see “How a Parser Searches for Anchors” on page 196.

name A descriptive label for the component. This label appears in the log file and the Events
view. Use the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see
“Failure Handling” on page 379.

opening_marker Defines the start of a region where the Parser searches for the Content anchor. The
possible values are the following components:
- NewlineSearch. The start of the Content anchor is the next newline character.
- OffsetSearch. The start of the Content anchor is the number of characters specified

in offset.
- PatternSearch. The start of the Content anchor is the first text that matches a

specified regular expression.
- TextSearch. The start of the Content anchor is a specified text string.

optional Determines whether a component failure causes the parent component to fail. You can
choose one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure
Handling” on page 379.

206 Chapter 16: Anchors

Property Description

phase Determines when the Script processes the component. You can choose one of the
following options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

transformers Defines a sequence of transformers that the Parser applies to the retrieved text. For
more information, Chapter 17, “Transformers” on page 242.

validators Defines a list of validators applied to the data. For more information, see
“Validators” on page 382.

value Defines criteria for a search in the region defined by the opening_marker and
closing_marker attributes. If opening_marker is not defined, the search is between the
surrounding reference points. For more information, see “How a Parser Searches for
Anchors” on page 196. You can choose one of the following options:
- Empty. The Content anchor retrieves the entire search scope.
- AttributeSearch. The Content anchor retrieves the value from an expression of the

type AttributeName=.... Use this option to retrieve attribute values from an XML or
HTML source document.

- LearnByExample. The Parser learns what text to retrieve according to the Parser
format and the example source. For example, if the Parser has a tab-delimited
format, it counts the number of tabs from the start of the search scope to the
example text. It retrieves the text between the corresponding tabs in the source
document.

- PatternSearch. The Content anchor retrieves the first text that matches a specified
regular expression.

- TypeSearch. The Content anchor retrieves the first text that matches a specified
data type.

Default is empty. For more information about these options, see the “Searcher
Component Reference” on page 230. In addition to the searcher components, the Parser
uses the data type of the data_holder as a search criterion. For more information, see
“Using Data Types to Narrow the Search Criteria” on page 201.

The opening_marker and closing_marker properties are equivalent to Marker anchors in a Group component.

• A Content anchor with the opening_marker set is like a Group component with the following sequence of
anchors:

1. Marker

2. Content

• A Content anchor with the closing_marker set is like a Group component with the following sequence of
anchors:

1. Content

2. Marker

• A Content anchor with the opening_marker and closing_marker set is like a Group component with the
following sequence of anchors:

1. Marker

2. Content

Anchor Component Reference 207

3. Marker

For more information, see the “Searcher Component Reference” on page 230.

Search Direction
The direction property has multiple effects in a Content anchor. If direction = backward:

• The Script searches backward from the end of the search scope for the opening_marker and
closing_marker. Opening_marker still precedes closing_marker.

• The searcher component searches backward from the end of the search scope.

• If the searcher component is LearnByExample, it counts the delimiters backward from the end of the
search scope.

Online Sample
For an online sample of Content anchors, open the project samples\Projects\Content\Content.cmw. The
sample illustrates several uses of the opening_marker, closing_marker, and value properties to configure
Content anchors.

DelimitedSections
The DelimitedSections anchor parses data that is divided into sections by a separator. It defines a group of
nested anchors. Each nested anchor parses a single section.

The following table describes the properties of the DelimitedSections anchor:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

marking Determines whether an anchor is used as the start of the search scope for the succeeding
anchor. You can choose one of the following options:
- begin position. Place a reference point before the current anchor.
- end position. Place a reference point after the current anchor.
- full. Place a reference point before and after the current anchor.
- none. Do not create a reference point.
For more information, see “How a Parser Searches for Anchors” on page 196.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components.
For more information, see “Notifications” on page 398.

208 Chapter 16: Anchors

Property Description

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

separator Defines an anchor that delimits the sections.

separator_position Defines the positioning of the separator relative to the sections. You can choose one of the
following options:
- after. There is a separator after each section, including the last section. For example,
1|2|3|4|

- around. There are separators before and after each section, including the first and last
sections. For example,
|1|2|3|4|

- before. There is a separator before each section, including the first section. For example,
|1|2|3|4

- between. There is a separator between the successive sections, but not before the first
section and not after the last section. For example,
1|2|3|4

using_placeholders Determines when the DelimitedSections anchor looks for the separator of an optional section
that is missing from the source document. You can choose one of the following options:
- always. The separator of a missing section always exists. For example,
|1||3|

- never. The separator of a missing section never exists. For example,
|1|3

- when necessary. The separator of a missing internal section always exists. The separator of
a missing final section never exists. For example,
|1||3

In these examples, separator_position is set to before, and sections 2 and 4 are missing.

Anchor Component Reference 209

Example
An employee resume form contains several sections, each of which is preceded by a line of hyphens:

Jane Palmer
Employee ID 123456

Professional Experience
...

Education
...

You can define the sectioned region as a DelimitedSections anchor, with the line of hyphens as the
separator. Because the line of hyphens precedes each section, define the separator_position as before.

Within the DelimitedSections anchor, nest three Group anchors. The first Group parses the Jane Palmer
section, the second Group parses the Professional Experience section, and so forth.

Optional Sections
In the above example, suppose that the second section, Professional Experience, is missing from some
source documents. Its separator, the line of hyphens, is always present.

Jane Palmer
Employee ID 123456

Education
...

To handle this situation, configure the DelimitedSections in the following way:

• In the second Group anchor, select the optional property. This means that if the Group fails, it does not
cause the DelimitedSections to fail.

• In the DelimitedSections anchor, set using_placeholders = always. This means that the anchor looks
for the separator of the optional section, even if the section itself is missing.

Now suppose that if the Professional Experience section is missing, its separator is also missing.

Jane Palmer
Employee ID 123456

Education
...

In this case, configure the DelimitedSections as follows:

• In the second Group anchor, select the optional property.

• In the DelimitedSections anchor, set using_placeholders = never. This means that the anchor should
not look for the separator of a missing section.

How to Define a DelimitedSections Anchor
Add a DelimitedSections anchor by editing the Script in the IntelliScript editor. Under the DelimitedSections
anchor, add a sequence of anchors that parse the sections.

210 Chapter 16: Anchors

Online Sample
For an online sample of this anchor, open the project samples\Projects\DelimitedSections
\DelimitedSections.cmw. The sample illustrates a DelimitedSections anchor that parses sections
separated by a | symbol. Each section is parsed by a single Content anchor.

EmbeddedParser
The EmbeddedParser anchor uses a secondary Parser to parse its search scope. It can call itself recursively.

The following table describes the properties of the EmbeddedParser anchor:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use
this property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

marking Determines whether an anchor is used as the start of the search scope for the succeeding
anchor. You can choose one of the following options:
- begin position. Place a reference point before the current anchor.
- end position. Place a reference point after the current anchor.
- full. Place a reference point before and after the current anchor.
- none. Do not create a reference point.
For more information, see “How a Parser Searches for Anchors” on page 196.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on
page 379.

Parser Determines the name of a secondary Parser that is defined in the same project.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

Anchor Component Reference 211

Property Description

remark A user-defined comment that describes the purpose or action of the component.

schema_connections Defines a list of Connect subcomponents that define the relation between data holders in the
output of the main Parser and the secondary Parser. For more information, see “Connect” on
page 237.

source_transformers Defines a sequence of transformers that the Parser applies to the search scope before the
secondary Parser processes it.

Example
A document is tab-delimited, except for one section that is comma-delimited.

To parse the document, you can define a main Parser that uses the TabDelimited format. Define another
Parser that uses the CommaDelimited format. Use an EmbeddedParser anchor to run the second Parser within
the execution of the first Parser.

Online Sample
For an online sample of this anchor, open the project samples\Projects\EmbeddedParser
\EmbeddedParser.cmw. The sample uses a main Parser to determine the location of an address. It then runs
an EmbeddedParser to parse the address.

EnclosedGroup
The EnclosedGroup anchor defines a bounded region that contains nested anchors. The boundaries are
specified by opening and closing anchors. In the case of nested boundaries, such as parentheses or HTML
tags, the EnclosedGroup finds the matching boundaries.

The following table describes the properties of the EnclosedGroup anchor:

Property Description

closing Defines the closing anchor of the EnclosedGroup.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

marking Determines whether an anchor is used as the start of the search scope for the succeeding anchor.
You can choose one of the following options:
- begin position. Place a reference point before the current anchor.
- end position. Place a reference point after the current anchor.
- full. Place a reference point before and after the current anchor.
- none. Do not create a reference point.
For more information, see “How a Parser Searches for Anchors” on page 196.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

212 Chapter 16: Anchors

Property Description

no_initial_phase Determines whether the Script searches for nested anchors in the main phase. You can choose
one of the following options:
- Cleared. Search for nested anchors according to their individual properties.
- Selected. Search for nested anchors in the main phase.
Default is cleared.

notifications A list of NotificationHandler components that handle notifications from nested components. For
more information, see “Notifications” on page 398.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

opening Defines the opening anchor of the EnclosedGroup.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

source Defines a sequence of data holders for input to the EnclosedGroup. Each data holder is identified
by one of the following properties:
- Locator. Identifies a single-occurrence or a multiple-occurrence data holder. For multiple-

occurrence data holders, each iteration accesses a new occurrence.
- LocatorByKey. Identifies a multiple-occurrence data holder by key.
- LocatorByOccurence. Identifies a multiple-occurrence data holder by sequence number.
Use the source property when the EnclosedGroup is called by another component. For more
information, see “Source Property” on page 348.

target Defines a sequence of data holders for output from the EnclosedGroup. If a data holder does not
yet exist, it is created. Each data holder is identified by one of the following properties:
- Locator. Identifies a single-occurrence or a multiple-occurrence data holder. For multiple-

occurrence data holders, each iteration creates a new occurrence.
- LocatorByKey. Identifies a multiple-occurrence data holder by key.
- LocatorByOccurence. Identifies a multiple-occurrence data holder by sequence number.
Use the target property when the output of the EnclosedGroup is used by another component. For
more information, see “Target Property” on page 351.

Anchor Component Reference 213

An EnclosedGroup is similar to a Content anchor with an opening_marker and a closing_marker. However:

• The Content anchor retrieves the entire content between the opening and closing, without further parsing.

• The EnclosedGroup enables you to further parse the content between the opening and closing anchors.

Example
You can define an HTML table as an EnclosedGroup, with the <table> and </table> tags as the opening and
closing. The nested anchors parse the content of the table.

Suppose the <table> element contains a nested <table> element. In other words, a table is nested within a
table cell. The EnclosedGroup anchor matches the parent <table> tag with the parent </table> tag. It does
not match the parent <table> tag with the nested </table> tag, which would be a misidentification of the
table.

How to Define an EnclosedGroup Anchor
You can define an EnclosedGroup anchor by editing the Script in the IntelliScript editor. Add the nested
anchors that parse the content.

ExtractRecord
The ExtractRecord anchor extracts a record, assigns identifiers to the record, and passes the record to the
subelements of a StructureDefinition. ExtractRecord is used in the format_definition property of a
StructureDefinition.

ExtractRecord extracts its entire search scope. For example, if you insert an ExtractRecord between two
Marker anchors, it extracts the scope between the markers.

The following table describes the properties of the ExtractRecord anchor:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

ids Defines a list of identifiers attached to the record. StructureDefinition uses the identifiers to match the
record with a subelement.
In each list entry, enter an identifier value or browse to a data holder containing the value.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

214 Chapter 16: Anchors

Property Description

phase Determines when the Script processes the component. You can choose one of the following options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

FindReplaceAnchor
The FindReplaceAnchor anchor marks the source text and specifies replacement text for transformation by
the TransformByParser transformer.

The following table describes the properties of the FindReplaceAnchor anchor:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

marking Determines whether an anchor is used as the start of the search scope for the succeeding anchor.
You can choose one of the following options:
- begin position. Place a reference point before the current anchor.
- end position. Place a reference point after the current anchor.
- full. Place a reference point before and after the current anchor.
- none. Do not create a reference point.
For more information, see “How a Parser Searches for Anchors” on page 196.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

no_initial_phase Determines whether the Script searches for nested anchors in the main phase. You can choose
one of the following options:
- Cleared. Search for nested anchors according to their individual properties.
- Selected. Search for nested anchors in the main phase.
Default is cleared.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

Anchor Component Reference 215

Property Description

on_partial_match Determines the behavior when FindReplaceAnchor does not find all its nested, non-optional
anchors. You can choose one of the following options:
- fail. FindReplaceAnchor fails. Default.
- skip. FindReplaceAnchor removes the area spanned by the successful nested anchors from its

search scope and tries to find all the nested anchors again. It repeats this process until it finds
the anchors or fails.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

replace_with Defines a literal replacement string or a data holder that contains the replacement string.

source Defines a sequence of data holders for input to the FindReplaceAnchor. Each data holder is
identified by one of the following properties:
- Locator. Identifies a single-occurrence or a multiple-occurrence data holder. For multiple-

occurrence data holders, each iteration accesses a new occurrence.
- LocatorByKey. Identifies a multiple-occurrence data holder by key.
- LocatorByOccurence. Identifies a multiple-occurrence data holder by sequence number.
Use the source property when the FindReplaceAnchor is called by another component. For more
information, see “Source Property” on page 348.

target Defines a sequence of data holders for output from the FindReplaceAnchor. If a data holder does
not yet exist, it is created. Each data holder is identified by one of the following properties:
- Locator. Identifies a single-occurrence or a multiple-occurrence data holder. For multiple-

occurrence data holders, each iteration creates a new occurrence.
- LocatorByKey. Identifies a multiple-occurrence data holder by key.
- LocatorByOccurence. Identifies a multiple-occurrence data holder by sequence number.
Use the target property when the output of the FindReplaceAnchor is used by another component.
For more information, see “Target Property” on page 351.

If FindReplaceAnchor does not contain nested anchors, it marks all the text within its search scope. For
example, if FindReplaceAnchor is between two Marker anchors, it marks the text between them.

If FindReplaceAnchor contains a Marker anchor, it marks the Marker for replacement.

If FindReplaceAnchor contains two Marker anchors, it marks the Marker anchors and the segment between
them for replacement.

The replacement text can be a static replacement string or a string retrieved dynamically from the source
document.

For more information, see “TransformByParser” on page 274.

216 Chapter 16: Anchors

Example
You want to add line numbers to a text document. You can add the line numbers by the following approach:

1. Create a Parser, and add a RepeatingGroup to it.

2. Within the RepeatingGroup, add a FindReplaceAnchor.

3. Within the FindReplaceAnchor, add a Marker anchor, and set its search property to NewlineSearch.

This causes the FindReplaceAnchor to mark every newline in the document.

4. Configure the RepeatingGroup to store its current_iteration in a variable. Set the replace_with
property of the FindReplaceAnchor to the variable.

5. At the global level of the Script, define a TransformByParser transformer. Set its parser property to the
Parser.

6. Set the TransformByParser as the startup component of the transformation.

The transformer outputs a modified version of the original file, containing line numbers.

How to Define a FindReplaceAnchor Anchor
You can define a FindReplaceAnchor anchor by editing the Script in the IntelliScript editor. If required, add
nested anchors marking a substring to be replaced.

Group
The Group anchor binds a sequence of anchors and actions together.

Properties of the Group apply to all child components. Use a Group to define operations for the Script to
perform on a set of anchors or to control the phase of the nested anchors.

The following table describes the properties of the Group anchor:

Property Description

absent Defines the behavior of the Group anchor when one of its nested, non-optional anchors or actions
fails. You can choose one of the following options:
- Selected. Group fails.
- Cleared. Normal behavior.
Use this feature to test for the absence of nested anchors.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

marking Determines whether an anchor is used as the start of the search scope for the succeeding anchor.
You can choose one of the following options:
- begin position. Place a reference point before the current anchor.
- end position. Place a reference point after the current anchor.
- full. Place a reference point before and after the current anchor.
- none. Do not create a reference point.
For more information, see “How a Parser Searches for Anchors” on page 196.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

Anchor Component Reference 217

Property Description

no_initial_phase Determines whether the Script searches for nested anchors in the main phase. You can choose
one of the following options:
- Cleared. Search for nested anchors according to their individual properties.
- Selected. Search for nested anchors in the main phase.
Default is cleared.

notifications A list of NotificationHandler components that handle notifications from nested components. For
more information, see “Notifications” on page 398.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

on_partial_match Determines the behavior when Group does not find all its nested, non-optional anchors. You can
choose one of the following options:
- fail. Group fails. Default.
- skip. Group removes the area spanned by the successful nested anchors from its search scope

and tries to find all the nested anchors again. It repeats this process until it finds the anchors
or fails.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

search_order Defines the direction of processing nested anchors. You can choose one of the following options:
- top-down. The nested anchors are processed in the sequence that is defined in the Script.
- bottom-up. The nested anchors are processed in reverse order. Use this option when data from

a later anchor affects the processing of an earlier anchor.

218 Chapter 16: Anchors

Property Description

source Defines a sequence of data holders for input to the Group. Each data holder is identified by one of
the following properties:
- Locator. Identifies a single-occurrence or a multiple-occurrence data holder. For multiple-

occurrence data holders, each iteration accesses a new occurrence.
- LocatorByKey. Identifies a multiple-occurrence data holder by key.
- LocatorByOccurence. Identifies a multiple-occurrence data holder by sequence number.
Use the source property when the Group is called by another component. For more information,
see “Source Property” on page 348.

target Defines a sequence of data holders for output from the Group. If a data holder does not yet exist,
it is created. Each data holder is identified by one of the following properties:
- Locator. Identifies a single-occurrence or a multiple-occurrence data holder. For multiple-

occurrence data holders, each iteration creates a new occurrence.
- LocatorByKey. Identifies a multiple-occurrence data holder by key.
- LocatorByOccurence. Identifies a multiple-occurrence data holder by sequence number.
Use the target property when the output of the Group is used by another component. For more
information, see “Target Property” on page 351.

How to Define a Group Anchor
You can define a Group anchor by editing the Script in the IntelliScript editor. Add nested anchors and actions
that parse the content of the Group.

Optional Group
You can use the optional property of a Group to prevent the Script from attempting to retrieve text from a
missing section of a document.

For example, to parse the source

First name: Ron
you might define First name: as a Marker and Ron as Content. If some source documents do not contain the
first-name data, you can put the Marker and Content in a Group and make it optional. If First name: is not
found, the Group immediately fails, and the Parser does not search for the Content anchor.

There is a difference between making the Group optional and making its nested anchors optional. If you
make both the Marker and Content optional, instead of the Group, the Script ignores the Marker failure and
searches for the Content. This might result in retrieving irrelevant text.

Online Sample
For an online sample of this anchor, open the project samples\Projects\persistent_search
\persistent_search.cmw.

The sample illustrates a Group that is configured with the on_partial_match = skip property. The Group
contains two Marker anchors:

• The first Marker searches for the text A.

• The second Marker searches for a string containing any number of * characters. It has the adjacent
property, which means that it must be adjacent to the first Marker.

On the first pass, the Group finds an A character at the beginning of the source document. It does not find the
second Marker adjacent to the A character, however.

Anchor Component Reference 219

The Group reduces its search scope by eliminating the first A character, and searches again for the two
adjacent Marker anchors. It continues this procedure until it successfully finds a string A*, which contains the
adjacent Marker anchors.

You can observe the behavior in the event log. The log records that the Group fails on the first two trials and
succeeds on the third.

Try experimenting with the on_partial_match and adjacent settings. You can see the effect in the color
coding of the example source.

You can also try running the sample, although the result file is empty because the Parser does not contain
Content anchors. If you set on_partial_match = fail, you can observe in the event log that the Parser fails,
because the Group cannot find the adjacent anchors.

Marker
A Marker anchor defines a location in a source document. It is used as a reference point, from which the
Script searches for the succeeding anchors.

By default, the phase property of a Marker is initial, which means that the Script scans a document for
Marker anchors before it searches for Content anchors. For more information, see “How a Parser Searches
for Anchors” on page 196.

The following table describes the properties of the Marker anchor:

Property Description

absent Determines whether the specified text or pattern is absent from the document. The absent property has
the following options:
- Selected. If the specified text appears in the document, Marker fails.
- Cleared. If the specified text appears in the document, Marker succeeds.
Default is cleared.

adjacent If selected, the Marker must be adjacent to the anchor at the beginning of its search scope. If direction is
set to backward, it must be adjacent to the anchor at the end of its search scope. If not selected, the
Script can skip over text until it finds the Marker.
The adjacent property has the following options:
- Selected. The Marker must occur immediately after the beginning of the search scope if direction is set

to forward or immediately before the end of the search scope if direction is set to backward.
- Cleared. The Marker can occur anywhere within the search scope.
Default is cleared.

count Defines the occurrence number to find. For example, to set the Marker at the second newline following the
preceding anchor, set search to NewlineSearch and count to 2.

direction A search direction for the anchor within the search scope. You can choose one of the following options:
- backward. Search from the end of the search scope and finds the last instance of the anchor.
- forward. Search from the start of the search scope and finds the first instance of the anchor.
For a Marker anchor, you can modify this behavior by using the count property. For example, if direction =
backward and count = 2, the Script finds the second-to-last instance.
Default is forward. For more information, see “How a Parser Searches for Anchors” on page 196.

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

220 Chapter 16: Anchors

Property Description

marking Determines whether an anchor is used as the start of the search scope for the succeeding anchor. You can
choose one of the following options:
- begin position. Place a reference point before the current anchor.
- end position. Place a reference point after the current anchor.
- full. Place a reference point before and after the current anchor.
- none. Do not create a reference point.
For more information, see “How a Parser Searches for Anchors” on page 196.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure Handling” on page
379.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

phase Determines when the Script processes the component. You can choose one of the following options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is initial.

remark A user-defined comment that describes the purpose or action of the component.

search Defines the search criteria for the Marker. The search criteria determine where the Marker is located
within the search scope. For example, a NewlineSearch locates the Marker at a newline character. A
TextSearch locates the Marker at a specified string. For more information, see “How a Parser Searches for
Anchors” on page 196.
The value of this property is one of the following searcher components:
- NewlineSearch. Searches for a newline character.
- TextSearch. Searches for a predefined text string or for a text string that is stored in a data holder.
- PatternSearch. Searches for a string that matches a specified regular expression.
- OffsetSearch. Skips a predefined number of characters following the preceding reference point, or a

number of characters that is stored in a data holder. The Marker is the point following the skipped
characters.

- TypeSearch. Searches for a string that conforms to a specified data type.
For more information, see the “Searcher Component Reference” on page 230.

How to Define a Marker Anchor
You can define a Marker by editing the Script in the IntelliScript editor. For more information, see “Defining
Anchors” on page 193.

Anchor Component Reference 221

Online Sample
In the Online Samples folder, open Projects\Markers\Markers.cmw. The sample demonstrates Marker
anchors that search for:

• A predefined text string

• A newline character

• An offset

• A data type

• A regular expression

If you run the Parser, note that the result file is empty because the configuration does not have any Content
anchors.

RepeatingGroup
The RepeatingGroup anchor parses a region that contains repetitive segments. Each segment is called an
iteration, and can be delimited by a separator. The RepeatingGroup contains a sequence of nested anchors
and actions that parse each iteration in the same way.

The following table describes the properties of the RepeatingGroup anchor:

Property Description

count Defines a number or data holder that contains the number of iterations to run. If blank, the
iterations continue until the search scope is exhausted.
If count is 0, the RepeatingGroup does not search for iterations. In this case, the
RepeatingGroup succeeds but does not produce any output.

current_iteration Defines a data holder where the RepeatingGroup outputs the number of the current iteration.

disabled Determines whether the Script ignores the component and all of the child components. Use
this property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

iteration_order Defines the order in which the iterations are processed. You can choose one of the following
options:
- top-down. The iterations are processed in the sequence that is defined in the Script.
- bottom-up. The iterations are processed in reverse order. Use this option if data from a

later iteration affects how you process an earlier iteration.

marking Determines whether an anchor is used as the start of the search scope for the succeeding
anchor. You can choose one of the following options:
- begin position. Place a reference point before the current anchor.
- end position. Place a reference point after the current anchor.
- full. Place a reference point before and after the current anchor.
- none. Do not create a reference point.
For more information, see “How a Parser Searches for Anchors” on page 196.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

222 Chapter 16: Anchors

Property Description

no_initial_phase Determines whether the Script searches for nested anchors in the main phase. You can
choose one of the following options:
- Cleared. Search for nested anchors according to their individual properties.
- Selected. Search for nested anchors in the main phase.
Default is cleared.

notifications A list of NotificationHandler components that handle notifications from nested components.
For more information, see “Notifications” on page 398.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

on_iteration_fail Defines the action when a single iteration fails. You can choose one of the following options:
- Cleared. No action.
- CustomLog. Writes to the user log.
- LogError. Writes an error message to the Engine log.
- LogInfo. Writes an information message to the Engine log.
- LogWarning. Writes a warning message to the Engine log.
- NotifyFailure. Triggers a notification.
Use the on_fail property to write an entry if the entire RepeatingGroup fails. For more
information, see “Failure Handling” on page 379.

on_partial_match Defines the behavior when some, but not all, of the required anchors nested under the
RepeatingGroup appear in the input. The on_partial_match property has the following options:
- fail. The iteration fails.
- skip. RepeatingGroup removes the area spanned by the successful nested anchors from its

search scope and tries to find all the nested anchors again. The removal-retry procedure is
repeated until the iteration succeeds or until there is no longer a partial match. If there is
no partial match, the iteration fails.

optional Determines whether a component failure causes the parent component to fail. You can
choose one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on
page 379.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

Anchor Component Reference 223

Property Description

search_order Defines the order of processing the nested anchors within each iteration. You can choose one
of the following options:
- top-down. The nested anchors are processed in the sequence that is defined in the Script.
- bottom-up. The nested anchors are processed in reverse order. Select this option if data

from a later anchor affects how you process an earlier anchor.

separator Defines an anchor that delimits the sections.
If you leave the separator property empty, the RepeatingGroup does not look for a delimiter
between the iterations. Instead, it assumes that an iteration is finished when it has found all
the nested anchors. It then starts to parse the next iteration from the top of the nested anchor
sequence.
You can build a complex separator by inserting a Group in the separator property instead of a
Marker.

separator_position Defines the positioning of the separator relative to the sections. You can choose one of the
following options:
- after. There is a separator after each section, including the last section. For example,
1|2|3|4|

- around. There are separators before and after each section, including the first and last
sections. For example,
|1|2|3|4|

- before. There is a separator before each section, including the first section. For example,
|1|2|3|4

- between. There is a separator between the successive sections, but not before the first
section and not after the last section. For example,
1|2|3|4

skip_failed_iterations Determines whether failed iterations are skipped. You can choose one of the following
options:
- Selected. RepeatingGroup skips over a failed iteration and proceeds with the next iteration.

If an iteration succeeds, the RepeatingGroup succeeds.
- Cleared. RepeatingGroup fails if any iteration fails.
The skip_failed_iterations property has an effect only if separator is defined.
Default is selected.

source Defines a sequence of data holders for input to the RepeatingGroup. Each data holder is
identified by one of the following properties:
- Locator. Identifies a single-occurrence or a multiple-occurrence data holder. For multiple-

occurrence data holders, each iteration accesses a new occurrence.
- LocatorByKey. Identifies a multiple-occurrence data holder by key.
- LocatorByOccurence. Identifies a multiple-occurrence data holder by sequence number.
Use the source property when the RepeatingGroup is called by another component. For more
information, see “Source Property” on page 348.

target Defines a sequence of data holders for output from the RepeatingGroup. If a data holder does
not yet exist, it is created. Each data holder is identified by one of the following properties:
- Locator. Identifies a single-occurrence or a multiple-occurrence data holder. For multiple-

occurrence data holders, each iteration creates a new occurrence.
- LocatorByKey. Identifies a multiple-occurrence data holder by key.
- LocatorByOccurence. Identifies a multiple-occurrence data holder by sequence number.
Use the target property when the output of the RepeatingGroup is used by another
component. For more information, see “Target Property” on page 351.

Note: To parse a region of sections that require differing treatment, use a DelimitedSections anchor.

224 Chapter 16: Anchors

How to Define a RepeatingGroup Anchor
You can define a RepeatingGroup by editing the Script in the IntelliScript editor. Add the nested anchors and
actions that parse each iteration of the RepeatingGroup.

Search for Iterations
By default, a RepeatingGroup searches for iterations from the beginning to the end of its search scope. For
more information, see “How a Parser Searches for Anchors” on page 196.

Optionally, you can set the iteration_order property for a reverse search.

In each iteration:

• If the RepeatingGroup is configured with a separator, it searches for the next separator. Then, it searches
for the anchors lying between a pair of separators.

• If the RepeatingGroup is not configured with a separator, it searches only for the anchors.

End of a RepeatingGroup
You can signal the end of a RepeatingGroup in ways such as the following:

• The RepeatingGroup can continue until the end of the document.

• You can insert a Marker after the RepeatingGroup. By default, the Marker is in an earlier search phase
than the RepeatingGroup. This causes the Parser to search for the Marker first and use it to limit the
search scope of the RepeatingGroup. For more information, see “Adjusting the Search Phase” on page
198.

• You can set the count property, limiting the search to a maximum number of iterations.

• If the RepeatingGroup does not have a separator, it ends when the Parser cannot find any more
iterations.

Success or Failure of a RepeatingGroup
If a RepeatingGroup cannot find the non-optional anchors in an iteration, the iteration fails.

When an iteration fails, the RepeatingGroup can either end, fail, or skip the failed iteration. The behavior is as
follows:

• If the RepeatingGroup does not have a separator, the RepeatingGroup ends. Provided that there was at
least one successful iteration prior to the failed iteration, the RepeatingGroup succeeds.

• If the RepeatingGroup has a separator, and the skip_failed_iterations property is not selected, the
RepeatingGroup fails.

• If the RepeatingGroup has a separator, and the skip_failed_iterations property is selected, the Script skips
over the failed iteration and proceeds with the next iteration. Provided that at least one iteration succeeds,
the RepeatingGroup succeeds.

Event Log of a Repeating Group
The event log records events for every iteration of a RepeatingGroup.

If the skip_failed_iterations property is selected, the RepeatingGroup might generate an optional failure event
following the successful iterations. A failure event might be nested within the optional failure. These events
occur because the RepeatingGroup cannot find additional iterations to parse. The events are normal and not
a cause for concern.

Anchor Component Reference 225

Online Samples
For an online example of this anchor, open the project samples\Projects\Dynamic_And_RepeatingGroup
\Dynamic_And_RepeatingGroup.cmw. The sample uses a RepeatingGroup to iterate over the lines of a
document.

Some lines of the source document contain a parenthesized footnote reference, such as "(1)". The
RepeatingGroup contains a Group, whose purpose is to parse the footnote and insert its content in the
output.

The Group contains a Content anchor that retrieves the footnote reference and stores it in a variable. The
Group then activates a RunParser action that activates a secondary Parser. The secondary Parser finds the
footnote referenced by the variable, parses it, and inserts the result in the output.

StructureDefinition
The StructureDefinition anchor processes well-structured input, such as text messages conforming to
industry-standard messaging protocols. The output of StructureDefinition is an XML representation of the
data.

The input data has delimited records. You organize the input records in predefined ways. For example, a
record of type A precedes a record of type B, followed by one to three records of type C. Each record contains
an organized set of fields.

The following table describes the properties of the StructureDefinition anchor:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

format_definitio
n

Defines a list of anchors and actions that identify and extract the records. The list must contain an
ExtractRecord anchor.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components. For
more information, see “Notifications” on page 398.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

target Defines a data holder where the component stores its output.

A StructureDefinition has the following parts:

• format_definition property. Extracts the records and identifies their types.

226 Chapter 16: Anchors

• A hierarchy of child components. Each child component parses records of a particular type.

The format_definition can contain a RepeatingGroup that finds the records. Within the RepeatingGroup, one
or more Content anchors retrieve the record-type identifiers. The RepeatingGroup contains an ExtractRecord
anchor that passes the record to the subelements list.

Note: When a Library transformation has a StructureDefinition with a format_definition that contains a
RepeatingGroup, the transformation overwrites the repeating element instead of iterating the element.

The subelements hierarchy reflects the required organization of the records. You can configure sequences,
choices, loops of records, and required or optional records.

The subelements receive the records from ExtractRecord. The system matches each record to a subelement
according to the following criteria:

• The $id and $qualifier identifiers of the record must match the values specified in the subelement.

• The record location in the input must match the subelement location in the hierarchy.

The matching subelement parses the record.

If there is no matching subelement, the StructureDefinition triggers a notification. You can insert
NotificationHandler components that process the notification. The transformation uses the
StructureDefinition anchor to find and diagnose input errors. Usually the StructureDefinition anchor can
continue to parse the remainder of the input.

Example
A Parser processes input with the following structure:

ST*12*23~
NM1*12*23*4~
N1*12*23~
NM1*13*23*4~
N2*1*2*3~
SE*12*2:3:4~

The records are delimited by newline characters. Within each record, the fields are delimited by ~, *, and :
characters.

The first field of each record identifies the record type. There are five main record types:

ST
NM1
N1
N2
SE

In the NM1 records, the second field is a subtype. There are two subtypes:

NM1*12
NM1*13

The records must occur in the following sequence:

1. An ST record.

2. An NM1*12 record followed by N1.

3. An NM1*13 record followed by N2.

4. An SE record.

You can parse this input by configuring a StructureDefinition anchor.

Anchor Component Reference 227

The format_definition property contains a RepeatingGroup that finds the records. The RepeatingGroup
performs the following operations:

1. It finds the record content, up to the newline delimiter.

2. It extracts the record-type identifier, such as ST or NM1, and stores it in the $id variable.

3. If the record type is NM1, it extracts the subtype (12 or 13), and stores it in the $qualifier variable.

4. It runs an ExtractRecord anchor that passes the record to the subelements. ExtractRecord attaches
the $id and $qualifier identifiers to the record.

The element is configured to match any record that has the identifier ST.

The format_definition encounters the first input record and passes it to the subelements. The first record
matches the first subelement because it has the ST identifier. The first subelement contains Content Marker
Content anchors, which parse the record.

The second subelement defines a sequence of nested subelements. The first nested subelement matches a
record having the identifiers NM1 and 12. The second nested subelement matches a record having an
identifier of N1.

The second and third input records are NM1*12 and N1. These match the sequence of subelements. Each
nested subelement parses the corresponding record.

Suppose that the second and third records were NM1*12 and N2. These do not match the subelements
hierarchy, so they would not be parsed.

The next records are NM1*13 and N2. They match the third subelement, named Loop2000.

The last record is SE, matching the last subelement.

All the input records match the subelements hierarchy, so the StructureDefinition successfully parses the
complete input.

Subelement Components
Within the subelements hierarchy, you can insert the following components:

Subelement Description

RecordStructureLocal Matches and parses a single record.

SequenceStructureLocal Defines a sequence of nested subelements. The records must occur in the same sequence
as the nested subelements.

ChoiceStructureLocal Defines a choice of nested subelements. A record must match one of the nested
subelements.

AllStructureLocal Defines a set of nested subelements, without a specified sequence. The records can match
the nested subelements in any order.

The names end with Local because you can configure them in nested, non-global locations of the Script.
There is a corresponding set of components called RecordStructure, SequenceStructure, and so forth,
without the Local suffix. You can configure these at the global level of the Script and reference them
wherever required. To reference the global components, insert an EmbeddedStructure subelement.

The top-level subelements list of a StructureDefinition is equivalent to SequenceStructureLocal. The
records must occur in the same sequence as the top-level subelements.

228 Chapter 16: Anchors

By default, each subelement must occur exactly once. To alter the default, set the minOccurs and maxOccurs
properties of the subelement. For example, if a subelement can be missing or occur up to 3 times, set
minOccurs = 0 and maxOccurs = 3. To permit unlimited occurrences, set maxOccurs = -1.

For more information about the subelement components, see the “Anchor Subcomponent Reference” on page
234.

Notifications
If a record or a set of records does not match the subelements hierarchy, StructureDefinition triggers a
notification.

The following table describes the types of notifications:

Notification Description

MandatoryStructureMissing A mandatory record does not appear in the input.

MismatchIDs The record and subelement IDs partially match. For example, there are two record
identifiers, and only one of them matches.

StructureBelowMinOccurs There are fewer matching records of the subelement than defined in minOccurs.

StructureExceedsMaxOccurs There are more matching records of the subelement than defined in maxOccurs.

StructureOutOfSequence The records match the subelements but not in the required sequence. For example,
the subelements define a sequence ABC, but the input contains ACB.

UnexpectedRecord The records match the subelements, but not in the required hierarchy. For example,
the subelement define a sequence ABC, and D is defined in another location. The
input contains ABD.

UnrecognizedRecord No subelement matches any of the record identifiers.

XsdValidationError The input does not match the requirements of the schema.

Configure the NotificationHandler components in the notifications property of the StructureDefinition or a
subelement. You can also configure handlers in the notifications property of a higher-level component such
as a Parser or Group that contains the StructureDefinition. If a handler exists in the subelement where a
mismatch occurs. it processes the notification. If no handler exists, the notification bubbles up the
IntelliScript hierarchy until a handler processes it. If there is no handler for a notification, the notification is
ignored and the StructureDefinition continues processing the input.

Keeping Track of Progress
As the format_definition extracts records, it updates the VarStructureDetails system variable. You can use
the variable in notifications. For example, to report the record identifier, a notification handler can insert
VarStructureDetails/RecordId in its output.

For more information, see “System Variables” on page 185.

Anchor Component Reference 229

Searcher Component Reference
Searcher components are used for the following purposes:

• To define the location of anchors. For more information, see “Anchor Component Reference” on page 202.

• To define delimiter characters or strings. For more information, see “Format Component Reference” on
page 167.

• To define the find_what string of a Replace transformer. For more information, see “Transformer
Component Reference” on page 244.

AttributeSearch
The AttributeSearch searcher component searches a source document for the value of a specified attribute.
The component retrieves the value from an expression in one of the following formats:

• AttributeName = value
• AttributeName = "value"
where AttributeName is the name of the attribute, the quotes can be single or double, and the spaces are
optional.

AttributeSearch is one of the settings of the value property of the Content anchor. For more information, see
“Content” on page 205.

The following table describes the properties of the AttributeSearch searcher component:

Property Description

att Defines the name of the attribute.

match_case Determines whether the name of the attribute is case sensitive. The match_case property has the
following options:
- Selected. The name of the attribute is case sensitive.
- Cleared. The name of the attribute is not case sensitive.

Example
An HTML document contains the element:

You can use AttributeSearch to retrieve the value of the src attribute. It returns the text MyPicture.gif.

Valid Attribute Syntax
AttributeSearch reads name-value pairs that contain an equals sign. The equals sign can be surrounded by
spaces. The value can be surrounded by double quotes, single quotes, or no quotes.

For example, suppose that AttributeSearch is configured to search for an attribute called time. All the
following examples have valid syntax and return the same value, 12:55:33.

time = "12:55:33"
time="12:55:33"
time = '12:55:33'
time='12:55:33'
time = 12:55:33
time=12:55:33

230 Chapter 16: Anchors

Online Sample
For an online sample of this component, open the project samples\Projects\Content\Content.cmw. The
sample illustrates the use of an AttributeSearch to parse a text document that has a variable = value
structure.

LearnByExample
The LearnByExample searcher component learns how to search for text by examining the text location in the
example source document. It uses the Parser format to interpret the source document.

For example, if the Parser has a tab-delimited format, LearnByExample counts the number of tabs from the
search start to the example text. It searches for text in the source document that lies at the same number of
tabs from the start of the search scope.

LearnByExample is one of the settings of the value property of the Content anchor. For more information, see
“Content” on page 205.

If the direction attribute of the Content anchor is set to backward, the component counts the delimiters from
the end of the search scope.

The following table describes the properties of the LearnByExample searcher component:

Property Description

example Defines the text in the example source document at the anchor location.

Note: The LearnByExample searcher component applies heuristics that are sensitive. To use the
LearnByExample searcher component, the example must have the same form as the expected input. The
form must be uniform across the entire input file or files. If the example is not the same as the input, the
LearnByExample searcher component might fail.

NewlineSearch
The NewlineSearch searcher component searches for a newline or linefeed character (0x0A), a carriage
return character (0x0D), or both.

The Marker anchor can use NewlineSearch to find newline markers. A Delimiter component can use
NewlineSearch to find newline delimiters.

OffsetSearch
The OffsetSearch searcher component defines the number of characters between a reference point and an
anchor. For example, it can define the number of characters between the end of a Marker and the start of a
Content anchor.

Searcher Component Reference 231

The following table describes the properties of the OffsetSearch searcher component:

Property Description

allow_smaller_offset Determines whether an offset that extends beyond the search scope is valid. Select this
property to permit a truncated field size at the end of a document. You can choose one of the
following options:
- Selected. OffsetSearch succeeds when an offset extends beyond the search scope.
- Cleared. OffsetSearch fails when an offset extends beyond the search scope.

offset Defines the number of characters between the reference point and the anchor.
In some locations where OffsetSearch is used, such as in a Marker anchor, the IntelliScript
editor displays a browse button next to the offset property. You can enter a value or browse to
a data holder containing the value.

PatternSearch
The PatternSearch searcher component searches for a string that matches a regular expression.

Anchors can use PatternSearch to find markers or content. The Delimiter component can use PatternSearch
to find delimiters. The Replace transformer can use PatternSearch to find the text to be replaced.

The following table describes the properties of the PatternSearch searcher component:

Property Description

escape_sequence Defines a prefix that causes the search component to ignore an instance of the pattern in the
source document.

pattern Defines the regular expression.

For more information about the syntax of regular expressions, see “Regular Expression Syntax” on page 266.

Example
Suppose you want to define the string %%%, containing one or more % symbols, as a delimiter. Within the
Delimiter component, you can use PatternSearch with the following regular expression:

%+
In another example, suppose you want to define a comma and a semicolon as alternative delimiters, at the
same level of the delimiter hierarchy. You can use the following regular expression:

[,;]

SegmentSearch
The SegmentSearch searcher component searches for opening and closing markers in a text string. It returns
the segment from the opening marker to the closing marker, including the markers themselves.
SegmentSearch is one of the options for the find_what attribute of the Replace transformer.

232 Chapter 16: Anchors

The following table describes the properties of the SegmentSearch searcher component:

Property Description

opening Defines the search criterion for the opening marker. The options are the following searcher
components:
- NewlineSearch
- OffsetSearch
- PatternSearch
- TextSearch

closing Defines the search criterion for the closing marker. The options are the following searcher
components:
- NewlineSearch
- OffsetSearch
- PatternSearch
- TextSearch

TextSearch
The TextSearch searcher component searches for an explicit string.

Anchors can use TextSearch to find markers. The Delimiter component can use TextSearch to find
delimiters. The Replace transformer can use TextSearch to find text that is to be replaced.

The following table describes the properties of the TextSearch searcher component:

Properties Description

escape_sequence Defines a prefix that causes the search to ignore an instance of the string in the source
document. In locations where dynamic search is supported, you can browse to a data holder
that contains the escape sequence.

match_case Determines whether the defined text must match exactly, with the same uppercase and
lowercase letters. Default is cleared.

text Defines the string to find. In locations where dynamic search is supported, you can browse to
a data holder that contains the string.

Example
To define the string percent-percent-tab as a delimiter, create a Delimiter component and set its search
property to TextSearch. In the text property, type:

%%
Then press CTRL+A and type 009 (the ASCII code of a tab character).

Specifying a Search String Dynamically
In some locations where TextSearch is used, such as in a Delimiter component or a Marker anchor, a
browse button appears to the right of the text box. Browse to a data holder that contains the search text.

To find repeated instances of the first word in a document, you can define a Content anchor that retrieves
the first word and stores it in a variable. You can then define Marker anchors that use TextSearch to find
other instances of the word that you stored in the variable.

Searcher Component Reference 233

Online Sample
For an online sample of this component, open the project samples\Projects\Dynamic_And_RepeatingGroup
\Dynamic_And_RepeatingGroup.cmw.

In the GetRemarkParser component of this sample, a Marker anchor uses a dynamically defined TextSearch
to find a footnote at the end of the source document. For more information about this sample, see
“RepeatingGroup” on page 222.

TypeSearch
The TypeSearch searcher component searches for an anchor of a specified data type.

TypeSearch is one of the settings of the value property of the Content anchor. For more information, see
“Content” on page 205.

The following table describes the properties of the TypeSearch searcher component:

Property Description

val_type Determines the data type of the anchor to search for.

Anchor Subcomponent Reference
Anchor subcomponents are assigned as the values of certain anchor properties.

AllStructure
The AllStructure component defines a set of nested sub-elements without regard to sequence. A set of
records matches AllStructure if it matches all sub-elements in any sequence. For more information, see
“StructureDefinition” on page 226.

The AllStructure component appears at the global level of the Script and has the same function as
AllStructureLocal. You can reference it in the ref attribute of an EmbeddedStructure.

The following table describes the properties of the AllStructure component:

Property Description

action Defines an action that runs on the list of sub-components.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the
name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components. For more
information, see “Notifications” on page 398.

234 Chapter 16: Anchors

Property Description

remark A user-defined comment that describes the purpose or action of the component.

target Defines a data holder where the component stores its output.

AllStructureLocal
The AllStructureLocal component defines a set of nested sub-elements without regard to sequence. A set of
records matches AllStructureLocal if it matches all sub-elements in any sequence. For more information, see
“StructureDefinition” on page 226.

AllStructureLocal is a sub-element of the StructureDefinition anchor and has the same function as
AllStructure. At the global level of the Script, use AllStructure.

The following table describes the properties of the AllStructure component:

Property Description

action Defines an action that runs on the list of sub-components.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

minOccurs Defines the minimum number of matching records. Default is 1.

maxOccurs Defines the maximum number of matching records. Default is 1. Use -1 for an unlimited
number.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components.
For more information, see “Notifications” on page 398.

remark A user-defined comment that describes the purpose or action of the component.

sub_elements Defines a list of nested sub-elements.

target Defines a data holder where the component stores its output.

ChoiceStructure
The ChoiceStructure component defines a set of nested sub-elements. A record matches ChoiceStructure if
it matches any nested sub-element. For more information, see “StructureDefinition” on page 226.

The ChoiceStructure component appears at the global level of the Script and has the same function as
ChoiceStructureLocal. You can reference it in the ref attribute of an EmbeddedStructure.

Anchor Subcomponent Reference 235

The following table describes the properties of the ChoiceStructure component:

Property Description

action Defines an action that runs on the list of sub-components.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components.
For more information, see “Notifications” on page 398.

remark A user-defined comment that describes the purpose or action of the component.

target Defines a data holder where the component stores its output.

ChoiceStructureLocal
The ChoiceStructureLocal component defines a set of nested sub-elements. A record matches
ChoiceStructureLocal if it matches any nested sub-element. For more information, see
“StructureDefinition” on page 226.

ChoiceStructureLocal is a sub-element of the StructureDefinition anchor and has the same function as
ChoiceStructure. At the global level of the Script, use ChoiceStructure.

The following table describes the properties of the ChoiceStructureLocal component:

Property Description

action Defines an action that runs on the list of sub-components.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

minOccurs Defines the minimum number of matching records. Default is 1.

maxOccurs Defines the maximum number of matching records. Default is 1. Use -1 for an unlimited
number.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components.
For more information, see “Notifications” on page 398.

remark A user-defined comment that describes the purpose or action of the component.

236 Chapter 16: Anchors

Property Description

sub_elements Defines a list of nested sub-elements.

target Defines a data holder where the component stores its output.

Connect
The Connect component specifies a link between data holders in two components. The two data holders
must have the same data type.

The following table describes the properties of the Connect component:

Property Description

data_holder Defines a data holder that is referenced in the main Parser, Serializer, or Mapper.
Note: If the data holder is a variable, the transformation assigns it an empty default
value. If the variable has a data type that does not accept an empty value, such as
xs:boolean, ensure that the variable has a value before you run the embedded
transformation.

embedded_data_holder Defines a data holder that is referenced in the secondary Parser, Serializer, or
Mapper.

name A descriptive label for the component. This label appears in the log file and the
Events view. Use the name property to identify the component that caused the
event.

remark A user-defined comment that describes the purpose or action of the component.

The schema_connections property of the following components can have one or more instances of the
Connect component:

• EmbeddedParser. Specifies where a secondary Parser stores its result in the output of the main Parser.

• EmbeddedSerializer. Specifies a link between the input data holders of a secondary Serializer and the
input data holders of the main Serializer.

• EmbeddedMapper. Specifies a link between the input and output data holders.

• EmbeddedStructure. Specifies a link between the targets of global and local StructureDefinition sub-
elements.

Example
A secondary Parser outputs an XML element called ID. You want the main Parser to store this result in a
variable called VarID. You can connect ID to VarID.

For an additional example, see “EmbeddedSerializer” on page 326.

EmbeddedStructure
The EmbeddedStructure component activates components defined at the global level of the Script. For more
information, see “StructureDefinition” on page 226.

Anchor Subcomponent Reference 237

EmbeddedStructure is a sub-element of the StructureDefinition anchor.

The following table describes the properties of the EmbeddedStructure component:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

minOccurs Defines the minimum number of matching records.

maxOccurs Defines the maximum number of matching records. Use -1 for an unlimited number.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components.
For more information, see “Notifications” on page 398.

ref Defines the name of the globally configured component.

remark A user-defined comment that describes the purpose or action of the component.

schema_connection
s

Connects the target of the references subelement with the target of the EmbeddedStructure.
For more information, see “Connect” on page 237.

target Defines a data holder where the component stores its output.

RecordStructure
The RecordStructure component defines a set of components. A set of records matches RecordStructure if
it has the same identifiers. For more information, see “StructureDefinition” on page 226.

The RecordStructure component appears at the global level of the Script and has the same function as
RecordStructureLocal. You can reference it in the ref attribute of an EmbeddedStructure.

The following table describes the properties of the RecordStructure component:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

ids Defines one or more strings.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components.
For more information, see “Notifications” on page 398.

238 Chapter 16: Anchors

Property Description

remark A user-defined comment that describes the purpose or action of the component.

target Defines a data holder where the component stores its output.

RecordStructureLocal
The RecordStructureLocal component defines a set of components. A set of records matches
RecordStructureLocal if it has the same identifiers. For more information, see “StructureDefinition” on page
226.

RecordStructureLocal is a sub-element of the StructureDefinition anchor and has the same function as
RecordStructure. At the global level of the Script, use RecordStructure.

The following table describes the properties of the RecordStructureLocal component:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

ids Defines one or more strings.

minOccurs Defines the minimum number of matching records. Default is 1.

maxOccurs Defines the maximum number of matching records. Default is 1. Use -1 for an unlimited
number.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components.
For more information, see “Notifications” on page 398.

remark A user-defined comment that describes the purpose or action of the component.

target Defines a data holder where the component stores its output.

SequenceStructure
The SequenceStructure component defines a sequence of nested sub-elements. A set of records matches
SequenceStructure if it matches all nested sub-elements in sequence. For more information, see
“StructureDefinition” on page 226.

The SequenceStructure component appears at the global level of the Script and has the same function as
SequenceStructureLocal. You can reference it in the ref attribute of an EmbeddedStructure.

Anchor Subcomponent Reference 239

The following table describes the properties of the SequenceStructure component:

Property Description

action Defines an action that runs on the list of sub-components.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components.
For more information, see “Notifications” on page 398.

remark A user-defined comment that describes the purpose or action of the component.

target Defines a data holder where the component stores its output.

SequenceStructureLocal
The SequenceStructureLocal component defines a sequence of nested sub-elements. A set of records
matches SequenceStructureLocal if it matches all nested sub-elements in sequence. For more information,
see “StructureDefinition” on page 226.

SequenceStructureLocal is a sub-element of the StructureDefinition anchor and has the same function as
SequenceStructure. At the global level of the Script, use SequenceStructure.

The following table describes the properties of the SequenceStructureLocal component:

Property Description

action Defines an action that runs on the list of sub-components.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

minOccurs Defines the minimum number of matching records. Default is 1.

maxOccurs Defines the maximum number of matching records. Default is 1. Use -1 for an unlimited
number.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components.
For more information, see “Notifications” on page 398.

remark A user-defined comment that describes the purpose or action of the component.

240 Chapter 16: Anchors

Property Description

sub_elements Defines a list of nested sub-elements.

target Defines a data holder where the component stores its output.

Anchor Subcomponent Reference 241

C h a p t e r 1 7

Transformers
This chapter includes the following topics:

• Transformers Overview, 242

• Defining Transformers, 242

• Standard Transformer Properties, 244

• Transformer Component Reference, 244

Transformers Overview
Transformers modify the output of other components.

You can use transformers within components such as anchors, serialization anchors, and actions. For
example, if you use a transformer within a Content anchor, it modifies the data that the anchor extracts from
the source document.

You can use transformers as document processors. You can also define a transformer at the global level of a
Script and set it as the startup component.

Defining Transformers
You can define transformers in the following locations of the Script:

• In the transformers property of an anchor or a serialization anchor

• In the default_transformers property of a format or of a serializer

• In the ProcessByTransformers document processor

• In the transformers property of certain actions

• At the global level, as a standalone, runnable component that modifies a source document.

Using Transformers in Anchors
You can use transformers in an anchor that creates XML output, such as Content. In the Script, nest the
transformer components within the transformers property of the anchor.

The input of a transformer is the raw output of the anchor, before the anchor inserts the output in a data
holder.

242

For example, suppose you are parsing the following source document:

First name: Ron
Last name: Lehrer

You want to create XML output in ALL CAPS, like this:

<Person>
 <FirstName>RON</FirstName>
 <LastName>LEHRER</LastName>
</Person>

To do this, you can configure the Content anchors, which retrieve the strings Ron and Lehrer, with the
ChangeCase transformer.

Sequences of Transformers
You can configure an anchor with a sequence of transformers. Each transformer modifies the output of the
preceding transformer.

In the Ron Lehrer example, suppose you want the following output:

<Person>
 <FirstName>- RON -</FirstName>
 <LastName>- LEHRER -</LastName>
</Person>

To do this, you might configure the Content anchors with the ChangeCase and AddString transformers. The
transformers change the case and add the hyphens, in sequence.

Default transformers
Very often, you want the same transformers to run on all the Content anchors in a Parser. You can configure
the format component of the Parser with default transformers. This saves you the trouble of adding the same
transformers to every anchor in the Parser.

To do this, nest the transformers in the default_transformers property of the format. For more information,
see “Format Component Reference” on page 167.

Many of the predefined format components include default transformers. For example, the HtmlFormat
component has default transformers that remove HTML tags from the output and convert HTML entities to
plain text. You can change the default transformers by editing the default_transformers property.

If an anchor has its own transformers, they run after the default transformers.

You can cancel the default transformers for particular anchors. To do this, set the
ignore_default_transformers property of the anchor.

Using Transformers as Document Processors
You can run a transformer or a sequence of transformers as a document processor.

For example, you might run the RemoveTags transformer as a processor on an HTML document. The
transformer removes the HTML tags before a Parser starts to search for anchors in the document.

To do this, configure the Parser format component with the ProcessByTransformers document processor,
and nest the transformers within the component.

Defining Transformers 243

Using Transformers in Serialization Anchors
You can use transformers in serialization anchors that write to the output document, such as
ContentSerializer. The transformers modify the data before the serializer writes it to the document.

For example, a ContentSerializer might write the content of a data holder called DoctorName to an output
document. You might configure the ContentSerializer with an AddString transformer that adds the prefix
"Dr. " to the content. Suppose the XML input has the following form:

<DoctorName>Albert Schweitzer</DoctorName>
The transformer modifies the content, resulting in the following output:

Dr. Albert Schweitzer
You can add transformers to the default_transformers property of a serializer. The transformers that you
add here run in all the ContentSerializer serialization anchors before they write to the output document.

Using Transformers in Actions
Certain actions, such as SetValue and Map, apply transformers to their output. For more information, see
“Actions Overview” on page 279.

Standard Transformer Properties
The following table describes standard properties of Transformers:

Property Definition

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

Transformer Component Reference
Transformers modify data.

244 Chapter 17: Transformers

AbsURL
The AbsURL transformer converts a relative file path or URL to an absolute path.

For example, if the input is test.html and the base URL is http://www.example.com, the output is http://
www.example.com/test.html.

If the input is an absolute path, the transformer does not alter it.

The following table describes the properties of the AbsURL transformer:

Property Description

base_URL Defines the base path or URL.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

AddEmptyTagsTransformer
The AddEmptyTagsTransformer transformer checks whether all the elements defined in the schema exist in
the XML input. If not, it adds empty elements to the XML. This is an XML-to-XML transformer.

The following table describes the properties of the AddEmptyTagsTransformer transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

root_element Defines the root element of the XML.

Transformer Component Reference 245

AddString
The AddString transformer adds strings before and after the input text.

The following table describes the properties of the AddString transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

pre Defines the string to add before the text.

post Defines the string to add after the text.

remark A user-defined comment that describes the purpose or action of the component.

Online Sample
For an online sample, open samples\Projects\Transformers_Example\Transformers_Example.cmw. The
first Content anchor in the Parser is configured with an AddString transformer.

Base64Decode
The Base64Decode transformer converts the base64 MIME encoding to a binary string.

The following table describes the properties of the Base64Decode transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

246 Chapter 17: Transformers

Property Description

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

remark A user-defined comment that describes the purpose or action of the component.

tolerance Controls how the transformer processes whitespace characters or non-base64 sections of its input. You
can choose one of the following options:
- ignore_white_spaces. Processes all characters except whitespace. Default.
- ignore_none. Processes all characters.
- ignore_non_base64. Processes only base-64 characters.

Base64Encode
The Base64Encode transformer converts a binary string to the base64 MIME encoding. This is useful for
saving binary data in XML.

The following table describes the properties of the Base64Encode transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

BidiConvert
The BidiConvert transformer reverses strings that are written in right-to-left (RTL) languages, such as Hebrew
and Arabic. The input must be in RTL format. The output is LTR.

The BidiConvert transformer operates on Windows where the default language is RTL. For a similar
transformer that runs on all platforms, use hebrewBidi. The two transformers use slightly different
algorithms that occasionally give different results.

Transformer Component Reference 247

The following table described the properties of the BidiConvert transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

Note: This component does not support UTF-8 input encoding. Workaround: Use hebrewBidi.

CDATADecode
The CDATADecode transformer decodes a CDATA section of an XML document. For example, it converts

<![CDATA[100 < 200]]>
to

100 < 200
Note: If you write the result to XML, the Script re-encodes it using the standard XML encoding:

100 < 200
The following table describes the properties of the CDATADecode transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

remark A user-defined comment that describes the purpose or action of the component.

CDATAEncode
The CDATAEncode transformer converts a string to a CDATA section of an XML document. For example, it
converts

100 < 200

248 Chapter 17: Transformers

to

<![CDATA[100 < 200]]>
The following table describes the properties of the CDATAEncode transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

remark A user-defined comment that describes the purpose or action of the component.

ChangeCase
The ChangeCase transformer changes a text string to all uppercase, all lowercase, or only the first letter
capitalized. This transformer works on English characters. It might fail on some non-English characters. For
example, it does not convert lowercase German ß to uppercase SS.

The following table describes the properties of the ChangeCase transformer:

Property Description

case_type Defines the output case. The case_type property has the following options:
- all_caps. The output is all uppercase.
- all_lower. The output is all lowercase.
- first_cap. The first letter of the output is uppercase and the rest is lowercase.
Default is all_caps.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

Online Sample
For an online sample, open samples\Projects\Transformers_Example\Transformers_Example.cmw. The
third Content anchor in the Parser is configured with a ChangeCase transformer.

Transformer Component Reference 249

CreateGuid
The CreateGuid transformer generates a GUID identifier. The resulting GUID is unique every time this
transformer runs.

The GUIDs might have a non-standard format on Linux and UNIX platforms. For a fully UNIX-compatible
transformer, use CreateUUID. For more information, see “CreateUUID” on page 250.

CreateUUID
The CreateUUID transformer generates a UUID identifier that is compatible with Windows, Linux, and UNIX
platforms. The resulting UUID is unique every time the transformer runs.

The following table describes the properties of the CreateUUID transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

DateFormatICU
The DateFormatICU transformer converts a date or time to a format specified by the user.

The following table describes the properties of the DateFormatICU transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

input_format Defines the format of the input date, for example, d/M/yy. Type the format or select a data holder
that contains the format.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

250 Chapter 17: Transformers

Property Description

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

output_format Defines the format of the output date, for example, MM/dd/yyyy. Type the format or select a data
holder that contains the format.

remark A user-defined comment that describes the purpose or action of the component.

Example
Suppose you configure a DateFormatICU transformer with:

input_format = "d/M/yy"
output_format = "MM/dd/yyyy"

If the input is

13/3/05
the output is

03/13/2005

Supported Formats
The DateFormatICU transformer uses the ICU conventions to represent the date and time format. The
following table lists the symbols that you can use in the format patterns. For more information, see:

http://icu.sourceforge.net/apiref/icu4c/classSimpleDateFormat.html

Pattern
Symbol

Meaning Type Examples

G Era designator Text AD

y Year Number 1996

u Extended year Number -200, meaning 201 BC

M Month in year Text or number July 07

d Day in month Number 10

h Hour in AM/PM (1-12) Number 12

H Hour in day (0-23) Number 0

m Minute in hour Number 30

s Second in minute Number 55

Transformer Component Reference 251

http://icu.sourceforge.net/apiref/icu4c/classSimpleDateFormat.html

Pattern
Symbol

Meaning Type Examples

S Fractional second Number 978

E Day of week Text Tuesday

e Day of week (local 1-7) Number 2

D Day in year Number 189

F Day of week in month Number 2, meaning the 2nd Wednesday in
July

w Week in year Number 27

W Week in month Number 2

a AM/PM marker Text PM

k Hour in day (1-24) Number 24

K Hour in AM/PM (0-11) Number 0

z Time zone Time Pacific Standard Time

Z Time zone (RFC 822) Number -0800

v Time zone (generic) Text Pacific Time

g Julian day Number 2451334

A Milliseconds in day Number 69540000

' ' The text within single quotes is
interpreted as a literal string

Text 'Today is 'dd/MM/yyyy
generates output such as
Today is 15/03/2005

'' Literal single quote Text 'o''clock'
generates the output
o'clock

The count of pattern symbols further determines the format:

• For text: Four or more pattern symbols means to use the full form. Fewer than four means to use a short
or abbreviated form if it exists. For example, if EEEE produces Monday, EEE produces Mon.

• For numbers: The number of pattern symbols is the minimum number of digits. Shorter numbers are zero-
padded. For example, if m produces 6, mm produces 06.

• For years: The two-digit year is yy, and the four-digit year is yyyy. For example, if yy produces 05, yyyy
produces 2005.

• For months: If M produces 1, then MM produces 01, MMM produces Jan, and MMMM produces January.

All non-alphabetic characters are interpreted as literals, even if they are not enclosed in single quotes. For
example, dd/MM/yyyy HH:mm produces 15/03/2005 13:15.

252 Chapter 17: Transformers

Dos96HebToAscii
The Dos96HebToAscii transformer converts the Hebrew 7-bit encoding to the Windows-1255 code page.

DynamicTable
The DynamicTable component defines a data holder that contains a lookup table. The table is used by the
LookupTransformer transformer.

The following table describes the properties of the DynamicTable component:

Property Description

table Defines the data holder that contains the table.

EbcdicToAscii
The EbcdicToAscii transformer converts EBCDIC to ASCII text.

EDIFACTValidation
The EDIFACTValidation validator tests whether a source string is a valid EDIFACT message.

The following table describes the properties of the EDIFACTValidation validator:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

enabled Determines the setting for param1.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

param1 Determines whether the input is optional. param1 is named is_optional and has only one property,
enabled. enabled has the following options:
- Selected. The input data is optional.
- Cleared. The input data is mandatory.

param2 Defines an EDI data type. param2 is named input_type and has only one property, value. value is a hard-
keyed string or a data holder.

param3 Defines a range of integers. param3 is named minmax_limits and has only one property, value. value is a
hard-keyed string or a data holder that specifies two integers separated by a hyphen.

Transformer Component Reference 253

Property Description

param4 Defines a list of values. param4 is named enumerations and has only one property, value. value is a hard-
keyed string or a data holder that specifies a comma-separated list of strings or integers.

remark A user-defined comment that describes the purpose or action of the component.

value Defines a value for param1, param2, or param3

Note: This component is deprecated. The IntelliScript editor displays it for legacy projects. Do not use it in
new Scripts. Workaround: Use other validator components.

EncodeAsUrl
The EncodeAsUrl transformer encodes spaces and special characters as required in a URL. The characters
are encoded as a percent sign (%) followed by a hexadecimal number.

For example, the EncodeAsUrl transformer converts

http://www.example.com?name=John Doe
to

http://www.example.com?name=John%20Doe
Note: Parenthesis characters are not encoded.

The following table describes the properties of the EncodeAsUrl transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

Online Sample
For an online sample, open samples\Projects\Transformers_Example\Transformers_Example.cmw. The
fourth Content anchor in the Parser is configured with an EncodeAsUrl transformer.

Encoder
The Encoder transformer converts text from one code page to another.

254 Chapter 17: Transformers

The following table describes the properties of the Encoder transformer:

Property Description

add_prefix Adds a Byte Order Mark (BOM) when the output encoding is UTF-8 or UTF-16.

disabled Determines whether the Script ignores the component and all of the child components. Use
this property to test, debug, and modify a Script. You can choose one of the following
options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

input_code_page Defines the code page of the input text.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can
choose one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on
page 379.

output_code_page Defines the code page of the output text.

remark A user-defined comment that describes the purpose or action of the component.

FormatNumber
The FormatNumber transformer formats a number by adding a sign, decimal point, leading or trailing zeros,
and unit.

The following table describes the properties of the FormatNumber transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use
this property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

insert_decimal_point Defines the decimal point symbol. You can choose one of the following options:
- comma. The decimal is a comma.
- none. The output does not have a decimal.
- point. The decimal is a period.
Default is none.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

number_of_decimals Pads the decimal part with trailing zeros to the indicated size. Default is 0.

Transformer Component Reference 255

Property Description

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on
page 379.

remark A user-defined comment that describes the purpose or action of the component.

sign Determines the sign of the output number. You can choose one of the following options:
- un_signed. Deletes a sign if present.
- leading_sign. A plus or minus is added to the front of the output number.
- trailing_sign. A plus or minus is added after the output number.
- negative sign only. A minus sign is added to the number if the number is negative.
- as in source. Does not change the input sign.
Default is un_signed.

size_of_integer_part Pads the integer part with leading zeros to the indicated size. Default is 0.

unit_type Defines the measurement unit after the number. You can choose one of the following options:
- cm
- inch
- meter
- mm
- undefined. No unit is added.
Default is undefined.

FromFloat
The FromFloat transformer converts a floating point number from binary to an ASCII string representation.
The conversion is performed in the input encoding with the input byte-order.

The following table describes the properties of the FromFloat transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

256 Chapter 17: Transformers

Property Description

remark A user-defined comment that describes the purpose or action of the component.

size Determines the size of the input number. You can choose one of the following options:
- single_precision_32_bit
- double_precision_64_bit
Default is single_precision_32_bit.

Note: This component does not support UTF-8 input encoding.

FromInteger
The FromInteger transformer converts an integer from binary to an ASCII string representation, in decimal,
octal, or hexadecimal. The conversion is performed in the input encoding with the input byte-order.

The following table describes the properties of the FromInteger transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

remark A user-defined comment that describes the purpose or action of the component.

signed Determines whether the output number has a sign. You can choose one of the following options:
- Selected. The output number has a sign.
- Cleared. The output number does not have a sign.
Default is cleared.

size Defines the size in bytes of the binary input. The supported values are 1 to 8. Default is 1.

to_base Defines the base of the output. You can choose one of the following options:
- decimal. Base 10.
- hexadecimal. Base 16 using capital letters A-F.
- lowercase hexadecimal. Base 16 using lowercase letters a-f.
- octal. Base 8.
Default is decimal.

Note: This component does not support UTF-8 input encoding.

Transformer Component Reference 257

FromPackDecimal
The FromPackDecimal transformer converts a number from packed decimal to an ASCII string
representation. The conversion is performed in the input encoding with the input byte-order.

The following table describes the properties of the FromPackDecimal transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

Note: This component does not support UTF-8 input encoding.

FromSignedDecimal
The FromSignedDecimal transformer converts a number from a signed decimal to an ASCII string
representation. The conversion is performed in the input encoding with the input byte-order.

The following table describes the properties of the FromSignedDecimal transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

insert_sign_symbol Defines the sign of the number. You can choose one of the following options:
- after. A plus or minus sign is added after the output number.
- before. A plus or minus sign is added to the front of the output number.
- no. The output is unsigned.
Default is no.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

258 Chapter 17: Transformers

Property Description

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

Note: This component does not support UTF-8 input encoding.

hebrewBidi
The hebrewBidi transformer reverses a string that is written in right-to-left (RTL) languages, such as Hebrew
and Arabic.

The input must be in RTL format. The output is LTR.

HebrewDosToWindows
The HebrewDosToWindows transformer converts Hebrew documents from the MS-DOS Hebrew code page to
the Windows Hebrew code page.

HebrewEBCDICOldCodeToWindows
The HebrewEBCDICOldCodeToWindows transformer converts Hebrew text from EBCDIC to the
Windows-1255 code page.

hebUniToAscii
The hebUniToAscii transformer converts Hebrew text from Unicode UTF-16 to the Windows-1255 code page.

hebUtf8ToAscii
The hebUtf8ToAscii transformer converts Hebrew text from Unicode UTF-8 to the Windows-1255 code page.

HtmlEntitiesToASCII
The HtmlEntitiesToASCII transformer converts HTML entities to plain text. For example, it converts © or
© to the copyright symbol (©).

Transformer Component Reference 259

The following table describes the properties of the HtmlEntitiesToASCII transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

Supported Entities
The transformer supports the ISO 8859-1 (Latin-1) entities that are defined in the HTML 4.0 reference,
http://www.w3.org/TR/1998/REC-html40-19980424/sgml/entities.html. The supported entities include:

• &, <, >, and " (& < > ", respectively)

• Numeric character codes � to ÿ
• Entities for Latin-1 characters: = non-breaking space, © = copyright, etc.

The transformer does not support extended characters, that is, codes greater than 255 or non-Latin-1
characters.

Output Encoding for Upper-ASCII Characters
If the transformer output contains upper-ASCII characters, select an output encoding that supports the
characters, such as Windows-1252 or UTF-8.

Note: Include an encoding attribute in the XML processing instruction. Otherwise, the Developer tool might
not be able to display the characters.

HtmlProcessor
The HtmlProcessor transformer normalizes whitespace according to HTML conventions. It converts any
sequence of tabs, line breaks, and space characters to a single space character. This transformer operates
on HTML text and any other type of text. You can also use it as a format preprocessor. For more information,
see “Format Preprocessor Component Reference” on page 178.

InjectFP
The InjectFP transformer inserts a decimal point at a specified location in a number. For example, the
transformer can convert 12345 to 123.45.

260 Chapter 17: Transformers

http:/
http://www.w3.org/TR/1998/REC-html40-19980424/sgml/entities.html

The following table describes the properties of the InjectFP transformer:

Property Description

digits_after_decimal_point Determines the number of digits after the decimal point.

disabled Determines whether the Script ignores the component and all of the child components.
Use this property to test, debug, and modify a Script. You can choose one of the
following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events
view. Use the name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can
choose one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure
Handling” on page 379.

remark A user-defined comment that describes the purpose or action of the component.

InjectString
The InjectString transformer inserts a string into text.

The following table describes the properties of the InjectString transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

injection_place Defines the number of characters from the beginning of the text to where the string is inserted.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

string_to_inject Defines the string to insert.

InlineTable
The InlineTable component defines a lookup table in the Script. The table is used by the LookupTransformer
transformer.

Transformer Component Reference 261

The following table describes the properties of the InlineTable component:

Property Description

Entry Defines a key and value pair.

key Defines a unique input string.

match_case Determines whether the key string is case sensitive. You can choose one of the following options:
- Selected. key is case sensitive.
- Cleared. key is not case sensitive.
Default is cleared.

table Defines a list of Entry components.

value Defines an output string.

JavaTransformer
The JavaTransformer transformer runs a custom transformer that is implemented in Java.

The following table describes the properties of the JavaTransformer transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

java_class Defines the path of the Java class.

method Defines the method to run.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the
name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

remark A user-defined comment that describes the purpose or action of the component.

Note: This component is deprecated. The IntelliScript editor displays it for legacy Scripts. Do not use it in new
Scripts. Instead, create a custom Java transformer. For more information, see “Developing a Custom
Component” on page 412.

LookupTransformer
The LookupTransformer transformer looks up a value in a table.

262 Chapter 17: Transformers

The following table describes the properties of the LookupTransformer transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

look_at Defines the type of lookup table used by the transformer. You can choose one of the following
options:
- DynamicTable. The table property of the look_at property defines a data holder that contains

the table. For more information, see “DynamicTable” on page 253.
- InlineTable. The table property of the look_at property defines a list of Entry components, each

of which contains a key and a value. For more information, see “InlineTable” on page 261.
- XMLLookupTable. The xml_file_name property of the look_at property defines the path and file

name of an XML file that defines the table. For more information, see “XMLLookupTable” on page
277.

- [TableName]. A DynamicTable, InlineTable, or XMLLookupTable defined at the global level of
the Script.

Default is blank.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

If you use the same lookup table repeatedly, consider defining an InlineTable or an XMLLookupTable at the
global level of the Script. You can then reference the table by name in the look_at property.

For example, you can configure a LookupTransformer to look up values in the following table:

Key Value

1 George Washington

2 John Adams

3 Thomas Jefferson

4 James Madison

If the input of the transformer is 3, the output is Thomas Jefferson.

Transformer Component Reference 263

Defining an Inline Table
To define an inline table, configure the key-value pairs in the Script, as in the following example:

Storing an XML Lookup Table in a File
Prepare an XML file conforming with the schema lookupTableDefinition.xsd. You can find the schema in
the \doc subdirectory of the installation directory. The following XML document is an example:

<?xml version="1.0" encoding="windows-1252" ?>
<lt:LookupTable xmlns:lt="http://www.Itemfield.com/Engine/V4/lookupTable"
matchCase="false">
 <lt:Entry key="1" value="George Washington" />
 <lt:Entry key="2" value="John Adams" />
</lt:LookupTable>

Creating an XML Lookup Table Dynamically
A transformation can create an XML lookup table at runtime. For example, the transformation might run a
secondary Parser that generates the XML structure.

The transformation must store the XML string in a multiple-occurrence data holder of type cde:lookupTable.
Store each key-value pair in an occurrence of the data holder. For example, you might configure a
RepeatingGroup containing a WriteValue action. Each iteration of the RepeatingGroup creates an occurrence
of the data holder and writes a key-value pair to the occurrence.

Then configure a LookupTransformer with the DynamicTable option, and specify the data holder.

NormalizeClosingTags
For XML input, the NormalizeClosingTags transformer removes shorthand closing tags from empty
elements. It changes <tag/> to <tag></tag>.

The transformer does not correct incorrect XML. It converts well-formed XML from one style of closing tag to
another.

264 Chapter 17: Transformers

The following table describes the properties of the NormalizeClosingTags transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

RegularExpression
The RegularExpression transformer performs a pattern search on the input text. It replaces instances of the
pattern with a specified string.

The following table describes the properties of the RegularExpression transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

exp Defines a regular expression for the search criterion.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

replacement Defines the replacement text.

For example, suppose that a Content anchor retrieves the following text:

transformer
You configure the anchor with a RegularExpression transformer that searches for the pattern t.+s. The
pattern means the letter t, followed by one or more of characters, followed by the letter s. You configure the
transformer to replace the pattern with the character X.

The pattern matches the substring trans of the input. The transformer replaces the substring and outputs:

Xformer

Transformer Component Reference 265

Regular Expression Syntax
A regular expression defines a search pattern according to a standard syntax.

The Data Processor transformation uses the Regex++ implementation of regular expressions, © 1998-2003
by Dr. John Maddock, Version 1.33, 18 April 2000.

Note: Regex++ does not support locales.

The following table lists some special characters that you can use in regular expressions:

Character Meaning Example

* Matches zero or more instances of the preceding
character.

ab*c matches ac, abc, or abbbc.

? Matches zero or one instance of the preceding
character.

ab?c matches ac or abc.

+ Matches one or more instances of the preceding
character.

a+ matches a or aaaa.

{} Matches the specified number of instances of the
preceding character.

ab{2}c matches abbc.

[] Matches any of a set of characters. a[bst]c matches abc, asc, or atc.

- Defines a range of characters inside square
brackets.

[A-Za-z] matches any character in the English
alphabet.
[A-Za-zü] matches any character in the English
alphabet or the German ü.

. Matches any single character. a.c matches abc, a c, or a1c.

^ Matches the start of the input text. ^P. matches Pe but not Pi in "Peter Piper."

$ Matches the end of the input text. r.$ matches rs in "Peter Piper's peppers."

| Matches either of two expressions. abc|ded matches abc or def.

() Grouping A(abc|def) matches Aabc or Adef.

\ Escapes one of the other special characters,
treating it as a literal character.

\. matches a literal period, rather than any
character.

Preserving Portions of the Original Text
In the exp property, you can enclose portions of the regular expression in parentheses. In the replacement
property, you can use:

• $0 to identify the entire text that matches the regular expression

• $1 to identify the substring that matches the first parenthesized portion of the regular expression

• $2, $3, and so forth, to identify the substrings that match the second, third, etc. parenthesized portions

For example, suppose you set:

exp = abc([0-9]+)(def)
replacement = $1

266 Chapter 17: Transformers

This replaces abc5624def with 5624.

Alternatively, suppose you set:

exp = abc([0-9]+)(def)
replacement = $2ZYX$1

This replaces abc5624def with defZYX5624.

RemoveMarginSpace
The RemoveMarginSpace transformer deletes leading and trailing space characters from the text.

The following table describes the properties of the RemoveMarginSpace transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

RemoveRtfFormatting
The RemoveRtfFormatting transformer removes RTF formatting instructions from the text.

The following table describes the properties of the RemoveRtfFormatting transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

RemoveTags
The RemoveTags transformer removes HTML tags from the input text. It replaces the tags at internal
locations in the text with a separator string, such as a space character. It does not insert the separator string
at the beginning or end of the text. Adjacent multiple tags are transformed into a single separator.

Transformer Component Reference 267

The following table describes the properties of the RemoveTags transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

replace_with Defines the separator string. Default is " " (space).

Replace
The Replace transformer finds and replaces strings in the input text. Leaving the replace_with property empty
deletes the found text.

The following table describes the properties of the Replace transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

find_what Defines the text to find. The value is one of the following searcher components:
- NewlineSearch. Finds a newline character.
- PatternSearch. Finds text that matches a regular expression.
- SegmentSearch. Finds a segment from a specified opening marker to a closing marker.
- TextSearch. Finds a specified string.
Default is TextSearch. For more information, see the “Searcher Component Reference” on page 230.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

occurrence Specifies which occurrences to replace: all, first, or last.

268 Chapter 17: Transformers

Property Description

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

replace_with Defines the replacement string.

Online Sample
For an online sample, open samples\Projects\Transformers_Example\Transformers_Example.cmw. The
second and fifth Content anchors in the Parser are configured with Replace transformers.

Resize
The Resize transformer fits the input text to a specified size. It pads or truncates the text as required.

The following table describes the properties of the Resize transformer:

Property Description

align Defines the text alignment within the resized string. You can choose one of the following
options:
- left. Padding or trimming is on the right.
- right. Padding or trimming is on the left.

allow_smaller_size When selected, the Rezise transformer fits the input text to a specified size with padding if the
string is smaller than the size defined by the size parameter. If not selected, and the input string
is smaller than the specified size, the transformer fails.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

padding_character Defines the padding character. Type the character or select a data holder that contains a
character.

remark A user-defined comment that describes the purpose or action of the component.

size Defines the size of the output text. Type an integer or select a data holder that contains an
integer.

ReverseTransformer
The ReverseTransformer transformer reverses a string. For example, it transforms 1234 to 4321.

Transformer Component Reference 269

The following table describes the properties of the ReverseTransformer transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

RtfProcessor
The RtfProcessor transformer normalizes RTF code. It is also available as a format preprocessor. For more
information, see “Format Preprocessor Component Reference” on page 178.

RtfToASCII
The RtfToASCII transformer converts RTF input to plain text. It removes RTF control words from the text.

The following table describes the properties of the RtfToASCII transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

SubString
The SubString transformer returns a substring of the input, starting and ending at specified locations.

270 Chapter 17: Transformers

The following table describes the properties of the SubString transformer:

Property Description

begin Defines the start location. 0 means to start at the beginning of the input.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

end Defines the end location.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

ToFloat
The ToFloat transformer converts a floating point number from an ASCII string representation to binary. The
conversion is performed in the output encoding with the output byte order.

The following table describes the properties of the ToFloat transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

size Determines the size of the output number. The size property has the following options:
- single_precision_32_bit
- double_precision_64_bit
Default is single_precision_32_bit.

Note: This component does not support UTF-8 input encoding.

Transformer Component Reference 271

ToInteger
The ToInteger transformer converts a number from an ASCII string representation to a binary integer. The
string input can be decimal, octal, or hexadecimal. The conversion is performed in the output encoding with
the output byte order.

The following table describes the properties of the ToInteger transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

from_base Defines the base of the input. The to_base property has the following options:
- decimal. Base 10.
- hexadecimal. Base 16 using capital letters A-F.
- lowercase hexadecimal. Base 16 using lowercase letters a-f.
- octal. Base 8.
Default is decimal.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

signed Determines whether the input number has a sign. The to_base property has the following options:
- Selected. The output number has a sign.
- Cleared. The output number does not have a sign.
Default is cleared.

size Defines the size in bytes of the binary representation. The supported values are 1 to 8.

Note: This component does not support UTF-8 input encoding.

ToPackDecimal
The ToPackDecimal transformer converts a number from an ASCII string representation to packed decimals.
The conversion is performed in the output encoding with the output byte order.

272 Chapter 17: Transformers

The following table describes the properties of the ToPackDecimal transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

remark A user-defined comment that describes the purpose or action of the component.

unsigned Determines whether the packed decimal is signed. You can choose one of the following options:
- Selected. The packed decimal is unsigned.
- Cleared. The packed decimal is signed.
Default is cleared.

Note: This component does not support UTF-8 input encoding.

TransformationStartTime
The TransformationStartTime transformer outputs the date and time when the transformation started
running.

The transformer copies the date and time from the VarSystem variable and it formats the output according to
your specification.

The following table describes the properties of the TransformationStartTime transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

format Defines the format of the date and time. Type the format or select a data holder that contains the
format. For more information about the supported formats, see “DateFormatICU” on page 250.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

Transformer Component Reference 273

Property Description

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

TransformByParser
The TransformByParser transformer runs a Parser on its input text. The Parser must contain
FindReplaceAnchor components that mark segments of the text for replacement. When the Parser
completes execution, the transformer performs the replacements.

The transformer output is the modified text. The Script ignores any XML output that the Parser generates.

The following table describes the properties of the TransformByParser transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

Parser Defines the name of the Parser.

remark A user-defined comment that describes the purpose or action of the component.

Online Sample
For an online sample, open <installation>\client\DT\samples\Projects\TransformByParser
\TransformByParser.cmw. The sample uses TransformByParser to replace every instance of the string ~NL~
with a carriage return followed by a linefeed.

Note: The samples are only available when you perform a client installation.

To run the TransformByParser sample:

1. Set MyTransformByParser as the startup component.

2. Run the transformer.

274 Chapter 17: Transformers

3. At the prompt, select the source file Report.edi.

The transformer stores its output in Results\Transformation of Report.edi. You can compare the
output with the source in Notepad.

TransformByProcessor
The TransformByProcessor transformer runs a document processor on its input. The output of the
transformer is the output of the document processor. For more information, see “Document Processors
Overview” on page 151.

The following table describes the properties of the TransformByProcessor transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the
name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

processor Defines the name of the document processor.

remark A user-defined comment that describes the purpose or action of the component.

TransformByService
The TransformByService transformer runs a Data Processor transformation service on its input. The output
of the transformer is the output of the service.

If you use the transformer to invoke a Parser service, the output of the transformer is an XML string.

Note: The TransformByService transformer supports single-input services. Do not use it with a service that
has multiple input ports.

Transformer Component Reference 275

The following table describes the properties of the TransformByService transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components.
Use this property to test, debug, and modify a Script. You can choose one of the
following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

disable_automatic_encoding Determines whether the Script applies the input and output encodings that are defined
in the service. You can choose one of the following options:
- Selected. The Script ignores the input and output encodings that are defined in the

service.
- Cleared. The Script applies the input and output encodings that are defined in the

service.

name A descriptive label for the component. This label appears in the log file and the Events
view. Use the name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can
choose one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure
Handling” on page 379.

parameters Defines a list of initial values that the Script assigns to variables defined in the
service. In each element of the list, specify the name of a variable and its value.

remark A user-defined comment that describes the purpose or action of the component.

service_name Defines the name of the service that runs on the input.

TransformerPipeline
The TransformerPipeline transformer applies a sequence of nested transformers to its input.

The following table describes the properties of the TransformerPipeline transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

276 Chapter 17: Transformers

Property Description

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

XMLLookupTable
The XMLLookupTable component specifies an XML file that contains a lookup table. The table conforms with
the lookupTableDefinition.xsd schema in the \doc subdirectory of the installation directory. The table is
used by the LookupTransformer transformer.

The following table describes the properties of the XMLLookupTable component:

Property Description

xml_file_name Defines the path and file name of the XML file.

The following XML document is valid against the schema:

<?xml version="1.0" encoding="windows-1252" ?>
<lt:LookupTable xmlns:lt="http://www.Itemfield.com/Engine/V4/lookupTable"
 matchCase="false">
 <lt:Entry key="1" value="George Washington" />
 <lt:Entry key="2" value="John Adams" />
</lt:LookupTable>

If the optional matchCase attribute is true, the key attribute is considered case sensitive.

XSLTTransformer
The XSLTTransformer transformer applies an XSLT transformation to XML input text.

For example, you might use a Parser to extract data from an XML document. A Content anchor retrieves a
complete, well-formed branch of the XML tree. You can configure the Content anchor with an
XSLTTransformer that runs an XSLT transformation on the branch.

The following table describes the properties of the XSLTTransformer transformer:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

Transformer Component Reference 277

Property Description

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

xslt_file Defines the path and file name of the XSLT file.

278 Chapter 17: Transformers

C h a p t e r 1 8

Actions
This chapter includes the following topics:

• Actions Overview, 279

• Standard Action Properties, 280

• Action Component Reference, 281

• Action Subcomponent Reference, 313

Actions Overview
Actions are components that perform operations on data that the Script has extracted from a source
document. Some examples of the supported actions are:

• Arithmetic computations

• String concatenations

• Submitting forms to a web server

• Activating a secondary Parser, Serializer, or Mapper

• Querying a database

The Data Processor transformation provides many actions, and you can define custom actions.

How Actions Work
An action takes its input from the data holders that are currently available. A single action can have multiple
inputs.

If the action is embedded in a Parser, the available data holders are the ones that the Parser has generated.
In a Serializer, the data holders are the ones that exist in the input XML, plus any additional data holders that
the Serializer has generated. For a Mapper, the data holders can be in either the input or the output.

The action performs operations on the input and generates output. You can configure many actions to store
their output in data holders.

In most actions, the input and output data holders must have simple data types. They must not contain
nested elements. A few actions work with data holders that contain nested elements, with multiple-
occurrence data holders, or with other special types.

An action can have additional effects, such as writing to a file, updating a database, or submitting data to an
external application.

279

Comparison Between Actions and Transformers
Some actions perform operations that are similar to transformers, for example, modifying a string or querying
a database. However, actions differ from transformers in some fundamental ways.

The following table summarizes the differences:

Operation Transformers Actions

Input The input of a transformer is a single
string.

The input is implemented by the action. An action can
have multiple inputs. The inputs can be data holders.

Output The output of a transformer is a string. The output is implemented by the action. For example, an
action can create output data holders.

Side effects A transformer has no side effects, other
than modifying the input string.

An action can have side effects, such as updating a
database.

Defining Actions
Edit the Script to define an action. You can insert the actions under the contains line of components such as
a Parser, Serializer, Mapper, Group, or RepeatingGroup. Essentially, you can insert actions in any location
where you can insert anchors, serialization anchors, or Mapper anchors.

The actions run in sequence with the anchors that you specify in the same location. In a parser, you can set
the phase property of an action, which determines whether it runs in the initial, main, or final stage of the
parsing process. For more information, see “Search Phases” on page 196.

Standard Action Properties
The following table describes standard properties of actions:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure Handling” on page
379.

280 Chapter 18: Actions

Property Description

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

phase Determines when the Script processes the component. You can choose one of the following options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.

remark A user-defined comment that describes the purpose or action of the component.

Action Component Reference
Actions perform operations in the system, for example, downloading a file from a remote location or
validating a value.

AddEventAction
The AddEventAction action adds a message to the event log.

The following table describes the properties of the AddEventAction action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

message Defines the message string.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure Handling” on page
379.

Action Component Reference 281

Property Description

phase Determines when the Script processes the component. You can choose one of the following options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

severity Determines the severity level of the message. You can choose one of the following options:
- notification
- warning
- failure
- fatal error
Default is notification.

AggregateValues
The AggregateValues action performs a computation on an aggregate of a multiple-occurrence data holder.

The following table describes the properties of the AggregateValues action:

Property Description

aggregation_function Determines the function to perform on the aggregate. You can choose one of the following
options:
- AllEqual. Returns true if the values are all the same or false if they are not the same.
- Count. Returns the number of occurrences of the data holder.
- Join. Returns a list of all the values, separated by the separator specified in the separator

property.
- Sum. Returns the sum of the values.

AllEqual Defines an option under the aggregation_function property.

Count Defines an option under the aggregation_function property.

data_holder Defines the data holder that stores the output.

disabled Determines whether the Script ignores the component and all of the child components. Use
this property to test, debug, and modify a Script. You can choose one of the following
options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

include_empty_values Determines whether the aggregate includes occurrences that contain no data.
- Selected. The action includes the empty occurrences.
- Cleared. The action ignores the empty occurrences.
Default is selected.

Join Defines an option under the aggregation_function property.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

282 Chapter 18: Actions

Property Description

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can
choose one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on
page 379.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

root_element Determines the data holder at the root of the XML branch containing the multiple-occurrence
data holder. The root_element can be single-occurrence or multiple-occurrence.

sub_element Determines the multiple-occurrence data holder for which the action computes an aggregate.
If sub_element is not assigned, the action computes the aggregate of the root_element.

Sum Defines an option under the aggregation_function property.

Depending on the root_element that you configure, the action can aggregate occurrences at different levels
of branching. For example, an XML document has the structure:

<Company>
 <Division name="America">
 <Employee>...<Employee>
 <Employee>...<Employee>
 <Employee>...<Employee>
 </Division>
 <Division name="Europe">
 <Employee>...<Employee>
 <Employee>...<Employee>
 </Division>
</Company>

If the root_element is Company, and you configure the action to count the occurrences of Employee, the action
counts all Employee element that are descendents of Company. The action returns 5.

If the root_element is Division, the action counts the number of Employee occurrences in the Division that
the transformation is currently processing. When the action processes America, it returns 3. When it
processes Europe, it returns 2.

Action Component Reference 283

AppendListItems
The AppendListItems action concatenates the strings in a multiple-occurrence data holder.

The following table describes the properties of the AppendListItems action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

input Determines the multiple-occurrence data holder for input. The data holder must have a simple data
type.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

output Determines the data holder that stores the output. The data holder must have a simple data type.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

For more information about preparing the input for this action, see “Mapping to Multiple-Occurrence Data
Holders” on page 193.

Example
A source document contains the following space-separated text:

H E L L O

284 Chapter 18: Actions

When you parse the document, you want to remove the spaces and store the result in an XML element called
Greeting.

Create a multiple-occurrence variable called VarLetter. Create several Content anchors that retrieve the
individual letters and store them in occurrences of VarLetter.

Then, use the AppendListItems action to concatenate the occurrences of VarLetter and store the result in the
Greeting element. The result is:

<Greeting>HELLO</Greeting>

Online Sample
For an online sample of this action, open the project samples\Projects\AppendListItems
\AppendListItems.cmw. The sample uses a RepeatingGroup to store values in a multiple-occurrence
variable. It then uses as an AppendListItems action to concatenate the values.

AppendValues
The AppendValues action concatenates strings.

The following table describes the properties of the AppendValues action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use
this property to test, debug, and modify a Script. You can choose one of the following
options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

input Determines the list of data holders containing the values to be appended. The data holders
must have simple data types.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can
choose one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on
page 379.

output Determines the data holder that stores the output. The data holder must have a simple data
type.

Action Component Reference 285

Property Description

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

skip_unfound_values Determines whether the action continues when one of the input data holders is missing.
- Selected. The action continues.
- Cleared. The action fails.
Default is selected.

Example
A Parser has generated the following XML:

<Name>
 <First>Ron</First>
 <Last>Lehrer</Last>
<Name>

You can configure an AppendValues action that outputs:

<FullName>Ron Lehrer</FullName>

CalculateValue
Calculates numerical values or concatenates string values.

To calculate numeric values, use the following operators between parameters:

• +

• -

• *

• /

You can use parentheses to clarify the numeric expression. You can use variables of the following data types:

• xs:anyType

• xs:anySimpleType

• numeric data types

• string data types

If the parameters are all numeric data types or numeric strings, CalculateValue performs an arithmetic
calculation. Non-integer results are rounded to 14 decimal places.

To concatenate strings, use the plus sign (+) operator between parameters and strings.

286 Chapter 18: Actions

The following table describes the properties of the CalculateValue action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

expression Defines a JavaScript expression. To represent an input parameter, use a dollar sign ($) followed by an
integer. To represent a string, enclose it in single quote marks.

failure_action Determines the behavior in the event of failure. You can choose one of the following options:
- Ignore. The transformation continues.
- HaltExecution. The transformation stops.
Default is Ignore.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the
name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure Handling” on
page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose one of
the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

params Defines a list of data holders that contain the input parameters.

phase Determines when the Script processes the component. You can choose one of the following options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

result Determines a data holder that stores the output.

Note: For more information about the JavaScript syntax that the Data Processor transformation supports,
see “EnsureCondition” on page 295. For more information about the precision of xs:decimal and xs:float
values, see “Precision of Numerical Data” on page 181.

Action Component Reference 287

Example
A Parser has generated the following XML:

<ItemOrdered>
 <Name>Gizmo</Name>
 <Quantity>100</Quantity>
 <Price>25<Price>
</ItemOrdered>

You can use a CalculateValue action to generate the output:

<ItemOrdered>
 <Name>Gizmo</Name>
 <Quantity>100</Quantity>
 <Price>25<Price>
 <Total>2500</Total>
</ItemOrdered>

Define the Name and Quantity elements as input parameters. Specify the JavaScript expression $1 * $2, and
store the result in the Total element.

Online Sample
For an online sample of this action, open the project samples\Projects\CalculateValue
\CalculateValue.cmw. The sample retrieves three numbers from a source document and stores them in
variables. It uses a CalculateValue action to compute a mathematical function of the numbers.

CombineValues
The CombineValues action concatenates strings.

The input is a list of data holders and variables. The output is a multiple-occurrence data holder.

If the input is a multiple-occurrence data holder, the CombineValues action generates one iteration for each
instance of the data holder. On each iteration, the CombineValues action combines all of the input data
holders and writes the output to one instance of the output data holder.

The following table describes the properties of the CombineValues action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

input Defines a list of data holders for input. The data holders must have a simple data type.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

288 Chapter 18: Actions

Property Description

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure Handling” on page
379.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

output Determines the multiple-occurrence data holder where the action stores the output. The data holder must
have a simple data type.

phase Determines when the Script processes the component. You can choose one of the following options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

Example
In a multiple-occurrence variable called VarDay, you have stored the list Monday, Tuesday. In a multiple-
occurrence variable called VarTime, you have stored morning, afternoon. In a single-occurrence variable
called VarSpace, you have stored a space character.

Suppose you run CombineValues on VarDay, VarSpace, and VarTime, with an output data holder called
DayTime. The output is:

<DayTime>Monday morning</DayTime>
<DayTime>Monday afternoon</DayTime>
<DayTime>Tuesday morning</DayTime>
<DayTime>Tuesday afternoon</DayTime>

Online Sample
For an online sample of this action, open the project samples\Projects\CombineValues
\CombineValues.cmw. The sample retrieves lists of days, months, and years from a source document. It uses
a CombineValues action to generate all possible dates from the lists.

CreateList
The CreateList action inserts data in a list. The output is a multiple-occurrence data holder containing the
list. For more information, see “Multiple-Occurrence Data Holders” on page 189.

Nested in this component, enter the data values.

Action Component Reference 289

The following table describes the properties of the CreateList action:

Property Description

data_holder Defines the multiple-occurrence data holder where the action stores the list. The data holder must
have a simple data type.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

Example
If the input data values are

Jack
Jennie
Larissa

the action can create the following output:

<Name>
 <First>Jack</First>
 <First>Jennie</First>
 <First>Larissa</First>
</Name>

CustomLog
The CustomLog action can be used as the value of the on_fail property. When a failure occurs, the
CustomLog action runs a serializer that prepares a log message. The system writes the message to a
specified output location.

290 Chapter 18: Actions

The following table describes the properties of the CustomLog action:

Property Description

run_serializer Determines the serializer that prepares the log message. Define a serializer in this location, or enter
the name of a globally defined serializer.

output Determines the output location. The output property has the following options:
- OutputDataHolder. Writes to a data holder.
- OutputFile. Writes to a file.
- OutputPort. Defines the name of an AdditionalOutputPort where the data is written.
- ResultFile. Writes to the default results file of the transformation.
- StandardErrorLog. Writes to the user log.
Default is StandardErrorLog. For more information about these options, see “Action Subcomponent
Reference” on page 313 and “Failure Handling” on page 379.

For more information about the on_fail property, see “Failure Handling” on page 379.

DateAddICU
The DateAddICU action increments a date.

The following table describes the properties of the DateAddICU action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

input_date Defines the date to be incremented.

input_format Defines a string or data holder that defines the date format, for example, dd/MM/yy. For more
information, see “DateFormatICU” on page 250.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the
name property to identify the component that caused the event.

num_of_days Defines a positive or negative integer or a data holder that contains the number of days to add.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure Handling” on
page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose one of
the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

Action Component Reference 291

Property Description

output Determines the data holder that stores the output date.

phase Determines when the Script processes the component. You can choose one of the following options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

DateDiffICU
The DateDiffICU action computes the difference between two dates.

The following table describes the properties of the DateDiffICU action:

Property Description

date1 Defines a string or data holder that defines the first date.

date2 Defines a string or data holder that defines the second date.

date_format1 Defines a string or data holder that defines the format of the first date, for example, dd/MM/yy. If you
omit the format, the system default is used. For more information, see “DateFormatICU” on page 250.

date_format2 Defines a string or data holder that defines the format of the second date.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the
name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure Handling” on
page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose one of
the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

292 Chapter 18: Actions

Property Description

output Defines the data holder that stores the result.

phase Determines when the Script processes the component. You can choose one of the following options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

DownloadFileToDataHolder
The DownloadFileToDataHolder action downloads a file from a web server and stores its content in a data
holder. The action converts symbols to XML entities.

The following table describes the properties of the DownloadFileToDataHolder action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

file_url Determines a data holder that stores the URL of the file.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure Handling” on page
379.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

output Determines the data holder that stores the downloaded content.

Action Component Reference 293

Property Description

phase Determines when the Script processes the component. You can choose one of the following options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

DumpValues
The DumpValues action is a debugging tool. It writes data to a <DumpValues>...</DumpValues> element.
Define the data holders that you want to dump by nesting them as child components.

The following table describes the properties of the DumpValues action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure Handling” on page
379.

output Determines the data holder that stores the result. You can choose one of the following options:
- OutputFile
- ResultFile
- StandardErrorLog
Default is ResultFile.

phase Determines when the Script processes the component. You can choose one of the following options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

294 Chapter 18: Actions

EnsureCondition
The EnsureCondition action evaluates a Boolean JavaScript expression. If the expression is false, the action
fails.

The following table describes the properties of the EnsureCondition action:

Property Description

condition Defines a JavaScript expression for evaluation. In the expression, refer to the parameters defined
in params with a dollar sign ($) followed by an integer. For example, the following expression
checks whether the first parameter has the value Ron Lehrer:

$1 == "Ron Lehrer"

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

params Defines a list of data holders.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

Standard JavaScript Syntax
The JavaScript processor supports standard JavaScript expressions containing the following features.

• The unary and binary operators:

() + - * / % == != < <= > >= && ||
• The ternary ?: operator.

• The following methods:

charAt
indexOf

Action Component Reference 295

lastIndexOf
length
join
substring
toString

If you apply these methods to a literal having a simple data type, you must enclose the literal in
parentheses, for example:

123.toString(); //Wrong
(123).toString(); //Right

"Hello, World".substring(3,7); //Wrong
("Hello, World").substring(3,7); //Right

• The following functions:

Math.ceil
Math.floor
Math.max
Math.min
Math.pow
Math.sqrt
parseFloat
parseInt

The JavaScript processor does not support features such as the following:

• The unary and binary operators:

++ -- typeof void >> >>> << === !== ~ & | ^
• Assignment operators:

= += -= *= /= >>= >>>= <<= &= |= ^=
• The comma operator (,).
• The values NaN, null, infinity, or -0 (negative 0).

• Data types other than string, number, and boolean.

• The Date object.

• The equalsIgnoreCase function.

JavaScript Extensions
The JavaScript processor implements the following methods that are not defined in standard JavaScript. You
can use these extensions in any location where the Script accepts a JavaScript expression.

Most of the functions are JavaScript implementations of transformers or actions.

extra.sum(number1, number 2, ...)
Returns the sum of the parameters.

extra.allSame(param1, param2, ...)
Returns true if all the parameters have the same value.

lookup.<lookup_name>(key)

This function accesses a global lookup table by name.

In the Script, define a global InlineTable or XMLLookupTable. Then, in a JavaScript expression, you can
access the table. For example, if you define a global InlineTable called USPresidents,
lookup.USPresidents(1) returns George Washington.

For more information, see “LookupTransformer” on page 262.

296 Chapter 18: Actions

extra.formatDate(date, input_format, output_format)
Formats a date or time. For more information, see “DateFormatICU” on page 250.

extra.substitute(text, oldSubstring, newSubstring, useRegex)
Replaces all instances of a substring with another substring. If useRegex is true, the method interprets
oldSubstring as a regular expression.

extra.formatNumber(number, size_of_integer_part, number_of_decimals, sign,
insert_decimal_point, unit_type)

Formats a number. For more information, see “FormatNumber” on page 255.

extra.insertString(text, injections_place, string_to_inject)
Inserts a string into the text. For more information, see “InjectString” on page 261.

extra.formatTransformationStartTime(format)
Outputs the date and/or time at which the transformation started running. For more information, see
“TransformationStartTime” on page 273.

extra.resize(text, size, padding_character, align)
Fits the input text to a specified size, padding or truncating as required. For more information, see
“Resize” on page 269.

extra.dateAdd(date_format, date, days_to_add)
Increments a date by a given number of days. For more information about the date_format, see
“DateFormatICU” on page 250.

extra.dateAddMonths(date_format, date, months_to_add)
Increments a date by a given number of months. For more information about the date_format, see
“DateFormatICU” on page 250.

extra.dateAddYears(date_format, date, years_to_add)
Increments a date by a given number of years. For more information about the date_format, see
“DateFormatICU” on page 250.

extra.dateDiff(date_format1, date1, date_format2, date2)
Computes the difference between two dates. For more information, see “DateDiffICU” on page 292.

extra.createGuid(0)
Generates a GUID identifier. For more information, see “CreateGuid” on page 250. You must supply a
parameter value such as 0.

extra.upper(text), extra.lower(text), extra.capitalize(text)
Changes the text to all upper case, all lower case, or only the first letter capitalized. For more
information, see “ChangeCase” on page 249

extra.rtl2ltr(text)
Reverses a string written in a right-to-left language to left-to-right. For more information, see
“hebrewBidi” on page 259.

extra.trim(text)
Deletes leading and trailing space characters from the text. For more information, see
“RemoveMarginSpace” on page 267.

Action Component Reference 297

ExcludeItems
The ExcludeItems action removes specified values from a multiple-occurrence data holder. The data holder
type must be simple. To exclude specific strings from the data holder, define them as child components. For
more information, see “Multiple-Occurrence Data Holders” on page 189.

The following table describes the properties of the ExcludeItems action:

Property Description

data_holder Defines a multiple-occurrence data holder.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

Map
The Map action copies a value from one data holder to another.

298 Chapter 18: Actions

The following table describes the properties of the Map action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

source Determines the source data holder.

source_default Determines the default source data holder.

target Determines the destination data holder.

transformers Defines a sequence of transformers that modify the value. Do not assign this property if the
source and destination are complex XML elements.

validators Defines a list of validators applied to the source data. For more information, see “Validators” on
page 382.

When you copy a data holder that has a simple data type, the source and destination must have compatible
data types. The action can apply transformers to the copied value.

When you copy a multiple-occurrence data holder that has a simple type, and the action is not located within
an iterating component such as a RepeatingGroup, the action copies all the occurrences of the data holder.

Action Component Reference 299

When you copy a data holder that has a complex type, the source and destination must have identical internal
structures and identical data types. The action copies the nested elements and attributes.

Online Sample
For an online sample of this action, open the project samples\Projects\CopyValue\CopyValue.cmw. The
sample uses a Map action to copy a complex element that contains an attribute and nested elements.

Notify
The Notify action triggers a notification. Use it to insert a warning message in the transformation output.

The following table describes the properties of the Notify action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

notify Defines a notification. You can choose one of the following options:
- MandatoryStructureMissing. A mandatory record does not appear in the input.
- MismatchIDs. The record and subelement IDs partially match.
- StructureBelowMinOccurs. There are fewer matching records of the subelement than defined in

minOccurs.
- StructureExceedsMaxOccurs. There are more matching records of the subelement than defined in

maxOccurs.
- StructureOutOfSequence. The records match the subelements but not in the required sequence.
- UnexpectedRecord. The records match the subelements, but not in the required hierarchy.
- UnrecognizedRecord. No subelement matches any of the record identifiers.
- XsdValidationError. The input does not match the requirements of the schema.
- User-defined Notification or NotificationGroup component. User-defined message.
For more information, see “Notifications” on page 229.

phase Determines when the Script processes the component. You can choose one of the following options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is final.

value Defines a value to assign to the VarNotificationDetails/Value variable. A NotificationHandler can include
the value in its output.

ResetVisitedPages
The ResetVisitedPages action clears the list of visited pages of specified secondary parsers. It allows
multiple visits to the same page, even if reject_recurring_pages is selected. Use this action to post different
input data to the same web page. This action is used with the reject_recurring_pages property of a Parser
component.

300 Chapter 18: Actions

The following table describes the properties of the ResetVisitedPages action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

parsers Defines a list of Parsers. The list of visited pages of each Parser is reset.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

RunMapper
The RunMapper action runs a Mapper as a subcomponent of a Parser, Mapper, or Serializer.

The following table describes the properties of the RunMapper action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

input Defines a data holder that contains XML text on which to run the mapper.
The data holder must have a simple data type such as xs:string. The value of the string can be
XML text of any complexity. For more information about how to run a mapper on a data holder that
has a complex type, see “EmbeddedMapper” on page 338.
If you omit this property, the mapper uses the data holders available in the scope of the action.
For example, if the action is nested in a Parser, the Mapper runs on the output of the Parser. If the
action is within a Group, it runs on the output of the Group.

Action Component Reference 301

Property Description

mapper Defines the Mapper. Select the name of an existing Mapper component or define a Mapper
component at this location of the Script. For more information, see “Mapper Component
Reference” on page 335.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

RunMapplet
The RunMapplet action runs a mapplet. The output of RunMapplet is read into the data holder specified in
the RunMapplet action.

Use the RunMapplet action to perform tasks such as data masking, data quality, data lookup, and other
activities usually related to relational transformation, without the necessity to convert data to relational
format and then back to hierarchical format.

Note: The RunMapplet action only can be used to call passive mapplets.

The output parameters must be specified in the same order as appears in the mapplet target ports.

302 Chapter 18: Actions

The following table describes the properties of the RunMapplet action:

Property Description

inputs Specifies the input values to be passed to the mapplet. The input parameters must be specified in
the same order as they appear in the mapplet source ports.

mapplet_name Indicates the mapplet to be run.
Note: You must first add a reference in the References tab for any mapplet that you want to call with
the RunMapplet action. For more information, see “References” on page 27.

outputs Specifies where to store the output values returned from the mapplet. The output parameters must
be specified in the same order as they appear in the mapplet target ports.
In the OutputLocation parameter, specify the following values:
- data_holder: Specifies where to store the values that the mapplet returns.
- initialization: When you test the transformation, the Data Processor transformation does not run

the mapplet called by the RunMapplet action. You can specify a value to use as a temporary
output string when you test the transformation during design time.

RunParser
The RunParser action runs a secondary Parser. The output of RunParser is appended to the output of the
main component that activated it, such as a Parser or serializer.

Use the RunParser action to follow the links in an HTML file and run a secondary Parser on the link
destinations. In a serializer, you can use it to parse bits of unstructured data in the input.

Note the following difference between the RunParser action and the EmbeddedParser anchor:

• RunParser parses a new source.

• EmbeddedParser parses a section of an existing source.

The following table describes the properties of the RunParser action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use
this property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

exclude_strings Defines the strings that must be absent from the input_source. If a specified string is present,
the RunParser action does not access the source or activate the secondary Parser.

include_strings Defines the strings that must be present in the input_source value. If a specified string is
missing, the RunParser action does not access the source or activate the secondary Parser.

input_source Defines a data holder that contains one of the following objects:
- If input_source_as_text is selected, input_source contains a string.
- If input_source_as_text is cleared, input_source contains the path and file name of the

input document.
Default is the VarLinkURL system variable.

Action Component Reference 303

Property Description

input_source_as_text Determines the type of data in the input_source data holder.
- Selected. input_source contains a text string.
- Cleared. input_source contains a file path.
Default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

next_Parser Defines the name of the Parser to run. A recursive call to the same Parser is permitted.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on
page 379.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

pre_processor Defines a document processor to apply to the source after the document processor defined in
the associated AdditionalInputPort > pre_processor.

remark A user-defined comment that describes the purpose or action of the component.

retries Defines the number of times to retry if the request fails. Default is 0.

seconds_to_wait Defines the interval in seconds between retries. Default is 60.

Example
An HTML file has a link to a second file. A Content anchor stores the file path of the link destination in the
VarLinkURL system variable. The RunParser action accesses the destination file and runs a secondary Parser
on it.

In another example, the main Parser contains an Alternatives anchor that selects a secondary Parser
according to text in the source document. For more information, see the “Alternatives” on page 203.

304 Chapter 18: Actions

RunPCWebService
The RunPCWebService action runs a _PowerCenter mapplet from within a Data Processor transformation.
The output of RunPCWebService is read into the data holder specified in the RunPCWebService action.

Note: The RunPCWebService action is used to call passive mapplets.

The output parameters must be specified in the same order as appears in the mapplet target ports.

The following table describes the properties of the RunPCWebService action:

Property Description

wsdl Specify the WSDL for the web service to be run.

operationName Indicates the operation to be run. Select one operation.

inputs Specifies the input values to be passed to the mapplet. The input parameters must be specified in
the same order as they appear in the mapplet source ports.

outputs Specifies where to store the output values returned from the mapplet. The output parameters must
be specified in the same order as they appear in the mapplet target ports.

RunSerializer
The RunSerializer action runs a Serializer as a subcomponent of a Parser, Mapper, or Serializer. The output
of the serializer is stored in a data holder.

The following table describes the properties of the RunSerializer action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

input Defines a data holder that contains XML text on which the Serializer runs.
The data holder must have a simple data type such as xs:string. The value of the string can be
XML text of any complexity. For more information about how to run a Serializer on a data holder
that has a complex type, see “EmbeddedSerializer” on page 326.
If you omit this property, the Serializer uses the data holders available in the scope of the action.
For example, if the action is nested in a Parser, the Serializer runs on the output of the parser. If
the action is within a Group, it runs on the output of the Group.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

Action Component Reference 305

Property Description

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

output Defines a data holder for the Serializer output.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

serializer Defines a Serializer. Select the name of an existing Serializer component or define a Serializer at
this location in the Script. For more information, see “Serializer Component Reference” on page 320.

Online Sample
For an online sample of this action, open the project samples\Projects\RunSerializer
\RunSerializer.cmw.

To observe how the sample works, set MainParser as the startup component and run it. MainParser contains
a RepeatingGroup that parses pairs of names and stores them in variables. After each iteration, the
RepeatingGroup executes a RunSerializer action that concatenates the variables with some predefined
text. The action stores its output in an XML element that is added to the Parser output.

RunXMap
The RunXMap action runs an XMap object as a subcomponent of a parser, a mapper, or a serializer.

306 Chapter 18: Actions

The following table describes the properties of the RunXMap action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

input The input for the XMap object. You can choose one of the following options:
- Data Holder. Use a complex type that must match the XMap input type.
- XML string. The XML string is the input, or a simple type data holder such as xs:string. The XML

root type must match the XMap input type.
If you do not use this property, the XMap object uses its default input.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

output A data holder of a complex type that must match the XMap ouput type.
If you omit this property, the XMap object writes to its default output definiton.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

xmap Name of the XMap. You can choose the name of an existing XMap object.

SetValue
The SetValue action places predefined content into a data holder. If the data holder is a single-occurrence
data holder, existing content is replaced. If the data holder is a multiple-occurrence data holder, the defined
content is appended to the end.

Action Component Reference 307

The following table describes the properties of the SetValue action:

Property Description

data_holder Defines a data holder that receives the output.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

quote Defines a string for the content of the data holder.

remark A user-defined comment that describes the purpose or action of the component.

transformers Defines a list of transformers that are applied to the content before it is saved in the data holder.

Sort
The Sort action sorts the occurrences of a multiple-occurrence data holder. The output the original content of
the data holder. The sort is case sensitive.

If you run the action on an XML element that contains attributes or nested elements, you can use them as
sort keys.

308 Chapter 18: Actions

The following table describes the properties of the Sort action:

Property Description

by_fields Defines a list of sort keys in decreasing order of precedence. For each field, select the data
holder and an ascending or descending sort. You can select the multiple-occurrence data
holder itself, or any of its nested elements or attributes. To sort numerically, a sort key must
have a numerical data type such as xs:integer.

disabled Determines whether the Script ignores the component and all of the child components. Use
this property to test, debug, and modify a Script. You can choose one of the following
options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

recurring_element Defines a multiple-occurrence data holder to be sorted.

remark A user-defined comment that describes the purpose or action of the component.

Limitation
You cannot use the Sort action if a Key is defined on the multiple-occurrence data holder. For more
information, see “Overview of Locators, Keys, and Indexing” on page 342.

ValidateValue
The ValidateValue action validates XML data according to a set of rules defined in a Validation Rules object.
If the data violates the rules, the action saves a validation report in a data holder.

The input of the action is a data holder. If the data holder is the root of an XML branch, the action analyzes
the entire branch.

Action Component Reference 309

The following table describes the properties of the ValidateValue action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

errors_found Defines a data holder that counts the number of validation rule violations in the input.

errors_output Defines a data holder where the action stores the XML validation error report. If the data holder has
the type xs:string, the output is a string containing XML tags. If the data holder has the type
cde:validationErrors, the output is a structure containing nested data holders.

input Defines the input data holder that the action analyzes for conformity with the Validation Rules.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the
name property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose one of
the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

phase Determines when the Script processes the component. You can choose one of the following options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.

remark A user-defined comment that describes the purpose or action of the component.

WriteValue
The WriteValue action writes the value of a data holder to a location such as a file or to a string-type data
holder.

If the input data holder is an XML element, the action writes both the element and any nested elements and
attributes.

The following table describes the properties of the WriteValue action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

input Defines the data holder to write from.

310 Chapter 18: Actions

Property Description

name A descriptive label for the component. This label appears in the log file and the Events view. Use the
name property to identify the component that caused the event.

no_tags Determines whether the result is surrounded by XML tags. You can choose one of the following
options:
- Selected. XML tags are omitted. This is appropriate only if input is a simple data holder, containing

no nested elements or attributes.
- Cleared. The result is surrounded by XML tags. This is the default.
Default is cleared.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure Handling” on
page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose one of
the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

output Defines the output location. You can choose one of the following options:
- OutputDataHolder. Writes to a data holder.
- OutputFile. Writes to a file. Select Synchronize to lock the file so as to append data to the same

file.
- OutputPort. Defines the name of an AdditionalOutputPort where the data is written.
- ResultFile. Writes to the default results file of the transformation.
- StandardErrorLog. Writes to the user log. For more information, see “Failure Handling” on page 379.
Default is ResultFile. For more information about these options, see “Action Subcomponent
Reference” on page 313.

phase Determines when the Script processes the component. You can choose one of the following options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

transformers Defines a list of transformers that modify the value before writing. The input to the transformers is the
complete input data holder, including XML tags.

Online Sample
For an online sample of this action, open the project samples\Projects\Splitter\Splitter.cmw.

The sample demonstrates how to split a file into two files. A Parser uses a RepeatingGroup to retrieve the
records of an HL7 file. It uses a Map action to create unique filenames for each record, and a WriteValue
action to write the records to the files. The output files, MyOutput1.txt and MyOutput2.txt, are stored in the
Results folder of the project.

Action Component Reference 311

Note: You can use a streamer to split large inputs. For more information, see “Streamers Overview” on page
358.

XSLTMap
The XSLTMap action runs an XSLT transformation. The input and output are branches of an XML document.
They can be the output of a Parser or the input of a Serializer.

The following table describes the properties of the XSLTMap action:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

input Defines a data holder that contains the XML element to transform.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

output Defines a data holder to store the output.

phase Determines when the Script processes the component. You can choose one of the following
options:
- initial. The Script processes the component during the initial phase.
- main. The Script processes the component during the main phase.
- final. The Script processes the component during the final phase.
For more information, see “How a Parser Searches for Anchors” on page 196.
Default is main.

remark A user-defined comment that describes the purpose or action of the component.

xslt_file Defines the XSLT file.

312 Chapter 18: Actions

Example
Suppose that the following XML is the result of a Parser:

<Person>
 <First>Ron</First>
 <Last>Lehrer</Last>
</Person>

With an appropriate XSLT file, you can use the XSLTMap action to convert this to:

<Person Name="Lehrer, Ron" />

Action Subcomponent Reference
Action subcomponents serve as the values of certain properties of actions.

OutputDataHolder
The OutputDataHolder subcomponent directs the output to a data holder. It is used in the output property of
the WriteValue action.

The following table describes the properties of the OutputDataHolder subcomponent:

Property Description

data_holder Defines the output data holder.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

transformers Defines a sequence of transformers that modify the stream before writing.

OutputFile
The OutputFile subcomponent directs the output to a file. It is used in the output property of the DumpValues
and WriteValue actions.

The following table describes the properties of the OutputFile subcomponent:

Property Description

append Determines whether the data is appended to the existing content of the file. You can choose one of the
following options:
- Selected. The data is appended to the existing content.
- Cleared. The data overwrites the existing content.
Default is cleared.

file Defines a string or data holder that defines the path and file name. The path can be absolute or relative. If
the path is relative, the Script resolves the path relative to the output folder of the transformation.

Action Subcomponent Reference 313

Property Description

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

ResultFile
The ResultFile subcomponent specifies that the output is the normal output file of a Data Processor
transformation. It is used in the DumpValues and WriteValue actions.

StandardErrorLog
The StandardErrorLog subcomponent specifies that the output is the user log.

314 Chapter 18: Actions

C h a p t e r 1 9

Serializers
This chapter includes the following topics:

• Serializers Overview, 315

• Serialization Anchors, 318

• Standard Serializer Properties, 320

• Serializer Component Reference, 320

• Serialization Anchor Component Reference, 321

Serializers Overview
A Serializer converts an XML or JSON file to an output document in any format. Serialization is the opposite
of parsing. For example, the output of a Serializer can be a text document, an HTML document, or even
another XML document.

You can create a Serializer by the following methods:

• Invert the configuration of an existing Parser

• Edit the Script and inserting a Serializer component

You can combine also invert a Parser and edit the Script of the resulting Serializer.

It is usually easier to create a Serializer than a Parser because the XML or JSON input is completely
structured. The structure makes it easy to identify the required data and write it, in a sequential procedure, to
the output. A Parser, in contrast, may need to process unstructured or semi-structured input, a task that is
often complex.

The main components nested in a Serializer are serialization anchors. The function of the serialization
anchors is to identify the XML or JSON data and write it to the output. Serialization anchors are analogous to
the anchors in a Parser, except that they work in the opposite direction.

Controlling How the Create Serializer Command Works
When you run the Create Serializer command, the Developer tool converts the Content anchors of the Parser
to ContentSerializer serialization anchors.

By default, the command converts all other text in the example source to StringSerializer serialization
anchors. If the other text is boilerplate content, the output of the Serializer contains all the boilerplate that
was in the original example source.

315

For example, suppose the Parser runs on tab-delimited source documents having the following structure:

Name (first and last):<tab>Ron Lehrer
Assume that the anchors are defined in the following way:

Source text Anchor

Name Marker

(first and last):<tab> Not marked as an anchor

Ron Lehrer Content

The XML output of the Parser is:

<FullName>Ron Lehrer<FullName>
Now, generate a Serializer from this Parser, and run the Serializer on the following input:

<FullName>Larissa Chan<FullName>
The output of the Serializer is:

Name (first and last):<tab>Larissa Chan

Serialization Mode
The example source might contain text that you do not want in the Serializer output. In that case, you can
modify the behavior of the Create Serializer command in a way that does not generate the StringSerializer
serialization anchors.

To do this, set the serialization_mode property of the Parser component. The possible values of the
serialization_mode are explained in the following table:

Value Description

Full The Create Serializer command copies the non-XML text to the Serializer configuration. This is the default
behavior.

Outline The Create Serializer command copies only the delimiters of the non-XML text to the Serializer
configuration.
Under the Outline option, you can select the use_markers option. This causes the Create Serializer
command to copy the content of the Marker anchors but only the delimiters of other non-XML text.

316 Chapter 19: Serializers

The following table illustrates the results of the serialization_mode settings:

serialization_mode Behavior Sample Serializer
Output

outline
With use_markers
cleared

The Create Serializer command converts:
- Content anchors to ContentSerializer serialization anchors
- The delimiters of other text in the example source to

StringSerializer serialization anchors

<tab>Larissa Chan

outline
With use_markers
selected

The Create Serializer command converts:
- Content anchors to ContentSerializer serialization anchors
- The complete text of Marker anchors to StringSerializer

serialization anchors
- The delimiters of other text in the example source to
StringSerializer serialization anchors

Name<tab>Larissa Chan

full The Create Serializer command converts:
- Content anchors to ContentSerializer serialization anchors
- All other text in the example source to StringSerializer

serialization anchors

Name (first and
last):<tab>Larissa Chan

Troubleshooting an Auto-Generated Serializer
Often, you can use an automatically generated Serializer directly. If required, you can edit the auto-generated
Serializer to correct any limitations or problems that you find in it.

The following paragraphs list some typical circumstances under which you need to edit the Serializer, and the
suggested editing steps.

Root Tag
In the XML Generation tab of the Data Processor transformation settings, you can configure the Script to
wrap a root element around the root element defined in the output schema.

If you then use the output XML as the input of an auto-generated Serializer, you must set the root_tag
property of the Serializer to the name of the root element defined in the XML Generation settings.

Variables
If the Parser uses a variable to store intermediate results, an auto-generated Serializer may fail. To solve the
problem, review the Serializer logic, and remove the variable if necessary.

Additional Components
The Create Serializer command inverts the anchors of a Parser. It does not invert components such as
document processors, transformers, or actions.

For example, suppose that a Parser uses a PdfToTxt_4 document processor to convert PDF source
documents to text. The Parser contains anchors that transform the text to XML.

The auto-generated Serializer transforms the XML back to text. It does not convert the text to PDF. To obtain
PDF output, edit the Serializer and insert an XmlToDocument processor.

In another example, suppose that a Parser uses an AddString transformer to add a prefix to the output of a
Content anchor. The auto-generated Serializer does not remove the prefix. If you need to remove it, you can
insert a component such as a Replace transformer.

Serializers Overview 317

Creating a Serializer by Editing the Script
1. At the global level of the Script, double-click the ellipsis (...) symbol, type a name for the Serializer, and

then press ENTER.

2. To the right of the equals sign, double-click the ellipsis, select a Serializer, and then press ENTER.

3. Expand the tree under the Serializer component. Assign its properties as required.

4. Add a schema that defines the XML syntax of the Serializer input.

5. Under the contains line, add a sequence of nested serialization anchors and actions.

6. Run and test the Serializer and modify the Script as required.

Online Sample
For an example of a Serializer that we created by editing the Script, open the project samples\Projects
\ManualSerializer\ManualSerializer.cmw. You can run the Serializer on the input file Example XML of
Person.xml.

Creating a Serializer within a RunSerializer Action
In addition to defining a Serializer at the global level, it is possible to define a Serializer within a
RunSerializer action.

Serialization Anchors
Serialization anchors are the main components you use in a Serializer. These are analogous to the anchors
that are used in a Parser, except that they work in the opposite direction. Anchors read data from locations in
the source document and write the data to XML. Serialization anchors read XML data and write the data to
locations in the output document.

The most important serialization anchors are ContentSerializer and StringSerializer.

• A ContentSerializer writes the content of a specified data holder to the output document. It is the inverse
of a Content anchor, which reads content from a source document.

• A StringSerializer writes a predefined string to the output. It is the inverse of a Marker anchor, which finds
a predefined string in a source document.

318 Chapter 19: Serializers

Example of Serialization Anchors
The following example illustrates three serialization anchors:

The first StringSerializer instructs the Serializer to write the following text in the output document:

First Name:<tab>
The ContentSerializer writes the value of the Person/Name/First element to the output.

The second StringSerializer writes the string:

<newline>Last Name:<tab>
Note: The IntelliScript editor represents the newline and tab with ASCII codes and «, respectively.

Now, assume that you run the Serializer on the following XML:

<Person gender="M">
 <Name>
 <First>Ron</First>
 <Last>Lehrer</Last>
 </Name>
 <Id>547329876</Id>
 <Age>27</Age>
</Person>

From the illustrated serialization anchors, the output is:

First Name<tab>Ron<newline>Last Name<tab>
The display of this text is:

First Name: Ron
Last Name:

The Serializer contains additional serialization anchors, which are not shown in the above illustration. The
complete output of the Serializer is:

First Name: Ron
Last Name: Lehrer
Id: 547329876
Age: 27
Gender: M

Sequence of Serialization Anchors
A Serializer executes the serialization anchors in the sequence of their definitions.

Serialization anchors write data sequentially, always appending it to the end of the output document. You can
alter the order by changing the sequence in the Serializer configuration.

You can intersperse actions with the serialization anchors. The actions are executed as part of the sequence.

Serialization Anchors 319

Standard Serializer Properties
The following table describes standard properties of the Serializer component and in many serialization
anchors:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the
name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components. For more
information, see “Notifications” on page 398.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure Handling” on
page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose one of
the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

remark A user-defined comment that describes the purpose or action of the component.

Serializer Component Reference
A Serializer converts XML documents to output documents in any format. It uses serialization anchors to
identify and manipulate data in the source.

Serializer
A Serializer converts XML documents to output documents.

320 Chapter 19: Serializers

The following table describes the properties of the Serializer component:

Property Description

default_transformers Defines a list of transformers that the Serializer applies to all serialized data.

example_source Defines a sample XML source document. When you run the Serializer in the Developer
tool, it operates on the sample document. You can choose one of the following options:
- Empty. You are prompted for a source document when you run the Serializer. Default.
- InputPort. Defines an input port.
- LocalFile. Defines a file on the local file system.
- Text. Defines a string.
- URL. Defines a URL.

name A descriptive label for the component. This label appears in the log file and the Events
view. Use the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested
components. For more information, see “Notifications” on page 398.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

output_file_extension Defines the file extension of the generated output file. Default is ".txt".

remark A user-defined comment that describes the purpose or action of the component.

root_tag Defines the name of a root XML element that is not in the input schema for the
Serializer.
Note: If the input of the Serializer in XML from another component in the Script, and the
Data Processor transformation settings add a wrapper root element around the output,
you must set this property to the name of the wrapper root element.

source Defines a data holder that contains the source for the serialization. For more
information, see “Overview of Locators, Keys, and Indexing” on page 342.

target Defines a data holder that contains the result of the serialization. For more information,
see “Overview of Locators, Keys, and Indexing” on page 342.

validate_source_document Determines the level of source XML validation that the Serializer performs. You can
choose one of the following options:
- Partial. Permits some deviations from the schema. Default.
- Strict. Enforces the schema strictly.

Serialization Anchor Component Reference
Serialization anchors in a Serializer identify and manipulate data in the source document.

Serialization Anchor Component Reference 321

AlternativeSerializers
The AlternativeSerializers serialization anchor defines a set of alternative serialization anchors that are
nested below the parent Serializer. Define a criterion for the alternative that the Serializer should accept. Only
the accepted alternative affects the Serializer output. The other serialization anchors have no effect on the
output.

The following table describes the properties of the AlternativeSerializers serialization anchor:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure Handling” on page
379.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

remark A user-defined comment that describes the purpose or action of the component.

selector Defines the criterion for selecting one of the alternative serialization anchors. You can choose one of the
following options:
- ScriptOrder. The Serializer tests the nested serialization anchors in the order that they are defined in the

Script. It accepts the first one that succeeds. If all the nested serialization anchors fail, the
AlternativeSerializers component fails.

- NameSwitch. The Serializer searches for the nested serialization anchor whose name property is
specified in a data holder. It ignores the other nested serialization anchors. If the named serialization
anchor fails, the AlternativeSerializers component fails.

Default is ScriptOrder.

Example
The input XML might contain a Product element or a Service element, but not both. You want to serialize
whichever element is in the input.

Define an AlternativeSerializers serialization anchor and set its selector property to ScriptOrder.

Under the AlternativeSerializers component, nest two ContentSerializer serialization anchors. Configure one
of them to process the Product element and the other to process Service.

322 Chapter 19: Serializers

ContentSerializer
The ContentSerializer serialization anchor writes the serialized data to the output document.

The following table describes the properties of the ContentSerializer serialization anchor:

Property Description

allow_empty_values Determines whether data_holder can be empty. You can choose one of the following
options:
- Selected. The data_holder can be empty.
- Cleared. The data_holder cannot be empty, otherwise the ContentSerializer fails.
Default is cleared.

closing_str Defines the string that the anchor writes after the data_holder.

data_holder Defines the data holder that contains the serialized data.

disabled Determines whether the Script ignores the component and all of the child components.
Use this property to test, debug, and modify a Script. You can choose one of the
following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

ignore_default_transformers Determines whether the default transformers of the Serializer are applied to the
serialized data. You can choose one of the following options:
- Selected. The default transformers of the Serializer are not applied.
- Cleared. The default transformers of the Serializer are applied.
Default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events
view. Use the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see
“Failure Handling” on page 379.

opening_str Defines the string that the anchor writes before the contents of the data_holder.

optional Determines whether a component failure causes the parent component to fail. You can
choose one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure
Handling” on page 379.

remark A user-defined comment that describes the purpose or action of the component.

transformers Defines a list of transformers that are applied to the serialized data.

Serialization Anchor Component Reference 323

DelimitedSectionsSerializer
The DelimitedSectionsSerializer serialization anchor processes sections of data. The sections of the output
are separated by a defined separator string.

Under the DelimitedSectionsSerializer, nest other serialization anchors. Each nested serialization anchor
outputs a single section.

The following table describes the properties of the DelimitedSectionsSerializer serialization anchor:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components.
For more information, see “Notifications” on page 398.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

separator Defines a Serializer that defines the separator string. You can choose one of the following
options:
- AlternativeSerializers
- ContentSerializer
- EmbeddedSerializer
- GroupSerializer
- RepeatingGroupSerializer
- StringSerializer
- User-defined Serializer
Default is StringSerializer.

324 Chapter 19: Serializers

Property Description

separator_position Defines the position of the separator relative to the sections. You can choose one of the
following options:
- after. Writes a separator after each section, including the first sections. For example,
1|2|3|4|

- around. Writes separators before and after each section, including the first sections. For
example,
|1|2|3|4|

- before. Write a separator before each section, including the first sections. For example,
|1|2|3|4

- between. Writes a separator between the successive sections, but not before the first section
and not after the last section. For example,
1|2|3|4

Default is before.

using_placeholders Determines whether the DelimitedSectionsSerializer writes the separator of an optional section
that is missing from the XML input. You can choose one of the following options:
- always. Always writes the separator of a missing section. For example,
|1||3|

- never. Never writes the separator of a missing section. For example,
|1|3

- when necessary. Always writes the separator of a missing internal section. Never writes the
separator of a missing terminal section. For example,
|1||3

Default is when necessary.

Example
The XML input contains an employee resume. You want to write the data to an output text document in the
following format:

Jane Palmer
Employee ID 123456

Professional Experience
...

Education
...

Define a DelimitedSectionsSerializer with the line of hyphens as its separator. Because you want a line of
hyphens before each section, set separator_position to before.

Within the DelimitedSectionsSerializer, nest three GroupSerializer components. The first GroupSerializer
writes the Jane Palmer section, the second writes the Professional Experience section, and so forth.

Optional Sections
In this example, suppose that the second section, Professional Experience, is missing from some input
XML documents, but you want to write its separator to the output, like this:

Jane Palmer
Employee ID 123456

Education
...

Serialization Anchor Component Reference 325

To support this situation, configure the DelimitedSectionsSerializer in the following way:

• In the second GroupSerializer, select the optional property. This means that if the GroupSerializer fails, it
should not cause the DelimitedSectionsSerializer to fail.

• In the DelimitedSectionsSerializer, set using_placeholders to always. This means to write the separator
of an optional section, even if the section itself is missing.

Alternatively, suppose that if the Professional Experience section is missing, you do not want to write its
separator:

Jane Palmer
Employee ID 123456

Education
...

In this case, configure the DelimitedSectionsSerializer as follows:

• In the second GroupSerializer, select the optional property.

• In the DelimitedSectionsSerializer, set using_placeholders to never. This means not to write the
separator of a missing section.

EmbeddedSerializer
The EmbeddedSerializer serialization anchor activates a secondary Serializer, which writes its output in the
same output document.

The following table describes the properties of the EmbeddedSerializer serialization anchor:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use
this property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on
page 379.

remark A user-defined comment that describes the purpose or action of the component.

326 Chapter 19: Serializers

Property Description

schema_connections Connects the data holders that are referenced in the secondary Serializer to the data holders
that are referenced in the parent Serializer. The property contains a list of Connect
subcomponents that define the correspondences. For more information, see “Connect” on page
237.
If all the data holders in the main and secondary Serializers are identical, you can omit this
property. If there are any differences between the data holders, you must connect the data
holders explicitly, even the ones that are identical.

Serializer Defines the name of a secondary Serializer that is defined at the global level of the Script.

Example
The XML input is a family tree. The input contains Person elements, which are recursively nested as shown:

<Person> <!-- Parent -->
 ...
 <Person> <!-- Child -->
 ...
 <Person> <!-- Grandchild -->
 ...
 </Person>
 </Person>
</Person>

In a Serializer, an EmbeddedSerializer component can call itself recursively until all levels of nesting are
exhausted.

In this example, the schema_connections property connects Person to Person/Person. This instructs the
secondary instance of the serializer to process a nested level of the input. When the two Person elements
have the same data type, it is sufficient to connect just the parent element (Person), and not the nested
elements (Person/*s/Name, Person/*s/BirthDate, etc.)

GroupSerializer
The GroupSerializer serialization anchor binds its nested serialization anchors together. You can set
properties of the GroupSerializer that affect the members of the group.

The following table describes the properties of the GroupSerializer serialization anchor:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components.
For more information, see “Notifications” on page 398.

Serialization Anchor Component Reference 327

Property Description

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

source Defines a data holder that contains the source for the serialization. For more information, see
“Overview of Validators, Notifiers, and Failure Handling” on page 378.

target Defines a data holder that contains the result of the serialization. For more information, see
“Overview of Validators, Notifiers, and Failure Handling” on page 378.

RepeatingGroupSerializer
The RepeatingGroupSerializer serialization anchor writes a repetitive structure to the output document.

Use a RepeatingGroupSerializer when the XML data contains a multiple-occurrence data holder. It iterates
over the occurrences of the data holder and outputs the data. For more information, see “Multiple-Occurrence
Data Holders” on page 189.

Under the RepeatingGroupSerializer, nest serialization anchors that process and output each occurrence of
the data holder. You can define a separator that the RepeatingGroupSerializer writes to the output between
the iterations.

The following table describes the properties of the RepeatingGroupSerializer serialization anchor:

Property Description

count Defines the number of iterations to run. If this property is blank, the iterations continue until
the input is exhausted.

current_iteration Defines a data holder where the RepeatingGroupSerializer outputs the number of the current
iteration. You can use a ContentSerializer to write the number to the output.

disabled Determines whether the Script ignores the component and all of the child components. Use
this property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

328 Chapter 19: Serializers

Property Description

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components.
For more information, see “Notifications” on page 398.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

on_iteration_fail Determines the action when an iteration fails. You can choose one of the following options:
- Cleared. No action.
- CustomLog. Writes to the user log.
- LogError. Writes an error message to the Engine log.
- LogInfo. Writes an information message to the Engine log.
- LogWarning. Writes a warning message to the Engine log.
- NotifyFailure. Triggers a notification.
Use on_iteration_fail to write an entry when a single iteration fails. Use the on_fail property to
write an entry when the entire RepeatingGroupSerializer fails. For more information, see
“Failure Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can
choose one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on
page 379.

remark A user-defined comment that describes the purpose or action of the component.

separator Defines a serialization anchor that defines the separator string. You can choose one of the
following options:
- AlternativeSerializers
- ContentSerializer
- EmbeddedSerializer
- GroupSerializer
- RepeatingGroupSerializer
- StringSerializer
- User-defined Serializer
Default is blank.

Serialization Anchor Component Reference 329

Property Description

separator_position Defines the position of the separator relative to the sections. You can choose one of the
following options:
- after. Writes a separator after each section, including the first sections. For example,
1|2|3|4|

- around. Writes separators before and after each section, including the first sections. For
example,
|1|2|3|4|

- before. Write a separator before each section, including the first sections. For example,
|1|2|3|4

- between. Writes a separator between the successive sections, but not before the first
section and not after the last section. For example,
1|2|3|4

Default is before.

skip_failed_iterations Determines whether failed iterations are skipped. You can choose one of the following
options:
- Selected. RepeatingGroup skips over a failed iteration and proceeds with the next iteration.

If an iteration succeeds, the RepeatingGroup succeeds.
- Cleared. RepeatingGroup fails if any iteration fails.
The skip_failed_iterations property has an effect only if separator is defined.
Default is selected.

source Defines a data holder that contains the source for the serialization. For more information, see
“Overview of Validators, Notifiers, and Failure Handling” on page 378.

target Defines a data holder that contains the result of the serialization. For more information, see
“Overview of Validators, Notifiers, and Failure Handling” on page 378.

Example
The XML input contains the following structure:

<Persons>
 <Person>
 <Name>John</Name>
 <Age>35</Age>
 </Person>
 <Person>
 <Name>Larissa</Name>
 <Age>42</Age>
 </Person>
 ...
</Persons>

A RepeatingGroupSerializer, using a newline character as a separator, can output this data to:

John 35
Larissa 42

You can iterate over several multiple-occurrence data holders in parallel. For example, you can iterate over a
list of men and a list of women, and output a list of married couples. To do this, insert a ContentSerializer
within the repeating group for each data holder.

StringSerializer
The StringSerializer serialization anchor writes a predefined string to the output document.

330 Chapter 19: Serializers

The following table describes the properties of the StringSerializer serialization anchor:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

remark A user-defined comment that describes the purpose or action of the component.

str Defines the string that the Serializer writes to the output.

Serialization Anchor Component Reference 331

C h a p t e r 2 0

Mappers
This chapter includes the following topics:

• Creating a Mapper, 332

• Components Nested within a Mapper, 332

• Mapper Example, 333

• Standard Mapper Properties, 334

• Mapper Component Reference, 335

• Mapper Anchor Component Reference, 336

Creating a Mapper
1. Add input and output schemas to the schema object, and then reference the schemas in the Data

Processor transformation.

2. At the global level of the Script, add a Mapper component.

3. Assign the source and target properties of the Mapper to the input and output elements of the Mapper,
respectively.

4. Assign the example_source property to a sample XML input document.

As you add components to the Mapper, the Developer tool color-codes the corresponding locations in
the example source. The colors can help you confirm that the components are defined correctly.

5. Edit the other properties of the Mapper as required.

6. Within the Mapper, nest a sequence of Map actions, Mapper anchors, and any other required
components.

7. Test the Mapper and modify the Script.

Components Nested within a Mapper
Within a Mapper, you can nest the following components:

• Any number of Map actions. The actions retrieve a data holder from the output and write the content to the
output.

332

• Optionally, any number of Mapper anchors. For more information, see the “Mapper Anchor Component
Reference” on page 336.

• Optionally, any number of additional actions.

The Map actions and the Mapper anchors can be in any sequence. You can also insert other actions in the
sequence.

Notice that a Mapper uses Map actions rather than Mapper anchors to write to the output XML. This may
seem a little different from Parsers and Serializers, where the output is created by anchors and serialization
anchors, respectively. Actually, this is just a terminology issue. The Map action could have been defined as a
Mapper anchor. It is defined as an action because it is useful in other circumstances, unrelated to Mappers.

Mapper Example
To illustrate the Mapper configuration, we present a simple example.

Source XML
The input of the Mapper is an XML document containing a list of personal names and their associated ID
numbers.

<Persons>
 <Person ID="10">Bob</Person>
 <Person ID="17">Larissa</Person>
 <Person ID="13">Marie</Person>
</Persons>

Output XML
The desired output of the Mapper is an XML list of the names and ID numbers, with no association between
them.

<SummaryData>
 <Names>
 <Name>Bob</Name>
 <Name>Larissa</Name>
 <Name>Marie</Name>
 </Names>
 <IDs>
 <ID>10</ID>
 <ID>17</ID>
 <ID>13</ID>
 </IDs>
</SummaryData>

Mapper Example 333

Mapper Configuration
The following Mapper configuration performs the desired transformation:

The RepeatingGroupMapping iterates over the Person elements of the input. It uses Map actions to write the
data to the Name and ID elements of the output.

Standard Mapper Properties
The following table describes standard properties in the Mapper component and in many Mapper anchors:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the
name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components. For more
information, see “Notifications” on page 398.

334 Chapter 20: Mappers

Property Description

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure Handling” on
page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose one of
the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

remark A user-defined comment that describes the purpose or action of the component.

Mapper Component Reference
A Mapper reads an XML source document and converts it to another XML document.

Mapper
A Mapper performs XML-to-XML transformations. It converts a source XML document to an output document
that has a different XML structure.

The following table describes the properties of the Mapper component:

Property Description

example_source Defines a sample XML source document. When you run the Mapper in the Developer tool,
it operates on the sample document. You can choose one of the following options:
- Empty. You are prompted for a source document when you run the Script.
- InputPort. Defines an input port.
- LocalFile. Defines a file on the local filesystem.
- Text. Defines a string.
- URL. Defines a URL.
Default is empty.

name A descriptive label for the component. This label appears in the log file and the Events
view. Use the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested
components. For more information, see “Notifications” on page 398.

Mapper Component Reference 335

Property Description

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

remark A user-defined comment that describes the purpose or action of the component.

root_tag Defines the name of a root XML element that is not defined in the schema.
For example, if the top-level element of the schema is Person, but the XML input nests
Person in an element called InputWrapper, set root_tag to InputWrapper.

source Defines a locator component that defines an XML data holder. The data holder contains
the root of the XML source for the mapping. For more information, see “Overview of
Locators, Keys, and Indexing” on page 342.

target Defines a locator component that defines an XML data holder. The data holder contains
the root of the output XML for the mapping. For more information, see “Overview of
Locators, Keys, and Indexing” on page 342.

validate_source_document Determines the level of source XML validation that the serializer performs. You can
choose one of the following options:
- Partial. Permits some deviations from the schema.
- Strict. Enforces the schema strictly.
Default is Partial.

You must use the source and target properties to identify the root elements of the XML documents. For
example, if the document element of the source is Persons, and the document element of the output is
SummaryData, set the source and target as follows:

Mapper Anchor Component Reference
Mapper anchors in a Mapper identify and manipulate data in an XML document.

336 Chapter 20: Mappers

AlternativeMappings
The AlternativeMappings Mapper anchor defines a set of alternative Mapper anchors. Define a criterion for
selecting one alternative. Only the accepted alternative affects the output.

The following table describes the properties of the AlternativeMappings Mapper anchor:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure Handling” on page
379.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

remark A user-defined comment that describes the purpose or action of the component.

selector Determines the criterion for selecting one alternative Mapper. You can choose one of the following
options:
- ScriptOrder. The Script tests the nested Mapper anchors in the sequence that they are defined in the

Script. It accepts the first one that succeeds. If all the nested Mapper anchors fail, the
AlternativeMappings component fails.

- NameSwitch. The Script searches for the nested Mapper anchor whose name property is specified in a
data holder. It ignores the other nested Mapper anchors. If the named Mapper anchor fails, the
AlternativeMappings component fails.

Default is ScriptOrder.

Example
The input XML can contain a Product element or a Service element, but not both. You wish to process
whichever element is in the input.

Define an AlternativeMappings Mapper anchor, and set its selector property to ScriptOrder.

Within the AlternativeMappings, nest two Map actions. Configure one of them to process the Product
element and the other to process Service.

Mapper Anchor Component Reference 337

EmbeddedMapper
The EmbeddedMapper Mapper anchor activates a secondary Mapper, which stores its output in the same
output document.

The following table describes the properties of the EmbeddedMapper Mapper anchor:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

Mapper Defines the name of the secondary Mapper.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

schema_connection
s

Connects the data holders that are referenced in the secondary Mapper to the data holders that
are referenced in the parent Mapper. The property contains a list of Connect subcomponents
that define the correspondences. For more information, see “Connect” on page 237.
If all the data holders in the main and secondary Mappers are identical, you can omit this
property. If there are any differences between the data holders, you must connect the data
holders explicitly.

Example
The XML input is a family tree. The input contains Person elements that are recursively nested as shown:

<Person> <!-- Parent -->
 ...
 <Person> <!-- Child -->
 ...
 <Person> <!-- Grandchild -->
 ...
 </Person>
 </Person>
</Person>

338 Chapter 20: Mappers

A Mapper can use an EmbeddedMapper component to call itself recursively until all levels of nesting are
exhausted.

In this example, Person is connected to Person/Person. This instructs the secondary instance of the Mapper
to process a nested level of the input. When the two Person elements have the same data type, it is sufficient
to connect just the parent element (Person), and not the nested elements (Person/*s/Name, Person/*s/
BirthDate, etc.)

GroupMapping
The GroupMapping Mapper anchor binds its nested Mapper anchors and actions together. You can set
properties of the GroupMapping that affect the members of the group.

The following table describes the properties of the GroupMapping Mapper anchor:

Property Description

absent Determines the behavior of GroupMapping when one of its mandatory, nested Mapper anchors or
actions fails. You can choose one of the following options:
- Selected. GroupMapping succeeds.
- Cleared. GroupMapping fails.
Use this feature to test for the absence of nested Mapper anchors. Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components. For
more information, see “Notifications” on page 398.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

Mapper Anchor Component Reference 339

Property Description

source Defines a locator component that defines an XML data holder. The data holder contains the root
of the XML source for the mapping. For more information, see “Overview of Locators, Keys, and
Indexing” on page 342.

target Defines a locator component that defines an XML data holder. The data holder contains the root
of the output XML for the mapping. For more information, see “Overview of Locators, Keys, and
Indexing” on page 342.

RepeatingGroupMapping
The RepeatingGroupMapping Mapper anchor processes a repetitive structure in the input or output.

Use a RepeatingGroupMapping when the XML input or output contains a multiple-occurrence data holder. It
iterates over occurrences of the data holders. For more information, see “Multiple-Occurrence Data
Holders” on page 189.

Under the RepeatingGroupMapping, nest Mapper anchors and actions that process each occurrence of the
data holder.

The following table describes the properties of the RepeatingGroupMapping Mapper anchor:

Property Description

count Defines the number of iterations to run. If this property is blank, the iterations continue until
the input is exhausted.

current_iteration Defines a data holder where the RepeatingGroupMapping outputs the number of the current
iteration.

disabled Determines whether the Script ignores the component and all of the child components. Use
this property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

notifications A list of NotificationHandler components that handle notifications from nested components.
For more information, see “Notifications” on page 398.

on_fail The action to take if the component fails. You can choose one of the following options:
- Cleared. Take no action.
- CustomLog. Write to the user log.
- LogError. Write an error message to the engine log.
- LogInfo. Write an information message to the engine log.
- LogWarning. Write a warning message to the engine log.
- NotifyFailure. Send a notification.
Default is cleared. For more information about handling component failures, see “Failure
Handling” on page 379.

340 Chapter 20: Mappers

Property Description

on_iteration_fail Determines the action when an iteration fails. You can choose one of the following options:
- Cleared. No action.
- CustomLog. Writes to the user log.
- LogError. Writes an error message to the Engine log.
- LogInfo. Writes an information message to the Engine log.
- LogWarning. Writes a warning message to the Engine log.
- NotifyFailure. Triggers a notification.
Use on_iteration_fail to write an entry when a single iteration fails. Use the on_fail property to
write an entry when the entire RepeatingGroupMapping fails. For more information, see
“Failure Handling” on page 379.

optional Determines whether a component failure causes the parent component to fail. You can
choose one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on
page 379.

remark A user-defined comment that describes the purpose or action of the component.

skip_failed_iterations Determines whether failed iterations are skipped. You can choose one of the following
options:
- Selected. RepeatingGroup skips over a failed iteration and proceeds with the next iteration.

If an iteration succeeds, the RepeatingGroup succeeds.
- Cleared. RepeatingGroup fails if any iteration fails.
The skip_failed_iterations property has an effect only if separator is defined.
Default is selected.

source Defines a data holder that contains the source for the mapping. For more information, see
“Overview of Locators, Keys, and Indexing” on page 342.

target Defines a data holder that contains the result of the mapping. For more information, see
“Overview of Locators, Keys, and Indexing” on page 342.

Example
For more information, including an example of a RepeatingGroupMapping, see the “Mapper Example” on
page 333.

Mapper Anchor Component Reference 341

C h a p t e r 2 1

Locators, Keys, and Indexing
This chapter includes the following topics:

• Overview of Locators, Keys, and Indexing, 342

• Example of Locators, 343

• Example of Indexing by Key, 344

• Source and Target Properties, 347

• Standard Locator and Key Properties, 353

• Locator and Key Component Reference, 353

Overview of Locators, Keys, and Indexing
In designing a transformation, a frequent issue is how to locate the data holders that you want to process. If
the same data holders can occur multiple times in an XML structure, there can be ambiguities in identifying
the occurrences. This chapter explains how to use the Locator and Key components to resolve the
ambiguities.

The components described in this chapter let you identify the occurrences of multiple-occurrence data
holders in three ways:

• Sequentially. Each iteration of a component processes the next occurrence of the data holder.

• By occurrence number. For example, a component can select the third occurrence of a data holder.

• By a key such as an attribute or a nested element. The key uniquely identifies the occurrence of the data
holder.

The sequential approach is the default. It is subject to some complexities that you can control by using the
Locator component.

The occurrence number and key approaches are collectively known as indexing. The term is analogous to the
index of a book, where you use a page number or a subject key to identify the location of information. You
can implement the indexing by using components called LocatorByOccurrence, LocatorByKey, and Key.

You can use the locator and key components in parsers, serializers, or mappers. You can use the
components to identify the occurrences of data holders in the input, the output, or both.

The locator components are nested in the source and target properties of various transformation
components. The meaning and usage of the source and target properties is explained below.

342

Example of Locators
To understand the issues involved in identifying data holders, consider the following example. The example
illustrates the use of:

• The target property

• The Locator component

We will explain the broad outline of the example here. In the following sections of the chapter, we will go back
and explain how the target and the Locator work in detail.

Input and Output
Suppose that the output schema of a Parser supports the following structure:

<Report>
 <Company>
 <Employee>John</Employee>
 <Employee>Leslie</Employee>
 <Employee>Pedro</Employee>
 </Company>
 <Company>
 <Employee>Marie</Employee>
 <Employee>Larry</Employee>
 <Employee>Frances</Employee>
 </Company>
</Report>

The source document that the Parser processes is a list containing a single employee per company:

John
Marie

The output of the Parser should be:

<Report>
 <Company>
 <Employee>John</Employee>
 </Company>
 <Company>
 <Employee>Marie</Employee>
 </Company>
</Report>

Incorrect Solution
Suppose you use the following RepeatingGroup to parse the source document:

The output is incorrect:

<Report>
 <Company>

Example of Locators 343

 <Employee>John</Employee>
 <Employee>Marie</Employee>
 </Company>
</Report>

The problem is that both Company and Employee are multiple-occurrence elements. The RepeatingGroup
creates multiple Employee elements correctly, but it does not know that each Employee element should be
nested in a separate Company element.

Correct Solution
To resolve the ambiguity, you can assign the target property of the RepeatingGroup.

The target identifies the data holder that the RepeatingGroup should create. The target contains a Locator
component pointing to the Company element. This means that each iteration of the RepeatingGroup should
create a new occurrence of the Company element.

If you configure the RepeatingGroup in this way, the output is correct.

Example of Indexing by Key
To further introduce the data-holder identification issues, we present an example of indexing by key.

The example is a mapper that uses indexing to identify the occurrences of data holders in both its input and
its output. On the input side, the indexing matches the corresponding data from different parts of an XML
structure. On the output side, the indexing finds the correct location of an element in an XML structure.

The example illustrates the use of:

• The source and target properties

• The Locator, Key, and LocatorByKey components

In the following sections of the chapter, we will explain the detailed operation of these properties and
components.

Input
The input XML is a report listing the names of parents and their children.

• For each parent, the XML lists a first name, a last name, and an ID.

344 Chapter 21: Locators, Keys, and Indexing

• For each child, the XML lists a first name, a hobby, and the ID of the parent.

<Report>
 <Parents>
 <Parent id="1" firstName="John" lastName="Smith"/>
 <Parent id="2" firstName="Jane" lastName="Doe"/>
 </Parents>
 <Children>
 <Child name="Eric" hobby="Swimming" parentID="1"/>
 <Child name="Elizabeth" hobby="Biking" parentID="2"/>
 <Child name="Mary" hobby="Painting" parentID="1"/>
 <Child name="Edward" hobby="Swimming" parentID="2"/>
 </Children>
</Report>

Output
The desired output is a list of hobbies and the children who engage in each hobby.

<Hobbies>
 <Hobby name="Swimming">
 <Person firstName="Eric" lastName="Smith"/>
 <Person firstName="Edward" lastName="Doe"/>
 </Hobby>
 <Hobby name="Biking">
 <Person firstName="Elizabeth" lastName="Doe"/>
 </Hobby>
 <Hobby name="Painting">
 <Person firstName="Mary" lastName="Smith"/>
 </Hobby>
</Hobbies>

Outline of the Transformation Approach
The transformation uses the following approach:

1. In the input XML, the transformation identifies the corresponding Child and Parent elements as follows:

id attribute of Parent = parentID attribute of Child
2. The transformation creates Hobby and Person elements. It identifies the Hobby element where it should

nest each Person element as follows:

name attribute of Hobby = hobby attribute of Child
3. The transformation writes the child's first name into the Person element.

4. The transformation writes the parent's last name into the Person element.

Mapper Configuration
Key components define identifiers for the data holders.

• The first Key specifies that the id attribute is a unique identifier of a Parent element.

Example of Indexing by Key 345

• The second Key specifies that the name attribute is a unique identifier of a Hobby element.

The Script then defines a Mapper with the following configuration:

The components of the Mapper perform the following functions:

• The source property of the RepeatingGroupMapping specifies that each iteration gets its input from the
following data holders:

- From an occurrence of the Child element

- From the corresponding occurrence of the Parent element

• The target property of the RepeatingGroupMapping specifies that each iteration stores its output in the
following data holders:

- In an occurrence of the Person element

- In the corresponding occurrence of the Hobby element

• The first Map action copies the name attribute of the Child to the firstName attribute of the Person.

346 Chapter 21: Locators, Keys, and Indexing

• The second Map action copies the lastName attribute of the Parent into the lastName attribute of the
Person.

Use of Indexing
The example uses indexing by key to identify the occurrences of the Parent and Hobby data holders.

• In the source property of the RepeatingGroupMapping, the indexing identifies the occurrence of Parent
that corresponds to a Child.

• In the target property, the indexing identifies the occurrence of Hobby where a Person should be nested.

Source and Target Properties
The source and target properties exist in components such as the following:

• In parsers:

Parser
Group
RepeatingGroup
EnclosedGroup
FindReplaceAnchor

• In serializers:

Serializer
GroupSerializer
RepeatingGroupSerializer

• In mappers:

Mapper
GroupMapping
RepeatingGroupMapping

In all these categories, the meaning and usage of the properties is identical:

• The source property identifies existing data holders that a transformation should use.

• The target property identifies data holders that may or may not already exist. If they exist, the
transformation uses them. If they do not exist, the transformation creates them.

After you define the source and/or the target, the subsequent components use the identified data holders.
For example, if you define the target of a Group, the anchors nested within the Group use the data holders
that the target identifies.

Note: There are properties called source and target in some other components such as Map. These
properties have a different meaning and usage from the above. For an explanation, please see the
components where the properties are used.

Source and Target Properties 347

Source Property
The source property identifies existing occurrences of data holders. The value of the source property is a list
containing one or more of the following components:

Source Description

Locator Identifies a single-occurrence or multiple-occurrence data holder. In the latter case, each
iteration accesses the next occurrence, in sequence.

LocatorByKey Identifies an occurrence of a multiple-occurrence data holder by using a key.

LocatorByOccurence Identifies an occurrence of a multiple-occurrence data holder by number.

Default Behavior
If you do not assign the source property of a component, the component identifies data holders in the
following way:

• If there is only one occurrence of the data holder, the component uses the existing occurrence.

• If there are multiple occurrences of the data holder, the behavior is as follows:

- In an iterative context, such as within a RepeatingGroupSerializer, each iteration accesses the next
occurrence of the data holder in sequence.

- In a non-iterative context, such as a GroupSerializer that is not nested within an iterative component,
the component accesses the first occurrence of the data holder.

Ambiguities in the Default Behavior
There can be some ambiguities in the default behavior. Ambiguities can arise, for example, in the following
circumstances.

• In cases where a multiple-occurrence element is nested within another multiple-occurrence element. For
more information, see “Example 1: Nested Multiple-Occurrence Data Holders” on page 349.

• In cases where the schema permits alternative data holders, defined with xs:choice.

• In cases where the schema permits a data holder to be missing, defined with minOccurs = 0.

In such cases, it is prudent to assign the source property explicitly.

Data Holder Must Exist
The source property identifies a data holder that already exists in the scope of the transformation. If the data
holder does not exist, the component containing the source property fails.

For example, suppose that the source property of a Group contains a non-optional LocatorByOccurrence that
points to the third occurrence of a data holder. If only two occurrences exist, the Group fails.

Using the Source Property for Input or Output
Typically, a component uses the source property to identify where it should obtain input. For example, a
GroupSerializer can use the property to identify an occurrence that it should serialize.

It is also possible to use the property to identify where the component should store output. For example,
suppose that a Parser has already created 10 occurrences of an XML element. After the occurrences have

348 Chapter 21: Locators, Keys, and Indexing

been created, a Group anchor assigns an attribute in one occurrence of the element. The Group can use the
source property to identify the occurrence.

Example 1: Nested Multiple-Occurrence Data Holders
Suppose that the input schema of a serializer requires the following structure:

<Report>
 <Company>
 <Employee>John</Employee>
 <Employee>Leslie</Employee>
 <Employee>Pedro</Employee>
 </Company>
 <Company>
 <Employee>Marie</Employee>
 <Employee>Larry</Employee>
 <Employee>Frances</Employee>
 </Company>
</Report>

You want to iterate over all the Employee elements and produce the following output:

John
Leslie
Pedro
Marie
Larry
Frances

You might create a RepeatingGroupSerializer and configure it to output the Employee data holder.

This does not work correctly. By default, each iteration selects a new instance of Employee within the same
Company. The result is the following output:

John
Leslie
Pedro

In other words, the RepeatingGroupSerializer accesses only the first Company.

Source and Target Properties 349

You can solve the problem by nesting the RepeatingGroupSerializer inside another
RepeatingGroupSerializer. To resolve any potential ambiguities, you can configure the source properties
explicitly.

Each iteration of the outer RepeatingGroupSerializer processes a different occurrence of Company. Each
iteration of the nested RepeatingGroupSerializer processes a different occurrence of Employee. The result
is the desired output.

Alternatively, suppose you want to iterate only over the second Employee element in each Company. The
desired output is:

Leslie
Larry

You can do this by configuring a single RepeatingGroupSerializer, whose source is Company. This causes
each iteration to access the next instance of Company. Within the iteration, you can configure a
GroupSerializer, whose source property uses a LocatorByOccurrence to select the second Employee. This
generates the desired output.

350 Chapter 21: Locators, Keys, and Indexing

Example 2: Indexing
In the example of indexing by key at the beginning of this chapter, we used a RepeatingGroupMapping
configured as shown below. In this example, the source property identifies two data holders:

• It uses a Locator component to identify an occurrence of Child. Each iteration processes the next
occurrence of Child, sequentially.

• It uses a LocatorByKey component to identify an occurrence of Parent. This causes each iteration to
process the occurrence of Parent that corresponds to the occurrence of Child.

For more information, see “Example of Indexing by Key” on page 344.

Target Property
The target property identifies an occurrence of a data holder that may or may not already exist. If the
occurrence exists, the component uses it. If the occurrence does not exist, the component creates it.

The value of the target property is a list containing one or more of the following components:

Target Description

Locator Identifies a single-occurrence or multiple-occurrence data holder. In the latter case, each
iteration creates a new occurrence.

LocatorByKey Identifies an occurrence of a multiple-occurrence data holder by an indexing key. If the
occurrence does not yet exist, it is created.

LocatorByOccurence Identifies an occurrence of a multiple-occurrence data holder by number. If the occurrence
does not yet exist, it is created along with any needed intervening occurrences. For example, if
four occurrences exist, and LocatorByOccurrence specifies the tenth occurrence, occurrences
5-9 are also created, but left empty.

Default Behavior
If you do not assign the target property of a component, the component identifies data holders in the
following way:

• If the schema permits only a single occurrence of the data holder, the Script accesses or creates the
occurrence.

• If the data holder can have multiple occurrences, the behavior is as follows:

- In an iterative context, for example, within a RepeatingGroup, each iteration creates a new occurrence of
the data holder.

- In a non-iterative context, for example, a Group that is not nested within an iterative component, the
component creates one new occurrence of the data holder.

Source and Target Properties 351

Ambiguities in the Default Behavior
There can be some ambiguities in the default behavior. Ambiguities can arise, for example, in the following
circumstances.

• In cases where a multiple-occurrence element is nested within another multiple-occurrence element. For
more information, see “Example 1: Nested Multiple-Occurrence Data Holders” on page 352.

• In cases where the schema permits alternative data holders, defined with xs:choice.

• In cases where the schema permits a data holder to be missing, defined with minOccurs = 0.

In such cases, it is prudent to assign the target property explicitly.

Data Holder Can Be Created
The target property identifies a data holder that may or may not already exist in the scope of the
transformation. If the data holder does not exist, it is created.

For example, suppose that the target property of a Group contains a LocatorByKey, which points to a
particular occurrence of a data holder. If the occurrence already exists, the Group uses it. If the occurrence
does not exist, the Group creates it.

Using the Target Property for Input or Output
Typically, a component uses the target property to identify where it should store output. For example, a
Group can use the property to identify an occurrence where it should store data.

It is also possible to use the property to identify where a component should obtain input. For example,
suppose that a GroupSerializer contains an action that computes data and stores it in a variable. The
GroupSerializer then activates a ContentSerializer that writes the variable to the output. You can use the
target property to create the occurrence of the variable that the GroupSerializer uses. The variable then
serves as the input of the ContentSerializer.

Example 1: Nested Multiple-Occurrence Data Holders
The example of locators at the start of this chapter illustrates how to use the target property to differentiate
between parent and child multiple-occurrence data holders. For more information, see “Example of
Locators” on page 343.

Example 2: Indexing
The example of indexing by key at the start of this chapter, illustrates how to use the target property with
indexing. The following figure illustrates how to configure the target property of the
RepeatingGroupMapping:

352 Chapter 21: Locators, Keys, and Indexing

The target property identifies the following data holders:

• A Locator component identifies an occurrence of Person. Each iteration creates a new occurrence of
Person.

• A LocatorByKey component identifies the occurrence of the Hobby element, where the occurrence of
Person should be nested. If the Hobby element already exists, the transformation uses it. If the Hobby
element does not yet exist, the transformation creates it.

For more information, see “Example of Indexing by Key” on page 344.

Standard Locator and Key Properties
The following table describes standard properties that are used in the locator and key components:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

remark A user-defined comment that describes the purpose or action of the component.

Locator and Key Component Reference
Locator and key components identify elements in the Script or data holders.

Key
The Key component defines attributes or elements that serve as a unique identifier of their parent element.

You can define a Key only at the global level of the Script, and you can reference the Key anywhere in the
Script. The name of a Key is case sensitive.

Standard Locator and Key Properties 353

The following table describes the properties of the Key component:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

recurring_element Defines a multiple-occurrence element whose occurrences are identified by the key.

remark A user-defined comment that describes the purpose or action of the component.

unique_fields Defines the key.

Example
The Example of Indexing by Key defines a key for the Hobby element in the following structure:

<Hobbies>
 <Hobby name="Swimming">
 <Person firstName="Eric" lastName="Smith"/>
 <Person firstName="Edward" lastName="Doe"/>
 </Hobby>
 <Hobby name="Biking">
 <Person firstName="Elizabeth" lastName="Doe"/>
 </Hobby>
 <Hobby name="Painting">
 <Person firstName="Mary" lastName="Smith"/>
 </Hobby>
</Hobbies>

The key is the name attribute, which uniquely identifies each Hobby.

Composite Keys
Optionally, you can define a list of data holders as a composite key. To do this, nest multiple data holders
under the unique_fields property.

Consider the following example:

<Persons>
 <Person ID="17" SubID="A">Bob</Person>
 <Person ID="17" SubID="B">Jane</Person>
 <Person ID="35" SubID="A">Larry</Person>
</Persons>

Neither the ID attribute nor the SubID attribute identifies a Person element uniquely. The combination of ID
and SubID, however, is a unique identifier. You can define ID and SubID as a composite key.

354 Chapter 21: Locators, Keys, and Indexing

Restrictions on the Key
The unique_fields must be nested within the recurring_element. They can be attributes of the element,
they can be nested elements at any level of nesting, or they can be attributes of the nested elements.

For example, this means that Persons/Person/SocialSecurity/@Number can be a valid key for Persons/
Person, because @Number is nested within Persons/Person. On the other hand, Persons/Child is not a valid
key for Persons/Person because it is not correctly nested.

The unique_fields must identify the closest ancestor that can have multiple occurrences. For example, if
both Parent and Child are multiple-occurrence elements, then Parent/Child/@name can be a valid key for
Parent/Child but not for Parent.

The unique_fields must have simple data types. They cannot be structures.

Sibling and Non-Sibling Occurrences
A key uniquely identifies sibling occurrences of an element. It is permitted for non-sibling occurrences to
have the same key.

Consider the following XML structure:

<Report>
 <Company>
 <Employee ID="1">John</Employee>
 <Employee ID="2">Leslie</Employee>
 </Company>
 <Company>
 <Employee ID="1">Marie</Employee>
 <Employee ID="2">Larry</Employee>
 </Company>
</Report>

The ID attribute can be a valid key for Employee because it uniquely identifies an Employee within a single
Company. The duplication of ID values in different Company elements does not invalidate the key.

Keys of Reusable Elements
You can define a key on a reusable element that is defined in the schema.

For example, suppose that Persons/Person can occur in several different contexts within the XML. If you
define ID as a key for Persons/Person, the key is valid in any context where Persons/Person is used.

Enforced Uniqueness of a Key
The Script enforces the uniqueness of a Key. This has the following consequences:

• If two or more sibling occurrences of an input element have the same key values, the Script considers
each occurrence to overwrite the previous occurrences. It uses only the last occurrence that it encounters.

• If an occurrence of an input element is missing a key value, the occurrence is ignored.

• If the Script outputs a keyed element, and a sibling element having the same key value already exists, the
existing occurrence is overwritten.

In these cases, the Script writes a warning in the event log.

Locator
The Locator component identifies a single-occurrence or a multiple-occurrence data holder in the source and
target properties. For multiple-occurrence data holders, each iteration of a component that uses the Locator
processes the next occurrence of the data holder.

Locator and Key Component Reference 355

The following table describes the properties of the Locator component:

Property Description

data_holder Defines the data holder that the Locator component identifies.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

LocatorByKey
The LocatorByKey component identifies an occurrence of a multiple-occurrence data holder in the source
and target properties.

Before you use LocatorByKey, you must define a Key at the global level of the Script. The Key specifies the
data holders that uniquely identify the occurrence.

The following table describes the properties of the LocatorByKey component:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

key Defines the XPath predicate representation of the key. For example, if you have defined
Hobbies/Hobby/@name as a Key, select Hobbies/Hobby[@name=$1]. This property is
required.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

params Defines the values of the parameters in the XPath predicate. Each value has a dollar sign ($)
and an integer that represents the position of the parameter in the list of parameters. This
property is required.

remark A user-defined comment that describes the purpose or action of the component.

356 Chapter 21: Locators, Keys, and Indexing

Conflicts Between Locators
In case of conflicts, a nested LocatorByKey overrides a parent locator.

For example, suppose that the target property of a Group contains a LocatorByKey pointing to the third
occurrence of an element. A nested Group contains a LocatorByKey pointing to the fifth occurrence. The
nested Group uses the fifth occurrence.

LocatorByOccurrence
The LocatorByOccurrence component is used in the source property to identify an occurrence of a multiple-
occurrence data holder.

For example:

• An element that can occur multiple times in an XML document

• A variable that can occur multiple times

The component identifies the occurrence by number. For example, if there are ten occurrences of a data
holder, you can use LocatorByOccurrence to process the third occurrence. LocatorByOccurrence can be
used to iterate over the occurrences in a repeating structure such as a RepeatingGroup anchor.

The LocatorByKey component identifies an occurrence of a multiple-occurrence data holder in the source
and target properties.

Before you use LocatorByKey, you must define a Key at the global level of the Script. The Key specifies the
data holders that uniquely identify the occurrence.

The following table describes the properties of the LocatorByOccurrence component:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

occurrence_number Defines the number of the occurrence.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

recurring_element Defines the data holder that the component identifies.

remark A user-defined comment that describes the purpose or action of the component.

Conflicts Between Locators
In case of conflicts, a nested LocatorByOccurrence overrides a parent locator.

For example, suppose that the target property of a Group contains a LocatorByOccurrence pointing to the
third occurrence of an element. A nested Group contains a LocatorByOccurrence pointing to the fifth
occurrence. The nested Group uses the fifth occurrence.

Locator and Key Component Reference 357

C h a p t e r 2 2

Streamers
This chapter includes the following topics:

• Streamers Overview, 358

• Text Streamers, 359

• XML Streamers, 363

• Standard Streamer Properties, 365

• Streamer Component Reference, 365

• Streamer Subcomponent Reference, 374

Streamers Overview
A Streamer splits a large source document into smaller portions that a transformation can process
separately. Streamers are useful in transformations that process very large inputs, such as multi-gigabyte
data streams. A Streamer can have a buffer input or file input.

A Streamer offers the following advantages:

• The transformation parses each source segment when it is available, instead of waiting until it receives
entire source.

• The transformation has reduced memory requirements.

For example, a Streamer input stream might contain stock market transaction data. The stream transmits to
a server continually over the course of the entire trading day. A Script with a Streamer processes each
transaction when it arrives, instead of waiting until the end of the day.

In another example, you receive a large source file over an FTP connection. By using a Streamer, the Script
can process the file before it is completely received.

The Data Processor transformation provides the following kinds of Streamers:

• Streamer. Processes large text inputs.

• XmlStreamer. Process large XML inputs.

Streamers are runnable components. Define the Streamer or XmlStreamer component at the global level of
the Script, and set it as the startup component of the transformation. The Streamer functions by splitting the
input into segments and passing them to other runnable components, which can be Parsers, Mappers, or
Serializers.

358

Text Streamers
A Streamer component splits a large text document into smaller portions. The Streamer divides the text
source into header, footer, and repeating segments. As required by the source structure, the Streamer can
subdivide the repeating segments into nested headers, footers, and repeating segments. The Streamer can
pass each segment to an appropriate transformation.

Segments
A Streamer identifies segments of its input. It passes the segments individually to transformations such as
Parsers, Mappers, or Serializers, which process the segment data.

A Streamer assumes that the source is composed of:

• A header segment

• Any number of repeating segments

• A footer segment

For each type of segment, the Streamer defines a transformation that processes the segment.

The repeating segments can be either simple or complex. A simple segment is a single unit of data. A
complex segment has its own nested header, repeating segments, and footer.

Headers and footers are always simple segments.

Simple Segments
A simple segment has an opening marker that identifies where it starts, and a closing marker that identifies
where it ends. Thus, a simple segment has the following structure:

Opening marker
Data
Closing marker

The Streamer passes the segment to the specified transformation component, such as a Parser.

It is possible to omit some of the markers from the Streamer definition. For example:

• If you omit the opening marker of the source header, the header is assumed to start at the beginning of
the source.

• If you omit the closing marker, then the segment ends at the opening marker of the next segment.

Complex Segments
A complex segment has a header and footer. Between the header and footer, it can contain any number of
nested simple segments, for example:

Header
Simple segment
Simple segment
Simple segment
Footer

A complex segment can contain nested complex segments, for example:

Header
Complex segment
Complex segment
Complex segment
Footer

Text Streamers 359

You can also define a complex segment that is missing the header or footer, for example:

Simple segment
Simple segment
Simple segment

The nested simple segments must all be of the same type. That is, they must all be identified by the same
opening and closing markers.

Example
A data stream contains stock transaction data. The stream has the following structure:

• The header begins with the string yy-MM-dd/, which is a date followed by a slash.

• The header contains various data, followed by the string ENDHEAD/.

• The repeating segments begin with the string TRANS HH:mm nnn/, where HH:mm is the time on a 24-hour
clock, and nnn is a serial number of any length.

• The data stream ends with the string END/.

The following is a sample data stream conforming to this specification, where... represents arbitrary data
that must be parsed:

06-12-13/...ENDHEAD/TRANS 09:30 1...TRANS 09:30 2...TRANS 09:31 03...TRANS 09:32
14...END/

You can parse this stream by using a Streamer having the following schematic structure. Notice that the
opening and closing markers are located by searching for a particular pattern or string.

Segment Type Opening Marker Closing Marker

Header Simple [0-9][0-9]-[0-9][0-9]-[0-9][0-9]/ ENDHEAD/

Repeating Simple TRANS [0-9][0-9]:[0-9][0-9] [0-9]+/ none

Footer Simple END/ none

Header Concatenation
Optionally, you can configure a Streamer to concatenate the header segment with each of the repeating
segments. The Streamer passes the concatenated result to a transformation.

For example, suppose that a Streamer passes the repeating segment to a Parser. The source has the
following structure, where Segment1 and so forth are instances of the repeating segment:

Header
Segment1
Segment2
Segment3

If you select the concatenation option, the Streamer sends the following data to the Parser:

HeaderSegment1
HeaderSegment2
HeaderSegment3

Output of a Streamer
A Streamer generates an independent output document for each of the source segments.

360 Chapter 22: Streamers

Output in Design Environment
If you run a Streamer in the design environment, it combines the individual output segments into a single
output.

For example, suppose that the Streamer passes each segment to a Parser. The output of each Parser is an
XML document. The combined output is a sequence of XML documents, for example:

<?xml version="1.0" encoding="windows-1252"?>
<header>...</header>

<?xml version="1.0" encoding="windows-1252"?>
<repeating_segment>...</repeating_segment>

<?xml version="1.0" encoding="windows-1252"?>
<repeating_segment>...</repeating_segment>

<?xml version="1.0" encoding="windows-1252"?>
<footer>...</footer>

This output is not well-formed XML because it contains multiple root elements.

Wrapping Output in a Root Tag
You can wrap the combined output of a Streamer in a root tag to convert the output to well-formed XML.

In the XML Generation tab of the Data Processor transformation settings, select Add XML root element and
enter the name of the wrapper root element.

For example, if you specify a wrapper root element called MyRoot, the output becomes:

<MyRoot>
 <?xml version="1.0" encoding="windows-1252"?>
 <header>...</header>

 <?xml version="1.0" encoding="windows-1252"?>
 <repeating_segment>...</repeating_segment>

 <?xml version="1.0" encoding="windows-1252"?>
 <repeating_segment>...</repeating_segment>

 <?xml version="1.0" encoding="windows-1252"?>
 <footer>...</footer>
</MyRoot>

Using Markers and Variables in Streamers
Within a Streamer component, you cannot use the regular Marker and Variable components that are used in
other types of transformations. Instead, you should use the MarkerStreamer component to define the
opening and closing markers of simple segments. You can use the StreamerVariable component to store
temporary data that is shared by all segments.

Creating a Streamer

1. Analyze the source structure and identify the segment types.

2. Create or open a Script.

3. In the Script, configure a transformation such as a Parser, Mapper, or Serializer that can process each
type of simple segment.

4. In the same Script, configure a Streamer component.

Text Streamers 361

5. Within the Streamer, nest ComplexSegment and SimpleSegment components corresponding to the
source structure.

6. For each SimpleSegment, define the opening marker and closing marker if required. Define the
transformation that processes the segment.

7. Define the Streamer as the startup component.

Streamer Configuration Example 1
The following Streamer contains simple segments. Each segment has a predefined opening and closing
marker.

The Streamer passes the header and repeating segments to a Parser called body_p. It passes the footer to a
Parser called foot_p.

Streamer Configuration Example 2
The following Streamer contains a nested, repeating ComplexSegment. The nested ComplexSegment segment
has its own header and nested, repeating SimpleSegment. The nested ComplexSegment does not have a
footer.

362 Chapter 22: Streamers

Notice that the property concat_header_to_repeating_segment has been selected. The effect of this
property is to concatenate the header to each instance of the repeating segment. The Streamer passes the
concatenated segments to the parser body_p.

XML Streamers
An XmlStreamer component splits a large XML document into smaller portions. The XmlStreamer divides the
XML source into header, body, and footer segments. The body segments can contain repeating or non-
repeating elements. The XmlStreamer can pass each XML segment to an appropriate transformation,
typically a Mapper or a Serializer.

An XmlStreamer works in much the same way as a Streamer, with a few differences due to the structured
XML input. The following are the main features:

• The body segments are defined as XML elements. You can configure the body with multiple elements of
the same or different types, in any sequence.

• The header is defined as the entire portion of the XML that precedes the first body segment. In the
XmlStreamer configuration, it is not necessary to define the elements that comprise the header.

• The footer is defined as the entire portion of the XML that follows the last body segment. In the
XmlStreamer configuration, is not necessary to define the elements that comprise the footer.

• In many cases, the header and footer segments are not well-formed XML. To enable passing the
segments to a Mapper or Serializer, you can configure modifier components that convert the segments to
well-formed XML.

To help understand these features, consider the following source XML structure:

<stream>
 <headerline1>MainHeader</headerline1>
 <substreams>
 <substream>
 <subheaderline1>SubHeader</subheaderline1>
 <segments>

XML Streamers 363

 <segment1>Segment1A</segment1>
 <segment1>Segment1B</segment1>
 <segment2>Segment2A</segment2>
 <segment1>Segment1C</segment1>
 <segment2>Segment2B</segment2>
 </segments>
 <subfooterline1>SubFooter</subfooterline1>
 </substream>
 <substream>...</substream>
 <substream>...</substream>
 </substreams>
 <footerline1>MainFooter</footerline1>
</stream>

In this example, you might define the body segments as the substream elements. The header is everything
that precedes the first substream:

<stream>
 <headerline1>MainHeader</headerline1>
 <substreams>

The footer is everything that follows the last substream:

 </substreams>
 <footerline1>MainFooter</footerline1>
</stream>

The header and footer segments are not well-formed XML. You can apply modifiers that add closing or
opening tags to make them well-formed. For example, a modifier can convert the header to:

<stream>
 <headerline1>MainHeader</headerline1>
 <substreams>
 </substreams>
</stream>

You can configure the XmlStreamer to pass the header segment, the footer segment, and each instance of
the substream segment to an appropriate transformation, such as a Mapper or Serializer.

Note: The header segment elements are available when processing the body elements. The footer elements,
however, are not yet available when processing body elements. Footer elements are only processed after the
transformation finishes reading body elements.

Alternatively, you might subdivide the substream elements into segment1 and segment2 segments, and send
each of these to its own Mapper or Serializer. Notice that segment1 and segment2 follow each other in a
random sequence. The XmlStreamer ignores the sequence and processes segment1 and segment2 in
whatever order they occur.

The following figure illustrates the configuration for this purpose. The Script defines independent Serializers
for the header, footer, segment1, and segment2 segments.

364 Chapter 22: Streamers

Note: Even through the footer run component appears before the body elements in this example, footer
elements are only processed after the transformation finishes reading body elements.

As a further refinement, you can define transformations for the nested headers and footers within each
substream element.

Standard Streamer Properties
The following table describes common properties of Streamer components:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

Streamer Component Reference
Streamers split a large source document into smaller portions that a transformation can process separately.

Standard Streamer Properties 365

ComplexSegment
A ComplexSegment component defines a source structure that contains a header, a repeating portion, and a
footer.

The following table describes the properties of the ComplexSegment component:

Property Description

concat_header_to_repeating_segment Determines whether the system includes the header_segment with each
instance of the repeating_segment. It passes the result to the
run_component of the repeating_segment. You can choose one of the
following options:
- Selected. Each repeating segment has a copy of the header.
- Cleared. Each repeating segment appears without the header.
For more information, see “Header Concatenation” on page 360. Default is
cleared.

footer_segment Defines the footer portion of the source. Under this property, you can nest a
SimpleSegment that defines the footer. If this property is undefined, the
Script processes the source as if it has no footer.

header_segment Defines the header portion of the source. Under this property, you can nest a
SimpleSegment that defines the header. If this property is undefined, the
Script processes the source as if it has no header.

repeating_segment Defines the repeating portion of the source. Under this property, you can nest
a SimpleSegment that defines the repeating data. You can also nest a
ComplexSegment that has its own header-repeating-footer structure.

ComplexXmlSegment
A ComplexXmlSegment component defines a nested structure within the body portion of an XmlStreamer
input. The nested structure can have its own header, body, and footer.

Under a ComplexXmlSegment, you can nest XmlSegment, ComplexXmlSegment, and SimpleXmlSegment
components.

The following table describes the properties of the ComplexXmlSegment component:

Property Description

allow_unmarked_text Determines whether the segments in the sub_elements list can be separated by intervening
text or by other elements. You can choose one of the following options:
- Selected. The segments can be separated by intervening text or by other elements. The

intervening content is ignored.
- Cleared. The segments can be separated only by whitespace.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use
this property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

Footer Defines how to process the footer of the ComplexXmlSegment. For more information, see
“XmlSegment” on page 372. Default is XmlSegment.

366 Chapter 22: Streamers

Property Description

Header Defines how to process the header of the ComplexXmlSegment. For more information, see
“XmlSegment” on page 372. Default is XmlSegment.

locator Defines a data holder.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

sub_elements Defines a list of ComplexXmlSegment or SimpleXmlSegment components that define how to
process the body of the ComplexXmlSegment.

JsonStreamer
The JsonStreamer accepts a very large JSON file input and splits the input into segments. It passes each
type of segment to a predefined transformation such as a Parser, Mapper, or Serializer.

The JsonStreamer must be defined at the global level of the Script and it must be the startup component of
the transformation.

Note: The number of segments is automatically determined according to the precision of the input port.

The following table describes the properties of the JsonStreamer component:

Property Description

run_component Defines a transformation that processes the segment. You can choose one of the following options:
- The name of a Parser, Serializer, or Mapper that is configured at the global level of the Script.
- A Mapper or Serializer component. Configure the Mapper or Serializer within the segment.
- A WriteSegment component that copies the segment to the output. For more information, see

“WriteSegment” on page 377.

MarkerStreamer
A MarkerStreamer component defines the opening and closing markers of simple segments. It is similar to a
regular Marker anchor, but it is used only in Streamers.

Streamer Component Reference 367

The following table describes the properties of the MarkerStreamer component:

Property Description

adjacent Determines whether the MarkerStreamer must be adjacent to the end of the preceding segment.
You can choose one of the following options:
- Selected. Requires MarkerStreamer to be adjacent to the end of the preceding segment.
- Cleared. MarkerStreamer can be separated from the end of the preceding segment.
Default is cleared. Use this property to ensure that the segments are not separated by any other
text or whitespace.

count Determines which occurrence of the marker to begin processing with. For example, set count to 3
to skip the first and second occurrences of the marker.
This property is being phased out. It is available for compatibility with existing projects. Do not
use it in new projects.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

marking Determines whether the marker is used as a reference point to identify the next segment or
marker. You can choose one of the following options:
- begin position. Before only.
- end position. After only.
- full. Places a reference point before and after the current marker.
Default is full.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

search Defines how the MarkerStreamer finds text. You can choose one of the following options:
- NewlineSearch. Searches for a newline character.
- OffsetSearch. Skips a predefined number of characters following the preceding reference point.
- PatternSearch. Searches for a regular expression.
- TextSearch. Searches for an explicit string.

Using the Marking Property to Define Segment Boundaries
You can use the marking property to control whether the data in the opening and closing marker is included
in the segment and passed to a transformation.

The rule is that the Streamer passes the data between the innermost reference points surrounding the
segment. For example:

• If the opening marker has marker = begin position, the innermost reference point is at the start. The
entire marker is included in the segment.

• If the opening marker has marker = end position or full, the innermost reference point is at the end.
The marker is excluded from the segment.

The inverse relationships apply to the closing marker.

To illustrate this, consider a simple segment having the following structure:

BEGIN...data...END

368 Chapter 22: Streamers

A MarkerStreamer identifies the opening marker by searching for the text BEGIN. Another MarkerStreamer
identifies the closing marker by searching for END.

The following table illustrates how the marking property affects the segment boundaries.

Marking of Opening
Marker

Marking of Closing
Marker

Segment Passed to the Transformation

full full ...data...

full begin ...data...

full end ...data...END

begin full BEGIN...data...

begin begin BEGIN...data...

begin end BEGIN...data...END

end full ...data...

end begin ...data...

end end ...data...END

SimpleSegment
A SimpleSegment component defines a data unit that contains an opening marker and a closing marker. It
also defines the transformation that processes the data unit.

The opening and closing markers are defined with regular expressions. For more information about regular
expression syntax, see “RegularExpression” on page 265.

The following table describes the properties of the SimpleSegment component:

Property Description

closing_marker Defines a regular expression that identifies the segment end. If this property is undefined, the
segment end is the end of the source or the start of the next segment. Default is MarkerStreamer.

count Defines the maximum number of segments to pass to the transformation. For example, if count is
3, the Streamer searches for three consecutive instances of the segment. It passes the three
segments together to the transformation. If it finds only one or two segments, it passes those
segments.
If the segments are small, passing multiple segments to a transformation can improve performance
because it reduces the Streamer overhead. Within the transformation, use a component such as
RepeatingGroup to process the individual segments.
Default is 1.

Streamer Component Reference 369

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

opening_marker Defines a regular expression that identifies the segment start. If this property is undefined, the
segment start is the beginning of the source or the end of the preceding segment. Default is
MarkerStreamer.

remark A user-defined comment that describes the purpose or action of the component.

run_component Defines a transformation that processes the segment. You can choose one of the following
options:
- The name of a Parser, Serializer, or Mapper that is configured at the global level of the Script.
- A Mapper or Serializer component. Configure the Mapper or Serializer within the segment.
- A WriteSegment component that copies the segment to the output. For more information, see

“WriteSegment” on page 377.

SimpleXmlSegment
A SimpleXmlSegment component defines a body segment of an XmlStreamer input. It defines the element
containing the segment and the transformation that should process the segment.

Because a SimpleXmlSegment is an XML element, the segment is always well-formed. You can apply a
modifier that alters the segment before you pass the segment to a transformation.

The following table describes the properties of the SimpleXmlSegment component:

Property Description

count Defines the maximum number of segments to pass to the transformation. For example, if count is 3,
the Streamer searches for three consecutive instances of the segment. It passes the three
segments together to the transformation. If it finds only one or two segments, it passes those
segments.
If the segments are small, passing multiple segments to a transformation can improve performance
because it reduces the Streamer overhead. Within the transformation, use a component such as
RepeatingGroup to process the individual segments.
Default is 1.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

locator Defines a data holder.

370 Chapter 22: Streamers

Property Description

modifier Defines how the segment is modified before it is passed to a transformation. You can select the
following modifier components:
- AddHeaderModifier. Passes the segment together with the header of the XML section in which

the segment is located.
- AddStringModifier. Concatenates the segment with prefix or suffix strings.
- DoNothingModifier. Does not modify the segment.
- WellFormedModifier. Adds closing tags and/or a root element to ensure that the segment is well-

formed XML.
For more information about the modifiers, see the “Streamer Subcomponent Reference” on page 374.
Default is DoNothingModifier.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the
name property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

run_component Defines a transformation that processes the segment. You can choose one of the following options:
- The name of a Parser, Serializer, or Mapper that is configured at the global level of the Script.
- A Mapper or Serializer component. Configure the Mapper or Serializer within the segment.
- A WriteSegment component that copies the segment to the output. For more information, see

“WriteSegment” on page 377.

Streamer
The Streamer component splits text input into segments. It passes each type of segment to a predefined
transformation such as a Parser, mapper, or serializer.

The Streamer must be defined at the global level of the Script and it must be the startup component of the
transformation.

Under a Streamer, you must nest a ComplexSegment. The ComplexSegment can contain nested
SimpleSegment or ComplexSegment components.

The following table describes the properties of the Streamer component:

Property Description

contains Defines the overall structure of the source. Default is ComplexSegment.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

max_lookup_size Defines the maximum quantity of new data, in kilobytes, that the Streamer searches for each new
segment.
For optimal performance, set this property to twice the maximum possible segment size.
When an application activates a deployed Streamer service through an API, it must set the chunk
size parameter to a value that is smaller than the max_lookup_size. Default is 10000.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

Streamer Component Reference 371

Property Description

on_end_of_input Defines a transformation that runs at the end of the input stream. For example, the transformation
can output a summary message. You can choose one of the following options:
- The name of a Parser, serializer, or mapper that is configured at the global level of the Script.
- A Mapper or Serializer component. Configure the mapper or serializer within the Streamer.

remark A user-defined comment that describes the purpose or action of the component.

root_tag Defines an XML tag in which the Streamer wraps the combined output from all the segments. For
more information, see “Output of a Streamer” on page 360.

StreamerVariable
A StreamerVariable component is a user-defined variable whose scope includes all segments of a Streamer
or XmlStreamer.

For example, if a Streamer contains three Parsers, the value of a StreamerVariable is available to all three
Parsers. A Parser that processes a header segment might retrieve data from the header and store it in the
StreamerVariable. The other Parsers, which process the repeating segment and the footer segment, can
access the value of the StreamerVariable. You cannot use a regular Variable for this purpose because the
value of the variable is not shared between segments.

In other respects, the StreamerVariable component is similar to a regular Variable. However, a
StreamerVariable must have a simple, single-occurrence data type. For more information, see “Variables” on
page 184.

You can define a StreamerVariable only at the global level of the Script.

The following table describes the properties of the StreamerVariable component:

Property Description

initialization An initial value for the StreamerVariable, assigned when the transformation starts. Select
InitialValue and enter the value.

val_type Defines the data type that the variable can store. Assign a simple type such as xs:string or
xs:integer. Streamer variables cannot have complex or multiple-occurrence types. Default is
xs:string.

XmlSegment
An XmlSegment component defines a header or footer segment of an XmlStreamer input. It also defines the
transformation that processes the header or footer.

An unmodified header or footer is not necessarily well-formed XML. By assigning a modifier component, you
can configure the XmlSegment to always return well-formed XML.

372 Chapter 22: Streamers

The following table describes the properties of the XmlSegment component:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

modifier Defines how the segment is modified before it is passed to a transformation. You can select the
following modifier components:
- AddHeaderModifier. Passes the segment together with the header of the XML section in which

the segment is located.
- AddStringModifier. Concatenates the segment with prefix or suffix strings.
- DoNothingModifier. Does not modify the segment. This is the default.
- WellFormedModifier. Adds closing tags and/or a root element to ensure that the segment is well-

formed XML.
For more information about the modifiers, see the “Streamer Subcomponent Reference” on page 374.
Default is WellFormedModifier.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the
name property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

run_component Defines a transformation that processes the segment. You can choose one of the following options:
- The name of a Parser, Serializer, or Mapper that is configured at the global level of the Script.
- A Mapper or Serializer component. Configure the Mapper or Serializer within the segment.
- A WriteSegment component that copies the segment to the output. For more information, see

“WriteSegment” on page 377.

XmlStreamer
The XmlStreamer component splits an XML input into header, body, and footer segments. It passes each
type of segment to a predefined transformation such as a Mapper or Serializer.

The XmlStreamer must be defined at the global level of the Script and it must be the startup component of
the transformation.

Under an XmlStreamer, you can nest XmlSegment, ComplexXmlSegment, and SimpleXmlSegment
components.

Streamer Component Reference 373

The following table describes the properties of the XmlStreamer component:

Property Description

allow_unmarked_text Determines whether the segments in the sub_elements list can be separated by intervening
text or by other elements. You can choose one of the following options:
- Selected. The segments can be separated by intervening text or by other elements. The

intervening content is ignored.
- Cleared. The segments can be separated only by whitespace.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use
this property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

Footer Defines how to process the footer of the ComplexXmlSegment. For more information, see
“XmlSegment” on page 372. Default is XmlSegment.

Header Defines how to process the header of the ComplexXmlSegment. For more information, see
“XmlSegment” on page 372. Default is XmlSegment.

max_lookup_size Defines the maximum quantity of new data, in kilobytes, that the XmlStreamer searches for
each new segment.
For optimal performance, set this property to twice the maximum possible segment size.
When an application activates a deployed XmlStreamer service through an API, it must set the
chunk size parameter to a value that is smaller than the max_lookup_size.
Default is 10000.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

remark A user-defined comment that describes the purpose or action of the component.

sub_elements Defines a list of ComplexXmlSegment or SimpleXmlSegment components that define how to
process the body of the XML input.

Streamer Subcomponent Reference
Streamer subcomponents modify segments of a Streamer or an XmlStreamer.

AddHeaderModifier
In an XmlStreamer, the AddHeaderModifier component adds the header of the current segment to the
segment. The component adds closing tags as required to ensure that the result is well-formed XML.

You can use AddHeaderModifier to pass a segment to a transformation, in the context of its header.

374 Chapter 22: Streamers

The following table describes the properties of the AddHeaderModifier component:

Property Description

disabled Determines whether the Script ignores the component and all of the child
components. Use this property to test, debug, and modify a Script. You can
choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and
the Events view. Use the name property to identify the component that caused
the event.

remark A user-defined comment that describes the purpose or action of the
component.

In the following example, <segment1> is a repeating segment, preceded by a header and followed by a footer.

<stream>
 <headerline1>...</headerline1>
 <segments>
 <segment1>...</segment1>
 <segment1>...</segment1>
 <segment1>...</segment1>
 </segments>
 <footerline1>...</footerline1>
</stream>

You can configure an XmlStreamer that returns the following header, which is not well-formed XML:

<stream>
 <headerline1>...</headerline1>
 <segments>

If you apply AddHeaderModifier to <segment1>, the modifier prefixes each instance of <segment1> with the
header. It adds closing tags to ensure that the XML is well-formed. The result is the following segment:

<stream>
 <headerline1>...</headerline1>
 <segments>
 <segment1>...</segment1>
 </segments>
</stream>

If you apply AddHeaderModifier to a header segment, the modifier adds the header of the parent element to
the segment. Do not apply AddHeaderModifier to the initial header of the XmlStreamer input, because the
initial header does not itself have a parent element.

AddStringModifier
In an XmlStreamer, the AddStringModifier component adds strings before and after a segment.

Streamer Subcomponent Reference 375

The following table describes the properties of the AddStringModifier component:

Property Description

disabled Determines whether the Script ignores the component and all of the child
components. Use this property to test, debug, and modify a Script. You can
choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and
the Events view. Use the name property to identify the component that caused
the event.

pre Defines the string before the segment.

post Defines the string after the segment.

remark A user-defined comment that describes the purpose or action of the
component.

DoNothingModifier
In an XmlStreamer, this component is a placeholder. It does not modify the segment to which it is applied.

WellFormedModifier
In an XmlStreamer, the WellFormedModifier component ensures that a segment is well-formed XML. It can
add opening, closing, or root tags as required for this purpose.

The following table describes the properties of the WellFormedModifier component:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

new_root_element Defines the root element. The root element must be an ancestor of the segment. If you do not
assign this property, the modifier does not add a root element.

remark A user-defined comment that describes the purpose or action of the component.

Consider the following XML input:

<stream>
 <headerline1>...</headerline1>
 <substreams>
 <substream>
 <subheaderline1>...</subheaderline1>

376 Chapter 22: Streamers

 <segments>
 <segment1>...</segment1>
 <segment1>...</segment1>
 <segment1>...</segment1>
 </segments>
 <subfooterline1>...</subfooterline1>
 </substream>
 <substream>...</substream>
 <substream>...</substream>
 </substreams>
 <footerline1>...</footerline1>
</stream>

Suppose you configure an XmlStreamer that returns the following header, which is not well-formed XML:

<substream>
 <subheaderline1>...</subheaderline1>
 <segments>

If you apply WellFormedModifier to this header, the modifier adds the closing tags. The result is the following
well-formed segment:

<substream>
 <subheaderline1>...</subheaderline1>
 <segments>
 </segments>
</substream>

Now suppose that you configure WellFormedModifier to add <stream> as a root element. The result is:

<stream>
 <substreams>
 <substream>
 <subheaderline1>...</subheaderline1>
 <segments>
 </segments>
 <substream>
 <substreams>
</stream>

Notice that the modifier added the <stream> and <substreams> elements, preserving the skeleton structure
of the original XML.

WriteSegment
The WriteSegment component copies a segment to a specified output location. The component does not
alter the copied segment. The WriteSegment component is an option of the run_component property of the
XmlSegment component.

The following table describes the properties of the WriteSegment component:

Property Description

output Defines the output location. The output property has the following options:
- OutputDataHolder. Writes to a data holder.
- OutputFile. Writes to a file.
- OutputPort. Defines the name of an AdditionalOutputPort where the data is written.
- ResultFile. Writes to the default results file of the transformation.
- StandardErrorLog. Writes to the user log. For more information, see “Failure Handling” on page 379.
For more information about these options, see “Action Subcomponent Reference” on page 313. Default is
ResultFile.

Streamer Subcomponent Reference 377

C h a p t e r 2 3

Validators, Notifications, and
Failure Handling

This chapter includes the following topics:

• Overview of Validators, Notifiers, and Failure Handling, 378

• Failure Handling, 379

• Validators, 382

• Standard Validator Properties, 382

• Validator Component Reference, 383

• Notifications, 398

• Notification Component Reference, 399

Overview of Validators, Notifiers, and Failure
Handling

When you design a transformation, you must consider the following questions:

• What happens if the input data is invalid? For example, a date might have the wrong format, a string might
be too long, or the records might be out of sequence.

• What happens if data is missing from the input? For example, an address might omit the house number.

• What happens if the input has an unusual structure? For example, the records might be out of sequence.

Any of these conditions might occur because of an input error. If so, they can cause transformations errors
and failures.

The conditions might also occur under normal circumstances. For example, an input protocol might permit
certain fields to be missing.

You can incorporate transformation features that detect such conditions and take appropriate actions. The
following approaches are among the possible actions:

• Fail the transformation and generate no output.

• Fail a portion of the transformation, roll back its output, but permit the transformation to generate output
for other portions of the data.

• Continue the entire transformation, but write a message to a user log.

• Continue the entire transformation, but write a message to the result file of the transformation.

378

This chapter explains what happens in the event of a transformation failure, and how you can handle failure
conditions. It then explains how you can detect data validation errors that might cause failures, and how you
can write notifications about such conditions to the output.

Failure Handling
A failure is an event that prevents a component from processing data in the expected way. An anchor might
fail if it searches for text that does not exist in the source document. A transformer or action might fail if its
input is empty or has an inappropriate data type.

A failure can be a perfectly normal occurrence. For example, a source document might contain an optional
date. A Parser contains a Content anchor that processes the date, if it exists. If the date does not exist in a
particular source document, the Content anchor fails.

By configuring the transformation appropriately, you can control the result of a failure. In the above example,
you might configure the Parser to ignore the missing data and continue processing.

The event log displays warnings about failures. In addition, you can configure a transformation to write a
failure message in a user log.

Using the Optional Property to Handle Failures
You can use the optional property to control the behavior of a transformation when a failure occurs.

Failure Causes Parent to Fail
If the optional property of a component is not selected, a failure of the component causes its parent to fail. If
the parent is also non-optional, its own parent fails, and so forth.

For example, suppose that a Parser contains a Group, and the Group contains a Marker. All the components
are non-optional. If the Marker does not exist in the source document, the Marker fails. This causes the
Group to fail, which in turn causes the Parser to fail.

Pictorially, we can represent these relationships in the following way:

Parser //Failed
 Group //Failed
 Marker //Failed

Optional Failure Does Not Cause Parent to Fail
If the optional property of a component is selected, a failure of the component does not bubble up to the
parent.

In the above example, suppose that the Group is optional. The failed Marker causes the Group to fail, but the
Parser does not fail.

Parser //Succeeded
 Group //Failed
 Marker //Failed

Rollback
If a component fails, its effects are rolled back.

Failure Handling 379

For example, suppose that a Group contains three non-optional Content anchors that store values in data
holders. If the third Content anchor fails, the Group fails. The Script rolls back the effects of the first two
Content anchors. The data that the first two Content anchors already stored in data holders is removed.

The rollback applies only to the main effects of a transformation, such as a Parser storing values in data
holders or a serializer writing to its output. The rollback does not apply to side effects. In the above example,
if the Group contains a WriteValue action that writes a line in a text output file, the line is not deleted.

Setting the Optional Property
You can set the optional property of a component in the following ways:

• Edit the advanced properties of a component in the Script.

• Right-click the component, and then click Make Optional or Make Mandatory.

Components that Lack an Optional Property
Certain components lack the optional property because the components never fail, regardless of their input.

An example is the Sort action. If the Sort action finds no data to sort, it simply does nothing. It does not
report a failure.

Writing a Failure Message to the User Log
You can configure a component to output failure events to a user-defined log. For example, if an anchor fails
to find text in the source document, it can write a message in the user log. This can occur even if the anchor
is defined as optional, so that the failure does not terminate the transformation processing.

The user log can contain information such as:

• Failure level: Information, Warning, or Error

• Name of the component that failed

• Failure description

• Location of the failed component in the Script

• Additional information about the transformation status, such as the values of data holders.

Configuring User Log Output
To define the user log output, assign the on_fail property of the appropriate transformation components.
The following components have an on_fail property:

• Parsers and anchors

• Serializers and serialization anchors

• Mappers and mapper anchors

The on_fail property can have the following values:

• LogError. Writes an error message containing the VarLastFailure system variable to the user log.

• LogWarning. Same as LogError, but displays the message as a warning rather than an error.

• LogInfo. Same as LogError, but displays the message as information rather than an error.

• CustomLog. Runs a serializer that writes a custom message to the user log or another location. For more
information, see “CustomLog” on page 290.

• NotifyFailure. Triggers a notification.

380 Chapter 23: Validators, Notifications, and Failure Handling

The following example illustrates a Marker anchor with a LogInfo configuration:

If the Marker does not exist in the source document, the system writes the following entry in the user log:

*** INFO *** : Marker, [MyParser[11].Marker], Can't find Marker<optional>('Height').

Viewing the User Log
The user log is an ASCII text file. On Windows platforms, the default location of the user log is:

c:\Informatica\DataTransformation\UserLogs

On UNIX platforms, the default location is:

<INSTALL_DIR>/UserLogs

By default, each execution of a transformation generates a user log having a unique name:

<service_name>+<unique_string>.log

A transformation can set the user-log location at runtime by using SetValue actions to assign the following
system variables. Set the phase property of SetValue to initial. Ensure that SetValue runs before any
component that writes to the user log.

Variable Description

VarServiceInfo > StandardError > StandardErrorDir Directory path of the user log.

VarServiceInfo > StandardError > StandardErrorName File name of the user log.

In the following example, a SetValue action sets the user-log directory to c:\mydirectory.

Failure Handling 381

Validators
A validator component confirms that its input conforms to a condition. You can use validators to check input
for maximum or minimum string lengths or numeric values, conformance with expressions, or many other
conditions. You can apply multiple validators to the same input.

If the input does not conform to the condition, the validator triggers a notification. A NotificationHandler
component can process the notification. For example, if you use validators in a Parser, a NotificationHandler
can insert a warning message in the Parser output. For more information, see “Notifications” on page 398.

You can insert validators in locations such as the validators property of a Content anchor or Map action. The
validators enable you to warn if the input is invalid, without necessarily failing the Content or Map.

In addition to the validators described in this chapter, you can validate data against a set of user-defined
rules and generate an XML validation report. For more information, see “ValidateValue” on page 309.

Standard Validator Properties
The following table describes standard properties of validators:

Property Description

allow_empty_value Determines whether an empty input is accepted as valid. You can choose one of the following
options:
- Selected. Empty input is valid.
- Cleared. Empty input is not valid.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

negation Determines whether the validation condition is negated. You can choose one of the following
options:
- Selected. If the condition is true, the input is not valid, and if the condition is false, the input is

valid.
- Cleared. If the condition is true, the input is valid, and if the condition is false, the input is not

valid.
Default is cleared.

notify Defines the name of a notification. If the input does not conform to the validation condition, the
validator triggers the notification. For more information, see “Notifications” on page 398. Default
is cleared.

382 Chapter 23: Validators, Notifications, and Failure Handling

Property Description

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

transformers Defines a list of transformers that apply to the input. The validation condition is applied to the
result of the transformers. The transformers have only a temporary effect on the data for the
purpose of validation. The input is not permanently altered.

Validator Component Reference
Validator components test input data for conformity to defined rules.

AlternativeValidators
The AlternativeValidators validator contains a set of nested validators that apply to the input. Use an
AlternativeValidators to apply OR logic to a set of validation conditions. The data is valid if it satisfies any of
the conditions.

The following table describes the properties of the AlternativeValidators validator:

Property Description

allow_empty_value Determines whether an empty input is accepted as valid. You can choose one of the following
options:
- Selected. Empty input is valid.
- Cleared. Empty input is not valid.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

negation Determines whether the validation condition is negated. You can choose one of the following
options:
- Selected. If the condition is true, the input is not valid, and if the condition is false, the input is

valid.
- Cleared. If the condition is true, the input is valid, and if the condition is false, the input is not

valid.
Default is cleared.

Validator Component Reference 383

Property Description

notify Defines the name of a notification. If the input does not conform to the validation condition, the
validator triggers the notification. For more information, see “Notifications” on page 398. Default
is cleared.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

selector Determines the criterion for selecting a validator from among the validators nested below the
AlternativeValidators component. You can choose one of the following options:
- ScriptOrder. The Parser tests the nested validators in the sequence defined in the Script. It

accepts the first validator that succeeds. If all the validators fail, the input is invalid.
- NameSwitch. The Parser searches for the nested validator whose name property is specified

in the data holder defined in option_name. It ignores the other validators. If the named
validator fails, the input is invalid.

Default is ScriptOrder.

transformers Defines a list of transformers that apply to the input. The validation condition is applied to the
result of the transformers. The transformers have only a temporary effect on the data for the
purpose of validation. The input is not permanently altered.

EDIFACTValidation
The EDIFACTValidation validator tests whether a source string is a valid EDIFACT message.

The following table describes the properties of the EDIFACTValidation validator:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this property
to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

enabled Determines the setting for param1.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the name
property to identify the component that caused the event.

optional Determines whether a component failure causes the parent component to fail. You can choose one of the
following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page 379.

param1 Determines whether the input is optional. param1 is named is_optional and has only one property,
enabled. enabled has the following options:
- Selected. The input data is optional.
- Cleared. The input data is mandatory.

384 Chapter 23: Validators, Notifications, and Failure Handling

Property Description

param2 Defines an EDI data type. param2 is named input_type and has only one property, value. value is a hard-
keyed string or a data holder.

param3 Defines a range of integers. param3 is named minmax_limits and has only one property, value. value is a
hard-keyed string or a data holder that specifies two integers separated by a hyphen.

param4 Defines a list of values. param4 is named enumerations and has only one property, value. value is a hard-
keyed string or a data holder that specifies a comma-separated list of strings or integers.

remark A user-defined comment that describes the purpose or action of the component.

value Defines a value for param1, param2, or param3

Note: This component is deprecated. The IntelliScript editor displays it for legacy Scripts. Do not use it in new
Scripts. Instead, use other validator components.

Enumeration
The Enumeration validator tests whether a value is a member of a set of values.

The following table describes the properties of the Enumeration validator:

Property Description

allow_empty_value Determines whether an empty input is accepted as valid. You can choose one of the following
options:
- Selected. Empty input is valid.
- Cleared. Empty input is not valid.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

enumerations Defines a list of values.

ignore_case Determines whether the comparison is case sensitive. You can choose one of the following
options:
- Selected. The comparison is not case sensitive.
- Cleared. The comparison is case sensitive.
Default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

negation Determines whether the validation condition is negated. You can choose one of the following
options:
- Selected. If the condition is true, the input is not valid, and if the condition is false, the input is

valid.
- Cleared. If the condition is true, the input is valid, and if the condition is false, the input is not

valid.
Default is cleared.

Validator Component Reference 385

Property Description

notify Defines the name of a notification. If the input does not conform to the validation condition, the
validator triggers the notification. For more information, see “Notifications” on page 398. Default
is cleared.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

transformers Defines a list of transformers that apply to the input. The validation condition is applied to the
result of the transformers. The transformers have only a temporary effect on the data for the
purpose of validation. The input is not permanently altered.

LengthEquals
The LengthEquals validator tests whether the length of a string is equal to a specified value.

The following table describes the properties of the LengthEquals validator:

Property Description

allow_empty_value Determines whether an empty input is accepted as valid. You can choose one of the following
options:
- Selected. Empty input is valid.
- Cleared. Empty input is not valid.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

length Defines the length of the string.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

negation Determines whether the validation condition is negated. You can choose one of the following
options:
- Selected. If the condition is true, the input is not valid, and if the condition is false, the input

is valid.
- Cleared. If the condition is true, the input is valid, and if the condition is false, the input is not

valid.
Default is cleared.

notify Defines the name of a notification. If the input does not conform to the validation condition, the
validator triggers the notification. For more information, see “Notifications” on page 398. Default
is cleared.

386 Chapter 23: Validators, Notifications, and Failure Handling

Property Description

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

transformers Defines a list of transformers that apply to the input. The validation condition is applied to the
result of the transformers. The transformers have only a temporary effect on the data for the
purpose of validation. The input is not permanently altered.

MaxLength
The MaxLength validator tests whether the length of a string is less than or equal to a specified value.

The following table describes the properties of the MaxLength validator:

Property Description

allow_empty_value Determines whether an empty input is accepted as valid. You can choose one of the following
options:
- Selected. Empty input is valid.
- Cleared. Empty input is not valid.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

length Defines the maximum length of the string.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

negation Determines whether the validation condition is negated. You can choose one of the following
options:
- Selected. If the condition is true, the input is not valid, and if the condition is false, the input

is valid.
- Cleared. If the condition is true, the input is valid, and if the condition is false, the input is not

valid.
Default is cleared.

notify Defines the name of a notification. If the input does not conform to the validation condition, the
validator triggers the notification. For more information, see “Notifications” on page 398. Default
is cleared.

Validator Component Reference 387

Property Description

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

transformers Defines a list of transformers that apply to the input. The validation condition is applied to the
result of the transformers. The transformers have only a temporary effect on the data for the
purpose of validation. The input is not permanently altered.

MaxNumber
The MaxNumber validator tests whether a number is less than or equal to a specified value.

The following table describes the properties of the MaxNumber validator:

Property Description

allow_empty_value Determines whether an empty input is accepted as valid. You can choose one of the following
options:
- Selected. Empty input is valid.
- Cleared. Empty input is not valid.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

negation Determines whether the validation condition is negated. You can choose one of the following
options:
- Selected. If the condition is true, the input is not valid, and if the condition is false, the input

is valid.
- Cleared. If the condition is true, the input is valid, and if the condition is false, the input is not

valid.
Default is cleared.

notify Defines the name of a notification. If the input does not conform to the validation condition, the
validator triggers the notification. For more information, see “Notifications” on page 398. Default
is cleared.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

388 Chapter 23: Validators, Notifications, and Failure Handling

Property Description

remark A user-defined comment that describes the purpose or action of the component.

transformers Defines a list of transformers that apply to the input. The validation condition is applied to the
result of the transformers. The transformers have only a temporary effect on the data for the
purpose of validation. The input is not permanently altered.

value Defines the maximum value of the number.

MinLength
The MinLength validator tests whether the length of a string is greater than or equal to a specified value.

The following table describes the properties of the MinLength validator:

Property Description

allow_empty_value Determines whether an empty input is accepted as valid. You can choose one of the following
options:
- Selected. Empty input is valid.
- Cleared. Empty input is not valid.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

length Defines the minimum length of the string.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

negation Determines whether the validation condition is negated. You can choose one of the following
options:
- Selected. If the condition is true, the input is not valid, and if the condition is false, the input

is valid.
- Cleared. If the condition is true, the input is valid, and if the condition is false, the input is not

valid.
Default is cleared.

notify Defines the name of a notification. If the input does not conform to the validation condition, the
validator triggers the notification. For more information, see “Notifications” on page 398. Default
is cleared.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

Validator Component Reference 389

Property Description

remark A user-defined comment that describes the purpose or action of the component.

transformers Defines a list of transformers that apply to the input. The validation condition is applied to the
result of the transformers. The transformers have only a temporary effect on the data for the
purpose of validation. The input is not permanently altered.

MinNumber
The MinNumber validator tests whether a number is greater than or equal to a specified value.

The following table describes the properties of the MinNumber validator:

Property Description

allow_empty_value Determines whether an empty input is accepted as valid. You can choose one of the following
options:
- Selected. Empty input is valid.
- Cleared. Empty input is not valid.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

negation Determines whether the validation condition is negated. You can choose one of the following
options:
- Selected. If the condition is true, the input is not valid, and if the condition is false, the input

is valid.
- Cleared. If the condition is true, the input is valid, and if the condition is false, the input is not

valid.
Default is cleared.

notify Defines the name of a notification. If the input does not conform to the validation condition, the
validator triggers the notification. For more information, see “Notifications” on page 398. Default
is cleared.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

390 Chapter 23: Validators, Notifications, and Failure Handling

Property Description

transformers Defines a list of transformers that apply to the input. The validation condition is applied to the
result of the transformers. The transformers have only a temporary effect on the data for the
purpose of validation. The input is not permanently altered.

value Defines the minimum value of the number.

NumberEquals
The NumberEquals validator tests whether a number is equal to a specified value.

The following table describes the properties of the NumberEquals validator:

Property Description

allow_empty_value Determines whether an empty input is accepted as valid. You can choose one of the following
options:
- Selected. Empty input is valid.
- Cleared. Empty input is not valid.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

negation Determines whether the validation condition is negated. You can choose one of the following
options:
- Selected. If the condition is true, the input is not valid, and if the condition is false, the input

is valid.
- Cleared. If the condition is true, the input is valid, and if the condition is false, the input is not

valid.
Default is cleared.

notify Defines the name of a notification. If the input does not conform to the validation condition, the
validator triggers the notification. For more information, see “Notifications” on page 398. Default
is cleared.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

Validator Component Reference 391

Property Description

transformers Defines a list of transformers that apply to the input. The validation condition is applied to the
result of the transformers. The transformers have only a temporary effect on the data for the
purpose of validation. The input is not permanently altered.

value Defines the value of the number.

ValidateByExpression
The ValidateByExpression validator evaluates a JavaScript expression. If the expression is false, the
validator considers the input to be invalid.

The following table describes the properties of the ValidateByExpression validator:

Property Description

allow_empty_value Determines whether an empty input is accepted as valid. You can choose one of the following
options:
- Selected. Empty input is valid.
- Cleared. Empty input is not valid.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

expression Defines a JavaScript expression. Use $0 for the validator input. Use a dollar sign ($) plus an
integer for additional data holders defined under params, starting with $1. For example, the
following expression checks whether the input has the value Ron Lehrer:

$0 == "Ron Lehrer"

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

negation Determines whether the validation condition is negated. You can choose one of the following
options:
- Selected. If the condition is true, the input is not valid, and if the condition is false, the input is

valid.
- Cleared. If the condition is true, the input is valid, and if the condition is false, the input is not

valid.
Default is cleared.

notify Defines the name of a notification. If the input does not conform to the validation condition, the
validator triggers the notification. For more information, see “Notifications” on page 398. Default
is cleared.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

392 Chapter 23: Validators, Notifications, and Failure Handling

Property Description

params Defines a list of data holders that contain parameters for use in the expression.

remark A user-defined comment that describes the purpose or action of the component.

transformers Defines a list of transformers that apply to the input. The validation condition is applied to the
result of the transformers. The transformers have only a temporary effect on the data for the
purpose of validation. The input is not permanently altered.

ValidateByPattern
The ValidateByPattern validator tests whether a string matches a regular expression. For more information,
see “RegularExpression” on page 265.

The following table describes the properties of the ValidateByPattern validator:

Property Description

allow_empty_value Determines whether an empty input is accepted as valid. You can choose one of the following
options:
- Selected. Empty input is valid.
- Cleared. Empty input is not valid.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

expression Defines a regular expression.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

negation Determines whether the validation condition is negated. You can choose one of the following
options:
- Selected. If the condition is true, the input is not valid, and if the condition is false, the input is

valid.
- Cleared. If the condition is true, the input is valid, and if the condition is false, the input is not

valid.
Default is cleared.

notify Defines the name of a notification. If the input does not conform to the validation condition, the
validator triggers the notification. For more information, see “Notifications” on page 398. Default
is cleared.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

Validator Component Reference 393

Property Description

remark A user-defined comment that describes the purpose or action of the component.

transformers Defines a list of transformers that apply to the input. The validation condition is applied to the
result of the transformers. The transformers have only a temporary effect on the data for the
purpose of validation. The input is not permanently altered.

ValidateByTransformer
The ValidateByTransformer validator applies a list of one or more transformers to the input. If the list of
transformers fails, the validator considers the input to be invalid.

The following table describes the properties of the ValidateByTransformer validator:

Property Description

allow_empty_value Determines whether an empty input is accepted as valid. You can choose one of the following
options:
- Selected. Empty input is valid.
- Cleared. Empty input is not valid.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

negation Determines whether the validation condition is negated. You can choose one of the following
options:
- Selected. If the condition is true, the input is not valid, and if the condition is false, the input

is valid.
- Cleared. If the condition is true, the input is valid, and if the condition is false, the input is not

valid.
Default is cleared.

notify Defines the name of a notification. If the input does not conform to the validation condition, the
validator triggers the notification. For more information, see “Notifications” on page 398. Default
is cleared.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

394 Chapter 23: Validators, Notifications, and Failure Handling

Property Description

run_transformers Defines a list of transformers.

transformers Defines a list of transformers that apply to the input. The validation condition is applied to the
result of the transformers. The transformers have only a temporary effect on the data for the
purpose of validation. The input is not permanently altered.

ValidateByType
The ValidateByType validator tests whether its input conforms to a specified data type.

The following table describes the properties of the ValidateByType validator:

Property Description

allow_empty_value Determines whether an empty input is accepted as valid. You can choose one of the following
options:
- Selected. Empty input is valid.
- Cleared. Empty input is not valid.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view.
Use the name property to identify the component that caused the event.

negation Determines whether the validation condition is negated. You can choose one of the following
options:
- Selected. If the condition is true, the input is not valid, and if the condition is false, the input

is valid.
- Cleared. If the condition is true, the input is valid, and if the condition is false, the input is not

valid.
Default is cleared.

notify Defines the name of a notification. If the input does not conform to the validation condition, the
validator triggers the notification. For more information, see “Notifications” on page 398. Default
is cleared.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

remark A user-defined comment that describes the purpose or action of the component.

Validator Component Reference 395

Property Description

transformers Defines a list of transformers that apply to the input. The validation condition is applied to the
result of the transformers. The transformers have only a temporary effect on the data for the
purpose of validation. The input is not permanently altered.

val_type Defines a data type. Select a standard type or a type that is defined in the project schemas.

ValidateDate
The ValidateDate validator tests whether a date conforms to a specified ICU date format, for example, yyyy-
MM-dd. For more information, see “DateFormatICU” on page 250.

The following table describes the properties of the ValidateDate validator:

Property Description

allow_empty_value Determines whether an empty input is accepted as valid. You can choose one of the following
options:
- Selected. Empty input is valid.
- Cleared. Empty input is not valid.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

format_string Defines an ICU date format.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

negation Determines whether the validation condition is negated. You can choose one of the following
options:
- Selected. If the condition is true, the input is not valid, and if the condition is false, the input is

valid.
- Cleared. If the condition is true, the input is valid, and if the condition is false, the input is not

valid.
Default is cleared.

notify Defines the name of a notification. If the input does not conform to the validation condition, the
validator triggers the notification. For more information, see “Notifications” on page 398. Default
is cleared.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

396 Chapter 23: Validators, Notifications, and Failure Handling

Property Description

remark A user-defined comment that describes the purpose or action of the component.

transformers Defines a list of transformers that apply to the input. The validation condition is applied to the
result of the transformers. The transformers have only a temporary effect on the data for the
purpose of validation. The input is not permanently altered.

ValidatorPipeline
The ValidatorPipeline validator applies a list of validators to the data. If any of the validators reports
invalidity, or if a validator is marked as optional and fails, the ValidatorPipeline triggers a notification.

Use a ValidatorPipeline to apply AND logic to a set of validation conditions. The data is valid if it satisfies all
the conditions.

The following table describes the properties of the ValidatorPipeline validator:

Property Description

allow_empty_value Determines whether an empty input is accepted as valid. You can choose one of the following
options:
- Selected. Empty input is valid.
- Cleared. Empty input is not valid.
Default is cleared.

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use
the name property to identify the component that caused the event.

negation Determines whether the validation condition is negated. You can choose one of the following
options:
- Selected. If the condition is true, the input is not valid, and if the condition is false, the input is

valid.
- Cleared. If the condition is true, the input is valid, and if the condition is false, the input is not

valid.
Default is cleared.

notify Defines the name of a notification. If the input does not conform to the validation condition, the
validator triggers the notification. For more information, see “Notifications” on page 398. Default
is cleared.

optional Determines whether a component failure causes the parent component to fail. You can choose
one of the following options:
- Selected. Component failure does not cause the parent component to fail.
- Cleared. Component failure causes the parent component to fail.
Default is cleared. For more information about component failure, see “Failure Handling” on page
379.

Validator Component Reference 397

Property Description

remark A user-defined comment that describes the purpose or action of the component.

transformers Defines a list of transformers that apply to the input. The validation condition is applied to the
result of the transformers. The transformers have only a temporary effect on the data for the
purpose of validation. The input is not permanently altered.

Notifications
A notification is a signal that a condition has occurred in a transformation. When the condition occurs, a
transformation triggers the notification. You can configure handlers that process the notifications.

The following examples illustrate some ways to use notifications:

• A validator can trigger a notification. A NotificationHandler component can write a validation warning
message to the result file of the transformation or to a log.

• A StructureDefinition anchor can define a set of NotificationHandler components to process mismatches
between the input records and the required input structure. If a mismatch occurs, the appropriate
NotificationHandler writes a message to the result file or to a log.

• A Notify action to trigger a notification in any location of a transformation. A NotificationHandler can
write a message to the result file or to a log.

The following table describes the types of notifications:

Notification Description

MandatoryStructureMissing A mandatory record does not appear in the input.

MismatchIDs The record and subelement IDs partially match. For example, there are two record
identifiers, and only one of them matches.

StructureBelowMinOccurs There are fewer matching records of the subelement than defined in minOccurs.

StructureExceedsMaxOccurs There are more matching records of the subelement than defined in maxOccurs.

StructureOutOfSequence The records match the subelements but not in the required sequence. For example,
the subelements define a sequence ABC, but the input contains ACB.

UnexpectedRecord The records match the subelements, but not in the required hierarchy. For example,
the subelement define a sequence ABC, and D is defined in another location. The
input contains ABD.

UnrecognizedRecord No subelement matches any of the record identifiers.

XsdValidationError The input does not match the requirements of the schema.

398 Chapter 23: Validators, Notifications, and Failure Handling

Notification Component Reference
Notification components perform actions when a component fails.

Notification
The component defines the name of a notification. Configure the component at the global level of the Script.

The following figure shows a notification called StringTooLong:

NotificationGroup
The component defines a single name that refers to a set of notification names. Configure the component at
the global level of the Script.

The following example shows a group called StringTooLongOrShort:

You might configure a NotificationHandler to process StringTooLongOrShort. If a transformation triggers a
StringTooLong or StringTooShort notification, the handler processes the notification.

The following table describes the properties of the NotificationGroup component.

Property Description

notifications Defines a list of notifications.

NotificationHandler
The NotificationHandler component defines a list of actions to take for a specified notification.

Insert the NotificationHandler component in locations such as the notifications property of a Group or
RepeatingGroup. Within the component, you can insert a WriteValue action that stores a message in a data
holder.

The VarNotificationDetails variable stores information about the notification that was most recently triggered.
A NotificationHandler writes the information stored in VarNotificationDetails to the output. For more
information about VarNotificationDetails, see “System Variables” on page 185.

Notification Component Reference 399

The following table describes the properties of the NotificationHandler component:

Property Description

disabled Determines whether the Script ignores the component and all of the child components. Use this
property to test, debug, and modify a Script. You can choose one of the following options:
- Selected. The Script ignores the component.
- Cleared. The Script applies the component.
The default is cleared.

name A descriptive label for the component. This label appears in the log file and the Events view. Use the
name property to identify the component that caused the event.

notification Defines the name of a notification for NotificationHandler to process. Select a predefined notification
or a notification name that is defined in a Notification or NotificationGroup component. To configure a
handler that processes any notification, select anyNotification.

remark A user-defined comment that describes the purpose or action of the component.

source Defines a data holder that you can use for input to the NotificationHandler.

target Defines a data holder for the output of the NotificationHandler.

The following figure shows a Group anchor that is configured with a NotificationHandler:

If a component in the Group triggers an InvalidValueInGroup notification, the handler processes it. The
handler writes the VarNotificationDetails/Value variable, together with a text string, to the result file of the
transformation.

NotifyFailure
NotifyFailure is a possible value of the on_fail property of anchors and other components. If the component
fails, NotifyFailure triggers a notification.

400 Chapter 23: Validators, Notifications, and Failure Handling

The following table describes the properties of the NotifyFailure component.

Property Description

notify Defines the notification to trigger. Select a predefined notification or a notification name
that is defined in a Notification or NotificationGroup component.

value Defines the value of the VarNotificationDetails/Value variable. A NotificationHandler can
include the value in its output.

Notification Component Reference 401

C h a p t e r 2 4

Validation Rules
This chapter includes the following topics:

• Validation Rules Overview, 402

• Validation Rules Element Reference, 403

• Edit the Validation Rules in an External Editor, 409

• Create a Validation Rules Object, 409

• Import a Data Transformation Service with Validation Rules, 409

Validation Rules Overview
A Data Processor transformation uses Validation Rules to check the input or output data for the
transformation. You can use a Validation Rules object to validate XML data according to a set of user defined
rules. If the data violates the rules, the action generates an XML validation report. When you create a
Validation Rules object, you can provide a sample file to test the Validation Rules object.

Validation Rules check the input or output elements for a Data Processor transformation. Use the Validation
Rules editor to create, define, edit, and manage rules.

After you create a Validation Rules object, you add Validation Rules elements. You define each element in the
editor. The editor adds the elements to the Validation Rules hierarchy.

The root level of the hierarchy contains a description for the Validation Rules object, and a reference to the
sample XML file that you can use to debug the Validation Rules object. The Validation Rules hierarchy
contains the Lookups and Rules folders. A Lookup element defines a lookup table that contains codes and
translations. You can add one or more Lookup elements to the Lookup folder.

The Rule element defines a validation rule. If the Rule evaluates to false, the Validation Rules object reports
an error. You can add one or more Rule elements to the Rules folder.

You can nest the following elements within a Rule element:
Variable Element

A Variable element defines a variable that has a simple data type. The element contains an XPath
expression that evaluates to the value of the Variable.

Assert Element

The Assert element defines the logic of a rule. The element contains an XPath expression. If the
expression is false, the Rule reports a validation error.

402

List Element

The List element defines a complex variable that contains a list of values.

Trace Element

The Trace element adds the value of an XPath expression to the events file.

After you create an element, you define the attributes for the element. The attributes define the logic for that
element.

You can copy and paste elements into the Validation Rules editor. You can also edit the Validation Rules
object in an external editor and add, edit, or delete elements in XML.

You can import a Data Transformation service with any number of VRL files. You can copy all or part of a VRL
file into the Validation Rules editor. You can open the VRL file in an external editor and copy elements, and
then paste them into the Validation Rules editor hierarchy.

You can call the Validation Rules object from within a Data Processor transformation Script component with
the ValidateValue action.

Validation Rules Element Reference
The top level of a validation rule hierarchy contains a Rule or Lookup element. Within a Rule element, you can
nest the Assert, List, Trace, and Variable elements.

Assert Element Attributes
The Assert element defines the logic of a rule. The element contains an XPath expression. If the expression
is false, the rule reports a validation error.

A Rule must contain at least one Assert element.

The following table describes the properties of the Assert element:

Property Description

Additional Data Optional. An XPath expression that can be evaluated and inserted into the error report.

Code Optional. A string attribute that identifies the Assert element. If no Code is specified, the Code is
taken from the parent Rule.

Description Optional. A description of the Assert element. If no description is specified, the description is
taken from the parent Rule.

Location Optional. A string value that can be appended to the XPath expression equivalent to the node
selected by the parent Rule. The expression is then inserted into the error report.

Rule Description A read-only description of the Rule that the element is nested under.

XPath Mandatory. An XPath Boolean expression that expresses the logic of the rule.

Validation Rules Element Reference 403

List Element Attributes
The List element defines a complex variable containing a list of values.

The following table describes the properties of the List element:

Property Description

Append A Boolean attribute that determines what happens if the list has the same name as an existing list.
If enabled, the new values are added to the existing list. If disabled, the existing list is deleted and
a new list is created. The default value is enabled.

Function Optional. An XPath expression that is evaluated relative to each of the selected nodes. The value of
the expression is added to the list.

Name Mandatory. The name of the list. Use this name to reference the List in XPath expressions of
elements nested within the parent Rule.

Rule
Description

A read-only description of the Rule that the element is nested under.

Select Mandatory. An XPath expression that selects nodes for calculating the items in the list.

Lookup Element Attributes
The Lookup element defines a lookup table containing codes and translations.

The following table describes the properties of the Lookup element:

Property Description

File Mandatory. The file that contains the lookup table.

Name Mandatory. The name of the lookup table.

Lookup File
The following example shows a sample Lookup file:

<LookupTable xmlns="http://www.Itemfield.com/Engine/V4/lookupTable" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance">
 <Entry key="a" value="1"/>
 <Entry key="b" value="2"/>
 <Entry key="c" value="3"/>
</LookupTable>

The lookup table format is identical to an XMLLookupTable used in the LookupTransformer component. For
more information, see “LookupTransformer” on page 262.

You can use the dt:lookup() function in an XPath expression to look up a value in the lookup table.

404 Chapter 24: Validation Rules

Rule Element Attributes
The Rule element defines a validation rule. If the Rule evaluates to false, validation rule reports an error.

The following table describes the properties of the Rule element:

Property Description

Code Mandatory. An identifier for the Rule. Must be a single word.

Description Mandatory. A description of the Rule in free-text, of any length.

Enabled Determines whether the Rule is enabled or disabled. The default value is enabled.

Run All Asserts Determines whether the Asserts that are nested under the Rule are run. By default the property is
enabled, so the Rule processes all the Asserts. If disabled, the rule stops processing Asserts after
one of the Asserts fails.

Select Mandatory. An XPath expression that selects the node or set of nodes that the Rule applies to.

Trace Element Attributes
The Trace element adds the value of an XPath expression to the error report. The element contains the XPath
expression.

The following table describes the properties of the Trace element:

Property Description

Description Mandatory. A description of the Trace element.

Enabled Determines whether the Trace is enabled or disabled. The default value is enabled.

Rule Description A read-only description of the Rule that the element is nested under.

XPath Mandatory. An XPath expression that can be evaluated and inserted into the error report.

Variable Element Attributes
A Variable element defines a variable that has a simple data type. The element contains an XPath expression.
The value of Variable is the value of the expression.

The following table describes the properties of the Variable element:

Property Description

Name Mandatory. The name of the Variable. Use this name to reference the Variable in XPath
expressions of elements nested within the parent Rule.

Rule Description A read-only description of the Rule that the element is nested under.

XPath Mandatory. An XPath expression that calculates or refers to the nodes that the Variable applies to.

Validation Rules Element Reference 405

XPath Editor
Some elements contain XPath expressions. To create the expressions, you type an XPath expression into the
XPath editor.

XPath Extensions
The Rule, Assert, List, Variable, and Trace elements can contain XPath expressions. The following functions
can be part of the XPath expression.

The Validation Rules object defines the following functions as extensions of XPath 1.0. The extensions
belong to the dt namespace, which is defined as http://validations.informatica.com.

Function Description

dt:all-equal(
 param1[,
 param2,
 ...])

Returns true if all items in the list are equal. The parameters can be simple
values or lists.

dt:check-uniqueness(
 value1[,
 value2,
 ...])

Returns true if all values in the list of parameters are unique. Each value can
be:
- A simple value
- A variable that contains a list of strings
- A variable that contains a list of nodes where each node is a simple value.

dt:date-add(
 startDate,
 format,
 numberOfDays)

Returns the date. If numberOfDays is of type float, the function rounds down
the value to the next lower integer.

dt:date-diff(
 startDate,
 format,
 endDate,
 format)

Returns the number of days between two dates.

dt:date-format(
 date,
 inputFormat,
 outputFormat)

Converts the format of date from inputFormat to outputFormat.

dt:date-valid(
 string-to-match,
 format)

Returns true if the string matches the specified date format.

dt:deep-equal(
 element1,
 element2)

Returns true if both of the following are true:
- element1 and element2 have all the same attributes, with all the same

values.
- element1 and element2 have all the same child elements, in the same

order, and all the child elements are deep equal.

dt:empty(
 xpath)

Returns true if an XPath contains no child elements.

dt:exist(
 xpath)

Returns true if an XPath exists. Equivalent to count(xpath) > 0.

406 Chapter 24: Validation Rules

Function Description

dt:is-sorted-lex(
 ascending,
 param1[,
 param2,
 ...])

Returns true if the list items are lexicographically sorted. The first parameter
is a Boolean that sets the sort direction: true for ascending or false for
descending.

dt:last-day-of-month(
 date,
 format)

Returns the last day of the selected month.

dt:list-items(
 list,
 separator)

Returns a string of all the items in the list, separated by the separator. The
default separator is a comma.

dt:lookup(
 string,
 lookupName,
 default)

Looks up a string in a lookup table. Specify the string to look up, the name of
the lookup table, and a default value to return if the string does not exist in
the table.

dt:min-lex(
 value1[,
 value2,
 ...])

Sorts the list of input parameters lexicographically and returns the first item
in the sorted list. Each value can be:
- A simple value
- A variable that contains a list of strings
- A variable that contains a list of nodes where each node is a simple value.

dt:next-sequence() Returns a node-set that contains the current element and all its following
siblings, until another element of the same name.

dt:regex-match(
 string-to-match,
 regex)

Returns true if a string matches a regular expression.

dt:regex-replace(
 inputString,
 patternRegex,
 replacementString)

Returns inputString with all instances of patternRegex replaced by
replacementString. If nothing matches patternRegex, the inputString value
returns with no changes.

dt:string-replace(
 string1,
 string2,
 string3)

Replaces all instances of string2 in string1 with string3.

dt:unadjusted-calculation-
period-dates(
 startDate,
 endDate,
 timeUnit,
 timeUnitMultiplier,
 lookupDate,
 dateFormat)

Returns true if lookupDate is within the first specified time period in the
specified range, where the time period is timeUnitMultiplier times timeUnit
and the range is between startDate and endDate.
- timeUnitMultiplier is an integer.
- timeUnit is one of the following strings:

- Day or D
- Week or W
- Month or M
- Year or Y

- lookupDate is a date in the range between startDate and endDate.
- dateFormat defines the formats of lookupDate, startDate, and endDate

For more information about the date format, see “DateFormatICU” on page 250.

Validation Rules Element Reference 407

Example: Using dt:next-sequence()
You can use the dt:next-sequence() function to access logically hierarchical data that is not nested within the
current element.

Consider the following input:

<Root>
 <A/>

 <C/>
 <A/>
</Root>

The XPath /Root/A/dt:next-sequence() returns the following node-set:

<A/>

<C/>

In the following example, each id element is associated with a set of sibling elements called name, quantity,
and price:

<items>
 <id>100</id>
 <name>Plate</name>
 <quantity>4</quantity>
 <price>10</price>
 <id>101</id>
 <name>Toaster</name>
 <quantity>6</quantity>
 <price>10</price>
 <id>102</id>
 <name>Knife</name>
 <quantity>10</quantity>
 <price>5</price>
</items>

The name, quantity, and price elements are all logically nested within id, even though they are not nested
physically.

The following rule requires that price*quantity for each id be less than or equal to 50:

<rule code="sum1" select="/items/id" description="For each id, check that the total
price (price*quantity) does not exceed 50">
 <variable name="current">dt:next-sequence()</variable>
 <variable name="total">$current[3]*$current[4]</variable>
 <assert additionalData="$total"><![CDATA[$total <= 50]]></assert>
</rule>

For the first id element, the variable $current is a node-set with the following value:

<id>100</id>
<name>Plate</name>
<quantity>4</quantity>
<price>10</price>

The expression $current[3]*$current[4} evaluates to 4*10 = 40. The rule confirms that 40 < 50.

For the subsequent id elements, the rule evaluates the expression in a similar way.

408 Chapter 24: Validation Rules

Edit the Validation Rules in an External Editor
You can select to edit a Validation Rules in an external editor. The editor displays the Validation Rules
hierarchy in XML with any nested elements that you created. You can copy, edit, or delete elements in XML.

Note: If you select to save changes when you edit a Validation Rules object in an external editor, you save the
entire transformation, rather than just the Validation Rules changes.

Create a Validation Rules Object
You can use the Validation Rules editor to create, view, and edit a Validation Rules object.

1. On the Data Processor transformation Objects view create a Validation Rules.

2. To open the Validation Rules, click the Validation Rules object.

3. To add an element, in the left pane of the editor, right-click the rule hierarchy and select New >
<element>, where <element> stands for the type of element that you want to add.

A blank element appears.

4. In the right pane, define the attributes for the element.

5. Add elements and assign attributes to each element as required.

At each stage, you can right-click and perform the following operations:

• Append a sibling element

• Add a child element

• Delete an element

• Enable or disable a rule

• Undo or redo operations

6. Save the Validation Rules object.

Import a Data Transformation Service with Validation
Rules

You can import a Data Transformation service containing Validation Rules from the file system repository of
the machine where you saved the service. Import a Data Transformation service .cmw file to the Model
repository to create a Data Processor transformation. The Developer tool imports the transformation and
validation rules with the .cmw file.

1. Click File > Import,

The Import dialog box appears.

2. Select InformaticaImport Data Transformation Service and click Next.

The Import Data Transformation Service page appears.

3. Browse to the service .cmw file that you want to import.

Edit the Validation Rules in an External Editor 409

The Developer tool names the transformation according to the service file name. You can change the
name.

4. Browse to a location in the Repository where you want to save the transformation, then click Finish.

The Developer tool imports the transformation and validation rules with the .cmw file.

5. To edit the Validation Rules object, double-click the Validation Rules object in the Object Explorer view.

The Validation Rules editor appears and displays the Validation Rules object hierarchy.

410 Chapter 24: Validation Rules

C h a p t e r 2 5

Custom Script Components
This chapter includes the following topics:

• Custom Script Components Overview, 411

• Custom Component Example, 411

• Custom Component Properties, 412

• Developing a Custom Component, 412

• Configuring a Custom Component, 413

Custom Script Components Overview
When you design and configure a Data Processor transformation Script, you can use a large number of built-
in components. You can also program custom components, such as document processors or transformers,
and insert them into a Script. When you export the Data Processor transformation as a Data Transformation
service, the service runs the custom components.

You implement the custom components in Java. For more information about the interfaces that you must
implement, see the External-Component Java Interface Reference.

Custom Component Example
Suppose you need to parse a proprietary binary data format. Rather than parse the binary data directly, you
prefer to convert the data to a text representation that is easier to parse.

To do this, you can program a custom document processor, which you might call MyBinaryToText. The
processor might have properties such as the following:

Property Description

KeepLineBreaks A Boolean property. When true, the processor preserves the line-break characters in the binary
data.

MaxLineLength An integer property. Specifies the maximum length of the text lines to output.

Ignore A string property. Tells the processor to ignore data fields beginning with the specified string.

411

After you develop the processor, you can install it and use it in Scripts.

Custom Component Properties
The properties of a custom component can have integer, Boolean, string, or list-of-string data types. You can
assign either a constant property value or the name of a data holder that contains the value.

You can hide some of the properties in the IntelliScript editor. For example, a custom component might
support four properties. In its TGP configuration file, you can configure it to display only the first two
properties. The Script passes only the displayed properties to the component. The component can assign its
own default values to the hidden properties.

The maximum number of properties that a custom component can have depends on the component type. For
a document processor component, the maximum number of properties is 4. For a transformer component,
the maximum number of properties is ten.

Developing a Custom Component
1. Create a class that implements one or more of the following interfaces:

Component Type Type of Input Interface

Document processor File CMXFileProcessor

Document processor Buffer CMXByteArrayProcessor

Transformer String CMXStringTransformer

Transformer Buffer CMXByteArrayTransform

For more information about these interfaces, see the External-Component Java Interface Reference.

2. Compile the project to a JAR file.

3. Store the JAR in the externLibs\user subdirectory of the installation directory of every computer where
you plan to use the component.

4. Create a Script file that defines the display name of the component and its properties. Store the file in
the autoInclude\user subdirectory of the installation directory.

For more information about this step, see “Configuring a Custom Component” on page 413.

You can then use the custom component in transformations.

Java Interface Example
As an example, consider a document processor that accepts file input. The processor must implement the
CMXFileProcessor class, which has the following method:

public String process(
 CMXContext context,
 String in,

412 Chapter 25: Custom Script Components

 String additionalFilesDir,
 CMXEventReporter reporter)
 throws Exception

The meaning of the parameters is as follows:

Parameter Description

context Input parameter. An object containing the properties that the Script passes to the component. The
parameters method of the object returns a vector containing the property values.

in Input parameter. The full path of the file that the component operates on.

additionalFilesDir Optional output parameter. The path of a temporary directory where the component writes files.
At the end of processing, the Script deletes the entire directory content.

reporter Input parameter. An object providing the report method, which the component can use to write
events to the event log.

Sample Custom Java Components
For samples of the implementation of the custom components, see the following subdirectory of the
installation directory:

samples\SDK\ExternalParameters\Java_SDK\Java
The directory contains the following samples:

Sample Description

FilePP.java A document processor accepting file input.

ByteArrayPP.java A document processor accepting buffer input.

StringTT.java A transformer accepting string input.

ByteArrayTT.java A transformer accepting buffer input.

Configuring a Custom Component
After you develop a custom component, you must prepare a Script file that defines the component. You
cannot prepare the TGP file in the IntelliScript editor. Instead, you must prepare it in a text editor.

After you install the component and the TGP file, you can configure the custom component in the IntelliScript
editor.

1. Create a text file and save it with a *.tgp extension.

Note: You can define more than one external component in a single TGP file.

2. For each property that your external component supports, add lines such as the following to the TGP file:

profile <CustomPropertyName1> ofPT <DataType>
{

Configuring a Custom Component 413

 paramName = "<CustomPropertyName1>" ;
}

<CustomPropertyName1> is the name of a property that you want to display in the IntelliScript editor.
<DataType> is the data type of the property. The supported data types are NamedParamIntT for an integer
property, NamedParamBoolT for a boolean property, NamedParamStringT for a string property, or
NamedParamListT for a property that is a list of strings.

3. For each external component that you wish to define, add lines such as the following to the TGP file:

profile <ExternalComponentName> ofPT <ComponentType>
{
 jclass = "<ClassName>" ;
 param1 = <CustomPropertyName1>() ;
 param2 = <CustomPropertyName2>() ;
}

<ExternalComponentName> is the name of the external component that you want to display in the
IntelliScript editor. <ComponentType> is one of the following values:

For ComponentType

A Java document processor with 0 to 4 properties ExternalJavaProcessorNoParamsT
ExternalJavaProcessor1ParamsT
ExternalJavaProcessor2ParamsT
...

A Java transformer with 0 to 10 properties ExternalJavaTransformerNoParamsT
ExternalJavaTransformer1ParamsT
ExternalJavaTransformer2ParamsT
...

<ClassName> is the fully qualified name of the Java class. On Windows, <DllName> is the name of the
DLL, without the *.dll extension. On Linux or UNIX, it is the name of the shared object, without the lib
prefix or the *.so, extension.

<CustomPropertyName1> and <CustomPropertyName2> are the names of the properties that you
configured in step 2.

4. Save the *.tgp file.

5. Store the file in the DataTransformation\autoInclude\user subdirectory of the installation directory of
every computer where you want to use the component.

6. If the Developer tool is open, close it and re-open it.

7. If an autoInclude error is displayed, review the TGP file for syntax errors or naming inconsistencies, and
open the Developer tool again.

8. Open a project and insert the custom component in the Script. The custom component name, which you
assigned in step 3 above, appears in the IntelliScript drop-down list. The IntelliScript editor displays its
properties.

Sample Scripts Containing Custom Components
You can find samples of Script files that contain custom components in the following subdirectories of the
installation directory:

samples\SDK\ExternalParameters\Java_SDK\autoInclude
samples\SDK\ExternalParameters\Cpp_SDK\autoInclude

414 Chapter 25: Custom Script Components

I n d e x

A
abstract property

schema object 118
AbsURL

component 245
AcroForms

processing PDF forms 156
actions

compared to transformers 280
defining 280
input and output 279
properties of 280, 382
side effects 279

AddEmptyTagsTransformer
component 245

AddEventAction
component 281

AddHeaderModifier
component 374

AdditionalInputPort
component 143

AdditionalOutputPort
component 145

AddString
component 246

AddStringModifier
component 375

advanced properties
description 133

AggregateValues
component 282

AllStructure
component 234

AllStructureLocal
component 235

alternative parsers
selecting 204

AlternativeMappings
component 337

Alternatives
component 203

AlternativeSerializers
component 322

AlternativeValidators
component 383

anchor, repeating group
highlighting all iterations 136

anchors
defining 193
extent of complex 202
location in IntelliScript 193
Marker and Content 191
phase 196
properties of 195
reference 202

anchors (continued)
relation to delimiters 192
relation to XML 192
serialization 315, 318
using transformers 242

AppendListItems
component 284

AppendValues
component 285

arithmetic
computations 286

Assert
Validation Rule element 403

assigning
value to output 307

attribute properties
schema object 121

attributeFormDefault
schema object 122

attributes
data holders 179

AttributeSearch
component 230

autoInclude
custom components 413

B
base property

schema object 120
Base64Decoder

component 246
Base64Encoder

component 247
BidiConvert

component 247
BinaryFormat

component 168
BIRT

XmlToDocument report generator 158, 159
XmlToDocument_372 report generator 158
XmlToDocument_45 report generator 159

block property
schema object 119

buffer input port
Data Processor transformation 25

buffer output port
Data Processor transformation 26

C
CalculateValue

component 286

415

CDATADecode
component 248

CDATAEncode
component 248

ChangeCase
component 249

characters
special in IntelliScript 73

ChoiceStructure
component 235

ChoiceStructureLocal
component 236

choose hierarchy
Data Processor transformation 61, 66

COBOL
importing data definition 51
supported features 52
testing Parser 52
testing Serializer 53

code pages
transforming 254
XSD schema 180

collapse whitespace property
schema object 120

colors
highlighting in example source document 135

combinations
of lists 288

CombineValues
component 288

CommaDelimited
component 174

command-line interface
CM_console command 127

complex segments
streamer 359

complex type
advanced properties 121

ComplexSegment
component 366

ComplexXmlSegment
component 366

component properties
values, description 134

Component view
Data Processor transformation 24

component, global
defining 132

component, local
defining 132

component, Script
custom Java, developing 412
description 131

component, startup in Script
description 134

components
in IntelliScript 71

components, custom Script
description 411
properties 412

components, Script
description 131
names 132

components,Script
properties, description 133

concatenation
strings 284

condition
ensuring in source document 295

Connect
component 237

Content
component 205

content anchors
highlighting in example source document 135

ContentSerializer
component 318, 323

CreateGuid
component 250

CreateList
component 289

CreateUUID
component 250

custom component
example 411
Java, developing 412

custom Script components
description 411
properties 412

CustomFormat
component 169

customize view
XMap Schema panel 79

CustomLog
component 290

cutting and pasting
Script components 136

D
data

validating 382
data holders

destroying occurrences 190
identifying source and target 347
indexing multiple-occurrence 342
mixed content 182
single or multiple occurrence 189

Data Process Transformation Wizard
description 46

Data Processing transformation
startup component 27

Data Processior transformation
denormalized relational output 69

Data Processor Events view
Data Processor transformation 35
viewing event log 37

Data Processor functions
description 101

Data Processor Hex Source view
description 24

Data Processor transformation
encoding settings 28
creating 38
denormalized relational input 65
description 23, 24
exporting as a service 42
input ports 25
mapping XML to ports 66
mapping XML to relational ports 61
non-native environment 45
normalized relational input 64
normalized relational output 68
output control settings 31

416 Index

Data Processor transformation (continued)
output ports 26
pivoted input 64
pivoted output 68
ports 25
processing settings 32

relational input
Data Processor transformation 62

relational output
Data Processor transformation 67

service parameter ports 26
settings 28
testing a library 113
testing in the Data Viewer 42
user logs 37
views 24
XMap settings 33
XML settings 33

Data Transformation service
import multiple services 43
importing to the Model repository 43
running from the command line 127

data types
searching for 201

DateAddICU
component 291

DateDiff
component 292

DateDiffICU
component 292

DateFormat
component 251

DateFormatICU
component 250

dates
format of 250

Default
component 89

Default statement
XMap editor 80

default transformers
in format 243

DelimitedSections
component 208

DelimitedSectionsSerializer
component 324

Delimiter
component 174

DelimiterHierarchy
component 175

delimiters
custom hierarchy 169
relation to anchors 192

denormalized relational input
Data Processor transformation 65

denormalized relational output
Data Processor transformation 69

derived data types
XSI type 182

design-time event log
description and location 36

direction property
of anchors 195

disabled property
selecting on menu 76

DocList
component 148

document processors
custom Java 155
defining 151
reference 152
running multiple 158

document, example source
description 135

DoNothingModifier
component 376

Dos96HebToAscii
component 253

DownloadFileToDataHolder
component 293

dp:as_XML
Data Processor function 101

dp:get_id
Data Processor function 101

dp:lookup
Data Processor function 101

dp:output
Data Processor function 101

DumpValues
component 294

dynamic
offset 231
search 233

DynamicTable
component 253

E
EbcdicToAscii

component 253
EDI

delimiters for parsing 175
editor, IntelliScript

description 136
editors

IntelliScript 70
elementFormDefault

schema object 122
elements

data holders 179
EmbeddedMapper

component 338
EmbeddedParser

component 211
EmbeddedSerializer

component 326
EmbeddedStructure

component 237
enclosed

group 212
EnclosedGroup

component 212
EnclosingDelimiters

component 175
EncodeAsUrl

component 254
Encoder

component 254
encoding

code page transformer 254
XSD schema 180

encoding guidelines
Data Processor transformation 31

Index 417

encoding settings
Data Processor transformation 28

EnsureCondition
component 295

entering characters
non-keyboard 134

entry point, Script
description 134

Enumeration
component 385

enumeration property
schema object 118

errors
failure handling 379
validation failure handling 137

event log
custom events 281
viewing 37

event log, design-time
description and location 36

event types
Data Processor transformation 35

events
Data Processor transformation 35
handling 378

Events view
Data Processor transformation 35

Events view, Data Processor
viewing event log 37

example input file
Data Processor transformation 25

example source
description 135
setting 135
viewing 136
XMap Schema panel 79

Example Source
creating in Data Processor transformation 41

example source document, highlighting
description 135

example_source property
Mapper 335
Serializer 320

Excel
generating from XML 160
parsing as XML 152, 153

ExcelToDataXml
component 152

ExcelToXml
component 153

ExcludeItems
component 298

ExpandFrameSet
component 155

ExternalJavaPreProcessor
component 155

extracting content
Content anchor 205

ExtractRecord
component 214

F
failure

effect on parent 379
failure event

Data Processor transformation 35

failure handling
variables for 186

failures
handing 379
handling 378

fatal error event
Data Processor transformation 35

file input port
Data Processor transformation 25

file ouptput port
Data Processor transformation 26

FileSearch
component 148

FindReplaceAnchor
component 215

fixed value property
schema object 118

footer segment
Streamer 359

format
preprocessors 178

FormatNumber
component 255

forms
processing PDF 156

frameset
parsing HTML 155

FromFloat
component 256

FromInteger
component 257

FromPackDecimal
component 258

FromSignedDecimal
component 258

G
generated prefix

changing for namespace 117
global component

defining 132
global components

defining 74
grid

XMap 80
group

performing actions on 217
repeating 222

Group
component 217

Group statements
XMap 83

GroupMapping
component 339

GroupSerializer
component 327

H
handling

failures 379
validation failures 137

header segment
Streamer 359

418 Index

Hebrew
code-page conversion 259

hebrewBidi
component 259

HebrewDosToWindows
component 259

HebrewEBCDICOldCodeToWindows
component 259

hebUniToAscii
component 259

hebUtf8ToAscii
component 259

Hex Source view, Data Processor
description 24

Hexadecimal Source view
description 136

hidden properties
showing 133

highlighting in example source document
description 135

HIPAA
validation 155

HIPAAValidator
component 155

HL7
component 176

HTML
removing tags 267
transforming entities 259

HtmlEntitiesToASCII
component 259

HtmlFormat
component 170

HtmlProcessor
component 178, 260

I
icons

IntelliScript 75
identifiers

IntelliScript 74
indexing

example 344
multiple-occurrence data holders 189

inherit by property
schema object 121

inherit from property
schema object 121

initialization
variables 188

InjectFP
component 260

InjectString
component 261

InlineTable
component 261

Input Expression Editor
Data Processor transformation 100

InputPort
component 149

Intelli mode
description 136

IntelliScript
defining anchors in 194
editing 72
icons used in 75

IntelliScript (continued)
naming restrictions 74

IntelliScript editor
components and properties 71
description 136

IntelliScript Editor 70
IntelliScript Help view

description 136
invalid data

detecting 378
iterations

RepeatingGroup anchor 222

J
Java

custom component, developing 412
JavaScript

extensions 296
syntax reference 295

JavaTransformer
component 262

K
key

properties of 353
Key

component 353

L
LearnByExample

component 231
LengthEquals

component 386
Library

creating in Data Processor transformation 40
element properties 111
Overview 110

List
Validation Rule element 404

list data types
attributes 189

list types
mapping to 201

lists
combining 288
creating 289
multiple-occurrence data holders 189
of variables 189
sorting 308

local component
defining 132

LocalFile
component 149

LocalFile example source
description 135

locations
marking in source document 220

Locator
component 355

LocatorByKey
component 356

Index 419

LocatorByOccurrence
component 357

locators
properties of 353

log
definition 36

log, design-time event
description and location 36

logs
writing to 378, 398

Lookup
Validation Rule element 404

LookupTransformer
component 262

loop
RepeatingGroup anchor 222

M
Map

component 81, 298
mapper

input validation 184
Mapper

calling secondary 338
component 335
creating 332
description 23

Mapper anchors
properties of 334
reference 336

mappers
using indexing 344

Mappers
properties of 334
running in Parser 301

mapping statements
XMap editor 80

Mapping Statements
Cut and Paste 96

Mapplet
reference 28
running secondary 302, 305

Marker
component 220

marker anchors
highlighting in example source document 135

markers
in Streamers 361

MarkerStreamer
component 367

marking property
of anchors 195, 367

maximum length
schema object 118

maximum occurs
schema object 118

MaxLength
component 387

MaxNumber
component 388

member types
schema object 120

messages
warning notifications 398

minimum length
schema object 118

minimum occurs
schema object 118

MinLength
component 389

MinNumber
component 390

missing data
failure handling 379

missing text
searching by optional Group 219

mixed content
data holders in 182
in schema 180
mapping to 193

multiple occurrence
data holders 189
destroying occurrences 190
variables 189

multiple-occurrence data holders
combining 288
creating lists in 289
indexing 342
mapping anchors to 193
sorting 308

N
names

IntelliScript 74
Script components 132

namespace
changing generated prefix 117

namespaces
schema object 118

NewlineSearch
component 231

nillible property
schema object 118

non-keyboard characters
entering 134

NormalizeClosingTags
component 264

normalized relational input
Data Processor transformation 64

normalized relational output
Data Processor transformation 68

Notification component 399
notification event

Data Processor transformation 35
notification events

StructureDefinition 229
NotificationGroup

component 399
NotificationHandler component 399
notifications

generating 378
triggering 300
writing messages 398

Notify
components 300

NotifyFailure component 400
NumberEquals

component 391
numbers

formatting 255

420 Index

O
offset

dynamically defined 231
OffsetSearch

component 231
Option

component 88
Option statement

XMap editor 80
Option statements

XMap editor 86
optional failure

effect on parent 379
optional failure event

Data Processor transformation 35
optional property

failure handling 379
selecting on menu 76
setting 380

output control settings
Data Processor transformation 31

OutputDataHolder
component 313

OutputFile
component 313

OutputPort
component 149

P
packed decimals

numbers 258
parameters

passing to transformation 188
parser

Script components 139
Parser

component 140
description 23
for COBOL data 51

parsers
calling secondary 326

Parsers
calling secondary 211
running secondary 303

path
resolving relative 245

pattern matching
regular expressions 266

pattern property
schema object 118

patterns
segment opening and closing 359

PatternSearch
component 232

PDF
processing PDF forms 156

PDF conversion
configuring 163

PDF files
using PdfToTxt_4 processor 162

PDF output
XmlToDocument postprocessor 158, 159
XmlToDocument postprocessor_372 158
XmlToDocument postprocessor_45 159

PDF support
converting PDF files 156, 157

PdfFormToXml_1_00
component 156

PdfToTxt_3_02
component 156

PdfToTxt_4
component 157
using 162

performance issues
VarLastFailure variable 186

phase
of anchor search 196

phase property
of anchors 195

phases
nested 197

pivoted relational input
Data Processor transformation 64

pivoted relational output
Data Processor transformation 68

platform independence
Parsers 139

Ports view
Data Processor transformation 61, 66

Positional
component 176

postprocessor
XmlToDocument 158, 159
XmlToDocument_372 158
XmlToDocument_45 159

PostScript
component 177

PowerpointToTextML
component 157

pre-processors
defining 151

predicate statement
XPath expressions 97

preprocessors
document 151
format 178

ProcessByTransformers
component 157

ProcessorPipeline
component 158

processors
custom Java 155
document 151
reference 152
using transformers as 243

properties
custom Script components 412
in IntelliScript 71
of actions 280, 382
of anchors 195
of Mappers 334
of Serializers 320
of Streamers 365
Script components, description 133
Transformers 244

properties, advanced
description 133

properties, component
values, description 134

properties, hidden
showing 133

Index 421

properties, simple
description 133

R
records

extracting and validating 226
extracting in StructureDefinition 214

RecordStructure
component 238

RecordStructureLocal
component 239

reference
anchors 202
delimiters 173
document processors 152
format preprocessors 178
formats 167
indexing 353
Mapper anchors 336
Mappers 335
parsers 140
serialization anchors 321

reference points
around anchors 195, 367
Marker anchor 220
of search scope 199

References view
Data Processor transformation 28

regex
regular expressions 266

regular expressions
syntax 266

RegularExpression
component 265

RemoveMarginSpace
component 267

RemoveRtfFormatting
component 267

RemoveTags
component 267

repeating group
highlighting in example source document 135

repeating group anchor
highlighting all iterations 136

Repeating Group statement
Run XMap statement

XMap editor 80
RunMapplet statement

XMap editor 80
XMap editor 80

Repeating Group statements
description 84

repeating segment
Streamer 359

RepeatingGroup
component 222

RepeatingGroupMapping
component 340

RepeatingGroupSerializer
component 328

Replace
component 268

replacing text
in source document 215

report generator
BIRT 158, 159

Repository view
Data Processor transformation 24

ResetVisitedPages
component 300

Resize
component 269

ResultFile
component 314

retrieving content
Content anchor 205

ReverseTransformer
component 269

right-to-left text
reversing 247, 259

rollback
after failure 379

Router statement
XMap editor 80

Router statements
XMap editor 86

RTF
component 177

RtfFormat
component 171

RtfProcessor
component 178, 270

RtfToASCII
component 270

RtfToTextML
component 158

Rule
Validation Rule element 405

Run XMap statement
mapping statement 90

run-time event log
Data Processor transformation 37

RunMapper
component 301

RunMapplet
component 302

RunMapplet statement
mapping statement 91

RunParser
component 303

RunPCWebService
component 305

RunSerializer
component 305

RunXMap
component 306

S
sample file

Avro 47
JSON 54
Parquet 56
XML 58

sample Script
importing 138

sample source file
defining in Data Processor transformation 39, 70

schema
Avro

schema 47
encoding 180
for COBOL data 51

422 Index

schema (continued)
JSON

schema 54
Parquet

definition 56
schema 56

XML
schema 58

schema files
adding to schema objects 115
editing 125
removing from schema objects 115
setting a default editor 125

schema object
elements advanced properties 119
abstract property 118
attribute properties 121
attributeFormDefault 122
block property 119
complex elements 121
complex elements advanced properties 121
editing a schema file 123
element properties 118
elementFormDefault 122
file location 122
importing 123
inherit by property 121
inherit from property 121
namespaces 118
overview 115
Overview view 116
schema files 115
setting a default editor 125
simple type 120
substitution group 119
synchronization 123

Schema object
Schema view 117

Schema view
Schema object 117
simple type advanced properties 120

schemas
Data Processor transformation 28
included schemas 180
IntelliScript representation 182
unsupported features 180
validation 183
XSD files 179

Script
creating in Data Processor transformation 39, 70
description 130
editor, IntelliScript 136
importing sample 138
samples 137
structure 131

Script component
custom Java, developing 412
description 131

Script components
description 131
names 132
properties, description 133

Script components, custom
description 411
properties 412

Script Help view
Data Processor transformation 24

Script mode
description 136

search
anchor direction 195
dynamically defined search string 233

search criteria
for anchors 197

search scope
adjusting 199
for anchors 197

searcher
components 200, 230

secondary Mapper
EmbeddedMapper anchor 338

secondary parser
EmbeddedParser anchor 326

secondary Parser
EmbeddedParser anchor 211

segments
processing in Streamer 359

SegmentSearch
component 232

select-and-click
defining anchors 194

SequenceStrructure
component 239

SequenceStructureLocal
component 240

serialization
mode 316
using transformers in 244

serialization anchors
properties of 320
reference 321
sequence of operation 319

serializer
input validation 184

Serializer
component 320
controlling auto-generation 315
for COBOL data 51

Serializers
properties of 320
running in Parser 305
troubleshooting auto-generated 317

service name
variable storing 186

service parameter port
Data Processor transformation 25

service parameter ports
Data Processor transformation 26

service parameters
passing to transformation 188

service, Data Transformation
running from the command line 127

ServiceLocation
variable 185

Settings view
Data Processor transformation 28

SetValue
component 307

SGML
component 177

signed decimals
numbers 258

simple properties
description 133

Index 423

simple type
schema object 120

SImple Type view
schema object 120

SimpleSegment
component 369

SimpleXmlSegment
component 370

single occurrence
data holders 189

Sort
component 308

sorting
multiple-occurrence data holders 308

source
property 347, 348

source document, highlighting
description 135

SpaceDelimited
component 177

special characters
entering in IntelliScript 73

splitting
files 311

splitting large inputs
Streamer 358

startup component
Data Processor transformation 27

startup component, Script
description 134

streamer
complex segments 359

Streamer
component 371
creating 361
description 23
footer segment 359
header concatenation 360
header segment 359
JsonStreamer 367
output 360
repeating segment 359
segment opening and closing patterns 359
splitting large inputs 358

Streamers
properties of 365

StreamerVariable
component 372

strings
concatenating 284, 285

StringSerializer
component 318

structured parsing
StructureDefinition 226

StructureDefinition
component 226
extracting records 214

substitution group
schema object 119

SubString
component 270

synchronize with editor
Data Processor transformation 42

system
variables 185

system time
variable 185

T
TabDelimited

component 177
table configuration editor

PdfToTxt_4 162
tables

processing PDF 162
target

property 347, 351
test a library

Data Processor transformation 113
test expression

Input XPath Expression Editor 100
Text

component 149
Text example source

description 135
text Streamer

principle of operation 359
TextFormat

component 171
TextML

XML schema 161
TextSearch

component 233
TGP file

for custom components 413
time

system 185
times

format of 250
ToFloat

component 271
ToInteger

component 272
ToPackDecimal

component 272
Trace

Validation Rule element 405
TransformationStartTime

component 273
TransformByParser

component 274
TransformByProcessor

component 275
TransformByService

component 275
Transformer

description 23
TransformerPipeline

component 276
transformers

as document preprocessors 243
compared to actions 280
custom Java 262
default 243
defining 242
in serialization 244
sequences of 243
using as document processors 157
using in anchors 242

Transformers
properties of 244

types
XSI 182

TypeSearch
component 234

424 Index

U
UNIX

designing Parsers for 139
URL

relative to absolute 245
URL example source

description 135
user log

Data Processor transformation 37
variable defining location 186

V
ValidateByExpression

component 392
ValidateByPattern

component 393
ValidateByTransformer

component 394
ValidateByType

component 395
ValidateDate component 396
ValidateValue

component 309
validation

XML 183
XML input 184
XML Parser output 183

validation failures
handing 137

Validation Rule
Assert element 403
element 403–405
List element 404
Lookup element 404
Rule element 405
Trace element 405
Variable element 405
XPath editor 406

Validation Rule elements
XPath editor 406

Validation Rule Language
VRL 309

Validation Rule object
creating in Data Processor transformation 41

Validation Rules
definition 402
edit in external editor 409
editor 402, 409
importing Data Transformation service 409

ValidatorPipeline
component 397

validators
input data 382

values, component properties
description 134

VarCurrentPost
variable 185

VarCurrentURL
variable 185

Variable
component 188
Validation Rule element 405

variables
data holders 179
in Streamers 361

variables (continued)
initialization 188
lists 189
mapping anchors to 187, 193
system 185
user-defined 185
using in actions 187
XMap editor 103

variety property
schema object 120

VarLastFailure
variable 186

VarLinkURL
variable 185

VarRequestedURL
variable 185

VarServiceInfo
variable 186

VarSystem
system time 185

view, Hexadecimal Source
description 136

view, IntelliScript Help
description 136

VRL
Validation Rule Language 309

W
warning event

Data Processor transformation 35
WellFormedModifier

component 376
Word

parsing as XML 158
WordToXml

component 158
WriteSegment

component 377
WriteValue

component 310

X
Xerces

XML validation 184
XMap

description 78
Group statements 83
Router statements 86
running in Mapper 306
running in Parser 306
running in Serializer 306
Schema panel 79
statement types 80
variables 103

XMap editor
grid 80

XMap object
creating in Data Processor transformation 40

XML
adding empty tags 245
mapping anchors to 192
schemas 179
validation 184
XSLT transformation 277

Index 425

XML attributes
data holders 179

XML elements
data holders 179

XML Streamer
principle of operation 363

XmlFormat
component 172

XMLLookupTable
component 277

XmlSegment
component 372

XmlStreamer
component 373

XmlToDocument
component 158, 159

XmlToDocument_372
component 158

XmlToDocument_45
component 159

XmlToExcel
component 160

XmlToXlsx
component 160

XPath
modified notation 182

XPath editor
Validation Rule elements 406

XPath Expression Editor
Data Processor transformation 100

XPath expressions
XMap 96

XSD
editors 179
schema encoding 180
unsupported schema features 180

XSD files
schemas 179

XSI types
mapping data holders 182

XSLT
running transformations 312

XSLTMap
component 312

XSLTTransformer
component 277

426 Index

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction to Data Transformation
	Data Transformation Overview
	Data Transformation Process Architecture
	Data Transformation Components

	Chapter 2: Data Processor Transformation
	Data Processor Transformation Overview
	Data Processor Transformation Views
	Data Processor Transformation Ports
	Data Processor Transformation Input Ports
	Data Processor Transformation Output Ports
	Pass-Through Ports

	Startup Component
	References
	Data Processor Transformation Settings
	Character Encoding
	Rules and Guidelines for Character Encoding
	Output Settings
	Processing Settings
	XMap Settings
	XML Output Configuration

	Events
	Event Types
	Data Processor Events View

	Logs
	Design-Time Event Log
	Run-Time Event Log
	Viewing an Event Log in the Data Processor Events View
	User Log

	Data Processor Transformation Development
	Create the Data Processor Transformation
	Select the Schema Objects
	Create Objects in a Blank Data Processor Transformation
	Create the Ports
	Testing the Transformation

	Data Processor Transformation Export and Import
	Exporting the Data Processor Transformation as a Service
	Importing Multiple Data Transformation Services
	Importing a Data Transformation Service
	Exporting a Mapping with a Data Processor Transformation to PowerCenter

	Data Processor Transformation Validation
	Using a Speed-enhanced Data Transformation Engine for VRL Validations

	Data Processor Transformation in a Non-native Environment

	Chapter 3: Wizard Input and Output Formats
	Wizard Input and Output Formats Overview
	Avro
	Avro Input and Complex File Reader
	Avro Data Compression with the Snappy Codec
	Configure a Transformation with Avro Input
	Configure a Transformation with Avro Output

	COBOL Processing Library
	Creating a Transformation for COBOL
	COBOL Data Definitions
	Test Procedures
	Editing a Transformation for COBOL
	Optimizing Large COBOL File Processing in the Hadoop Environment

	JSON
	JSON Schemas
	Sample JSON Schema
	Creating a Transformation with JSON

	Parquet
	Creating a Transformation with Parquet Input or Output
	Configure the Complex File Reader For Parquet Input
	Configure a Transformation with Parquet Output

	XML
	Creating a Transformation that Transforms XML

	Chapter 4: Relational Input and Output
	Relational Input and Output Overview
	Relational Input
	Relational Input Port Configuration
	Guidelines to Link Input Ports
	Define Input Relational Ports with the Overview View
	Clustering_Key Ports
	Normalized Relational Input
	Pivoted Relational Input
	Denormalized Relational Input
	Mapping Relational Ports to Hierarchical Nodes

	Relational Output
	Relational Output Port Configuration
	Define Output Relational Ports with the Overview View
	Normalized Relational Output
	Pivoted Relational Output
	Denormalized Relational Output

	Chapter 5: Using the IntelliScript Editor
	IntelliScript Editor Overview
	Creating a Script

	Opening an IntelliScript Editor
	IntelliScript and Data Viewer
	Finding Anchors
	Components and Properties
	Basic and Advanced Properties

	Editing Procedures
	Basic Procedure for Editing
	Copy and Paste
	Drag and Drop
	Find and Replace
	Inserting Components in the IntelliScript
	Editing the Properties of a Component
	Inserting Tabs, Newlines, and Other Special Characters
	Defining a Global Component
	Viewing Help About a Component
	IntelliScript Icons
	Saving the IntelliScript

	IntelliScript Editor Menus

	Chapter 6: XMap
	XMap Overview
	XMap Schemas
	Mapping Statements
	Mapping Statement Types
	Map Statements
	Group Statements
	Repeating Group Statements
	Router Statements
	Option Statements
	Default Statements
	Run XMap Statements
	RunMapplet Statement
	MappletInput Statement
	MappletOutput Statement
	Creating an XMap
	Using the XMap Editor Grid
	Creating Mapping Statements
	Mapping Statements Grid Interface

	XPath Expressions
	Predicates
	XPath Expression Editor
	Data Processor Functions
	XPath Expressions Example
	Creating An Expression

	XMap Variables
	Creating a Variable in the XMap Editor

	XMap Example
	XML Input Schema Example
	XML Output Schema Example
	XML Input Data
	Input and Output XML Hierarchies
	Mapping Statements in the Example
	Group Statements Example

	Chapter 7: Libraries
	Libraries Overview
	Library Structure
	Element Properties
	Library Management
	Edit Libraries with the Library Editor
	Adding an Element with the Library Editor
	Editing the Element Properties with the Library Editor
	Testing a Library
	Generating the Library Objects
	Discarding the Library Objects

	Edit Libraries with the IntelliScript Editor

	Chapter 8: Schema Object
	Schema Object Overview
	Schema Files
	Schema Object Overview View
	Schema Object Schema View
	Namespace Properties
	Element Properties
	Simple Type Properties
	Complex Type Properties
	Attribute Properties

	Schema Object Advanced View
	Creating a Schema Object
	Schema Updates
	Schema Synchronization
	Schema File Edits

	Chapter 9: Command Line Interface
	Command Line Interface Overview
	CM_console

	Chapter 10: Scripts
	Scripts Overview
	Script Components
	Component Types
	Component Names
	Adding a Global Component
	Adding a Local Component

	Script Component Properties
	Simple Properties
	Advanced Properties
	Component Property Values

	Script Startup Components
	Setting the Startup Component with the IntelliScript Editor

	Example Sources
	Example Source Highlighting
	Setting an Example Source in the IntelliScript Editor
	Viewing an Example Source

	IntelliScript Editor
	Validate a Script
	Sample Scripts
	Importing a Sample Script

	Chapter 11: Parsers
	Parsers Overview
	Platform-Independent Parsers
	Newline Markers
	File Paths

	Parser Component Reference
	Parser

	Chapter 12: Script Ports
	Script Ports Overview
	Script Port Component Reference
	AdditionalInputPort
	AdditionalOutputPort
	DocList
	FileSearch
	InputPort
	LocalFile
	OutputPort
	Text
	URL

	Chapter 13: Document Processors
	Document Processors Overview
	Defining a Document Processor
	Display of Document Processor Output

	Document Processor Component Reference
	AsnToXml
	ExcelToDataXml
	ExcelToXml
	ExcelToXml_03_07_10
	ExpandFrameSet
	ExternalJavaPreProcessor
	HIPAAValidator
	PdfFormToXml_1_00
	PdfToTxt_3_02
	PdfToTxt_4
	PowerpointToTextML
	ProcessByTransformers
	ProcessorPipeline
	RtfToTextML
	WordToXml
	XmlToDocument_372
	XmlToDocument_45
	XmlToExcel
	XmlToXlsx

	TextML XML Schema
	PdfToTxt_4 Table Configuration Editor
	Editor Options
	PDF Conversion Example

	Chapter 14: Formats
	Formats Overview
	Standard Format Properties
	Format Component Reference
	BinaryFormat
	CustomFormat
	HtmlFormat
	RtfFormat
	TextFormat
	XmlFormat

	Delimiters Component Reference
	CommaDelimited
	Delimiter
	DelimiterHierarchy
	EnclosingDelimiters
	HL7
	Positional
	PostScript
	RTF
	SGML
	SpaceDelimited
	TabDelimited

	Format Preprocessor Component Reference
	HtmlProcessor
	RtfProcessor

	Chapter 15: Data Holders
	Data Holders Overview
	XML Schemas
	Schema Encoding
	Included Schema Files
	Namespaces
	Mixed Content
	Unsupported Schema Features
	Precision of Numerical Data

	Using a Schema to Map Anchors
	IntelliScript Representation of Data Holders
	Mapping Mixed Content
	Mapping XSI Types

	Generating Valid XML
	Role of Schemas in Parsing
	Role of Schemas in Serialization and Mapping

	Variables
	Creating a User-Defined Variable
	System Variables
	Mapping Anchors to Variables
	Using Variables in Actions
	Initializing Variables at Runtime

	Variable Component Reference
	Variable

	Multiple-Occurrence Data Holders
	Attributes
	Indexing
	Destroying the Occurrences

	Chapter 16: Anchors
	Anchors Overview
	Marker and Content Anchors
	Other Anchor Types
	How Anchors and Delimiters Work Together

	Mapping Content Anchors to Data Holders
	Mapping to Variables
	Mapping to Multiple-Occurrence Data Holders
	Mapping to Mixed-Content Elements

	Defining Anchors
	Where to Define Anchors
	Sequence of Anchors
	Adding a Marker or Content Anchor
	Defining an Anchor

	Standard Anchor Properties
	How a Parser Searches for Anchors
	Search Phases
	Search Scope and Search Criteria
	Adjusting the Search Phase
	Adjusting the Search Scope
	Adjusting the Search Criteria
	Using Data Types to Narrow the Search Criteria
	Anchors that Contain Nested Anchors

	Anchor Component Reference
	Alternatives
	Content
	DelimitedSections
	EmbeddedParser
	EnclosedGroup
	ExtractRecord
	FindReplaceAnchor
	Group
	Marker
	RepeatingGroup
	StructureDefinition

	Searcher Component Reference
	AttributeSearch
	LearnByExample
	NewlineSearch
	OffsetSearch
	PatternSearch
	SegmentSearch
	TextSearch
	TypeSearch

	Anchor Subcomponent Reference
	AllStructure
	AllStructureLocal
	ChoiceStructure
	ChoiceStructureLocal
	Connect
	EmbeddedStructure
	RecordStructure
	RecordStructureLocal
	SequenceStructure
	SequenceStructureLocal

	Chapter 17: Transformers
	Transformers Overview
	Defining Transformers
	Using Transformers in Anchors
	Sequences of Transformers
	Default transformers
	Using Transformers as Document Processors
	Using Transformers in Serialization Anchors
	Using Transformers in Actions

	Standard Transformer Properties
	Transformer Component Reference
	AbsURL
	AddEmptyTagsTransformer
	AddString
	Base64Decode
	Base64Encode
	BidiConvert
	CDATADecode
	CDATAEncode
	ChangeCase
	CreateGuid
	CreateUUID
	DateFormatICU
	Dos96HebToAscii
	DynamicTable
	EbcdicToAscii
	EDIFACTValidation
	EncodeAsUrl
	Encoder
	FormatNumber
	FromFloat
	FromInteger
	FromPackDecimal
	FromSignedDecimal
	hebrewBidi
	HebrewDosToWindows
	HebrewEBCDICOldCodeToWindows
	hebUniToAscii
	hebUtf8ToAscii
	HtmlEntitiesToASCII
	HtmlProcessor
	InjectFP
	InjectString
	InlineTable
	JavaTransformer
	LookupTransformer
	NormalizeClosingTags
	RegularExpression
	RemoveMarginSpace
	RemoveRtfFormatting
	RemoveTags
	Replace
	Resize
	ReverseTransformer
	RtfProcessor
	RtfToASCII
	SubString
	ToFloat
	ToInteger
	ToPackDecimal
	TransformationStartTime
	TransformByParser
	TransformByProcessor
	TransformByService
	TransformerPipeline
	XMLLookupTable
	XSLTTransformer

	Chapter 18: Actions
	Actions Overview
	How Actions Work
	Comparison Between Actions and Transformers
	Defining Actions

	Standard Action Properties
	Action Component Reference
	AddEventAction
	AggregateValues
	AppendListItems
	AppendValues
	CalculateValue
	CombineValues
	CreateList
	CustomLog
	DateAddICU
	DateDiffICU
	DownloadFileToDataHolder
	DumpValues
	EnsureCondition
	ExcludeItems
	Map
	Notify
	ResetVisitedPages
	RunMapper
	RunMapplet
	RunParser
	RunPCWebService
	RunSerializer
	RunXMap
	SetValue
	Sort
	ValidateValue
	WriteValue
	XSLTMap

	Action Subcomponent Reference
	OutputDataHolder
	OutputFile
	ResultFile
	StandardErrorLog

	Chapter 19: Serializers
	Serializers Overview
	Controlling How the Create Serializer Command Works
	Troubleshooting an Auto-Generated Serializer
	Creating a Serializer by Editing the Script
	Creating a Serializer within a RunSerializer Action

	Serialization Anchors
	Example of Serialization Anchors
	Sequence of Serialization Anchors

	Standard Serializer Properties
	Serializer Component Reference
	Serializer

	Serialization Anchor Component Reference
	AlternativeSerializers
	ContentSerializer
	DelimitedSectionsSerializer
	EmbeddedSerializer
	GroupSerializer
	RepeatingGroupSerializer
	StringSerializer

	Chapter 20: Mappers
	Creating a Mapper
	Components Nested within a Mapper
	Mapper Example
	Source XML
	Output XML
	Mapper Configuration

	Standard Mapper Properties
	Mapper Component Reference
	Mapper

	Mapper Anchor Component Reference
	AlternativeMappings
	EmbeddedMapper
	GroupMapping
	RepeatingGroupMapping

	Chapter 21: Locators, Keys, and Indexing
	Overview of Locators, Keys, and Indexing
	Example of Locators
	Input and Output
	Incorrect Solution
	Correct Solution

	Example of Indexing by Key
	Input
	Output
	Outline of the Transformation Approach
	Mapper Configuration
	Use of Indexing

	Source and Target Properties
	Source Property
	Target Property

	Standard Locator and Key Properties
	Locator and Key Component Reference
	Key
	Locator
	LocatorByKey
	LocatorByOccurrence

	Chapter 22: Streamers
	Streamers Overview
	Text Streamers
	Segments
	Simple Segments
	Complex Segments
	Example
	Header Concatenation
	Output of a Streamer
	Using Markers and Variables in Streamers
	Creating a Streamer

	XML Streamers
	Standard Streamer Properties
	Streamer Component Reference
	ComplexSegment
	ComplexXmlSegment
	JsonStreamer
	MarkerStreamer
	SimpleSegment
	SimpleXmlSegment
	Streamer
	StreamerVariable
	XmlSegment
	XmlStreamer

	Streamer Subcomponent Reference
	AddHeaderModifier
	AddStringModifier
	DoNothingModifier
	WellFormedModifier
	WriteSegment

	Chapter 23: Validators, Notifications, and Failure Handling
	Overview of Validators, Notifiers, and Failure Handling
	Failure Handling
	Using the Optional Property to Handle Failures
	Writing a Failure Message to the User Log

	Validators
	Standard Validator Properties
	Validator Component Reference
	AlternativeValidators
	EDIFACTValidation
	Enumeration
	LengthEquals
	MaxLength
	MaxNumber
	MinLength
	MinNumber
	NumberEquals
	ValidateByExpression
	ValidateByPattern
	ValidateByTransformer
	ValidateByType
	ValidateDate
	ValidatorPipeline

	Notifications
	Notification Component Reference
	Notification
	NotificationGroup
	NotificationHandler
	NotifyFailure

	Chapter 24: Validation Rules
	Validation Rules Overview
	Validation Rules Element Reference
	Assert Element Attributes
	List Element Attributes
	Lookup Element Attributes
	Rule Element Attributes
	Trace Element Attributes
	Variable Element Attributes
	XPath Editor
	XPath Extensions

	Edit the Validation Rules in an External Editor
	Create a Validation Rules Object
	Import a Data Transformation Service with Validation Rules

	Chapter 25: Custom Script Components
	Custom Script Components Overview
	Custom Component Example
	Custom Component Properties
	Developing a Custom Component
	Java Interface Example
	Sample Custom Java Components

	Configuring a Custom Component
	Sample Scripts Containing Custom Components

	Index

