PowerCenter
10.5.7

Transformation Language Reference
December 2024

© Copyright Informatica LLC 1998, 2024

4‘» Informatica

Contents
Transformation Language Reference-copyright. 5
Pre aCe. . o 9
Informatica ReSOUrCes. 9
The Transformation Language.o o i e e e e 11
The Transformation Language OVEIVIEW.ttt e e e e 11
EXPression Syntax. 12
Adding Comments 10 EXPresSioNns.ttt 15
Reserved Words. 16
CON S AN, . .. o 17
DD _DELETE. . . . oo 17
DD INSERT 17
DD _REJECT . . . o 18
DD _UP D ATE. . . 18
F AL SE. . . 19
NULL. .« .o e e e e e 19
TRUE. . o 21
L@ 7= =1 o] = 21
Operator Precedence. 21
Arithmetic Operators. 22
String Operators. e 23
Comparison Operators. 24
Logical Operators. 25
VaADIES. .o 25
Built-in Variables. 25
Transaction Control Variables. 31
Local Variables. 31
DTS, . oot e 32
Dates OVeIVIEW.o 32
Date Format Strings.o 36
TO_CHAR Format Strings.o e e 37

2024-06-09 1

TO_DATE and IS_DATE Format Strings. e 40

Understanding Date Arithmetic. 43
FUNC I ONS. o o e 44
FUunction Categories. e 44
ABORT . . 52
ABS. 53
ADD _TO D ATE. . . 54
AES DECRY PT. . . o 57
AES _ENCRY PT. . . 58
ASCIL . 59
AV G, . 60
BINARY_COMPARE. 62
BINARY _CON C AT . . .o e 63
BINARY _LENGTH. e e e e 64
BINARY _SECTION.o e e 64
CEIL. . o o 66
CHOOSE. 67
CHR. 68
CHRCODE. 69
COMP RESS. . . . 70
CON C AT . .« 71
CONVERT _BASE. 72
O, 73
COSH. .« oo 74
COUNT . . 75
CRC 3. . ottt 77
CUME. . 78
DATE _COMPARE. 79
DATE DIFF. . . 80
DEC_BASEGA. 83
DEC _HEX. . . o 84
DECODE. . . .t 85
DECOMPRESS. . . . oo 87
EBCDIC _ISO8850T. . . ottt 88
ENC _BASEGA. . . . o 89
ENC _HEX. . . 89

2 2024-06-09

EX P o 91
FIRST . o o 92
FLOOR. .« .o 93
NV 94
GET _ DATE _PART . . . 95
GREATEST . . . 97
N 98
IN. 101
INDEXOF. . . 102
INIT C AP, . 103
INST R, L 104
ISNULL. . . 107
S D AT E. . 108
IS_NUMBER. 110
S S P A CES. . . . 112
LA G, . o 113
B 115
LAST DAY . . 116
LEADD. . 117
LEAST . 119
LENGTH. . o 120
] 121
LOG. . o 122
LOOKUP. . o 123
LOWER. . . 124
I 125
LT RIM. . o 126
MAKE _DATE _TIME. . . o e e 128
MAX (DAES). . o ottt e 129
MAX (NUMDEIS). . . oo 130
MAX (STING). « v ve et e e e e e e e e e e e 131
MDD S, . 133
MEDIAN. . 133
MET APHONE. 135
MIN (DatS). . . v 138

2024-06-09 3

MIN (NUMDEIS). . . . oo e 140

MIN (SEFING). « « v e e e et e e e e e 141
MO DD, . o 142
MOVINGAVG. . . oo e e 144
MOVINGSUM. . . . e 145
NPER. . 146
PERCENTILE. . . .o e e 147
I 149
POWER. . . 150
PV 151
RAN D . . 152
RATE. . o 153
REG _EXT RACT . . o o 154
REG _MAT CH. . . 156
REG_REPLACE. 158
REPLACECHR. . . . o e 159
REPLACEST R. . . o 162
REVERSE. . . . 165
ROUND (DAES). . . o o e oot e e e e e e e e e e 166
ROUND (NUMDBEIS). . o o e e e e 170
RP AD. . . 173
R RIM. . 174
SETCOUNTVARIABLE. e e e e 176
SET DATE _PART . . . 177
SETMAXVARIABLE. . . . 180
SETMINVARIABLE. . . . 182
SETVARIABLE. 184
SHA S, . . o 186
SIGN. L 187
SIN. L 188
SINH. L 189
SOUNDEX. . . . 190
SQRT . . 192
ST DDEV. . o e 192
SUBS T R. . . 194
SUM. L 197

2024-06-09

TAN. 199
TANH. 200
TIME _RANGE. . . . o 201
TO BIGINT. . .ot 202
TO_CHAR (Dates). . . oottt et e e 204
TO_CHAR (NUMDBEIS). . . oo e 209
TO D AT E. . 211
TO_DECIMAL. . . 214
TO _FLOAT . - o 215
TO_INTEGER. 216
TRUNC (Dates). . . o o oot et e e e e e e e e e e e e 218
TRUNC (NUMDEIS). . . e 221
UPPER. . . . 223
VARIANCE. . . . o 224
Creating Custom FUNCHIONS. ... o e e e e e e 225
Creating Custom Functions OVerview. e e e e 225
Step 1. Get Repository ID Attributes. 226
Step 2. Create a Header File. 226
Step 3. Create an Implementation File. 228
Step 4. Buildthe Modules. 240
Step 5. Create the Repository Plug-in File. 242
Step 6. Test Custom FUNCTIONS. e e 245
Installing Custom FUNCLIONS. 246
Creating Expressions with Custom Functions. 247
Custom Function APl Reference. 247
Custom Function APl Reference OVEerview. e e e 247
CommMON APIS. . 247
RUN-tIME APIS. . 251

Transformation Language Reference-copyright

This software and documentation are provided only under a separate license agreement containing
restrictions on use and disclosure. No part of this document may be reproduced or transmitted in any
form, by any means (electronic, photocopying, recording or otherwise) without prior consent of
Informatica LLC.

Informatica, the Informatica logo, and PowerCenter are trademarks or registered trademarks of
Informatica LLC in the United States and many jurisdictions throughout the world. A current list of

2024-06-09 5

Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other
company and product names may be trade names or trademarks of their respective owners.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical
data delivered to U.S. Government customers are "commercial computer software" or "commercial
technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation is
subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License.

Portions of this software and/or documentation are subject to copyright held by third parties, including
without limitation: Copyright DataDirect Technologies. All rights reserved. Copyright © Sun
Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal
Technology Corp. All rights reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia,
Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta Integration
Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights
reserved. Copyright © Adobe Systems Incorporated. All rights reserved. Copyright © DataArt, Inc. All
rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation.
All rights reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata
Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved. Copyright © Glyph & Cog,
LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software
Limited. All rights reserved. Copyright © Information Builders, Inc. All rights reserved. Copyright © 0SS
Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization
1986. All rights reserved. Copyright © ej-technologies GmbH. All rights reserved. Copyright © Jaspersoft
Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights
reserved. Copyright © yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights
reserved. Copyright (c) University of Toronto. All rights reserved. Copyright © Daniel Veillard. All rights
reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill
Software Publishing, Inc. All rights reserved. Copyright © PassMark Software Pty Ltd. All rights reserved.
Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford
Junior University. All rights reserved. Copyright © EMC Corporation. All rights reserved. Copyright ©
Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright ©
Apple Inc. All rights reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All
rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright © Orientation in Objects GmbH.
All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All
rights reserved. Copyright © Sencha, Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights
reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright® MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights
reserved. Copyright © MapR Technologies Inc. All rights reserved. Copyright © Amazon Corporate LLC.
All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation.
All rights reserved. Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://
www.apache.org/), and/or other software which is licensed under various versions of the Apache
License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/.
Unless required by applicable law or agreed to in writing, software distributed under these Licenses is

6 2024-06-09

distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the
Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software
copyright The JBoss Group, LLC, all rights reserved; software copyright © 1999-2006 by Bruno Lowagie
and Paulo Soares and other software which is licensed under various versions of the GNU Lesser
General Public License Agreement, which may be found at http:// www.gnu.org/licenses/Igpl.html. The
materials are provided free of charge by © Informatica, "as-is", without warranty of any kind, either
express or implied, including but not limited to the implied warranties of merchantability and fitness for
a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his
research group at Washington University, University of California, Irvine, and Vanderbilt University,
Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(copyright The OpenSSL Project. All Rights Reserved) and redistribution of this software is subject to
terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>.
All Rights Reserved. Permissions and limitations regarding this software are subject to terms available
at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software
for any purpose with or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions
and limitations regarding this software are subject to terms available at http://www.dom4j.org/
license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved.
Permissions and limitations regarding this software are subject to terms available at http://
dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and
others. All rights reserved. Permissions and limitations regarding this software are subject to terms
available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use
such materials is set forth in the license which may be found at http:// www.gnu.org/software/ kawa/
Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright ©
2002 The OSSP Project Copyright © 2002 Cable & Wireless Deutschland. Permissions and limitations
regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-
license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software
license. Permissions and limitations regarding this software are subject to terms available at http:/ /
www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and
limitations regarding this software are subject to terms available at http:// www.pcre.org/license.txt.

2024-06-09 7

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved.
Permissions and limitations regarding this software are subject to terms available at http://
www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-
v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/
license.html, http://www.bosrup.com/web/overlib/?License, http://www.stlport.org/doc/ license.html,
http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/
hsglLicense.html, http://httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/
license.txt, http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/release/
license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/
OpenSourcelicense.html, http://fusesource.com/downloads/license-agreements/fuse-message-broker-
v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://
www.bouncycastle.org/licence.html; http://www.jgraph.com/jgraphdownload.html; http://
www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/
Consortium/Legal/2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://
nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/license.html; http://forge.ow2.org/
projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/
copyright.html, http://www.tcl.tk/software/tcltk/license.html, http://www.jaxen.org/faq.html, http://
www.jdom.org/docs/fag.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://
www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/index.html; http://
www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/
3_01.txt; http://srp.stanford.edu/license.txt; http://www.schneier.com/blowfish.html; http://
www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://
github.com/CreateJS/EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://
www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://
jdbc.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/
descriptor.proto; https://github.com/rantav/hector/blob/master/LICENSE; http://web.mit.edu/
Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://
github.com/lyokato/libgeohash/blob/master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/
LICENSE; https://code.google.com/p/Iz4/; https://github.com/jedisct1/libsodium/blob/master/
LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/
EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-lang.org/license.html; https://
github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/
oswego/cs/dl/util/concurrent/intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/
bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/LICENSE.txt;
https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/
apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/
licenses/afl-3.0.php), the Common Development and Distribution License (http://www.opensource.org/
licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the
Sun Binary Code License Agreement Supplemental License Terms, the BSD License (http://
www.opensource.org/licenses/bsd-license.php), the new BSD License (http://opensource.org/
licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the
Artistic License (http://www.opensource.org/licenses/artistic-license-1.0) and the Initial Developer’s
Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

8 2024-06-09

This product includes software copyright © 2003-2006 Joe Walnes, 2006-2007 XStream Committers. All
rights reserved. Permissions and limitations regarding this software are subject to terms available at
http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana
University Extreme! Lab. For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved.
Permissions and limitations regarding this software are subject to terms of the MIT license.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from
DataDirect Technologies, an operating company of Progress Software Corporation ("DataDirect") which

are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2.IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED
OF THE POSSIBILITIES OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION,
BREACH OF CONTRACT, BREACH OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

The information in this documentation is subject to change without notice. If you find any problems in

this documentation, report them to us at infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under
which they are provided. INFORMATICA PROVIDES THE INFORMATION IN THIS DOCUMENT "AS IS"
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION
OF NON-INFRINGEMENT.

Preface

Refer to the PowerCenter® Transformation Language Reference to understand transformation language
in PowerCenter. Learn how you can use constants, operators, variables, dates, and functions to
transform source data.

Informatica Resources

Informatica provides you with a range of product resources through the Informatica Network and other
online portals. Use the resources to get the most from your Informatica products and solutions and to
learn from other Informatica users and subject matter experts.

Informatica Network

The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base
and Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:

o Search the Knowledge Base for product resources.
o View product availability information.

« Create and review your support cases.

2024-06-09

https://network.informatica.com

o Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base

Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices,
video tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments,
or ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation

Use the Informatica Documentation Portal to explore an extensive library of documentation for current
and recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Product Availability Matrices

Product Availability Matrices (PAMSs) indicate the versions of the operating systems, databases, and
types of data sources and targets that a product release supports. You can browse the Informatica
PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity

Informatica Velocity is a collection of tips and best practices developed by Informatica Professional
Services and based on real-world experiences from hundreds of data management projects. Informatica
Velocity represents the collective knowledge of Informatica consultants who work with organizations
around the world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace

The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers
and partners on the Marketplace to improve your productivity and speed up time to implementation on
your projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support

You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website
at the following link:
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

10 2024-06-09

http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://docs.informatica.com
mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html

To find online support resources on the Informatica Network, visit https://network.informatica.com and
select the eSupport option.

The Transformation Language

The Transformation Language Overview

PowerCenter® provides a transformation language that includes SQL-like functions to transform source
data. Use these functions to write expressions and create functions called user-defined functions.

User-defined functions reuse expression logic and build complex expressions. You can include them in
other user-defined functions or in expressions. User-defined functions follow the same guidelines as
expressions. They use the same syntax and can use the same transformation language components.

Expressions modify data or test whether data matches conditions. For example, you might use the AVG
function to calculate the average salary of all the employees, or the SUM function to calculate the total
sales for a specific branch.

You can create a simple expression that only contains a port, such as ORDERS, or a numeric literal, such
as 10. You can also write complex expressions that include functions nested within functions, or
combine different ports using the transformation language operators.

Transformation Language Components

The transformation language includes the following components to create simple or complex
transformation expressions:

o Functions. Over 100 SQL-like functions allow you to change data in a mapping.

« Operators. Use transformation operators to create transformation expressions to perform
mathematical computations, combine data, or compare data.

« Constants. Use built-in constants to reference values that remain constant, such as TRUE.

« Mapping parameters and variables. Create mapping parameters for use within a mapping or mapplet
to reference values that remain constant throughout a session, such as a state sales tax rate. Create
mapping variables in mapplets or mappings to write expressions referencing values that change from
session to session.

« Workflow variables. Create workflow variables for use within a workflow to write expressions
referencing values that change from workflow to workflow.

o Built-in and local variables. Use built-in variables to write expressions that reference values that vary,
such as the system date. You can also create local variables in transformations.

o Return values. You can also write expressions that include the return values Lookup transformations.

Internationalization and the Transformation Language

Transformation language functions can handle character data in either ASCII or Unicode data movement
mode. Use Unicode mode to handle multibyte character data. The return values of the following

2024-06-09 11

http://network.informatica.com

functions and transformations depend on the code page of the PowerCenter Integration Service and the
data movement mode:

« INITCAP

« LOWER

« UPPER

¢ MIN (Date)

e MIN (Number)

« MIN (String)

« MAX (Date)

e MAX (Number)

e MAX (String)

o Any function that uses conditional statements to compare strings, such as IIF and DECODE

MIN and MAX also return values based on the sort order associated with the PowerCenter Integration
Service code page.

When you validate an invalid expression in the Expression Editor, a dialog box displays the expression
with an error indicator, “>>>>". This indicator appears to the left of and points to the part of the
expression containing the error. For example, if the expression a = b + ¢ contains an error at ¢, the error
message displays:

a=>b + >>>> ¢

Transformation language functions that evaluate character data are character-oriented, not byte-
oriented. For example, the LENGTH function returns the number of characters in a string, not the number
of bytes. The LOWER function returns a string in lowercase based on the code page of the PowerCenter
Integration Service.

Expression Syntax

Although the transformation language is based on standard SQL, there are difference between the two
languages. For example, SQL supports the keywords ALL and DISTINCT for aggregate functions, but the
transformation language does not. On the other hand, the transformation language supports an optional
filter condition for aggregate functions, while SQL does not.

You can create an expression that is as simple as a port (such as ORDERS), a pre-defined workflow
variable (such as $Start.Status), or a numeric literal (such as 10). You can also write complex
expressions that include functions nested within functions, or combine different columns using the
transformation language operators.

Expression Components

Expressions can consist of any combination of the following components:

« Ports (input, input/output, variable)
« String literals, numeric literals

¢ Constants

12 2024-06-09

« Functions

o Built-in and local variables

* Mapping parameters and mapping variables
o Pre-defined workflow variables

o User-defined workflow variables

e Operators

e Return values

Ports and Return Values

When you write an expression that includes a port or return value from an unconnected transformation,
use the reference qualifiers in the following table:

Reference Description
Qualifier
:EXT Required when you write an expression that includes a return value from an External

Procedure transformation. The general syntax is:

:EXT.external procedure transformation(argumentl, argument2, ...)

:LKP Required when you create an expression that includes the return value from an unconnected
Lookup transformation. The general syntax is:

:LKP.lookup transformation(argumentl, argument2, ...)

The arguments are the local ports used in the lookup condition. The order must match the
order of the ports in the transformation. The datatypes for the local ports must match the
datatype of the Lookup ports used in the lookup condition.

:SD Optional (PowerMart 3.5 expressions only). Qualifies a source table port in an expression.
The general syntax is:

:SD.source table.column name

:SEQ Required when you create an expression that includes a port in a Sequence Generator
transformation. The general syntax is:

:SEQ.sequence _generator transformation.CURRVAL

:SP Required when you write an expression that includes the return value from an unconnected
Stored Procedure transformation. The general syntax is:

:SP.stored procedure transformation(argumentl, argument2, [,
PROC_RESULT})

The arguments must match the arguments in the unconnected Stored Procedure
transformation.

:TD Required when you reference a target table in a PowerMart 3.5 LOOKUP function. The general
syntax is:

LOOKUP (:TD.SALES.ITEM NAME, :TD.SALES.ITEM ID, 10, :TD.SALES.PRICE,
15.99)

2024-06-09 13

String and Numeric Literals

You can include numeric or string literals.

Be sure to enclose string literals within single quotation marks. For example:
'Alice Davis'

String literals are case sensitive and can contain any character except a single quotation mark. For
example, the following string is not allowed:

'Joan's car'
To return a string containing a single quote, use the CHR function:
'Joan' || CHR(39) || 's car'

Do not use single quotation marks with numeric literals. Just enter the number you want to include. For
example:

.05
or

$SSales Tax

Rules and Guidelines for Expression Syntax

Use the following rules and guidelines when you write expressions:

e You cannot include both single-level and nested aggregate functions in an Aggregator transformation.

« If you need to create both single-level and nested functions, create separate Aggregator
transformations.

« You cannot use strings in numeric expressions.

For example, the expression 1 + '1' is not valid because you can only perform addition on numeric
datatypes. You cannot add an integer and a string.

« You cannot use strings as numeric parameters.

For example, the expression SUBSTR (TEXT VAL, 'l', 10) is not valid because the SUBSTR function
requires an integer value, not a string, as the start position.

« You cannot mix datatypes when using comparison operators.

For example, the expression 123.4 = '123.4"' is not valid because it compares a decimal value with a
string.

e You can pass a value from a port, literal string or number, variable, Lookup transformation, Stored
Procedure transformation, External Procedure transformation, or the results of another expression.

¢ Use the ports tab in the Expression Editor to enter a port name into an expression. If you rename a
port in a connected transformation, the Designer propagates the name change to expressions in the
transformation.

o Separate each argument in a function with a comma.
o Except for literals, the transformation language is not case sensitive.
o Except for literals, the Designer and PowerCenter Integration Service ignore spaces.

« The colon (:), comma (,), and period (.) have special meaning and should be used only to specify
syntax.

14 2024-06-09

« The PowerCenter Integration Service treats a dash (-) as a minus operator.

« If you pass a literal value to a function, enclose literal strings within single quotation marks. Do not
use quotation marks for literal numbers. The PowerCenter Integration Service treats any string value
enclosed in single quotation marks as a character string.

« When you pass a mapping parameter or variable or a workflow variable to a function within an
expression, do not use quotation marks to designate mapping parameters or variables or workflow
variables.

+ Do not use quotation marks to designate ports.

« You can nest multiple functions within an expression except aggregate functions, which allow only
one nested aggregate function. The PowerCenter Integration Service evaluates the expression
starting with the innermost function.

Adding Comments to Expressions

The transformation language provides two comment specifiers to let you insert comments in
expressions:

o Two dashes, as in:

-- These are comments
o Two slashes, as in:

// These are comments

The PowerCenter Integration Service ignores all text on a line preceded by these two comment
specifiers. For example, if you want to concatenate two strings, you can enter the following expression
with comments in the middle of the expression:
-- This expression concatenates first and last names for customers:
FIRST NAME -- First names from the CUST table
|| // Concat symbol

LAST NAME // Last names from the CUST table
// Joe Smith Aug 18 1998

The PowerCenter Integration Service ignores the comments and evaluates the expression as follows:
FIRST NAME || LAST NAME
You cannot continue a comment to a new line:

-- This expression concatenates first and last names for customers:
FIRST NAME -- First names from the CUST table
|| // Concat symbol
LAST NAME // Last names from the CUST table
Joe Smith Aug 18 1998
In this case, the Designer and Workflow Manager do not validate the expression, since the last line is not

a valid expression.

If you do not want to embed comments, you can add them by clicking Comment in the Expression Editor.

2024-06-09 15

Reserved Words

Some keywords in the transformation language, such as constants, operators, and built-in variables, are
reserved for specific functions. These include:

o EXT
o :INFA
e LKP
« :MCR
« :SD
« :SEQ
« SP
« :TD

« AND

« DD_DELETE

o DD_INSERT

« DD_REJECT

« DD_UPDATE

* FALSE

« NOT

« NULL

« OR

« PROC_RESULT

o SESSSTARTTIME
* SPOUTPUT
 SYSDATE

« TRUE

» WORKFLOWSTARTTIME

The following words are reserved for workflow expressions:

« ABORTED

« DISABLED

« FAILED

« NOTSTARTED
« STARTED

« STOPPED
 SUCCEEDED

16 2024-06-09

Note: You cannot use a reserved word to name a port or local variable. You can only use reserved words
within transformation and workflow expressions. Reserved words have predefined meanings in
expressions.

Constants

DD_DELETE

Flags records for deletion in an update strategy expression. DD_DELETE is equivalent to the integer
literal 2.

Note: Use the DD_DELETE constant in the Update Strategy transformation only. Use DD_DELETE instead
of the integer literal 2 to facilitate troubleshooting complex numeric expressions.

When you run a workflow, select the data-driven update strategy to delete records from a target based
on this flag.

Example

The following expression marks items with an ID number of 1001 for deletion, and all other items for
insertion:

IIF(ITEM ID = 1001, DD DELETE, DD INSERT)
This update strategy expression uses numeric literals to produce the same result:
IIF(ITEM ID = 1001, 2, 0)

Note: The expression using constants is easier to read than the expression using numeric literals.

DD_INSERT

Flags records for insertion in an update strategy expression. DD_INSERT is equivalent to the integer
literal 0.

Note: Use the DD_INSERT constant in the Update Strategy transformation only. Use DD_INSERT instead
of the integer literal 0 to facilitate troubleshooting complex numeric expressions.

When you run a workflow, select the data-driven update strategy to write records to a target based on
this flag.

Examples

The following examples modify a mapping that calculates monthly sales by salesperson, so you can
examine the sales of just one salesperson.

The following update strategy expression flags an employee’s sales for insertion, and rejects everything
else:

IIF(EMPLOYEENAME = 'Alex', DD INSERT, DD REJECT)
This update strategy expression uses numeric literals to produce the same result:

IIF(EMPLOYEENAME = 'Alex', 0, 3)

2024-06-09 17

Tip: The expression using constants is easier to read than the expression using numeric literals.

The following update strategy expression uses SESSSTARTTIME to find only those orders that shipped
in the last two days and flag them for insertion. Using DATE_DIFF, the expression subtracts
DATE_SHIPPED from the system date, returning the difference between the two dates. Because
DATE_DIFF returns a Double value, the expression uses TRUNC to truncate the difference. It then
compares the result to the integer literal 2. If the result is greater than 2, the expression flags the
records for rejection. If the result is 2 or less, it flags them for insertion:

IIF(TRUNC(DATE DIFF(SESSSTARTTIME, ORDERS DATE SHIPPED, 'DD'), 0) >
2,DD_REJECT, DD INSERT)

DD_REJECT

Flags records for rejection in an update strategy expression. DD_REJECT is equivalent to the integer
literal 3.

Note: Use the DD_REJECT constant in the Update Strategy transformation only. Use DD_REJECT instead
of the integer literal 3 to facilitate troubleshooting complex numeric expressions.

When you run a workflow, select the data-driven update strategy to reject records from a target based on
this flag.

Use DD_REJECT to filter or validate data. If you flag a record as reject, the PowerCenter Integration
Service skips the record and writes it to the session reject file.

Examples

The following examples modify a mapping that calculates the sales for the current month, so it includes
only positive values.

This update strategy expression flags records less than 0 for reject and all others for insert:
IIF(SALES > 0, DD INSERT, DD REJECT)

This expression uses numeric literals to produce the same result:
IIF(SALES > 0, 0, 3)

The expression using constants is easier to read than the expression using numeric literals.

The following data-driven example uses DD_REJECT and IS_SPACES to avoid writing spaces to a
character column in a target table. This expression flags records that consist entirely of spaces for
reject and flags all others for insert:

IIF(IS _SPACES(CUST NAMES), DD REJECT, DD_INSERT)

DD_UPDATE

Flags records for update in an update strategy expression. DD_UPDATE is equivalent to the integer literal
1.

Note: Use the DD_UPDATE constant in the Update Strategy transformation only. Use DD_UPDATE instead
of the integer literal 1 to facilitate troubleshooting complex numeric expressions.

18 2024-06-09

When you run a workflow, select the data-driven update strategy to write records to a target based on
this flag.

Examples

The following examples modify a mapping that calculates sales for the current month. The mapping
loads sales for one employee.

This expression flags records for Alex as updates and flags all others for rejection:
IIF(EMPLOYEENAME = 'Alex', DD UPDATE, DD REJECT)

This expression uses numeric literals to produce the same result, flagging Alex’s sales for update (1)
and flagging all other sales records for rejection (3):

IIF(EMPLOYEENAME = 'Alex', 1, 3)

The expression using constants is easier to read than the expression using numeric literals.

The following update strategy expression uses SYSDATE to find only those orders that have shipped in
the last two days and flag them for insertion. Using DATE_DIFF, the expression subtracts
DATE_SHIPPED from the system date, returning the difference between the two dates. Because
DATE_DIFF returns a Double value, the expression uses TRUNC to truncate the difference. It then
compares the result to the integer literal 2. If the result is greater than 2, the expression flags the
records for rejection. If the result is 2 or less, it flags the records for update. Otherwise, it flags them for
rejection:

IIF(TRUNC(DATE DIFF(SYSDATE, ORDERS DATE SHIPPED, 'DD'), 0) > 2, DD REJECT,
DD_UPDATE)

FALSE

Clarifies a conditional expression. FALSE is equivalent to the integer 0.

Example

The following example uses FALSE in a DECODE expression to return values based on the results of a
comparison. This is useful if you want to perform multiple searches based on a single search value:

DECODE (FALSE,

Varl = 22, 'Variable 1 was 22!"',

Var2 = 49, 'Variable 2 was 49!'"',

Varl < 23, 'Variable 1 was less than 23.°',

Var2 > 30, 'Variable 2 was more than 30.',

'Variables were out of desired ranges.')

NULL

Indicates that a value is either unknown or undefined. NULL is not equivalent to a blank or empty string
(for character columns) or 0 (for numerical columns).

Although you can write expressions that return nulls, any column that has the NOT NULL or PRIMARY
KEY constraint will not accept nulls. Therefore, if the PowerCenter Integration Service tries to write a null
value to a column with one of these constraints, the database will reject the row and the PowerCenter

2024-06-09 19

Integration Service will write it to the reject file. Be sure to consider nulls when you create
transformations.

Functions can handle nulls differently. If you pass a null value to a function, it might return 0 or NULL, or
it might ignore null values.

RELATED TOPICS:

e “Functions” on page 44

Working with Null Values in Boolean Expressions

Expressions that combine a null value with a Boolean expression produces results that are ANSI
compliant. For example, the PowerCenter Integration Service produces the following results:

« NULL AND TRUE = NULL
e NULL AND FALSE = FALSE

Null Values in Comparison Expressions

When you use a null value in an expression containing a comparison operator, the PowerCenter
Integration Serviceproduces a null value. However, you can also configure the PowerCenter Integration
Service to treat null values as high or low in comparison operations.

Use the Treat Null In Comparison Operators As property to configure how the PowerCenter Integration
Service handles null values in comparison expressions.

This PowerCenter Integration Service configuration property affects the behavior of the following
comparison operators in expressions:

=, =, "=, <>, >, >=, £, <=
For example, consider the following expressions:

NULL > 1
NULL = NULL

The following table describes how the PowerCenter Integration Service evaluates the expressions:

Expression Treat Null in Comparison Operators As

NULL HIGH Low
NULL > 1 NULL TRUE FALSE
NULL = NULL NULL TRUE TRUE

Null Values in Aggregate Functions

The PowerCenter Integration Service treats null values as nulls in aggregate functions. If you pass an
entire port or group of null values, the function returns NULL. However, when you configure the
PowerCenter Integration Service, you can choose how you want it to handle null values in aggregate
functions. You can have the PowerCenter Integration Service treat null values as 0 in aggregate
functions or as NULLs.

20 2024-06-09

Null Values in Filter Conditions

If a filter condition evaluates to NULL, the function does not select the record. If the filter condition
evaluates to NULL for all records in the selected port, the aggregate function returns NULL (except
COUNT, which returns 0). You can use filter conditions with aggregate functions and the CUME,
MOVINGAVG, and MOVINGSUM functions.

Nulls with Operators

Any expression that uses operators (except the string operator ||) and contains a null value always
evaluates to NULL. For example, the following expression evaluates to NULL:

8 * 10 - NULL

To test for nulls, use the ISNULL function.

TRUE

Returns a value based on the result of a comparison. TRUE is equivalent to the integer 1.

Example
The following example uses TRUE in a DECODE expression to return values based on the results of a
comparison. This is useful if you want to perform multiple searches based on a single search value:

DECODE (TRUE,

Varl = 22, 'Variable 1 was 22!"',

Var2 = 49, 'Variable 2 was 49!"',

Varl < 23, 'Variable 1 was less than 23.',
Var2 > 30, 'Variable 2 was more than 30.°',
'Variables were out of desired ranges.')

Operators

Operator Precedence

The transformation language supports the use of multiple operators and the use of operators within
nested expressions.

If you write an expression that includes multiple operators, the PowerCenter Integration Service
evaluates the expression in the following order:

Arithmetic operators

1
2

3. String operators
4. Comparison operators
5

Logical operators

The PowerCenter Integration Service evaluates operators in the order they appear in the following table.
It evaluates operators in an expression with equal precedence to all operators from left to right.

2024-06-09 21

The following table lists the precedence for all transformation language operators:

Operator Meaning

() Parentheses.

+,-, NOT Unary plus and minus and the logical NOT operator.

* [, % Multiplication, division, modulus.

+, - Addition, subtraction.

[l Concatenate.

<, <=, >, >= Less than, less than or equal to, greater than, greater than or equal to.
=, <>, 1=, 0= Equal to, not equal to, not equal to, not equal to.

AND Logical AND operator, used when specifying conditions.

OR Logical OR operator, used when specifying conditions.

The transformation language also supports the use of operators within nested expressions. When
expressions contain parentheses, the PowerCenter Integration Service evaluates operations inside
parentheses before operations outside parentheses. Operations in the innermost parentheses are
evaluated first.

For example, depending on how you nest the operations, the equation 8 + 5- 2 * 8 returns different
values:

Equation Return Value
8+5-2*8 -3
8+(5-2)*8 32

Arithmetic Operators

Use arithmetic operators to perform mathematical calculations on numeric data.

22 2024-06-09

The following table lists the arithmetic operators in order of precedence in the transformation language:

Operator Meaning

+ - Unary plus and minus. Unary plus indicates a positive value. Unary minus indicates a negative
value.

* [, % Multiplication, division, modulus. A modulus is the remainder after dividing two integers. For

example, 13 % 2 = 1 because 13 divided by 2 equals 6 with a remainder of 1.

+, - Addition, subtraction.

The addition operator (+) does not concatenate strings. To concatenate strings, use the string
operator ||. To perform arithmetic on date values, use the date functions.

If you perform arithmetic on a null value, the function returns NULL.

When you use arithmetic operators in an expression, all of the operands in the expression must be
numeric. For example, the expression 1 + '1' is not valid because it adds an integer to a string. The
expression 1.23 + 4 / 2 isvalid because all of the operands are numeric.

Note: The transformation language provides built-in date functions that let you perform arithmetic on
date/time values.

String Operators

Use the || string operator to concatenate two strings. The || operator converts operands of any datatype
(except Binary) to String datatypes before concatenation:

Input Value Return Value
‘alpha’ || 'betical’ alphabetical
‘alpha' || 2 alpha2
‘alpha’ || NULL alpha

The || operator includes leading and trailing blanks. Use the LTRIM and RTRIM functions to trim leading
and trailing blanks before concatenating two strings.

Nulls

The || operator ignores null values. However, if both values are NULL, the || operator returns NULL.

Example

The following example shows an expression that concatenates employee first names and employee last
names from two columns. This expression removes the spaces from the end of the first name and the

2024-06-09 23

beginning of the last name, concatenates a space to the end of each first name, then concatenates the
last name:

LTRIM(RTRIM(EMP FIRST) || " ' || LTRIM(EMP LAST))
EMP_ FIRST EMP_LAST RETURN VALUE
' Alfred' ' Rice ' Alfred Rice
' Bernice' ' Kersins' Bernice Kersins
NULL ' Proud' Proud
' Curt' NULL Curt
NULL NULL NULL

Note: You can also use the CONCAT function to concatenate two string values. The || operator, however,
produces the same results in less time.

Comparison Operators

Use comparison operators to compare character or numeric strings, manipulate data, and return a TRUE
(1) or FALSE (0) value.

The following table lists the comparison operators in the transformation language:

Operator Meaning

= Equal to.

> Greater than.

< Less than.

>= Greater than or equal to.
<= Less than or equal to.
<> Not equal to.

I= Not equal to.

A= Not equal to.

Use the greater than (>) and less than (<) operators to compare numeric values or return a range of rows
based on the sort order for a primary key in a particular port.

When you use comparison operators in an expression, the operands must be the same datatype. For
example, the expression 123.4 > ‘123" is not valid because the expression compares a decimal with a
string. The expressions 123.4 > 123 and ‘a’ I= ‘b’ are valid because the operands are the same datatype.

If you compare a value to a null value, the result is NULL.

24 2024-06-09

If a filter condition evaluates to NULL, the Integration Service returns NULL.

Logical Operators

Use logical operators to manipulate numeric data. Expressions that return a numeric value evaluate to
TRUE for values other than 0, FALSE for 0, and NULL for NULL.

The following table lists the logical operators in the transformation language:

Operator Meaning

NOT Negates result of an expression. For example, if an expression evaluates to TRUE, the
operator NOT returns FALSE. If an expression evaluates to FALSE, NOT returns TRUE.

AND Joins two conditions and returns TRUE if both conditions evaluate to TRUE. Returns FALSE if
one condition is not true.

OR Connects two conditions and returns TRUE if any condition evaluates to TRUE. Returns
FALSE if both conditions are not true.

Nulls

Expressions that combine a null value with a Boolean expression produce results that are ANSI
compliant. For example, the PowerCenter Integration Service produces the following results:

« NULL AND TRUE = NULL
« NULL AND FALSE = FALSE

Variables

Built-in Variables

The transformation language provides built-in variables. Built-in variables return either run-time or
system information. Run-time variables return information such as source and target table name, folder
name, session run mode, and workflow run instance name. System variables return session start time,
system date, and workflow start time.

You can use built-in variables in expressions in the Designer or Workflow Manager. For example, you can
use the system variable SYSDATE in a DATE_DIFF function. You can use run-time variables in
expressions and in input fields that accept mapping or workflow variables. For example, you can use
run-time variable SPMWorkflowRunInstanceName as part of a target output file name. The PowerCenter
Integration Service sets the values of built-in variables. You cannot define values for built-in variables in
a workflow or session parameter file.

You can use built-in variables in expressions. For example, you can use the system variable SYSDATE in
a DATE_DIFF function.

The following built-in variables provide run-time information:

o SPM<SourceName>@TableName, SPM<TargetName>@TableName

2024-06-09 25

SPMFolderName
SPMintegrationServiceName
SPMMappingName
SPMRepositoryServiceName
SPMRepositoryUserName

SPMSessionName
S$PMSessionRunMode
SPMWorkflowName
SPMWorkflowRunld

SPMWorkflowRunlnstanceName

The following built-in variables provide system information:

« WORKFLOWSTARTTIME

$8S8SessStartTime
SESSSTARTTIME
SYSDATE

The following table describes where you use built-in variables in the Designer and Workflow Manager:

Variable Name

Designer

Workflow Manager

$PM<SourceName>@Table
Name,
$PM<TargetName>@Table
Name,

- Expressions
- Input fields that accept mapping
variables

- Input fields that accept mapping
variables

$PMFolderName

- Expressions
- Input fields that accept mapping
variables

- Input fields that accept workflow
variables

- Expressions
- Input fields that accept mapping
variables

- Input fields that accept workflow
variables

$PMiIntegrationServiceNam
e

- Expressions
- Input fields that accept mapping
variables

- Input fields that accept workflow
variables

- Expressions
- Input fields that accept mapping
variables

- Input fields that accept workflow
variables

$PMMappingName

- Expressions
- Input fields that accept mapping
variables

- Input fields that accept mapping
variables

SPMRepositoryServiceNam
e

- Expressions
- Input fields that accept mapping
variables

- Input fields that accept workflow
variables

- Expressions
- Input fields that accept mapping
variables

- Input fields that accept workflow
variables

26

2024-06-09

Variable Name

Designer

Workflow Manager

SPMRepositoryUserName

- Expressions
- Input fields that accept mapping

variables

- Input fields that accept workflow

variables

Expressions
Input fields that accept mapping
variables

Input fields that accept workflow
variables

$PMSessionName

- Expressions
- Input fields that accept mapping

variables

Input fields that accept mapping
variables

$PMSessionRunMode

- Expressions
- Input fields that accept mapping

variables

Input fields that accept mapping
variables

SPMWorkflowName

- Expressions
- Input fields that accept mapping

variables

- Input fields that accept workflow

variables

Expressions
Input fields that accept mapping
variables

Input fields that accept workflow
variables

$PMWorkflowRunld

- Expressions
- Input fields that accept mapping

variables

- Input fields that accept workflow

variables

Expressions
Input fields that accept mapping
variables

Input fields that accept workflow
variables

$PMWorkflowRunInstanceN
ame

- Expressions
- Input fields that accept mapping

variables

- Input fields that accept workflow

variables

Expressions
Input fields that accept mapping
variables

Input fields that accept workflow
variables

$88SessStartTime

- Mapping or mapplet filter conditions
- User-defined joins

- SQL overrides

Mapping or mapplet filter conditions

- User-defined joins
- SQL overrides

SESSSTARTTIME

- Expressions

n/a

SYSDATE

- Expressions

Expressions

WORKFLOWSTARTTIME n/a

Expressions

SPM<SourceName>@TableName, SPM<TargetName>@TableName

SPM<SourceName>@TableName and SPM<TargetName>@TableName return the source and target table

names for relational source and target instances as string values. Use these variables with any function

that accepts string datatypes.

The variable name depends on the source or target instance name. For example, for a source instance

named “Customers,” the built-in variable name is SPMCustomers@TableName. If the relational source or

target is part of a mapplet within a mapping, the built-in variable name includes the mapplet name:

o SPM<MappletName>.<SourceName>@TableName

2024-06-09

o SPM<MappletName>.<TargetName>@TableName

Use SPM<SourceName>@TableName and SPM<TargetName>@TableName in a mapping or a mapplet.
For example, in a mapping that contains multiple relational sources, you can use
SPM<SourceName>@TableName in the output port of an Expression transformation to write the source
table name for each row to the target. You can also use these variables in input fields that accept
mapping variables.

SPMFolderName

SPMFolderName returns the name of the repository folder as a string value. Use SPMFolderName with
any function that accepts string datatypes.

Use SPMFolderName in a mapping, a mapplet, workflow links, or in workflow tasks such as Assignment
and Decision tasks. You can also use SPMFolderName in input fields that accept mapping or workflow
variables.

SPMintegrationServiceName

SPMintegrationServiceName returns the name of the PowerCenter Integration Service that runs the
session. Use SPMintegrationServiceName with any function that accepts string datatypes.
SPMintegrationServiceName returns the PowerCenter Integration Service name as a string value.

Use SPMintegrationServiceName in a mapping, a mapplet, workflow links, or in workflow tasks such as
Assignment and Decision tasks. You can also use $PMIntegrationServiceName in input fields that
accept mapping or workflow variables.

SPMMappingName

SPMMappingName returns the mapping name as a string value. Use SPMMappingName with any
function that accepts string datatypes.

Use SPMMappingName in a mapping or a mapplet. You can also use SPMMappingName in input fields
that accept mapping variables.

SPMRepositoryServiceName

SPMRepositoryServiceName returns the name of the PowerCenter Repository Service as a string value.
Use SPMRepositoryServiceName with any function that accepts string datatypes.

Use SPMRepositoryServiceName in a mapping, a mapplet, workflow links, or in workflow tasks such as
Assignment and Decision tasks. You can also use SPMRepositoryServiceName in input fields that
accept mapping or workflow variables.

SPMRepositoryUserName

SPMRepositoryUserName returns the name of the repository user that runs the session. Use
SPMRepositoryUserName with any function that accepts string datatypes. SPMRepositoryUserName
returns the repository user name as a string value.

Use SPMRepositoryUserName in a mapping, a mapplet, workflow links, or in workflow tasks such as
Assignment and Decision tasks. You can also use SPMRepositoryUserName in input fields that accept
mapping or workflow variables.

28 2024-06-09

SPMSessionName

SPMSessionName returns the session name as a string value. Use SPMSessionName with any function
that accepts string datatypes.

Use SPMSessionName in a mapping or a mapplet. You can also use $PMSessionName in input fields
that accept mapping variables.

SPMSessionRunMode

SPMSessionRunMode returns the session run mode, normal or recovery, as a string value. Use
SPMSessionRunMode with any function that accepts string datatypes.

Use SPMSessionRunMode in a mapping or a mapplet. You can also use SPMSessionRunMode in input
fields that accept mapping variables.

SPMWorkflowName

SPMWorkflowName returns the name of the workflow as a string value. Use SPMWorkflowName with
any function that accepts string datatypes.

Use SPMWorkflowName in a mapping, a mapplet, workflow links, or in workflow tasks such as
Assignment and Decision tasks. You can also use SPMWorkflowName in input fields that accept
mapping or workflow variables.

SPMWorkflowRunid

Each workflow run has a unique run ID. SPMWorkflowRunld returns the workflow run ID as a string value.
Use SPMWorkflowRunld with any function that accepts string datatypes.

Use SPMWorkflowRunld in a mapping, a mapplet, workflow links, or in workflow tasks such as
Assignment and Decision tasks. You can also use SPMWorkflowRunld in input fields that accept
mapping or workflow variables. For example, you configure a workflow to run concurrently with the same
instance name, and you want to track the status of each workflow run using a third-party application.
Use SPMWorkflowRunld in a post-session shell command to pass the run ID to the application.

SPMWorkflowRunlnstanceName

SPMWorkflowRunInstanceName returns the workflow run instance name as a string value. Use
SPMWorkflowRunInstanceName with any function that accepts string datatypes.

Use SPMWorkflowRunInstanceName in a mapping, a mapplet, workflow links, or in workflow tasks such
as Assignment and Decision tasks. You can also use SPMWorkflowRunInstanceName in input fields that
accept mapping or workflow variables. For example, for a concurrent workflow with unique instance
names, you can create unique target files for each run instance by setting the target output file name in
the session properties to “OutFile_SPMWorkflowRunInstanceName.txt.”

Or, you want to use a post-session shell command to create an indicator file used by a predefined Event-
Wait task. In the shell command that generates the indicator file, use SPMWorkflowRunlInstanceName in
the indicator file name to ensure that one workflow run instance does not delete an indicator file needed
by another workflow run instance.

2024-06-09 29

SESSSTARTTIME

SESSSTARTTIME returns the current date and time value on the node that runs the session after the
Integration Service initializes the session. Use SESSSTARTTIME with any function that accepts
transformation date/time data types. SESSSTARTTIME is stored as a transformation date/time data type
value.

Use SESSSTARTTIME in a mapping or a mapplet. You can reference SESSSTARTTIME only within the
expression language.

Example

The following expression uses $$SSessStartTime in the source filter condition of a source qualifier to
perform an incremental extraction. The expression specifies a range of dates of all days in the week
prior to when the PowerCenter Integration Service initializes the session. The expression uses the
function DATE_DIFF to find the difference in the number of days between the value ORDER_DATE and $$
SSessStartTime. If the difference between the two dates is less than or equal to seven days, the
PowerCenter Integration Service extracts that row from the source:

DATE DIFF (DAY, ORDER DATE, 'S$$$SessStartTime') <= 7

SYSDATE

SYSDATE returns the current date and time up to seconds on the node that runs the session for each
row passing through the transformation. SYSDATE is stored as a transformation date/time datatype
value.

To capture a static system date, use the SESSSTARTTIME variable instead of SYSDATE.

Example

The following expression uses SYSDATE to find orders that have shipped in the last two days and flag
them for insertion. Using DATE_DIFF, the PowerCenter Integration Service subtracts DATE_SHIPPED
from the system date, returning the difference between the two dates. Because DATE_DIFF returns a
double value, the expression truncates the difference. It then compares the result to the integer literal 2.
If the result is greater than 2, the expression flags the rows for rejection. If the result is 2 or less, it flags
them for insertion.

IIF(TRUNC(DATE DIFF(SYSDATE, DATE SHIPPED, 'DD'),
0) > 2, DD REJECT, DD INSERT

WORKFLOWSTARTTIME

WORKFLOWSTARTTIME returns the current date and time on the node hosting the Integration Service
when the PowerCenter Integration Service initializes the workflow. Use WORKFLOWSTARTTIME with any
function that accepts transformation date/time datatypes. WORKFLOWSTARTTIME is stored as a
transformation date/time datatype value.

Use WORKFLOWSTARTTIME in workflow links and tasks such as Assignment and Decision tasks. You
can reference WORKFLOWSTARTTIME only within the expression language.

30 2024-06-09

Example

The following expression uses WORKFLOWSTARTTIME to display the number of minutes between the
workflow start time and the start time of a task in the workflow. Using the SQL function DATE_DIFF, the
PowerCenter Integration Service subtracts the task start time from WORKFLOWSTARTTIME and returns
the result as a number of days:

DATE DIFF (WORKFLOWSTARTTIME, $s EmployeeData.StartTime, 'MI')

Transaction Control Variables

Transaction control variables define conditions to commit or rollback transactions during the processing
of database rows. You use these variables in transaction control expressions that you build in the
Expression Editor. Transaction control expressions use the IIF function to test each row against a
condition. Depending on the return value of the condition, the PowerCenter Integration Service commits,
rolls back, or makes no transaction changes for the row.

The following example uses transaction control variables to determine where to process a row:
IIF (NEWTRAN=1, TC COMMIT BEFORE, TC CONTINUE TRANSACTION)

If NEWTRAN=1, the TC_COMMIT_BEFORE variable causes a commit to occur before the current row
processes. Otherwise, the TC_CONTINUE_TRANSACTION variable forces the row to process in the
current transaction.

Use the following variables in the Expression Editor when you create a transaction control expression:

o TC_CONTINUE_TRANSACTION. The PowerCenter Integration Service does not perform any
transaction change for the current row. This is the default transaction control variable value.

« TC_COMMIT_BEFORE. The PowerCenter Integration Service commits the transaction, begins a new
transaction, and writes the current row to the target. The current row is in the new transaction.

« TC_COMMIT_AFTER. The PowerCenter Integration Service writes the current row to the target,
commits the transaction, and begins a new transaction. The current row is in the committed
transaction.

e TC_ROLLBACK_BEFORE. The PowerCenter Integration Service rolls back the current transaction,
begins a new transaction, and writes the current row to the target. The current row is in the new
transaction.

Local Variables

If you use local variables in a mapping, use them in any transformation expression in the mapping. For
example, if you use a complex tax calculation throughout a mapping, you might want to write the
expression once and designate it as a variable. This increases performance since the PowerCenter
Integration Service performs the calculation only once.

Local variables are useful when used with stored procedure expressions to capture multiple return
values.

2024-06-09 31

Dates

Dates Overview

The transformation language provides a set of date functions and built-in date variables to perform
transformations on dates. With the date functions, you can round, truncate, or compare dates, extract
one part of a date, or perform arithmetic on a date. You can pass any value with a date datatype to a
date function.

Use date variables to capture the current date or session start time on the node hosting the PowerCenter
Integration Service.

The transformation language also provides the following sets of format strings:

» Date format strings. Use with date functions to specify the parts of a date.
« TO_CHAR format strings. Use to specify the format of the return string.

« TO_DATE and IS_DATE format strings. Use to specify the format of a string you want to convert to a
date or test.

Date/Time Datatype

Informatica uses generic datatypes to transform data from different sources. These transformation
datatypes include a Date/Time datatype that supports datetime values up to the nanosecond.
Informatica stores dates internally in binary format.

Date functions accept datetime values only. To pass a string to a date function, first use TO_DATE to
convert it to a datetime value. For example, the following expression converts a string port to datetime
values and then adds one month to each date:

ADD TO DATE(TO DATE(STRING PORT, 'MM/DD/RR'), 'MM', 1)

You can use dates between 1 A.D. and 9999 A.D in the Gregorian calendar system.

Julian Day, Modified Julian Day, and the Gregorian Calendar

You can use dates in the Gregorian calendar system only. Dates in the Julian calendar are called Julian
dates and are not supported in Informatica. This term should not be confused with Julian Day or with
Modified Julian Day.

You can manipulate Modified Julian Day (MJD) formats using the J format string. The MJD for a given
date is the number of days to that date since Jan 1 4713 B.C. 00:00:00 (midnight). By definition, MJD
includes a time component expressed as a decimal, which represents some fraction of 24 hours. The J
format string does not convert this time component.

For example, the following TO_DATE expression converts strings in the SHIP_DATE_MJD_STRING port to
date values in the default date format:

TO _DATE (SHIP DATE MJD STR, 'J')
SHIP DATE_MJD_STR RETURN_VALUE

2451544 Dec 31 1999 00:00:00.000000000

32 2024-06-09

SHIP_DATE MJD_STR RETURN_VALUE

2415021 Jan 1 1900 00:00:00.000000000
SHIP DATE MJD_STR RETURN_VALUE

2451544 Dec 31 1999 00:00:00.000000000
2415021 Jan 1 1900 00:00:00.000000000

Because the J format string does not include the time portion of a date, the return values have the time
set to 00:00:00.000000000.

You can also use the J format string in TO_CHAR expressions. For example, use the J format string in a
TO_CHAR expression to convert date values to MJD values expressed as strings. For example:

TO_CHAR (SHIP DATE, 'J')

SHIP DATE RETURN_VALUE
Dec 31 1999 23:59:59 2451544
Jan 1 1900 01:02:03 2415021

Note: The PowerCenter Integration Service ignores the time portion of the date in a TO_CHAR
expression.

Dates in the Year 2000

All transformation language date functions support the year 2000. PowerCenter supports dates between
1 A.D. and 9999 A.D.

RR Format String

The transformation language provides the RR format string to convert strings with two-digit years to
dates. Using TO_DATE and the RR format string, you can convert a string in the format MM/DD/RR to a
date. The RR format string converts data differently depending on the current year.

e Current Year Between 0 and 49. If the current year is between 0 and 49 (such as 2003) and the
source string year is between 0 and 49, the PowerCenter Integration Service returns the current
century plus the two-digit year from the source string. If the source string year is between 50 and 99,
the Integration Service returns the previous century plus the two-digit year from the source string.

« Current Year Between 50 and 99. If the current year is between 50 and 99 (such as 1998) and the
source string year is between 0 and 49, the PowerCenter Integration Service returns the next century
plus the two-digit year from the source string. If the source string year is between 50 and 99, the
PowerCenter Integration Service returns the current century plus the specified two-digit year.

2024-06-09 33

The following table summarizes how the RR format string converts to dates:

Current year Source year RR Format String Returns
0-49 0-49 Current century
0-49 50-99 Previous century
50-99 0-49 Next century
50-99 50-99 Current century
Example

The following expression produces the same return values for any current year between 1950 and 2049:

TO_DATE (ORDER DATE, 'MM/DD/RR")

ORDER DATE RETURN_VALUE
'04/12/98" 04/12/1998 00:00:00.000000000
'11/09/01" 11/09/2001 00:00:00.000000000

Difference Between the YY and RR Format Strings

PowerCenter also provides a YY format string. Both the RR and YY format strings specify two-digit years.
The YY and RR format strings produce identical results when used with all date functions except
TO_DATE. In TO_DATE expressions, RR and YY produce different results.

The following table shows the different results each format string returns:

String Current Year TO_DATE(String, ‘'MM/DD/RR’) TO_DATE(String, ‘MM/DD/YY’)
04/12/98 1998 04/12/1998 00:00:00.000000000 04/12/1998 00:00:00.000000000
11/09/01 1998 11/09/2001 00:00:00.000000000 11/09/1901 00:00:00.000000000
04/12/98 2003 04/12/1998 00:00:00.000000000 04/12/2098 00:00:00.000000000
11/09/01 2003 11/09/2001 00:00:00.000000000 11/09/2001 00:00:00.000000000

For dates in the year 2000 and beyond, the YY format string produces less meaningful results than the
RR format string. Use the RR format string for dates in the twenty-first century.

Dates in Relational Databases

In general, dates stored in relational databases contain a date and time value. The date includes the
month, day, and year, while the time might include the hours, minutes, seconds, and sub-seconds. You
can pass datetime data to any of the date functions.

34

2024-06-09

Dates in Flat Files

Use the TO_DATE function to convert strings to datetime values. You can also use IS_DATE to check if a
string is a valid date before converting it with TO_DATE. The transformation language date functions
accept date values only. To pass a string to a date function, you must first use the TO_DATE function to
convert it to a transformation Date/Time datatype.

Default Date Format

The PowerCenter Integration Service uses a default date format to store and manipulate strings that
represent dates. To specify the default date format, enter a date format in the DateTime Format String
attribute on the Confid Object tab for a session or session configuration object. By default, the date
format is MM/DD/YYYY HH24:MI:SS.US.

Because Informatica stores dates in binary format, the PowerCenter Integration Service uses the default
date format when you perform the following actions:

« Convert a date to a string by connecting a date/time port to a string port. The PowerCenter
Integration Service converts the date to a string in the date format defined in the session
configuration object.

o Convert a string to a date by connecting a string port to a date/time port. The PowerCenter
Integration Service expects the string values to be in the date format defined by the session
configuration object. If an input value does not match this format, or if it is an invalid date, the
PowerCenter Integration Service skips the row. If the string is in this format, the PowerCenter
Integration Service converts the string to a date value.

« Use TO_CHAR(date, [format_string]) to convert dates to strings. If you omit the format string, the
PowerCenter Integration Service returns the string in the date format defined in the session
properties. If you specify a format string, the PowerCenter Integration Service returns a string in the
specified format.

« Use TO_DATE(date, [format_string]) to convert strings to dates. If you omit the format string, the
PowerCenter Integration Service expects the string in the date format defined in the session
properties. If you specify a format string, the PowerCenter Integration Service expects a string in the
specified format.

The default date format of MM/DD/YYYY HH24:MI:SS.US consists of:

« Month (January = 01, September = 09)
« Day (of the month)
« Year (expressed in four digits, such as 1998)

e Hour (in 24-hour format, for example, 12:00:00AM = 0, 1:00:00AM = 1, 12:00:00PM = 12, 11:00:00PM =
23)

¢ Minutes
¢ Seconds

¢ Microseconds

2024-06-09 35

Date Format Strings

You can evaluate input dates using a combination of format strings and date functions. Date format
strings are not internationalized and must be entered in predefined formats as listed in the following
table.

The following table summarizes the format strings to specify a part of a date:

Format String Description

D, DD, DDD, DAY, DY, J Days (01-31). Use any of these format strings to specify the entire day portion of a
date. For example, if you pass 12-APR-1997 to a date function, use any of these
format strings specify 12.

HH, HH12, HH24 Hour of day (0-23), where 0 is 12 AM (midnight). Use any of these formats to specify
the entire hour portion of a date. For example, if you pass the date 12-APR-1997
2:01:32 PM, use HH, HH12, or HH24 to specify the hour portion of the date.

MI Minutes (0-59).

MM, MON, MONTH Month (01-12). Use any of these format strings to specify the entire month portion
of a date. For example, if you pass 12-APR-1997 to a date function, use MM, MON, or
MONTH to specify APR.

MS Milliseconds (0-999).

NS Nanoseconds (0-999999999).

SS, SSSS Seconds (0-59).

us Microseconds (0-999999).

Y, YY, YYY, YYYY, RR Year portion of date (0001 to 9999). Use any of these format strings to specify the

entire year portion of a date. For example, if you pass 12-APR-1997 to a date
function, use Y, YY, YYY, or YYYY to specify 1997.

Note: The format string is not case sensitive. It must always be enclosed within single quotation marks.

The following table describes date functions that use date format strings to evaluate input dates:

Function Description

ADD_TO_DATE The part of the date you want to change.

DATE_DIFF The part of the date to use to calculate the difference between two dates.

GET_DATE_PART The part of the date you want to return. This function returns an integer value based
on the default date format.

IS_DATE The date you want to check.

ROUND The part of the date you want to round.

SET_DATE_PART The part of the date you want to change.

36 2024-06-09

Function Description

SYSTIMESTAMP The timestamp precision.

TO_CHAR (Dates) The character string.

TO_DATE The character string.

TRUNC (Dates) The part of the date you want to truncate.

TO_CHAR Format Strings

The TO_CHAR function converts a Date/Time datatype to a string with the format you specify. You can
convert the entire date or a part of the date to a string. You might use TO_CHAR to convert dates to
strings, changing the format for reporting purposes.

TO_CHAR is generally used when the target is a flat file or a database that does not support a Date/Time

datatype.

The following table summarizes the format strings for dates in the function TO_CHAR:

Format Description

String

AM, A.M.,, Meridian indicator. Use any of these format strings to specify AM and PM hours. AM and PM return

PM, P.M. the same values as A.M. and P.M.

D Day of week (1-7), where Sunday equals 1.

DAY Name of day, including up to nine characters (for example, Wednesday).

DD Day of month (01-31).

DDD Day of year (001-366, including leap years).

DY Abbreviated three-character name for a day (for example, Wed).

HH, HH12 Hour of day (01-12).

HH24 Hour of day (00-23), where 00 is 12AM (midnight).

J Modified Julian Day. Converts the calendar date to a string equivalent to its Modified Julian Day
value, calculated from Jan 1, 4713 00:00:00 B.C. It ignores the time component of the date. For
example, the expression TO_CHAR(SHIP_DATE, ‘J") converts Dec 31 1999 23:59:59 to the string
2451544,

MI Minutes (00-59).

MM Month (01-12).

MONTH Name of month, including up to nine characters (for example, January).

MON Abbreviated three-character name for a month (for example, Jan).

2024-06-09 37

Format Description

String

MS Milliseconds (0-999).

NS Nanoseconds (0-999999999).

Q Quarter of year (1-4), where January to March equals 1.

RR Last two digits of a year. The function removes the leading digits. For example, if you use ‘RR’ and
pass the year 1997, TO_CHAR returns 97. When used with TO_CHAR, ‘RR’ produces the same results
as, and is interchangeable with, ‘YY." However, when used with TO_DATE, ‘RR’ calculates the closest
appropriate century and supplies the first two digits of the year.

SS Seconds (00-59).

SSSSS Seconds since midnight (00000 - 86399). When you use SSSSS in a TO_CHAR expression, the
PowerCenter Integration Service only evaluates the time portion of a date. For example, the
expression TO_CHAR(SHIP_DATE, ‘MM/DD/YYYY SSSSS’) converts 12/31/1999 01:02:03 to
12/31/1999 03723.

us Microseconds (0-999999).

Y Last digit of a year. The function removes the leading digits. For example, if you use 'Y’ and pass
the year 1997, TO_CHAR returns 7.

YY Last two digits of a year. The function removes the leading digits. For example, if you use ‘YY" and
pass the year 1997, TO_CHAR returns 97.

YYY Last three digits of a year. The function removes the leading digits. For example, if you use 'YYY’
and pass the year 1997, TO_CHAR returns 997.

YYYY Entire year portion of date. For example, if you use ‘YYYY' and pass the year 1997, TO_CHAR
returns 1997.

w Week of month (1-5), where week 1 starts on the first day of the month and ends on the seventh,
week 2 starts on the eighth day and ends on the fourteenth day. For example, Feb 1 designates the
first week of February.

ww Week of year (01-53), where week 01 starts on Jan 1 and ends on Jan 7, week 2 starts on Jan 8 and
ends on Jan 14, and so on.

-/ Punctuation that displays in the output. You might use these symbols to separate date parts. For
example, you create the following expression to separate date parts with a period:

TO_CHAR(DATES, ‘MM.DD.YYYY").
“text” Text that displays in the output. For example, if you create an output port with the expression:

TO_CHAR(DATES, ‘'MM/DD/YYYY “Sales Were Up™) and pass the date Apr 1 1997, the function
returns the string ‘04/01/1997 Sales Were Up’. You can enter multibyte characters that are valid in
the repository code page.

Use double quotation marks to separate ambiguous format strings, for example D*"DDD. The empty
quotation marks do not appear in the output.

Note: The format string is not case sensitive. It must always be enclosed within single quotation marks.

38

2024-06-09

Examples

The following examples show the J, SSSSS, RR, and YY format strings. See the individual functions for
more examples.

Note: The PowerCenter Integration Service ignores the time portion of the date in a TO_CHAR
expression.

J Format String

Use the J format string in a TO_CHAR expression to convert date values to MJD values expressed as
strings. For example:

TO_CHAR (SHIP DATE, 'J')

SHIP DATE RETURN_VALUE
Dec 31 1999 23:59:59 2451544
Jan 1 1900 01:02:03 2415021

SSSSS Format String

You can also use the format string SSSSS in a TO_CHAR expression. For example, the following
expression converts the dates in the SHIP_DATE port to strings representing the total seconds since
midnight:

TO_CHAR(SHIP DATE, 'SSSSS')

SHIP DATE RETURN VALUE
12/31/1999 01:02:03 3723
09/15/1996 23:59:59 86399

RR Format String
The following expression converts dates to strings in the format MM/DD/YY:

TO CHAR(SHIP DATE, 'MM/DD/RR')

SHIP DATE RETURN VALUE
12/31/1999 01:02:03 12/31/99
09/15/1996 23:59:59 09/15/96
05/17/2003 12:13:14 05/17/03
2024-06-09

39

YY Format String

In TO_CHAR expressions, the YY format string produces the same results as the RR format string. The
following expression converts dates to strings in the format MM/DD/YY:

TO_CHAR(SHIP DATE, 'MM/DD/YY')

SHIP_DATE RETURN_VALUE
12/31/1999 01:02:03 12/31/99
09/15/1996 23:59:59 09/15/96
05/17/2003 12:13:14 05/17/03

TO_DATE and IS_DATE Format Strings

The TO_DATE function converts a string with the format you specify to a datetime value. TO_DATE is
generally used to convert strings from flat files to datetime values. TO_DATE format strings are not
internationalized and must be entered in the predefined formats.

Note: TO_DATE and IS_DATE use the same set of format strings.

When you create a TO_DATE expression, use a format string for each part of the date in the source
string. The source string format and the format string must match. The date separator need not match
for date validation to take place. If any part does not match, the PowerCenter Integration Service does
not convert the string, and it skips the row. If you omit the format string, the source string must be in the
date format specified in the session.

IS_DATE indicates whether a value is a valid date. A valid date is any string in the date format specified
in the session. If the strings that you want to test are not in the specified date format, use the format of
the strings listed in "TO_DATE and IS_DATE Format Strings" table. If the format of a string does not
match the specified format or if the string does not represent a valid date, the function returns FALSE
(0). If the format of the string matches the specified format of the string and is a valid date, the function
returns TRUE (1). IS_DATE format strings are not internationalized and must be entered in one of the
formats listed in the following table.

The following table lists the format strings for the functions TO_DATE and IS_DATE:

Table 1. TO_DATE and IS_DATE Format Strings

Format String Description

AM, a.m., PM, p.m. Meridian indicator. Use any of these format strings to specify AM and PM hours.
AM and PM return the same values as do a.m. and p.m.

DAY Name of day, including up to nine characters (for example, Wednesday). The DAY
format string is not case sensitive.

DD Day of month (1-31).

DDD Day of year (001-366, including leap years).

40 2024-06-09

Format String

Description

DY Abbreviated three-character name for a day (for example, Wed). The DY format
string is not case sensitive.

HH, HH12 Hour of day (1-12).

HH24 Hour of day (0-23), where 0 is 12AM (midnight).

J Modified Julian Day. Convert strings in MJD format to date values. It ignores the
time component of the source string, assigning all dates the time of
00:00:00.000000000. For example, the expression TO_DATE('2451544’, 'J') converts
2451544 to Dec 31 1999 00:00:00.000000000.

MI Minutes (0-59).

MM Month (1-12).

MONTH Name of montbh, including up to nine characters (for example, August). Case does
not matter.

MON Abbreviated three-character name for a month (for example, Aug). Case does not
matter.

MS Milliseconds (0-999).

NS Nanoseconds (0-999999999).

RR Four-digit year (for example, 1998, 2034). Use when source strings include two-digit
years Use with TO_DATE to convert two- -digit years to four-digit years.

Current Year Between 50 and 99. If the current year is between 50 and 99 (such
as 1998) and the year value of the source string is between 0 and 49, the
PowerCenter Integration Service returns the next century plus the two-digit year
from the source string. If the year value of the source string is between 50 and
99, the PowerCenter Integration Service returns the current century plus the
specified two-digit year.

- Current Year Between 0 and 49. If the current year is between 0 and 49 (such as
2003) and the source string year is between 0 and 49, the PowerCenter
Integration Service returns the current century plus the two-digit year from the
source string. If the source string year is between 50 and 99, the PowerCenter
Integration Service returns the previous century plus the two-digit year from the
source string.

SS Seconds (0-59).

SSSSS Seconds since midnight. When you use SSSSS in a TO_DATE expression, the
PowerCenter Integration Service only evaluates the time portion of a date.

For example, the expression TO_DATE(DATE_STR, ‘MM/DD/YYYY SSSSS’) converts

12/31/1999 3783 to 12/31/1999 01:02:03.

us Microseconds (0-999999).

Y The current year on the node running the PowerCenter Integration Service with the
last digit of the year replaced with the string value.

YY The current year on the node running the PowerCenter Integration Service with the
last two digits of the year replaced with the string value.

2024-06-09 41

Format String Description

YYY The current year on the node running the PowerCenter Integration Service with the
last three digits of the year replaced with the string value.

YYYY Four digits of a year. Do not use this format string if you are passing two-digit
years. Use the RR or YY format string instead.

Rules and Guidelines for Date Format Strings

Use the following rules and guidelines when you work with date format strings:

e The format of the TO_DATE string must match the format string. If it does not, the PowerCenter
Integration Service might return inaccurate values or skip the row. For example, if you pass the string
‘20200512’, representing May 12, 2020, to TO_DATE, you must include the format string YYYYMMDD.
If you do not include a format string, the PowerCenter Integration Service expects the string in the
date format specified in the session. Likewise, if you pass a string that does not match the format
string, the PowerCenter Integration Service returns an error and skips the row. For example, if you
pass the string 2020120 to TO_DATE and include the format string YYYYMMDD, the PowerCenter
Integration Service returns an error and skips the row because the string does not match the format
string.

e The format string must be enclosed within single quotation marks.

o The PowerCenter Integration Service uses the default date time format specified in the session.
Default is MM/DD/YYYY HH24:MI:SS.US. The format string is not case sensitive.

Example

The following examples illustrate the J, RR, and SSSSS format strings. See the individual functions for
more examples.

J Format String

The following expression converts strings in the SHIP_DATE_MJD_STRING port to date values in the
default date format:

TO _DATE (SHIP DATE MJD STR, 'J')

SHIP DATE MJD_STR RETURN_VALUE
2451544 Dec 31 1999 00:00:00.000000000
2415021 Jan 1 1900 00:00:00.000000000

Because the J format string does not include the time portion of a date, the return values have the time
set to 00:00:00.000000000.

42 2024-06-09

RR Format String
The following expression converts a string to a four-digit year format. The current year is 1998:

TO_DATE(DATE STR, 'MM/DD/RR')

DATE_STR RETURN VALUE
04/01/98 04/01/1998 00:00:00.000000000
08/17/05 08/17/2005 00:00:00.000000000

YY Format String
The following expression converts a string to a four-digit year format. The current year is 1998:

TO _DATE(DATE_STR, '"MM/DD/YY")

DATE_STR RETURN VALUE
04/01/98 04/01/1998 00:00:00.000000000
08/17/05 08/17/1905 00:00:00.000000000

Note: For the second row, RR returns the year 2005, but YY returns the year 1905.

SSSSS Format String
The following expression converts strings that include the seconds since midnight to date values:

TO _DATE(DATE STR, 'MM/DD/YYYY SSSSS')

DATE_STR RETURN_VALUE
12/31/1999 3783 12/31/1999 01:02:03.000000000
09/15/1996 86399 09/15/1996 23:59:59.000000000

Understanding Date Arithmetic

The transformation language provides built-in date functions so you can perform arithmetic on datetime
values as follows:

o ADD_TO_DATE. Add or subtract a specific portion of a date.
o DATE_DIFF. Subtract two dates.
o« SET_DATE_PART. Change one part of a date.

You cannot use numeric arithmetic operators (such as + or -) to add or subtract dates.

The transformation language recognizes leap years and accepts dates between Jan. 1, 0001
00:00:00.000000000 A.D. and Dec. 31, 9999 23:59:59.999999999 A.D.

Note: The transformation language uses the transformation Date/Time datatype to specify date values.
You can only use the date functions on datetime values.

2024-06-09 43

Functions

This chapter includes information about function support in the transformation language.

Function Categories

The transformation language provides the following types of functions:
+ Aggregate

« Binary

e Character

« Conversion

o Data Cleansing
+ Date

+ Encoding

» Financial

o Numerical
 Scientific

e Special

o String

o Test

« Variable

o Window

Aggregate Functions

Aggregate functions return summary values for non-null values in selected ports. With aggregate
functions you can:

e Calculate a single value for all rows in a group.

e Return a single value for each group in an Aggregator transformation.
o Apply filters to calculate values for specific rows in the selected ports.
o Use operators to perform arithmetic within the function.

o Calculate two or more aggregate values derived from the same source columns in a single pass.
The transformation language includes the following aggregate functions:
o ANY

e AVG

e COUNT

e« FIRST

o LAST

44 2024-06-09

MAX (Date)
MAX (Number)
MAX (String)
MEDIAN

MIN (Date)
MIN (Number)
MIN (String)
PERCENTILE
STDDEV

SUM
VARIANCE

If you configure the PowerCenter Integration Service to run in Unicode mode, MIN and MAX return values
according to the sort order of the code page you specify in the session properties.

You can use aggregate functions in Aggregator transformations. You can nest only one aggregate
function within another aggregate function. The PowerCenter Integration Service evaluates the
innermost aggregate function expression and uses the result to evaluate the outer aggregate function
expression. You can set up an Aggregator transformation that groups by ID and nests two aggregate
functions as follows:

SUM(AVG(earnings))

where the dataset contains the following values:

ID

1

EARNINGS

32

45

100

65

75

76

21

45

99

The return value is 186. The PowerCenter Integration Service groups by ID, evaluates the AVG
expression, and returns three values. Then it adds the values with the SUM function to get the result.

You can also use aggregate functions as window functions in an Expression transformation. To use an
aggregate function as a window function when you run a mapping on the Spark engine, you must

2024-06-09

45

configure the transformation for windowing. If you use an aggregate function as a window function, the
Expression transformation becomes active.

Aggregate Functions and Nulls

When you configure the PowerCenter Integration Service, you can choose how you want to handle null
values in aggregate functions. You can have the PowerCenter Integration Service treat null values in
aggregate functions as NULL or 0.

By default, the PowerCenter Integration Service treats null values as NULL in aggregate functions. If you
pass an entire port or group of null values to the COUNT function, the function returns 0. If you pass an
entire port or group of null values to any other aggregate function, the function returns NULL. You can
optionally configure the PowerCenter Integration Service if you pass an entire port of null values to an
aggregate function to return 0.

Filter Conditions

Use a filter condition to limit the rows returned in a search.

A filter limits the rows returned in a search. You can apply a filter condition to all aggregate functions
and to CUME, MOVINGAVG, and MOVINGSUM. The filter condition must evaluate to TRUE, FALSE, or
NULL. If the filter condition evaluates to NULL or FALSE, the PowerCenter Integration Service does not
select the row.

You can enter any valid transformation expression. For example, the following expression calculates the
median salary for all employees who make more than $50,000:

MEDIAN (SALARY, SALARY > 50000)

You can also use other numeric values as the filter condition. For example, you can enter the following
as the complete syntax for the MEDIAN function, including a numeric port:

MEDIAN (PRICE, QUANTITY > 0)

In all cases, the PowerCenter Integration Service rounds a decimal value to an integer (for example, 1.5
10 2,1.2to 1, 0.35 to 0) for the filter condition. If the value rounds to 0, the filter condition returns FALSE.
If you do not want to round up a value, use the TRUNC function to truncate the value to an integer:

MEDIAN (PRICE, TRUNC(QUANTITY) > 0)

If you omit the filter condition, the function selects all rows in the port.

Binary Functions

You can use binary functions on binary expressions. To use binary functions, set the environment
variable INFA ENABLE BINARY FUNCTIONS to True or Yes.

The transformation language includes the following binary functions:
« EBCDIC_IS088591

« BINARY_COMPARE

« BINARY_CONCAT

o BINARY_LENGTH

o BINARY_SECTION

46 2024-06-09

« DEC_HEX
« ENC_HEX
» SHA256

Character Functions

The transformation language includes the following character functions:

« ASCII

« CHR

« CHRCODE

« CONCAT

« INITCAP

* INSTR

« LENGTH

« LOWER

« LPAD

¢ LTRIM

« METAPHONE
« REPLACECHR
« REPLACESTR
« RPAD

* RTRIM

» SOUNDEX

+ SUBSTR

« UPPER

The character functions MAX, MIN, LOWER, UPPER, and INITCAP use the code page of the PowerCenter
Integration Service to evaluate character data.

Conversion Functions

The transformation language includes the following conversion functions:
e TO_BIGINT

e TO_CHAR(Number)

« TO_DATE

« TO_DECIMAL

o TO_FLOAT

o TO_INTEGER

2024-06-09 47

Data Cleansing Functions

The transformation language includes a group of functions to eliminate data errors. You can complete

the following tasks with data cleansing functions:

The transformation language includes the following data cleansing functions:

48

Test input values.
Convert the datatype of an input value.
Trim string values.

Replace characters in a string.

Encode strings.

Match patterns in regular expressions.

GREATEST

IN

INSTR
IS_DATE
IS_ZNUMBER
IS_SPACES
ISNULL
LEAST

LTRIM
METAPHONE
REG_EXTRACT
REG_MATCH
REG_REPLACE
REPLACECHR
REPLACESTR
RTRIM
SQL_LIKE
SOUNDEX
SUBSTR
TO_BIGINT
TO_CHAR
TO_DATE
TO_DECIMAL
TO_FLOAT
TO_INTEGER

2024-06-09

Date Functions

The transformation language includes a group of date functions to round, truncate, or compare dates,
extract one part of a date, or perform arithmetic on a date.

You can pass any value with a date datatype to any of the date functions. However, if you want to pass a
string to a date function, you must first use the TO_DATE function to convert it to a transformation Date/
Time datatype.

The transformation language includes the following date functions:
« ADD_TO_DATE

« DATE_COMPARE
« DATE_DIFF

o GET_DATE_PART
« IS_DATE

o LAST_DAY

o« MAKE_DATE_TIME
« MAX

« MIN

« ROUND(Date)

o SET_DATE_PART
o SYSTIMESTAMP
e TO_CHAR(Date)

o TIME_RANGE

¢ TRUNC(Date)

Several of the date functions include a format argument. You must specify one of the transformation
language format strings for this argument. Date format strings are not internationalized.

The Date/Time transformation datatype supports dates with precision to the nanosecond.

Encoding Functions

The transformation language includes the following functions for data encryption, compression,
encoding, and checksum:

» AES_DECRYPT
* AES_ENCRYPT
« COMPRESS

« CRC32

« DEC_BASE64
« DECOMPRESS
 ENC_BASE64
« MD5

2024-06-09 49

Financial Functions

The transformation language includes the following financial functions:
e« FV

« NPER

« PMT

« PV

« RATE

Numeric Functions

The transformation language includes the following numeric functions
« ABS

« CEIL

« CONV

« CUME

« EXP

« FLOOR

e LN

« LOG

« MAX

« MIN

« MOD

« MOVINGAVG
« MOVINGSUM
« POWER

« RAND

« ROUND

« SIGN

« SQRT

« TRUNC

Scientific Functions

The transformation language includes the following scientific functions:
« COS

« COSH

« SIN

« SINH

« TAN

50 2024-06-09

« TANH

Special Functions

The transformation language includes the following special functions:

e ABORT
- DECODE
« ERROR
« lIF

« LOOKUP

Generally, you use special functions in Expression, Filter, and Update Strategy transformations. You can
nest other functions within special functions. You can also nest a special function in an aggregate
function.

String Functions

The transformation language includes the following string functions:
« CHOOSE

« INDEXOF

« MAX

« MIN

« REVERSE

Test Functions

The transformation language includes the following test functions:

* ISNULL

« IS_DATE

* IS_NUMBER
* |IS_SPACES

Variable Functions

The transformation language includes a group of variable functions to update the current value of a
mapping variable throughout the session. When you run a workflow, the PowerCenter Integration Service
evaluates the start and current value of a variable at the beginning of the session based on the final
value of the variable from the last session run. Use the following variable functions:

« SetCountVariable
o SetMaxVariable
o SetMinVariable
« SetVariable

Use different variable functions with a variable based on the aggregation type of the variable.

2024-06-09 51

When using mapping variables in sessions with multiple partitions, use variable functions to determine
the final value of the variable for each partition. At the end of the session, the PowerCenter Integration
Service performs the aggregate function across all partitions to determine one final value to save to the
repository. Unless overridden, it uses the saved value as the start value of the variable for the next time
you use this session.

For example, you use SetMinVariable to set a variable to the minimum evaluated value. The PowerCenter
Integration Service calculates the minimum current value for the variable for each partition. Then at the
end of the session, it finds the minimum current value across all partitions and saves that value into the
repository.

Use SetVariable only once for each mapping variable in a pipeline. When you create multiple partitions in
a pipeline, the PowerCenter Integration Service uses multiple threads to process that pipeline. If you use
this function more than once for the same variable, the current value of a mapping variable may have
indeterministic results.

Window Functions

The transformation language includes a group of window functions that perform calculations on a set of
rows that are related to the current row. The functions calculate a single return value for every input row.
You can use window functions in mappings that run on the Spark engine.

The transformation language includes the following window functions:

« LAG
« LEAD

You can use window functions in Expression transformations. If you use a window function in an
Expression transformation, the transformation is active.

ABORT

Stops the session, and issues a specified error message to the session log file. When the PowerCenter
Integration Service encounters an ABORT function, it stops transforming data at that row. It processes
any rows read before the session aborts and loads them based on the source- or target-based commit
interval and the buffer block size defined for the session. The PowerCenter Integration Service writes to
the target up to the aborted row and then rolls back all uncommitted data to the last commit point. You
can perform recovery on the session after rollback.

Use ABORT to validate data. Generally, you use ABORT within an IIF or DECODE function to set rules for
aborting a session.

Use the ABORT function for both input and output port default values. You might use ABORT for input
ports to keep null values from passing into a transformation. You can also use ABORT to handle any kind
of transformation error, including ERROR function calls within an expression. The default value overrides
the ERROR function in an expression. If you want to ensure the session stops when an error occurs,
assign ABORT as the default value.

If you use ABORT in an expression for an unconnected port, the PowerCenter Integration Service does
not run the ABORT function.

52 2024-06-09

Note: The PowerCenter Integration Service handles the ABORT function and the Abort command you
issue from the Workflow Manager differently.

Syntax
ABORT (string)

The following table describes the argument for this command:

Argument | Required/ | Description
Optional

string Required String. The message you want to display in the session log file when the session stops.
The string can be any length. You can enter any valid transformation expression.

Return Value

NULL.

ABS

Returns the absolute value of a numeric value.
Syntax
ABS(numeric value)

The following table describes the argument for this command:

Argument Required/ | Description
Optional

numeric_value | Required | Numeric datatype. Passes the values for which you want to return the absolute
values. You can enter any valid transformation expression.

Return Value

Positive numeric value. ABS returns the same datatype as the numeric value passed as an argument. If
you pass a Double, it returns a Double. Likewise, if you pass an Integer, it returns an Integer.

NULL if you pass a null value to the function.

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to
ensure decimal precision up to 38 digits.

2024-06-09

Example

The following expression returns the difference between two numbers as a positive value, regardless of
which number is larger:

ABS(PRICE - COST)

PRICE COST RETURN VALUE
250 150 100

52 48 4

169.95 69.95 100

59.95 NULL NULL

70 30 40

430 330 100

100 200 100
ADD_TO_DATE

Adds a specified amount to one part of a datetime value, and returns a date in the same format as the
date you pass to the function. ADD_TO_DATE accepts positive and negative integer values. Use
ADD_TO_DATE to change the following parts of a date:

« Year. Enter a positive or negative integer in the amount argument. Use any of the year format strings:
Y, YY, YYY, or YYYY. The following expression adds 10 years to all dates in the SHIP_DATE port:

ADD TO DATE (SHIP DATE, 'YY', 10)
« Month. Enter a positive or negative integer in the amount argument. Use any of the month format

strings: MM, MON, MONTH. The following expression subtracts 10 months from each date in the
SHIP_DATE port:

ADD TO DATE(SHIP DATE, 'MONTH', -10)

« Day. Enter a positive or negative integer in the amount argument. Use any of the day format strings: D,
DD, DDD, DY, and DAY. The following expression adds 10 days to each date in the SHIP_DATE port:
ADD TO DATE(SHIP DATE, 'DD', 10)
« Hour. Enter a positive or negative integer in the amount argument. Use any of the hour format strings:
HH, HH12, HH24. The following expression adds 14 hours to each date in the SHIP_DATE port:
ADD TO DATE(SHIP DATE, 'HH', 14)
« Minute. Enter a positive or negative integer in the amount argument. Use the MI format string to set
the minute. The following expression adds 25 minutes to each date in the SHIP_DATE port:
ADD TO DATE(SHIP DATE, 'MI', 25)
e Seconds. Enter a positive or negative integer in the amount argument. Use the SS format string to set
the second. The following expression adds 59 seconds to each date in the SHIP_DATE port:
ADD TO DATE(SHIP DATE, 'SS', 59)

54 2024-06-09

« Milliseconds. Enter a positive or negative integer in the amount argument. Use the MS format string
to set the milliseconds. The following expression adds 125 milliseconds to each date in the
SHIP_DATE port:

ADD TO DATE(SHIP DATE, 'MS', 125)

« Microseconds. Enter a positive or negative integer in the amount argument. Use the US format string
to set the microseconds. The following expression adds 2,000 microseconds to each date in the
SHIP_DATE port:

ADD TO DATE(SHIP DATE, 'US', 2000)

« Nanoseconds. Enter a positive or negative integer in the amount argument. Use the NS format string
to set the nanoseconds. The following expression adds 3,000,000 nanoseconds to each date in the
SHIP_DATE port:

ADD TO DATE(SHIP DATE, 'NS', 3000000)

Syntax

ADD TO DATE(date, format, amount)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
date Required Date/Time datatype. Passes the values you want to change. You can enter any

valid transformation expression.

format Required A format string specifying the portion of the date value you want to change.
Enclose the format string within single quotation marks, for example, 'mm'. The
format string is not case sensitive.

amount Required An integer value specifying the amount of years, months, days, hours, and so on
by which you want to change the date value. You can enter any valid
transformation expression that evaluates to an integer.

Return Value

Date in the same format as the date you pass to this function.
NULL if a null value is passed as an argument to the function.
Examples

The following expressions all add one month to each date in the DATE_SHIPPED port. If you pass a value
that creates a day that does not exist in a particular month, the PowerCenter Integration Service returns
the last day of the month. For example, if you add one month to Jan 31 1998, the PowerCenter
Integration Service returns Feb 28 1998.

2024-06-09 55

Also note, ADD_TO_DATE recognizes leap years and adds one month to Jan 29 2000:

ADD TO DATE(DATE SHIPPED, 'MM', 1)
ADD TO DATE(DATE SHIPPED, 'MON', 1)
ADD TO DATE(DATE SHIPPED, 'MONTH', 1)

DATE_SHIPPED RETURN VALUE

Jan 12 1998 12:00:30AM Feb 12 1998 12:00:30AM

Jan 31 1998 6:24:45PM Feb 28 1998 6:24:45PM

Jan 29 2000 5:32:12AM Feb 29 2000 5:32:12AM (Leap Year)
Oct 9 1998 2:30:12PM Nov 9 1998 2:30:12PM

NULL NULL

The following expressions subtract 10 days from each date in the DATE_SHIPPED port:

ADD TO DATE(DATE SHIPPED, 'D', -10)
ADD TO DATE (DATE SHIPPED, 'DD', -10)
ADD TO DATE(DATE SHIPPED, 'DDD', -10)
(
(

ADD TO DATE(DATE SHIPPED, 'DY', -10)
ADD TO DATE(DATE SHIPPED, 'DAY', -10)
DATE_SHIPPED RETURN VALUE
Jan 1 1997 12:00:30AM Dec 22 1996 12:00AM
Jan 31 1997 6:24:45PM Jan 21 1997 6:24:45PM
Mar 9 1996 5:32:12AM Feb 29 1996 5:32:12AM (Leap Year)
Oct 9 1997 2:30:12PM Sep 30 1997 2:30:12PM
Mar 3 1996 5:12:20AM Feb 22 1996 5:12:20AM
NULL NULL

The following expressions subtract 15 hours from each date in the DATE_SHIPPED port:

ADD TO DATE(DATE SHIPPED, 'HH', -15)
ADD TO DATE(DATE SHIPPED, 'HH12', -15)
ADD TO DATE(DATE SHIPPED, 'HH24', -15)

DATE_SHIPPED RETURN VALUE

Jan 1 1997 12:00:30AM Dec 31 1996 9:00:30AM
Jan 31 1997 6:24:45PM Jan 31 1997 3:24:45AM
Oct 9 1997 2:30:12PM Oct 8 1997 11:30:12PM

56 2024-06-09

DATE_SHIPPED

Mar 3 1996 5:12:20AM

Mar 1 1996 5:32:12AM

NULL

Working with Dates

RETURN VALUE
Mar 2 1996 2:12:20PM
Feb 29 1996 2:32:12PM (Leap Year)

NULL

Use the following tips when working with ADD_TO_DATE:

You can add or subtract any part of the date by specifying a format string and making the amount
argument a positive or negative integer.

If you pass a value that creates a day that does not exist in a particular month, the PowerCenter
Integration Service returns the last day of the month. For example, if you add one month to Jan 31
1998, the PowerCenter Integration Service returns Feb 28 1998.

You can nest TRUNC and ROUND to manipulate dates.

You can nest TO_DATE to convert strings to dates.

ADD_TO_DATE changes only one portion of the date, which you specify. If you modify a date so that it
changes from standard to daylight savings time, you need to change the hour portion of the date.

AES_DECRYPT

Returns decrypted data to string format. The PowerCenter Integration Service uses Advanced Encryption
Standard (AES) algorithm with 128-bit and 256-bit encoding. The AES algorithm is a FIPS-approved
cryptographic algorithm.

Syntax

AES DECRYPT

(value, key, keySize)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required Binary datatype. Value you want to decrypt.
key Required String datatype. Precision of 16 characters or fewer. You can use mapping
variables for the key. Use the same key to decrypt a value that you used to
encrypt it.
keySize Required Integer datatype. Precision of 16 characters or fewer. You can specify 128, 192,

or 256-bit encryption.
Default is 128-bit.

Return Value

Decrypted binary value.

2024-06-09

57

NULL if the input value is a null value.
Example

The following example returns decrypted social security numbers. In this example, the PowerCenter
Integration Service derives the key from the first three numbers of the social security number using the
SUBSRT function:

AES DECRYPT (SSN_ENCRYPT, SUBSTR(SSN,1,3), 256)

SSN_ENCRYPT DECRYPTED VALUE
07FB945926849D2B1641E708C85E4390 832-17-1672
9153ACAB89D65A4B81AD2ABF151B099D 832-92-4731
AF6BSE4E39F974B3F3FBOF22320CC60B 832-46-7552
992D6A5DY1ETF59D03B940A4B1CBBCBE 832-53-6194
992D6A5DI91ETF59D03B940A4B1CBBCBE 832-81-9528

AES_ENCRYPT

Returns data in encrypted format. The PowerCenter Integration Service uses Advanced Encryption
Standard (AES) algorithm with 128-bit and 256-bit encoding. The AES algorithm is a FIPS-approved
cryptographic algorithm.

Use this function to prevent sensitive data from being visible to everyone. For example, to store social
security numbers in a data warehouse, use the AES_ENCRYPT function to encrypt the social security
numbers to maintain confidentiality.

Syntax
AES ENCRYPT (value, key, keySize)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required String datatype. Value you want to encrypt.
key Required String datatype. Precision of 16 characters or fewer. You can use mapping

variables for the key.

keySize Required Integer datatype. Precision of 16 characters or fewer. You can specify 128, 192, or
256-bit encryption.

Default is 128-bit.

Return Value
Encrypted binary value.

NULL if the input is a null value.

58 2024-06-09

Example

The following example returns encrypted values for social security numbers. In this example, the
PowerCenter Integration Service derives the key from the first three numbers of the social security

number using the SUBSTR function:

AES ENCRYPT (SSN,

SSN

832-17-1672
832-92-4731
832-46-7552
832-53-6194

832-81-9528

Tip

SUBSTR(SSN,1,3), 256)

ENCRYPTED VALUE

07FB945926849D2B1641E708C85E4390

9153ACAB89D65A4B81AD2ABF151B099D

AF6BSE4E39F974B3F3FB0F22320CC60B

992D6A5D91ET7F59D03B940A4B1CBRBCBE

20812B3331676B15A9378000EBY00EE3

If the target does not support binary data, use AES_ENCRYPT with the ENC_BASE®64 function to store the
data in a format compatible with the database.

ASCII

When the PowerCenter Integration Service uses ASCIlI mode, the ASCII function returns the numeric
ASCII value of the first character of the string passed to the function.

When the PowerCenter Integration Service uses Unicode mode, the ASCII function returns the numeric

Unicode value of the first character of the string passed to the function. Unicode values fall in the range

0to 65,535.

You can pass a string of any size to ASCII, but it evaluates only the first character in the string. Before
you pass any string value to ASCII, you can parse out the specific character you want to convert to an
ASCII or Unicode value. For example, you might use RTRIM or another string-manipulation function. If
you pass a numeric value, ASCII converts it to a character string and returns the ASCII or Unicode value

of the first character in the string.

This function is identical in behavior to the CHRCODE function. If you use ASCII in existing expressions,
they will still work correctly. However, when you create new expressions, use the CHRCODE function

instead of the ASCII function.

Syntax
ASCII (string)

2024-06-09

59

The following table describes the argument for this command:

Argument Required/ Description
Optional
string Required Character string. Passes the value you want to return as an ASCII value. You can
enter any valid transformation expression.

Return Value

Integer. The ASCII or Unicode value of the first character in the string.
NULL if a value passed to the function is NULL.

Example

The following expression returns the ASCII or Unicode value for the first character of each value in the
ITEMS port:

ASCII(ITEMS)

ITEMS RETURN VALUE
Flashlight 70

Compass 67

Safety Knife 83
Depth/Pressure Gauge 68
Regulator System 82

AVG

Returns the average of all values in a group of rows. Optionally, you can apply a filter to limit the rows
you read to calculate the average. You can nest only one other aggregate function within AVG, and the
nested function must return a Numeric datatype.

Syntax

AVG(numeric value [, filter condition])

60 2024-06-09

The following table describes the arguments for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Passes the values for which you want to calculate an
average. You can enter any valid transformation expression.
filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or

evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value

Numeric value.

NULL if all values passed to the function are NULL or no rows are selected. For example, the filter
condition evaluates to FALSE or NULL for all rows.

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to
ensure decimal precision up to 38 digits.

Nulls

If a value is NULL, AVG ignores the row. However, if all values passed from the port are NULL, AVG

returns NULL.

Note: By default, the PowerCenter Integration Service treats null values as NULLs in aggregate functions.
If you pass an entire port or group of null values, the function returns NULL. However, when you
configure the PowerCenter Integration Service, you can choose how you want to handle null values in
aggregate functions. You can treat null values as 0 in aggregate functions or as NULL.

Group By

AVG groups values based on group by ports you define in the transformation, returning one result for

each group.

If there is not a group by port, AVG treats all rows as one group, returning one value.

Example

The following expression returns the average wholesale cost of flashlights:

AVG (WHOLESALE COST, ITEM NAME='Flashlight')

ITEM NAME

Flashlight

Navigation Compass

Regulator System

Flashlight

Depth/Pressure Gauge

2024-06-09

WHOLESALE_COST
35.00

8.05

150.00

29.00

88.00

61

ITEM NAME WHOLESALE COST

Flashlight 31.00

RETURN VALUE: 31.66

Tip
You can perform arithmetic on the values passed to AVG before the function calculates the average. For
example:

AVG(QTY * PRICE - DISCOUNT)

BINARY_COMPARE

Compares two binary values and returns TRUE (1) if they are the same and FALSE (0) if they are
different.

To use BINARY_COMPARE function, set the environment variable INFA ENABLE BINARY FUNCTIONS to
True or Yes.

Syntax
BINARY COMPARE(valuel [, value2])

The following table describes the argument for this command:

Argument Required/ Description
Optional

valuel Required Binary datatype

value2 Required Binary datatype

Return Value

TRUE (1) if value1 and value2 have equal values.
FALSE (0) if value1 and value 2 have different values.
NULL if any one of the inputs is a null value.

Example

The following examples compare two binary values.

BINARY COMPARE (SYSID1, SYSID2)

SYSID1 (Shown in Hex) SYSID2 (Shown in Hex) RETURN VALUE
0x000102030405060708 0x000102030405060708 1
0x000102030405060708 0x0405060708090A0B 0

62 2024-06-09

SYSID1 (Shown in Hex) SYSID2 (Shown in Hex) RETURN VALUE

0x000102030405060708 NULL NULL
NULL 0x000102030405060708 NULL
NULL NULL NULL

BINARY_CONCAT

Concatenates two or more binary values together and returns the concatenated value.

To use the BINARY_CONCAT function, set the environment variable INFA ENABLE BINARY FUNCTIONS to
True or Yes.

Syntax
BINARY CONCAT(valuel, value2 [, value3] .. [, valueN])

The following table describes the argument for this command:

Argument Required/ Description
Optional

valuel Required Binary datatype

value2 Required Binary datatype

value3 - valueN Optional Binary datatype

Return Value

Binary.

NULL if all the input values are null.
Nulls

If any one of the input values is null then BINARY_CONCAT ignores it and returns the concatenated value
of the remaining input values.

If all the input values are null then BINARY_CONCAT returns null.
Example
The following example concatenates two binary values.

BINARY CONCAT(SYSID1l, SYSID2)

SYSID1 (Shown in Hex) SYSID2 (Shown in Hex) RETURN VALUE (Shown in Hex)
0x000102030405060708 0x000102030405060708 0x000102030405060708000102030405060708

0x000102030405060708 0x0405060708090A0B 0x0001020304050607080405060708090A0B

2024-06-09 63

SYSID1 (Shown in Hex)
0x000102030405060708
NULL

NULL

BINARY_LENGTH

SYSID2 (Shown in Hex)
NULL
0x000102030405060708

NULL

Returns the length of a binary value.

RETURN VALUE (Shown in Hex)

0x000102030405060708

0x000102030405060708

NULL

To use the BINARY_LENGTH function, set the environment variable INFA ENABLE BINARY FUNCTIONS to

True or Yes.

Syntax

BINARY LENGTH(value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required Binary datatype

Return Value

Integer representing the length of the binary value.

NULL if the input is a null value.

Example

The following examples return the lengths of various binary values.

BINARY LENGTH(SYSID)

SYSID1 (Shown in Hex)
0x000102030405060708

0x00010203040506

0x00010203040506070809

NULL

BINARY_SECTION

Returns a portion of a binary value.

64

RETURN VALUE

9

7

10

NULL

2024-06-09

To use the BINARY_SECTION function, set the environment variable INFA ENABLE BINARY FUNCTIONS to

True or Yes.

Syntax

BINARY SECTION(binary, start [,length])

The following table describes the argument for this command:

Argument | Required/ | Description
Optional

binary Required | You can enter a binary value or any transformation expression that returns a binary
datatype.

start Required You can enter an integer or any transformation expression that returns an integer.
The position in the binary where you want to start counting. If the start position is a
positive number, BINARY_SECTION locates the start position by counting from the
beginning of the input binary.
If the start position is a negative number, BINARY_SECTION locates the start position
by counting from the end of the input binary.
If the start position is 0, BINARY_SECTION searches from the first byte in the input
binary.

length Optional You can enter an integer greater than 0 or any transformation expression that returns a

positive integer.

The number of bytes you want BINARY_SECTION to return. If you omit the length
argument, BINARY_SECTION returns all of the bytes from the start position to the end of
the input binary. If you pass a negative integer or 0, the function returns an error.

Return Value

Binary.

NULL if the input is a null value.

Example

The following expressions return the first three bytes of a binary value.

BINARY SECTION(SYSID, 0, 3)

SYSID (Shown in Hex)

000010203

00405060708

NULL

2024-06-09

RETURN VALUE (Shown in Hex)
0x000102
0x040506

NULL

65

The following expressions return bytes 4 through 8 of a binary value.

BINARY SECTION(SYSID, 4, 5)

SYSID (Shown in Hex) RETURN VALUE (Shown in Hex)
0x000102030405060708 0x0304050607
0x0405060708090A0B 0x0708090A0B

NULL NULL

You can also pass a negative start value. The expression still reads the source binary from left to right
when returning the result of the length argument:

BINARY SECTION(SYSID, -6, 5)

SYSID (Shown in Hex) RETURN VALUE (Shown in Hex)
0x000102030405060708 0x0304050607
0x0405060708090A0B 0x060708090A

NULL NULL

When the length argument is longer than the input value, BINARY_SECTION returns all the bytes from the
start position to the end of the input value. Consider the following example:

BINARY SECTION(SYSID, 2, 8)
where SYSID is the binary equivalent of 0x000102030405.

The return value is the binary equivalent of 0x0102030405. Compare this result to the following example:
BINARY SECTION (SYSID, -2, 8)
where SYSID is the binary equivalent of 0x000102030405.

The return value is the binary equivalent of 0x0405.

CEIL

Returns the smallest integer greater than or equal to the numeric value passed to this function. For
example, if you pass 3.14 to CEIL, the function returns 4. If you pass 3.98 to CEIL, the function returns 4.
Likewise, if you pass -3.17 to CEIL, the function returns -3.

Syntax

CEIL(numeric value)

66 2024-06-09

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric data type. You can enter any valid transformation expression.

Return Value

Numeric value.

Double value if you pass a numeric value with declared precision greater than 28.
NULL if a value passed to the function is NULL.

Example

The following expression returns the price rounded to the next integer:

CEIL(PRICE)
PRICE RETURN VALUE
39.79 40
125.12 126
74.24 75
NULL NULL
-100.99 -100

Tip: You can perform arithmetic on the values passed to CEIL before CEIL returns the next integer value.
For example, if you want to multiply a numeric value by 10 before you calculated the smallest integer
greater than the modified value, you might write the function as follows:

CEIL(PRICE * 10)

CHOOSE

Chooses a string from a list of strings based on a given position. You specify the position and the value.
If the value matches the position, the PowerCenter Integration Service returns the value.

Syntax
CHOOSE (index, stringl [, string2, ..., stringN])

2024-06-09 67

The following table describes the arguments for this command:

Argument Required/ Description
Optional
index Required Numeric datatype. Enter a number based on the position of the value you want to
match.
string Required Any character value.

Return Value

The string that matches the position of the index value.

NULL if no string matches the position of the index value.

Example

The following expression returns the string ‘flashlight’ based on an index value of 2:
CHOOSE(2, 'knife', 'flashlight', 'diving hood')

The following expression returns NULL based on an index value of 4:
CHOOSE(4, 'knife', 'flashlight', 'diving hood')

CHOOSE returns NULL because the expression does not contain a fourth argument.

CHR

When the PowerCenter Integration Service uses ASCIl mode, CHR returns the ASCII character
corresponding to the numeric value you pass to this function. ASCII values fall in the range 0 to 255. You
can pass any integer to CHR, but only ASCII codes 32 to 126 are printable characters.

When the PowerCenter Integration Service uses Unicode mode, CHR returns the Unicode character
corresponding to the numeric value you pass to this function. Unicode values fall in the range 0 to
65,535.

Syntax
CHR(numeric value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. The value you want to return as an ASCII or Unicode
character. You can enter any valid transformation expression.

Return Value
ASCII or Unicode character. A string containing one character.

NULL if a value passed to the function is NULL.

68 2024-06-09

Example

The following expression returns the ASCII or Unicode character for each numeric value in the ITEM_ID
port:

CHR(ITEM ID)

ITEM ID RETURN VALUE
65 A

122 z

NULL NULL

88 X

100 d

71 G

Use the CHR function to concatenate a single quote onto a string. The single quote is the only character
that you cannot use inside a string literal. Consider the following example:

'Joan' || CHR(39) || 's car'
The return value is:

Joan's car

CHRCODE

When the PowerCenter Integration Service uses ASCIl mode, CHRCODE returns the numeric ASCII value
of the first character of the string passed to the function. ASCII values fall in the range 0 to 255.

When the PowerCenter Integration Service uses Unicode mode, CHRCODE returns the numeric Unicode
value of the first character of the string passed to the function. Unicode values fall in the range 0 to
65,535.

Normally, before you pass any string value to CHRCODE, you parse out the specific character you want
to convert to an ASCII or Unicode value. For example, you might use RTRIM or another string-
manipulation function. If you pass a numeric value, CHRCODE converts it to a character string and
returns the ASCII or Unicode value of the first character in the string.

This function is identical in behavior to the ASCII function. If you currently use ASCII in expressions, it
will still work correctly. However, when you create new expressions, use the CHRCODE function instead
of the ASCII function.

Syntax
CHRCODE (string)

2024-06-09 69

The following table describes the argument for this command:

Argument Required/ Description
Optional
string Required Character string. Passes the values you want to return as ASCII or Unicode
values. You can enter any valid transformation expression.

Return Value

Integer.

NULL if a value passed to the function is NULL.
Example

The following expression returns the ASCII or Unicode value for the first character of each value in the
ITEMS port:

CHRCODE (ITEMS)

ITEMS RETURN VALUE
Flashlight 70

Compass 67

Safety Knife 83
Depth/Pressure Gauge 68

Regulator System 82
COMPRESS

Compresses data using the zlib 1.2.1 compression algorithm. Use the COMPRESS function before you
send large amounts of data over a wide area network.

Syntax
COMPRESS (value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required String datatype. Data that you want to compress.

Return Value
Compressed binary value of the input value.

NULL if the input is a null value.

70 2024-06-09

Example

Your organization has an online order service. You want to send customer order data over a wide area
network. The source contains a row that is 10 MB. You can compress the data in this row using
COMPRESS. When you compress the data, you decrease the amount of data the PowerCenter Integration
Service writes over the network. As a result, you may increase performance.

CONCAT

Concatenates two strings. CONCAT converts all data to text before concatenating the strings.
Alternatively, use the || string operator to concatenate strings. Using the || string operator instead of
CONCAT improves PowerCenter Integration Service performance.

Syntax
CONCAT (first string, second string)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
first_string Required Any datatype except Binary. The first part of the string you want to

concatenate. You can enter any valid transformation expression.

second_string Required Any datatype except Binary. The second part of the string you want to
concatenate. You can enter any valid transformation expression.

Return Value

String.

NULL if both string values are NULL.

Nulls

If one of the strings is NULL, CONCAT ignores it and returns the other string.

If both strings are NULL, CONCAT returns NULL.

Example

The following expression concatenates the names in the FIRST_NAME and LAST_NAME ports:

CONCAT(FIRST NAME, LAST NAME)

FIRST NAME LAST NAME RETURN VALUE
John Baer JohnBaer

NULL Campbell Campbell
Bobbi Apperley BobbiApperley
Jason Wood JasonWood

2024-06-09 71

FIRST NAME LAST NAME RETURN VALUE

Dan Covington DanCovington
Greg NULL Greg

NULL NULL NULL

100 200 100200

CONCAT does not add spaces to separate strings. If you want to add a space between two strings, you
can write an expression with two nested CONCAT functions. For example, the following expression first
concatenates a space on the end of the first name and then concatenates the last name:

CONCAT (CONCAT(FIRST NAME, ' '), LAST NAME)
FIRST NAME LAST NAME RETURN VALUE
John Baer John Baer
NULL Campbell Campbell (includes leading blank)
Bobbi Apperley Bobbi Apperley
Jason Wood Jason Wood
Dan Covington Dan Covington
Greg NULL Greg
NULL NULL NULL

Use the CHR and CONCAT functions to concatenate a single quote onto a string. The single quote is the
only character you cannot use inside a string literal. Consider the following example:

CONCAT ('Joan', CONCAT(CHR(39), 's car'))
The return value is:

Joan's car

CONVERT_BASE

Converts a non-negative numeric string from one base value to another base value.

Syntax

CONVERT BASE(value, source base, dest base)

72 2024-06-09

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required String datatype. Value you want to convert from one base to another base.

Maximum is 9,233,372,036,854,775,806.

source_base Required Numeric datatype. Current base value of the data you want to convert. Minimum
base is 2. Maximum base is 36.

dest_base Required Numeric datatype. Base value you want to convert the data to. Minimum base is
2. Maximum base is 36.

Return Value
Numeric value.
Example

The following example converts 2222 from the decimal base value 10 to the binary base value 2:
CONVERT BASE("2222", 10, 2)

The PowerCenter Integration Service returns 100010101110.

COS

Returns the cosine of a numeric value (expressed in radians).
Syntax
COS(numeric value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Numeric data expressed in radians (degrees multiplied by pi
divided by 180{. Passes the values for which you want to calculate a cosine.
You can enter any valid transformation expression.

Return Value
Double value.

NULL if a value passed to the function is NULL.

2024-06-09 73

Example

The following expression returns the cosine for all values in the Degrees port:
COS(DEGREES * 3.14159265359 / 180)

DEGREES RETURN VALUE

0 1.0

90 0.0

70 0.342020143325593

30 0.866025403784421

5 0.996194698091745

18 0.951056516295147

89 0.01745240604371813
NULL NULL

Tip: You can perform arithmetic on the values passed to COS before the function calculates the cosine.
For example, you can convert the values in the port to radians before calculating the cosine, as follows:

COS(ARCS * 3.14159265359 / 180)

COSH

Returns the hyperbolic cosine of a numeric value (expressed in radians).
Syntax
COSH(numeric value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Numeric data expressed in radians (degrees multiplied by

pi divided by 180). Passes the values for which you want to calculate the
hyperbolic cosine. You can enter any valid transformation expression.

Return Value
Double value.

NULL if a value passed to the function is NULL.

74 2024-06-09

Example

The following expression returns the hyperbolic cosine for the values in the Angles port:
COSH(ANGLES)

ANGLES RETURN VALUE

1.0 1.54308063481524
2.897 9.0874465864177

3.66 19.4435376920294
5.45 116.381231106176
0 1.0

0.345 1.06010513656773
NULL NULL

Tip: You can perform arithmetic on the values passed to COSH before the function calculates the
hyperbolic cosine. For example:

COSH (MEASURES.ARCS / 360)

COUNT

Returns the number of rows that have non-null values in a group. Optionally, you can include the asterisk
(*) argument to count all input values in a transformation. You can nest only one other aggregate
function within COUNT. You can apply a condition to filter rows before counting them.

Syntax

COUNT (value [, filter condition])
or

COUNT(* [, filter condition])

The following table describes the arguments for this command:

Argument Required/ Description
Optional

value Required Any datatype except Binary. Passes the values you want to count. You can
enter any valid transformation expression.

* Optional Use to count all rows in a transformation.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

2024-06-09 75

Return Value
Integer.

0 if all values passed to this function are NULL or no rows are selected, unless you include the asterisk
argument.

Nulls
If all values are NULL, the function returns 0.

If you apply the asterisk argument, this function counts all rows, regardless if a column in a row contains
a null value.

If you apply the value argument, this function ignores columns with null values.

Note: By default, the PowerCenter Integration Service treats null values as NULLs in aggregate functions.
If you pass an entire port or group of null values, the function returns NULL. However, when you
configure the PowerCenter Integration Service, you can choose how you want to handle null values in
aggregate functions. You can treat null values as 0 in aggregate functions or as NULL.

Group By

COUNT groups values based on group by ports you define in the transformation, returning one result for
each group. If there is no group by port COUNT treats all rows as one group, returning one value.

Examples

The following expression counts the items with less than 5 quantity in stock, excluding null values:

COUNT (ITEM NAME, IN STOCK < 5)

ITEM NAME IN_STOCK
Flashlight 10

NULL 2
Compass NULL
Regulator System 5

Safety Knife 8
Halogen Flashlight 1

RETURN VALUE: 1

In this example, the function counted the Halogen flashlight but not the NULL item. The function counts
all rows in a transformation, including null values, as illustrated in the following example:

COUNT (*, QTY < 5)

ITEM NAME QTY

Flashlight 10

76 2024-06-09

ITEM NAME QTY

NULL 2
Compass NULL
Regulator System 5
Safety Knife 8
Halogen Flashlight 1

RETURN VALUE: 2

In this example, the function counts the NULL item and the Halogen Flashlight. If you include the

asterisk argument, but do not use a filter, the function counts all rows that pass into the transformation.

For example:
COUNT (*)

ITEM NAME QTY
Flashlight 10
NULL 2
Compass NULL
Regulator System 5
Safety Knife 8
Halogen Flashlight 1

RETURN VALUE: 6

CRC32

Returns a 32-bit Cyclic Redundancy Check (CRC32) value. Use CRC32 to find data transmission errors.

You can also use CRC32 if you want to verify that data stored in a file has not been modified.

If you use CRC32 to perform a redundancy check on data in ASCII mode and Unicode mode, the
PowerCenter Integration Service might generate different results on the same input value. If you use
CRC32 to perform a redundancy check on data on different operating systems, the PowerCenter
Integration Service might generate different results on the same input value.

Note: CRC32 can return the same output for different input strings. If you want to generate keys in a
mapping, use a Sequence Generator transformation. If you use CRC32 to generate keys in a mapping,
you might receive unexpected results.

Syntax
CRC32(value)

2024-06-09

77

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required String or Binary datatype. Passes the values you want to perform a redundancy

check on. Input value is case sensitive. The case of the input value affects the
return value. For example, CRC32(informatica) and CRC32 (Informatica) return
different values.

Return Value
32-bit integer value.
Example

You want to read data from a source across a wide area network. You want to make sure the data has
been modified during transmission. You can compute the checksum for the data in the file and store it
along with the file. When you read the source data, the PowerCenter Integration Service can use CRC32
to compute the checksum and compare it to the stored value. If the two values are the same, the data
has not been modified.

CUME

Returns a running total. A running total means CUME returns a total each time it adds a value. You can
add a condition to filter rows out of the row set before calculating the running total.

Use CUME and similar functions (such as MOVINGAVG and MOVINGSUM) to simplify reporting by
calculating running values.

Syntax
CUME (numeric value [, filter condition])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. Passes the values for which you want to calculate a running

total. You can enter any valid transformation expression. You can create a
nested expression to calculate a running total based on the results of the
function as long as the result is a numeric value.

filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Numeric value.

NULL if all values passed to the function are NULL, or if no rows are selected (for example, the filter
condition evaluates to FALSE or NULL for all rows).

78 2024-06-09

Note: If the return value is Decimal with precision greater than 15, you can enable high precision to
ensure decimal precision up to 38 digits.

Nulls

If a value is NULL, CUME returns the running total for the previous row. However, if all values in the
selected port are NULL, CUME returns NULL.

Examples

The following sample rowset might result from using the CUME function:

CUME (PERSONAL SALES)

PERSONAL SALES RETURN VALUE
40000 40000
80000 120000
40000 160000
60000 220000
NULL 220000
50000 270000

Likewise, you can add values before calculating a running total:

CUME (CA_SALES + OR_SALES)

CA_SALES OR_SALES RETURN VALUE
40000 10000 50000
80000 50000 180000
40000 2000 222000
60000 NULL 222000
NULL NULL 222000
50000 3000 275000

DATE_COMPARE

Returns an integer indicating which of two dates is earlier. DATE_COMPARE returns an integer value
rather than a date value.

Syntax
DATE COMPARE (datel, date2)

2024-06-09

79

The following table describes the arguments for this command:

Argument Required/ Description
Optional
datel Required Date/Time datatype. The first date you want to compare. You can enter any valid

transformation expression as long as it evaluates to a date.

date2 Required Date/Time datatype. The second date you want to compare. You can enter any
valid transformation expression as long as it evaluates to a date.

Return Value

-1 if the first date is earlier.

0 if the two dates are equal.

1 if the second date is earlier.

NULL if one of the date values is NULL.
Example

The following expression compares each date in the DATE_PROMISED and DATE_SHIPPED ports, and
returns an integer indicating which date is earlier:

DATE COMPARE (DATE PROMISED, DATE SHIPPED)

DATE PROMISED DATE_SHIPPED RETURN VALUE
Jan 1 1997 Jan 13 1997 -1

Feb 1 1997 Feb 1 1997 0

Dec 22 1997 Dec 15 1997 1

Feb 29 1996 Apr 12 1996 -1 (Leap year)
NULL Jan 6 1997 NULL

Jan 13 1997 NULL NULL
DATE_DIFF

Returns the length of time between two dates. You can request the format to be years, months, days,
hours, minutes, seconds, milliseconds, microseconds, or nanoseconds. The PowerCenter Integration
Service subtracts the second date from the first date and returns the difference.

The PowerCenter Integration Service calculates the DATE_DIFF function based on the number of months
instead of the number of days. It calculates the date differences for partial months with the days
selected in each month. To calculate the date difference for the partial month, the PowerCenter
Integration Service adds the days used within the month. It then divides the value with the total number
of days in the selected month.

80 2024-06-09

The PowerCenter Integration Service gives a different value for the same period in the leap year period
and a non-leap year period. The difference occurs when February is part of the DATE_DIFF function. The
DATE_DIFF divides the days with 29 for February for a leap year and 28 if it is not a leap year.

For example, you want to calculate the number of months from September 13 to February 19. In a leap
year period, the DATE_DIFF function calculates the month of February as 19/29 months or 0.655
months. In a non-leap year period, the DATE_DIFF function calculates the month of February as 19/28
months or 0.678 months. The PowerCenter Integration Service similarly calculates the difference in the
dates for the remaining months and the DATE_DIFF function returns the totaled value for the specified
period.

Note: Some databases might use a different algorithm to calculate the difference in dates.
Syntax
DATE DIFF(datel, date2, format)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
datel Required Date/Time datatype. Passes the values for the first date you want to compare.

You can enter any valid transformation expression.

date2 Required Date/Time datatype. Passes the values for the second date you want to
compare. You can enter any valid transformation expression.

format Required Format string specifying the date or time measurement. You can specify years,
months, days, hours, minutes, seconds, milliseconds, microseconds, or

nanoseconds. You can specify only one part of the date, such as 'mm’. Enclose
the format strings within single quotation marks. The format string is not case

sensitive. For example, the format string 'mm’ is the same as 'MM’, 'Mm' or 'mM'".

Return Value

Double value. If date1 is later than date2, the return value is a positive number. If date1 is earlier than
date2, the return value is a negative number.

0 if the dates are the same.
NULL if one (or both) of the date values is NULL.
Examples

The following expressions return the number of hours between the DATE_PROMISED and
DATE_SHIPPED ports:

DATE DIFF(DATE PROMISED, DATE SHIPPED, 'HH')
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'HH12')
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'HH24')

DATE PROMISED DATE SHIPPED RETURN VALUE

Jan 1 1997 12:00:00AM Mar 29 1997 12:00:00PM -2100

2024-06-09 81

DATE PROMISED

Mar 29 1997 12:00:00PM
NULL

Dec 10 1997 5:55:10PM
Jun 3 1997 1:13:46PM

Feb 19 2004 12:00:00PM

DATE_SHIPPED

Jan 1 1997 12:00:00AM
Dec 10 1997 5:55:10PM
NULL

Aug 23 1996 4:20:16PM

Feb 19 2005 12:00:00PM

RETURN VALUE

2100

NULL

NULL

6812.89166666667

-8784

The following expressions return the number of days between the DATE_PROMISED and the

DATE_SHIPPED ports:

DATE DIFF
DATE DIFF

DATE DIFF
DATE DIFF

DATE PROMISED

Jan 1 1997 12:00:00AM
Mar 29 1997 12:00:00PM
NULL

Dec 10 1997 5:55:10PM
Jun 3 1997 1:13:46PM

Feb 19 2004 12:00:00PM

(DATE_PROMISED,
(DATE_PROMISED,
DATE DIFF(DATE PROMISED,
(DATE PROMISED,
(DATE PROMISED,

DATE SHIPPED, 'D')

DATE SHIPPED, 'DD')
DATE_SHIPPED, 'DDD')
DATE SHIPPED, 'DY')
DATE SHIPPED, 'DAY')

DATE SHIPPED

Mar 29 1997 12:00:00PM
Jan 1 1997 12:00:00AM
Dec 10 1997 5:55:10PM
NULL

Aug 23 1996 4:20:16PM

Feb 19 2005 12:00:00PM

RETURN VALUE

-87.5

87.5

NULL

NULL

283.870486111111

-366

The following expressions return the number of months between the DATE_PROMISED and

DATE_SHIPPED ports:

DATE DIFF(DATE PROMISED, DATE SHIPPED, 'MM')
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'MON')
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'MONTH')

DATE_PROMISED

Jan 1 1997 12:00:00AM
Mar 29 1997 12:00:00PM
NULL

Dec 10 1997 5:55:10PM

82

DATE_SHIPPED

Mar 29 1997 12:00:00PM
Jan 1 1997 12:00:00AM
Dec 10 1997 5:55:10PM

NULL

RETURN VALUE

-2.91935483870968

2.91935483870968

NULL

NULL

2024-06-09

DATE PROMISED DATE_SHIPPED RETURN VALUE
Jun 3 1997 1:13:46PM Aug 23 1996 4:20:16PM 9.3290162037037
Feb 19 2004 12:00:00PM Feb 19 2005 12:00:00PM =12

The following expressions return the number of years between the DATE_PROMISED and
DATE_SHIPPED ports:

DATE DIFF(DATE PROMISED, DATE SHIPPED, 'Y')
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'YY')
(
(

DATE DIFF(DATE PROMISED, DATE SHIPPED, 'YYY')

DATE DIFF(DATE PROMISED, DATE SHIPPED, 'YYYY')
DATE_PROMISED DATE_SHIPPED RETURN VALUE
Jan 1 1997 12:00:00AM Mar 29 1997 12:00:00PM -0.24327956989247
Mar 29 1997 12:00:00PM Jan 1 1997 12:00:00AM 0.24327956989247
NULL Dec 10 1997 5:55:10PM NULL
Dec 10 1997 5:55:10PM NULL NULL
Jun 3 1997 1:13:46PM Aug 23 1996 4:20:16PM 0.77741801697531
Feb 19 2004 12:00:00PM Feb 19 2005 12:00:00PM -1

The following expressions return the number of months between the DATE_PROMISED and
DATE_SHIPPED ports:
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'MM')

DATE DIFF(DATE PROMISED, DATE SHIPPED, 'MON')
DATE DIFF(DATE PROMISED, DATE SHIPPED, 'MONTH')

DATE_PROMISED DATE_SHIPPED LEAP YEAR VALUE NON-LEAP YEAR VALUE
(in Months) (in Months)

Sept 13 Feb 19 -5.237931034 -5.260714286

NULL Feb 19 NULL N/A

Sept 13 NULL NULL N/A

DEC_BASEG64

Decodes a base 64 encoded value and returns a string with the binary data representation of the data. If
you encode data using ENC_BASE64, and you want to decode data using DEC_BASEG64, you must run the
decoding session using the same data movement mode. Otherwise, the output of the decoded data may
differ from the original data.

2024-06-09 83

Syntax
DEC BASE64 (value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required String datatype. Data that you want to decode.

Return Value

Binary decoded value.

NULL if the input is a null value.

Return values differ if you run the session in Unicode mode versus ASCIlI mode.
Example

You encoded WebSphere MQ message IDs and wrote them to a flat file during a workflow. You want to
read data from the flat file source, including the WebSphere MQ message IDs. You can use DEC_BASE64
to decode the IDs and convert them to their original binary value.

DEC_HEX

Decodes a hex encoded value and returns a binary value with the binary representation of the data.

To use the DEC_HEX function, set the environment variable INFA ENABLE BINARY FUNCTIONS to True or
Yes.

Syntax
DEC HEX(value)

The following table describes the argument for this command:

Argument | Required/ | Description
Optional

value Required String datatype. Hex data that you want to decode to binary. Hex data can include a
leading 0x or 0X, but this is not required. Characters A through F in input data can be
upper or lower case.

Return Value
Binary decoded value.
NULL if the input is a null value.

If the input string contains characters other than 0 through 9 or A through F (in upper or lower case) then
an error is returned. A leading Ox or 0X to indicate hex content is allowed and will not cause an error to
be returned.

84 2024-06-09

Example

You encoded WebSphere MQ message IDs and wrote them to a flat file in Hex format during a workflow.
You want to read data from the flat file source, including the WebSphere MQ message IDs. You can use
DEC_HEX to decode the IDs and convert them to their original binary value.

DECODE

Searches a port for a value you specify. If the function finds the value, it returns a result value, which you
define. You can build an unlimited number of searches within a DECODE function.

If you use DECODE to search for a value in a string port, you can either trim trailing blanks with the
RTRIM function or include the blanks in the search string.

Syntax

DECODE (value, first search, first result [, second search, second result]...
[,default])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required Any datatype except Binary. Passes the values you want to search. You can enter

any valid transformation expression.

search Required Any value with the same datatype as the value argument. Passes the values for
which you want to search. The search value must match the value argument. You
cannot search for a portion of a value. Also, the search value is case sensitive.

For example, if you want to search for the string 'Halogen Flashlight' in a
particular port, you must enter 'Halogen Flashlight, not just 'Halogen'. If you
enter 'Halogen', the search does not find a matching value. You can enter any
valid transformation expression.

result Required Any datatype except Binary. The value you want to return if the search finds a
matching value. You can enter any valid transformation expression.

default Optional Any datatype except Binary. The value you want to return if the search does not
find a matching value. You can enter any valid transformation expression.

Return Value

First_result if the search finds a matching value.

Default value if the search does not find a matching value.

NULL if you omit the default argument and the search does not find a matching value.

Even if multiple conditions are met, the PowerCenter Integration Service returns the first matching result.

If the data contains multibyte characters and the DECODE expression compares string data, the return
value depends on the code page and data movement mode of the PowerCenter Integration Service.

2024-06-09 85

DECODE and Datatypes

When you use DECODE, the datatype of the return value is always the same as the datatype of the result

with the greatest precision.

For example, you have the following expression:

DECODE (CONST NAME
'Five', 5,
'Pythagoras', 1.414213562,
'Archimedes', 3.141592654,
'"Pi', 3.141592654)

The return values in this expression are 5, 1.414213562, and 3.141592654. The first result is an Integer,

and the other results are Decimal. The Decimal datatype has greater precision than Integer. This
expression always writes the result as a Decimal.

When you run a session in high precision mode, if at least one result is Double, the datatype of the return

value is Double.
You cannot create a DECODE function with both string and numeric return values.

For example, the following expression is invalid:
DECODE (CONST_ NAME
'Five', 5,

'Pythagoras', '1.414213562',

'Archimedes', '3.141592654"',
'Pi', 3.141592654)

When you validate the expression above, you receive the following error message:
Function cannot resolve operands of ambiguously mismatching datatypes.

Examples

You might use DECODE in an expression that searches for a particular ITEM_ID and returns the
ITEM_NAME:

DECODE (ITEM ID, 10, 'Flashlight',
14, 'Regulator',

20, 'Knife',

40, 'Tank',

'"NONE')
ITEM ID RETURN VALUE
10 Flashlight
14 Regulator
17 NONE
20 Knife
25 NONE

86

2024-06-09

ITEM ID RETURN VALUE
NULL NONE

40 Tank

DECODE returns the default value of NONE for items 17 and 25 because the search values did not match
the ITEM_ID. Also, DECODE returns NONE for the NULL ITEM_ID.

The following expression tests multiple columns and conditions, evaluated in a top to bottom order for
TRUE or FALSE:

DECODE (TRUE,

Varl = 22, 'Variable 1 was 22!"',

Var2 = 49, 'Variable 2 was 49!',
Varl < 23, 'Variable 1 was less than 23.°',
Var2 > 30, 'Variable 2 was more than 30.°',
'Variables were out of desired ranges.')

Varl Var2 RETURN VALUE

21 47 Variable 1 was less than 23.

22 49 Variable 1 was 22!

23 49 Variable 2 was 49!

24 27 Variables were out of desired ranges.
25 50 Variable 2 was more than 30.
DECOMPRESS

Decompresses data using the zlib 1.2.1 compression algorithm. Use the DECOMPRESS function on data
that has been compressed with the COMPRESS function or a compression tool that uses the zlib 1.2.1
algorithm. If the session that decompresses the data uses a different data movement mode than the
session that compressed the data, the output of the decompressed data may differ from the original
data.

Syntax
DECOMPRESS (value, precision)

The following table describes the arguments for this command:

Argument Required/ Description

Optional
value Required Binary datatype. Data that you want to decompress.
precision Optional Integer datatype.

2024-06-09 87

Return Value

Decompressed binary value of the input value.
NULL if the input is a null value.

Example

Your organization has an online order service. You received compressed customer order data over a
wide area network. You want to read the data using PowerCenter and load the data to a data warehouse.
You can decompress each row of data using DECOMPRESS for the row. The PowerCenter Integration
Service can then load the decompressed data to the target.

EBCDIC_ISO88591

Converts a binary value encoded in EBCDIC to a string value encoded in ISO-8859-1. If a second
argument is not provided, it uses the EBCDIC 037 code page to perform the conversion. Valid second
argument values are "037", and "1047".

To use the EBCDIC_ISO88591 function, set the environment variable INFA ENABLE BINARY FUNCTIONS to
True or Yes.

Syntax
EBCDIC IS088591(valuel [, valueZ2])

The following table describes the argument for this command:

Argument Required/ Description

Optional
valuel Required Binary data containing EBCDIC characters.
value2 Optional String containing one of "037" or "1047".

Return Value

String with the 1SO-8859-1 equivalent of the EBCDIC encoded binary data.
NULL if the input is a null value.

Example

The following examples return a string value encoded in ISO-8859-1.

EBCDIC _IS088591(BIN EBCDIC)

BIN EBCDID (Shown in Hex) RETURN VALUE
0xC885939396 “Hello”
0xE696999384 “World”

NULL NULL

88 2024-06-09

ENC_BASE64

Encodes data by converting binary data to string data using Multipurpose Internet Mail Extensions
(MIME) encoding. Encode data when you want to store data in a database or file that does not allow
binary data. You can also encode data to pass binary data through transformations in string format. The
encoded data is approximately 33% longer than the original data. It displays as a set of random
characters.

Syntax
ENC BASEG4 (value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required Binary or String datatype. Data that you want to encode.

Return Value

Encoded value.

NULL if the input is a null value.
Example

You want to read messages from WebSphere MQ and write the data to a flat file target. You want to
include the WebSphere MQ message ID as part of the target data. However, the MsgID field is Binary,
and the flat file target does not support binary data. Use ENC_BASE64 to encode the MsgID before the
PowerCenter Integration Service writes the data to the target.

ENC_HEX

Converts binary data to string data using Hexadecimal encoding. Encode data when you want to store
data in a database or file that does not allow binary data. You can also encode data to pass binary data
through transformations in string format. The encoded data is double the length of the original binary
data. It displays as the characters 0 through 9 and A through F.

To use the ENC_HEX function, set the environment variable INFA ENABLE BINARY FUNCTIONS to True or
Yes.

Syntax
ENC HEX(value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required Binary datatype. Data that you want to encode in hex.

2024-06-09 89

Return Value

Hex encoded string value.
NULL if the input is a null value.
Example

You want to read messages from WebSphere MQ and write the data to a flat file target. You want to
include the WebSphere MQ message ID as part of the target data. However, the MsgID field is Binary,
and the flat file target does not support binary data. Use ENC_HEX to encode the MsgID before the
PowerCenter Integration Service writes the data to the target.

ERROR

Causes the PowerCenter Integration Service to skip a row and issue an error message, which you define.
The error message displays in the session log. The PowerCenter Integration Service does not write these
skipped rows to the session reject file.

Use ERROR in Expression transformations to validate data. Generally, you use ERROR within an IIF or
DECODE function to set rules for skipping rows.

Use the ERROR function for both input and output port default values. You might use ERROR for input
ports to keep null values from passing into a transformation.

Use ERROR for output ports to handle any kind of transformation error, including ERROR function calls
within an expression. When you use the ERROR function in an expression and in the output port default
value, the PowerCenter Integration Service skips the row and logs both the error message from the
expression and the error message from the default value. If you want to ensure the PowerCenter
Integration Service skips rows that produce an error, assign ERROR as the default value.

If you use an output default value other than ERROR, the default value overrides the ERROR function in
an expression. For example, you use the ERROR function in an expression, and you assign the default
value, ‘1234’, to the output port. Each time the PowerCenter Integration Service encounters the ERROR
function in the expression, it overrides the error with the value ‘1234’ and passes ‘1234’ to the next
transformation. It does not skip the row, and it does not log an error in the session log.

Syntax
ERROR(string)

The following table describes the argument for this command:

Argument Required/ Description
Optional
string Required String value. The message you want to display when the Integration Service

skips a row based on the expression containing the ERROR function. The string
can be any length.

Return Value

String.

90 2024-06-09

Example

The following example shows how to reference a mapping that calculates the average salary for
employees in all departments of the organization, but skip negative values. The following expression
nests the ERROR function in an IIF expression so that if the PowerCenter Integration Service finds a
negative salary in the Salary port, it skips the row and displays an error:

IIF(SALARY < 0, ERROR ('Error. Negative salary found. Row skipped.', EMP SALARY)

SALARY
10000
-15000
NULL
150000

1005

EXP

RETURN VALUE

10000

'Error. Negative salary found. Row skipped.'

NULL

150000

1005

Returns e raised to the specified power (exponent), where e=2.71828183. For example, EXP(2) returns
7.38905609893065. You might use this function to analyze scientific and technical data rather than
business data. EXP is the reciprocal of the LN function, which returns the natural logarithm of a numeric

value.

Syntax

EXP(exponent)

The following table describes the argument for this command:

Argument Required/ Description
Optional
exponent Required Numeric datatype. The value to which you want to raise e. The exponent in the
equation e*value. You can enter any valid transformation expression.

Return Value

Double value.

NULL if a value passed as an argument to the function is NULL.

2024-06-09

91

Example

The following expression uses the values stored in the Numbers port as the exponent value:
EXP (NUMBERS)

NUMBERS RETURN VALUE

10 22026.4657948067
-2 0.135335283236613
8.55 5166.754427176
NULL NULL

FIRST

Returns the first value found within a port or group. Optionally, you can apply a filter to limit the rows the
PowerCenter Integration Service reads. You can nest only one other aggregate function within FIRST.

Syntax
FIRST (value [, filter condition])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required Any datatype except Binary. Passes the values for which you want to return
the first value. You can enter any valid transformation expression.
filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
First value in a group.

NULL if all values passed to the function are NULL or if no rows are selected (for example, the filter
condition evaluates to FALSE or NULL for all rows).

Nulls

If a value is NULL, FIRST ignores the row. However, if all values passed from the port are NULL, FIRST
returns NULL.

Note: By default, the PowerCenter Integration Service treats null values as NULLs in aggregate functions.
If you pass an entire port or group of null values, the function returns NULL. However, when you
configure the PowerCenter Integration Service, you can choose how you want to handle null values in
aggregate functions. You can treat null values as 0 in aggregate functions or as NULL.

92 2024-06-09

Group By

FIRST groups values based on group by ports you define in the transformation, returning one result for
each group.

If there is no group by port, FIRST treats all rows as one group, returning one value.
Examples

The following expression returns the first value in the ITEM_NAME port with a price greater than $10.00:
FIRST(ITEM NAME, ITEM PRICE > 10)

ITEM NAME ITEM PRICE
Flashlight 35.00
Navigation Compass 8.05
Regulator System 150.00
Flashlight 29.00
Depth/Pressure Gauge 88.00
Flashlight 31.00

RETURN VALUE: Flashlight

The following expression returns the first value in the ITEM_NAME port with a price greater than $40.00:
FIRST(ITEM NAME, ITEM PRICE > 40)

ITEM NAME ITEM PRICE
Flashlight 35.00
Navigation Compass 8.05
Regulator System 150.00
Flashlight 29.00
Depth/Pressure Gauge 88.00
Flashlight 31.00

RETURN VALUE: Regulator System

FLOOR

Returns the largest integer less than or equal to the numeric value you pass to this function. For
example, if you pass 3.14 to FLOOR, the function returns 3. If you pass 3.98 to FLOOR, the function
returns 3. Likewise, if you pass -3.17 to FLOOR, the function returns -4.

2024-06-09 93

Syntax
FLOOR(numeric value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. You can enter any valid transformation expression as long
as it evaluates to numeric data.

Return Value

Integer if you pass a numeric value with declared precision between 0 and 28.
Double if you pass a numeric value with declared precision greater than 28.
NULL if a value passed to the function is NULL.

Example

The following expression returns the largest integer less than or equal to the values in the PRICE port:
FLOOR(PRICE)

PRICE RETURN VALUE
39.79 39

125.12 125

74.24 74

NULL NULL

-100.99 -101

Tip: You can perform arithmetic on the values you pass to FLOOR. For example, to multiply a numeric
value by 10 and then calculate the largest integer that is less than the product, you might write the
function as follows:

FLOOR(UNIT PRICE * 10)

FV

Returns the future value of an investment, where you make periodic, constant payments and the
investment earns a constant interest rate.

Syntax

FV(rate, terms, payment [, present value, type])

94 2024-06-09

The following table describes the arguments for this command:

Argument Required/ Description
Optional
rate Required Numeric. Interest rate earned in each period. Expressed as a decimal
number. Divide the percent rate by 100 to express it as a decimal number.
terms Required Numeric. Number of periods or payments. Must be greater than 0.
Note: The Spark engine writes null values for rows when the terms argument
passes a 0 value. In the native environment, the Data Integration Service
rejects the row and does not write it to the target.
payment Required Numeric. Payment amount due per period. Must be a negative number
present value Optional Numeric. Current value of the investment. If you omit this argument, FV uses
0.
type Optional Integer. Timing of the payment. Enter 1 if payment is at the beginning of

period. Enter 0 if payment is at the end of period. Default is 0. If you enter a
value other than 0 or 1, the PowerCenter Integration Service treats the value
as 1.

Return Value
Numeric.

Example

You deposit $2,000 into an account that earns 9% annual interest compounded monthly (monthly
interest of 9%/12, or 0.75%). You plan to deposit $250 at the beginning of every month for the next 12
months. The following expression returns $5,337.96 as the account balance at the end of 12 months:

Fv(0.0075,

Notes

-250, -2000, TRUE)

To calculate interest rate earned in each period, divide the annual rate by the number of payments made
in a year. The payment value and present value are negative because these are amounts that you pay.

GET_DATE_PART

Returns the specified part of a date as an integer value. Therefore, if you create an expression that
returns the month portion of the date, and pass a date such as Apr 1 1997 00:00:00, GET_DATE_PART

returns 4.

Syntax

GET DATE PART(date, format)

2024-06-09

95

The following table describes the arguments for this command:

Argument Required/ Description

Optional
date Required Date/Time datatype. You can enter any valid transformation expression.
format Required A format string specifying the portion of the date value you want to return.

Enclose format strings within single quotation marks, for example, 'mm’. The
format string is not case sensitive. Each format string returns the entire part of
the date based on the date format specified in the session.

For example, if you pass the date Apr 1 1997 to GET_DATE_PART, the format
strings 'Y', 'YY', 'YYY', or 'YYYY" all return 1997.

Return Value

Integer representing the specified part of the date.

NULL if a value passed to the function is NULL.

Examples

The following expressions return the hour for each date in the DATE_SHIPPED port. 12:00:00AM returns
0 because the default date format is based on the 24 hour interval:

GET DATE PART(DATE SHIPPED, 'HH')
GET DATE PART(DATE SHIPPED, 'HH1Z2')
GET DATE PART(DATE SHIPPED, 'HH24')

DATE_SHIPPED

Mar 13 1997 12:00:00AM

Sep 2 1997 2:00:01AM

Aug 22 1997 12:00:00PM

June 3 1997 11:30:44PM

NULL

RETURN VALUE

0

2

12

23

NULL

The following expressions return the day for each date in the DATE_SHIPPED port:

GET DATE_PART
GET DATE PART

GET DATE_ PART

DATE SHIPPED, 'D')
DATE SHIPPED, 'DD')

DATE SHIPPED, 'DY')

(
(
GET DATE PART(DATE SHIPPED, 'DDD')
(
(

GET DATE_ PART

DATE_SHIPPED

Mar 13 1997 12:00:00AM

June 3 1997 11:30:44PM

96

DATE SHIPPED, 'DAY')

RETURN VALUE

13

2024-06-09

DATE_SHIPPED
Aug 22 1997 12:00:00PM

NULL

The following expressions return the month for each date in the DATE_SHIPPED port:

GET DATE PART(DATE SHIPPED, 'MM')
GET DATE PART(DATE SHIPPED, 'MON')
GET DATE PART(DATE SHIPPED, 'MONTH')

DATE_SHIPPED
Mar 13 1997 12:00:00AM
June 3 1997 11:30:44PM

NULL

RETURN VALUE

22

NULL

RETURN VALUE

NULL

The following expression return the year for each date in the DATE_SHIPPED port:

GET DATE PART(DATE SHIPPED, 'Y')
GET DATE PART(DATE SHIPPED, 'YY')
GET DATE PART(DATE SHIPPED, 'YYY')
GET DATE PART(DATE SHIPPED, 'YYYY')

DATE_SHIPPED
Mar 13 1997 12:00:00AM
June 3 1997 11:30:44PM

NULL

GREATEST

RETURN VALUE

1997

1997

NULL

Returns the greatest value from a list of input values. Use this function to return the greatest string, date,

or number. By default, the match is case sensitive.

Syntax

GREATEST (valuel, [value2, ..., valueN,] CaseFlag)

2024-06-09

97

Arguments

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required Any data type except Binary. Data type must be compatible with other values.

Value you want to compare against other values. You must enter at least one
value argument.

If the value is numeric, and other input values are numeric, all values use the
highest precision possible. For example, if some values are Integer data type and
others are Double data type, the PowerCenter Integration Service converts the
values to Double.

CaseFlag Optional Must be an integer. Specify a value when the input value argument is a string
value. Determines whether the arguments in this function are case sensitive. You
can enter any valid transformation expression.

When CaseFlag is a number other than 0, the function is case sensitive.
When CaseFlag is 0, the function is not case sensitive.
Default is case sensitive.

Return Value

valuel if it is the greatest of the input values, value2 if it is the greatest of the input values, and so on.
NULL if any of the arguments is null.

Example

The following expression returns the greatest quantity of items ordered:

GREATEST (QUANTITY1, QUANTITY2, QUANTITY3)

QUANTITIY1 QUANTITY?2 QUANTITY3 RETURN VALUE
150 756 27 756
NULL
5000 97 17 5000
120 1724 965 1724
IIF

Returns one of two values you specify, based on the results of a condition.

Syntax

IIF(condition, valuel [,value2])

98 2024-06-09

The following table describes the arguments for this command:

Argument Required/ Description
Optional
condition Required The condition you want to evaluate. You can enter any valid transformation

expression that evaluates to TRUE or FALSE.

valuel Required Any datatype except Binary. The value you want to return if the condition is
TRUE. The return value is always the datatype specified by this argument. You
can enter any valid transformation expression, including another IIF expression.

value2 Optional Any datatype except Binary. The value you want to return if the condition is
FALSE. You can enter any valid transformation expression, including another IIF
expression.

Unlike conditional functions in some systems, the FALSE (value2) condition in the IIF function is not
required. If you omit value2, the function returns the following when the condition is FALSE:

o 0if valuel is a Numeric datatype.
o Empty string if valuel is a String datatype.
o NULL if valueT is a Date/Time datatype.

For example, the following expression does not include a FALSE condition and value1 is a string
datatype so the PowerCenter Integration Service returns an empty string for each row that evaluates to
FALSE:

IIF(SALES > 100, EMP NAME)

SALES EMP NAME RETURN VALUE

150 John Smith John Smith

50 Pierre Bleu "' (empty string)
120 Sally Green Sally Green

NULL Greg Jones ''" (empty string)

Return Value
value1 if the condition is TRUE.
value?2 if the condition is FALSE.

For example, the following expression includes the FALSE condition NULL so the PowerCenter
Integration Service returns NULL for each row that evaluates to FALSE:

IIF(SALES > 100, EMP NAME, NULL)

SALES EMP_ NAME RETURN VALUE

150 John Smith John Smith

2024-06-09

SALES EMP_NAME RETURN VALUE

50 Pierre Bleu NULL
120 Sally Green Sally Green
NULL Greg Jones NULL

If the data contains multibyte characters and the condition argument compares string data, the return
value depends on the code page and data movement mode of the PowerCenter Integration Service.

IIF and Datatypes

When you use IIF, the datatype of the return value is the same as the datatype of the result with the
greatest precision.

For example, you have the following expression:
IIF(SALES < 100, 1, .3333)

The TRUE result (1) is an integer and the FALSE result (.3333) is a decimal. The Decimal datatype has
greater precision than Integer, so the datatype of the return value is always a Decimal.

When you run a session in high precision mode and at least one result is Double, the datatype of the
return value is Double.

Special Uses of IIF

Use nested IIF statements to test multiple conditions. The following example tests for various
conditions and returns 0 if sales is 0 or negative:

ITF(SALES > 0, IIF(SALES < 50, SALARYl, IIF(SALES < 100, SALARY2, IIF(SALES <
200, SALARY3, BONUS))), 0)

You can make this logic more readable by adding comments:

IIF(SALES > 0,
--then test to see if sales is between 1 and 49:
IIF(SALES < 50,

--then return SALARY1
SALARY1,

--else test to see if sales is between 50 and 99:
IIF(SALES < 100,

--then return
SALARY2,

--else test to see if sales is between 100 and 199:
IIF(SALES < 200,

--then return
SALARY3,

--else for sales over 199, return
BONUS)

100 2024-06-09

)y

--else for sales less than or equal to zero, return

0)

Use IIF in update strategies. For example:

IIF(ISNULL(ITEM NAME), DD REJECT, DD_INSERT)

Alternative to IIF

Use “DECODE" on page 85 instead of IIF in many cases. DECODE may improve readability. The following

shows how you use DECODE instead of IIF using the first example from the previous section:

DECODE (TRUE,
0 and SALES < 50, SALARYI,

49 AND SALES < 100, SALARY?Z,
99 AND SALES < 200, SALARY3,

SALES
SALES
SALES
SALES

>

>
>
>

199, BONUS)

You can often use a Filter transformation instead of IIF to maximize session performance.

IN
Matches input data to a list of values. By default, the match is case sensitive.
Syntax

IN(valueToSearch, valuel, [value2, ..., valueN,] CaseFlag)

The following table describes the arguments for this command:

Argument Required/ Description
Optional

valueToSearch Required Can be a string, date, or numeric value. Input value you want to match against
a comma-separated list of values.

value Required Can be a string, date, or numeric value depending on the type specified for the
valueToSearch argument. Comma-separated list of values you want to search
for. Values can be ports in a transformation. There is no maximum number of
values you can list.

CaseFlag Optional Must be an integer or NULL.

Determines whether the arguments in this function are case sensitive. You can
enter any valid transformation expression.

When CaseFlag is a number other than 0, the function is case sensitive.
When CaseFlag is 0, the function is not case sensitive.

When CaseFlag is a null value, the function returns NULL when it does not
match the arguments in the function. Otherwise, the CaseFlag returns 1 when
it matches the argument in the function.

Default is case sensitive.

Return Value

TRUE (1) if the input value matches the list of values.

FALSE (0) if the input value does not match the list of values.

2024-06-09

101

NULL if the input is a null value.
Example

The following expression determines if the input value is a safety knife, chisel point knife, or medium
titanium knife. The input values do not have to match the case of the values in the comma-separated
list:

IN(ITEM NAME, ‘Chisel Point Knife’, ‘Medium Titanium Knife’, ‘Safety Knife’, 0)

ITEM NAME RETURN VALUE
Stabilizing Vest 0 (FALSE)
Safety knife 1 (TRUE)
Medium Titanium knife 1 (TRUE)
NULL

INDEXOF
Finds the index of a value among a list of values. By default, the match is case sensitive.
Syntax

INDEXOF (valueToSearch, stringl [, string2, ..., stringN,] [CaseFlag])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
valueToSearch Required String datatype. Value you want to search for in the list of strings.
string Required String datatype. Comma-separated list of values you want to search against.

Values can be in string format. There is no maximum number of values you can
list. The value is case sensitive, unless you set CaseFlag to 0.

CaseFlag Optional Must be an integer. Specify a value when the valueToSearch argument is a
string value. Determines whether the arguments in this function are case
sensitive. You can enter any valid transformation expression.

When CaseFlag is a number other than 0, the function is case sensitive.
When CaseFlag is 0, the function is not case sensitive.

Return Value
1 if the input value matches string7, 2 if the input value matches string2, and so on.
0 if the input value is not found.

NULL if the input is a null value.

102 2024-06-09

Example

The following expression determines if values from the ITEM_NAME port match the first, second, or third
string:

INDEXOF (ITEM NAME, ‘diving hood’, ‘flashlight’, ‘safety knife’)

ITEM NAME RETURN VALUE
Safety Knife 0
diving hood 1
Compass 0
safety knife 3
flashlight 2

Safety Knife returns a value of 0 because it does not match the case of the input value.

INITCAP

Capitalizes the first letter in each word of a string and converts all other letters to lowercase. Words are
delimited by white space (a blank space, formfeed, newline, carriage return, tab, or vertical tab) and
characters that are not alphanumeric. For example, if you pass the string ... THOMAS’, the function
returns Thomas.

Syntax
INITCAP(string)

The following table describes the argument for this command:

Argument Required/ Description
Optional
string Required Any datatype except Binary. You can enter any valid transformation expression.

Return Value

String. If the data contains multibyte characters, the return value depends on the code page and data
movement mode of the PowerCenter Integration Service.

NULL if a value passed to the function is NULL.

2024-06-09 103

Example

The following expression capitalizes all names in the FIRST_NAME port:

INITCAP(FIRST NAME)

FIRST NAME RETURN VALUE
ramona Ramona
18-albert 18-Albert
NULL NULL

? ! SAM ?!Sam

THOMAS Thomas
PierRe Pierre
INSTR

Returns the position of a character set in a string, counting from left to right.

Syntax

INSTR(string, search value [,start [,occurrence [,comparison type 1]])

The following table describes the arguments for this command:

Argument

Required/
Optional

Description

string

Required

The string must be a character string. Passes the value you want to evaluate.
You can enter any valid transformation expression. The results of the
expression must be a character string. If not, INSTR converts the value to a
string before evaluating it.

search_value

Required

Any value. The search value is case sensitive. The set of characters you want to
search for. The search_value must match a part of the string. For example, if
you write INSTR ('Alfred Pope', 'Alfred Smith') the function returns
0.

You can enter any valid transformation expression. If you want to search for a
character string, enclose the characters you want to search for in single
quotation marks, for example 'abc'.

start

Optional

Must be an integer value. The position in the string where you want to start the
search. You can enter any valid transformation expression.

The default is 1, meaning that INSTR starts the search at the first character in
the string.

If the start position is 0, INSTR searches from the first character in the string. If
the start position is a positive number, INSTR locates the start position by
counting from the beginning of the string. If the start position is a negative
number, INSTR locates the start position by counting from the end of the string.
If you omit this argument, the function uses the default value of 1.

104

2024-06-09

Argument Required/ | Description
Optional
occurrence Optional A positive integer greater than 0. You can enter any valid transformation

expression. If the search value appears more than once in the string, you can
specify which occurrence you want to search for. For example, you would enter
2 to search for the second occurrence from the start position.

If you omit this argument, the function uses the default value of 1, meaning that
INSTR searches for the first occurrence of the search value. If you pass a
decimal, the PowerCenter Integration Service rounds it to the nearest integer
value. If you pass a negative integer or 0, the session fails.

comparison_type | Optional

The string comparison type, either linguistic or binary, when the PowerCenter
Integration Service runs in Unicode mode. When the PowerCenter Integration
Service runs in ASCII mode, the comparison type is always binary.
Linguistic comparisons take language-specific collation rules into account,
while binary comparisons perform bitwise matching. For example, the German
sharp s character matches the string “ss” in a linguistic comparison, but not in a
binary comparison. Binary comparisons run faster than linguistic comparisons.
Must be an integer value, either 0 or 1:

0: INSTR performs a linguistic string comparison.

1: INSTR performs a binary string comparison.
Default is 0.

If you enter 0, the session sort order must not be binary.

Return Value

Integer if the search is successful. Integer represents the position of the first character in the
search_value, counting from left to right.

0 if the search is unsuccessful.

NULL if a value passed to the function is NULL.

Examples

The following expression returns the position of the first occurrence of the letter ‘a’, starting at the
beginning of each company name. Because the search_value argument is case sensitive, it skips the ‘A’
in ‘Blue Fin Aqua Center’, and returns the position for the ‘a’ in ‘Aqua’:

INSTR(COMPANY, 'a')

COMPANY

Blue Fin Aqua Center
Maco Shark Shop
Scuba Gear

Frank's Dive Shop

VIP Diving Club

2024-06-09

RETURN VALUE

13

2

105

The following expression returns the position of the second occurrence of the letter ‘a’, starting at the
beginning of each company name. Because the search_value argument is case sensitive, it skips the ‘A’
in ‘Blue Fin Aqua Center’, and returns O:

INSTR(COMPANY, 'a', 1, 2)

COMPANY RETURN VALUE
Blue Fin Aqua Center 0
Maco Shark Shop 8
Scuba Gear 9
Frank's Dive Shop 0
VIP Diving Club 0

The following expression returns the position of the second occurrence of the letter ‘a’ in each company
name, starting from the last character in the company name. Because the search_value argument is case
sensitive, it skips the ‘A’ in 'Blue Fin Aqua Center’, and returns 0:

INSTR (COMPANY, 'a', -1, 2)

COMPANY RETURN VALUE
Blue Fin Aqua Center 0
Maco Shark Shop 2
Scuba Gear 5
Frank's Dive Shop 0
VIP Diving Club 0

The following expression returns the position of the first character in the string ‘Blue Fin Aqua Center’
(starting from the last character in the company name):

INSTR(COMPANY, 'Blue Fin Aqua Center', -1, 1)

COMPANY RETURN VALUE
Blue Fin Aqua Center 1
Maco Shark Shop 0
Scuba Gear 0
Frank's Dive Shop 0
VIP Diving Club 0

106 2024-06-09

Using Nested INSTR
You can nest the INSTR function within other functions to accomplish more complex tasks.

The following expression evaluates a string, starting from the end of the string. The expression finds the
last (rightmost) space in the string and then returns all characters to the left of it:

SUBSTR(CUST NAME,1,INSTR(CUST NAME,' ' ,-1,1))
CUST_NAME RETURN VALUE
PATRICIA JONES PATRICIA
MARY ELLEN SHAH MARY ELLEN

The following expression removes the character '#' from a string:

SUBSTR(CUST ID, 1, INSTR(CUST ID, '#')-1) || SUBSTR(CUST ID, INSTR(CUST ID, '#'")
+1)

CUST_ID RETURN VALUE

ID#33 1D33

13577 A3577

SS #712403399 SS 712403399

ISNULL

Returns whether a value is NULL. ISNULL evaluates an empty string as FALSE.
Note: To test for empty strings, use LENGTH.

Syntax
ISNULL(value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required Any datatype except Binary. Passes the rows you want to evaluate. You can enter
any valid transformation expression.

Return Value
TRUE (1) if the value is NULL.
FALSE (0) if the value is not NULL.

2024-06-09 107

Example

The following example checks for null values in the items table:

ISNULL(ITEM NAME)

ITEM NAME RETURN VALUE
Flashlight 0 (FALSE)
NULL 1 (TRUE)
Regulator system 0 (FALSE)

' 0 (FALSE) Empty string is not NULL

IS_DATE

Returns whether a string value is a valid date. A valid date is any string in the date portion of the date
time format specified in the session. If the string you want to test is not in this date format, use the
TO_DATE format string to specify the date format. If the strings passed to IS_DATE do not match the
format string specified, the function returns FALSE (0). If the strings match the format string, the
function returns TRUE (1).

IS_DATE evaluates strings and returns an integer value.
The output port for an IS_DATE expression must be String or Numeric datatype.
You might use IS_DATE to test or filter data in a flat file before writing it to a target.

Use the RR format string with IS_DATE instead of the YY format string. In most cases, the two format
strings return the same values, but there are some unique cases where YY returns incorrect results. For
example, the expression IS_DATE('02/29/00’, ‘YY) is internally computed as IS_DATE(02/29/1900
00:00:00), which returns false. However, the PowerCenter Integration Service computes the expression
IS_DATE('02/29/00’, ‘RR’) as IS_DATE(02/29/2000 00:00:00), which returns TRUE. In the first case, year
1900 is not a leap year, so there is no February 29th.

Note: IS_DATE uses the same format strings as TO_DATE.
Syntax

IS DATE(value [, format])

108 2024-06-09

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required Must be a string datatype. Passes the rows you want to evaluate. You can enter

any valid transformation expression.

format Optional Enter a valid TO_DATE format string. The format string must match the parts of
the string argument. For example, if you pass the string '‘Mar 15 1997
12:43:10AM’, you must use the format string '"MON DD YYYY HH12:MI:SSAM'. If
you omit the format string, the string value must be in the date format specified
in the session.

Return Value

TRUE (1) if the row is a valid date.

FALSE (0) if the row is not a valid date.

NULL if a value in the expression is NULL or if the format string is NULL.

Warning: The format of the IS_DATE string must match the format string, including any date separators.
If it does not, the PowerCenter Integration Service might return inaccurate values or skip the record.

Examples

The following expression checks the INVOICE_DATE port for valid dates:
IS DATE(INVOICE DATE)

This expression returns data similar to the following:

INVOICE_DATE RETURN VALUE

NULL NULL

'180" 0 (FALSE)

'04/01/98" 0 (FALSE)

'04/01/1998 00:12:15.7008" 1 (TRUE)

'02/31/1998 12:13:55.9204" 0 (FALSE) (February does not have 31 days)
'John Smith' 0 (FALSE)

The following IS_DATE expression specifies a format string of 'YYYY/MM/DD':
IS _DATE(INVOICE DATE, 'YYYY/MM/DD')

If the string value does not match this format, IS_DATE returns FALSE:

INVOICE DATE RETURN VALUE

NULL NULL

2024-06-09 109

INVOICE DATE RETURN VALUE

'180" 0 (FALSE)
'04/01/98" 0 (FALSE)
'1998/01/12" 1 (TRUE)
'1998/11/21 00:00:13" 0 (FALSE)
'1998/02/31" 0 (FALSE) (February does not have 31 days)
'John Smith' 0 (FALSE)

The following example shows how you use IS_DATE to test data before using TO_DATE to convert the

strings to dates. This expression checks the values in the INVOICE_DATE port and converts each valid

date to a date value. If the value is not a valid date, the PowerCenter Integration Service returns ERROR
and skips the row.

This example returns a Date/Time value. Therefore, the output port for the expression needs to be Date/
Time:

IIF(IS DATE (INVOICE DATE, 'YYYY/MM/DD'), TO DATE(INVOICE DATE), ERROR('Not a
valid date'))
INVOICE DATE RETURN VALUE
NULL NULL
'180" 'Not a valid date'
'04/01/98" 'Not a valid date'
'1998/01/12" 1998/01/12
'1998/11/21 00:00:13" 'Not a valid date'
'1998/02/31" 'Not a valid date'
'John Smith' 'Not a valid date’
IS_NUMBER

Returns whether a string is a valid number. A valid number consists of the following parts:
o Optional space before the number

« Optional sign (+/-)

« One or more digits with an optional decimal point

« Optional scientific notation, such as the letter ‘e’ or ‘E’ (and the letter ‘d’ or ‘D’ on Windows) followed
by an optional sign (+/-), followed by one or more digits

110 2024-06-09

o Optional white space following the number
The following numbers are all valid:

'100 '

! +100"'

'-100"

'-3.45e+32"

'+3.45E-32"

'+3.45d+32"'" (Windows only)
'+3.45D-32" (Windows only)
'.6804"

The output port for an IS_ZNUMBER expression must be a String or Numeric datatype.
You might use IS_NUMBER to test or filter data in a flat file before writing it to a target.
Syntax

IS NUMBER(value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required Must be a String datatype. Passes the rows you want to evaluate. You can enter
any valid transformation expression.

Return Value

TRUE (1) if the row is a valid number.
FALSE (0) if the row is not a valid number.
NULL if a value in the expression is NULL.
Examples

The following expression checks the ITEM_PRICE port for valid numbers:

IS NUMBER(ITEM PRICE)

ITEM PRICE RETURN VALUE

'123.00" 1 (True)

'-3.45e+3" 1 (True)

'-3.45D-3" 1 (True - Windows only)
'-3.45d-3" 0 (False - UNIX only)
'3.45E-" 0 (False) Incomplete number

! ! 0 (False) Consists entirely of blanks

v 0 (False) Empty string

2024-06-09 111

ITEM PRICE RETURN VALUE

'+123abc’ 0 (False)

'o123" 1 (True) Leading white blanks
'123 ! 1 (True) Trailing white blanks
'ABC' 0 (False)

'-ABC' 0 (False)

NULL NULL

Use IS_NUMBER to test data before using one of the numeric conversion functions, such as TO_FLOAT.
For example, the following expression checks the values in the ITEM_PRICE port and converts each valid
number to a double-precision floating point value. If the value is not a valid number, the PowerCenter
Integration Service returns 0.00:

IIF(IS NUMBER (ITEM PRICE), TO FLOAT(ITEM PRICE), 0.00)

ITEM PRICE RETURN VALUE
'123.00" 123
'-3.45e+3" -3450
'3.45E-3" 0.00345

! ! 0.00 Consists entirely of blanks

' 0.00 Empty string

'+123abc’ 0.00
"' 123ABC' 0.00
'ABC' 0.00
'-ABC' 0.00
NULL NULL
IS_SPACES

Returns whether a string value consists entirely of spaces. A space is a blank space, a formfeed, a
newline, a carriage return, a tab, or a vertical tab.

IS_SPACES evaluates an empty string as FALSE because there are no spaces. To test for an empty
string, use LENGTH.

112 2024-06-09

Syntax
IS SPACES(value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
value Required Must be a string datatype. Passes the rows you want to evaluate. You can enter
any valid transformation expression.

Return Value

TRUE (1) if the row consists entirely of spaces.
FALSE (0) if the row contains data.

NULL if a value in the expression is NULL.
Example

The following expression checks the ITEM_NAME port for rows that consist entirely of spaces:

IS SPACES(ITEM NAME)

ITEM NAME RETURN VALUE
Flashlight 0 (False)

1 (True)
Regulator system 0 (False)
NULL NULL

v 0 (FALSE) (Empty string does not contain spaces.)

Tip: Use IS_SPACES to avoid writing spaces to a character column in a target table. For example, if you
have a transformation that writes customer names to a fixed length CHAR(5) column in a target table,
you might want to write ‘00000’ instead of spaces. You would create an expression similar to the
following:

IIF(IS SPACES(CUST NAMES), '00000', CUST NAMES)

LAG

Returns the value that is an offset number of rows before the current row in an Expression
transformation. Use this function to compare values in the current row with values in a previous row
when you run a mapping on the Spark engine in the Hadoop environment.

A lag value appears before the current row in a set of data.

When you use LAG in a transformation, you must configure the transformation for windowing.
Windowing properties define how the data is partitioned and ordered.

2024-06-09 113

Syntax

LAG (column name, offset, default)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
column_name Required The target column or expression that the
function operates on.
offset Required Integer data type. The number of rows before
the current row to obtain a value from.
default Optional The default value to be returned in case the

offset is outside the bounds of the partition
or table. Default is NULL.

Return Value

The data type of the specified column_name.

Default if the return value is outside the bounds of the specified partition.

NULL if default is omitted or set to NULL.

Examples

The following expression returns the date that the previous order was placed:

LAG (ORDER DATE, 1, NULL)

ORDER _DATE
2017/09/25
2017/09/26
2017/09/27
2017/09/28
2017/09/29

2017/09/30

ORDER_ID
1

2

RETURN VALUE
NULL
2017/09/25
2017/09/26
2017/09/27
2017/09/28

2017/09/29

The lag value of the first row is outside the partition, so the function returned the default value of NULL.

In the following example, your organization receives GPS pings from vehicles that include trip and event
IDs and a time stamp. You want to calculate the time difference between each ping.

The following expression calculates the time difference between the current row and the previous row

for two separate trips:

DATE DIFF(EVENT TIME, LAG (EVENT TIME, 1, NULL), 'ss')

114

2024-06-09

You partition the data by trip ID and order by event ID.

TRIP_ID EVENT ID EVENT TIME RETURN VALUE
101 1 2017-05-03 12:00:00 NULL

101 2 2017-05-03 12:00:34 34

101 3 2017-05-03 12:02:00 86

102 1 2017-05-03 12:00:00 NULL

102 2 2017-05-03 12:01:56 116

102 3 2017-05-03 12:02:00 4

The lag values of the first and fourth row are outside the specified partition, so the function returned two
default NULL values.

LAST

Returns the last row in the selected port. Optionally, you can apply a filter to limit the rows the
PowerCenter Integration Service reads. You can nest only one other aggregate function within LAST.

Syntax
LAST(value [, filter condition])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required Any datatype except Binary. Passes the values for which you want to return
the last row. You can enter any valid transformation expression.
filter_condition Optional Limits the rows in the search. The filter condition must be a numeric value or
evaluate to TRUE, FALSE, or NULL. You can enter any valid transformation
expression.

Return Value
Last row in a port.

NULL if all values passed to the function are NULL, or if no rows are selected (for example, the filter
condition evaluates to FALSE or NULL for all rows).

Note: By default, the PowerCenter Integration Service treats null values as NULLs in aggregate functions.
If you pass an entire port or group of null values, the function returns NULL. However, when you
configure the PowerCenter Integration Service, you can choose how you want to handle null values in
aggregate functions. You can treat null values as 0 in aggregate functions or as NULL.

2024-06-09 115

Example
The following expression returns the last row in the ITEMS_NAME port with a price greater than $10.00:
LAST(ITEM NAME, ITEM PRICE > 10)

ITEM NAME ITEM PRICE
Flashlight 35.00
Navigation Compass 8.05
Regulator System 150.00
Flashlight 29.00
Depth/Pressure Gauge 88.00
Vest 31.00

RETURN VALUE:Vest

LAST_DAY

Returns the date of the last day of the month for each date in a port.
Syntax
LAST DAY (date)

The following table describes the argument for this command:

Argument Required/ Description
Optional
date Required Date/Time datatype. Passes the dates for which you want to return the last day
of the month. You can enter any valid transformation expression that evaluates
to a date.

Return Value

Date. The last day of the month for that date value you pass to this function.
NULL if a value in the selected port is NULL.

Null

If a value is NULL, LAST_DAY ignores the row. However, if all values passed from the port are NULL,
LAST_DAY returns NULL.

Group By

LAST_DAY groups values based on group by ports you define in the transformation, returning one result
for each group. If there is no group by port, LAST_DAY treats all rows as one group, returning one value.

116 2024-06-09

Examples

The following expression returns the last day of the month for each date in the ORDER_DATE port:
LAST DAY (ORDER DATE)

ORDER_DATE

Apr 1 1998 12:00:00AM
Jan 6 1998 12:00:00AM
Feb 2 1996 12:00:00AM
NULL

Jul 31 1998 12:00:00AM

RETURN VALUE
Apr 30 1998 12:00:00AM
Jan 31 1998 12:00:00AM

Feb 29 1996 12:00:00AM

NULL

Jul 31 1998 12:00:00AM

(Leap year)

You can nest TO_DATE to convert string values to a date. TO_DATE always includes time information. If

you pass a string that does not have a time value, the date returned will include the time 00:00:00.

The following example returns the last day of the month for each order date in the same format as the

string:

LAST DAY (TO DATE (
ORDER_DATE
'18-NOV-98"
'28-APR-98"

NULL

'18-FEB-96'

LEAD

ORDER DATE, 'DD-MON-YY'))

RETURN VALUE

Nov 30 1998 00:00:00
Apr 30 1998 00:00:00
NULL

Feb 29 1996 00:00:00

(Leap year)

Returns the value that is an offset number of rows after the current row in an Expression transformation.

Use this function to compare values in the current row with values in a future row when you run a

mapping on the Spark engine in the Hadoop environment.

A lead value appears after the current row in a set of data.

Note: When you use LEAD in a transformation, you must configure the transformation for windowing.
Windowing properties define how the data is partitioned and ordered.

2024-06-09

117

Syntax

LEAD (column name, offset, default)
The following table describes the arguments for this command:

Argument Required/ Description
Optional
column_name Required The target column or expression that the
function operates on.
offset Required Integer data type. The number of rows after
the current row to obtain a value from.
default Optional The default value to be returned in case the

offset is outside the bounds of the partition
or table. Default is NULL.

Return Value

The data type of the specified column_name.

Default if the return value is outside the bounds of the specified partition.

NULL if default is omitted or set to NULL.

Examples

The following expression returns, for each employee, the date the next employee was hired:

LEAD (HIRE DATE, 1, NULL)

EMPLOYEE
Hynes
Williams
Pritchard
Snyder
Troy

Randolph

HIRE DATE
2012/12/07
2014/05/18
2015/07/24
2015/12/24
2016/11/15

2017/08/10

RETURN VALUE

2014/05/18
2015/07/24
2015/12/24
2016/11/15
2017/08/10

NULL

There is no lead value available for the last row, so the function returned the default value of NULL.

The following expression returns the difference in sales quota values between the first quarter to the
third quarter of two calendar years:

LEAD (Sales Quota, 2, 0) - Sales Quota

118

2024-06-09

You partition the data by year and order by quarter.

YEAR QUARTER SALES QUOTA QUOTA DIFF
2016 1 300 7700

2016 2 7000 0

2016 3 8000 0

2017 1 5000 4000

2017 2 400 0

2017 3 9000 0

The lead values of the second and third quarter are outside the specified partition, so the function
returned a value of "0."

LEAST
Returns the smallest value from a list of input values. By default, the match is case sensitive.
Syntax

LEAST (valuel, [value2, ..., valueNlN,])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
value Required Any datatype except Binary. Datatype must be compatible with other values.

Value you want to compare against other values. You must enter at least one
value argument.

If the value is Numeric, and other input values are of other numeric datatypes, all
values use the highest precision possible. For example, if some values are of the
Integer datatype and others are of the Double datatype, the PowerCenter
Integration Service converts the values to Double.

CaseFlag Optional Must be an integer. Specify a value when the input value argument is a string
value. Determines whether the arguments in this function are case sensitive. You
can enter any valid transformation expression.

When CaseFlag is a number other than 0, the function is case sensitive.
When CaseFlag is 0, the function is not case sensitive.
Default is case sensitive.

Return Value
valuel if it is the smallest of the input values, value2 if it is the smallest of the input values, and so on.

NULL if any of the arguments is null.

2024-06-09 119

Example

The following expression returns the smallest quantity of items ordered:

LEAST (QUANTITY1, QUANTITY2, QUANTITY3)

QUANTITIY1 QUANTITY?2 QUANTITY3 RETURN VALUE
150 756 27 27

NULL
5000 97 17 17
120 1724 965 120
LENGTH

Returns the number of characters in a string, including trailing blanks.
Syntax
LENGTH(string)

The following table describes the argument for this command:

Argument Required/ Description
Optional
string Required String datatype. The strings you want to evaluate. You can enter any valid
transformation expression.

Return Value

Integer representing the length of the string.
NULL if a value passed to the function is NULL.
Example

The following expression returns the length of each customer name:
LENGTH (CUSTOMER NAME)

CUSTOMER NAME RETURN VALUE
Bernice Davis 13

NULL NULL

John Baer 9

Greg Brown 10

120 2024-06-09

Tips for LENGTH

Use LENGTH to test for empty string conditions. If you want to find fields in which customer name is
empty, use an expression such as:

IIF(LENGTH(CUSTOMER NAME) = 0, 'EMPTY STRING')
To test for a null field, use ISNULL. To test for spaces, use IS_SPACES.

LN

Returns the natural logarithm of a numeric value. For example, 1N (3) returns 1.098612. You usually use
this function to analyze scientific data rather than business data.

This function is the reciprocal of the function EXP.

Syntax
LN(numeric value)

The following table describes the argument for this command:

Argument Required/ Description
Optional
numeric_value Required Numeric datatype. It must be a positive number, greater than 0. Passes the

values for which you want to calculate the natural logarithm. You can enter
any valid transformation expression.

Return Value

Double value.

NULL if a value passed to the function is NULL.
Example

The following expression returns the natural logarithm for all values in the NUMBERS port:

LN (NUMBERS)

NUMBERS RETURN VALUE

10 2.302585092994

125 4.828313737302

0.96 -0.0408219945202¢6

NULL NULL

-90 Error. (The Integration Service does not write row.)
0 Error. (The Integration Service does not write row.)

2024-06-09 121

Note: The PowerCenter Integration Service displays an error and does not write the row when you pass a
negative number or 0. The numeric_value must be a positive number greater than 0.

LOG

Returns the logarithm of a numeric value. Most often, you use this function to analyze scientific data
rather than business data.

Syntax
LOG(base, exponent)

The following table describes the arguments for this command:

Argument Required/ Description
Optional

base Required The base of the logarithm. Must be a positive numeric value other than 0 or 1.
Any valid transformation expression that evaluates to a positive number other
than 0 or 1.

exponent Required The exponent of the logarithm. Must be a positive numeric value greater than 0.
Any valid transformation expression that evaluates to a positive number greater
than 0.

Return Value

Double value.

NULL if a value passed to the function is NULL.
Example

The following expression returns the logarithm for all values in the NUMBERS port:

LOG(BASE, EXPONENT)

BASE EXPONENT RETURN VALUE

15 1 0

.09 10 -0.956244644696599

NULL 18 NULL

35.78 NULL NULL

-9 18 Error. (PowerCenter Integration Service does not write the row.)
0 5 Error. (PowerCenter Integration Service does not write the row.)
10 -2 Error. (PowerCenter Integration Service does not write the row.)

The PowerCenter Integration Service displays an error and does not write the row if you pass a negative
number, 0, or 1 as a base value, or if you pass a negative value for the exponent.

122 2024-06-09

LOOKUP

Searches for a value in a lookup source column.

The LOOKUP function compares data in a lookup source to a value you specify. When the PowerCenter
Integration Service finds the search value in the lookup table, it returns the value from a specified
column in the same row in the lookup table.

When you create a session based on a mapping that uses the LOOKUP function, you must specify the
database connections for $Source Connection Value and $STarget Connection Value in the session
properties. To validate a lookup function in an Expression transformation, verify that the lookup
definition is in the mapping.

Note: This function is not supported in mapplets.
Using the Lookup Transformation or the LOOKUP Function

Use the Lookup transformation rather than the LOOKUP function to look up values in PowerCenter
mappings. If you use the LOOKUP function in a mapping, you need to enable the lookup caching option
for 3.5 compatibility in the session properties. This option exists expressly for PowerMart 3.5 users who
want to continue using the LOOKUP function, rather than creating Lookup transformations. For more
information, see “Lookup Transformation” in the PowerCenter Transformation Guide.

You can define multiple searches for one lookup table within a LOOKUP function. However, each search
must find a matching value to return the lookup value.

Syntax
LOOKUP (result, searchl, valuel [, search?2, valueZ]...)

The following table describes the arguments for this command:

Argument Required/ Description
Optional
result Required Any datatype except Binary. Must be an output port in the same lookup table as

search. Specifies the return value if the search matches the value. Always
preface this argument with the reference qualifier :TD.

searchl Required Datatype that matches the value7. Must be an output port in the same lookup
table as result. Specifies the values you want to match to value. Always preface
this argument with the reference qualifier :TD.

valuel Required Any datatype except Binary. Must match search7 datatype. The values you want
to search for in the lookup source column specified in search7. You can enter
any valid transformation expression.

Return Value

Result if all searches find matching values. If the PowerCenter Integration Service finds matching values,
it returns the result from the same row as the search7 argument.

NULL if the search does not find any matching values.

Error if the search finds more than one matching value.

2024-06-09 123

Example

The following expression searches the lookup source :TD.SALES for a specific item ID and price, and
returns the item name if both searches find a match:

LOOKUP(:TD.SALES.ITEM NAME, :TD.SALES.ITEM ID, 10, :TD.SALES.PRICE, 15.99)

ITEM NAME ITEM ID PRICE
Regulator 5 100.00
Flashlight 10 15.99
Halogen Flashlight 15 15.99
NULL 20 15.99

RETURN VALUE: Flashlight

Tips for LOOKUP

When you compare char and varchar values, the LOOKUP function returns a result only if the two rows
match. This means that both the value and the length for each row must match. If the lookup source is a
padded char value of a specified length and the lookup search is a varchar value, you need to use the
RTRIM function to trim trailing blanks from the lookup source so that the values match the lookup
search:

LOOKUP (: TD.ORDERS.PRICE, :TD.ORDERS.ITEM, RTRIM(ORDERS.ITEM, ' '))
Use the :TD reference qualifier in the result and search arguments of a LOOKUP function:

LOOKUP (: TD.ORDERS.ITEM, :TD.ORDERS.PRICE, ORDERS.PRICE, :TD.ORDERS.QTY, ORDERS.QTY)

LOWER

Converts uppercase string characters to lowercase.
Syntax
LOWER (string)

The following table describes the argument for this command:

Argument Required/ Description
Optional
string Required Any string value. The argument passes the string values that you want to return
as lowercase. You can enter any valid transformation expression that evaluates
to a string.

Return Value

Lowercase character string. If the data contains multibyte characters, the return value depends on the
code page and data movement mode of the Integration Service.

124 2024-06-09

NULL if a value in the selected port is NULL.

Example

The following expression returns all first names to lowercase:

LOWER(FIRST NAME)

FIRST NAME
antonia
NULL
THOMAS
PierRe

BERNICE

LPAD

RETURN VALUE
antonia

NULL

thomas
pierre

bernice

Adds a set of blanks or characters to the beginning of a string to set the string to a specified length.

Syntax

LPAD(first string, length [,second string])

The following table describes the arguments for this command:

Argument Required/ Description
Optional
first_string Required Can be a character string. The strings you want to change. You can enter any
valid transformation expression.
length Required Must be a positive integer literal. This argument specifies the length you want
each string to be.
second_string Optional Can be any string value. The characters you want to append to the left-side of

the first_string values. You can enter any valid transformation expression. You
can enter a specific string literal. However, enclose the characters you want to
add to the beginning of the string within single quotation marks, as in 'abc'.
This argument is case sensitive. If you omit the second_string, the function
pads the beginning of the first string with blanks.

Return Value

String of the specified length.

NULL if a value passed to the function is NULL or if length is a negative number.

2024-06-09

125

Examples

The following expression standardizes numbers to six digits by padding them with leading zeros:

LPAD(PART NUM, 6, '0')

PART NUM RETURN VALUE
702 000702
1 000001
0553 000553
484834 484834

LPAD counts the length from left to right. If the first string is longer than the length, LPAD truncates the
string from right to left. For example, LPAD(‘alphabetical’, 5, ‘x’) returns the string ‘alpha’.

If the second string is longer than the total characters needed to return the specified length, LPAD uses
a portion of the second string:

LPAD(ITEM NAME, 16, '*..*')

ITEM NAME RETURN VALUE
Flashlight *..** Flashlight
Compass * ., FF . **Compass
Regulator System Regulator System
Safety Knife *,.*Safety Knife
LTRIM

Removes blanks or characters from the beginning of a string. You can use LTRIM with IIF or DECODE in
an Expression or Update Strategy transformation to avoid spaces in a target table.

If you do not specify a trim_set parameter in the expression:

e In UNICODE mode, LTRIM removes both single- and double-byte spaces from the begi