
Implementing TLS
Security in a
PowerExchange Network

© Copyright Informatica LLC 2018, 2021. Informatica, the Informatica logo, PowerCenter, and PowerExchange are
trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the
world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/
trademarks.html

Abstract
This article describes how to implement TLS security in an Informatica® PowerExchange® network.

To implement TLS security, configure TLS and PowerExchange components on the client and server machines.

Supported Versions
• PowerExchange 10.2 HotFix 1

Table of Contents
Introduction. 3

PowerExchange TLS Architecture. 3

Authentication. 4

FIPS 140-2 Compliance. 5

FIPS 140-2 Compliance Considerations on z/OS. 5

FIPS 140-2 Compliant Cipher Suites. 5

PWXUGSK Utility. 6

PWXUSSL Utility. 7

Implementation Task Flow. 8

Step 1. Determine the TLS Requirements for Your PowerExchange Network. 8

Step 2. Configure TLS Servers on z/OS. 8

Step 2A. Set Up AT-TLS on z/OS. 9

Step 2B. Create Personal Certificates on z/OS. 10

Step 2C. Configure the DBMOVER File on the z/OS TLS Server. 11

Step 3. Configure TLS Servers on Linux, UNIX, or Windows. 11

Step 3A. Set Up OpenSSL on Linux, UNIX, or Windows. 11

Step 3B. Create CA Certificates on Linux, UNIX, or Windows. 12

Step 3C. Create Personal Certificates on Linux, UNIX or Windows. 13

Step 3D. Configure the DBMOVER File on the Linux, UNIX, or Windows TLS Server. 14

Step 4. Configure TLS Clients on Linux, UNIX, or Windows. 15

Step 4A. Set up OpenSSL. 15

Step 4B. Create a CA Certificate. 15

Step 4C. Create a Personal Certificate. 15

Step 4D. Configure TLS Clients on Linux, UNIX or Windows. 16

Step 5. Make Certificates Available. 16

Step 6. Test the Secure Connection between the Client and the Server. 17

Terms and Acronyms. 18

2

Introduction
You can configure Transport Layer Security (TLS) protocol communication in a PowerExchange network to ensure
secure communication between a PowerExchange server and its clients. TLS communication is based on the Secure
Socket Layer (SSL) protocol. This article assumes that you have a basic understanding of the TLS protocol.

To configure TLS communication, establish certificates and keys that authorize the secure connection between
systems and enable encryption and decryption of data. Each server or client machine has a TLS private key and a TLS
certificate. To enable a secured connection, you must perform some configuration tasks in PowerExchange, and you
must create and install valid security keys and certificates using a third-party tool such as OpenSSL.

Note: The security configuration for your organization, and therefore the tasks in this article, are the responsibility of
your security administrator. Security administration requires specific knowledge of and permissions on the
participating systems. For information about obtaining and distributing certificates on your network, refer to your
organization's security administrator or internal documentation. Informatica Global Customer Support has limited
ability to support the creation or distribution of security certificates within your organization and cannot change your
organization's security policies.

After configuration, the TLS handshake sets up the secure connection. The individual data messages are encrypted by
using the session key that is encoded and exchanged during the handshake. PowerExchange supports TLS
communication for the following operating systems:

• Linux

• UNIX

• Windows

• z/OS

In March 2018, TLS 1.3 was approved by the Internet Engineering Task Force (IETF). This article refers to TLS instead
of SSL except when SSL is part of a product or component name.

PowerExchange TLS Architecture
The PowerExchange TLS architecture includes the following components:

• OpenSSL installed on each TLS client and server on Linux, UNIX, or Windows

• PowerExchange TLS configured on each TLS client and server on Linux, UNIX, or Windows

• AT-TLS installed and configured for PowerExchange on each TLS server on z/OS

• PowerExchange Listeners configured on server environments

• X.509 certificates installed on each TLS client and server

3

http://www.ietf.org

The following figure illustrates the PowerExchange TLS architecture:

You can use TLS communication for some, all, or none of the connections in the PowerExchange network.

For example, you might configure connections as follows:

• Configure PowerExchange Listeners to use separate ports for TLS and non-TLS connections.

• Configure the PowerCenter Integration Service client to use TLS connections to PowerExchange Listeners.

• Configure the PowerExchange Navigator and PowerCenter clients to use non-TLS connections to
PowerExchange Listeners.

Authentication
You can optionally configure PowerExchange to require server authentication of client certificates, client authentication
of server certificates, or both.

If you configure a TLS server to require client authentication, the server requests the client personal certificate with its
signing CA certificates. The server checks that the personal certificate of the client is up-to-date and signed by a
certificate authority in the CA list of the server. The following statements determine whether the server requires client
authentication:

• The SSL_REQ_CLNT_CERT statement in the DBMOVER file of the TLS server on Linux, UNIX, or Windows

• The HandshakeRole statement in the TTLSEnvironmentAction section of the AT-TLS policy file on z/OS

If you configure a TLS client to require server authentication, the client checks that the personal certificate of the server
is in-date and signed by a certificate authority in the CA list of the client. The SSL_REQ_SRVR_CERT statement in the
DBMOVER file of the TLS client determines whether the client requires server authentication.

4

If you configure neither the TLS server nor client to require authentication of peer certificates, network packets are still
encrypted during the session.

Because clients do not typically require server authentication in a PowerExchange network, you are likely to use one of
the following authentication modes:

• Server requests client authentication.

• Neither client nor server requests authentication.

FIPS 140-2 Compliance
TLS, in an appropriate environment, complies with the Federal Information Processing Standard (FIPS) Publication
140-2. By configuring PowerExchange appropriately, creating the necessary certificates, and selecting appropriate
algorithms, you can achieve FIPS 140-2 Security Level 1 compliance on a PowerExchange network. To ensure that your
PowerExchange network meets the requirements for FIPS 140-2 compliance, consult your security administrator.

FIPS 140-2 Compliance Considerations on z/OS
FIPS 140-2 level 1 support in z/OS System SSL requires z/OS 1.11 or later, or z/OS 1.10 with the fixes for APAR
OA26457. Additional fixes and z/OS configuration changes are also required.

In particular, the operating system must include the Cryptographic Services Security Level 3 (FMID JCPT391)
component of z/OS System SSL.

z/OS AT-TLS uses z/OS System SSL. For z/OS 1.12 and later, AT-TLS provides the following features in support of FIPS
140-2 compliance:

• A configuration parameter to request that System SSL uses only FIPS 140-2 compliant encryption methods

• Symbolic names for recent encryption methods such as those using AES-256 bit encryption

For earlier version of z/OS, you can enforce the use of FIPS-compliant encryption by specifying the candidate
encryption methods as hexadecimal codes rather than as symbolic names.

For more information about achieving FIPS 140-2 Level 1 compliance with System SSL, see the following IBM
publications:

• Cryptographic Services System Secure Sockets Layer Programming

• APAR OA26457 System Secure Sockets Layer Programming

FIPS 140-2 Compliant Cipher Suites
During a TLS handshake, the client and server agree on a symmetric algorithm to use to encrypt data during the
session. The client offers a list of cipher suites, and the server selects one from the list. For the PowerExchange
network to be FIPS 140-2 compliant, the selected cipher suite must be FIPS 140-2 compliant.

On Linux, UNIX, or Windows clients or servers, PowerExchange uses the OpenSSL runtime engine. When a client and
server are both using OpenSSL, the cipher suite that PowerExchange selects is FIPS 140-2 compliant.

On z/OS, AT-TLS manages TLS sessions. The order of cipher suites in the TTLSCipherParms statement in the AT-TLS
policy file is important. The server selects the first cipher suite in the list that matches one offered by the client. In this
process, ciphers are identified with hexadecimal cipher suite numbers.

To ensure that a z/OS server selects a FIPS 140-2 compliant cipher suite, verify that the first cipher suite in the
TTLSCipherParms list matches one of the FIPS 140-2 compliant cipher suites that OpenSSL supports.

5

The following table is a partial list of FIPS 140-2 compliant cipher suites that OpenSSL and AT-TLS both support:

OpenSSL Cipher Suite Name AT-TLS Cipher Suite Name Hexadecimal Value

DHE-RSA-AES256-SHA TLS_DHE_RSA_WITH_AES_256_CBC_SHA 39

DHE-DSS-AES256-SHA TLS_DHE_DSS_WITH_AES_256_CBC_SHA 38

AES256-SHA TLS_RSA_WITH_AES_256_CBC_SHA 35

EDH-RSA-DES-CBC3-SHA TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA 16

EDH-DSS-DES-CBC3-SHA TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA 13

DES-CBC3-SHA TLS_RSA_WITH_3DES_EDE_CBC_SHA 0A

DHE-RSA-AES128-SHA TLS_DHE_RSA_WITH_AES_128_CBC_SHA 33

DHE-DSS-AES128-SHA TLS_DHE_DSS_WITH_AES_128_CBC_SHA 32

AES128-SHA TLS_RSA_WITH_AES_128_CBC_SHA 2F

For a complete list of algorithms that OpenSSL and AT-TLS support, see the OpenSSL and AT-TLS documentation.

Note: The optional, no-charge CPACF feature, which is available on IBM System z machines, provides machine
instructions to accelerate hashing algorithms and symmetric key encryption and decryption used with TLS. For
performance reasons, you might want to use only those cryptographic suites for which hardware assists are available.
For example, CPACF supports AES-128 on z9 and later machines and supports AES-256 on z10 and z196 machines.

PWXUGSK Utility
Use the PWXUGSK utility to generate reports about TLS libraries and certificates that were generated on z/OS for the
PowerExchange Listener. You can also determine the validity of certificates that are available to a specified user.

The PWXUGSK utility runs on z/OS and supports the following commands and reports:

• PING command. Use the PING command to verify the following:

- A specified user ID has the authority to view security certificates for the PowerExchange Listener on z/OS.

- The certificates available to the PowerExchange Listener are current and valid.

- The AT-TLS rules defined for the server can intercept inbound requests, remove the TLS information and
send TCP/IP packets to the PowerExchange Listener.

To perform this verification, submit JCL that includes the following command:

PWKUGSK CMD=PING PING_LOCATION=node_name
[PING_UID=user_name {PING_PWD=password|PING_EPWD=encrypted_password}]

• Certificates report. Reports information about the certificates stored in a RACF keyring or SAF database. To
run a certificates report, submit JCL that includes the following command:

PWXUGSK CMD=REPORT_CERTIFICATES [LOC_TYPE={KEYRING|DATABASE}] [LOC_NAME=name]
[DB_PWD=password] [DB_EPWD=encrypted_password] [VERBOSE={N|Y}]

• Ciphers report. Reports the cipher suites that are available on the z/OS system. To run a ciphers report, submit
JCL that includes the following command:

PWXUGSK CMD=REPORT_CIPHERS

6

• Error codes report. Reports all possible system TLS errors, both from the secure connection and from the
processing of data packets. After a TLS failure, particular instances of these errors can be found in the TCP/IP
JES message log. To run an error-codes report, submit JCL that includes the following command:

PWXUGSK CMD=REPORT_ERROR_CODES
Fore more information about the PWXUGSK utility, see the PowerExchange Utilities Guide.

PWXUSSL Utility
Use the PowerExchange PWXUSSL utility on Linux, UNIX, or Windows to generate reports about TLS libraries,
certificates, and cipher suites on Linux, UNIX, and Windows. You can also convert a PKCS12DER certificate to PEM
format, and issue a PING command to a secure server to verify that the server certificates are valid and that the server
can transfer TCP/IP packets to a PowerExchange Listener.

For example, to confirm that one of the cipher suites listed in “FIPS 140-2 Compliant Cipher Suites” on page 5 is
supported on your machine, generate a report of the cipher suites that are available in the OpenSSL cryptographic
library.

The PWXUSSL utility runs from the root PowerExchange installation directory. For example, on a Windows server, you
might run the utility from the C:\Informatica\PowerExchangev.r.m directory. The PWXUSSL utility supports the
following commands and reports:

• CONVERT_PKCS12_PEM command. Converts certificates that were created on z/OS in PKCS12DER format to
the PEM format that can be used on Linux, Unix, and Windows machines.
To convert a certificate, enter the following command:

PWXUSSL CMD=CONVERT_PKCS12_PEM INFILE=pkcs12_file_name [PWD=password|
EPWD=encrypted_password] OUT_FILE=pem_file_name [OUT_ENCODING=[DES3|DES_EDE3_CBC|NONE]
OUT_PWD=password]

Note: If OUT_ENCODING is not specified, the DES3 format is used for the output file. If OUT_PASSWORD is not
specified, the password or encrypted password associated with the input file is used for the output file.

• PING command. Verifies that a secure connection can be established between the machine from which you
issue the command and a PowerExchange Listener on a remote node.
To PING a connection, enter the following command:

PWXUSSL CMD=PING PING_LOCATION=node_name [PING_UID=user_name {PING_PWD=password|
PING_EPWD=encrypted_password}]

• Certificate report. Reports information from a certificate chain file.

To generate a certificate report, enter the following command:

PWXUSSL CMD=REPORT_CERTIFICATE INFILE=infile_name [INFORM={PEM|PKCS12|DER}]
[REPORTFORMAT={OPENSSL|SUMMARY|TEXT|ALL}] [PWD=password|EPWD=encrypted_password]

• Ciphers report. Reports the cipher suites that are available in the OpenSSL cryptographic library.

To generate a ciphers report, enter the following command:

PWXUSSL CMD=REPORT_CIPHERS [CIPHER_LIST=list] [CONTEXT_METHOD={TLSV1|TLSV1_1|TLSV1_2|
DTLSV1]

• Codes report. Reports the return codes from an attempt to establish a secure connection between a
PowerExchange Listener and client.
To generate a codes report, enter the following command:

PWXUSSL CMD=REPORT_CODES [CODE_TYPE={ALL|CATYPES|VERIFYRC}]
• Configuration report. Reports the the security configuration of the machines that participate in a secured

connection. You can filter the results to include a specific participant type, such as a PowerExchange client or
PowerExchange Listener.
To generate a configuration report, enter the following command:

PWXUSSL CMD=REPORT_CONFIG [CLIENT_LISTENER_TYPE={ALL|CLIENT|LISTENER}] [NAME=node_name]

7

• Error codes report. Reports error codes returned from SSL processing during an attempt to establish a secure
connection between the PowerExchange Listener and client.
To generate an error codes report, enter the following command:

PWXUSSL CMD=REPORT_ERROR_CODES [ERROR_CODE_TYPE={ALL|LIBRARIES|FUNCTIONS|REASONS}]
• Version report. Reports the version of OpenSSL that was used to build the cryptographic library.

To generate a version report, enter the following command:

PWXUSSL CMD=REPORT_VERSION
For more information about the PWXUSSL utility, see the PowerExchange Utilities Guide.

Implementation Task Flow
Before you begin TLS configuration for secure communication on a PowerExchange network, ensure that your
organization has a local CA certificate from a well-known CA vendor. Optionally, you can generate a self-signed
certificate for internal uses within your organization's network, such as for testing.

A security administrator typically performs the tasks to configure TLS. Security administrators have specific
permissions and system access that allow them to generate and manage security certificates and policy files.

Note: All certificates created for use with PowerExchange must be generated to the X.509 standard. For example,
because the PKCS7 format meets the X.509 standard, it can be used to generate the certificates.

1. Determine your organization's requirements for TLS connections.

2. Configure each TLS server on z/OS.

3. Configure each TLS server on Linux, UNIX, or Windows.

4. If your organization requires client validation, configure each TLS client on Linux, UNIX, or Windows.

5. Make the certificates available to the all PowerExchange servers and clients that require authentication.

6. Verify that secure connections can be established between PowerExchange clients and servers.

Step 1. Determine the TLS Requirements for Your PowerExchange
Network
Before you implement TLS on a PowerExchange network, determine the security requirements of your organization.

Gather the following information:

• Which connections in the network require TLS security?

• Does your organization require authentication of TLS client or server certificates, and if so, do you want to
allow self-signed certificates?

• Do you need to verify which encryption algorithms are used? Do you need to verify that the system meets FIPS
140-2 requirements?

• How are CA and personal certificates issued in your organization?

Step 2. Configure TLS Servers on z/OS
To configure a TLS server on z/OS, perform the following tasks.

8

Step 2A. Set Up AT-TLS on z/OS
On z/OS release 1.7 and later, AT-TLS uses a Communications Server policy file to determine which sessions use the
TLS protocol.

Before you add a rule to the AT-TLS policy file, verify that the file exists and that the policy Agent is running.

Add a rule to this file that defines PowerExchange Listener properties for TLS communication.

To add a rule, edit the policy file or use the IBM Configuration Assistant for z/OS Communications Server. You can
download the IBM Configuration Assistant for z/OS Communications Server from the IBM z/OS Support web site.

When you add a rule, include the following statements:

Statement Value

LocalPortRange PowerExchange Listener port number.

Jobname PowerExchange Listener job name.

Direction Direction of communication. Specify Inbound to indicate that communication
proceeds from client to Listener.

TTLSGroupActionRef References an existing group_action that is defined in another section of the policy
file.

TTLSEnvironmentActionRef
environment_action

References an existing environment_action that is defined in another section of the
policy file.

The following example rule demonstrates how to enter the statements:

 TTLSRULE JOB_JBBV861
{
 LocalPortRange 13132
 Jobname JBBV861
 Direction Inbound
 TTLSGroupActionRef gActEnableTTLS
 TTLSEnvironmentActionRef eActServerDefault
}

The TTLSGroupActionRef and TTLSEnvironment ActionRef statements in the rule reference statements in other
sections of the policy file. The following table describes the statements that are referenced:

Statement Sub-Statement Value

TTLS Group Action TTLSEnabled On

CtraceClearText Off

Trace 7

9

Statement Sub-Statement Value

TTLSEnvironmentAction HandshakeRole For servers, specifies one of the following values:
- Server. The Listener acts as the TLS server and does not require

client authentication. Little or no peer subject certificate
verification is performed. Use this mode to establish a quick
configuration with only network encryption.

- ServerWithClientAuth. The Listener acts as the TLS server and
requires client authentication. This mode requires AT-TLS to verify
that the subject certificate is issued from a remote Linux, Unix, or
Windows client with a CA certificate that the z/OS system trusts.
This mode provides more security, and requires that a security
administrator with knowledge of certificate administration
coordinate the certificates on both the z/OS and Linux, Unix, or
Windows servers.

TTLSCipherParmsRef References the TTLSCipherParms statement.

TTLSKeyRingParmsRef References the TTLSKeyRingParms statement.

TTLSCipherParms V3CipherSuites Supported symmetric cipher suites.

TTLSKeyRingParms Keyring Key ring that contains the personal and CA certificates.

The following example statements are referenced by the rule in the policy file:

 TTLSGroupAction gActEnableTTLS
{
 TTLSEnabled On
 CtraceClearText Off
 Trace 7
}
 TTLSEnvironmentAction eActServerDefault
 {
 HandshakeRole Server
 TTLSCipherParmsRef cipher1~AT-TLS__Silver
 TTLSKeyringParmsRef kATTLSkeyring
}
 TTLSCipherParms cipher1~AT-TLS__Silver
{
 V3CipherSuites TLS_RSA_WITH_DES_CBC_SHA
 V3CipherSuites TLS_RSA_WITH_3DES_EDE_CBC_SHA
 V3CipherSuites TLS_RSA_WITH_AES_128_CBC_SHA
}
 TTLSKeyRingParms kATTLSkeyring
 {
 Keyring ATTLS_keyring
 }

Step 2B. Create Personal Certificates on z/OS
To create a personal certificate on z/OS, use RACF or another security facility such as ACF2 or TopSecret.

The following steps assume that you are using RACF and the RACF administrator has already created a suitable CA
site certificate.

1. Create a key ring.

2. Create a personal certificate.

3. Connect the personal certificate to the key ring.

4. Connect the CA certificate to the key ring.

10

The following example RACF commands perform these steps:

/* Create a Keyring for the application */
RACDCERT ID(MYUSERID) ADDRING(ATTLS_keyring)
SETROPTS RACLIST(DIGTCERT,DIGTNMAP) REFRESH

/* Create a certificate for the Server application */
RACDCERT ID(MYUSERID) GENCERT -
 SUBJECTSDN (-
 O('MyCompany') -
 CN('MYUSERID.mymachine.myorganization.com') -
 OU('myorganizationunit') -
 C('GB') -
) -
 WITHLABEL('MYUSERIDCert1')-
 SIGNWITH(CERTAUTH LABEL('LOCALCA'))
 SETROPTS RACLIST(DIGTCERT,DIGTNMAP) REFRESH

/* Connect the server certificate to the server’s keyring.*/
RACDCERT ID(MYUSERID) CONNECT(ID(MYUSERID) - LABEL('MYUSERIDCert1') –
RING(ATTLS_keyring) –
DEFAULT –
USAGE(personal))
SETROPTS RACLIST(DIGTCERT,DIGTNMAP) REFRESH

/* Connect the CA certificate to the server's keyring */
RACDCERT ID(MYUSERID) CONNECT(CERTAUTH –
LABEL('LOCALCA') –
RING(ATTLS_keyring) - USAGE(certauth))
SETROPTS RACLIST(DIGTCERT,DIGTNMAP) REFRESH

Step 2C. Configure the DBMOVER File on the z/OS TLS Server
In the DBMOVER configuration file, include a LISTENER statement with the port that you associated with the
PowerExchange Listener task in the AT-TLS policy file. On z/OS, the LISTENER statement does not include any
additional parameters for TLS processing.

For example, you might run the PowerExchange Listener in non-TLS mode on port 13131 to connect to the
PowerExchange Navigator and PowerCenter Developer and run the Listener in TLS mode on port 13132 to connect to
the PowerCenter Integration Service. In this case, the AT-TLS policy file includes a rule for the Listener job that uses
TLS on port 13132, and the DBMOVER file includes the following statements:

LISTENER=(node1,TCPIP,13131)
LISTENER=(node1,TCPIP,13132)

Caution: Because PowerExchange uses AT-TLS to implement TLS on z/OS, do not include the SSL parameter in the
LISTENER statement in the DBMOVER file on z/OS. Also, do not include SSL-related statements, such as
SSL_REQ_CLNT_CERT, in the file. Including SSL-related parameters or statements in the DBMOVER file cause
processing to fail.

Step 3. Configure TLS Servers on Linux, UNIX, or Windows
To configure a TLS server on Linux, UNIX, or Windows, perform the following tasks.

Step 3A. Set Up OpenSSL on Linux, UNIX, or Windows
OpenSSL must be installed on the Linux, UNIX, or Windows machine on which you create or convert certificates for the
TLS server.

OpenSSL is pre-installed on Linux and UNIX.

To install OpenSSL on Windows, download it from http://www.openssl.org.

11

http://www.openssl.org

To verify that OpenSSL is installed properly, launch OpenSSL and issue the following command:

OpenSSL> version
OpenSSL displays the version number. PowerExchange works with any version of OpenSSL.

Step 3B. Create CA Certificates on Linux, UNIX, or Windows
Create a CA certificate that you can use to sign personal certificates on Linux, UNIX, or Windows.

If you already have a CA certificate that you can use to sign personal certificates, skip this step.

1. At the command prompt, enter the following command:

openssl
The OpenSSL> prompt appears.

2. To generate a private key and a request for a CA certificate, issue the OpenSSL req command:

OpenSSL> req -newkey rsa:2048 -digest -keyout rootkey.pem -out rootreq.pem
Options:

-newkey rsa:2048

Requests a new certificate request and a 2048-bit RSA private key.

-digest

Specifies the message digest used to sign the request. A value specified in this option overrides the
message digest specified in the configuration file, unless a public key algorithm is configured that
overrides this choice. For example, a DSA signature will always use an SHA1 digest. The generic name
dgst can also be specified. The default digest is SHA256. To see a list of supported algorithms, use the
list --digest-commands command.

-keyout rootkey.pem

Specifies the name of a file to which the private key for the CA certificate is written.

-out rootreq.pem

Specifies the name of a file to which the certificate request for the CA certificate is written.

3. Respond to the series of prompts that OpenSSL displays.

For most prompts, you can accept the default. For Common Name, you can use the server name.

4. To generate a public CA certificate, issue the OpenSSL x509 command:

OpenSSL> x509 -req -in rootreq.pem -digest -extensions V3_CA -signkey rootkey.pem -out
rootcert.pem -days 999

Options:

-req

Specifies that the input is a certificate request rather than a certificate.

-in rootreq.pem

Specifies the name of the input certificate request file that you created in step 2.

-digest

Specifies the message digest used to sign the request. A value specified in this option overrides the
message digest specified in the configuration file, unless a public key algorithm is configured that
overrides this choice. For example, a DSA signature will always use an SHA1 digest. The generic name
dgst can also be specified. The default digest is SHA256. To see a list of supported algorithms, use the
list --digest-commands command.

12

-extensions V3_CA

Specifies V3_CA as the section from which to add certificate extensions. Use this option to convert a
certificate request into a self-signed certificate by using extensions for a CA.

-signkey rootkey.pem

Specifies use of the private key that you created in step 2 to sign this certificate.

-out rootcert.pem

Specifies the name of the file to which the CA certificate is written. If you require authentication, specify
this value for the CALIST parameter of the SSL statement in the DBMOVER file.

-days

Specifies the number of days before the certificate expires, from 1 to 999. Default is 30.

Step 3C. Create Personal Certificates on Linux, UNIX or Windows
To create a personal certificate, issue the OpenSSL req and x509 commands and then concatenate the two files that
these commands create.

Alternatively, you can create a personal certificate by using one of the following methods:

• Export an existing Windows certificate, and convert it to .pem format by using OpenSSL.

• Generate a personal certificate on the z/OS system by using RACF and export the certificate to the Linux, UNIX,
or Windows system. Then convert the certificate to the .pem format by using OpenSSL or the PWXUSSL utility.

1. If the OpenSSL program is not running, enter the following command at the command prompt to start the
program:

openssl
The OpenSSL> prompt appears.

2. To generate a private key and a request for a personal certificate, issue the following OpenSSL req command:

OpenSSL> req -newkey rsa:2048 -digest -keyout personalkey.pem -out personalreq.pem
Options:

-newkey rsa:2048

Requests a new certificate request and a 2048-bit RSA private key.

-digest

Specifies the message digest used to sign the request. A value specified in this option overrides the
message digest specified in the configuration file, unless a public key algorithm is configured that
overrides this choice. For example, a DSA signature will always use an SHA1 digest. The generic name
dgst can also be specified. The default digest is SHA256. To see a list of supported algorithms, use the
list --digest-commands command.

-keyout personalkey.pem

Specifies the name of a file to which the private key for the personal certificate is written.

-out rootreq.pem

Specifies the name of a file to which the certificate request for the personal certificate is written.

3. At the prompt for a passphrase, enter the passphrase that you provided when you created the CA certificate.

4. At the prompt for a PEM passphrase, enter a second passphrase. You will specify this passphrase in the
PASS parameter of the SSL statement in the DBMOVER configuration file.

5. Respond to the series of prompts that OpenSSL displays. You can use the same responses that you provided
for the CA certificate request.

13

6. To generate a personal certificate, issue the following OpenSSL x509 command:

OpenSSL> x509 -req -in personalreq.pem -digest -CA rootcert.pem -CAkey rootkey.pem -
CAcreateserial -out personalcert.pem -days 999

Options:

-req

Specifies that the input is a certificate request rather than a certificate.

-in personalreq.pem

Specifies the name of the input certificate request file that you created in step 2.

-digest

Specifies the message digest used to sign the request. A value specified in this option overrides the
message digest specified in the configuration file, unless a public key algorithm is configured that
overrides this choice. For example, a DSA signature will always use an SHA1 digest. The generic name
dgst can also be specified. The default digest is SHA256. To see a list of supported algorithms, use the
list --digest-commands command.

-CA rootcert.pem

Specifies the name of the file that contains the CA root certificate that was created in the step 2.

-CAkey rootkey.pem

Specifies the use of the CA private key that was created in the step 2 and is that is used to sign this
certificate.

CAcreateserial

Creates the CA serial number file.

-out personalcert.pem

Specifies the name of the file to which the personal certificate is written.

-days

Specifies the number of days before the certificate expires, from 1 to 999. Default is 30.

7. Concatenate the personal key and personal certificate.

On Windows, enter the following command:

type personalcert.pem personalkey.pem > personalcertkey.pem
On Linux or UNIX, enter the following command:

cat personalcert.pem personalkey.pem > personalcertkey.pem
This step creates the file personalcertkey.pem. Specify this value in the KEY parameter of the SSL statement
in the DBMOVER configuration file.

Step 3D. Configure the DBMOVER File on the Linux, UNIX, or Windows TLS
Server
Depending on how you want to configure TLS processing, you must include some or all of the following statements in
the DBMOVER file on the Linux, UNIX, or Windows TLS server:

• LISTENER. Specifies the parameters for the PowerExchange Listener that is operating in TLS mode.

• SSL. Specifies the security key and passphrase that you are using to make the TLS connection. If the server
requests client authentication, also specifies the certificate authority list (CALIST).

14

• SSL_REQ_CLNT_CERT. Specifies whether the OpenSSL library verifies that the issuer of the remote server
subject certificate is a locally trusted CA certificate specified in the SSL CALIST or CAPATH parameter. Set
this parameter to Y if the following conditions are true:

- You need to verify the identify of the remote machine. For example, another machine might be impersonating
a client on your network.

- You have or your security administrator has a technical understanding of certificates and can coordinate the
locally trusted CA certificates with the remote client subject certificates.

- You have a PowerExchange process that runs on Linux, Unix or Windows. For example, you are accessing
Oracle, Microsoft SQL Server, DB2 UDB or MySQL data.

• SSL_ALLOW_SELFSIGNED. Specifies whether to allow self-signed certificates if the server requests client
authentication. Set this statement to Y if certificate verification is performed, and the OpenSSL library rejects
the local CA certificate. If SSL_REQ_CLIENT_CERT is set to Y, the OpenSSL library rejects self-signed CA
certificates by default. A CA certificate is considered trusted if it is present in the location specified by the SSL
CALIST or CAPATH parameters.
In general, only a single CA certificate is required. However, if a chain of certificates is included, the bottom
certificate may be self-signed.

Note: If the local CA certificate is rejected once, it will also fail for all other incoming connection attempts.

The following DBMOVER statements configure TLS communication:

LISTENER=(node,TCPIP,port_number,,,,,,,SSL)
SSL=(PASS=passphrase,KEY=personalkey.pem),CALIST=calist
SSL_REQ_CLNT_CERT=Y

You might want to run the Listener in both TLS and non-TLS mode. For example, you could run the Listener in non-TLS
mode on port 13131 to connect to the PowerExchange Navigator and PowerCenter Developer, and run the Listener in
TLS mode on port 13132 to connect to the PowerCenter Integration Service. In this case, the DBMOVER file would
include the following LISTENER statements:

LISTENER=(node1,TCPIP,13131)
LISTENER=(node1,TCPIP,13132,,,,,,,SSL)

Step 4. Configure TLS Clients on Linux, UNIX, or Windows
To configure a TLS client on Linux, UNIX, or Windows, perform the same tasks for each client as you did for the Linux,
UNIX, or Windows server.

Step 4A. Set up OpenSSL
Step 4A. Set Up OpenSSL. See “Step 3A. Set Up OpenSSL on Linux, UNIX, or Windows” on page 11 for more
information.

Step 4B. Create a CA Certificate
Step 4B. Create a CA certificate. See “Step 3B. Create CA Certificates on Linux, UNIX, or Windows” on page 12 for
more information.

Step 4C. Create a Personal Certificate
Step 4C. Create a personal certificate. See “Step 3C. Create Personal Certificates on Linux, UNIX or Windows” on
page 13 for more information.

15

Step 4D. Configure TLS Clients on Linux, UNIX or Windows
Depending on how you want to configure TLS processing, you must include some or all of the following statements in
the DBMOVER file on the Linux, UNIX, or Windows client machine:

• NODE. Specifies the server to which to connect in TLS mode. In this statement, include the following
parameters:

- Specify the ZOSSSL parameter when accessing a z/OS server in TLS mode.

- Specify the SSL parameter to access a Linux, UNIX, or Windows server in TLS mode.

- Specify N as the last parameter of the NODE statement if the remote peer does not verify certificates. For
example, if the AT-TLS HANDSHAKE ROLE is set to SERVER, or if the SSL_REQ_CLNT_CERT option is set to N,
then specify N as the last parameter in the NODE statement.

• SSL. Specifies the TLS key and passphrase that you use to make the connection. If the client requests server
authentication, also specifies the certificate authority list (CALIST).

• SSL_REQ_SRVR_CERT. Specifies whether the OpenSSL library verifies that the issuer of the remote server
subject certificate is a locally trusted CA certificate specified in the SSL CALIST or CAPATH parameter. Set
this parameter to Y if both of the following conditions are true:

- You need to verify the identify of the remote machine. For example, another machine might be impersonating
a server on your network.

- You have or your security administrator has a technical understanding of certificates and can coordinate the
locally trusted CA certificates with the remote PowerExchange Listener subject certificates.

• SSL_ALLOW_SELFSIGNED. Specifies whether to allow self-signed certificates if the client requests server
authentication. Set this statement to Y if certificate verification is performed, and the OpenSSL library rejects
the local CA certificate.

Note: If the local CA certificate is rejected once, it will also fail for all other incoming connection attempts.

For example, the following DBMOVER statements configure TLS communication and disable the authentication of peer
certificates:

NODE=(server_listener,TCPIP,remote_host,port_number,,,,,,SSL)
SSL=(PASS=passphrase,KEY=personalkey.pem)
SSL_REQ_CLNT_CERT=N
SSL_REQ_SRVR_CERT=N

When you disable authentication of peer certificates, you can omit the CALIST and CAPATH parameters from the SSL
statement.

Step 5. Make Certificates Available
Make CA certificates available to any TLS client or server that requires authentication of peer certificates.

To make CA certficates available, perform the following actions:

• Copy the certificates to the client or server machine that requires authentication of peer certificates.

• Install the certificates using an appropriate program, such as OpenSSL.

• In the DBMOVER file, update the CALIST or CAPATH parameter in the SSL statement to point to the CA
certificates.

16

Step 6. Test the Secure Connection between the Client and the
Server
To verify that a secure connection can be established between the PowerExchange client and server, ping the remote
PowerExchange Listener.

On Linux, UNIX, or Windows use the PWXUSSL utility to issue a PING command:

C:\Informatica\PowerExchangev.r.m pwxussl CMD=ping LOCATION=node_name PING_UID=user_name
PING_PWD=password

On z/OS, use either the PWXUGSK utility or the DTLREXE utility to issue a PING command:

//GSKPINGN JOB 'GSK ',MSGLEVEL=(1,1),MSGCLASS=X,
// CLASS=A,NOTIFY=&SYSUID
//*
//*==
//* RUN PWXUGSK
//*==
//STEP1 EXEC PGM=PWXUGSK,REGION=900M,
// PARM='CMD=PING PING_LOCATION=ZSY216495
// PING_UID=MY PING_PWD=MYPWD VERBOSE=N'
//*
//STEPLIB DD DISP=SHR,DSN=&HLQ..LOADLIB
// DD DISP=SHR,DSN=&SCERUN
// DD DISP=SHR,DSN=&RUNLIB
//*
//DTLMSG DD DISP=SHR,DSN=&HLQ..DTLMSG
//DTLKEY DD DISP=SHR,DSN=&RUNLIB(LICENSE)
//DTLSGN DD DISP=SHR,DSN=&RUNLIB(SIGNON)
//DTLLOG DD DUMMY,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=133)
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//*
//DTLCFG DD *
/*

or

DTLREXE PROG=PING LOC=node
The following example shows a sample report returned by a PING command to indicate whether a secure connection
was successfully established:

PING to location 'node_name'
============================
rc = 0 from OS_Get_Module_EP() on SSLOPNWP
rc = 0 from SSW_Init()
rc=0 from SSW_Env_Open()

Creating TCPIP socket connection to ipaddr 'node' portno 16495
--
rc=0 from WSAStartup()
rc=0 from getaddrinfo() ipaddr=node portno=16495
socket number 380 returned from socket()
rc=0 from connect() socket=380

Creating OpenSSL secure socket connection to ipaddr 'node' portno 16495

rc=0 from SSW_Socket_Open()
Secure socket created

Sending the Connect request

PacketSize 1344 = 2 * 96 (HDR) + 2 * 576 (LST_HDR_LEN)
rc=0 from SSW_Send()
Sent a Connect request. packet len=1344 WrittenLen=1344
Calling SSW_Receive() for 96 bytes

17

rc=0 from SSW_Receive(). Received 96 bytes

Checking if the socket is readable

Socket 380 is not readable as expected.
The PowerExchange listener has accepted the connection.

Sending the DTLREXEL PING request

PacketSize 111 = 96 (HDR) + 15 (Data length)
rc=0 from SSW_Send()
Sent a DTLREXEL request. packet len=111 WrittenLen=111
Calling SSW_Receive() for 96 bytes
rc=0 from SSW_Receive(). Received 96 bytes

Terminating

rc=0 from SSW_Env_Close()
rc=0 from closesocket() on socket 380
rc=0 from OS_Unload_Module() on SSLOPNWP

Ping has run successfully at the TCPIP / SSL level.
Check displays in remote listener log.

Terms and Acronyms
The following terms and acronyms are used in this article:

Application-Transparent Transport Layer Security (AT-TLS)

An application that transparently implements z/OS System SSL in the TCP layer of the TCP/IP stack.

certificate authority (CA)

An organization that issues certificates and vouches for the identities of the subjects of the certificates.

certificate chain

A series of certificates, which includes a personal certificate, the certificate for the root authority, and any
intermediate certificate authorities.

Federal Information Processing Standard Publication 140-2 (FIPS 140-2)

A U.S. government computer security standard used to accredit cryptographic modules.

OpenSSL

An open source implementation of the SSL and TLS protocols for Linux, UNIX, and Windows types of
operating systems.

personal certificate

A public key certificate that identifies a subject and the subject's public key. The certificate is digitally signed
by a CA. On a PowerExchange network, each SSL client and server must have a personal certificate installed.

root authority

Master certificate authority, the highest level in a hierarchy of certificate authorities.

Secure Socket Layer (SSL)

A cryptographic protocol that provides security for communications over networks. Predecessor of the TLS
protocol.

self-signed certificate

A certificate that is signed by its own creator.

18

site certificate

A certificate that can be used to sign other certificates and functions as a CA certificate in a RACF
environment.

System SSL, z/OS System SSL

z/OS implementation of the SSL and TLS protocols.

Transport Layer Security (TLS)

A cryptographic protocol that provides security for communications over networks. TLS is the successor to
the Internet Engineering Task Force (IETF) standard version of the SSL protocol.

X.509

An ITU-T standard for a public key infrstructure. X.509 specifies standard formats for public key certificates.

Authors
John Boyle

Ross Ferrand

Barbara Green

19

	Abstract
	Supported Versions
	Table of Contents
	Introduction
	PowerExchange TLS Architecture
	Authentication
	FIPS 140-2 Compliance
	FIPS 140-2 Compliance Considerations on z/OS
	FIPS 140-2 Compliant Cipher Suites

	PWXUGSK Utility
	PWXUSSL Utility
	Implementation Task Flow
	Step 1. Determine the TLS Requirements for Your PowerExchange Network
	Step 2. Configure TLS Servers on z/OS
	Step 2A. Set Up AT-TLS on z/OS
	Step 2B. Create Personal Certificates on z/OS
	Step 2C. Configure the DBMOVER File on the z/OS TLS Server

	Step 3. Configure TLS Servers on Linux, UNIX, or Windows
	Step 3A. Set Up OpenSSL on Linux, UNIX, or Windows
	Step 3B. Create CA Certificates on Linux, UNIX, or Windows
	Step 3C. Create Personal Certificates on Linux, UNIX or Windows
	Step 3D. Configure the DBMOVER File on the Linux, UNIX, or Windows TLS Server

	Step 4. Configure TLS Clients on Linux, UNIX, or Windows
	Step 4A. Set up OpenSSL
	Step 4B. Create a CA Certificate
	Step 4C. Create a Personal Certificate
	Step 4D. Configure TLS Clients on Linux, UNIX or Windows

	Step 5. Make Certificates Available
	Step 6. Test the Secure Connection between the Client and the Server
	Terms and Acronyms
	Authors

