
Informatica® PowerCenter
10.1

Advanced Workflow Guide

Informatica PowerCenter Advanced Workflow Guide
10.1
June 2016

© Copyright Informatica LLC 1998, 2018

This software and documentation contain proprietary information of Informatica LLC and are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright law. Reverse engineering of the software is prohibited. No part of this document may be reproduced or transmitted in any
form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC. This Software may be protected by U.S. and/or
international Patents and other Patents Pending.

Use, duplication, or disclosure of the Software by the U.S. Government is subject to the restrictions set forth in the applicable software license agreement and as
provided in DFARS 227.7202-1(a) and 227.7702-3(a) (1995), DFARS 252.227-7013©(1)(ii) (OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14 (ALT III),
as applicable.

The information in this product or documentation is subject to change without notice. If you find any problems in this product or documentation, please report them to
us in writing.

Informatica, Informatica Platform, Informatica Data Services, PowerCenter, PowerCenterRT, PowerCenter Connect, PowerCenter Data Analyzer, PowerExchange,
PowerMart, Metadata Manager, Informatica Data Quality, Informatica Data Explorer, Informatica B2B Data Transformation, Informatica B2B Data Exchange Informatica
On Demand, Informatica Identity Resolution, Informatica Application Information Lifecycle Management, Informatica Complex Event Processing, Ultra Messaging,
Informatica Master Data Management, and Live Data Map are trademarks or registered trademarks of Informatica LLC in the United States and in jurisdictions
throughout the world. All other company and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © OSS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright (c) University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright© MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/
Consortium/Legal/2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http://forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/faq.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/
EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://
jdbc.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/lz4/; https://github.com/jedisct1/libsodium/blob/master/
LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe WaInes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

Publication Date: 2018-07-04

https://www.informatica.com/legal/patents.html

Table of Contents

Preface . 15
Informatica Resources. 15

Informatica Network. 15

Informatica Knowledge Base. 15

Informatica Documentation. 15

Informatica Product Availability Matrixes. 16

Informatica Velocity. 16

Informatica Marketplace. 16

Informatica Global Customer Support. 16

Chapter 1: Understanding Pipeline Partitioning. 17
Understanding Pipeline Partitioning Overview. 17

Partitioning Attributes. 18

Partition Points. 18

Number of Partitions. 19

Partition Types. 20

Dynamic Partitioning. 20

Configuring Dynamic Partitioning. 21

Rules and Guidelines for Dynamic Partitioning. 21

Using Dynamic Partitioning with Partition Types. 22

Configuring Partition-Level Attributes. 22

Cache Partitioning. 23

Mapping Variables in Partitioned Pipelines. 23

Partitioning Rules. 24

Partition Restrictions for Editing Objects. 24

Partition Restrictions for PowerExchange. 25

Configuring Partitioning. 25

Adding Partition Points to a Pipeline. 25

Configuring a Partition Point. 26

Partition Points Node. 26

Non-Partition Points Node. 27

Chapter 2: Partition Points. 28
Partition Points Overview. 28

Adding and Deleting Partition Points. 29

Rules and Guidelines for Adding and Deleting Partition Points. 29

Partitioning Relational Sources. 31

Entering an SQL Query. 31

Entering a Filter Condition. 32

Partitioning File Sources. 33

4 Table of Contents

Rules and Guidelines for Partitioning File Sources. 33

Using One Thread to Read a File Source. 34

Using Multiple Threads to Read a File Source. 34

Configuring for File Partitioning. 34

Partitioning Relational Targets. 38

Database Compatibility. 38

Partitioning File Targets. 39

Configuring Connection Settings. 39

Configuring File Properties. 40

Partitioning Custom Transformations. 41

Working with Multiple Partitions. 42

Creating Partition Points. 42

Working with Threads. 42

Partitioning Joiner Transformations. 43

Partitioning Sorted Joiner Transformations. 44

Using Sorted Flat Files. 44

Using Sorted Relational Data. 46

Using Sorter Transformations. 48

Optimizing Sorted Joiner Transformations with Partitions. 48

Partitioning Lookup Transformations. 49

Cache Partitioning Lookup Transformations. 49

Partitioning Pipeline Lookup Transformation Cache. 50

Partitioning Sequence Generator Transformations. 50

Partitioning Sorter Transformations. 51

Configuring Sorter Transformation Work Directories. 51

Partitioning XML Generator Transformations. 51

Restrictions for Transformations. 51

Restrictions for Numerical Functions. 52

Chapter 3: Partition Types. 53
Partition Types Overview. 53

Setting Partition Types in the Pipeline. 54

Setting Partition Types. 55

Database Partitioning Partition Type. 57

Partitioning Database Sources. 57

Target Database Partitioning. 59

Hash Auto-Keys Partition Type. 60

Hash User Keys Partition Type. 60

Key Range Partition Type. 61

Adding a Partition Key. 62

Adding Key Ranges. 62

Pass-Through Partition Type. 64

Round-Robin Partition Type. 65

Table of Contents 5

Chapter 4: Pushdown Optimization. 66
Pushdown Optimization Overview. 66

Pushdown Optimization Types. 67

Running Source-Side Pushdown Optimization Sessions. 67

Running Target-Side Pushdown Optimization Sessions. 67

Running Full Pushdown Optimization Sessions . 67

Active and Idle Databases. 68

Working with Databases. 69

Comparing the Output of the Integration Service and Databases. 69

Rules and Guidelines for IBM DB2. 70

Rules and Guidelines for Netezza. 70

Rules and Guidelines for Teradata. 70

Rules and Guidelines for Vertica. 70

Pushdown Compatibility. 71

Incompatible Users for Database Connections. 72

Qualifying Names of Tables in Idle Databases. 72

Working with Dates. 73

Working with Expressions. 74

Operators. 74

Variables. 75

Functions. 75

Rules and Guidelines for Functions in Pushdown Optimization. 79

Error Handling, Logging, and Recovery. 80

Error Handling. 80

Logging. 80

Recovery. 81

Working with Slowly Changing Dimensions. 81

Working with Sequences and Views. 81

Sequences. 81

Views. 82

Troubleshooting Orphaned Sequences and Views. 84

Using the $$PushdownConfig Mapping Parameter. 85

Configuring Sessions for Pushdown Optimization. 87

Pushdown Options. 87

Partitioning. 87

Target Load Rules. 89

Viewing Pushdown Groups. 90

Chapter 5: Pushdown Optimization Transformations. 92
Pushdown Optimization and Transformations Overview. 92

General Pushdown Restrictions. 93

Aggregator Transformation. 94

6 Table of Contents

Expression Transformation. 94

Filter Transformation. 95

Joiner Transformation. 96

Lookup Transformation. 97

Unconnected Lookup Transformation. 98

Lookup Transformation with an SQL Override. 98

Router Transformation. 99

Sequence Generator Transformation. 100

Sorter Transformation. 101

Source Qualifier Transformation. 102

Source Qualifier Transformation with an SQL Override. 102

Target. 103

Union Transformation. 104

Update Strategy Transformation. 105

Chapter 6: Real-time Processing. 106
Real-time Processing Overview. 106

Understanding Real-time Data. 107

Messages and Message Queues. 107

Web Service Messages. 108

Change Data from PowerExchange Change Data Capture Sources. 108

Configuring Real-time Sessions. 109

Terminating Conditions. 109

Idle Time. 110

Message Count. 110

Reader Time Limit. 110

Flush Latency. 110

Commit Type . 111

Message Recovery. 111

Prerequisites. 112

Steps to Enable Message Recovery. 112

Recovery File. 113

Message Recovery for JMS and WebSphere MQ Sources. 113

Message Recovery for SAP IDoc, TIBCO, and webMethods Sources. 114

Message Recovery. 115

Session Recovery Data Flush. 115

Recovery Table. 116

PM_REC_STATE Table. 116

Message Processing. 116

Message Recovery. 117

Recovery Queue and Recovery Topic. 117

Message Processing. 117

Message Recovery. 117

Table of Contents 7

Recovery Ignore List. 118

Stopping Real-time Sessions. 118

Restarting and Recovering Real-time Sessions. 119

Restarting Real-time Sessions. 119

Recovering Real-time Sessions. 119

Restart and Recover Commands. 119

Rules and Guidelines for Real-time Sessions. 120

Rules and Guidelines for Message Recovery. 121

Real-time Processing Example. 121

Informatica Real-time Products. 123

Chapter 7: Commit Points. 125
Commit Points Overview. 125

Target-Based Commits. 126

Source-Based Commits. 126

Determining the Commit Source. 127

Switching from Source-Based to Target-Based Commit. 128

User-Defined Commits. 130

Rolling Back Transactions. 131

Understanding Transaction Control. 133

Transformation Scope. 134

Understanding Transaction Control Units. 136

Rules and Guidelines for Working with Transaction Control. 136

Creating Target Files by Transaction. 136

Setting Commit Properties. 136

Chapter 8: Row Error Logging. 138
Row Error Logging Overview. 138

Error Log Code Pages. 139

Understanding the Error Log Tables. 139

PMERR_DATA. 140

PMERR_MSG. 141

PMERR_SESS. 142

PMERR_TRANS. 143

Understanding the Error Log File. 144

Configuring Error Log Options. 146

Chapter 9: Workflow Recovery. 148
Workflow Recovery Overview. 148

State of Operation. 149

Workflow State of Operation . 149

Session State of Operation. 149

Target Recovery Tables. 150

8 Table of Contents

Recovery Options. 152

Suspending the Workflow. 153

Configuring Suspension Email. 154

Configuring Workflow Recovery. 154

Recovering Stopped, Aborted, and Terminated Workflows. 155

Recovering Suspended Workflows. 155

Configuring Task Recovery. 155

Task Recovery Strategies. 156

Automatically Recovering Terminated Tasks. 158

Resuming Sessions. 158

Working with Repeatable Data. 159

Source Repeatability. 159

Transformation Repeatability. 160

Configuring a Mapping for Recovery. 160

Steps to Recover Workflows and Tasks. 163

Recovering a Workflow. 163

Recovering a Session. 164

Recovering a Workflow From a Session. 164

Rules and Guidelines for Session Recovery. 164

Configuring Recovery to Resume from the Last Checkpoint. 165

Unrecoverable Workflows or Tasks. 165

Chapter 10: Stopping and Aborting. 166
Stopping and Aborting Overview. 166

Types of Errors. 167

Threshold Errors. 167

Fatal Errors. 167

Integration Service Handling for Session Failure. 168

Stopping or Aborting the Workflow. 168

Stopping or Aborting a Task. 169

Steps to Stop or Abort. 169

Chapter 11: Concurrent Workflows. 170
Concurrent Workflows Overview. 170

Configuring Unique Workflow Instances. 171

Recovering Workflow Instances by Instance Name. 171

Rules and Guidelines for Running Concurrent Instances of the Same Instance Name. 171

Configuring Concurrent Workflows of the Same Name. 171

Running Concurrent Web Service Workflows. 172

Configuring Workflow Instances of the Same Name. 172

Recovering Workflow Instances of the Same Name. 172

Rules and Guidelines for Running Concurrent Instances of the Same Instance Name. 173

Using Parameters and Variables. 173

Table of Contents 9

Accessing the Run Instance Name or Run ID. 173

Steps to Configure Concurrent Workflows. 174

Starting and Stopping Concurrent Workflows. 174

Starting Workflow Instances from Workflow Designer. 174

Starting One Concurrent Workflow. 175

Starting Concurrent Workflows from the Command Line. 175

Stopping or Aborting Concurrent Workflows. 175

Monitoring Concurrent Workflows. 176

Viewing Session and Workflow Logs. 176

Log Files for Unique Workflow Instances. 176

Log Files for Workflow Instances of the Same Name. 177

Rules and Guidelines for Concurrent Workflows. 177

Chapter 12: Grid Processing. 179
Grid Processing Overview. 179

Running Workflows on a Grid. 180

Running Sessions on a Grid. 180

Working with Partition Groups. 181

Forming Partition Groups Without Resource Requirements. 181

Forming Partition Groups With Resource Requirements. 182

Rules and Guidelines for Creating Partition Groups. 182

Working with Caches. 182

Grid Connectivity and Recovery. 183

Configuring a Workflow or Session to Run on a Grid. 183

Rules and Guidelines for Configuring a Workflow or Session to Run on a Grid. 184

Chapter 13: Load Balancer. 185
Load Balancer Overview. 185

Assigning Service Levels to Workflows. 185

Assigning Resources to Tasks. 186

Chapter 14: Workflow Variables. 188
Workflow Variables Overview. 188

Predefined Workflow Variables. 189

Using Predefined Workflow Variables in Expressions. 192

Evaluating Condition in a Workflow. 192

Evaluating Task Status in a Workflow. 192

Evaluating Previous Task Status in a Workflow. 193

User-Defined Workflow Variables. 193

Workflow Variable Start and Current Values. 194

Datatype Default Values. 195

Creating User-Defined Workflow Variables. 195

Using Worklet Variables. 197

10 Table of Contents

Persistent Worklet Variables. 197

Overriding the Initial Value. 197

Rules and Guidelines for Using Worklet Variables. 197

Assigning Variable Values in a Worklet. 197

Passing Variable Values between Worklets. 198

Configuring Variable Assignments. 199

Chapter 15: Parameters and Variables in Sessions. 200
Working with Session Parameters. 200

Changing the Session Log Name. 203

Changing the Target File and Directory. 203

Changing Source Parameters in a File. 203

Changing Connection Parameters. 204

Getting Run-Time Information. 204

Rules and Guidelines for Creating File Parameters and Database Connection Parameters. . . 205

Mapping Parameters and Variables in Sessions. 205

Assigning Parameter and Variable Values in a Session. 206

Passing Parameter and Variable Values between Sessions. 206

Configuring Variable Assignments. 207

Chapter 16: Parameter Files. 208
Parameter Files Overview. 208

Parameter and Variable Types. 209

Where to Use Parameters and Variables. 210

Overriding Connection Attributes in the Parameter File. 217

Parameter File Structure. 218

Parameter File Sections. 219

Comments. 220

Null Values. 220

Sample Parameter File. 220

Configuring the Parameter File Name and Location. 221

Using a Parameter File with Workflows or Sessions. 221

Using a Parameter File with pmcmd. 223

Parameter File Example. 223

Guidelines for Creating Parameter Files. 224

Troubleshooting Parameters and Parameter Files. 225

Tips for Parameters and Parameter Files. 226

Chapter 17: FastExport. 228
Using FastExport Overview. 228

Step 1. Create a FastExport Connection. 229

Verifying the Code Page Mapping File. 230

Step 2. Change the Reader. 231

Table of Contents 11

Step 3. Change the Source Connection. 231

Step 4. Override the Control File (Optional). 231

Rules and Guidelines for Using FastExport. 232

Chapter 18: External Loading. 233
External Loading Overview. 233

Before You Begin. 233

External Loader Behavior. 234

Loading Data to a Named Pipe. 234

Staging Data to a Flat File. 234

Partitioning Sessions with External Loaders. 235

Loading to IBM DB2. 235

IBM DB2 EE External Loader. 235

IBM DB2 EEE External Loader. 236

Rules and Guidelines for IBM DB2 EEE External Loaders. 236

Setting Operation Modes. 237

Configuring Authorities, Privileges, and Permissions. 237

Configuring IBM DB2 EE External Loader Attributes. 237

Configuring IBM DB2 EEE External Loader Attributes. 239

Loading to Oracle. 241

Rules and Guidelines for Oracle External Loaders. 241

Loading Multibyte Data to Oracle. 242

Configuring Oracle External Loader Attributes. 242

Loading to Sybase IQ. 243

Rules and Guidelines for Sybase IQ External Loaders. 243

Loading Multibyte Data to Sybase IQ. 243

Configuring Sybase IQ External Loader Attributes. 244

Loading to Teradata. 245

Rules and Guidelines for Teradata External Loaders. 246

Overriding the Control File. 246

Creating User Variables in the Control File. 247

Configuring Teradata MultiLoad External Loader Attributes. 247

Configuring Teradata TPump External Loader Attributes. 250

Configuring Teradata FastLoad External Loader Attributes. 252

Configuring External Loading in a Session. 254

Configuring a Session to Write to a File. 254

Configuring File Properties. 254

Selecting an External Loader Connection. 255

Troubleshooting External Loading. 256

Chapter 19: FTP. 257
FTP Overview. 257

Rules and Guidelines for Using FTP. 257

12 Table of Contents

Integration Service Behavior. 258

Using FTP with Source Files. 258

Using FTP with Target Files. 258

Configuring FTP in a Session. 259

Configuring SFTP in a Session. 259

Selecting an FTP Connection. 259

Configuring Source File Properties. 260

Configuring Target File Properties. 261

Chapter 20: Session Caches. 263
Session Caches Overview. 263

Cache Memory. 264

Cache Files. 265

Naming Convention for Cache Files. 265

Cache File Directory. 267

Configuring the Cache Size. 267

Calculating the Cache Size. 268

Auto Cache Size. 268

Configuring a Numeric Cache Size. 269

Steps to Configure the Cache Size. 269

Cache Partitioning. 270

Configuring the Cache Size for Cache Partitioning. 271

Aggregator Caches. 271

Incremental Aggregation. 271

Configuring the Cache Sizes for an Aggregator Transformation. 272

Troubleshooting Aggregator Caches. 272

Joiner Caches. 273

1:n Partitioning. 273

n:n Partitioning. 274

Configuring the Cache Sizes for a Joiner Transformation. 274

Troubleshooting Joiner Caches. 275

Lookup Caches. 275

Sharing Caches. 276

Configuring the Cache Sizes for a Lookup Transformation. 276

Rank Caches. 277

Configuring the Cache Sizes for a Rank Transformation. 277

Sorter Caches. 278

Configuring the Cache Size for a Sorter Transformation. 278

XML Target Caches. 279

Configuring the Cache Size for an XML Target. 279

Optimizing the Cache Size. 279

Table of Contents 13

Chapter 21: Incremental Aggregation. 281
Incremental Aggregation Overview. 281

Integration Service Processing for Incremental Aggregation. 282

Reinitializing the Aggregate Files. 282

Moving or Deleting the Aggregate Files. 283

Finding Index and Data Files. 283

Partitioning Guidelines with Incremental Aggregation. 283

Preparing for Incremental Aggregation. 284

Configuring the Mapping. 284

Configuring the Session. 285

Chapter 22: Session Log Interface. 286
Session Log Interface Overview. 286

Implementing the Session Log Interface. 286

The Integration Service and the Session Log Interface. 286

Rules and Guidelines for Implementing the Session Log Interface. 287

Functions in the Session Log Interface. 287

INFA_InitSessionLog. 288

INFA_OutputSessionLogMsg. 288

INFA_OutputSessionLogFatalMsg. 290

INFA_EndSessionLog. 290

INFA_AbnormalSessionTermination. 290

Session Log Interface Example. 291

Building the External Session Log Library. 291

Using the External Session Log Library. 292

Chapter 23: Understanding Buffer Memory. 293
Understanding Buffer Memory Overview. 293

Automatic Buffer Memory Settings. 294

Using Session Configuration Objects for Memory Configuration. 294

Configuring Buffer Memory. 294

Configuring Session Cache Memory. 295

Session Cache Limits. 295

Configuring Automatic Memory Settings for Session Caches. 296

Chapter 24: High Precision Data. 297
High Precision Data Overview. 297

Bigint. 297

Decimal. 298

Index. 299

14 Table of Contents

Preface
The PowerCenter Advanced Workflow Guide is written for developers and administrators who are responsible
for creating workflows and sessions, and running workflows. This guide assumes you have knowledge of
your operating systems, relational database concepts, and the database engines, flat files or mainframe
system in your environment. This guide also assumes you are familiar with the interface requirements for
your supporting applications.

Informatica Resources

Informatica Network
Informatica Network hosts Informatica Global Customer Support, the Informatica Knowledge Base, and other
product resources. To access Informatica Network, visit https://network.informatica.com.

As a member, you can:

• Access all of your Informatica resources in one place.

• Search the Knowledge Base for product resources, including documentation, FAQs, and best practices.

• View product availability information.

• Review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to search Informatica Network for product resources such as
documentation, how-to articles, best practices, and PAMs.

To access the Knowledge Base, visit https://kb.informatica.com. If you have questions, comments, or ideas
about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
To get the latest documentation for your product, browse the Informatica Knowledge Base at
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx.

If you have questions, comments, or ideas about this documentation, contact the Informatica Documentation
team through email at infa_documentation@informatica.com.

15

HTTPS://NETWORK.INFORMATICA.COM/
http://kb.informatica.com
mailto:KB_Feedback@informatica.com
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx
mailto:infa_documentation@informatica.com

Informatica Product Availability Matrixes
Product Availability Matrixes (PAMs) indicate the versions of operating systems, databases, and other types
of data sources and targets that a product release supports. If you are an Informatica Network member, you
can access PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional
Services. Developed from the real-world experience of hundreds of data management projects, Informatica
Velocity represents the collective knowledge of our consultants who have worked with organizations from
around the world to plan, develop, deploy, and maintain successful data management solutions.

If you are an Informatica Network member, you can access Informatica Velocity resources at
http://velocity.informatica.com.

If you have questions, comments, or ideas about Informatica Velocity, contact Informatica Professional
Services at ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that augment, extend, or enhance your
Informatica implementations. By leveraging any of the hundreds of solutions from Informatica developers
and partners, you can improve your productivity and speed up time to implementation on your projects. You
can access Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through Online Support on Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
http://www.informatica.com/us/services-and-training/support-services/global-support-centers.

If you are an Informatica Network member, you can use Online Support at http://network.informatica.com.

16 Preface

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/
http://network.informatica.com

C h a p t e r 1

Understanding Pipeline
Partitioning

This chapter includes the following topics:

• Understanding Pipeline Partitioning Overview, 17

• Partitioning Attributes, 18

• Dynamic Partitioning, 20

• Cache Partitioning, 23

• Mapping Variables in Partitioned Pipelines, 23

• Partitioning Rules, 24

• Configuring Partitioning, 25

Understanding Pipeline Partitioning Overview
You create a session for each mapping you want the Integration Service to run. Each mapping contains one
or more pipelines. A pipeline consists of a source qualifier and all the transformations and targets that
receive data from that source qualifier. When the Integration Service runs the session, it can achieve higher
performance by partitioning the pipeline and performing the extract, transformation, and load for each
partition in parallel.

A partition is a pipeline stage that executes in a single reader, transformation, or writer thread. The number of
partitions in any pipeline stage equals the number of threads in the stage. By default, the Integration Service
creates one partition in every pipeline stage.

If you have the Partitioning option, you can configure multiple partitions for a single pipeline stage. You can
configure partitioning information that controls the number of reader, transformation, and writer threads that
the master thread creates for the pipeline. You can configure how the Integration Service reads data from the
source, distributes rows of data to each transformation, and writes data to the target. You can configure the
number of source and target connections to use.

Complete the following tasks to configure partitions for a session:

• Set partition attributes including partition points, the number of partitions, and the partition types.

• You can enable the Integration Service to set partitioning at run time. When you enable dynamic
partitioning, the Integration Service scales the number of session partitions based on factors such as the
source database partitions or the number of nodes in a grid.

17

• After you configure a session for partitioning, you can configure memory requirements and cache
directories for each transformation.

• The Integration Service evaluates mapping variables for each partition in a target load order group. You
can use variable functions in the mapping to set the variable values.

• When you create multiple partitions in a pipeline, the Workflow Manager verifies that the Integration
Service can maintain data consistency in the session using the partitions. When you edit object properties
in the session, you can impact partitioning and cause a session to fail.

• You add or edit partition points in the session properties. When you change partition points you can define
the partition type and add or delete partitions.

Partitioning Attributes
You can set the following attributes to partition a pipeline:

• Partition points. Partition points mark thread boundaries and divide the pipeline into stages. The
Integration Service redistributes rows of data at partition points.

• Number of partitions. A partition is a pipeline stage that executes in a single thread. If you purchase the
Partitioning option, you can set the number of partitions at any partition point. When you add partitions,
you increase the number of processing threads, which can improve session performance.

• Partition types. The Integration Service creates a default partition type at each partition point. If you have
the Partitioning option, you can change the partition type. The partition type controls how the Integration
Service distributes data among partitions at partition points.

Partition Points
By default, the Integration Service sets partition points at various transformations in the pipeline. Partition
points mark thread boundaries and divide the pipeline into stages. A stage is a section of a pipeline between
any two partition points. When you set a partition point at a transformation, the new pipeline stage includes
that transformation.

The following figure shows the default partition points and pipeline stages for a mapping with one pipeline:

When you add a partition point, you increase the number of pipeline stages by one. Similarly, when you delete
a partition point, you reduce the number of stages by one. Partition points mark the points in the pipeline
where the Integration Service can redistribute data across partitions.

For example, if you place a partition point at a Filter transformation and define multiple partitions, the
Integration Service can redistribute rows of data among the partitions before the Filter transformation
processes the data. The partition type you set at this partition point controls the way in which the Integration
Service passes rows of data to each partition.

18 Chapter 1: Understanding Pipeline Partitioning

Number of Partitions
The number of threads that process each pipeline stage depends on the number of partitions. A partition is a
pipeline stage that executes in a single reader, transformation, or writer thread. The number of partitions in
any pipeline stage equals the number of threads in that stage.

You can define up to 64 partitions at any partition point in a pipeline. When you increase or decrease the
number of partitions at any partition point, the Workflow Manager increases or decreases the number of
partitions at all partition points in the pipeline. The number of partitions remains consistent throughout the
pipeline. If you define three partitions at any partition point, the Workflow Manager creates three partitions at
all other partition points in the pipeline. In certain circumstances, the number of partitions in the pipeline
must be set to one.

Increasing the number of partitions or partition points increases the number of threads. Therefore, increasing
the number of partitions or partition points also increases the load on the node. If the node contains enough
CPU bandwidth, processing rows of data in a session concurrently can increase session performance.
However, if you create a large number of partitions or partition points in a session that processes large
amounts of data, you can overload the system.

The number of partitions you create equals the number of connections to the source or target. If the pipeline
contains a relational source or target, the number of partitions at the source qualifier or target instance
equals the number of connections to the database. If the pipeline contains file sources, you can configure the
session to read the source with one thread or with multiple threads.

For example, when you define three partitions across the mapping, the master thread creates three threads at
each pipeline stage, for a total of 12 threads.

The Integration Service runs the partition threads concurrently. When you run a session with multiple
partitions, the threads run as follows:

1. The reader threads run concurrently to extract data from the source.

2. The transformation threads run concurrently in each transformation stage to process data. The
Integration Service redistributes data among the partitions at each partition point.

3. The writer threads run concurrently to write data to the target.

Partitioning Multiple Input Group Transformations
The master thread creates a reader and transformation thread for each pipeline in the target load order
group. A target load order group has multiple pipelines when it contains a transformation with multiple input
groups.

When you connect more than one pipeline to a multiple input group transformation, the Integration Service
maintains the transformation threads or creates a new transformation thread depending on whether or not
the multiple input group transformation is a partition point:

• Partition point does not exist at multiple input group transformation. When a partition point does not
exist at a multiple input group transformation, the Integration Service processes one thread at a time for
the multiple input group transformation and all downstream transformations in the stage.

• Partition point exists at multiple input group transformation. When a partition point exists at a multiple
input group transformation, the Integration Service creates a new pipeline stage and processes the stage
with one thread for each partition. The Integration Service creates one transformation thread for each
partition regardless of the number of output groups the transformation contains.

Partitioning Attributes 19

Partition Types
When you configure the partitioning information for a pipeline, you must define a partition type at each
partition point in the pipeline. The partition type determines how the PowerCenter Integration Service
redistributes data across partition points.

The PowerCenter Integration Service creates a default partition type at each partition point. If you have the
Partitioning option, you can change the partition type. The partition type controls how the PowerCenter
Integration Service distributes data among partitions at partition points. You can create different partition
types at different points in the pipeline.

You can define the following partition types in the Workflow Manager:

• Database partitioning. The PowerCenter Integration Service queries the IBM DB2 or Oracle database
system for table partition information. It reads partitioned data from the corresponding nodes in the
database. You can use database partitioning with Oracle or IBM DB2 source instances on a multi-node
tablespace. You can use database partitioning with DB2 targets.

• Hash auto-keys. The PowerCenter Integration Service uses a hash function to group rows of data among
partitions. The PowerCenter Integration Service groups the data based on a partition key. The
PowerCenter Integration Service uses all grouped or sorted ports as a compound partition key. You may
need to use hash auto-keys partitioning at Rank, Sorter, and unsorted Aggregator transformations.

• Hash user keys. The PowerCenter Integration Service uses a hash function to group rows of data among
partitions. You define the number of ports to generate the partition key.

• Key range. With key range partitioning, the PowerCenter Integration Service distributes rows of data
based on a port or set of ports that you define as the partition key. For each port, you define a range of
values. The PowerCenter Integration Service uses the key and ranges to send rows to the appropriate
partition. Use key range partitioning when the sources or targets in the pipeline are partitioned by key
range.

• Pass-through. In pass-through partitioning, the PowerCenter Integration Service processes data without
redistributing rows among partitions. All rows in a single partition stay in the partition after crossing a
pass-through partition point. Choose pass-through partitioning when you want to create an additional
pipeline stage to improve performance, but do not want to change the distribution of data across
partitions.

• Round-robin. The PowerCenter Integration Service distributes blocks of data to one or more partitions.
Use round-robin partitioning so that each partition processes rows based on the number and size of the
blocks.

Dynamic Partitioning
If the volume of data grows or you add more CPUs, you might need to adjust partitioning so the session run
time does not increase. When you use dynamic partitioning, you can configure the partition information so
the Integration Service determines the number of partitions to create at run time.

The Integration Service scales the number of session partitions at run time based on factors such as source
database partitions or the number of nodes in a grid.

If any transformation in a stage does not support partitioning, or if the partition configuration does not
support dynamic partitioning, the Integration Service does not scale partitions in the pipeline. The data
passes through one partition.

20 Chapter 1: Understanding Pipeline Partitioning

Complete the following tasks to scale session partitions with dynamic partitioning:

• Set the partitioning. The Integration Service increases the number of partitions based on the partitioning
method you choose.

• Set session attributes for dynamic partitions. You can set session attributes that identify source and
target file names and directories. The session uses the session attributes to create the partition-level
attributes for each partition it creates at run time.

• Configure partition types. You can edit partition points and partition types using the Partitions view on the
Mapping tab of session properties.

Note: Do not configure dynamic partitioning for a session that contains manual partitions. If you set dynamic
partitioning to a value other than disabled and you manually partition the session, the session is invalid.

Configuring Dynamic Partitioning
Configure dynamic partitioning on the Config Object tab of session properties. Configure dynamic
partitioning using one of the following methods:

• Disabled. Do not use dynamic partitioning. Defines the number of partitions on the Mapping tab.

• Based on number of partitions. Sets the partitions to a number that you define in the Number of Partitions
attribute. Use the $DynamicPartitionCount session parameter, or enter a number greater than 1.

• Based on number of nodes in grid. Sets the partitions to the number of nodes in the grid running the
session. If you configure this option for sessions that do not run on a grid, the session runs in one
partition and logs a message in the session log.

• Based on source partitioning. Determines the number of partitions using database partition information.
The number of partitions is the maximum of the number of partitions at the source. For Oracle sources
that use composite partitioning, the number of partitions is the maximum of the number of subpartitions
at the source.

• Based on number of CPUs. Sets the number of partitions equal to the number of CPUs on the node that
prepares the session. If the session is configured to run on a grid, dynamic partitioning sets the number of
partitions equal to the number of CPUs on the node that prepares the session multiplied by the number of
nodes in the grid.

Related Topics:
• “Database Partitioning Partition Type” on page 57

Rules and Guidelines for Dynamic Partitioning
Use the following rules and guidelines with dynamic partitioning:

• Dynamic partitioning uses the same connection for each partition.

• You cannot use dynamic partitioning with XML sources and targets.

• You cannot use dynamic partitioning with the Debugger.

• Sessions that use SFTP fail if you enable dynamic partitioning.

• When you set dynamic partitioning to a value other than disabled, and you manually partition the session
on the Mapping tab, you invalidate the session.

• The session fails if you use a parameter other than $DynamicPartitionCount to set the number of
partitions.

Dynamic Partitioning 21

• The following dynamic partitioning configurations cause a session to run with one partition:

- You override the default cache directory for an Aggregator, Joiner, Lookup, or Rank transformation. The
Integration Service partitions a transformation cache directory when the default is $PMCacheDir.

- You override the Sorter transformation default work directory. The Integration Service partitions the
Sorter transformation work directory when the default is $PMTempDir.

- You use an open-ended range of numbers or date keys with a key range partition type.

- You use datatypes other than numbers or dates as keys in key range partitioning.

- You use key range relational target partitioning.

- You create a user-defined SQL statement or a user-defined source filter.

- You set dynamic partitioning to the number of nodes in the grid, and the session does not run on a grid.

- You use pass-through relational source partitioning.

- You use dynamic partitioning with an Application Source Qualifier.

- You use SDK or PowerConnect sources and targets with dynamic partitioning.

Using Dynamic Partitioning with Partition Types
The following rules apply to using dynamic partitioning with different partition types:

• Pass-through partitioning. If you change the number of partitions at a partition point, the number of
partitions in each pipeline stage changes. If you use pass-through partitioning with a relational source, the
session runs in one partition in the stage.

• Key range partitioning. You must define a closed range of numbers or date keys to use dynamic
partitioning. The keys must be numeric or date datatypes. Dynamic partitioning does not scale partitions
with key range partitioning on relational targets.

• Database partitioning. When you use database partitioning, the Integration Service creates session
partitions based on the source database partitions. Use database partitioning with Oracle and IBM DB2
sources.

• Hash auto-keys, hash user keys, or round-robin. Use hash user keys, hash auto-keys, and round-robin
partition types to distribute rows with dynamic partitioning. Use hash user keys and hash auto-keys
partitioning when you want the Integration Service to distribute rows to the partitions by group. Use round-
robin partitioning when you want the PowerCenter Integration Service to distribute blocks of data to one
or more partitions.

Configuring Partition-Level Attributes
When you use dynamic partitioning, the Integration Service defines the partition-level attributes for each
partition it creates at run time. It names the file and directory attributes based on session-level attribute
names that you define in the session properties.

For example, you define the session reject file name as accting_detail.bad. When the Integration Service
creates partitions at run time, it creates a reject file for each partition, such as accting_detail1.bad,
accting_detail2.bad, accting_detail3.bad.

22 Chapter 1: Understanding Pipeline Partitioning

Cache Partitioning
When you create a session with multiple partitions, the Integration Service may use cache partitioning for the
Aggregator, Joiner, Lookup, Rank, and Sorter transformations. When the Integration Service partitions a
cache, it creates a separate cache for each partition and allocates the configured cache size to each
partition. The Integration Service stores different data in each cache, where each cache contains only the
rows needed by that partition. As a result, the Integration Service requires a portion of total cache memory
for each partition.

After you configure the session for partitioning, you can configure memory requirements and cache
directories for each transformation in the Transformations view on the Mapping tab of the session
properties. To configure the memory requirements, calculate the total requirements for a transformation, and
divide by the number of partitions. To improve performance, you can configure separate directories for each
partition.

The following table describes the situations when the Integration Service uses cache partitioning for each
applicable transformation:

Transformation Description

Aggregator Transformation You create multiple partitions in a session with an Aggregator transformation. You do
not have to set a partition point at the Aggregator transformation.

Joiner Transformation You create a partition point at the Joiner transformation.

Lookup Transformation You create a hash auto-keys partition point at the Lookup transformation.

Rank Transformation You create multiple partitions in a session with a Rank transformation. You do not
have to set a partition point at the Rank transformation.

Sorter Transformation You create multiple partitions in a session with a Sorter transformation. You do not
have to set a partition point at the Sorter transformation.

Mapping Variables in Partitioned Pipelines
When you specify multiple partitions in a target load order group that uses mapping variables, the Integration
Service evaluates the value of a mapping variable in each partition separately. The Integration Service uses
the following process to evaluate variable values:

1. It updates the current value of the variable separately in each partition according to the variable function
used in the mapping.

2. After loading all the targets in a target load order group, the Integration Service combines the current
values from each partition into a single final value based on the aggregation type of the variable.

3. If there is more than one target load order group in the session, the final current value of a mapping
variable in a target load order group becomes the current value in the next target load order group.

4. When the Integration Service finishes loading the last target load order group, the final current value of
the variable is saved into the repository.

Use one of the following variable functions in the mapping to set the variable value:

• SetCountVariable

Cache Partitioning 23

• SetMaxVariable

• SetMinVariable

The following table describes how the Integration Service calculates variable values across partitions:

Variable Function Variable Value Calculation Across Partitions

SetCountVariable Integration Service calculates the final count values from all partitions.

SetMaxVariable Integration Service compares the final variable value for each partition and saves the highest
value.

SetMinVariable Integration Service compares the final variable value for each partition and saves the lowest
value.

Note: Use variable functions only once for each mapping variable in a pipeline. The Integration Service
processes variable functions as it encounters them in the mapping. The order in which the Integration Service
encounters variable functions in the mapping may not be the same for every session run. This may cause
inconsistent results when you use the same variable function multiple times in a mapping.

Partitioning Rules
You can create multiple partitions in a pipeline if the Integration Service can maintain data consistency when
it processes the partitioned data. When you create a session, the Workflow Manager validates each pipeline
for partitioning.

Partition Restrictions for Editing Objects
When you edit object properties, you can impact your ability to create multiple partitions in a session or to run
an existing session with multiple partitions.

Before You Create a Session
When you create a session, the Workflow Manager checks the mapping properties. Mappings dynamically
pick up changes to shortcuts, but not to reusable objects, such as reusable transformations and mapplets.
Therefore, if you edit a reusable object in the Designer after you save a mapping and before you create a
session, you must open and resave the mapping for the Workflow Manager to recognize the changes to the
object.

After You Create a Session with Multiple Partitions
When you edit a mapping after you create a session with multiple partitions, the Workflow Manager does not
invalidate the session even if the changes violate partitioning rules. The Integration Service fails the session
the next time it runs unless you edit the session so that it no longer violates partitioning rules.

The following changes to mappings can cause session failure:

• You delete a transformation that was a partition point.

• You add a transformation that is a default partition point.

• You move a transformation that is a partition point to a different pipeline.

24 Chapter 1: Understanding Pipeline Partitioning

• You change a transformation that is a partition point in any of the following ways:

- The existing partition type is invalid.

- The transformation can no longer support multiple partitions.

- The transformation is no longer a valid partition point.

• You disable partitioning or you change the partitioning between a single node and a grid in a
transformation after you create a pipeline with multiple partitions.

• You switch the master and detail source for the Joiner transformation after you create a pipeline with
multiple partitions.

Partition Restrictions for PowerExchange
You can specify multiple partitions for PowerExchange and PowerExchange Client for PowerCenter. However,
there are additional restrictions. For more information about these products, see the product documentation.

Configuring Partitioning
When you create or edit a session, you can change the partitioning for each pipeline in a mapping. If the
mapping contains multiple pipelines, you can specify multiple partitions in some pipelines and single
partitions in others. You update partitioning information using the Partitions view on the Mapping tab of
session properties. You can configure partitions for non-reusable sessions in the Workflow Designer and for
reusable sessions in the Task Developer.

Add, delete, or edit partition points on the Partitions view of session properties. If you add a key range
partition point, you can define the keys in each range.

The following table lists the configuration options for the Partitions view on the Mapping tab:

Partitions View Option Description

Add Partition Point Click to add a new partition point. When you add a partition point, the transformation
name appears under the Partition Points node.

Delete Partition Point Click to delete the selected partition point.
You cannot delete certain partition points.

Edit Partition Point Click to edit the selected partition point. This opens the Edit Partition Point dialog box.

Key Range Displays the key and key ranges for the partition point, depending on the partition type.
For key range partitioning, specify the key ranges.
For hash user keys partitioning, this field displays the partition key.
The Workflow Manager does not display this area for other partition types.

Edit Keys Click to add or remove the partition key for key range or hash user keys partitioning.
You cannot create a partition key for hash auto-keys, round-robin, or pass-through
partitioning.

Adding Partition Points to a Pipeline
You add partition points from the Mappings tab of the session properties.

Configuring Partitioning 25

To add a partition point:

1. On the Partitions view of the Mapping tab, select a transformation that is not already a partition point,
and click the Add a Partition Point button.

Tip: You can select a transformation from the Non-Partition Points node.

2. Select the partition type for the partition point or accept the default value.

3. Click OK.

The transformation appears in the Partition Points node in the Partitions view on the Mapping tab of the
session properties.

Configuring a Partition Point
You can perform the following tasks when you edit or add a partition point:

• Specify the partition type at the partition point.

• Add and delete partitions.

• Enter a description for each partition.

The following table describes the configuration options for partition points:

Partition Options Description

Select Partition Type Changes the partition type.

Partition Names Selects individual partitions from this dialog box to configure.

Add a Partition Adds a partition. You can add up to 64 partitions at any partition point. The number of
partitions must be consistent across the pipeline. Therefore, if you define three
partitions at one partition point, the Workflow Manager defines three partitions at all
partition points in the pipeline.

Delete a Partition Deletes the selected partition. Each partition point must contain at least one partition.

Description Enter an optional description for the current partition.

You can enter a description for each partition you create. To enter a description, select the partition in the
Edit Partition Point dialog box, and then enter the description in the Description field.

Partition Points Node
The Partition Points node displays the mapping with the transformation icons. The Partition Points node lists
the partition points in the tree. Select a partition point to configure its attributes.

In the Partition Points node, you can configure the following options for each pipeline in a mapping:

• Add and delete partition points.

• Specify the partition type at each partition point.

• Add and delete partitions.

• Enter a description for each partition.

• Add keys and key ranges for certain partition types.

26 Chapter 1: Understanding Pipeline Partitioning

The following table describes the Partition Points node:

Partition Points
Node

Description

Add Partition Point Click to add a new partition point to the Transformation list.

Delete Partition Point Click to delete the current partition point. You cannot delete certain partition points.

Edit Partition Point Click to edit the current partition point.

Edit Keys Click to add, remove, or edit the key for key range or hash user keys partitioning. This button
is not available for auto-hash, round-robin, or pass-through partitioning.

Edit Partition Point
The Edit Partition Point dialog box lets you add and delete partitions and select the partition type.

The following table describes the options in the Edit Partition Point dialog box:

Edit Partition Point Options Description

Add button Click to add a partition. You can add up to 64 partitions.

Delete button Click to delete the selected partition.

Name Partition number.

Description Enter a description for the current partition.

Select Partition Type Select a partition type from the list.

Edit Partition Key
When you specify key range or hash user keys partitioning at any partition point, you must specify one or
more ports as the partition key. Click Edit Key to display the Edit Partition Key dialog box.

You can specify one or more ports as the partition key. To rearrange the order of the ports that make up the
key, select a port in the Selected Ports list and click the up or down arrow.

Non-Partition Points Node
The Non-Partition Points node displays the mapping objects in iconized view. The Partition Points node lists
the non-partition points in the tree. You can select a non-partition point and add partitions if you want.

Configuring Partitioning 27

C h a p t e r 2

Partition Points
This chapter includes the following topics:

• Partition Points Overview, 28

• Adding and Deleting Partition Points, 29

• Partitioning Relational Sources, 31

• Partitioning File Sources, 33

• Partitioning Relational Targets, 38

• Partitioning File Targets, 39

• Partitioning Custom Transformations, 41

• Partitioning Joiner Transformations, 43

• Partitioning Lookup Transformations, 49

• Partitioning Sequence Generator Transformations, 50

• Partitioning Sorter Transformations, 51

• Partitioning XML Generator Transformations, 51

• Restrictions for Transformations, 51

Partition Points Overview
Partition points mark the boundaries between threads in a pipeline. The Integration Service redistributes rows
of data at partition points. You can add partition points to increase the number of transformation threads and
increase session performance.

When you configure a session to read a source database, the Integration Service creates a separate
connection and SQL query to the source database for each partition. You can customize or override the SQL
query.

When you configure a session to load data to a relational target, the Integration Service creates a separate
connection to the target database for each partition at the target instance. You configure the reject file
names and directories for the target. The Integration Service creates one reject file for each target partition.

You can configure a session to read a source file with one thread or with multiple threads. You must choose
the same connection type for all partitions that read the file.

When you configure a session to write to a file target, you can write the target output to a separate file for
each partition or to a merge file that contains the target output for all partitions. You can configure
connection settings and file properties for each target partition.

28

When you create a partition point at transformations, the Workflow Manager sets the default partition type.
You can change the partition type depending on the transformation type.

Adding and Deleting Partition Points
Partition points mark the thread boundaries in a pipeline and divide the pipeline into stages.

When you add partition points, you increase the number of transformation threads, which can increase
session performance. The Integration Service can redistribute rows of data at partition points, which can also
increase session performance. When you create a session, the Workflow Manager creates one partition point
at each transformation in the pipeline.

You can retain or delete the partition points based on the following transformations or target instances in the
pipeline:

Source Qualifier Transformation

Controls how the Integration Service extracts data from the source and passes it to the source qualifier.
You cannot delete this partition point.

Normalizer Transformation

Controls how the Integration Service extracts data from the source and passes it to the source qualifier.
You cannot delete this partition point.

Rank Transformation

Ensures that the Integration Service groups rows properly before it sends them to the transformation.
You can delete these partition points if the pipeline contains only one partition or if the Integration
Service passes all rows in a group to a single partition before they enter the transformation.

Unsorted Aggregator Transformation

Ensures that the Integration Service groups rows properly before it sends them to the transformation.
You can delete these partition points if the pipeline contains only one partition or if the Integration
Service passes all rows in a group to a single partition before they enter the transformation.

Target Instances

Controls how the writer passes data to the targets. You cannot delete this partition point.

Multiple Input Group Transformation

The Workflow Manager creates a partition point at a multiple input group transformation when it is
configured to process each partition with one thread, or when a downstream multiple input group
Custom transformation is configured to process each partition with one thread.

For example, the Workflow Manager can create a partition point at a sorted Joiner transformation. The
Workflow Manager creates a partition point when you connect the Joiner transformation to a
downstream Custom transformation configured to use one thread per partition.

This ensures that the Integration Service uses one thread to process each partition at a Custom
transformation that requires one thread per partition. You cannot delete this partition point.

Rules and Guidelines for Adding and Deleting Partition Points
The following rules and guidelines apply when adding and deleting partition points:

• You cannot create a partition point at a source instance.

Adding and Deleting Partition Points 29

• You cannot create a partition point at a Sequence Generator transformation or an unconnected
transformation.

• You can add a partition point at any other transformation provided that no partition point receives input
from more than one pipeline stage.

• You cannot delete a partition point at a Source Qualifier transformation, a Normalizer transformation for
COBOL sources, or a target instance.

• You cannot delete a partition point at a multiple input group Custom transformation that is configured to
use one thread per partition.

• You cannot delete a partition point at a multiple input group transformation that is upstream from a
multiple input group Custom transformation that is configured to use one thread per partition.

• The following partition types have restrictions with dynamic partitioning:

- Pass-through. When you use dynamic partitioning, if you change the number of partitions at a partition
point, the number of partitions in each pipeline stage changes.

- Key range. To use key range with dynamic partitioning you must define a closed range of numbers or
date keys. If you use an open-ended range, the session runs with one partition.

You can add and delete partition points at other transformations in the pipeline according to the following
rules:

• You cannot create partition points at source instances.

• You cannot create partition points at Sequence Generator transformations or unconnected
transformations.

• You can add partition points at any other transformation provided that no partition point receives input
from more than one pipeline stage.

The following figure shows the valid partition points in a mapping:

In this mapping, the Workflow Manager creates partition points at the source qualifier and target instance by
default. You can place an additional partition point at Expression transformation EXP_3.

If you place a partition point at EXP_3 and define one partition, the master thread creates the following
threads:

30 Chapter 2: Partition Points

1. Reader Thread.
2. Transformation Threads.
3. Writer Thread.

In this case, each partition point receives data from only one pipeline stage, so EXP_3 is a valid partition
point.

The following transformations are not valid partition points:

Transformation Reason

Source Source instance.

SG_1 Sequence Generator transformation.

EXP_1 and EXP_2 If you could place a partition point at EXP_1 or EXP_2, you would create an additional pipeline
stage that processes data from the source qualifier to EXP_1 or EXP_2. In this case, EXP_3
would receive data from two pipeline stages, which is not allowed.

Partitioning Relational Sources
When you run a session that partitions relational or Application sources, the Integration Service creates a
separate connection to the source database for each partition. It then creates an SQL query for each
partition. You can customize the query for each source partition by entering filter conditions in the
Transformation view on the Mapping tab. You can also override the SQL query for each source partition using
the Transformations view on the Mapping tab.

Note: When you create a custom SQL query to read database tables and you set database partitioning, the
Integration Service reverts to pass-through partitioning and prints a message in the session log.

Entering an SQL Query
You can enter an SQL override if you want to customize the SELECT statement in the SQL query. The SQL
statement you enter on the Transformations view of the Mapping tab overrides any customized SQL query
that you set in the Designer when you configure the Source Qualifier transformation.

Partitioning Relational Sources 31

The SQL query also overrides any key range and filter condition that you enter for a source partition. So, if you
also enter a key range and source filter, the Integration Service uses the SQL query override to extract source
data.

If you create a key that contains null values, you can extract the nulls by creating another partition and
entering an SQL query or filter to extract null values.

To enter an SQL query for each partition, click the Browse button in the SQL Query field. Enter the query in the
SQL Editor dialog box, and then click OK.

If you entered an SQL query in the Designer when you configured the Source Qualifier transformation, that
query appears in the SQL Query field for each partition. To override this query, click the Browse button in the
SQL Query field, revise the query in the SQL Editor dialog box, and then click OK.

Entering a Filter Condition
If you specify key range partitioning at a relational source qualifier, you can enter an additional filter
condition. When you do this, the Integration Service generates a WHERE clause that includes the filter
condition you enter in the session properties.

The filter condition you enter on the Transformations view of the Mapping tab overrides any filter condition
that you set in the Designer when you configure the Source Qualifier transformation.

If you use key range partitioning, the filter condition works in conjunction with the key ranges. For example,
you want to select data based on customer ID, but you do not want to extract information for customers
outside the USA. Define the following key ranges:

CUSTOMER_ID Start Range End Range

Partition #1 135000

Partition #2 135000

If you know that the IDs for customers outside the USA fall within the range for a particular partition, you can
enter a filter in that partition to exclude them. Therefore, you enter the following filter condition for the
second partition:

CUSTOMERS.COUNTRY = ‘USA’
When the session runs, the following queries for the two partitions appear in the session log:

READER_1_1_1> RR_4010 SQ instance [SQ_CUSTOMERS] SQL Query [SELECT
CUSTOMERS.CUSTOMER_ID, CUSTOMERS.COMPANY, CUSTOMERS.LAST_NAME FROM CUSTOMERS WHERE
CUSTOMER.CUSTOMER ID < 135000]

[...]

READER_1_1_2> RR_4010 SQ instance [SQ_CUSTOMERS] SQL Query [SELECT
CUSTOMERS.CUSTOMER_ID, CUSTOMERS.COMPANY, CUSTOMERS.LAST_NAME FROM CUSTOMERS WHERE
CUSTOMERS.COUNTRY = ‘USA’ AND 135000 <= CUSTOMERS.CUSTOMER_ID]

To enter a filter condition, click the Browse button in the Source Filter field. Enter the filter condition in the
SQL Editor dialog box, and then click OK.

If you entered a filter condition in the Designer when you configured the Source Qualifier transformation, that
query appears in the Source Filter field for each partition. To override this filter, click the Browse button in the
Source Filter field, change the filter condition in the SQL Editor dialog box, and then click OK.

32 Chapter 2: Partition Points

Partitioning File Sources
When a session uses a file source, you can configure it to read the source with one thread or with multiple
threads. The Integration Service creates one connection to the file source when you configure the session to
read with one thread, and it creates multiple concurrent connections to the file source when you configure
the session to read with multiple threads.

Use the following types of partitioned file sources:

• Flat file. You can configure a session to read flat file, XML, or COBOL source files.

• Command. You can configure a session to use an operating system command to generate source data
rows or generate a file list.

When connecting to file sources, you must choose the same connection type for all partitions. You may
choose different connection objects as long as each object is of the same type.

To specify single- or multi-threaded reading for flat file sources, configure the source file name property for
partitions 2-n. To configure for single-threaded reading, pass empty data through partitions 2-n. To configure
for multi-threaded reading, leave the source file name blank for partitions 2-n.

Rules and Guidelines for Partitioning File Sources
Use the following rules and guidelines when you configure a file source session with multiple partitions:

• Use pass-through partitioning at the source qualifier.

• Use single- or multi-threaded reading with flat file or COBOL sources.

• Use single-threaded reading with XML sources.

• You cannot use multi-threaded reading if the source files are non-disk files, such as FTP files or
WebSphere MQ sources.

• If you use a shift-sensitive code page, use multi-threaded reading if the following conditions are true:

- The file is fixed-width.

- The file is not line sequential.

- You did not enable user-defined shift state in the source definition.

• To read data from the three flat files concurrently, you must specify three partitions at the source
qualifier. Accept the default partition type, pass-through.

• If you configure a session for multi-threaded reading, and the Integration Service cannot create multiple
threads to a file source, it writes a message to the session log and reads the source with one thread.

• When the Integration Service uses multiple threads to read a source file, it may not read the rows in the
file sequentially. If sort order is important, configure the session to read the file with a single thread. For
example, sort order may be important if the mapping contains a sorted Joiner transformation and the file
source is the sort origin.

• You can also use a combination of direct and indirect files to balance the load.

• Session performance for multi-threaded reading is optimal with large source files. The load may be
unbalanced if the amount of input data is small.

• You cannot use a command for a file source if the command generates source data and the session is
configured to run on a grid or is configured with the resume from the last checkpoint recovery strategy.

Partitioning File Sources 33

Using One Thread to Read a File Source
When the Integration Service uses one thread to read a file source, it creates one connection to the source.
The Integration Service reads the rows in the file or file list sequentially. You can configure single-threaded
reading for direct or indirect file sources in a session:

• Reading direct files. You can configure the Integration Service to read from one or more direct files. If you
configure the session with more than one direct file, the Integration Service creates a concurrent
connection to each file. It does not create multiple connections to a file.

• Reading indirect files. When the Integration Service reads an indirect file, it reads the file list and then
reads the files in the list sequentially. If the session has more than one file list, the Integration Service
reads the file lists concurrently, and it reads the files in the list sequentially.

Using Multiple Threads to Read a File Source
When the Integration Service uses multiple threads to read a source file, it creates multiple concurrent
connections to the source. The Integration Service may or may not read the rows in a file sequentially.

You can configure multi-threaded reading for direct or indirect file sources in a session:

• Reading direct files. When the Integration Service reads a direct file, it creates multiple reader threads to
read the file concurrently. You can configure the Integration Service to read from one or more direct files.
For example, if a session reads from two files and you create five partitions, the Integration Service may
distribute one file between two partitions and one file between three partitions.

• Reading indirect files. When the Integration Service reads an indirect file, it creates multiple threads to
read the file list concurrently. It also creates multiple threads to read the files in the list concurrently. The
Integration Service may use more than one thread to read a single file.

Configuring for File Partitioning
After you create partition points and configure partitioning information, you can configure source connection
settings and file properties on the Transformations view of the Mapping tab. Click the source instance name
you want to configure under the Sources node. When you click the source instance name for a file source, the
Workflow Manager displays connection and file properties in the session properties.

You can configure the source file names and directories for each source partition. The Workflow Manager
generates a file name and location for each partition.

The following table describes the file properties settings for file sources in a mapping:

Attribute Description

Input Type Type of source input. You can choose the following types of source input:
- File. For flat file, COBOL, or XML sources.
- Command. For source data or a file list generated by a command.
You cannot use a command to generate XML source data.

Concurrent read
partitioning

Order in which multiple partitions read input rows from a source file. You can choose the
following options:
- Optimize throughput. The Integration Service does not preserve input row order.
- Keep relative input row order. The Integration Service preserves the input row order for the

rows read by each partition.
- Keep absolute input row order. The Integration Service preserves the input row order for all

rows read by all partitions.

34 Chapter 2: Partition Points

Attribute Description

Source File Directory Directory name of flat file source. By default, the Integration Service looks in the service
process variable directory, $PMSourceFileDir, for file sources.
If you specify both the directory and file name in the Source Filename field, clear this field.
The Integration Service concatenates this field with the Source Filename field when it runs
the session.
You can also use the $InputFileName session parameter to specify the file location.

Source File Name File name, or file name and path of flat file source. Optionally, use the $InputFileName
session parameter for the file name.
The Integration Service concatenates this field with the Source File Directory field when it
runs the session. For example, if you have “C:\data\” in the Source File Directory field, then
enter “filename.dat” in the Source Filename field. When the Integration Service begins the
session, it looks for “C:\data\filename.dat”.
By default, the Workflow Manager enters the file name configured in the source definition.

Source File Type You can choose the following source file types:
- Direct. For source files that contain the source data.
- Indirect. For source files that contain a list of files. When you select Indirect, the

Integration Service finds the file list and reads each listed file when it runs the session.

Command Type Type of source data the command generates. You can choose the following command types:
- Command generating data for commands that generate source data input rows.
- Command generating file list for commands that generate a file list.

Command Command used to generate the source file data.

Truncate string null Strips the first null character and all characters after the first null character from string
values.
Enable this option for delimited flat files that contain null characters in strings. If you do not
enable this option, the PowerCenter Integration Service generates a row error for any row that
contains null characters in a string.
Default is disabled.

Configuring Sessions to Use a Single Thread
To configure a session to read a file with a single thread, pass empty data through partitions 2-n. To pass
empty data, create a file with no data, such as “empty.txt,” and put it in the source file directory. Then, use
“empty.txt” as the source file name.

Note: You cannot configure single-threaded reading for partitioned sources that use a command to generate
source data.

The following table shows the source file name and values when the Integration Service creates one thread
to read ProductsA.txt. It reads rows in the file sequentially. After it reads the file, it passes the data to three
partitions in the transformation pipeline:

Source File Name Value

Partition #1 ProductsA.txt

Partition #2 empty.txt

Partition #3 empty.txt

Partitioning File Sources 35

The following table shows the source file name and values when the Integration Service creates two threads.
It creates one thread to read ProductsA.txt, and it creates one thread to read ProductsB.txt. It reads the files
concurrently, and it reads rows in the files sequentially:

Source File Name Value

Partition #1 ProductsA.txt

Partition #2 empty.txt

Partition #3 ProductsB.txt

If you use FTP to access source files, you can choose a different connection for each direct file.

Configuring Sessions to Use Multiple Threads
To configure a session to read a file with multiple threads, leave the source file name blank for partitions 2-n.
The Integration Service uses partitions 2-n to read a portion of the previous partition file or file list. The
Integration Service ignores the directory field of that partition.

To configure a session to read from a command with multiple threads, enter a command for each partition or
leave the command property blank for partitions 2-n. If you enter a command for each partition, the
Integration Service creates a thread to read the data generated by each command. Otherwise, the Integration
Service uses partitions 2-n to read a portion of the data generated by the command for the first partition.

The following table shows the attributes and values when the Integration Service creates three threads to
concurrently read ProductsA.txt:

Attribute Value

Partition #1 ProductsA.txt

Partition #2 <blank>

Partition #3 <blank>

The following table shows the attributes and values when the Integration Service creates three threads to
read ProductsA.txt and ProductsB.txt concurrently. Two threads read ProductsA.txt and one thread reads
ProductsB.txt:

Attribute Value

Partition #1 ProductsA.txt

Partition #2 <blank>

Partition #3 ProductsB.txt

36 Chapter 2: Partition Points

The following table shows the attributes and values when the Integration Service creates three threads to
concurrently read data piped from the command:

Attribute Value

Partition #1 CommandA

Partition #2 <blank>

Partition #3 <blank>

The following table shows the attributes and values when the Integration Service creates three threads to
read data piped from CommandA and CommandB. Two threads read the data piped from CommandA and
one thread reads the data piped from CommandB:

Attribute Value

Partition #1 CommandA

Partition #2 <blank>

Partition #3 CommandB

Configuring Concurrent Read Partitioning
By default, the Integration Service does not preserve row order when multiple partitions read from a single
file source. To preserve row order when multiple partitions read from a single file source, configure
concurrent read partitioning. You can configure the following options:

• Optimize throughput. The Integration Service does not preserve row order when multiple partitions read
from a single file source. Use this option if the order in which multiple partitions read from a file source is
not important.

• Keep relative input row order. Preserves the sort order of the input rows read by each partition. Use this
option if you want to preserve the sort order of the input rows read by each partition.

The following table shows an example sort order of a file source with 10 rows by two partitions:

Partition Rows Read

Partition #1 1,3,5,8,9

Partition #2 2,4,6,7,10

• Keep absolute input row order. Preserves the sort order of all input rows read by all partitions. Use this
option if you want to preserve the sort order of the input rows each time the session runs. In a pass-
through mapping with passive transformations, the order of the rows written to the target will be in the
same order as the input rows.

Partitioning File Sources 37

The following table shows an example sort order of a file source with 10 rows by two partitions:

Partition Rows Read

Partition #1 1,2,3,4,5

Partition #2 6,7,8,9,10

Note: By default, the Integration Service uses the Keep absolute input row order option in sessions configured
with the resume from the last checkpoint recovery strategy.

Partitioning Relational Targets
When you configure a pipeline to load data to a relational target, the Integration Service creates a separate
connection to the target database for each partition at the target instance. It concurrently loads data for each
partition into the target database.

Configure partition attributes for targets in the pipeline on the Mapping tab of session properties. For
relational targets, you configure the reject file names and directories. The Integration Service creates one
reject file for each target partition.

The following table describes the partitioning attributes for relational targets in a pipeline:

Attribute Description

Reject File Directory Location for the target reject files. Default is $PMBadFileDir.

Reject File Name Name of reject file. Default is target name partition number.bad. You can also use the
session parameter, $BadFileName, as defined in the parameter file.

Database Compatibility
When you configure a session with multiple partitions at the target instance, the Integration Service creates
one connection to the target for each partition. If you configure multiple target partitions in a session that
loads to a database or ODBC target that does not support multiple concurrent connections to tables, the
session fails.

When you create multiple target partitions in a session that loads data to an Informix database, you must
create the target table with row-level locking. If you insert data from a session with multiple partitions into an
Informix target configured for page-level locking, the session fails and returns the following message:

WRT_8206 Error: The target table has been created with page level locking. The session
can only run with multi partitions when the target table is created with row level
locking.

Sybase IQ does not allow multiple concurrent connections to tables. If you create multiple target partitions in
a session that loads to Sybase IQ, the Integration Service loads all of the data in one partition.

38 Chapter 2: Partition Points

Partitioning File Targets
When you configure a session to write to a file target, you can write the target output to a separate file for
each partition or to a merge file that contains the target output for all partitions. When you run the session,
the Integration Service writes to the individual output files or to the merge file concurrently. You can also
send the data for a single partition or for all target partitions to an operating system command.

You can configure connection settings and file properties for each target partition. You configure these
settings in the Transformations view on the Mapping tab. You can also configure the session to use
partitioned FTP file targets.

Configuring Connection Settings
Use the Connections settings in the Transformations view on the Mapping tab to configure the connection
type for all target partitions. You can choose different connection objects for each partition, but they must all
be of the same type.

Use one of the following connection types with target files:

• None. Write the partitioned target files to the local machine.

• FTP. Transfer the partitioned target files to another machine. You can transfer the files to any machine to
which the Integration Service can connect.

• Loader. Use an external loader that can load from multiple output files. This option appears if the pipeline
loads data to a relational target and you choose a file writer in the Writers settings on the Mapping tab. If
you choose a loader that cannot load from multiple output files, the Integration Service fails the session.

• Message Queue. Transfer the partitioned target files to a WebSphere MQ message queue.

Note: You can merge target files if you choose a local or FTP connection type for all target partitions. You
cannot merge output files from sessions with multiple partitions if you use an external loader or a WebSphere
MQ message queue as the target connection type.

The following table describes the connection options for file targets in a mapping:

Attribute Description

Connection Type Choose an FTP, external loader, or message queue connection. Select None for a local
connection.
The connection type is the same for all partitions.

Value For an FTP, external loader, or message queue connection, click the Open button in this
field to select the connection object.
You can specify a different connection object for each partition.

Partitioning File Targets 39

Configuring File Properties
Use the Properties settings in the Transformations view on the Mapping tab to configure file properties for
flat file sources.

The following table describes the file properties for file targets in a mapping:

Attribute Description

Merge Type Type of merge that the Integration Service performs on the data for partitioned targets.
When merging target files, the Integration Service writes the output for all partitions to
the merge file or a command when the session runs.
You cannot merge files if the session uses an external loader or a message queue.

Merge File Directory Location of the merge file. Default is $PMTargetFileDir.

Merge File Name Name of the merge file. Default is target name.out.

Append if Exists Appends the output data to the target files and reject files for each partition. Appends
output data to the merge file if you merge the target files. You cannot use this option for
target files that are non-disk files, such as FTP target files.
If you do not select this option, the Integration Service truncates each target file before
writing the output data to the target file. If the file does not exist, the Integration Service
creates it.

Output Type Type of target for the session. Select File to write the target data to a file target. Select
Command to send target data to a command. You cannot select Command for FTP or
queue target connection.

Header Options Create a header row in the file target.

Header Command Command used to generate the header row in the file target.

Footer Command Command used to generate a footer row in the file target.

Merge Command Command used to process merged target data.

Output File Directory Location of the target file. Default is $PMTargetFileDir.

Output File Name Name of target file. Default is target name partition number.out. You can also use the
session parameter, $OutputFileName, as defined in the parameter file.

Reject File Directory Location for the target reject files. Default is $PMBadFileDir.

Reject File Name Name of reject file. Default is target name partition number.bad.
You can also use the session parameter, $BadFileName, as defined in the parameter file.

Command Command used to process the target output data for a single partition.

Configuring Commands for Partitioned File Targets
Use a command to process target data for a single partition or process merge data for all target partitions in
a session. On UNIX, use any valid UNIX command or shell script. On Windows, use any valid DOS or batch file.
The Integration Service sends the data to a command instead of a flat file target or merge file.

40 Chapter 2: Partition Points

Use a command to process the following types of target data:

• Target data for a single partition. You can enter a command for each target partition. The Integration
Service sends the target data to the command when the session runs.

To send the target data for a single partition to a command, select Command for the Output Type. Enter a
command for the Command property for the partition in the session properties.

• Merge data for all target partitions. You can enter a command to process the merge data for all
partitions. The Integration Service concurrently sends the target data for all partitions to the command
when the session runs. The command may not maintain the order of the target data.

To send merge data for all partitions to a command, select Command as the Output Type and enter a
command for the Merge Command Line property in the session properties.

Configuring Merge Options
You can merge target data for the partitions in a session. When you merge target data, the Integration Service
creates a merge file for all target partitions.

You can configure the following merge file options:

• Sequential Merge. The Integration Service creates an output file for all partitions and then merges them
into a single merge file at the end of the session. The Integration Service sequentially adds the output
data for each partition to the merge file. The Integration Service creates the individual target file using the
Output File Name and Output File Directory values for the partition.

• File list. The Integration Service creates a target file for all partitions and creates a file list that contains
the paths of the individual files. The Integration Service creates the individual target file using the Output
File Name and Output File Directory values for the partition. If you write the target files to the merge
directory or a directory under the merge directory, the file list contains relative paths. Otherwise, the list
file contains absolute paths. Use this file as a source file if you use the target files as source files in
another mapping.

• Concurrent Merge. The Integration Service concurrently writes the data for all target partitions to the
merge file. It does not create intermediate files for each partition. Since the Integration Service writes to
the merge file concurrently for all partitions, the sort order of the data in the merge file may not be
sequential.

Partitioning Custom Transformations
When a mapping contains a Custom transformation, a Java transformation, SQL transformation, or an HTTP
transformation, you can edit the following partitioning information:

• Add multiple partitions. You can create multiple partitions when the Custom transformation allows
multiple partitions.

• Create partition points. You can create a partition point at a Custom transformation even when the
transformation does not allow multiple partitions.

The Java, SQL, and HTTP transformations were built using the Custom transformation and have the same
partitioning features. Not all transformations created using the Custom transformation have the same
partitioning features as the Custom transformation.

When you configure a Custom transformation to process each partition with one thread, the Workflow
Manager adds partition points depending on the mapping configuration.

Partitioning Custom Transformations 41

Working with Multiple Partitions
You can configure a Custom transformation to allow multiple partitions in mappings. You can add partitions
to the pipeline if you set the Is Partitionable property for the transformation. You can select the following
values for the Is Partitionable option:

• No. The transformation cannot be partitioned. The transformation and other transformations in the same
pipeline are limited to one partition. You might choose No if the transformation processes all the input
data together, such as data cleansing.

• Locally. The transformation can be partitioned, but the Integration Service must run all partitions in the
pipeline on the same node. Choose Local when different partitions of the transformation must share
objects in memory.

• Across Grid. The transformation can be partitioned, and the Integration Service can distribute each
partition to different nodes.

Note: When you add multiple partitions to a mapping that includes a multiple input or output group Custom
transformation, you define the same number of partitions for all groups.

Creating Partition Points
You can create a partition point at a Custom transformation even when the transformation does not allow
multiple partitions. Use the following rules and guidelines when you create a partition point at a Custom
transformation:

• You can define the partition type for each input group in the transformation. You cannot define the
partition type for output groups.

• Valid partition types are pass-through, round-robin, key range, and hash user keys.

Working with Threads
To configure a Custom transformation so the Integration Service uses one thread to process the
transformation for each partition, enable Requires Single Thread Per Partition Custom transformation
property. The Workflow Manager creates a pass-through partition point based on the number of input groups
and the location of the Custom transformation in the mapping.

One Input Group
When a single input group Custom transformation is downstream from a multiple input group Custom
transformation that does not have a partition point, the Workflow Manager places a pass-through partition
point at the closest upstream multiple input group transformation.

For example, consider the following mapping:

42 Chapter 2: Partition Points

1. Partition point.
2. Multiple input groups.
3. Single input group.
4. Requires one thread for each partition.
5. Does not require one thread for each partition.

CT_quartile contains one input group and is downstream from a multiple input group transformation, CT_sort.
CT_quartile requires one thread for each partition, but the upstream Custom transformation CT_sort does
not. The Workflow Manager creates a partition point at the closest upstream multiple input group
transformation, CT_Sort.

Multiple Input Groups
The Workflow Manager places a partition point at a multiple input group Custom transformation that requires
a single thread for each partition.

For example, consider the following mapping:

1. Partition Point
2. Multiple input groups.
3. Requires one thread for each partition.
4. Does not require one thread for each partition.

CT_Order_class and CT_Order_Prep have multiple input groups, but only CT_Order_Prep requires one thread
for each partition. The Workflow Manager creates a partition point at CT_Order_Prep.

Partitioning Joiner Transformations
When you create a partition point at the Joiner transformation, the Workflow Manager sets the partition type
to hash auto-keys when the transformation scope is All Input. The Workflow Manager sets the partition type
to pass-through when the transformation scope is Transaction.

You must create the same number of partitions for the master and detail source. If you configure the Joiner
transformation for sorted input, you can change the partition type to pass-through. You can specify only one
partition if the pipeline contains the master source for a Joiner transformation and you do not add a partition
point at the Joiner transformation.

The Integration Service uses cache partitioning when you create a partition point at the Joiner
transformation. When you use partitioning with a Joiner transformation, you can create multiple partitions for
the master and detail source of a Joiner transformation.

Partitioning Joiner Transformations 43

If you do not create a partition point at the Joiner transformation, you can create n partitions for the detail
source, and one partition for the master source (1:n).

Note: You cannot add a partition point at the Joiner transformation when you configure the Joiner
transformation to use the row transformation scope.

Partitioning Sorted Joiner Transformations
When you include a Joiner transformation that uses sorted input, you must verify the Joiner transformation
receives sorted data. If the sources contain large amounts of data, you might want to configure partitioning
to increase performance. However, partitions that redistribute rows can rearrange the order of sorted data, so
it is important to configure partitions to maintain sorted data.

For example, when you use a hash auto-keys partition point, the Integration Service uses a hash function to
determine the best way to distribute the data among the partitions. However, the Integration Service does not
maintain the sort order, so you must follow specific partitioning guidelines to use this type of partition point.

When you join data, you can partition data for the master and the detail pipelines by configuring an equal
number of partitions for the master and the detail sources. The Integration Service processes multiple
partitions concurrently.

You might need to configure the partitions to maintain the sort order based on the type of partition you use at
the Joiner transformation. If the Joiner transformation uses 1:n partitioning, and the master and detail
pipelines are both joined on sorted ports, the session terminates unexpectedly.

Consider the following partitioning guidelines:

• Using sorted flat files or sorted relational data. When you have one large flat file in the master and detail
pipelines, configure partitions to pass all sorted data in the first partition, and pass empty file data in the
other partitions.

• Using the Sorter transformation. If you use a hash auto-keys partition at the Joiner transformation,
configure each Sorter transformation to use hash auto-keys partition points as well.

Add only pass-through partition points between the sort origin and the Joiner transformation.

Using Sorted Flat Files
Use 1:n partitions when you have one flat file in the master pipeline and multiple flat files in the detail
pipeline. When you use 1:n partitions, the Integration Service maintains the sort order because it does not
redistribute data among partitions. When you have one large flat file in each master and detail pipeline, use
n:n partitions and add a pass-through or hash auto-keys partition at the Joiner transformation. When you add
a hash auto-keys partition point, you must configure partitions to pass all sorted data in the first partition to
maintain the sort order.

Using 1:n Partitions
If the session uses one flat file in the master pipeline and multiple flat files in the detail pipeline, use one
partition for the master source and n partitions for the detail file sources (1:n). Add a pass-through partition
point at the detail Source Qualifier transformation. Do not add a partition point at the Joiner transformation.
The Integration Service maintains the sort order when you create one partition for the master source because
it does not redistribute sorted data among partitions.

When you have multiple files in the detail pipeline that have the same structure, use the following guidelines
to pass the files to the Joiner transformation:

• Configure the mapping with one source and one Source Qualifier transformation in each pipeline.

44 Chapter 2: Partition Points

• Specify the path and file name for each flat file in the Properties settings of the Transformations view on
the Mapping tab of the session properties.

• Each file must use the same file properties as configured in the source definition.

• The range of sorted data in the flat files can overlap. You do not need to use a unique range of data for
each file.

When you sort file data with 1:n partitioning, the Joiner transformation might output unsorted data based on
the join type. If you use a full outer or detail outer join, the Integration Service processes unmatched master
rows last, which can result in unsorted data.

The following image shows sorted file data joined with 1:n partitioning:

Using n:n Partitions
If the session uses sorted flat file data, use n:n partitions for the master and detail pipelines. You can add a
pass-through partition or hash auto-keys partition at the Joiner transformation.

If you add a pass-through partition at the Joiner transformation, maintain the sort order in mappings. If you
add a hash auto-keys partition point at the Joiner transformation, you can maintain the sort order by passing
all sorted data to the Joiner transformation in one partition. When you pass sorted data in one partition, the
Integration Service maintains the sort order when it redistributes data with a hash function.

To allow the Integration Service to pass all sorted data in one partition, configure the session to use the
sorted file for the first partition and empty files for the remaining partitions.

The Integration Service redistributes the rows among multiple partitions and joins the sorted data.

Partitioning Joiner Transformations 45

The following image shows sorted file data passed through one partition to maintain sort order:

Using Sorted Relational Data
When you join relational data, use 1:n partitions for the master and detail pipeline. When you use 1:n
partitions, you cannot add a partition point at the Joiner transformation. If you use n:n partitions, you can add
a pass-through or hash auto-keys partition at the Joiner transformation. If you use a hash auto-keys partition
point, you must configure partitions to pass all sorted data in the first partition to maintain sort order.

Using 1:n Partitions
If the session uses sorted relational data, use one partition for the master source and n partitions for the
detail source (1:n). Add a key-range or pass-through partition point at the Source Qualifier transformation. Do
not add a partition point at the Joiner transformation. The Integration Service maintains the sort order when
you create one partition for the master source because it does not redistribute data among partitions.

When you sort relational data with 1:n partitioning, the Joiner transformation might output unsorted data
based on the join type. If you use a full outer or detail outer join, the Integration Service processes unmatched
master rows last, which can result in unsorted data.

46 Chapter 2: Partition Points

The following image shows sorted relational data with 1:n partitioning:

Using n:n Partitions
If the session uses sorted relational data, use n:n partitions for the master and detail pipelines and add a
pass-through or hash auto-keys partition point at the Joiner transformation.

When you use a pass-through partition at the Joiner transformation, maintain sorted data in the mapping.
When you use a hash auto-keys partition point, you maintain the sort order by passing all sorted data to the
Joiner transformation in a single partition. Add a key-range partition point at the Source Qualifier
transformation that contains all source data in the first partition. When you pass sorted data in one partition,
the Integration Service redistributes data among multiple partitions with a hash function and joins the sorted
data.

The following image shows sorted relational data that pass through a single partition to maintain the sort
order:

Partitioning Joiner Transformations 47

Using Sorter Transformations
If the session uses a Sorter transformation to sort data, use n:n partitions for the master and detail pipelines.
Use a hash auto-keys partition point at the Sorter transformation to group the data. You can add a pass-
through or hash auto-keys partition point at the Joiner transformation.

The Integration Service groups data into partitions of the same hash values, and the Sorter transformation
sorts the data before passing it to the Joiner transformation. When the Integration Service processes the
Joiner transformation configured with a hash auto-keys partition, it maintains the sort order by processing
the sorted data with the same partitions it uses to route the data from each Sorter transformation.

The following image shows Sorter transformations used with hash auto-keys partitions to maintain sort
order:

Note: For best performance, use sorted flat files or sorted relational data. You might want to calculate the
processing overhead for adding Sorter transformations to the mapping.

Optimizing Sorted Joiner Transformations with Partitions
When you use partitions with a sorted Joiner transformation, you may optimize performance by grouping
data and using n:n partitions.

Add a Hash Auto-keys Partition Upstream of the Sort Origin
To obtain expected results and get best performance when partitioning a sorted Joiner transformation, you
must group and sort data. To group data, ensure that rows with the same key value are routed to the same
partition. The best way to ensure that data is grouped and distributed evenly among partitions is to add a
hash auto-keys or key-range partition point before the sort origin. Placing the partition point before you sort
the data ensures that you maintain grouping and sort the data within each group.

Use n:n Partitions
You may be able to improve performance for a sorted Joiner transformation by using n:n partitions. When you
use n:n partitions, the Joiner transformation reads master and detail rows concurrently and does not need to
cache all of the master data. This reduces memory usage and speeds processing. When you use 1:n
partitions, the Joiner transformation caches all the data from the master pipeline and writes the cache to disk
if the memory cache fills. When the Joiner transformation receives the data from the detail pipeline, it must
then read the data from disk to compare the master and detail pipelines.

48 Chapter 2: Partition Points

Partitioning Lookup Transformations
You can configure cache partitioning for a Lookup transformation. You can create multiple partitions for
static and dynamic lookup caches.

The cache for a pipeline Lookup transformation is built in an independent pipeline from the pipeline that
contains the Lookup transformation. You can create multiple partitions in both pipelines.

Cache Partitioning Lookup Transformations
Use cache partitioning for static and dynamic caches, and named and unnamed caches. When you create a
partition point at a connected Lookup transformation, use cache partitioning under the following conditions:

• Use the hash auto-keys partition type for the Lookup transformation.

• The lookup condition must contain only equality operators.

• The database is configured for case-sensitive comparison.

For example, if the lookup condition contains a string port and the database is not configured for case-
sensitive comparison, the Integration Service does not perform cache partitioning and writes the following
message to the session log:

CMN_1799 Cache partitioning requires case sensitive string comparisons. Lookup will
not use partitioned cache as the database is configured for case insensitive string
comparisons.

The Integration Service uses cache partitioning when you create a hash auto-keys partition point at the
Lookup transformation.

When the Integration Service creates cache partitions, it begins creating caches for the Lookup
transformation when the first row of any partition reaches the Lookup transformation. If you configure the
Lookup transformation for concurrent caches, the Integration Service builds all caches for the partitions
concurrently.

Sharing Partitioned Caches
Use the following guidelines when you share partitioned Lookup caches:

• Lookup transformations can share a partitioned cache if the transformations meet the following
conditions:

- The cache structures are identical. The lookup/output ports for the first shared transformation must
match the lookup/output ports for the subsequent transformations.

- The transformations have the same lookup conditions, and the lookup condition columns are in the
same order.

• You cannot share a partitioned cache with a non-partitioned cache.

• When you share Lookup caches across target load order groups, you must configure the target load order
groups with the same number of partitions.

• If the Integration Service detects a mismatch between Lookup transformations sharing an unnamed
cache, it rebuilds the cache files.

• If the Integration Service detects a mismatch between Lookup transformations sharing a named cache, it
fails the session.

Partitioning Lookup Transformations 49

Partitioning Pipeline Lookup Transformation Cache
A pipeline Lookup transformation is enabled for caching by default. You can partition the lookup source to
improve performance when the Integration Service builds the lookup cache. The Lookup transformation
begins processing rows when the lookup source is cached.

When you configure a pipeline Lookup transformation, the lookup source and source qualifier are in a
different pipeline from the Lookup transformation. The pipeline is a partial pipeline because it contains no
target. The Integration Service reads the source data in the partial pipeline. You can create multiple partitions
in the pipeline to improve processing performance.

The Integration Service passes source data from the partial pipeline to the other pipeline when it builds the
cache. When the number of partitions in the partial pipeline is different from the number of partitions for the
Lookup transformation, the Integration Service creates a partition point. If the Lookup transformation has a
hash auto-keys partition point, the Integration Service creates the same number of partitions in the cache as
in the Lookup transformation. Otherwise the cache has one partition.

The following figure shows the partitions for a session that contains a pipeline Lookup transformation and a
Source Qualifier lookup source:

The Integration Service processes the Employee rows in three partitions. The pipeline containing the Lookup
transformation has four partitions. Since the Lookup transformation has a hash auto-key partition point, the
cache is partitioned into four partitions.

Partitioning Sequence Generator Transformations
If you configure multiple partitions in a session on a grid that uses an uncached Sequence Generator
transformation, the sequence numbers the Integration Service generates for each partition are not
consecutive.

50 Chapter 2: Partition Points

Partitioning Sorter Transformations
If you configure multiple partitions in a session that uses a Sorter transformation, the Integration Service
sorts data in each partition separately. The Workflow Manager lets you choose hash auto-keys, key-range, or
pass-through partitioning when you add a partition point at the Sorter transformation.

Use hash-auto keys partitioning when you place the Sorter transformation before an Aggregator
transformation configured to use sorted input. Hash auto-keys partitioning groups rows with the same values
into the same partition based on the partition key. After grouping the rows, the Integration Service passes the
rows through the Sorter transformation. The Integration Service processes the data in each partition
separately, but hash auto-keys partitioning accurately sorts all of the source data because rows with
matching values are processed in the same partition. You can delete the default partition point at the
Aggregator transformation.

Use key-range partitioning when you want to send all rows in a partitioned session from multiple partitions
into a single partition for sorting. When you merge all rows into a single partition for sorting, the Integration
Service can process all of the data together.

Use pass-through partitioning if you already used hash partitioning in the pipeline. This ensures that the data
passing into the Sorter transformation is correctly grouped among the partitions. Pass-through partitioning
increases session performance without increasing the number of partitions in the pipeline.

Configuring Sorter Transformation Work Directories
The Integration Service creates temporary files for each Sorter transformation in a pipeline. It reads and
writes data to these files while it performs the sort. The Integration Service stores these files in the Sorter
transformation work directories.

By default, the Workflow Manager sets the work directories for all partitions at Sorter transformations to
$PMTempDir. You can specify a different work directory for each partition in the session properties.

Partitioning XML Generator Transformations
When you generate XML in multiple partitions, you always generate separate documents for each partition.
This occurs regardless of the value in the On Commit Flag. If you configure key range partitioning with an
XML Generator transformation, a session might fail with orphaned rows in the transformation. This can occur
because the XML Generator transformation creates primary-foreign key relationships between rows. Key
range partitioning can separate the parent and child rows.

Restrictions for Transformations
Some restrictions on the number of partitions depend on the types of transformations in the pipeline. These
restrictions apply to all transformations, including reusable transformations, transformations created in
mappings and mapplets, and transformations, mapplets, and mappings referenced by shortcuts.

Partitioning Sorter Transformations 51

The following table describes the restrictions on the number of partitions for transformations:

Transformation Restrictions

Custom Transformation By default, you can only specify one partition if the pipeline contains a Custom
transformation.
However, this transformation contains an option on the Properties tab to allow multiple
partitions. If you enable this option, you can specify multiple partitions at this
transformation. Do not select Is Partitionable if the Custom transformation procedure
performs the procedure based on all the input data together, such as data cleansing.

External Procedure
Transformation

By default, you can only specify one partition if the pipeline contains an External
Procedure transformation.
This transformation contains an option on the Properties tab to allow multiple partitions.
If this option is enabled, you can specify multiple partitions at this transformation.

Joiner Transformation Specify only one partition if the pipeline contains the master source for a Joiner
transformation and you do not add a partition point at the Joiner transformation.

XML Target Instance Specify only one partition if the pipeline contains XML targets.

Sequence numbers generated by Normalizer and Sequence Generator transformations might not be
sequential for a partitioned source, but they are unique.

Restrictions for Numerical Functions
The numerical functions CUME, MOVINGSUM, and MOVINGAVG calculate running totals and averages on a
row-by-row basis. According to the way you partition a pipeline, the order that rows of data pass through a
transformation containing one of these functions can change. Therefore, a session with multiple partitions
that uses CUME, MOVINGSUM, or MOVINGAVG functions may not always return the same calculated result.

52 Chapter 2: Partition Points

C h a p t e r 3

Partition Types
This chapter includes the following topics:

• Partition Types Overview, 53

• Setting Partition Types, 55

• Database Partitioning Partition Type, 57

• Hash Auto-Keys Partition Type, 60

• Hash User Keys Partition Type, 60

• Key Range Partition Type, 61

• Pass-Through Partition Type, 64

• Round-Robin Partition Type, 65

Partition Types Overview
The PowerCenter Integration Services creates a default partition type at each partition point. If you have the
Partitioning option, you can change the partition type. The partition type controls how the PowerCenter
Integration Service distributes data among partitions at partition points.

When you configure the partitioning information for a pipeline, you must define a partition type at each
partition point in the pipeline. The partition type determines how the PowerCenter Integration Service
redistributes data across partition points.

You can define the following partition types in the Workflow Manager:

• Database partitioning. The PowerCenter Integration Service queries the IBM DB2 or Oracle system for
table partition information. It reads partitioned data from the corresponding nodes in the database. Use
database partitioning with Oracle or IBM DB2 source instances on a multi-node tablespace. Use database
partitioning with DB2 targets.

• Hash partitioning. Use hash partitioning when you want the PowerCenter Integration Service to distribute
rows to the partitions by group. For example, you need to sort items by item ID, but you do not know how
many items have a particular ID number.

You can use the following types of hash partitioning:

- Hash auto-keys. The PowerCenter Integration Service uses all grouped or sorted ports as a compound
partition key. You may need to use hash auto-keys partitioning at Rank, Sorter, and unsorted Aggregator
transformations.

- Hash user keys. The PowerCenter Integration Service uses a hash function to group rows of data among
partitions. You define the number of ports to generate the partition key.

53

• Key range. You specify one or more ports to form a compound partition key. The PowerCenter Integration
Service passes data to each partition depending on the ranges you specify for each port. Use key range
partitioning where the sources or targets in the pipeline are partitioned by key range.

• Pass-through. The PowerCenter Integration Service passes all rows at one partition point to the next
partition point without redistributing them. Choose pass-through partitioning where you want to create an
additional pipeline stage to improve performance, but do not want to change the distribution of data
across partitions.

• Round-robin. The PowerCenter Integration Service distributes blocks of data to one or more partitions.
Use round-robin partitioning so that each partition processes rows based on the number and size of the
blocks.

Setting Partition Types in the Pipeline
You can create different partition types at different points in the pipeline.

The following figure shows a mapping where you can create partition types to increase session performance:

This mapping reads data about items and calculates average wholesale costs and prices. The mapping must
read item information from three flat files of various sizes, and then filter out discontinued items. It sorts the
active items by description, calculates the average prices and wholesale costs, and writes the results to a
relational database in which the target tables are partitioned by key range.

You can delete the default partition point at the Aggregator transformation because hash auto-keys
partitioning at the Sorter transformation sends all rows that contain items with the same description to the
same partition. Therefore, the Aggregator transformation receives data for all items with the same
description in one partition and can calculate the average costs and prices for this item correctly.

When you use this mapping in a session, you can increase session performance by defining different partition
types at the following partition points in the pipeline:

• Source qualifier. To read data from the three flat files concurrently, you must specify three partitions at
the source qualifier. Accept the default partition type, pass-through.

• Filter transformation. Since the source files vary in size, each partition processes a different amount of
data. Set a partition point at the Filter transformation, and choose round-robin partitioning to balance the
load going into the Filter transformation.

• Sorter transformation. To eliminate overlapping groups in the Sorter and Aggregator transformations, use
hash auto-keys partitioning at the Sorter transformation. This causes the Integration Service to group all
items with the same description into the same partition before the Sorter and Aggregator transformations
process the rows. You can delete the default partition point at the Aggregator transformation.

• Target. Since the target tables are partitioned by key range, specify key range partitioning at the target to
optimize writing data to the target.

54 Chapter 3: Partition Types

Setting Partition Types
The Workflow Manager sets a default partition type for each partition point in the pipeline. The Workflow
Manager specifies pass-through as the default partition type for all partition points unless the transformation
scope for a transformation is All Input. You can change the default type.

For example, at the source qualifier and target instance, the Workflow Manager specifies pass-through
partitioning. For Rank and unsorted Aggregator transformations, the Workflow Manager specifies hash auto-
keys partitioning when the transformation scope is All Input.

You must specify pass-through partitioning for all transformations that are downstream from a transaction
generator or an active source that generates commits and upstream from a target or a transformation with
Transaction transformation scope. Also, if you configure the session to use constraint-based loading, you
must specify pass-through partitioning for all transformations that are downstream from the last active
source.

If workflow recovery is enabled, the Workflow Manager sets the partition type to pass-through unless the
partition point is either an Aggregator transformation or a Rank transformation.

You cannot create partition points for the following transformations:

• Source definition

• Sequence Generator

• XML Parser

• XML target

• Unconnected transformations

The following table lists valid partition types and the default partition type for different partition points in the
pipeline:

Transformation
(Partition Point)

Round-
Robin

Hash
Auto-
Keys

Hash
User
Keys

Key
Range

Pass-
Through

Database
Partitioning

Source Qualifier
(relational sources)

no no no yes yes yes
(Oracle, DB2)

Source Qualifier
(flat file sources)

no no no no yes no

Web Service Source Qualifier no no no no yes no

XML Source Qualifier no no no no yes no

Normalizer
(COBOL sources)

no no no no yes no

Normalizer
(relational)

yes no yes yes yes no

Aggregator (sorted) no no no no yes no

Aggregator (unsorted) no yes no no yes no

Custom yes no yes yes yes no

Setting Partition Types 55

Transformation
(Partition Point)

Round-
Robin

Hash
Auto-
Keys

Hash
User
Keys

Key
Range

Pass-
Through

Database
Partitioning

Data Masking yes no yes yes yes no

Expression yes no yes yes yes no

External Procedure yes no yes yes yes no

Filter yes no yes yes yes no

HTTP no no no no yes no

Java yes no yes yes yes no

Joiner no yes no no yes no

Lookup yes yes yes yes yes no

Rank no yes no no yes no

Router yes no yes yes yes no

Sorter no yes no yes yes no

Stored Procedure yes no yes yes yes no

Transaction Control yes no yes yes yes no

Union yes no yes yes yes no

Unstructured Data yes no yes yes yes no

Update Strategy yes no yes yes yes no

Web Service Consumer no no no no yes no

XML Generator no no no no yes no

XML Parser no no no no yes no

Relational target definition yes no yes yes yes yes (DB2)

Flat file target definition yes no yes yes yes no

Web Service target no no no no yes no

For the following transformations, the default partition type is pass-through when the transformation scope
is Transaction, and the default partition type is hash auto-keys when the transformation scope is All Input:

• Aggregator (unsorted)

• Joiner

• Rank

• Sorter

56 Chapter 3: Partition Types

Database Partitioning Partition Type
You can optimize session performance by using the database partitioning partition type for source and target
databases. When you use source database partitioning, the Integration Service queries the database system
for table partition information and fetches data into the session partitions. When you use target database
partitioning, the Integration Service loads data into corresponding database partition nodes.

Use database partitioning for Oracle and IBM DB2 sources and IBM DB2 targets. Use any number of pipeline
partitions and any number of database partitions. However, you can improve performance when the number
of pipeline partitions equals the number of database partitions.

Database partitioning can improve performance for IBM DB2 sources and targets that use range partitioning.

For Oracle sources that use composite partitioning, you can improve performance when the number of
pipeline partitions equals the number of database subpartitions. For example, if an Oracle source contains
three partitions and two subpartitions for each partition, set the number of pipeline partitions at the source to
six.

Partitioning Database Sources
When you use source database partitioning, the Integration Service queries the database system catalog for
partition information. It distributes the data from the database partitions among the session partitions.

If the session has more partitions than the database, the Integration Service generates SQL for each
database partition and redistributes the data to the session partitions at the next partition point.

Database Partitioning with One Source
When you use database partitioning with a source qualifier with one source, the Integration Service generates
SQL queries for each database partition and distributes the data from the database partitions among the
session partitions equally.

For example, when a session has three partitions, and the database has five partitions, the Integration Service
executes SQL queries in the session partitions against the database partitions. The first and second session
partitions receive data from two database partitions. The third session partition receives data from one
database partition.

When you use an Oracle database, the Integration Service generates SQL statements similar to the following
statements for partition 1:

SELECT <column list> FROM <table name> PARTITION <database_partition1 name> UNION ALL

SELECT <column list> FROM <table name> PARTITION <database_partition4 name> UNION ALL
When you use an IBM DB2 database, the Integration Service creates SQL statements similar to the following
for partition 1:

SELECT <column list> FROM <table name>
WHERE (nodenumber(<column 1>)=0 OR nodenumber(<column 1>) = 3)

If an Oracle source has five partitions, 1–5, and two subpartitions, a and b, in each partition, and a session
has three partitions, the Integration Service executes SQL queries in the session partitions against the
database subpartitions. The first and second session partitions receive data from four database
subpartitions. The third session partition receives data from two database subpartitions.

The Integration Service generates SQL statements similar to the following statements for partition 1:

SELECT <column list> FROM <table name> SUBPARTITION <database_subpartition1_a name>
UNION ALL
SELECT <column list> FROM <table name> SUBPARTITION <database_subpartition1_b name>
UNION ALL

Database Partitioning Partition Type 57

SELECT <column list> FROM <table name> SUBPARTITION <database_subpartition4_a name>
UNION ALL
SELECT <column list> FROM <table name> SUBPARTITION <database_subpartition4_b name>
UNION ALL

Partitioning a Source Qualifier with Multiple Sources
A relational source qualifier can receive data from multiple source tables. The Integration Service creates
SQL queries for database partitions based on the number of partitions in the database table with the most
partitions. It creates an SQL join condition to retrieve the data from the database partitions.

For example, a source qualifier receives data from two source tables. Each source table has two partitions. If
the session has three partitions and the database table has two partitions, one of the session partitions
receives no data.

The Integration Service generates the following SQL statements for Oracle:

Session Partition 1:

SELECT <column list> FROM t1 PARTITION (p1), t2 WHERE <join clause>
Session Partition 2:

SELECT <column list> FROM t1 PARTITION (p2), t2 WHERE <join clause>
Session Partition 3:

No SQL query.
The Integration Service generates the following SQL statements for IBM DB2:

Session Partition 1:

SELECT <column list> FROM t1,t2 WHERE ((nodenumber(t1 column1)=0) AND <join clause>
Session Partition 2:

SELECT <column list> FROM t1,t2 WHERE ((nodenumber(t1 column1)=1) AND <join clause>
Session Partition 3:

No SQL query.

Integration Service Handling with Source Database Partitioning
The Integration Service uses the following rules for database partitioning:

• If you specify database partitioning for a database other than Oracle or IBM DB2, the Integration Service
reads the data in a single partition and writes a message to the session log.

• If the number of session partitions is more than the number of partitions for the table in the database, the
excess partitions receive no data. The session log describes which partitions do not receive data.

• If the number of session partitions is less than the number of partitions for the table in the database, the
Integration Service distributes the data equally to the session partitions. Some session partitions receive
data from more than one database partition.

• When you use database partitioning with dynamic partitioning, the Integration Service determines the
number of session partitions when the session begins.

• Session performance with partitioning depends on the data distribution in the database partitions. The
Integration Service generates SQL queries to the database partitions. The SQL queries perform union or
join commands, which can result in large query statements that have a performance impact.

58 Chapter 3: Partition Types

Rules and Guidelines for Source Database Partitioning
Use the following rules and guidelines when you use the database partitioning partition type with relational
sources:

• You cannot use database partitioning when you configure the session to use source-based or user-
defined commits, constraint-based loading, or workflow recovery.

• When you configure a source qualifier for database partitioning, the Integration Service reverts to pass-
through partitioning under the following circumstances:

- The database table is stored on one database partition.

- You run the session in debug mode.

- You specify database partitioning for a session with one partition.

- You use pushdown optimization. Pushdown optimization works with the other partition types.

• When you create an SQL override to read database tables and you set database partitioning, the
Integration Service reverts to pass-through partitioning and writes a message to the session log.

• If you create a user-defined join, the Integration Service adds the join to the SQL statements it generates
for each partition.

• If you create a source filter, the Integration Service adds it to the WHERE clause in the SQL query for each
partition.

Target Database Partitioning
You can use target database partitioning for IBM DB2 databases only. When you load data to an IBM DB2
table stored on a multi-node tablespace, you can optimize session performance by using the database
partitioning partition type. When you use database partitioning, the Integration Service queries the DB2
system for table partition information and loads partitioned data to the corresponding nodes in the target
database.

By default, the Integration Service fails the session when you use database partitioning for non-DB2 targets.
However, you can configure the Integration Service to default to pass-through partitioning when you use
database partitioning for non-DB2 relational targets. Set the Integration Service property
TreatDBPartitionAsPassThrough to Yes in the Administrator tool.

You can specify database partitioning for the target partition type with any number of pipeline partitions and
any number of database nodes. However, you can improve load performance further when the number of
pipeline partitions equals the number of database nodes.

Rules and Guidelines for Target Database Partitioning
Use the following rules and guidelines when you use database partitioning with database targets:

• You cannot use database partitioning when you configure the session to use source-based or user-
defined commit, constraint-based loading, or session recovery.

• You cannot use database partitioning when the target tables are partitioned by range. If the target tables
are partitioned by range, use pass-through or key range partitioning.

• The target table must contain a partition key, and you must link all not-null partition key columns in the
target instance to a transformation in the mapping.

• Enable high precision for the session when an IBM DB2 target table partition key is a Decimal column. The
Integration Service might fail the session when a partition key is a Decimal column and you do not enable
high precision for the session.

Database Partitioning Partition Type 59

• If you create multiple partitions for a DB2 bulk load session, use database partitioning for the target
partition type. If you choose any other partition type, the Integration Service reverts to normal load and
writes the following message to the session log:

ODL_26097 Only database partitioning is support for DB2 bulk load. Changing target
load type variable to Normal.

• If you configure a session for database partitioning, the Integration Service reverts to pass-through
partitioning under the following circumstances:

- The DB2 target table is stored on one node.

- You run the session in debug mode using the Debugger.

- You configure the Integration Service to treat the database partitioning partition type as pass-through
partitioning and you use database partitioning for a non-DB2 relational target.

Hash Auto-Keys Partition Type
Use hash auto-keys partitioning at or before Rank, Sorter, Joiner, and unsorted Aggregator transformations to
ensure that rows are grouped properly before they enter these transformations.

The following figure shows a mapping with hash auto-keys partitioning. The Integration Service distributes
rows to each partition according to group before they enter the Sorter and Aggregator transformations:

In this mapping, the Sorter transformation sorts items by item description. If items with the same description
exist in more than one source file, each partition will contain items with the same description. Without hash
auto-keys partitioning, the Aggregator transformation might calculate average costs and prices for each item
incorrectly.

To prevent errors in the cost and prices calculations, set a partition point at the Sorter transformation and set
the partition type to hash auto-keys. When you do this, the Integration Service redistributes the data so that
all items with the same description reach the Sorter and Aggregator transformations in a single partition.

Hash User Keys Partition Type
In hash user keys partitioning, the Integration Service uses a hash function to group rows of data among
partitions based on a user-defined partition key. You choose the ports that define the partition key:

When you specify hash auto-keys partitioning in the preceding mapping, the Sorter transformation receives
rows of data grouped by the sort key, such as ITEM_DESC. If the item description is long, and you know that
each item has a unique ID number, you can specify hash user keys partitioning at the Sorter transformation

60 Chapter 3: Partition Types

and select ITEM_ID as the hash key. This might improve the performance of the session since the hash
function usually processes numerical data more quickly than string data.

If you select hash user keys partitioning at any partition point, you must specify a hash key. The Integration
Service uses the hash key to distribute rows to the appropriate partition according to group.

For example, if you specify key range partitioning at a Source Qualifier transformation, the Integration Service
uses the key and ranges to create the WHERE clause when it selects data from the source. Therefore, you
can have the Integration Service pass all rows that contain customer IDs less than 135000 to one partition
and all rows that contain customer IDs greater than or equal to 135000 to another partition.

If you specify hash user keys partitioning at a transformation, the Integration Service uses the key to group
data based on the ports you select as the key. For example, if you specify ITEM_DESC as the hash key, the
Integration Service distributes data so that all rows that contain items with the same description go to the
same partition.

To specify the hash key, select the partition point on the Partitions view of the Mapping tab, and click Edit
Keys. This displays the Edit Partition Key dialog box. The Available Ports list displays the connected input
and input/output ports in the transformation. To specify the hash key, select one or more ports from this list,
and then click Add.

To rearrange the order of the ports that define the key, select a port in the Selected Ports list and click the up
or down arrow.

Key Range Partition Type
With key range partitioning, the Integration Service distributes rows of data based on a port or set of ports
that you define as the partition key. For each port, you define a range of values. The Integration Service uses
the key and ranges to send rows to the appropriate partition.

For example, if you specify key range partitioning at a Source Qualifier transformation, the Integration Service
uses the key and ranges to create the WHERE clause when it selects data from the source. Therefore, you
can have the Integration Service pass all rows that contain customer IDs less than 135000 to one partition
and all rows that contain customer IDs greater than or equal to 135000 to another partition.

If you specify hash user keys partitioning at a transformation, the Integration Service uses the key to group
data based on the ports you select as the key. For example, if you specify ITEM_DESC as the hash key, the
Integration Service distributes data so that all rows that contain items with the same description go to the
same partition.

Use key range partitioning in mappings where the source and target tables are partitioned by key range.

The following figure shows a mapping where key range partitioning can optimize writing to the target table:

The target table in the database is partitioned by ITEM_ID as follows:

• Partition 1: 0001–2999

• Partition 2: 3000–5999

• Partition 3: 6000–9999

Key Range Partition Type 61

To optimize writing to the target table, complete the following tasks:

1. Set the partition type at the target instance to key range.

2. Create three partitions.

3. Choose ITEM_ID as the partition key.

The Integration Service uses this key to pass data to the appropriate partition.

4. Set the key ranges as follows:

ITEM_ID Start Range End Range

Partition #1 - 3000

Partition #2 3000 6000

Partition #3 6000 -

When you set the key range, the Integration Service sends all items with IDs less than 3000 to the first
partition. It sends all items with IDs between 3000 and 5999 to the second partition. Items with IDs greater
than or equal to 6000 go to the third partition.

Adding a Partition Key
To specify the partition key for key range partitioning, select the partition point on the Partitions view of the
Mapping tab, and click Edit Keys. This displays the Edit Partition Key dialog box. The Available Ports list
displays the connected input and input/output ports in the transformation. To specify the partition key, select
one or more ports from this list, and then click Add.

To rearrange the order of the ports that define the partition key, select a port in the Selected Ports list and
click the up or down arrow.

In key range partitioning, the order of the ports does not affect how the Integration Service redistributes rows
among partitions, but it can affect session performance. For example, you might configure the following
compound partition key:

Selected Ports

ITEMS.DESCRIPTION

ITEMS.DISCONTINUED_FLAG

Since boolean comparisons are usually faster than string comparisons, the session may run faster if you
arrange the ports in the following order:

Selected Ports

ITEMS.DISCONTINUED_FLAG

ITEMS.DESCRIPTION

Adding Key Ranges
After you identify the ports that make up the partition key, you must enter the ranges for each port on the
Partitions view of the Mapping tab.

62 Chapter 3: Partition Types

You can leave the start or end range blank for a partition. When you leave the start range blank, the
Integration Service uses the minimum data value as the start range. When you leave the end range blank, the
Integration Service uses the maximum data value as the end range.

For example, you can add the following ranges for a key based on CUSTOMER_ID in a pipeline that contains
two partitions:

CUSTOMER_ID Start Range End Range

Partition #1 135000

Partition #2 135000

When the Integration Service reads the Customers table, it sends all rows that contain customer IDs less than
135000 to the first partition and all rows that contain customer IDs equal to or greater than 135000 to the
second partition. The Integration Service eliminates rows that contain null values or values that fall outside
the key ranges.

When you configure a pipeline to load data to a relational target, if a row contains null values in any column
that defines the partition key or if a row contains a value that fall outside all of the key ranges, the Integration
Service sends that row to the first partition.

When you configure a pipeline to read data from a relational source, the Integration Service reads rows that
fall within the key ranges. It does not read rows with null values in any partition key column.

If you want to read rows with null values in the partition key, use pass-through partitioning and create an SQL
override.

Adding Filter Conditions
If you specify key range partitioning for a relational source, you can specify optional filter conditions or
override the SQL query.

Rules and Guidelines for Creating Key Ranges
Use the following rules and guidelines when you create key ranges:

• The partition key must contain at least one port.

• If you choose key range partitioning at any partition point, you must specify a range for each port in the
partition key.

• Use the standard PowerCenter date format to enter dates in key ranges.

• The Workflow Manager does not validate overlapping string or numeric ranges.

• The Workflow Manager does not validate gaps or missing ranges.

• If you choose key range partitioning and need to enter a date range for any port, use the standard
PowerCenter date format.

• When you define key range partitioning at a Source Qualifier transformation, the Integration Service
defaults to pass-through partitioning if you change the SQL statement in the Source Qualifier
transformation.

• The Workflow Manager does not validate overlapping string ranges, overlapping numeric ranges, gaps, or
missing ranges.

• If a row contains a null value in any column that defines the partition key, or if a row contains values that
fall outside all of the key ranges, the Integration Service sends that row to the first partition.

Key Range Partition Type 63

Pass-Through Partition Type
In pass-through partitioning, the Integration Service processes data without redistributing rows among
partitions. Therefore, all rows in a single partition stay in that partition after crossing a pass-through partition
point.

When you add a partition point to a pipeline, the master thread creates an additional pipeline stage. Use pass-
through partitioning when you want to increase data throughput, but you do not want to increase the number
of partitions.

You can specify pass-through partitioning at any valid partition point in a pipeline.

The following figure shows a mapping where pass-through partitioning can increase data throughput:

1. Reader Thread (First Stage).
2. Transformation Thread (Second Stage).
3. Writer Thread (Third Stage).

By default, this mapping contains partition points at the source qualifier and target instance. Since this
mapping contains an XML target, you can configure only one partition at any partition point.

In this case, the master thread creates one reader thread to read data from the source, one transformation
thread to process the data, and one writer thread to write data to the target. Each pipeline stage processes
the rows as follows:

Source Qualifier
(First Stage)

Transformations
(Second Stage)

Target Instance
(Third Stage)

Row Set 1 - -
Row Set 2 Row Set 1 -
Row Set 3 Row Set 2 Row Set 1
Row Set 4 Row Set 3 Row Set 2
...
Row Set n Row Set (n-1) Row Set (n-2)

Because the pipeline contains three stages, the Integration Service can process three sets of rows
concurrently.

If the Expression transformations are very complicated, processing the second (transformation) stage can
take a long time and cause low data throughput. To improve performance, set a partition point at Expression
transformation EXP_2 and set the partition type to pass-through. This creates an additional pipeline stage.
The master thread creates an additional transformation thread:

64 Chapter 3: Partition Types

1. Reader Thread (First Stage).
2. Transformation Thread (Second Stage).
3. Transformation Thread (Third Stage).
4. Writer Thread (Fourth Stage).

The Integration Service can now process four sets of rows concurrently as follows:

Source Qualifier
(First Stage)

FIL_1 & EXP_1
Transformations
(Second Stage)

EXP_2 & LKP_1
Transformatios
(Third Stage)

Target Instance
(Fourth Stage)

Row Set 1 - - -
Row Set 2‘ Row Set 1 - -
Row Set 3 Row Set 2 Row Set 1 -
Row Set 4 Row Set 3 Row Set 2 Row Set 1
...
Row Set n Row Set (n-1) Row Set (n-2) Row Set (n-3)

By adding an additional partition point at Expression transformation EXP_2, you replace one long running
transformation stage with two shorter running transformation stages. Data throughput depends on the
longest running stage. So in this case, data throughput increases.

Round-Robin Partition Type
In round-robin partitioning, the PowerCenter Integration Service distributes blocks of data to one or more
partitions. Each partition processes rows based on the number and size of the blocks.

Use round-robin partitioning when you do not need to group data among partitions. In a pipeline that reads
data from file sources of different sizes, use round-robin partitioning to distribute blocks of rows between the
partitions.

The following figure shows a mapping where round-robin partitioning helps distribute rows before they enter
a Filter transformation:

The session based on this mapping reads item information from three flat files of different sizes:

• Source file 1: 80,000 rows

• Source file 2: 5,000 rows

• Source file 3: 15,000 rows

When the PowerCenter Integration Service reads the source data, the first partition begins processing 80% of
the data, the second partition processes 5% of the data, and the third partition processes 15% of the data.

To distribute the workload more evenly, set a partition point at the Filter transformation and set the partition
type to round-robin. The PowerCenter Integration Service distributes the data so that each partition
processes approximately one-third of the data.

Round-Robin Partition Type 65

C h a p t e r 4

Pushdown Optimization
This chapter includes the following topics:

• Pushdown Optimization Overview, 66

• Pushdown Optimization Types, 67

• Active and Idle Databases, 68

• Working with Databases, 69

• Pushdown Compatibility, 71

• Working with Dates, 73

• Working with Expressions, 74

• Error Handling, Logging, and Recovery, 80

• Working with Slowly Changing Dimensions, 81

• Working with Sequences and Views, 81

• Using the $$PushdownConfig Mapping Parameter, 85

• Configuring Sessions for Pushdown Optimization, 87

Pushdown Optimization Overview
You can push transformation logic to the source or target database using pushdown optimization. When you
run a session configured for pushdown optimization, the Integration Service translates the transformation
logic into SQL queries and sends the SQL queries to the database. The source or target database executes
the SQL queries to process the transformations.

The amount of transformation logic you can push to the database depends on the database, transformation
logic, and mapping and session configuration. The Integration Service processes all transformation logic that
it cannot push to a database.

Use the Pushdown Optimization Viewer to preview the SQL statements and mapping logic that the Integration
Service can push to the source or target database. You can also use the Pushdown Optimization Viewer to
view the messages related to pushdown optimization.

The following figure shows a mapping containing transformation logic that can be pushed to the source
database:

66

This mapping contains an Expression transformation that creates an item ID based on the store number 5419
and the item ID from the source. To push the transformation logic to the database, the Integration Service
generates the following SQL statement:

INSERT INTO T_ITEMS(ITEM_ID, ITEM_NAME, ITEM_DESC) SELECT CAST((CASE WHEN 5419 IS NULL
THEN '' ELSE 5419 END) + '_' + (CASE WHEN ITEMS.ITEM_ID IS NULL THEN '' ELSE
ITEMS.ITEM_ID END) AS INTEGER), ITEMS.ITEM_NAME, ITEMS.ITEM_DESC FROM ITEMS2 ITEMS

The Integration Service generates an INSERT SELECT statement to retrieve the ID, name, and description
values from the source table, create new item IDs, and insert the values into the ITEM_ID, ITEM_NAME, and
ITEM_DESC columns in the target table. It concatenates the store number 5419, an underscore, and the
original ITEM ID to get the new item ID.

Pushdown Optimization Types
You can configure the following types of pushdown optimization:

• Source-side pushdown optimization. The Integration Service pushes as much transformation logic as
possible to the source database.

• Target-side pushdown optimization. The Integration Service pushes as much transformation logic as
possible to the target database.

• Full pushdown optimization. The Integration Service attempts to push all transformation logic to the
target database. If the Integration Service cannot push all transformation logic to the database, it
performs both source-side and target-side pushdown optimization.

Running Source-Side Pushdown Optimization Sessions
When you run a session configured for source-side pushdown optimization, the Integration Service analyzes
the mapping from the source to the target or until it reaches a downstream transformation it cannot push to
the source database.

The Integration Service generates and executes a SELECT statement based on the transformation logic for
each transformation it can push to the database. Then, it reads the results of this SQL query and processes
the remaining transformations.

Running Target-Side Pushdown Optimization Sessions
When you run a session configured for target-side pushdown optimization, the Integration Service analyzes
the mapping from the target to the source or until it reaches an upstream transformation it cannot push to
the target database. It generates an INSERT, DELETE, or UPDATE statement based on the transformation
logic for each transformation it can push to the target database. The Integration Service processes the
transformation logic up to the point that it can push the transformation logic to the database. Then, it
executes the generated SQL on the target database.

Running Full Pushdown Optimization Sessions
To use full pushdown optimization, the source and target databases must be in the same relational database
management system. When you run a session configured for full pushdown optimization, the Integration
Service analyzes the mapping from the source to the target or until it reaches a downstream transformation it
cannot push to the target database. It generates and executes SQL statements against the source or target
based on the transformation logic it can push to the database.

Pushdown Optimization Types 67

When you run a session with large quantities of data and full pushdown optimization, the database server
must run a long transaction. Consider the following database performance issues when you generate a long
transaction:

• A long transaction uses more database resources.

• A long transaction locks the database for longer periods of time. This reduces database concurrency and
increases the likelihood of deadlock.

• A long transaction increases the likelihood of an unexpected event.

To minimize database performance issues for long transactions, consider using source-side or target-side
pushdown optimization.

Integration Service Behavior with Full Optimization
When you configure a session for full optimization, the Integration Service analyzes the mapping from the
source to the target or until it reaches a downstream transformation it cannot push to the target database. If
the Integration Service cannot push all transformation logic to the target database, it tries to push all
transformation logic to the source database. If it cannot push all transformation logic to the source or target,
the Integration Service pushes as much transformation logic to the source database, processes intermediate
transformations that it cannot push to any database, and then pushes the remaining transformation logic to
the target database. The Integration Service generates and executes an INSERT SELECT, DELETE, or UPDATE
statement for each database to which it pushes transformation logic.

For example, a mapping contains the following transformations:

The Rank transformation cannot be pushed to the source or target database. If you configure the session for
full pushdown optimization, the Integration Service pushes the Source Qualifier transformation and the
Aggregator transformation to the source, processes the Rank transformation, and pushes the Expression
transformation and target to the target database. The Integration Service does not fail the session if it can
push only part of the transformation logic to the database.

Active and Idle Databases
During pushdown optimization, the Integration Service pushes the transformation logic to one database,
which is called the active database. A database that does not process transformation logic is called an idle
database. For example, a mapping contains two sources that are joined by a Joiner transformation. If the
session is configured for source-side pushdown optimization, the Integration Service pushes the Joiner
transformation logic to the source in the detail pipeline, which is the active database. The source in the
master pipeline is the idle database because it does not process transformation logic.

The Integration Service uses the following criteria to determine which database is active or idle:

• When using full pushdown optimization, the target database is active and the source database is idle.

• In sessions that contain a Lookup transformation, the source or target database is active, and the lookup
database is idle.

68 Chapter 4: Pushdown Optimization

• In sessions that contain a Joiner transformation, the source in the detail pipeline is active, and the source
in the master pipeline is idle.

• In sessions that contain a Union transformation, the source in the first input group is active. The sources
in other input groups are idle.

To push transformation logic to an active database, the database user account of the active database must
be able to read from the idle databases.

Working with Databases
You can configure pushdown optimization for the following databases:

• Amazon Redshift

• Greenplum

• IBM DB2

• Microsoft SQL Server

• Netezza

• Oracle

• SAP HANA

• Sybase ASE

• Teradata

• Vertica

When you push transformation logic to a database, the database may produce different output than the
Integration Service.

Comparing the Output of the Integration Service and Databases
The Integration Service and databases can produce different results when processing the same
transformation logic. The Integration Service sometimes converts data to a different format when it reads
data. The Integration Service and database may also handle null values, case sensitivity, and sort order
differently.

The database and Integration Service produce different output when the following settings and conversions
are different:

• Nulls treated as the highest or lowest value. The Integration Service and a database can treat null values
differently. For example, you want to push a Sorter transformation to an Oracle database. In the session,
you configure nulls as the lowest value in the sort order. Oracle treats null values as the highest value in
the sort order.

• Sort order. The Integration Service and a database can use different sort orders. For example, you want to
push the transformations in a session to a Microsoft SQL Server database, which is configured to use a
sort order that is not case sensitive. You configure the session properties to use the binary sort order,
which is case sensitive. The results differ based on whether the Integration Service or Microsoft SQL
Server database process the transformation logic.

• Case sensitivity. The Integration Service and a database can treat case sensitivity differently. For
example, the Integration Service uses case sensitive queries and the database does not. A Filter
transformation uses the following filter condition: IIF(col_varchar2 = ‘CA’, TRUE, FALSE). You need the

Working with Databases 69

database to return rows that match ‘CA.’ However, if you push this transformation logic to a Microsoft
SQL Server database that is not case sensitive, it returns rows that match the values ‘Ca,’ ‘ca,’ ‘cA,’ and
‘CA.’

• Numeric values converted to character values. The Integration Service and a database can convert the
same numeric value to a character value in different formats. The database can convert numeric values to
an unacceptable character format. For example, a table contains the number 1234567890. When the
Integration Service converts the number to a character value, it inserts the characters ‘1234567890.’
However, a database might convert the number to ‘1.2E9.’ The two sets of characters represent the same
value. However, if you require the characters in the format ‘1234567890,’ you can disable pushdown
optimization.

• Precision. The Integration Service and a database can have different precision for particular datatypes.
Transformation datatypes use a default numeric precision that can vary from the native datatypes. For
example, a transformation Decimal datatype has a precision of 1-28. The corresponding Teradata Decimal
datatype has a precision of 1-18. The results can vary if the database uses a different precision than the
Integration Service.

Rules and Guidelines for IBM DB2
Certain rules and guidelines apply for pushdown optimization to an IBM DB2 database.

When you apply pushdown optimization to an IBM DB2 database, a session that requires type casting can
fail. The session fails if the casting is from float or double to string, or if it requires a type of casting that IBM
DB2 databases disallow.

Rules and Guidelines for Netezza
Use the following rules and guidelines for pushdown optimization to a Netezza database:

• You must enable the Pre 85 Timestamp Compatibility session property to perform target-side pushdown
optimization on Netezza if the Netezza database table contains a date, time, or timestamp column. If you
disable the option, the Integration Service processes the target operation.

• You cannot push transformation logic to Netezza for a passive connected or unconnected Lookup
transformation.

Rules and Guidelines for Teradata
Certain rules and guidelines apply for pushdown optimization to a Teradata database.

Use the following rules and guidelines for pushdown optimization to a Teradata database:

• A pushdown optimization session fails if it converts a Decimal or Double datatype to a String datatype.

• A target-side pushdown optimization session fails if it converts a Date datatype to a String datatype.

Rules and Guidelines for Vertica
Certain rules and guidelines apply for pushdown optimization to a Vertica database.

When you apply pushdown optimization to a function that has a CHAR column as an argument, the Vertica
database strips the padding spaces from the CHAR column values.

70 Chapter 4: Pushdown Optimization

Pushdown Compatibility
To push a transformation with multiple connections to a database, the connections must be pushdown
compatible. Connections are pushdown compatible if they connect to databases on the same database
management system and the Integration Service can identify the database tables that the connections
access.

The following transformations can have multiple connections:

• Joiner. The Joiner transformation can join data from multiple source connections.

• Union. The Union transformation can merge data from multiple source connections.

• Lookup. The connection for the Lookup transformation can differ from the source connection.

• Target. The target connection can differ from the source connection.

Each connection object is pushdown compatible with itself. If you configure a session to use the same
connection object for the source and target connections, the Integration Service can push the transformation
logic to the source or target database.

Some relational connections are pushdown compatible if they are of the same database type, have the same
database user name and password, and have certain identical properties.

The following table lists the connection properties that must be identical for each database type:

Database Type Connection Properties that Must be Identical

IBM DB2 Connect string
Code page
Connection environment SQL
Transaction environment SQL

Greenplum Code page
Connect string
Connection environment SQL
Transaction environment SQL

Microsoft SQL Server Code page
Server name
Domain name
Use trusted connection
Connection environment SQL
Transaction environment SQL

Oracle Connect string
Code page
Connection environment SQL
Transaction environment SQL

Sybase ASE Code page
Server name
Connection environment SQL
Transaction environment SQL

Pushdown Compatibility 71

Database Type Connection Properties that Must be Identical

Teradata Code page
Data source name
Connection environment SQL
Transaction environment SQL

Vertica Code page
Connect string
Connection environment SQL
Transaction environment SQL

Note: The Integration Service performs a case-sensitive string comparison to verify that connection
properties are identical.

Netezza databases in the same relational database management system are pushdown incompatible. A
Netezza database is only pushdown compatible with itself.

If the connection properties in “Pushdown Compatibility” on page 71 for connections of the same database
type are identical, but the database user names and passwords differ, you might still be able to make the
connections pushdown compatible.

Incompatible Users for Database Connections
If the database user names and passwords of otherwise compatible connections do not match, you must
provide additional information to make the connections compatible.

To make the connections pushdown compatible, perform the following actions:

1. Verify that the database user of the active database has read permission on all idle databases.

2. Enable the Allow Pushdown for User Incompatible Connections session property.

3. For each idle connection to Microsoft SQL Server and Sybase, you must also specify the database name
in the connection property and table owners for all lookups and sources.

Qualifying Names of Tables in Idle Databases
When the Integration Service generates SQL to push transformations to an active database, the generated
SQL references at least one table in the idle database.

To ensure that the Integration Service can identify all tables, you must qualify the names of tables in idle
databases for the following cases:

• The active and idle connections have the same connection properties and are of the same database type,
however the database user names and passwords are different.

• The Source Qualifier transformation contains a source filter or user-defined join.

Note: The Integration Service qualifies the names of tables in idle databases for all other cases.

Qualify the name of a source table in the Owner Name session property for the Source Qualifier
transformation. Qualify the name of a lookup table in the Lookup Table Name session property for the
Lookup transformation.

72 Chapter 4: Pushdown Optimization

Use the following syntax to qualify a table name:

Database Type Syntax

IBM DB2 <table owner>.<table name>

Microsoft SQL Server <database name>.<table owner>.<table name>

Netezza Not supported

Oracle <table owner>.<table name>

Sybase ASE <database name>.<table owner>.<table name>

Teradata <database name>.<table name>

Vertica <database name>.<schema name>.<table name>

Working with Dates
The Integration Service and database can process dates differently. When you configure the session to push
date conversion to the database, you can receive unexpected results or the session can fail.

The database can produce different output than the Integration Service when the following date settings and
conversions are different:

• Date values converted to character values. The Integration Service converts the transformation Date/
Time datatype to the native datatype that supports subsecond precision in the database. The session fails
if you configure the datetime format in the session to a format that the database does not support. For
example, when the Integration Service performs the ROUND function on a date, it stores the date value in
a character column, using the format MM/DD/YYYY HH:MI:SS.US. When the database performs this
function, it stores the date in the default date format for the database. If the database is Oracle, it stores
the date as the default DD-MON-YY. If you require the date to be in the format MM/DD/YYYY HH:MI:SS.US,
you can disable pushdown optimization.

• Date formats for TO_CHAR and TO_DATE functions. The Integration Service uses the date format in the
TO_CHAR or TO_DATE function when the Integration Service pushes the function to the database. The
database converts each date string to a datetime value supported by the database.

For example, the Integration Service pushes the following expression to the database:

TO_DATE(DATE_PROMISED, 'MM/DD/YY')
The database interprets the date string in the DATE_PROMISED port based on the specified date format
string MM/DD/YY. The database converts each date string, such as 01/22/98, to the supported date value,
such as Jan 22 1998 00:00:00.

If the Integration Service pushes a date format to an IBM DB2, a Microsoft SQL Server, or a Sybase
database that the database does not support, the Integration Service stops pushdown optimization and
processes the transformation.

The Integration Service converts all dates before pushing transformations to an Oracle or Teradata
database. If the database does not support the date format after the date conversion, the session fails.

• HH24 date format. You cannot use the HH24 format in the date format string for Teradata. When the
Integration Service generates SQL for a Teradata database, it uses the HH format string instead.

Working with Dates 73

• Blank spaces in date format strings. You cannot use blank spaces in the date format string in Teradata.
When the Integration Service generates SQL for a Teradata database, it substitutes the space with ‘B.’

• Handling subsecond precision for a Lookup transformation. If you enable subsecond precision for a
Lookup transformation, the database and Integration Service perform the lookup comparison using the
subsecond precision, but return different results. Unlike the Integration Service, the database does not
truncate the lookup results based on subsecond precision. For example, you configure the Lookup
transformation to show subsecond precision to the millisecond. If the lookup result is 8:20:35.123456, a
database returns 8:20:35.123456, but the Integration Service returns 8:20:35.123.

• SYSDATE built-in variable. When you use the SYSDATE built-in variable, the Integration Service returns the
current date and time for the node running the service process. However, when you push the
transformation logic to the database, the SYSDATE variable returns the current date and time for the
machine hosting the database. If the time zone of the machine hosting the database is not the same as
the time zone of the machine running the Integration Service process, the results can vary.

Working with Expressions
When you use pushdown optimization, the Integration Service converts the expression in the transformation
or workflow link by determining equivalent operators, variables, and functions in the database. If there is no
equivalent operator, variable, or function, the Integration Service processes the transformation logic. For
example, the Integration Service translates the aggregate function STDDEV() to STDDEV_SAMP() on Teradata
and to STDEV() on Microsoft SQL Server. The Integration Service processes any transformation that uses the
FIRST() aggregate function because no database supports this function.

Note: The Integration Service logs a message in the workflow log and the Pushdown Optimization Viewer
when it cannot push an expression to the database. Use the message to determine the reason why it could
not push the expression to the database.

The tables in this section summarize the availability of PowerCenter operators, variables, and functions in
databases.

Operators
The following table summarizes the availability of PowerCenter operators in databases. Columns marked
with an X indicate that the operator can be pushed to the database by using source-side, target-side, or full
pushdown optimization. Columns marked with an S indicate that the operator can be pushed to the database
by using source-side pushdown optimization.

Operator Greenplum IBM
DB2

Microsoft
SQL
Server

Netezza Oracle SAP
HANA

Sybase
ASE

Teradata Vertica

+ - * / X X X X X X X X X

% - X X X X X X X X

|| X S S X X X S S X

= > < >= <=
<>

X X X X X X X X X

74 Chapter 4: Pushdown Optimization

Operator Greenplum IBM
DB2

Microsoft
SQL
Server

Netezza Oracle SAP
HANA

Sybase
ASE

Teradata Vertica

!= X X X X X X X X X

^= X X X X X X X X X

not and or X X X X X X X X X

Variables
The following table summarizes the availability of PowerCenter variables in databases. Columns marked with
an X indicate that the variable can be pushed to the database by using source-side, target-side, or full
pushdown optimization. Columns marked with a dash (-) symbol indicate that the variable cannot be pushed
to the database.

Variable Greenplum IBM
DB2

Microsoft
SQL
Server

Netezza Oracle SAP
HANA

Sybase
ASE

Teradata Vertica

SESSSTARTTIME X X X X X X X X X

SYSDATE X X X X X X X X X

WORKFLOWSTARTTIME - - - - - - - - -

Functions
The following table summarizes the availability of PowerCenter functions in databases. Columns marked
with an X indicate that the function can be pushed to the database by using source-side, target-side, or full
pushdown optimization. Columns marked with an S indicate that the function can be pushed to the database
by using source-side pushdown optimization. Columns marked with a dash (-) symbol indicate that the
function cannot be pushed to the database.

Function Amazon
Redshift

Greenplum IBM
DB2

Microsoft
SQL
Server

Netezza Oracle SAP
HANA

Sybase
ASE

Teradata Vertica

ABORT() - - - - - - - - - -

ABS() X X X X X X X X X X

ADD_TO_DATE() - X X S X X X S X X

AES_DECRYPT() - - - - - - - - - -

AES_ENCRYPT() - - - - - - - - - -

ASCII() - X X X X X X X - X

AVG() S S X X X X X X X X

Working with Expressions 75

Function Amazon
Redshift

Greenplum IBM
DB2

Microsoft
SQL
Server

Netezza Oracle SAP
HANA

Sybase
ASE

Teradata Vertica

CEIL() - X X X X X - X S S

CHOOSE() - - - - - - - - - -

CHR() - X X X X X - X - X

CHRCODE() - - - - - - - - - -

COMPRESS() - - - - - - - - - -

CONCAT() - S S S - X X S S X

COS() X X X X X X X X X X

COSH() - X X S X X - S X X

COUNT() S S X X X X X X X X

CRC32() - - - - - - - - - -

CUME() - - - - - - - - - -

DATE_COMPARE() S S S S X S - S S X

DATE_DIFF() - - - - - - - - - X

DECODE() X X X X X X - X X X

DECODE_BASE64() - - - - - - - - - -

DECOMPRESS() - - - - - - - - - -

ENCODE_BASE64() - - - - - - - - - -

EXP() X X X X X X X X X X

FIRST() - - - - - - - - - -

FLOOR() - X X X X X - X S X

FV() - - - - - - - - - -

GET_DATE_PART() - S X X X X - X X X

GREATEST() - - - - - X - - - -

IIF() X X X X X X X X X X

IN() S S X X - X - X X -

INDEXOF() - - - - - - - - - -

76 Chapter 4: Pushdown Optimization

Function Amazon
Redshift

Greenplum IBM
DB2

Microsoft
SQL
Server

Netezza Oracle SAP
HANA

Sybase
ASE

Teradata Vertica

INITCAP() - X - - - X - - - X

INSTR() - - S X - X - S S X

IS_DATE() - - - - - - - - - -

IS_NUMBER() - - - - - - - - - -

IS_SPACES() - - - - - - - - - -

ISNULL() S S X X X X - X X X

LAST() - - - - - - - - - -

LAST_DAY() - - - - - X - - - X

LEAST() - - - - - X - - - -

LENGTH() - X X X X X X X X X

LN() - X - - X - - - - X

LOG() - X X S X X - S S S

LOOKUP - - X X X X - X X X

LOWER() X X X X X X X X X X

LPAD() - X - - X X - - - X

LTRIM() - X X X X X - X X X

MAKE_DATE_TIME() - - - - - - - - - -

MAX() S S X X X X X X X X

MD5() - - - - - - - - - -

MEDIAN() - - - - - - - - - -

METAPHONE() - - - - - - - - - -

MIN() S S X X X X X X X X

MOD() - S X X X X - X X X

MOVINGAVG() - - - - - - - - - -

MOVINGSUM() - - - - - - - - - -

NPER() - - - - - - - - - -

Working with Expressions 77

Function Amazon
Redshift

Greenplum IBM
DB2

Microsoft
SQL
Server

Netezza Oracle SAP
HANA

Sybase
ASE

Teradata Vertica

PERCENTILE() - - - - - - - - - -

PMT() - - - - - - - - - -

POWER() X X X X X X X X X X

PV() - - - - - - - - - -

RAND() - - - - - - - - - -

RATE() - - - - - - - - - -

REG_EXTRACT() - - - - - - - - - -

REG_MATCH() - - - - - - - - - -

REG_REPLACE - - - - - - - - - -

REPLACECHR() - - - - - - - - - -

REPLACESTR() - - - - - - - - - -

REVERSE() - - - - - - - - - -

ROUND(DATE) - - - - - X - - - S

ROUND(NUMBER) - X X X X X - X S S

RPAD() - X - - X X - - - X

RTRIM() - X X X X X - X X X

SET_DATE_PART() - - - - - - - - - -

SIGN() - X X X X X - X S S

SIN() X X X X X X X X X X

SINH() - X X S X X - S X X

SOUNDEX() - - X X - X - X - X

SQRT() X X X X X X X X X X

STDDEV() - S X X - X - - X X

SUBSTR() - X S S X X X S S X

SUM() S S X X X X X X X X

SYSDATE() - X X X X X - X X X

78 Chapter 4: Pushdown Optimization

Function Amazon
Redshift

Greenplum IBM
DB2

Microsoft
SQL
Server

Netezza Oracle SAP
HANA

Sybase
ASE

Teradata Vertica

SYSTIMESTAMP() - X X X X X - X X X

TAN() X X X X X X X X X X

TANH() - X X S X X - S X X

TO_BIGINT - X X X X X - X X X

TO_CHAR(DATE) - S X X X X X X S X

TO_CHAR(NUMBER) - X X X X X - X X X

TO_DATE() - X X X X X X X X X

TO_DECIMAL() - X X X X X - X X X

TO_FLOAT() - X X X X X - X X X

TO_INTEGER() - X X S X X - S X X

TRUNC(DATE) - - - - X X - - - S

TRUNC(NUMBER) - X X X X X - S S S

UPPER() X X X X X X X X X X

VARIANCE() - S X X - X X - X X

Rules and Guidelines for Functions in Pushdown Optimization
Use the following rules and guidelines when pushing functions to a database:

• If you use ADD_TO_DATE in transformation logic to change days, hours, minutes, or seconds, you cannot
push the function to a Teradata database.

• When you push LAST_DAY() to Oracle, Oracle returns the date up to the second. If the input date contains
subseconds, Oracle trims the date to the second.

• When you push LTRIM, RTRIM, or SOUNDEX to a database, the database treats the argument (' ') as NULL,
but the PowerCenter Integration Service treats the argument (' ') as spaces.

• An IBM DB2 database and the PowerCenter Integration Service produce different results for STDDEV and
VARIANCE. IBM DB2 uses a different algorithm than other databases to calculate STDDEV and VARIANCE.

• When you push SYSDATE or SYSTIMESTAMP to the database, the database server returns the timestamp
in the time zone of the database server, not the PowerCenter Integration Service.

• If you push SYSTIMESTAMP to an IBM DB2 or a Sybase database, and you specify the format for
SYSTIMESTAMP, the database ignores the format and returns the complete time stamp.

• You can push SYSTIMESTAMP(‘SS’) to a Netezza database, but not SYSTIMESTAMP(‘MS’) or
SYSTIMESTAMP(‘US’).

Working with Expressions 79

• When you push TO_CHAR(DATE) or TO_DATE() to Netezza, dates with subsecond precision must be in the
YYYY-MM-DD HH24:MI:SS.US format. If the format is different, the PowerCenter Integration Service does
not push the function to Netezza.

• If you use any of the following formats as part of the DATE_DIFF() function, the PowerCenter Integration
Service does not push the function to Vertica:

- YYY

- MON

- MONTH

- HH12

- HH24

• When you push the DATE_DIFF function to Vertica, Vertica rounds the date difference value to the nearest
integer. However, the PowerCenter Integration Service returns a float value. For example, if the first date
is 2000-08-15 and the second date is 1997-08-16, Vertica rounds the date difference value to 3, but the
PowerCenter Integration Service returns 2.99731182795699. If you want the date difference to be treated
as a float value in the Vertica database, you can disable pushdown optimization.

• When you specify the format as Y and push the DATE_DIFF function to Vertica, Vertica calculates the
difference in the dates in terms of number of days. However, the PowerCenter Integration Service
calculates the difference in terms of number of years. If you want the difference value to be treated in
terms of number of years, you can disable pushdown optimization.

Error Handling, Logging, and Recovery
The Integration Service and database process error handling, logging, and recovery differently.

Error Handling
When the Integration Service pushes transformation logic to the database, it cannot track errors that occur in
the database. As a result, it handles errors differently than when it processes the transformations in the
session. When the Integration Service runs a session configured for full pushdown optimization and an error
occurs, the database handles the errors. When the database handles errors, the Integration Service does not
write reject rows to the reject file.

Logging
When the Integration Service pushes transformation logic to the database, it cannot trace all the events that
occur inside the database server. The statistics the Integration Service can trace depend on the type of
pushdown optimization. When you push transformation logic to the database, the Integration Service
generates a session log with the following differences:

• The session log does not contain details for transformations processed by the database.

• The session log does not contain the thread busy percentage when the session is configured for full
pushdown optimization.

• The session log does not contain the number of rows read from the source when the Integration Service
uses full pushdown optimization and pushes all transformation logic to the database.

• The session log contains the number of rows read from optimized sources when the Integration Service
uses source-side pushdown optimization.

80 Chapter 4: Pushdown Optimization

Recovery
If you configure a session for full pushdown optimization and the session fails, the Integration Service cannot
perform incremental recovery because the database processes the transformations. Instead, the database
rolls back the transactions. If the database server fails, it rolls back transactions when it restarts. If the
Integration Service fails, the database server rolls back the transaction.

If the failure occurs while the Integration Service is creating temporary sequence objects or views in the
database, which is before any rows have been processed, the Integration Service runs the generated SQL on
the database again.

If the failure occurs before the database processes all rows, the Integration Service performs the following
tasks:

1. If applicable, the Integration Service drops and recreates temporary view or sequence objects in the
database to ensure duplicate values are not produced.

2. The Integration Service runs the generated SQL on the database again.

If the failure occurs while the Integration Service is dropping the temporary view or sequence objects from
the database, which is after all rows are processed, the Integration Service tries to drop the temporary
objects again.

Working with Slowly Changing Dimensions
You can push Type 1 and Type 3 slowly changing dimensions logic to a database. The slowly changing
dimensions logic in a mapping can be comprised of multiple transformations. The rules and guidelines of
each transformation determine how much slowly changing dimensions logic you can push to a database.

Use the following rules and guidelines when you configure the Integration Service to push slowly changing
dimensions transformation logic to a database:

• You can push transformations included in Type 1 and Type 3 slowly changing dimensions mapping to an
Oracle or IBM DB2 database.

• The source data must not have duplicate rows. The database can become deadlocked if it makes multiple
updates to the same row.

• You must create the slowly changing dimensions mapping using the Slowly Changing Dimensions Wizard
version 8.5 or higher. You cannot push the slowly changing dimensions logic to the database if it was
created by the Slowly Changing Dimensions Wizard from a previous version.

Working with Sequences and Views
To push transformation logic to a database, the Integration Service might create temporary sequences or
views in the database. After the database transaction completes, the Integration Service drops sequence and
view objects created for pushdown optimization.

Sequences
To push Sequence Generator transformation logic to a database, you must configure the session for
pushdown optimization with sequences.

Working with Slowly Changing Dimensions 81

If you configure a session to push Sequence Generator transformation logic to a database, the Integration
Service completes the following tasks:

1. Creates a sequence object in the database. The Integration Service creates the sequence object in the
database based on the Sequence Generator transformation logic. The Integration Service creates a
unique name for each sequence object. To create a unique sequence object name, it adds the prefix
PM_S to a value generated by a hash function.

2. Generates the SQL query and executes it against the database. The Integration Service generates and
executes the SQL query to push the Sequence Generator transformation logic to the database.

3. Drops the sequence object from the database. When the transaction completes, the Integration Service
drops the sequence object that it created in the database.

Sequence Creation Example
You create the following mapping that uses a Sequence Generator transformation to generate primary keys
for a relational target:

When the Integration Service pushes transformation logic to the database, it executes the following SQL
statement to create the sequence object in the source database:

CREATE SEQUENCE PM_S6UHW42OGXTY7NICHYIOSRMC5XQ START WITH 1 INCREMENT BY 1 MINVALUE 0
MAXVALUE 9223372036854775807 NOCYCLE CACHE 9223372036854775807

After the Integration Service creates the sequence object, the Integration Service executes the SQL query to
process the transformation logic contained in the mapping:

INSERT INTO STORE_SALES(PRIMARYKEY, QUARTER, SALES, STORE_ID) SELECT
CAST(PM_S6UHW42OGXTY7NICHYIOSRMC5XQ.NEXTVAL AS FLOAT),
CAST(CAST(SALES_BYSTOREQUARTER_SRC.QUARTER AS FLOAT) AS VARCHAR2(10)),
CAST(CAST(SALES_BYSTOREQUARTER_SRC.SALES AS NUMBER(10, 2)) AS NUMBER(25, 2)),
CAST(SALES_BYSTOREQUARTER_SRC.STORE_ID AS NUMBER(0, 0)) FROM SALES_BYSTOREQUARTER_SRC

After the session completes, the Integration Service drops the sequence object from the database. If the
session fails, the Integration Service drops and recreates the sequence object before performing recovery
tasks.

Views
You must configure the session for pushdown optimization with views to enable the Integration Service to
create the view objects in the database.

The Integration Service creates a view object under the following conditions:

• You configure pushdown optimization for a Source Qualifier or Lookup transformation configured with an
SQL override.

• You configure pushdown optimization for a Lookup transformation configured with a filter.

• You configure pushdown optimization for an unconnected Lookup transformation.

When the Integration Service pushes a Source Qualifier or Lookup transformation to a database, it creates
the view based on the transformation definition. For example, when the Integration Service creates a view

82 Chapter 4: Pushdown Optimization

based on a Lookup transformation with a filter, it creates the view that contains only the non-filtered rows.
When the Integration Service pushes a Lookup transformation with an SQL override to a database, it creates
a view based on all the lookup ports, not only the projected lookup ports.

The Integration Service does not parse or validate the SQL overrides. If you configure a session to push the
Source Qualifier or Lookup transformation with an SQL override to the database, test the SQL override
against the database before you run the session.

If you push Source Qualifier transformation logic to Teradata with temporary views, the data dictionary in
Teradata can cause the SQL statements to fail. The SQL statements fail due to the dynamic creation and
deletion of views in the environment that uses many pushdown optimization sessions. You can disable the
creation of temporary views for pushdown optimization to Teradata when the Source Qualifier transformation
contains a source filter, user-defined joins, or an SQL override. The Integration Service creates derived tables
instead of views.

If you configure the session for pushdown optimization with views, the Integration Service completes the
following tasks:

1. Creates a view in the database. The Integration Service creates a view in the database based on the
lookup filter, unconnected lookup, or SQL override in the Source Qualifier or Lookup transformation. To
create a unique view name, the Integration Service adds the prefix PM_V to a value generated by a hash
function.

2. Executes an SQL query against the view. After the Integration Service creates a view object, it executes
an SQL query against the view created in the database to push the transformation logic to the source.

3. Drops the view from the database. When the transaction completes, the Integration Service drops the
view it created.

View Creation Example
You create the following mapping that searches for 94117 zip codes in a customer database:

You want the search to return customers whose names match variations of the name Johnson, including
names such as Johnsen, Jonssen, and Jonson. To perform the name matching, you enter the following SQL
override for the Source Qualifier transformation:

SELECT CUSTOMERS.CUSTOMER_ID, CUSTOMERS.COMPANY, CUSTOMERS.FIRST_NAME,
CUSTOMERS.LAST_NAME, CUSTOMERS.ADDRESS1, CUSTOMERS.ADDRESS2, CUSTOMERS.CITY,
CUSTOMERS.STATE, CUSTOMERS.POSTAL_CODE, CUSTOMERS.PHONE, CUSTOMERS.EMAIL FROM CUSTOMERS
WHERE CUSTOMERS.LAST_NAME LIKE 'John%' OR CUSTOMERS.LAST_NAME LIKE 'Jon%'

When the Integration Service pushes transformation logic for this session to the database, it executes the
following SQL statement to create a view in the source database:

CREATE VIEW PM_V4RZRW5GWCKUEWH35RKDMDPRNXI (CUSTOMER_ID, COMPANY, FIRST_NAME, LAST_NAME,
ADDRESS1, ADDRESS2, CITY, STATE, POSTAL_CODE, PHONE, EMAIL) AS SELECT
CUSTOMERS.CUSTOMER_ID, CUSTOMERS.COMPANY, CUSTOMERS.FIRST_NAME, CUSTOMERS.LAST_NAME,
CUSTOMERS.ADDRESS1, CUSTOMERS.ADDRESS2, CUSTOMERS.CITY, CUSTOMERS.STATE,
CUSTOMERS.POSTAL_CODE, CUSTOMERS.PHONE, CUSTOMERS.EMAIL FROM CUSTOMERS WHERE
CUSTOMERS.LAST_NAME LIKE 'John%' OR CUSTOMERS.LAST_NAME LIKE 'Jon%'

Working with Sequences and Views 83

After the Integration Service creates the view, it executes an SQL query to perform the transformation logic in
the mapping:

SELECT PM_V4RZRW5GWCKUEWH35RKDMDPRNXI.CUSTOMER_ID,
PM_V4RZRW5GWCKUEWH35RKDMDPRNXI.COMPANY, PM_V4RZRW5GWCKUEWH35RKDMDPRNXI.FIRST_NAME,
PM_V4RZRW5GWCKUEWH35RKDMDPRNXI.LAST_NAME, PM_V4RZRW5GWCKUEWH35RKDMDPRNXI.ADDRESS1,
PM_V4RZRW5GWCKUEWH35RKDMDPRNXI.ADDRESS2, PM_V4RZRW5GWCKUEWH35RKDMDPRNXI.CITY,
PM_V4RZRW5GWCKUEWH35RKDMDPRNXI.STATE, PM_V4RZRW5GWCKUEWH35RKDMDPRNXI.POSTAL_CODE,
PM_V4RZRW5GWCKUEWH35RKDMDPRNXI.PHONE, PM_V4RZRW5GWCKUEWH35RKDMDPRNXI.EMAIL FROM
PM_V4RZRW5GWCKUEWH35RKDMDPRNXI WHERE (PM_V4RZRW5GWCKUEWH35RKDMDPRNXI.POSTAL_CODE = 94117)

After the session completes, the Integration Service drops the view from the database. If the session fails,
the Integration Service drops and recreates the view before performing recovery tasks.

Troubleshooting Orphaned Sequences and Views
The Integration Service might not drop a sequence or view object from a database if the Integration Service,
session, or connectivity fails. In this case, manually remove these objects from the database.

Note: Orphaned sequence and view objects in the database do not affect performance.

Complete the following tasks to remove an orphaned sequence or view object from a database:

1. Identify the orphaned objects in the database. You can identify orphaned objects based on the session
logs or a query on the database. Analyze the session log to determine orphaned objects from a session
run. Run the database query to determine all orphaned objects in the database at a given time.

2. Remove the orphaned objects from the database. You can execute SQL statements to drop the
orphaned objects you identified.

Identifying Orphaned Objects Using Session Logs
The Integration Service writes an event log when it creates and drops a view or sequence object. If an
Integration Service, session, or connection fails when a session is running, you can check the session log to
determine sequence or view objects that were not dropped during the session.

For example, if the Integration Service drops the view PM_V4RZRW, the session log displays the following
message:

MAPPING> TM_6356 Starting pushdown cleanup SQL for source [CUSTOMERS]. : (Tue Feb 14 13:23:46
2006)

MAPPING> TM_6358 Executing pushdown cleanup SQL for source: DROP VIEW PM_V4RZRW

MAPPING> TM_6360 Completed pushdown cleanup SQL for source [CUSTOMERSsuccessfully. : (Tue Feb
14 13:23:46 2006)]

Identifying Orphaned Objects Using an SQL Query
If the Integration Service does not drop the sequence or view objects, you can execute an SQL query on the
database to identify all orphaned sequence or view objects created by the Integration Service. If the
Integration Service ran multiple sessions or multiple Integration Services write to the same database
account, the SQL query returns all orphaned objects from every session that ran and did not drop sequence or
view objects.

When the Integration Service creates a sequence or view object in the database, it adds the prefix PM_S to
the names of sequence objects and PM_V to the names of view objects. You can search for these objects
based on the prefix to identify them.

The following queries show the syntax to search for sequence objects created by the Integration Service:

84 Chapter 4: Pushdown Optimization

IBM DB2:

SELECT SEQNAME FROM SYSCAT.SEQUENCES
WHERE SEQSCHEMA = CURRENT SCHEMA
AND SEQNAME LIKE ‘PM_S%’ ESCAPE ‘\’

Oracle:

SELECT SEQUENCE_NAME FROM USER_SEQUENCES
WHERE SEQUENCE_NAME LIKE ‘PM_S%’ ESCAPE ‘\’

The following queries show the syntax to search for view objects created by the Integration Service:

IBM DB2:

SELECT VIEWNAME FROM SYSCAT.VIEWS
WHERE VIEWSCHEMA = CURRENT SCHEMA
AND VIEW_NAME LIKE ‘PM_V%’ ESCAPE ‘\’

Oracle:

SELECT VIEW_NAME FROM USER_VIEWS
WHERE VIEW_NAME LIKE ‘PM_V%’ ESCAPE ‘\’

Microsoft SQL Server or Sybase ASE:

SELECT NAME FROM SYSOBJECTS
WHERE TYPE=‘V’ AND NAME LIKE ‘PM_V%’ ESCAPE ‘\’

Teradata:

SELECT TableName FROM DBC.Tables
WHERE CreatorName = USER
AND TableKind =‘V’
AND TableName LIKE ‘PM_V%’ ESCAPE ‘\’

Removing the Orphaned Objects
After you get a list of the sequence and view objects created by the Integration Service, execute an SQL DROP
statement to drop the sequence or view objects from the database.

The following query shows the syntax to drop sequence objects created by the Integration Service on any
database:

DROP SEQUENCE <sequence name>
The following query shows the syntax to drop view objects created by the Integration Service on any
database:

DROP VIEW <view name>

Using the $$PushdownConfig Mapping Parameter
Depending on the database workload, you might want to use source-side, target-side, or full pushdown
optimization at different times. For example, use source-side or target-side pushdown optimization during the
peak hours of the day, but use full pushdown optimization from midnight until 2 a.m. when database activity
is low.

To use different pushdown optimization configurations at different times, use the $$PushdownConfig
mapping parameter. The parameter lets you run a session using the different types of pushdown
optimization. The settings in the $$PushdownConfig parameter override the pushdown optimization settings
in the session properties.

Using the $$PushdownConfig Mapping Parameter 85

Complete the following steps to configure the mapping parameter:

1. Create $$PushdownConfig in the Mapping Designer.

2. When you add the $$PushdownConfig mapping parameter in the Mapping Designer, use the following
values:

Field Value

Name $$PushdownConfig

Type Parameter

Datatype String

Precision or Scale 20

Aggregation n/a

Initial Value None

Description Optional

3. When you configure the session, select $$PushdownConfig for the Pushdown Optimization attribute.

4. Define the parameter in the parameter file.

5. Enter one of the following values for $$PushdownConfig in the parameter file:

Value Description

None Integration Service processes all transformation logic for the session.

Source [Seq View
Conn]

Integration Service pushes as much of the transformation logic to the source database
as possible.

Target [Seq View
Conn]

Integration Service pushes as much of the transformation logic to the target database
as possible.

Full [Seq View Conn] Integration Service pushes as much of the transformation logic to the source and target
databases as possible. The Integration Service processes any transformation logic that
it cannot push to a database.

Optionally, specify one or more of the following options:

• Seq. Allows the Integration Service to create a sequence object in the database.

• View. Allows the Integration Service to create a view object in the database.

• Conn. Indicates that the database user of the active database has read permission on the idle
database, which is required to push transformation logic to the active database.

For example, enter ‘Full View Conn’ to use full pushdown optimization, enable the creation of view
objects in the active database, and indicate that the active database has read permission on the idle
database.

86 Chapter 4: Pushdown Optimization

Configuring Sessions for Pushdown Optimization
You configure a session for pushdown optimization in the session properties. However, you might need to
edit the transformation, mapping, or session configuration to push more transformation logic to the
database. Use the Pushdown Optimization Viewer to examine the transformations that can be pushed to the
database.

Pushdown Options
You can configure the following pushdown optimization options in the session properties:

• Pushdown Optimization. Type of pushdown optimization. If you use the $$PushdownConfig mapping
parameter, ensure that you configured the mapping parameter and defined a value for it in the parameter
file.

• Allow Temporary View for Pushdown. Allows the PowerCenter Integration Service to create temporary
view objects in the database when it pushes the session to the database. The PowerCenter Integration
Service creates a view in the database when the session contains an SQL override in the Source Qualifier
transformation or Lookup transformation, a filtered lookup, or an unconnected lookup.

If you use a Teradata source and the Source Qualifier transformation contains a source filter, user-defined
joins, or an SQL override, then you do not need to allow the temporary pushdown view. If you push Source
Qualifier transformation logic to Teradata with temporary views, the data dictionary in Teradata can cause
the SQL statements to fail. The SQL statements fail due to the dynamic creation and deletion of views in
the environment that uses many pushdown optimization sessions.

• Allow Temporary Sequence for Pushdown. Allows the PowerCenter Integration Service to create
temporary sequence objects in the database. The PowerCenter Integration Service must create a
sequence object in the database if the session contains a Sequence Generator transformation.

• Allow Pushdown for User Incompatible Connections. Indicates that the database user of the active
database has read permission on the idle databases. If you indicate that the database user of the active
database has read permission on the idle databases, and it does not, the session fails. If you do not
indicate that the database user of the active database has read permission on the idle databases, the
PowerCenter Integration Service does not push transformation logic to the database.

Use the Pushdown Optimization Viewer to determine if you need to edit the mapping, transformation, or
session configuration to push more transformation logic to the database. The Pushdown Optimization
Viewer indicates whether it can push transformation logic to the database using source-side, target-side, or
full pushdown optimization. If you can push transformation logic to the database, the Pushdown
Optimization Viewer lists all transformations that can be pushed to the database.

You can also select a pushdown option or pushdown group in the Pushdown Optimization Viewer to view the
corresponding SQL statement that is generated for the specified selections.

Note: When you select a pushdown option or pushdown group, you do not change the pushdown
configuration. To change the configuration, you must update the pushdown option in the session properties.

Partitioning
You can push a session with multiple partitions to a database if the partition types are pass-through
partitioning or key range partitioning.

Configuring Sessions for Pushdown Optimization 87

Pushdown Optimization for Pass-Through Partitioning
When you configure pushdown optimization for a session with pass-through partitioning, the database
processes data without redistributing rows among partitions. All rows in a single partition stay in the partition
after crossing a pass-through partition point.

You must configure all partition points for pass-through partitioning to push all transformation logic to the
database. For example, a session has four partition points. You configure the first three partition points for
pass-through partitioning and the last partition point for hash auto-keys partitioning. The Integration Service
pushes all transformation logic to the database, except the transformations at and after the last partition
point. The Integration Service processes the transformations at and after the last partition point.

Pushdown Optimization for Key-Range Partitioning
When you configure pushdown optimization for a session with key-range partitioning at the Source Qualifier
transformation, the Integration Service merges all the rows into the first partition and passes empty data for
each subsequent partition. The Integration Service creates an SQL statement for each partition. If the
Integration Service pushes only part of the transformation logic to the database, it does not redistribute the
rows across partitions when it runs the session.

The session must meet the following criteria to enable the Integration Service to push all transformation
logic to the database:

• The end key range for each partition must equal the start range for the next partition to merge all rows
into the first partition. The end key range cannot overlap with the next partition. For example, if the end
range for the first partition is 3386, then the start range for the second partition must be 3386.

• You must configure the partition point at the Source Qualifier transformation to use key range partitioning
and all subsequent partition points to use either hash auto-keys or pass-through partitioning.

Example of Pushdown Optimization for Session with Multiple Partitions
The following figure shows a mapping that contains a Sorter transformation with hash auto-keys partitioning:

88 Chapter 4: Pushdown Optimization

The first key range is 1313 - 3340, and the second key range is 3340 - 9354. The SQL statement merges all
the data into the first partition:

SELECT ITEMS.ITEM_ID, ITEMS.ITEM_NAME, ITEMS.ITEM_DESC FROM ITEMS1 ITEMS WHERE
(ITEMS.ITEM_ID >= 1313) AND (ITEMS.ITEM_ID < 9354) ORDER BY ITEMS.ITEM_ID

The SQL statement selects items 1313 through 9354, which includes all values in the key range, and merges
the data from both partitions into the first partition.

The SQL statement for the second partition passes empty data:

SELECT ITEMS.ITEM_ID, ITEMS.ITEM_NAME, ITEMS.ITEM_DESC FROM ITEMS1 ITEMS WHERE (1 = 0)
ORDER BY ITEMS.ITEM_ID

Rules and Guidelines for Sessions with Multiple Partitions
Use the following rules and guidelines when you configure the Integration Service to push sessions with
multiple partitions to a database.

The Integration Service can push a session with multiple partitions to the database in the following
situations:

• If the session uses pass-through partitioning at the partition point at the Source Qualifier transformation
and all subsequent partition points, the Integration Service can push the transformation logic to the
database using source-side, target-side, or full pushdown optimization.

• If the session uses key range partitioning at the Source Qualifier transformation and contains hash auto-
keys or pass-through partitions in downstream partition points, the Integration Service can push the
transformation logic to the database using source-side or full pushdown optimization.

If pushdown optimization merges data from multiple partitions of a transformation into the first partition and
the Integration Service processes the transformation logic for a downstream transformation, the Integration
Service does not redistribute the rows among the partitions in the downstream transformation. It continues
to pass the rows to the first partition and pass empty data in the other partitions.

Target Load Rules
Target load rules can affect whether you can push a session to a database.

The following table shows pushdown optimization for the different target load options:

Target Option Source Target Full

Insert X X X

Delete X X X

Update as update X X X

Update as insert X X X

Update else insert X X yes/no

Use the following rules and guidelines when you configure the Integration Service to push the target load
logic to a database:

• If you do not achieve performance gains when you use full pushdown optimization and the source rows
are treated as delete or update, use source-side pushdown optimization.

Configuring Sessions for Pushdown Optimization 89

• You cannot use full pushdown optimization and treat source rows as delete or update if the session
contains a Union transformation and the Integration Service pushes transformation logic to a Sybase
database.

Viewing Pushdown Groups
When you configure a session for pushdown optimization, the Integration Service generates SQL statements
based on the transformation logic. The group of transformations that can be processed as one SQL
statement is called a pushdown group.

When you push transformation logic to the database, the Integration Service might create multiple pushdown
groups depending on the number of pipelines, sources, targets, and the type of pushdown optimization you
use. If the session has multiple partitions, the Integration Service executes an SQL statement for each
partition in the group. If you join pipelines, transformations in each pipeline merge into one pushdown group.
If the same transformation is part of the transformation logic pushed to two or more targets, the
transformation is part of the pushdown group for each target.

You can view pushdown groups using the Pushdown Optimization Viewer. When you view pushdown groups
in the Pushdown Optimization Viewer, you can identify the transformations that can be pushed to the
database and those that the Integration Service processes. The Pushdown Optimization Viewer also displays
messages that you can use to determine how to edit transformations or mappings to push more
transformation logic to the database. The Pushdown Optimization Viewer cannot display the SQL that runs in
the session if you use mapping variables or if you configure the session to run on a grid.

When you view the generated SQL, the names of temporary view and sequence objects differ from the names
of the view and sequence objects generated during a session. The Integration Service uses a hash function to
create a unique name for each sequence and view object it generates.

The following figure shows a mapping displayed in the Pushdown Optimization Viewer. It contains two
pushdown groups that can be pushed to the source and target database:

Pipeline 1 and Pipeline 2 originate from different sources and contain transformations that are valid for
pushdown optimization. The Integration Service creates a pushdown group for each target, and generates an
SQL statement for each pushdown group. Because the two pipelines are joined, the transformations up to
and including the Joiner transformation are part of both pipelines and are included in both pushdown groups.

To view pushdown groups, open the Pushdown Optimization Viewer. The Pushdown Optimization Viewer
previews the pushdown groups and SQL statements that the Integration Service generates at run time.

To view pushdown groups:

1. In the Workflow Manager, open a session configured for pushdown optimization.

90 Chapter 4: Pushdown Optimization

2. On the Mapping tab, select Pushdown Optimization in the left pane or View Pushdown Optimization in
the right pane.

The Pushdown Optimization Viewer displays the pushdown groups and the transformations that
comprise each group. It displays the SQL statement for each partition if you configure multiple partitions
in the pipeline. You can view messages and SQL statements generated for each pushdown group and
pushdown option. Pushdown options include None, To Source, To Target, Full, and $$PushdownConfig.

The following figure shows a mapping containing one pipeline with two partitions that can be pushed to
the source database:

Figure 1. Pushdown Optimization Viewer

3. Select a pushdown option in the Pushdown Optimization Viewer to preview the SQL statements.

The pushdown option in the viewer does not affect the optimization that occurs at run time. To change
pushdown optimization for a session, edit the session properties.

4. If you configure the session to use a connection variable, click Preview Result for Connection to select a
connection value to preview.

If the session uses a connection variable, you must choose a connection value each time you open the
Pushdown Optimization Viewer. The Workflow Manager does not save the value you select, and the
Integration Service does not use this value at run time.

If an SQL override contains the $$$SessStartTime variable, the Pushdown Optimization Viewer does not
expand this variable when you preview pushdown optimization.

Configuring Sessions for Pushdown Optimization 91

C h a p t e r 5

Pushdown Optimization
Transformations

This chapter includes the following topics:

• Pushdown Optimization and Transformations Overview, 92

• Aggregator Transformation, 94

• Expression Transformation, 94

• Filter Transformation, 95

• Joiner Transformation, 96

• Lookup Transformation, 97

• Router Transformation, 99

• Sequence Generator Transformation, 100

• Sorter Transformation, 101

• Source Qualifier Transformation, 102

• Target, 103

• Union Transformation, 104

• Update Strategy Transformation, 105

Pushdown Optimization and Transformations
Overview

When you configure pushdown optimization, the Integration Service tries to push each transformation to the
database. The following criteria affects whether the Integration Service can push the transformation to the
database:

• Type of transformation

• Location of the transformation in the mapping

• Mapping and session configuration for the transformation

• The expressions contained in the transformation

The criteria might also affect the type of pushdown optimization that the Integration Service can perform and
the type of database to which the transformation can be pushed.

92

The Integration Service can push logic of the following transformations to the database:

• Aggregator

• Expression

• Filter

• Joiner

• Lookup

• Router

• Sequence Generator

• Sorter

• Source Qualifier

• Target

• Union

• Update Strategy

General Pushdown Restrictions
The amount of transformation logic that you can push to the database depends on the database,
transformation logic, and mapping and session configuration. The Integration Service processes all
transformation logic that it cannot push to a database.

If any of the following transformation or mapping conditions is true, the Integration Service processes the
logic instead of pushing it to the database:

• The transformation logic updates a mapping variable and saves it to the repository database.

• The transformation contains a variable port.

• The transformation meets all of the following criteria:

- Is not a Sorter transformation, Union transformation, or target.

- Is pushed to Microsoft SQL Server, Sybase, or Teradata.

- Is downstream from a Sorter transformation, which is downstream from a Union transformation or
contains a distinct sort.

• The session is configured to override the default values of input or output ports.

• The database does not have an equivalent operator, variable, or function that is used in an expression in
the transformation.

• The mapping contains too many branches. When you branch a pipeline, the SQL statement required to
represent the mapping logic becomes more complex. The Integration Service cannot generate an SQL
query for a mapping that contains more than 64 two-way branches, 43 three-way branches, or 32 four-way
branches. If the number of branches exceeds these limitations, the Integration Service processes the
downstream transformations.

If any of the following session properties is true, the Integration Service processes the logic instead of
pushing it to the database:

• The session is a debug session.

• The session is configured to log row errors.

If all the preceding conditions are false, you can see the pushdown rules for the individual transformations
and databases.

Pushdown Optimization and Transformations Overview 93

Aggregator Transformation
The following table shows the pushdown types for each database to which you can push the Aggregator
transformation:

Database Pushdown Type

Amazon Redshift Source-side, Full

Greenplum Source-side, Full

IBM DB2 Source-side, Full

Microsoft SQL Server Source-side, Full

Netezza Source-side, Full

Oracle Source-side, Full

SAP HANA Source-side, Target-side, Full

Sybase ASE Source-side, Full

Teradata Source-side, Full

Vertica Source-side, Full

The Integration Service processes the Aggregator transformation if any of the following conditions are true:

• The session and mapping is configured for incremental aggregation.

• The transformation contains a nested aggregate function.

• The transformation contains a conditional clause in an aggregate expression.

• The transformation uses a FIRST(), LAST(), MEDIAN(), or PERCENTILE() function in any port expression.

• An output port is not an aggregate or a part of the group by port.

• The transformation is pushed to Microsoft SQL Server, Sybase, or Teradata and is downstream from a
Sorter transformation.

Expression Transformation
The following table shows the pushdown types for each database to which you can push the Expression
transformation:

Database Pushdown Type

Amazon Redshift Source-side, Target-side, Full

Greenplum Source-side, Target-side, Full

94 Chapter 5: Pushdown Optimization Transformations

Database Pushdown Type

IBM DB2 Source-side, Target-side, Full

Microsoft SQL Server Source-side, Target-side, Full

Netezza Source-side, Target-side, Full

Oracle Source-side, Target-side, Full

SAP HANA Source-side, Target-side, Full

Sybase ASE Source-side, Target-side, Full

Teradata Source-side, Target-side, Full

Vertica Source-side, Target-side, Full

The Integration Service processes the Expression transformation if the transformation calls an unconnected
Stored Procedure.

Filter Transformation
Push a Filter transformation to the database to reduce the amount of data that the PowerCenter Integration
Service processes. The PowerCenter Integration Service processes the Filter transformation if the filter
expression cannot be pushed to the database. For example, if the filter expression contains an operator that
cannot be pushed to the database, the Integration Service does not push the filter expression to the
database.

The following table shows the pushdown types for each database to which you can push the Filter
transformation:

Database Pushdown Type

Amazon Redshift Source-side, Full

Greenplum Source-side, Full

IBM DB2 Source-side, Full

Microsoft SQL Server Source-side, Full

Netezza Source-side, Full

Oracle Source-side, Full

SAP HANA Source-side, Target-side, Full

Sybase ASE Source-side, Full

Filter Transformation 95

Database Pushdown Type

Teradata Source-side, Full

Vertica Source-side, Full

Joiner Transformation
Push a Joiner transformation to the database to optimize the use of indexes and statistics from the
database.

The following table shows the pushdown types for each database to which you can push the Joiner
transformation:

Database Pushdown Type

Amazon Redshift Source-side, Full

Greenplum Source-side, Full

IBM DB2 Source-side, Full

Microsoft SQL Server Source-side, Full

Netezza Source-side, Full

Oracle Source-side, Full

SAP HANA Source-side, Target-side, Full

Sybase ASE Source-side, Full

Teradata Source-side, Full

Vertica Source-side, Full

The Integration Service processes the Joiner transformation if any of the following conditions are true:

• The Integration Service cannot push the master and detail pipelines of the Joiner transformation to the
database.

• The join condition is based on a column with a binary datatype.

• The incoming groups of a Joiner transformation originate from databases on different relational database
management systems.

• The session is configured to mark all source rows as updates and configured for pushdown optimization
to Teradata.

• The transformation is configured with an outer join, and the master or detail source is a multi-table join.
The Integration Service cannot generate SQL to represent an outer join combined with a multi-table join.

• The transformation is configured with a full outer join and configured for pushdown optimization to
Sybase.

96 Chapter 5: Pushdown Optimization Transformations

• The Integration Service created a view or sequence based on a transformation in the master branch, and
the master and detail branches do not come from the same database.

• The transformation is pushed to Microsoft SQL Server, Sybase, or Teradata and is downstream from a
Sorter transformation, which is downstream from an Aggregator transformation.

• The transformation is downstream from a Sorter transformation and is pushed to Microsoft SQL Server,
Sybase, or Teradata, and the master and detail tables stem from the same Source Qualifier transformation
instance.

Lookup Transformation
When you configure a Lookup transformation for pushdown optimization, the database performs a lookup on
the database lookup table. The database incurs the cost of an extra subquery for each row if you push a
Lookup transformation to the database. Enable lookup caching in PowerCenter instead of pushdown
optimization to increase performance for mappings with large number of lookups.

The following table shows the pushdown types for each database to which you can push the Lookup
transformation:

Database Pushdown Type

Amazon Redshift Source-side, Full

Greenplum Source-side, Full

IBM DB2 Source-side, Target-side, Full

Microsoft SQL Server Source-side, Full

Netezza Source-side, Full

Oracle Source-side, Target-side, Full

SAP HANA Source-side, Target-side, Full

Sybase ASE Source-side, Full

Teradata Source-side, Full

ODBC Source-side, Full

Use the following rules and guidelines when you configure the Integration Service to push Lookup
transformation logic to a database:

• The database does not use PowerCenter caches when processing transformation logic.

• The Integration Service processes all transformations after a pipeline branch when multiple Lookup
transformations are present in different branches of pipeline, and the branches merge downstream.

• A session configured for target-side pushdown optimization fails if the session requires datatype
conversion.

• Unlike the Integration Service, a Netezza database may return multiple rows for a single lookup.

Lookup Transformation 97

• Configure pushdown optimization with a view if the Lookup transformation contains an SQL override,
contains a filter, or is an unconnected Lookup transformation.

• Pushdown optimization stops at the Lookup transformation when the mapping contains a lookup on
Netezza and the lookup match policy is not set to "Match All Values."

The Integration Service processes the Lookup transformation if any of the following conditions are true:

• The transformation is a pipeline lookup.

• The transformation uses a dynamic cache.

• The transformation is configured to return the first, last, or any matching value. To use pushdown
optimization, you must configure the Lookup transformation to report an error on multiple matches.

• The transformation requires a view to be created in a database, and the database providing the lookup
input is different from the database where the view is created.

• The transformation is pushed to Microsoft SQL Server, Sybase, or Teradata and is downstream from a
Sorter transformation, which is downstream from an Aggregator transformation.

• The session is configured to mark all source rows as updates and configured for pushdown optimization
to Teradata.

• The session is configured for source-side pushdown optimization and the lookup table and source table
are in different relational database management systems.

• The session is configured for target-side pushdown optimization and the lookup table and target table are
in different relational database management systems.

• The Integration Service tries to push the transformation to a Netezza database target.

Unconnected Lookup Transformation
Use the following rules and guidelines when you configure the Integration Service to push an unconnected
Lookup transformation to a database:

• The database might perform slower than the Integration Service if the session contains multiple
unconnected lookups. The generated SQL might be complex because the Integration Service creates an
outer join each time it invokes an unconnected lookup. Test the session with and without pushdown
optimization to determine which session has better performance.

• Configure the session for pushdown optimization with a view.

The Integration Service processes the unconnected Lookup transformation if any of the following conditions
are true:

• The lookup connection is not pushdown compatible with the source connection.

• You configure target-side pushdown optimization.

• The transformation is downstream from an Aggregator transformation.

• The transformation is active and looks up from a Netezza database.

Lookup Transformation with an SQL Override
Use the following rules and guidelines when you configure the Integration Service to push a Lookup
transformation with an SQL override to a database:

• You cannot append an ORDER BY clause to the SQL statement in the lookup override. The session fails if
you append an ORDER BY clause.

• Verify that the SQL override selects all ports in the Lookup transformation, in the same order that the
ports appear in the Lookup transformation.

98 Chapter 5: Pushdown Optimization Transformations

• The session fails if the SELECT statement in the SQL override refers to a database sequence.

The Integration Service processes a Lookup transformation with an SQL override if the transformation
contains Informatica outer join syntax in the SQL override. Use ANSI outer join syntax in the SQL override to
push the transformation to a database.

Router Transformation
The following table shows the pushdown types for each database to which you can push the Router
transformation:

Database Pushdown Type

Amazon Redshift Source-side, Full

Greenplum Source-side, Full

IBM DB2 Source-side, Full

Microsoft SQL Server Source-side, Full

Netezza Source-side, Full

Oracle Source-side, Full

SAP HANA Source-side, Target-side, Full

Sybase ASE Source-side, Full

Teradata Source-side, Full

ODBC Source-side, Full

You can use source-side pushdown when all output groups merge into one transformation that can be
pushed to the source database.

The Integration Service processes the Router transformation if the router expression cannot be pushed to the
database. For example, if the expression contains an operator that cannot be pushed to the database, the
Integration Service does not push the expression to the database.

Router Transformation 99

Sequence Generator Transformation
The following table shows the pushdown types for each database to which you can push the Sequence
Generator transformation:

Database Pushdown Type

Greenplum Not supported

IBM DB2 Source-side, Target-side, Full

Microsoft SQL Server Not supported

Netezza Not supported

Oracle Source-side, Target-side, Full

Sybase Not supported

Teradata Not supported

ODBC Not supported

The Integration Service processes the Sequence Generator transformation if any of the following conditions
are true:

• The transformation is reusable.

• The transformation is connected to multiple targets.

• The transformation connects the CURRVAL port.

• The transformation provides sequence values to a transformation downstream from a Source Qualifier
transformation that is configured to select distinct rows.

• The Integration Service cannot push all of the logic for the Sequence Generator transformation to the
database. For example, a Sequence Generator transformation creates sequence values that are supplied
to two branches of a pipeline. When you configure pushdown optimization, the database can create
sequence values for only one pipeline branch. When the Integration Service cannot push all of the
Sequence Generator logic to the database, the following message appears:

Pushdown optimization stops at the transformation <transformation name> because the
upstream Sequence Generator <Sequence Generator transformation name> cannot be pushed
entirely to the database.

• The pipeline branches before the Sequence Generator transformation and then joins back together after
the Sequence Generator transformation.

• The pipeline branches after the Sequence Generator transformation and does not join back together.

• A sequence value passes through an Aggregator, a Filter, a Joiner, a Sorter, or a Union transformation.

• The database where the sequence object is created must be the active database or of the same database
type as the active database.

The Integration Service processes a transformation downstream from the Sequence Generator
transformation if it uses the NEXTVAL port of the Sequence Generator transformation in CASE expressions
and is configured for pushdown optimization to IBM DB2.

100 Chapter 5: Pushdown Optimization Transformations

Sorter Transformation
The following table shows the pushdown types for each database to which you can push the Sorter
transformation:

Database Pushdown Type

IBM DB2 Source-side, Full

Microsoft SQL Server Source-side, Full

Netezza Source-side, Full

Oracle Source-side, Full

Sybase ASE Source-side, Full

Teradata Source-side, Full

ODBC Source-side, Full

Use the following rules and guidelines when you configure the Integration Service to push Sorter
transformation logic to a database:

• The Integration Service pushes the Sorter transformation to the database and processes downstream
transformations when the Sorter transformation is configured for a distinct sort and is pushed to a
Microsoft SQL Server, Sybase, or Teradata database.

• If a mapping contains multiple, consecutive Sorter transformations and at least one Sorter transformation
is configured for a distinct sort, the following results:

- Pushdown optimization applies the distinct sort to the last Sorter transformation in the chain unless one
of the Sorter transformations does not project all output ports.

- Pushdown optimization applies the distinct sort to the first Sorter transformation that does not project
all output ports.

The Integration Service processes the Sorter transformation if any of the following conditions are true:

• The Sorter transformation is downstream from a Union transformation and the port used as a sort key in
the Sorter transformation is not projected from the Union transformation to the Sorter transformation.

• The Sorter transformation does not project all output ports and it is one of multiple, consecutive Sorter
transformations in a mapping.

• The Sorter transformation does not project all output ports and one of the following statements is true:

- The Sorter transformation is configured for a distinct sort.

- The Sorter transformation is immediately preceded by one or more Sorter transformations, one of which
is configured for a distinct sort.

Sorter Transformation 101

Source Qualifier Transformation
The following table shows the pushdown types for each database to which you can push the Source Qualifier
transformation:

Database Pushdown Type

IBM DB2 Source-side, Full

Microsoft SQL Server Source-side, Full

Netezza Source-side, Full

Oracle Source-side, Full

SAP HANA Source-side, Target-side, Full

Sybase ASE Source-side, Full

Teradata Source-side, Full

ODBC Source-side, Full

Use the following rules and guidelines when you configure the PowerCenter Integration Service to push
Source Qualifier transformation logic to a database:

• Qualify the table name that you enter for a source filter or user-defined join when the Sequence Generator
transformation is in the idle connection in a downstream Union transformation, Joiner transformation, or
target, and the other connections are of a different database type. If you do not qualify the table name in
this case, the PowerCenter Integration Service does not push all transformations to the database.

• The session fails if you configure a user-defined join in the Source Qualifier transformation for shortcut
objects and enable pushdown optimization.

The PowerCenter Integration Service processes the Source Qualifier transformation logic when any of the
following conditions are true:

• The transformation contains Informatica outer join syntax in the SQL override or a user-defined join. Use
ANSI outer join syntax in the SQL override to enable the PowerCenter Integration Service to push the
Source Qualifier transformation to the database.

• The source is configured for database partitioning.

• The source is an Oracle source that uses an XMLType datatype.

Related Topics:
• “Qualifying Names of Tables in Idle Databases” on page 72

Source Qualifier Transformation with an SQL Override
Use the following rules and guidelines when you configure pushdown optimization for a session containing a
Source Qualifier transformation with an SQL override:

• The SELECT statement in a custom SQL query must list the port names in the order in which they appear
in the transformation. If the ports are not in the correct order, the session can fail or output unexpected
results.

102 Chapter 5: Pushdown Optimization Transformations

• Configure the session for pushdown optimization with a view.

• The session fails if the SELECT statement in the SQL override refers to a database sequence.

• The session fails if the SQL override contains an ORDER BY clause and you push the Source Qualifier
transformation logic to an IBM DB2, a Microsoft SQL Server, a Sybase ASE, or a Teradata database.

• If a Source Qualifier transformation is configured to select distinct values and contains an SQL override,
the Integration Service ignores the distinct configuration.

• If the session contains multiple partitions, specify the SQL override for all partitions.

• You must disable the creation of temporary views for pushdown optimization to Teradata when the
Source Qualifier transformation contains an SQL override. The PowerCenter Integration Service creates
derived tables instead of views.

• Test the SQL override query on the source database before you push it to the database because
PowerCenter does not validate the override SQL syntax. The session fails if the SQL syntax is not
compatible with the source database.

Target
The following table shows the pushdown types for each database to which you can push the target logic:

Database Pushdown Type

IBM DB2 Target-side, Full

Microsoft SQL Server Target-side, Full

Netezza Target-side, Full

Oracle Target-side, Full

SAP HANA Target-side, Full

Sybase ASE Target-side, Full

Teradata Target-side, Full

ODBC Target-side, Full

The Integration Service processes the target logic when you configure the session for full pushdown
optimization and any of the following conditions are true:

• The target includes a target update override.

• The session is configured for constraint-based loading, and the target load order group contains more
than one target.

• The session uses an external loader.

• A view or sequence generator was created in an idle database.

If you configure full pushdown optimization and the target and source connections are incompatible, the
Integration Service cannot push the all transformation logic to one database. Instead, it pushes as much

Target 103

transformation logic as possible to the source database and pushes any remaining transformation logic to
the target database if it is possible.

The Integration Service processes the target logic when you configure the session for target-side pushdown
optimization and any of the following conditions are true:

• The target includes a target update override.

• The target is configured for database partitioning.

• The session is configured for bulk loading and the target is IBM DB2, Microsoft SQL Server, Oracle, or
Sybase ASE.

• The session uses an external loader. Use source-side pushdown optimization with an external loader to
enable the Integration Service to push the transformation logic to the source database.

Union Transformation
The following table shows the pushdown types for each database to which you can push the Union
transformation:

Database Pushdown Type

IBM DB2 Source-side, Full

Microsoft SQL Server Source-side, Full

Netezza Source-side, Full

Oracle Source-side, Full

SAP HANA Source-side, Target-side, Full

Sybase ASE Source-side, Full

Teradata Source-side, Full

ODBC Source-side, Full

The Integration Service processes the Union transformation logic when any of the following conditions are
true:

• The Integration Service cannot push all input groups to the source database.

• The input groups do not originate from the same relational database management system.

• One of the input pipelines of the Union transformation contains either a distinct union or sorter.

• The transformation is downstream from a transformation that required a view or sequence generator to
be created in a database and the connections are on different databases.

104 Chapter 5: Pushdown Optimization Transformations

Update Strategy Transformation
The following table shows the pushdown types for each database to which you can push the Update Strategy
transformation:

Database Pushdown Type

IBM DB2 Full

Microsoft SQL Server Full

Netezza Full

Oracle Full

SAP HANA Source-side, Target-side, Full

Sybase ASE Full

Teradata Full

ODBC Full

Use the following rules and guidelines when you configure the Integration Service to push Update Strategy
transformation logic to a database:

• The generated SQL for an Update Strategy transformation with an update operation can be complex. Run
the session with and without pushdown optimization to determine which configuration is faster.

• If there are multiple operations to the same row, the Integration Service and database can process the
operations differently. To ensure that new rows are not deleted or updated when pushed to a database,
source rows are processed in the following order: delete transactions, update transactions, and then
insert transactions.

• If the transformation contains more than one insert, update, or delete operation, the Integration Service
generates and runs the insert, update, and delete SQL statements serially. The Integration Service runs the
three statements even if they are not required. This might decrease performance.

• The Integration Service ignores rejected rows when using full pushdown optimization. It does not write
reject rows to a reject file.

The Integration Service processes the Update Strategy transformation if any of the following conditions are
true:

• If the Integration Service cannot push the update strategy expression to the database. For example, if the
expression contains an operator that cannot be pushed to the database, the Integration Service does not
push the expression to the database.

• The transformation uses operations other than the insert operation and the Integration Service cannot
push all transformation logic to the database.

• The update strategy expression returns a value that is not numeric and not Boolean.

Update Strategy Transformation 105

C h a p t e r 6

Real-time Processing
This chapter includes the following topics:

• Real-time Processing Overview, 106

• Understanding Real-time Data, 107

• Configuring Real-time Sessions, 109

• Terminating Conditions, 109

• Flush Latency, 110

• Commit Type , 111

• Message Recovery, 111

• Recovery File, 113

• Recovery Table, 116

• Recovery Queue and Recovery Topic, 117

• Recovery Ignore List, 118

• Stopping Real-time Sessions, 118

• Restarting and Recovering Real-time Sessions, 119

• Rules and Guidelines for Real-time Sessions, 120

• Rules and Guidelines for Message Recovery, 121

• Real-time Processing Example, 121

• Informatica Real-time Products, 123

Real-time Processing Overview
This chapter contains general information about real-time processing. Real-time processing behavior
depends on the real-time source. Exceptions are noted in this chapter or are described in the corresponding
product documentation.

You can use PowerCenter to process data in real time. Real-time processing is on-demand processing of data
from real-time sources. A real-time session reads, processes, and writes data to targets continuously. By
default, a session reads and writes bulk data at scheduled intervals unless you configure the session for real-
time processing.

To process data in real time, the data must originate from a real-time source. Real-time sources include JMS,
WebSphere MQ, TIBCO, webMethods, MSMQ, SAP, and web services. You might want to use real-time
processing for processes that require immediate access to dynamic data, such as financial data.

106

To understand real-time processing with PowerCenter, you need to be familiar with the following concepts:

• Real-time data. Real-time data includes messages and messages queues, web services messages, and
changes from a PowerExchange change data capture source. Real-time data originates from a real-time
source.

• Real-time sessions. A real-time session is a session that processes real-time source data. A session is
real-time if the Integration Service generates a real-time flush based on the flush latency configuration
and all transformations propagate the flush to the targets. Latency is the period of time from when source
data changes on a source to when a session writes the data to a target.

• Real-time properties. Real-time properties determine when the Integration Service processes the data and
commits the data to the target.

- Terminating conditions. Terminating conditions determine when the Integration Service stops reading
data from the source and ends the session if you do not want the session to run continuously.

- Flush latency. Flush latency determines how often the Integration Service flushes real-time data from
the source.

- Commit type. The commit type determines when the Integration Service commits real-time data to the
target.

• Message recovery. If the real-time session fails, you can recover messages. When you enable message
recovery for a real-time session, the Integration Service stores source messages or message IDs in a
recovery file or table. If the session fails, you can run the session in recovery mode to recover messages
the Integration Service could not process.

Understanding Real-time Data
You can process the following types of real-time data:

• Messages and message queues. Process messages and message queues from WebSphere MQ, JMS,
MSMQ, SAP, TIBCO, and webMethods sources. You can read from messages and message queues. You
can write to messages, messaging applications, and message queues.

• Web service messages. Receive a message from a web service client through the Web Services Hub and
transform the data. You can write the data to a target or send a message back to a web service client.

• Change data from PowerExchange change data capture sources. Extract change data that represent
changes to a relational database or file source from the change stream and write to a target.

Messages and Message Queues
The Integration Service uses the messaging and queueing architecture to process real-time data. It can read
messages from a message queue, process the message data, and write messages to a message queue.

You can also write messages to other messaging applications. For example, the Integration Service can read
messages from a JMS source and write the data to a TIBCO target.

Understanding Real-time Data 107

The following image shows how the messaging application and the Integration Service process messages
from a message queue:

The messaging application and the Integration Service complete the following tasks to process messages
from a message queue:

1. The messaging application adds a message to a queue.

2. The Integration Service reads the message from the queue and extracts the data.

3. The Integration Service processes the data and writes a reply to the message queue.

Web Service Messages
A web service message is a SOAP request from a web service client or a SOAP response from the Web
Services Hub. The Integration Service processes real-time data from a web service client by receiving a
message request through the Web Services Hub and processing the request. The Integration Service can
send a reply back to the web service client through the Web Services Hub, or it can write the data to a target.

The following image shows how the web service client, the Web Services Hub, and the Integration Service
process web service messages:

The web service client, the Web Services Hub, and the Integration Service complete the following tasks to
process web service messages:

1. The web service client sends a SOAP request to the Web Services Hub.

2. The Web Services Hub processes the SOAP request and passes the request to the Integration Service.

3. The Integration Service runs the service request. It sends a response to the Web Services Hub or writes
the data to a target.

4. If the Integration Service sends a response to the Web Services Hub, the Web Services Hub generates a
SOAP message reply and passes the reply to the web service client.

Change Data from PowerExchange Change Data Capture Sources
Change data from PowerExchange change data capture sources represents changes to a file or relational
database. PowerExchange captures change data and stores it in the change stream. Use PowerExchange
Client for PowerCenter to extract changes from the PowerExchange change stream.

PowerExchange Client for PowerCenter connects to PowerExchange to extract data that changed since the
previous session. The Integration Service processes and writes change data to a target.

108 Chapter 6: Real-time Processing

PowerExchange Client for PowerCenter, PowerExchange, and the Integration Service complete the following
tasks to process change data:

1. PowerExchange Client for PowerCenter connects to PowerExchange.

2. PowerExchange extracts change data from the change stream.

3. PowerExchange passes change data to the Integration Service through PowerExchange Client for
PowerCenter.

4. The Integration Service transforms and writes data to a target.

Configuring Real-time Sessions
When you configure a session to process data in real time, you configure session properties that control
when the session stops reading from the source. You can configure a session to stop reading from a source
after it stops receiving messages for a set period of time, when the session reaches a message count limit,
or when the session has read messages for a set period of time. You can also configure how the Integration
Service commits data to the target and enable message recovery for failed sessions.

You can configure the following properties for a real-time session:

• Terminating conditions. Define the terminating conditions to determine when the Integration Service
stops reading from a source and ends the session.

• Flush latency. Define a session with flush latency to read and write real-time data. Flush latency
determines how often the session commits data to the targets.

• Commit type. Define a source- or target-based commit type for real-time sessions. With a source-based
commit, the Integration Service commits messages based on the commit interval and the flush latency
interval. With a target-based commit, the Integration Service commits messages based on the flush
latency interval.

• Message recovery. Enable recovery for a real-time session to recover messages from a failed session.

Terminating Conditions
A terminating condition determines when the Integration Service stops reading messages from a real-time
source and ends the session. When the Integration Service reaches a terminating condition, it stops reading
from the real-time source. It processes the messages it read and commits data to the target. Then, it ends
the session.

You can configure the following terminating conditions:

• Idle time

• Message count

• Reader time limit

If you configure multiple terminating conditions, the Integration Service stops reading from the source when
it meets the first condition. By default, the Integration Service reads messages continuously and uses the
flush latency to determine when it flushes data from the source. After the flush, the Integration Service resets
the counters for the terminating conditions.

Configuring Real-time Sessions 109

Idle Time
Idle time is the amount of time in seconds the Integration Service waits to receive messages before it stops
reading from the source. -1 indicates an infinite period of time.

For example, if the idle time for a JMS session is 30 seconds, the Integration Service waits 30 seconds after
reading from JMS. If no new messages arrive in JMS within 30 seconds, the Integration Service stops reading
from JMS. It processes the messages and ends the session.

Message Count
Message count is the number of messages the Integration Service reads from a real-time source before it
stops reading from the source. -1 indicates an infinite number of messages.

For example, if the message count in a JMS session is 100, the Integration Service stops reading from the
source after it reads 100 messages. It processes the messages and ends the session.

Note: The name of the message count terminating condition depends on the Informatica product. For
example, the message count for PowerExchange for SAP NetWeaver is called Packet Count. The message
count for PowerExchange Client for PowerCenter is called UOW Count.

Reader Time Limit
Reader time limit is the amount of time in seconds that the Integration Service reads source messages from
the real-time source before it stops reading from the source. Use reader time limit to read messages from a
real-time source for a set period of time. 0 indicates an infinite period of time.

For example, if you use a 10 second time limit, the Integration Service stops reading from the messaging
application after 10 seconds. It processes the messages and ends the session.

Flush Latency
Use flush latency to run a session in real time. Flush latency determines how often the Integration Service
flushes data from the source. For example, if you set the flush latency to 10 seconds, the Integration Service
flushes data from the source every 10 seconds.

For change data from a PowerExchange change data capture source, the flush latency interval is determined
by the flush latency and the unit of work (UOW) count attributes. For more information, see PowerExchange
Interfaces for PowerCenter.

The Integration Service uses the following process when it reads data from a real-time source and the
session is configured with flush latency:

1. The Integration Service reads data from the source.

The flush latency interval begins when the Integration Service reads the first message from the source.

2. At the end of the flush latency interval, the Integration Service stops reading data from the source.

3. The Integration Service processes messages and writes them to the target.

4. The Integration Service reads from the source again until it reaches the next flush latency interval.

Configure flush latency in seconds. The default value is zero, which indicates that the flush latency is
disabled and the session does not run in real time.

110 Chapter 6: Real-time Processing

Configure the flush latency interval depending on how dynamic the data is and how quickly users need to
access the data. If data is outdated quickly, such as financial trading information, then configure a lower
flush latency interval so the target tables are updated as close as possible to when the changes occurred. For
example, users need updated financial data every few minutes. However, they need updated customer
address changes only once a day. Configure a lower flush latency interval for financial data and a higher
flush latency interval for address changes.

Use the following rules and guidelines when you configure flush latency:

• The Integration Service does not buffer messages longer than the flush latency interval.

• The lower you set the flush latency interval, the more frequently the Integration Service commits
messages to the target.

• If you use a low flush latency interval, the session can consume more system resources.

If you configure a commit interval, then a combination of the flush latency and the commit interval
determines when the data is committed to the target.

Commit Type
The Integration Service commits data to the target based on the flush latency and the commit type. You can
configure a session to use the following commit types:

• Source-based commit. When you configure a source-based commit, the Integration Service commits data
to the target using a combination of the commit interval and the flush latency interval. The first condition
the Integration Service meets triggers the end of the flush latency period. After the flush, the counters are
reset.

For example, you set the flush latency to five seconds and the source-based commit interval to 1,000
messages. The Integration Service commits messages to the target either after reading 1,000 messages
from the source or after five seconds.

• Target-based commit. When you configure a target-based commit, the Integration Service ignores the
commit interval and commits data to the target based on the flush latency interval.

When writing to targets in a real-time session, the Integration Service processes commits serially and
commits data to the target in real time. It does not store data in the DTM buffer memory.

Related Topics:
• “Commit Points” on page 125

Message Recovery
When you enable message recovery for a real-time session, the Integration Service can recover unprocessed
messages from a failed session. The Integration Service stores source messages or message IDs in a
recovery file, recovery table, recovery queue, or recovery topic. If the session fails, run the session in recovery
mode to recover the messages the Integration Service did not process.

Commit Type 111

Depending on the real-time source and the target type, the messages or message IDs are stored in the
following storage types:

• Recovery file. Messages or message IDs are stored in a designated local recovery file. A session with a
real-time source and a non-relational or non-queue target uses the recovery file.

• Recovery table. Message IDs are stored in a recovery table in the target database. A session with a JMS
or WebSphere MQ source and a relational target uses the recovery table.

• Recovery queue and recovery topic. Message IDs are stored in a recovery queue or recovery topic. A
session with a JMS or WebSphere MQ source and a JMS or WebSphere MQ target uses the recovery
queue. A session with a JMS or WebSphere MQ source and a topic target uses the recovery topic.

A session can use a combination of the storage types. For example, a session with a JMS and TIBCO source
uses a recovery file and recovery table.

When you recover a real-time session, the Integration Service restores the state of operation from the point of
interruption. It reads and processes the messages in the recovery file, recovery table, recovery queue, or
recovery topic. Then, it ends the session.

During recovery, the terminating conditions do not affect the messages the Integration Service reads from
the recovery file, recovery table, recovery queue, or recovery topic. For example, if you specified message
count and idle time for the session, the conditions apply to the messages the Integration Service reads from
the source, not the recovery file, recovery table, recovery queue, or recovery topic.

In addition to the storage types above, the Integration Service uses a recovery ignore list if the session fails
under certain conditions.

Sessions with MSMQ sources, web service messages, or change data from a PowerExchange change data
capture source use a different recovery strategy.

Prerequisites
Complete the following prerequisites before you enable message recovery for sessions with a JMS or
WebSphere MQ source and a JMS or WebSphere MQ target:

• Create the recovery queue in the JMS provider or WebSphere MQ. Or, create the recovery topic in the JMS
provider.

• Create the recovery queue under the same queue manager as the message queue so the commit scope is
the same.

• Configure the recovery queue to be persistent. If the recovery queue is not persistent, data duplication can
occur.

If you do not configure the prerequisites, the Integration Service stores recovery information in a recovery file
instead of a recovery queue or recovery topic.

Steps to Enable Message Recovery
Complete the following steps to enable message recovery for sessions:

1. In the session properties, select Resume from Last Checkpoint as the recovery strategy.

2. Specify a recovery cache directory in the session properties at each partition point.

The Integration Service stores messages in the location indicated by the recovery cache directory. The
default value recovery cache directory is $PMCacheDir.

112 Chapter 6: Real-time Processing

Recovery File
The Integration Service stores messages or message IDs in a recovery file for real-time sessions that are
enabled for recovery and include the following source and target types:

• JMS source with non-relational, non-JMS, or non-WebSphere MQ targets

• WebSphere MQ source with non-relational, non-JMS, or non-WebSphere MQ targets

• SAP R/3 source and all targets

• webMethods source and all targets

• TIBCO source and all targets

The Integration Service temporarily stores messages or message IDs in a local recovery file that you
configure in the session properties. During recovery, the Integration Service processes the messages in this
recovery file to ensure that data is not lost.

Message Recovery for JMS and WebSphere MQ Sources
You can enable message recovery for sessions with JMS and WebSphere MQ sources to recover messages
that the Integration Service failed to process. The Integration Service can restore the state of operation from
the point of interruption.

The Integration Service completes the following tasks to process messages using recovery files:

1. The Integration Service reads a message from the source.

2. The Integration Service writes the message ID to the recovery file. The Integration Service repeats steps
1 through 2 until the flush latency is met.

3. The Integration Service processes the messages and writes them to the target. The target commits the
messages.

4. The Integration Service sends a batch acknowledgement to the source to confirm it read the messages.
The source deletes the messages.

5. The Integration Service clears the recovery file.

Recovery File 113

The following image shows how the Integration Service processes messages using the recovery file:

Message Recovery for SAP IDoc, TIBCO, and webMethods Sources
You can enable message recovery for sessions with SAP IDoc, TIBCO, and webMethods sources to recover
messages that the Integration Service failed to process. The Integration Service can restore the state of
operation from the point of interruption.

The Integration Service completes the following tasks to process messages using recovery files:

1. The Integration Service reads a message from the source.

2. The Integration Service writes the message to the recovery file.

3. The Integration Service sends an acknowledgement to the source to confirm it read the message. The
source deletes the message. The Integration Service repeats steps 1 through 3 until the flush latency is
met.

4. The Integration Service processes the messages and writes them to the target. The target commits the
messages.

5. The Integration Service clears the recovery file.

114 Chapter 6: Real-time Processing

The following image shows how the Integration Service processes messages using the recovery file:

Message Recovery
When you recover a real-time session, the Integration Service reads and processes the cached messages.
After the Integration Service reads all cached messages, it ends the session.

For sessions with JMS and WebSphere MQ sources, the Integration Service uses the message ID in the
recovery file to retrieve the message from the source.

The Integration Service clears the recovery file after the flush latency period expires and at the end of a
successful session. If the session fails after the Integration Service commits messages to the target but
before it removes the messages from the recovery file, targets can receive duplicate rows during recovery.

Session Recovery Data Flush
A recovery data flush is a process that the Integration Service uses to flush session recovery data that is in
the operating system buffer to the recovery file. You can prevent data loss if the Integration Service is not
able to write the recovery data to the recovery file. The Integration Service can fail to write recovery data in
cases of an operating system failure, hardware failure, or file system outage. The recovery data flush applies
to sessions that include a JMS or WebSphere MQ source and non-relational, non-JMS, or non-WebSphere MQ
targets.

You can configure the Integration Service to flush recovery data from the operating system buffer to the
recovery file by setting the Integration Service property Flush Session Recovery Data to “Auto” or “Yes” in the
Administrator tool.

Recovery File 115

Recovery Table
The Integration Service stores message IDs in a recovery table for real-time sessions that are enabled for
recovery and include the following source and target types:

• JMS source with relational targets

• WebSphere MQ source with relational targets

The Integration Service temporarily stores message IDs and commit numbers in a recovery table on each
target database. The commit number indicates the number of commits that the Integration Service
committed to the target. During recovery, the Integration Service uses the commit number to determine if it
wrote the same amount of messages to all targets. The messages IDs and commit numbers are verified
against the recovery table to ensure that no data is lost or duplicated.

Note: The source must use unique message IDs and provide access to the messages through the message
ID.

PM_REC_STATE Table
When the Integration Service runs a real-time session that uses the recovery table and has recovery enabled,
it creates a recovery table, PM_REC_STATE, on the target database to store message IDs and commit
numbers. When the Integration Service recovers the session, it uses information in the recovery table to
determine if it needs to write the message to the target table.

Message Processing
The following image shows how the Integration Service processes messages using the recovery table:

The Integration Service completes the following tasks to process messages using recovery tables:

1. The Integration Service reads one message at a time until the flush latency is met.

2. The Integration Service writes the message IDs, commit numbers, and the transformation states to the
recovery table on the target database and writes the messages to the target simultaneously.

3. When the target commits the messages, the Integration Service sends an acknowledgement to the real-
time source to confirm that all messages were processed and written to the target.

The Integration Service continues to read messages from the source.

If the session has multiple partitions, the tasks apply to each partition.

116 Chapter 6: Real-time Processing

Message Recovery
When you recover a real-time session, the Integration Service uses the message ID and the commit number in
the recovery table to determine whether it committed messages to all targets.

The Integration Service commits messages to all targets if the message ID exists in the recovery table and all
targets have the same commit number. During recovery, the Integration Service sends an acknowledgement
to the source that it processed the message.

The Integration Service does not commit messages to all targets if the targets have different commit
numbers. During recovery, the Integration Service reads the message IDs and the transformation state from
the recovery table. It processes messages and writes them to the targets that did not have the message.
When the Integration Service reads all messages from the recovery table, it ends the session.

If the session fails before the Integration Service commits messages to all targets and you restart the
session in cold start mode, targets can receive duplicate rows.

Recovery Queue and Recovery Topic
The Integration Service stores message IDs in a recovery queue or recovery topic for real-time sessions that
are enabled for recovery and include the following source and target types:

• JMS source with JMS or WebSphere MQ targets

• WebSphere MQ source with JMS or WebSphere MQ targets

The Integration Service temporarily stores message IDs and commit numbers in a recovery queue or recovery
topic that you created in the JMS provider or in WebSphere MQ. The commit number indicates the number of
commits that the Integration Service committed to the target. During recovery, the Integration Service uses
the commit number to determine if it wrote the same amount of messages to all targets. The messages IDs
and commit numbers are verified against the recovery queue or recovery topic to ensure that no data is lost
or duplicated.

The Integration Service uses the same recovery queue or recovery topic for all queue targets in each session.
Create multiple recovery queues or recovery topics for sessions to improve performance.

If you do not specify the recovery queue or recovery topic name in the session properties or in the JMS
connection object, the Integration Service stores recovery information in the recovery file. For optimal
performance, configure the recovery queue or recovery topic name instead of the recovery file.

Message Processing
The Integration Service processes messages using the recovery queue or recovery topic similar to how it
processes messages using the recovery table. The Integration Service writes recovery information to the
recovery queue or recovery topic instead of the recovery table.

Message Recovery
The Integration Service recovers messages from the recovery queue or recovery topic similar to how it
recovers messages from the recovery table. The Integration Service retrieves recovery information from the
recovery queue or recovery topic instead of from the recovery table.

Recovery Queue and Recovery Topic 117

Recovery Ignore List
The Integration Service writes recovery information to a recovery ignore list when a session with a JMS or
WebSphere MQ source fails. The Integration Service writes recovery information to the list if there is a
chance that the source did not receive an acknowledgement. For example, the session fails before the
Integration Service sends an acknowledgement to the source but after it writes messages to the target. In
this case, the source can rollback the current transaction, but the messages in that transaction may not be
immediately available. If the messages are included in the recovery session, data duplication can occur. To
prevent data duplication, the Integration Service creates the recovery ignore list.

The recovery ignore list stores message IDs that the Integration Service wrote to the target for the failed
session. The Integration Service creates the recovery ignore list in the storage type that is used for that
session, such as the recovery file, recovery table, recovery queue, or recovery topic. During recovery, the
Integration Service uses the recovery ignore list and the storage type to determine if it wrote the messages to
the target. It verifies the messages IDs against the recovery ignore list and the storage type to ensure that no
data is duplicated.

When the session fails, the Integration Service writes the message to the recovery ignore list and adds a time
stamp. By default, the Integration Service deletes the message from the recovery ignore list one hour after
the time stamp. If the Integration Service finds the message in the source within the default time period, it
deletes the message from the recovery ignore list.

If you restart a stopped or failed session in cold start mode, targets may receive duplicate rows. Restart the
session with recovery to prevent data duplication. Or, restart the session in cold start mode if you can ensure
that the messages that were in the recovery ignore list are removed from the source. Use the session log to
view the message IDs. The Integration Service writes the message IDs from the recovery ignore list to the
session log if you configure verbose data tracing.

Stopping Real-time Sessions
A real-time session runs continuously unless it fails or you manually stop it. You can stop a session by
issuing a stop command in pmcmd or from the Workflow Monitor. You might want to stop a session to
perform routine maintenance.

When you stop a real-time session, the Integration Service processes messages in the pipeline based on the
following real-time sources:

• JMS and WebSphere MQ. The Integration Service processes messages it read up until you issued the
stop. It writes messages to the targets.

• MSMQ, SAP, TIBCO, webMethods, and web service messages. The Integration Service does not process
messages if you stop a session before the Integration Service writes all messages to the target.

When you stop a real-time session with a JMS or a WebSphere MQ source, the Integration Service performs
the following tasks:

1. The Integration Service stops reading messages from the source.

If you stop a real-time recovery session, the Integration Service stops reading from the source after it
recovers all messages.

2. The Integration Service processes messages in the pipeline and writes to the targets.

3. The Integration Service sends an acknowledgement to the source.

4. The Integration Service clears the recovery table or recovery file to avoid data duplication when you
restart the session.

118 Chapter 6: Real-time Processing

When you restart the session, the Integration Service starts reading from the source. It restores the session
and transformation state of operation to resume the session from the point of interruption.

Note: If the real-time session hangs after you stop it, the session might remain in a stopping state. You can
abort the real-time session if it remains in stopping mode. The Integration Service processes the messages
that it read before you issued the stop.

Restarting and Recovering Real-time Sessions
You can resume a stopped or failed real-time session. To resume a session, you must restart or recover the
session. The Integration Service can recover a session automatically if you enabled the session for automatic
task recovery.

The following sections describe recovery information that is specific to real-time sessions.

Restarting Real-time Sessions
When you restart a session, the Integration Service resumes the session based on the real-time source.
Depending on the real-time source, it restarts the session with or without recovery.

You can restart a task or workflow in cold start mode. When you restart a task or workflow in cold start mode,
the Integration Service discards the recovery information and restarts the task or workflow.

Recovering Real-time Sessions
If you enabled session recovery, you can recover a failed or aborted session. When you recover a session, the
Integration Service continues to process messages from the point of interruption. The Integration Service
recovers messages according to the real-time source.

The Integration Service uses the following session recovery types:

• Automatic recovery. The Integration Service restarts the session if you configured the workflow to
automatically recover terminated tasks. The Integration Service recovers any unprocessed data and
restarts the session regardless of the real-time source.

• Manual recovery. Use a Workflow Monitor or Workflow Manager menu command or pmcmd command to
recover the session. For some real-time sources, you must recover the session before you restart it or the
Integration Service will not process messages from the failed session.

Restart and Recover Commands
You can restart or recover a session in the Workflow Manager, Workflow Monitor, or pmcmd. The Integration
Service resumes the session based on the real-time source.

Restarting and Recovering Real-time Sessions 119

The following table describes the behavior when you restart or recover a session with the following
commands:

Command Description

- Restart Task
- Restart Workflow
- Restart Workflow from Task

Restarts the task or workflow. For JMS and WebSphere MQ sessions,
the Integration Service recovers before it restarts the task or workflow.
Note: If the session includes a JMS, WebSphere MQ source, and
another real-time source, the Integration Service performs recovery for
all real-time sources before it restarts the task or workflow.

- Recover Task
- Recover Workflow
- Restart Workflow by Recovering this Task

Recovers the task or workflow.

- Cold Start Task
- Cold Start Workflow
- Cold Start Workflow from Task

Discards the recovery information and restarts the task or workflow.

Rules and Guidelines for Real-time Sessions
Use the following rules and guidelines when you run real-time sessions:

• The session fails if a mapping contains a Transaction Control transformation.

• The session fails if a mapping contains any transformation with Generate Transactions enabled.

• The session fails if a mapping contains any transformation with the transformation scope set to all input.

• The session fails if a mapping contains any transformation that has row transformation scope and
receives input from multiple transaction control points.

• The session fails if the load scope for the target is set to all input.

• The Integration Service ignores flush latency when you run a session in debug mode.

• If the mapping contains a relational target, configure the load type for the target to normal.

• If the mapping contains an XML target definition, select Append to Document for the On Commit option in
the target definition.

• The Integration Service is resilient to connection failures to WebSphere MQ and JMS. It is not resilient to
any other messaging system.

• When a real-time session contains a request and a response, such as in a web service, the session log
contains start and end times for the request and response. When a real-time session contains a publish/
subscribe or point-to-point architecture, the session log contains statistics that describe when the
Integration Service commits rows to the target.

120 Chapter 6: Real-time Processing

Rules and Guidelines for Message Recovery
The PowerCenter Integration Service fails sessions that have message recovery enabled and contain any of
the following conditions:

• The source definition is the master source for a Joiner transformation.

• You configure multiple source definitions to run concurrently for the same target load order group.

• The mapping contains an XML target definition.

• You edit the recovery file or the mapping before you restart the session and you run a session with a
recovery strategy of Restart or Resume.

• The Integration Service cannot connect to the recovery queue or recovery topic.

• The Integration Service does not write the recovery message to the recovery queue or recovery topic.

If the number of messages that the Integration Service reads or writes from the message queue exceeds the
message size limit, increase the message size limit or decrease the flush latency.

Real-time Processing Example
The following example shows how you can use PowerExchange for IBM WebSphere MQ and PowerCenter to
process real-time data.

You want to process purchase orders in real-time. A purchase order can include multiple items from multiple
suppliers. However, the purchase order does not contain the supplier or the item cost. When you receive a
purchase order, you must calculate the total cost for each supplier. You have a master database that
contains your suppliers and their respective items and item cost. You use PowerCenter to look up the
supplier and item cost based on the item ID. You also use PowerCenter to write the total supplier cost to a
relational database.

Your database administrator recommends that you update the target up to 1,000 messages in a single
commit. You also want to update the target every 2,000 milliseconds to ensure that the target is always
current.

To process purchase orders in real time, you create and configure a mapping.

Rules and Guidelines for Message Recovery 121

The following figure shows a mapping that processes purchase orders in real time:

The sample mapping includes the following components:

• Source. WebSphere MQ. Each message is in XML format and contains one purchase order.

• XML Parser transformation. Receives purchase order information from the MQ Source Qualifier
transformation. It parses the purchase order ID and the quantity from the XML file.

• Lookup transformation. Looks up the supplier details for the purchase order ID. It passes the supplier
information, the purchase item ID, and item cost to the Expression transformation.

• Expression transformation. Calculates the order cost for the supplier.

• Target. Oracle relational database. It contains the supplier information and the total supplier cost.

You create and configure a session and workflow with the following properties:

Property Value

Message count 1,000

Flush latency interval 2,000 milliseconds

Commit type Source-based commit

Workflow schedule Run continuously

The following steps describe how the Integration Service processes the session in real-time:

1. The Integration Service reads messages from the WebSphere MQ queue until it reads 1,000 messages or
after 2,000 milliseconds. When it meets either condition, it stops reading from the WebSphere MQ
queue.

2. The Integration Service looks up supplier information and calculates the order cost.

3. The Integration Service writes the supplier information and order cost to the Oracle relational target.

4. The Integration Service starts to read messages from the WebSphere MQ queue again.

5. The Integration Service repeats steps 1 through 4 as you configured the workflow to run continuously.

122 Chapter 6: Real-time Processing

Informatica Real-time Products
You can use the following products to read, transform, and write real-time data:

• PowerExchange. Use PowerExchange to capture change data from a variety of relational and non-
relational sources on i5/OS, Linux, UNIX, Windows, and z/OS systems. PowerExchange change data
capture (CDC) integrates with PowerCenter to capture, transform, and deliver change data across your
enterprise in real-time mode.

The PowerExchange Interfaces for PowerCenter (PWXPC) software is installed with PowerCenter and
works with the PowerCenter Integration Service and PowerCenter Client tools to retrieve change data from
the PowerExchange Listener. The Listener runs on or off the source system. You can include
PowerExchange targets in workflows to write change data to target types that PowerCenter does not
support, including targets on i5/OS and z/OS systems. You can also use PowerExchange to extract and
load bulk data in batch mode to materialize or refresh a CDC target.

• PowerExchange for JMS. Use PowerExchange for JMS to read from JMS sources and write to JMS
targets. You can read from JMS messages, JMS provider message queues, or JMS provider based on
message topic. You can write to JMS provider message queues or to a JMS provider based on message
topic.

JMS providers are message-oriented middleware systems that can send and receive JMS messages.
During a session, the Integration Service connects to the Java Naming and Directory Interface (JNDI) to
determine connection information. When the Integration Service determines the connection information, it
connects to the JMS provider to read or write JMS messages.

• PowerExchange for WebSphere MQ. Use PowerExchange for WebSphere MQ to read from WebSphere MQ
message queues and write to WebSphere MQ message queues or database targets. PowerExchange for
WebSphere MQ interacts with the WebSphere MQ queue manager, message queues, and WebSphere MQ
messages during data extraction and loading.

• PowerExchange for TIBCO. Use PowerExchange for TIBCO to read messages from TIBCO and write
messages to TIBCO in TIB/Rendezvous or AE format.

The Integration Service receives TIBCO messages from a TIBCO daemon, and it writes messages through
a TIBCO daemon. The TIBCO daemon transmits the target messages across a local or wide area network.
Target listeners subscribe to TIBCO target messages based on the message subject.

• PowerExchange for webMethods. Use PowerExchange for webMethods to read documents from
webMethods sources and write documents to webMethods targets.

The Integration Service connects to a webMethods broker that sends, receives, and queues webMethods
documents. The Integration Service reads and writes webMethods documents based on a defined
document type or the client ID. The Integration Service also reads and writes webMethods request/reply
documents.

• PowerExchange for MSMQ. Use PowerExchange for MSMQ to read from MSMQ sources and write to
MSMQ targets.

The Integration Service connects to the Microsoft Messaging Queue to read data from messages or write
data to messages. The queue can be public or private and transactional or non-transactional.

• PowerExchange for SAP NetWeaver. Use PowerExchange for SAP NetWeaver to read from SAP using
outbound IDocs or write to SAP using inbound IDocs using Application Link Enabling (ALE).

The Integration Service can read from outbound IDocs and write to a relational target. The Integration
Service can read data from a relational source and write the data to an inbound IDoc. The Integration
Service can capture changes to the master data or transactional data in the SAP application database in
real time.

Informatica Real-time Products 123

• PowerCenter Web Services Provider. Use PowerCenter Web Services Provider to expose transformation
logic as a service through the Web Services Hub and write client applications to run real-time web
services. You can create a service mapping to receive a message from a web service client, transform it,
and write it to any target PowerCenter supports. You can also create a service mapping with both a web
service source and target definition to receive a message request from a web service client, transform the
data, and send the response back to the web service client.

The Web Services Hub receives requests from web service clients and passes them to the gateway. The
Integration Service or the Repository Service process the requests and send a response to the web service
client through the Web Services Hub.

124 Chapter 6: Real-time Processing

C h a p t e r 7

Commit Points
This chapter includes the following topics:

• Commit Points Overview, 125

• Target-Based Commits, 126

• Source-Based Commits, 126

• User-Defined Commits, 130

• Understanding Transaction Control, 133

• Setting Commit Properties, 136

Commit Points Overview
A commit interval is the interval at which the Integration Service commits data to targets during a session.
The commit point can be a factor of the commit interval, the commit interval type, and the size of the buffer
blocks. The commit interval is the number of rows you want to use as a basis for the commit point. The
commit interval type is the type of rows that you want to use as a basis for the commit point. You can choose
between the following commit types:

• Target-based commit. The Integration Service commits data based on the number of target rows and the
key constraints on the target table. The commit point also depends on the buffer block size, the commit
interval, and the Integration Service configuration for writer timeout.

• Source-based commit. The Integration Service commits data based on the number of source rows. The
commit point is the commit interval you configure in the session properties.

• User-defined commit. The Integration Service commits data based on transactions defined in the
mapping properties. You can also configure some commit and rollback options in the session properties.

Source-based and user-defined commit sessions have partitioning restrictions. If you configure a session
with multiple partitions to use source-based or user-defined commit, you can choose pass-through
partitioning at certain partition points in a pipeline.

125

Target-Based Commits
During a target-based commit session, the Integration Service commits rows based on the number of target
rows and the key constraints on the target table. The commit point depends on the following factors:

• Commit interval. The number of rows you want to use as a basis for commits. Configure the target
commit interval in the session properties.

• Writer wait timeout. The amount of time the writer waits before it issues a commit. Configure the writer
wait timeout in the Integration Service setup.

• Buffer blocks. Blocks of memory that hold rows of data during a session. You can configure the buffer
block size in the session properties, but you cannot configure the number of rows the block holds.

When you run a target-based commit session, the Integration Service may issue a commit before, on, or after,
the configured commit interval. The Integration Service uses the following process to issue commits:

• When the Integration Service reaches a commit interval, it continues to fill the writer buffer block. When
the writer buffer block fills, the Integration Service issues a commit.

• If the writer buffer fills before the commit interval, the Integration Service writes to the target, but waits to
issue a commit. It issues a commit when one of the following conditions is true:

- The writer is idle for the amount of time specified by the Integration Service writer wait timeout option.

- The Integration Service reaches the commit interval and fills another writer buffer.

Note: When you choose target-based commit for a session containing an XML target, the Workflow Manager
disables the On Commit session property on the Transformations view of the Mapping tab.

Source-Based Commits
During a source-based commit session, the Integration Service commits data to the target based on the
number of rows from some active sources in a target load order group. These rows are referred to as source
rows.

When the Integration Service runs a source-based commit session, it identifies commit source for each
pipeline in the mapping. The Integration Service generates a commit row from these active sources at every
commit interval. The Integration Service writes the name of the transformation used for source-based
commit intervals into the session log:

Source-based commit interval based on... TRANSFORMATION_NAME
The Integration Service might commit less rows to the target than the number of rows produced by the active
source. For example, you have a source-based commit session that passes 10,000 rows through an active
source, and 3,000 rows are dropped due to transformation logic. The Integration Service issues a commit to
the target when the 7,000 remaining rows reach the target.

The number of rows held in the writer buffers does not affect the commit point for a source-based commit
session. For example, you have a source-based commit session that passes 10,000 rows through an active
source. When those 10,000 rows reach the targets, the Integration Service issues a commit. If the session
completes successfully, the Integration Service issues commits after 10,000, 20,000, 30,000, and 40,000
source rows.

If the targets are in the same transaction control unit, the Integration Service commits data to the targets at
the same time. If the session fails or aborts, the Integration Service rolls back all uncommitted data in a
transaction control unit to the same source row.

126 Chapter 7: Commit Points

If the targets are in different transaction control units, the Integration Service performs the commit when
each target receives the commit row. If the session fails or aborts, the Integration Service rolls back each
target to the last commit point. It might not roll back to the same source row for targets in separate
transaction control units.

Note: Source-based commit may slow session performance if the session uses a one-to-one mapping. A one-
to-one mapping is a mapping that moves data from a Source Qualifier, XML Source Qualifier, or Application
Source Qualifier transformation directly to a target.

Determining the Commit Source
When you run a source-based commit session, the Integration Service generates commits at all source
qualifiers and transformations that do not propagate transaction boundaries. This includes the following
active sources:

• Source Qualifier

• Application Source Qualifier

• MQ Source Qualifier

• XML Source Qualifier when you only connect ports from one output group

• Normalizer (VSAM)

• Aggregator with the All Input transformation scope

• Joiner with the All Input transformation scope

• Rank with the All Input transformation scope

• Sorter with the All Input transformation scope

• Custom with one output group and with the All Input transformation scope

• A multiple input group transformation with one output group connected to multiple upstream transaction
control points

• Mapplet, if it contains one of the above transformations

A mapping can have one or more target load order groups, and a target load order group can have one or
more active sources that generate commits. The Integration Service uses the commits generated by the
active source that is closest to the target definition. This is known as the commit source.

The following figure shows a mapping with a single commit source:

Figure 2. Mapping with a Single Commit Source

Source-Based Commits 127

The mapping contains a Source Qualifier transformation and an Aggregator transformation with the All Input
transformation scope. The Aggregator transformation is closer to the targets than the Source Qualifier
transformation and is therefore used as the commit source for the source-based commit session.

The following figure shows a mapping with multiple commit sources:

Figure 3. Mapping with Multiple Commit Sources

Transformation Scope property is All Input.

The mapping contains a target load order group with one source pipeline that branches from the Source
Qualifier transformation to two targets. One pipeline branch contains an Aggregator transformation with the
All Input transformation scope, and the other contains an Expression transformation. The Integration Service
identifies the Source Qualifier transformation as the commit source for t_monthly_sales and the Aggregator
as the commit source for T_COMPANY_ALL. It performs a source-based commit for both targets, but uses a
different commit source for each.

Switching from Source-Based to Target-Based Commit
If the Integration Service identifies a target in the target load order group that does not receive commits from
an active source that generates commits, it reverts to target-based commit for that target only.

The Integration Service writes the name of the transformation used for source-based commit intervals into
the session log. When the Integration Service switches to target-based commit, it writes a message in the
session log.

A target might not receive commits from a commit source in the following circumstances:

• The target receives data from the XML Source Qualifier transformation, and you connect multiple output
groups from an XML Source Qualifier transformation to downstream transformations. An XML Source
Qualifier transformation does not generate commits when you connect multiple output groups
downstream.

• The target receives data from an active source with multiple output groups other than an XML Source
Qualifier transformation. For example, the target receives data from a Custom transformation that you do
not configure to generate transactions. Multiple output group active sources neither generate nor
propagate commits.

Connecting XML Sources in a Mapping
An XML Source Qualifier transformation does not generate commits when you connect multiple output
groups downstream. When you an XML Source Qualifier transformation in a mapping, the Integration Service

128 Chapter 7: Commit Points

can use different commit types for targets in this session depending on the transformations used in the
mapping:

• You put a commit source between the XML Source Qualifier transformation and the target. The
Integration Service uses source-based commit for the target because it receives commits from the
commit source. The active source is the commit source for the target.

• You do not put a commit source between the XML Source Qualifier transformation and the target. The
Integration Service uses target-based commit for the target because it receives no commits.

The following figure shows a mapping with an XML Source Qualifier transformation:

This mapping contains an XML Source Qualifier transformation with multiple output groups connected
downstream. Because you connect multiple output groups downstream, the XML Source Qualifier
transformation does not generate commits. You connect the XML Source Qualifier transformation to two
relational targets, T_STORE and T_PRODUCT. Therefore, these targets do not receive any commit generated
by an active source. The Integration Service uses target-based commit when loading to these targets.

However, the mapping includes an active source that generates commits, AGG_Sales, between the XML
Source Qualifier transformation and T_YTD_SALES. The Integration Service uses source-based commit when
loading to T_YTD_SALES.

Connecting Multiple Output Group Custom Transformations in a Mapping
Multiple output group Custom transformations that you do not configure to generate transactions neither
generate nor propagate commits. Therefore, the Integration Service can use different commit types for
targets in this session depending on the transformations used in the mapping:

• You put a commit source between the Custom transformation and the target. The Integration Service
uses source-based commit for the target because it receives commits from the active source. The active
source is the commit source for the target.

• You do not put a commit source between the Custom transformation and the target. The Integration
Service uses target-based commit for the target because it receives no commits.

Source-Based Commits 129

The following figure shows a mapping with a multiple output group Custom transformation:

The mapping contains a multiple output group Custom transformation, CT_XML_Parser, which drops the
commits generated by the Source Qualifier transformation. Therefore, targets T_store_name and
T_store_addr do not receive any commits generated by an active source. The Integration Service uses target-
based commit when loading to these targets.

However, the mapping includes an active source that generates commits, AGG_store_orders, between the
Custom transformation and T_store_orders. The transformation scope for AGG_store_orders is All Input. The
Integration Service uses source-based commit when loading to T_store_orders.

Note: You can configure a Custom transformation to generate transactions when the Custom transformation
procedure outputs transactions. When you do this, configure the session for user-defined commit.

User-Defined Commits
During a user-defined commit session, the Integration Service commits and rolls back transactions based on
a row or set of rows that pass through a Transaction Control transformation. The Integration Service
evaluates the transaction control expression for each row that enters the transformation. The return value of
the transaction control expression defines the commit or rollback point.

You can also create a user-defined commit session when the mapping contains a Custom transformation
configured to generate transactions. When you do this, the procedure associated with the Custom
transformation defines the transaction boundaries.

When the Integration Service evaluates a commit row, it commits all rows in the transaction to the target or
targets. When it evaluates a rollback row, it rolls back all rows in the transaction from the target or targets.
The Integration Service writes a message to the session log at each commit and rollback point. The session
details are cumulative. The following message is a sample commit message from the session log:

WRITER_1_1_1> WRT_8317
USER-DEFINED COMMIT POINT Wed Oct 15 08:15:29 2003
===
WRT_8036 Target: TCustOrders (Instance Name: [TCustOrders])
WRT_8038 Inserted rows - Requested: 1003 Applied: 1003 Rejected:
0 Affected: 1023

When the Integration Service writes all rows in a transaction to all targets, it issues commits sequentially for
each target.

The Integration Service rolls back data based on the return value of the transaction control expression or
error handling configuration. If the transaction control expression returns a rollback value, the Integration

130 Chapter 7: Commit Points

Service rolls back the transaction. If an error occurs, you can choose to roll back or commit at the next
commit point.

If the transaction control expression evaluates to a value other than commit, rollback, or continue, the
Integration Service fails the session.

When the session completes, the Integration Service may write data to the target that was not bound by
commit rows. You can choose to commit at end of file or to roll back that open transaction.

Note: If you use bulk loading with a user-defined commit session, the target may not recognize the
transaction boundaries. If the target connection group does not support transactions, the Integration Service
writes the following message to the session log:

WRT_8324 Warning: Target Connection Group’s connection doesn’t support transactions.
Targets may not be loaded according to specified transaction boundaries rules.

Rolling Back Transactions
The Integration Service rolls back transactions in the following circumstances:

• Rollback evaluation. The transaction control expression returns a rollback value.

• Open transaction. You choose to roll back at the end of file.

• Roll back on error. You choose to roll back commit transactions if the Integration Service encounters a
non-fatal error.

• Roll back on failed commit. If any target connection group in a transaction control unit fails to commit,
the Integration Service rolls back all uncommitted data to the last successful commit point.

Rollback Evaluation
If the transaction control expression returns a rollback value, the Integration Service rolls back the
transaction and writes a message to the session log indicating that the transaction was rolled back. It also
indicates how many rows were rolled back.

The following message is a sample message that the Integration Service writes to the session log when the
transaction control expression returns a rollback value:

WRITER_1_1_1> WRT_8326 User-defined rollback processed
WRITER_1_1_1> WRT_8331 Rollback statistics
WRT_8162 ===
WRT_8330 Rolled back [333] inserted, [0] deleted, [0] updated rows for the target
[TCustOrders]

Roll Back Open Transaction
If the last row in the transaction control expression evaluates to TC_CONTINUE_TRANSACTION, the session
completes with an open transaction. If you choose to roll back that open transaction, the Integration Service
rolls back the transaction and writes a message to the session log indicating that the transaction was rolled
back.

The following message is a sample message indicating that Commit on End of File is disabled in the session
properties:

WRITER_1_1_1> WRT_8168 End loading table [TCustOrders] at: Wed Nov 05 10:21:56 2003
WRITER_1_1_1> WRT_8325 Final rollback executed for the target [TCustOrders] at end of
load

The following message is a sample message indicating that Commit on End of File is enabled in the session
properties:

WRITER_1_1_1> WRT_8143
Commit at end of Load Order Group Wed Nov 05 08:15:29 2003

User-Defined Commits 131

Roll Back on Error
You can choose to roll back a transaction at the next commit point if the Integration Service encounters a
non-fatal error. When the Integration Service encounters a non-fatal error, it processes the error row and
continues processing the transaction. If the transaction boundary is a commit row, the Integration Service
rolls back the entire transaction and writes it to the reject file.

The following table describes row indicators in the reject file for rolled-back transactions:

Row Indicator Description

4 Rolled-back insert

5 Rolled-back update

6 Rolled-back delete

Note: The Integration Service does not roll back a transaction if it encounters an error before it processes any
row through the Transaction Control transformation.

Roll Back on Failed Commit
When the Integration Service reaches the commit point for all targets in a transaction control unit, it issues
commits sequentially for each target. If the commit fails for any target connection group within a transaction
control unit, the Integration Service rolls back all data to the last successful commit point. The Integration
Service cannot roll back committed transactions, but it does write the transactions to the reject file.

For example, you create a mapping with one transaction control unit and three target connection groups. The
target names contain information about the target connection group. TCG1_T1 represents the first target
connection group and the first target.

The following figure shows Integration Service behavior when it rolls back on a failed commit:

The Integration Service uses the following logic when it processes the mapping:

1. The Integration Service reaches the third commit point for all targets.

2. It begins to issue commits sequentially for each target.

3. The Integration Service successfully commits to TCG1_T1 and TCG1_T2.

132 Chapter 7: Commit Points

4. The commit fails for TCG2_T3.

5. The Integration Service does not issue a commit for TCG3_T4.

6. The Integration Service rolls back TCG2_T3 and TCG3_T4 to the second commit point, but it cannot roll
back TCG1_T1 and TCG1_T2 to the second commit point because it successfully committed at the third
commit point.

7. The Integration Service writes the rows to the reject file from TCG2_T3 and TCG3_T4. These are the
rollback rows associated with the third commit point.

8. The Integration Service writes the row to the reject file from TCG_T1 and TCG1_T2. These are the
commit rows associated with the third commit point.

The following table describes row indicators in the reject file for committed transactions in a failed
transaction control unit:

Row Indicator Description

7 Committed insert

8 Committed update

9 Committed delete

Understanding Transaction Control
PowerCenter lets you define transactions that the Integration Service uses when it processes
transformations and when it commits and rolls back data at a target. You can define a transaction based on
a varying number of input rows. A transaction is a set of rows bound by commit or rollback rows, the
transaction boundaries. Some rows may not be bound by transaction boundaries. This set of rows is an open
transaction. You can choose to commit at end of file or to roll back open transactions when you configure
the session.

The Integration Service can process input rows for a transformation each row at a time, for all rows in a
transaction, or for all source rows together. Processing a transformation for all rows in a transaction lets you
include transformations, such as an Aggregator, in a real-time session.

Transaction boundaries originate from transaction control points. A transaction control point is a
transformation that defines or redefines the transaction boundary in the following ways:

• Generates transaction boundaries. The transformations that define transaction boundaries differ,
depending on the session commit type:

- Target-based and user-defined commit. Transaction generators generate transaction boundaries. A
transaction generator is a transformation that generates both commit and rollback rows. The
Transaction Control and Custom transformation are transaction generators.

- Source-based commit. Some active sources generate commits. They do not generate rollback rows.
Also, transaction generators generate commit and rollback rows.

• Drops incoming transaction boundaries. When a transformation drops incoming transaction boundaries,
and does not generate commits, the Integration Service outputs all rows into an open transaction. All
active sources that generate commits and transaction generators drop incoming transaction boundaries.

Understanding Transaction Control 133

Transformation Scope
You can configure how the Integration Service applies the transformation logic to incoming data with the
Transformation Scope transformation property. When the Integration Service processes a transformation, it
either drops transaction boundaries or preserves transaction boundaries, depending on the transformation
scope and the mapping configuration.

You can choose one of the following values for the transformation scope:

• Row. Applies the transformation logic to one row of data at a time. Choose Row when a row of data does
not depend on any other row. When you choose Row for a transformation connected to multiple upstream
transaction control points, the Integration Service drops transaction boundaries and outputs all rows from
the transformation as an open transaction. When you choose Row for a transformation connected to a
single upstream transaction control point, the Integration Service preserves transaction boundaries.

• Transaction. Applies the transformation logic to all rows in a transaction. Choose Transaction when a row
of data depends on all rows in the same transaction, but does not depend on rows in other transactions.
When you choose Transaction, the Integration Service preserves incoming transaction boundaries. It
resets any cache, such as an aggregator or lookup cache, when it receives a new transaction.

When you choose Transaction for a multiple input group transformation, you must connect all input
groups to the same upstream transaction control point.

• All Input. Applies the transformation logic on all incoming data. When you choose All Input, the
Integration Service drops incoming transaction boundaries and outputs all rows from the transformation
as an open transaction. Choose All Input when a row of data depends on all rows in the source.

The following table lists the transformation scope values available for each transformation:

Transformation Row Transaction All Input

Aggregator - Optional. Default.
Transaction control point.

Application Source
Qualifier

n/a
Transaction control point.

- -

Custom Optional.
Transaction control point
when configured to generate
commits or when connected
to multiple upstream
transaction control points.

Optional.
Transaction control
point when configured
to generate commits.

Default.
Always a transaction control
point.
Generates commits when it
has one output group or when
configured to generate
commits. Otherwise, it
generates an open transaction.

Data Masking Default. Read only. - -

Expression Default. Does not display. - -

External Procedure Default. Does not display. - -

Filter Default. Does not display. - -

HTTP Default. Read only. - -

Java Default for passive
transformations.

Optional for active
transformations.

Default for active
transformations.

134 Chapter 7: Commit Points

Transformation Row Transaction All Input

Joiner - Optional. Default.
Transaction control point.

Lookup Default. Does not display. - -

MQ Source Qualifier n/a
Transaction control point.

- -

Normalizer (VSAM) n/a
Transaction control point.

- -

Normalizer (relational) Default. Does not display. - -

Rank - Optional. Default.
Transaction control point.

Router Default. Does not display. - -

Sorter - Optional. Default.
Transaction control point.

Sequence Generator Default. Does not display. - -

Source Qualifier n/a
Transaction control point.

- -

SQL Default for script or query
mode SQL transformations.

Optional.
Transaction control
point when configured
to generate commits.

Optional.

Stored Procedure Default. Does not display. - -

Transaction Control Default. Does not display.
Transaction control point.

- -

Union Default. Does not display. - -

Unstructured Data Default. Read only. - -

Update Strategy Default. Does not display. - -

XML Generator - Optional.
Transaction when the
flush on commit is set
to create a new
document.

Default. Does not display.

XML Parser Default. Does not display. - -

XML Source Qualifier n/a
Transaction control point.

- -

Understanding Transaction Control 135

Understanding Transaction Control Units
A transaction control unit is the group of targets connected to an active source that generates commits or an
effective transaction generator. A transaction control unit is a subset of a target load order group and may
contain multiple target connection groups.

When the Integration Service reaches the commit point for all targets in a transaction control unit, it issues
commits sequentially for each target.

Rules and Guidelines for Working with Transaction Control
Consider the following rules and guidelines when you work with transaction control:

• Transformations with Transaction transformation scope must receive data from a single transaction
control point.

• The Integration Service uses the transaction boundaries defined by the first upstream transaction control
point for transformations with Transaction transformation scope.

• Transaction generators can be effective or ineffective for a target. The Integration Service uses the
transaction generated by an effective transaction generator when it loads data to a target.

• The Workflow Manager prevents you from using incremental aggregation in a session with an Aggregator
transformation with Transaction transformation scope.

• Transformations with All Input transformation scope cause a transaction generator to become ineffective
for a target in a user-defined commit session.

• The Integration Service resets any cache at the beginning of each transaction for Aggregator, Joiner,
Rank, and Sorter transformations with Transaction transformation scope.

• You can choose the Transaction transformation scope for Joiner transformations when you use sorted
input.

• When you add a partition point at a transformation with Transaction transformation scope, the Workflow
Manager uses the pass-through partition type by default. You cannot change the partition type.

Creating Target Files by Transaction
You can generate a separate output file each time the Integration Service starts a new transaction. You can
dynamically name each target flat file.

To generate a separate output file for each transaction, add a FileName port to the flat file target definition.
When you connect the FileName port in the mapping, the PowerCenter writes a separate target file at each
commit. The Integration Service uses the FileName port value from the first row in each transaction to name
the output file.

Setting Commit Properties
When you create a session, you can configure commit properties. The properties you set depend on the type
of mapping and the type of commit you want the Integration Service to perform. Configure commit properties
in the General Options settings of the Properties tab.

136 Chapter 7: Commit Points

The following table describes the session commit properties that you set in the General Options settings of
the Properties tab:

Property Target-Based Source-Based User-Defined

Commit Type Selected by default if no
transaction generator or only
ineffective transaction
generators are in the mapping.

Choose for source-based
commit if no transaction
generator or only ineffective
transaction generators are in
the mapping.

Selected by default if
effective transaction
generators are in the
mapping.

Commit Interval Default is 10,000. Default is 10,000. n/a

Commit on End of
File

Commits data at the end of the
file. Enabled by default. You
cannot disable this option.

Commits data at the end of
the file. Clear this option if
you want the Integration
Service to roll back open
transactions.

Commits data at the end of
the file. Clear this option if
you want the Integration
Service to roll back open
transactions.

Roll Back
Transactions on
Errors

If the Integration Service
encounters a non-fatal error,
you can choose to roll back the
transaction at the next commit
point.
When the Integration Service
encounters a transformation
error, it rolls back the
transaction if the error occurs
after the effective transaction
generator for the target.

If the Integration Service
encounters a non-fatal error,
you can choose to roll back
the transaction at the next
commit point.
When the Integration Service
encounters a transformation
error, it rolls back the
transaction if the error
occurs after the effective
transaction generator for the
target.

If the Integration Service
encounters a non-fatal error,
you can choose to roll back
the transaction at the next
commit point.
When the Integration Service
encounters a transformation
error, it rolls back the
transaction if the error
occurs after the effective
transaction generator for the
target.

Tip: When you bulk load to Microsoft SQL Server or Oracle targets, define a large commit interval. Microsoft
SQL Server and Oracle start a new bulk load transaction after each commit. Increasing the commit interval
reduces the number of bulk load transactions and increases performance.

Setting Commit Properties 137

C h a p t e r 8

Row Error Logging
This chapter includes the following topics:

• Row Error Logging Overview, 138

• Understanding the Error Log Tables, 139

• Understanding the Error Log File, 144

• Configuring Error Log Options, 146

Row Error Logging Overview
When you configure a session, you can log row errors in a central location. When a row error occurs, the
Integration Service logs error information that lets you determine the cause and source of the error. The
Integration Service logs information such as source name, row ID, current row data, transformation,
timestamp, error code, error message, repository name, folder name, session name, and mapping
information.

You can log row errors into relational tables or flat files. When you enable error logging, the Integration
Service creates the error tables or an error log file the first time it runs the session. Error logs are cumulative.
If the error logs exist, the Integration Service appends error data to the existing error logs.

You can log source row data from flat file or relational sources. Source row data includes row data, source
row ID, and source row type from the source qualifier where an error occurs. You cannot log row errors from
XML file sources. You can view the XML source errors in the session log.

The Integration Service cannot identify the row in the source qualifier that contains an error if the error
occurs after a non pass-through partition point with more than one partition or one of the following active
sources:

• Aggregator

• Custom, configured as an active transformation

• Joiner

• Normalizer (pipeline)

• Rank

• Sorter

By default, the Integration Service logs transformation errors in the session log and reject rows in the reject
file. When you enable error logging, the Integration Service does not generate a reject file or write dropped
rows to the session log. Without a reject file, the Integration Service does not log Transaction Control

138

transformation rollback or commit errors. If you want to write rows to the session log in addition to the row
error log, you can enable verbose data tracing.

Note: When you log row errors, session performance may decrease because the Integration Service
processes one row at a time instead of a block of rows at once.

Error Log Code Pages
The Integration Service writes data to the error log file differently depending on the Integration Service
process operating system:

• UNIX. The Integration Service writes data to the error log file using the Integration Service process code
page. However, you can configure the Integration Service to write to the error log file using UTF-8 by
enabling the LogsInUTF8 Integration Service property.

• Windows. The Integration Service writes all characters in the error log file using the UTF-8 encoding
format.

The code page for the relational database where the error tables exist must be a subset of the target code
page. If the error log table code page is not a subset of the target code page, the Integration Service might
write inconsistent data in the error log tables.

Understanding the Error Log Tables
When you choose relational database error logging, the Integration Service creates the following error tables
the first time you run a session:

• PMERR_DATA. Stores data and metadata about a transformation row error and its corresponding source
row.

• PMERR_MSG. Stores metadata about an error and the error message.

• PMERR_SESS. Stores metadata about the session.

• PMERR_TRANS. Stores metadata about the source and transformation ports, such as name and datatype,
when a transformation error occurs.

You specify the database connection to the database where the Integration Service creates these tables. If
the error tables exist for a session, the Integration Service appends row errors to these tables.

Relational database error logging lets you collect row errors from multiple sessions in one set of error tables.
To do this, you specify the same error log table name prefix for all sessions. You can issue select statements
on the generated error tables to retrieve error data for a particular session.

You can specify a prefix for the error tables. The error table names can have up to eleven characters. Do not
specify a prefix that exceeds 19 characters when naming Oracle, Sybase, or Teradata error log tables, as
these databases have a maximum length of 30 characters for table names. You can use a parameter or
variable for the table name prefix. Use any parameter or variable type that you can define in the parameter
file. For example, you can use a session parameter, $ParamMyErrPrefix, as the error log table name prefix,
and set $ParamMyErrPrefix to the table prefix in a parameter file.

The Integration Service creates the error tables without specifying primary and foreign keys. However, you
can specify key columns.

Understanding the Error Log Tables 139

PMERR_DATA
When the Integration Service encounters a row error, it inserts an entry into the PMERR_DATA table. This
table stores data and metadata about a transformation row error and its corresponding source row.

The following table describes the structure of the PMERR_DATA table:

Column Name Datatype Description

REPOSITORY_GID Varchar Unique identifier for the repository.

WORKFLOW_RUN_ID Integer Unique identifier for the workflow.

WORKLET_RUN_ID Integer Unique identifier for the worklet. If a session is not part of a
worklet, this value is “0”.

SESS_INST_ID Integer Unique identifier for the session.

TRANS_MAPPLET_INST Varchar Name of the mapplet where an error occurred.

TRANS_NAME Varchar Name of the transformation where an error occurred.

TRANS_GROUP Varchar Name of the input group or output group where an error occurred.
Defaults to either “input” or “output” if the transformation does
not have a group.

TRANS_PART_INDEX Integer Specifies the partition number of the transformation where an
error occurred.

TRANS_ROW_ID Integer Specifies the row ID generated by the last active source.

TRANS_ROW_DATA Long Varchar Delimited string containing all column data, including the column
indicator. Column indicators are:
D - valid
N - null
T - truncated
B - binary
U - data unavailable
The fixed delimiter between column data and column indicator is
colon (:). The delimiter between the columns is pipe (|). You
can override the column delimiter in the error handling settings.
The Integration Service converts all column data to text string in
the error table. For binary data, the Integration Service uses only
the column indicator.
This value can span multiple rows. When the data exceeds 2000
bytes, the Integration Service creates a new row. The line number
for each row error entry is stored in the LINE_NO column.

SOURCE_ROW_ID Integer Value that the source qualifier assigns to each row it reads. If the
Integration Service cannot identify the row, the value is -1.

140 Chapter 8: Row Error Logging

Column Name Datatype Description

SOURCE_ROW_TYPE Integer Row indicator that tells whether the row was marked for insert,
update, delete, or reject.
0 - Insert
1 - Update
2 - Delete
3 - Reject

SOURCE_ROW_DATA Long Varchar Delimited string containing all column data, including the column
indicator. Column indicators are:
D - valid
O - overflow
N - null
T - truncated
B - binary
U - data unavailable
The fixed delimiter between column data and column indicator is
colon (:). The delimiter between the columns is pipe (|). You
can override the column delimiter in the error handling settings.
The Integration Service converts all column data to text string in
the error table or error file. For binary data, the Integration Service
uses only the column indicator.
This value can span multiple rows. When the data exceeds 2000
bytes, the Integration Service creates a new row. The line number
for each row error entry is stored in the LINE_NO column.

LINE_NO Integer Specifies the line number for each row error entry in
SOURCE_ROW_DATA and TRANS_ROW_DATA that spans multiple
rows.

Note: Use the column names in bold to join tables.

PMERR_MSG
When the Integration Service encounters a row error, it inserts an entry into the PMERR_MSG table. This table
stores metadata about the error and the error message.

The following table describes the structure of the PMERR_MSG table:

Column Name Datatype Description

REPOSITORY_GID Varchar Unique identifier for the repository.

WORKFLOW_RUN_ID Integer Unique identifier for the workflow.

WORKLET_RUN_ID Integer Unique identifier for the worklet. If a session is not part of a
worklet, this value is “0”.

SESS_INST_ID Integer Unique identifier for the session.

MAPPLET_INST_NAME Varchar Mapplet to which the transformation belongs. If the
transformation is not part of a mapplet, this value is n/a.

Understanding the Error Log Tables 141

Column Name Datatype Description

TRANS_NAME Varchar Name of the transformation where an error occurred.

TRANS_GROUP Varchar Name of the input group or output group where an error occurred.
Defaults to either “input” or “output” if the transformation does
not have a group.

TRANS_PART_INDEX Integer Specifies the partition number of the transformation where an
error occurred.

TRANS_ROW_ID Integer Specifies the row ID generated by the last active source.

ERROR_SEQ_NUM Integer Counter for the number of errors per row in each transformation
group. If a session has multiple partitions, the Integration Service
maintains this counter for each partition.
For example, if a transformation generates three errors in
partition 1 and two errors in partition 2, ERROR_SEQ_NUM
generates the values 1, 2, and 3 for partition 1, and values 1 and 2
for partition 2.

ERROR_TIMESTAMP Date/Time Timestamp of the Integration Service when the error occurred.

ERROR_UTC_TIME Integer Coordinated Universal Time, called Greenwich Mean Time, of
when an error occurred.

ERROR_CODE Integer Error code that the error generates.

ERROR_MSG Long Varchar Error message, which can span multiple rows. When the data
exceeds 2000 bytes, the Integration Service creates a new row.
The line number for each row error entry is stored in the LINE_NO
column.

ERROR_TYPE Integer Type of error that occurred. The Integration Service uses the
following values:
1 - Reader error
2 - Writer error
3 - Transformation error

LINE_NO Integer Specifies the line number for each row error entry in ERROR_MSG
that spans multiple rows.

Note: Use the column names in bold to join tables.

PMERR_SESS
When you choose relational database error logging, the Integration Service inserts entries into the
PMERR_SESS table. This table stores metadata about the session where an error occurred.

142 Chapter 8: Row Error Logging

The following table describes the structure of the PMERR_SESS table:

Column Name Datatype Description

REPOSITORY_GID Varchar Unique identifier for the repository.

WORKFLOW_RUN_ID Integer Unique identifier for the workflow.

WORKLET_RUN_ID Integer Unique identifier for the worklet. If a session is not part of a
worklet, this value is “0”.

SESS_INST_ID Integer Unique identifier for the session.

SESS_START_TIME Date/Time Timestamp of the Integration Service when a session starts.

SESS_START_UTC_TIME Integer Coordinated Universal Time, called Greenwich Mean Time, of
when the session starts.

REPOSITORY_NAME Varchar Repository name where sessions are stored.

FOLDER_NAME Varchar Specifies the folder where the mapping and session are located.

WORKFLOW_NAME Varchar Specifies the workflow that runs the session being logged.

TASK_INST_PATH Varchar Fully qualified session name that can span multiple rows. The
Integration Service creates a new line for the session name. The
Integration Service also creates a new line for each worklet in the
qualified session name. For example, you have a session named
WL1.WL2.S1. Each component of the name appears on a new line:
WL1
WL2
S1
The Integration Service writes the line number in the LINE_NO
column.

MAPPING_NAME Varchar Specifies the mapping that the session uses.

LINE_NO Integer Specifies the line number for each row error entry in
TASK_INST_PATH that spans multiple rows.

Note: Use the column names in bold to join tables.

PMERR_TRANS
When the Integration Service encounters a transformation error, it inserts an entry into the PMERR_TRANS
table. This table stores metadata, such as the name and datatype of the source and transformation ports.

The following table describes the structure of the PMERR_TRANS table:

Column Name Datatype Description

REPOSITORY_GID Varchar Unique identifier for the repository.

WORKFLOW_RUN_ID Integer Unique identifier for the workflow.

Understanding the Error Log Tables 143

Column Name Datatype Description

WORKLET_RUN_ID Integer Unique identifier for the worklet. If a session is not part of a
worklet, this value is “0”.

SESS_INST_ID Integer Unique identifier for the session.

TRANS_MAPPLET_INST Varchar Specifies the instance of a mapplet.

TRANS_NAME Varchar Name of the transformation where an error occurred.

TRANS_GROUP Varchar Name of the input group or output group where an error occurred.
Defaults to either “input” or “output” if the transformation does
not have a group.

TRANS_ATTR Varchar Lists the port names and datatypes of the input or output group
where the error occurred. Port name and datatype pairs are
separated by commas, for example: portname1:datatype,
portname2:datatype.
This value can span multiple rows. When the data exceeds 2000
bytes, the Integration Service creates a new row for the
transformation attributes and writes the line number in the
LINE_NO column.

SOURCE_MAPPLET_INST Varchar Name of the mapplet in which the source resides.

SOURCE_NAME Varchar Name of the source qualifier. n/a appears when a row error
occurs downstream of an active source that is not a source
qualifier or a non pass-through partition point with more than one
partition.

SOURCE_ATTR Varchar Lists the connected field(s) in the source qualifier where an error
occurred. When an error occurs in multiple fields, each field name
is entered on a new line. Writes the line number in the LINE_NO
column.

LINE_NO Integer Specifies the line number for each row error entry in TRANS_ATTR
and SOURCE_ATTR that spans multiple rows.

Note: Use the column names in bold to join tables.

Understanding the Error Log File
You can create an error log file to collect all errors that occur in a session. This error log file is a column
delimited line sequential file. By specifying a unique error log file name, you can create a separate log file for
each session in a workflow. When you want to analyze the row errors for one session, use an error log file.

In an error log file, double pipes “||” delimit error logging columns. By default, pipe “|” delimits row data. You
can change this row data delimiter by setting the Data Column Delimiter error log option.

Error log files have the following structure:

[Session Header]
[Column Header]
[Column Data]

144 Chapter 8: Row Error Logging

Session header contains session run information similar to the information stored in the PMERR_SESS table.
Column header contains data column names. Column data contains row data and error message information.

The following table describes the columns in an error log file:

Log File Column Header Description

Transformation Name of the transformation used by a mapping where an error occurred.

Transformation Mapplet
Name

Name of the mapplet that contains the transformation. n/a appears when this
information is not available.

Transformation Group Name of the input or output group where an error occurred. Defaults to either “input” or
“output” if the transformation does not have a group.

Partition Index Specifies the partition number of the transformation partition where an error occurred.

Transformation Row ID Specifies the row ID for the error row.

Error Sequence Counter for the number of errors per row in each transformation group. If a session has
multiple partitions, the Integration Service maintains this counter for each partition.
For example, if a transformation generates three errors in partition 1 and two errors in
partition 2, ERROR_SEQ_NUM generates the values 1, 2, and 3 for partition 1, and values
1 and 2 for partition 2.

Error Timestamp Timestamp of the Integration Service when the error occurred.

Error UTC Time Coordinated Universal Time, called Greenwich Mean Time, when the error occurred.

Error Code Error code that corresponds to the error message.

Error Message Error message.

Error Type Type of error that occurred. The Integration Service uses the following values:
1 - Reader error
2 - Writer error
3 - Transformation error

Transformation Data Delimited string containing all column data, including the column indicator. Column
indicators are:
D - valid
O - overflow
N - null
T - truncated
B - binary
U - data unavailable
The fixed delimiter between column data and column indicator is a colon (:). The
delimiter between the columns is a pipe (|). You can override the column delimiter in
the error handling settings.
The Integration Service converts all column data to text string in the error file. For binary
data, the Integration Service uses only the column indicator.

Source Name Name of the source qualifier. N/A appears when a row error occurs downstream of an
active source that is not a source qualifier or a non pass-through partition point with
more than one partition.

Understanding the Error Log File 145

Log File Column Header Description

Source Row ID Value that the source qualifier assigns to each row it reads. If the Integration Service
cannot identify the row, the value is -1.

Source Row Type Row indicator that tells whether the row was marked for insert, update, delete, or reject.
0 - Insert
1 - Update
2 - Delete
3 - Reject

Source Data Delimited string containing all column data, including the column indicator. Column
indicators are:
D - valid
O - overflow
N - null
T - truncated
B - binary
U - data unavailable
The fixed delimiter between column data and column indicator is a colon (:). The
delimiter between the columns is a pipe (|). You can override the column delimiter in
the error handling settings.
The Integration Service converts all column data to text string in the error table or error
file. For binary data, the Integration Service uses only the column indicator.

Configuring Error Log Options
You configure error logging for each session on the Config Object tab of the sessions properties. When you
enable error logging, you can choose to create the error log in a relational database or as flat file. If you do
not enable error logging, the Integration Service does not create an error log.

Tip: Use the Workflow Manager to create a reusable set of attributes for the Config Object tab.

To configure error logging options:

1. Double-click the Session task to open the session properties.

2. Select the Config Object tab.

3. Specify the error log type.

146 Chapter 8: Row Error Logging

The following table describes the error logging settings of the Config Object tab:

Error Log Options Description

Error Log Type Specifies the type of error log to create. You can specify relational database, flat file,
or none. Default is none.
Note: You cannot log row errors from XML file sources. You can view the XML source
errors in the session log.

Error Log DB
Connection

Specifies the database connection for a relational log. This option is required when
you enable relational database logging.

Error Log Table Name
Prefix

Specifies the table name prefix for relational logs. The Integration Service appends
11 characters to the prefix name. Oracle and Sybase have a 30 character limit for
table names. If a table name exceeds 30 characters, the session fails.
You can use a parameter or variable for the error log table name prefix. Use any
parameter or variable type that you can define in the parameter file.

Error Log File Directory Specifies the directory where errors are logged. By default, the error log file directory
is $PMBadFilesDir\. This option is required when you enable flat file logging.

Error Log File Name Specifies error log file name. The character limit for the error log file name is 255. By
default, the error log file name is PMError.log. This option is required when you
enable flat file logging.

Log Row Data Specifies whether or not to log transformation row data. When you enable error
logging, the Integration Service logs transformation row data by default. If you
disable this property, n/a or -1 appears in transformation row data fields.

Log Source Row Data If you choose not to log source row data, or if source row data is unavailable, the
Integration Service writes an indicator such as n/a or -1, depending on the column
datatype.
If you do not need to capture source row data, consider disabling this option to
increase Integration Service performance.

Data Column Delimiter Delimiter for string type source row data and transformation group row data. By
default, the Integration Service uses a pipe (|) delimiter. Verify that you do not use
the same delimiter for the row data as the error logging columns. If you use the same
delimiter, you may find it difficult to read the error log file.

4. Click OK.

Configuring Error Log Options 147

C h a p t e r 9

Workflow Recovery
This chapter includes the following topics:

• Workflow Recovery Overview, 148

• State of Operation, 149

• Recovery Options, 152

• Suspending the Workflow, 153

• Configuring Workflow Recovery, 154

• Configuring Task Recovery, 155

• Resuming Sessions, 158

• Working with Repeatable Data, 159

• Steps to Recover Workflows and Tasks, 163

• Rules and Guidelines for Session Recovery, 164

Workflow Recovery Overview
Workflow recovery allows you to continue processing the workflow and workflow tasks from the point of
interruption. You can recover a workflow if the Integration Service can access the workflow state of
operation. The workflow state of operation includes the status of tasks in the workflow and workflow variable
values. The Integration Service stores the state in memory or on disk, based on how you configure the
workflow:

• Enable recovery. When you enable a workflow for recovery, the Integration Service saves the workflow
state of operation in a shared location. You can recover the workflow if it terminates, stops, or aborts. The
workflow does not have to be running.

• Suspend. When you configure a workflow to suspend on error, the Integration Service stores the workflow
state of operation in memory. You can recover the suspended workflow if a task fails. You can fix the task
error and recover the workflow.

The Integration Service recovers tasks in the workflow based on the recovery strategy of the task. By default,
the recovery strategy for Session and Command tasks is to fail the task and continue running the workflow.
You can configure the recovery strategy for Session and Command tasks. The strategy for all other tasks is
to restart the task.

When you have high availability, PowerCenter recovers a workflow automatically if a service process that is
running the workflow fails over to a different node. You can configure a running workflow to recover a task
automatically when the task terminates. PowerCenter also recovers a session and workflow after a database
connection interruption.

148

When the Integration Service runs in safe mode, it stores the state of operation for workflows configured for
recovery. If the workflow fails the Integration Service fails over to a backup node, the Integration Service does
not automatically recover the workflow. You can manually recover the workflow if you have the appropriate
privileges on the Integration Service.

State of Operation
When you recover a workflow or session, the Integration Service restores the workflow or session state of
operation to determine where to begin recovery processing. The Integration Service stores the workflow state
of operation in memory or on disk based on the way you configure the workflow. The Integration Service
stores the session state of operation based on the way you configure the session.

Workflow State of Operation
The Integration Service stores the workflow state of operation when you enable the workflow for recovery or
for suspension. When the workflow is suspended, the state of operation is in memory.

When you enable a workflow for recovery, the Integration Service stores the workflow state of operation in
the shared location, $PMStorageDir. The Integration Service can restore the state of operation to recover a
stopped, aborted, or terminated workflow. When it performs recovery, it restores the state of operation to
recover the workflow from the point of interruption. When the workflow completes, the Integration Service
removes the workflow state of operation from the shared folder.

The workflow state of operation includes the following information:

• Active service requests

• Completed and running task status

• Workflow variable values

When you run concurrent workflows, the Integration Service appends the instance name or the workflow run
ID to the workflow recovery storage file in $PMStorageDir.

When you enable a workflow for recovery the Integration Service does not store the session state of
operation by default. You can configure the session recovery strategy to save the session state of operation.

Session State of Operation
When you configure the session recovery strategy to resume from the last checkpoint, the Integration Service
stores the session state of operation in the shared location, $PMStorageDir. The Integration Service also
saves relational target recovery information in target database tables. When the Integration Service performs
recovery, it restores the state of operation to recover the session from the point of interruption. It uses the
target recovery data to determine how to recover the target tables.

You can configure the session to save the session state of operation even if you do not save the workflow
state of operation. You can recover the session, or you can recover the workflow from the session.

The session state of operation includes the following information:

• Source. If the output from a source is not deterministic and repeatable, the Integration Service saves the
result from the SQL query to a shared storage file in $PMStorageDir.

• Transformation. The Integration Service creates checkpoints in $PMStorageDir to determine where to
start processing the pipeline when it runs a recovery session.

State of Operation 149

When you run a session with an incremental Aggregator transformation, the Integration Service creates a
backup of the Aggregator cache files in $PMCacheDir at the beginning of a session run. The Integration
Service promotes the backup cache to the initial cache at the beginning of a session recovery run.

• Relational target recovery data. The Integration Service writes recovery information to recovery tables in
the target database to determine the last row committed to the target when the session was interrupted.

Target Recovery Tables
When the Integration Service runs a session that has a resume recovery strategy, it writes to recovery tables
on the target database system. When the Integration Service recovers the session, it uses information in the
recovery tables to determine where to begin loading data to target tables.

If you want the Integration Service to create the recovery tables, grant table creation privilege to the database
user name configured in the target database connection. If you do not want the Integration Service to create
the recovery tables, create the recovery tables manually.

The Integration Service creates the following recovery tables in the target database:

• PM_RECOVERY. Contains target load information for the session run. The Integration Service removes the
information from this table after each successful session and initializes the information at the beginning
of subsequent sessions.

• PM_TGT_RUN_ID. Contains information the Integration Service uses to identify each target on the
database. The information remains in the table between session runs. If you manually create this table,
you must create a row and enter a value other than zero for LAST_TGT_RUN_ID to ensure that the session
recovers successfully.

• PM_REC_STATE. Contains information the Integration Service uses to determine if it needs to write
messages to the target table during recovery for a real-time session.

If you edit or drop the recovery tables before you recover a session, the Integration Service cannot recover
the session. If you disable recovery, the Integration Service does not remove the recovery tables from the
target database. You must manually remove the recovery tables.

The following table describes the format of PM_RECOVERY:

Column Name Datatype

REP_GID VARCHAR(240)

WFLOW_ID INTEGER

WFLOW_RUN_ID INTEGER

WFLOW_RUN_INS_NAME VARCHAR(240)

SUBJ_ID INTEGER

TASK_INST_ID INTEGER

TGT_INST_ID INTEGER

PARTITION_ID INTEGER

TGT_RUN_ID INTEGER

RECOVERY_VER INTEGER

150 Chapter 9: Workflow Recovery

Column Name Datatype

CHECK_POINT INTEGER

ROW_COUNT INTEGER

The following table describes the format of PM_TGT_RUN_ID:

Column Name Datatype

LAST_TGT_RUN_ID INTEGER

The following table describes the format of PM_REC_STATE:

Column Name Datatype

OWNER_TYPE_ID INTEGER

REP_GID VARCHAR(240)

FOLDER_ID INTEGER

WFLOW_ID INTEGER

WFLOW_RUN_INS_NAME VARCHAR(240)

WLET_ID INTEGER

TASK_INST_ID INTEGER

WID_INST_ID INTEGER

GROUP_ID INTEGER

PART_ID INTEGER

PLUGIN_ID INTEGER

APPL_ID VARCHAR(38)

SEQ_NUM INTEGER

VERSION INTEGER

CHKP_NUM INTEGER

STATE_DATA VARCHAR(1024)

Oracle uses the NUMBER datatype instead of the INTEGER datatype.

Note: When concurrent recovery sessions write to the same target database, the Integration Service may
encounter a deadlock on PM_RECOVERY. To retry writing to PM_RECOVERY on deadlock, you can configure
the Session Retry on Deadlock option to retry the deadlock for the session.

State of Operation 151

Related Topics:
• “PM_REC_STATE Table” on page 116

Creating Target Recovery Tables
You can manually create the target recovery tables. Informatica provides SQL scripts in the following
directory:

<PowerCenter installation_dir>\server\bin\RecoverySQL

Run one of the following scripts to create the recovery tables in the target database:

Script Database

create_schema_db2.sql IBM DB2

create_schema_inf.sql Informix

create_schema_ora.sql Oracle

create_schema_sql.sql Microsoft SQL Server

create_schema_syb.sql Sybase

create_schema_ter.sql Teradata

Recovery Options
To perform recovery, you must configure the mapping, workflow tasks, and the workflow for recovery.

The following table describes the options that you can configure for recovery:

Option Location Description

Suspend Workflow on
Error

Workflow Suspends the workflow when a task in the workflow fails. You can fix
the failed tasks and recover a suspended workflow.

Suspension Email Workflow Sends an email when the workflow suspends.

Enable HA Recovery Workflow Saves the workflow state of operation in a shared location. You do
not need high availability to enable workflow recovery.

Automatically Recover
Terminated Tasks

Workflow Recovers terminated Session and Command tasks while the workflow
is running. You must have the high availability option.

Maximum Automatic
Recovery Attempts

Workflow The number of times the Integration Service attempts to recover a
Session or Command task.

Recovery Strategy Session,
Command

The recovery strategy for a Session or Command task. Determines
how the Integration Service recovers a Session or Command task
during workflow recovery and how it recovers a session during
session recovery.

152 Chapter 9: Workflow Recovery

Option Location Description

Fail Task If Any
Command Fails

Command Enables the Command task to fail if any of the commands in the task
fail. If you do not set this option, the task continues to run when any
of the commands fail. You can use this option with Suspend Workflow
on Error to suspend the workflow if any command in the task fails.

Output is Deterministic Transformation Indicates that the transformation always generates the same set of
data from the same input data. The Integration Service can resume a
session from the last checkpoint when the output is repeatable and
deterministic. When you enable this option with the Output is
Repeatable option for a relational source qualifier, the Integration
Service does not save the SQL results to shared storage.

Output is Repeatable Transformation Indicates whether the transformation generates rows in the same
order between session runs. The Integration Service can resume a
session from the last checkpoint when the output is repeatable and
deterministic.When you enable this option with the Output is
Deterministic option for a relational source qualifier, the Integration
Service does not save the SQL results to shared storage.

Warning: If you configure a transformation as repeatable and deterministic, it is your responsibility to ensure
that the data is repeatable. If you try to recover a session with transformations that do not generate
repeatable and deterministic data, the recovery process can result in corrupted data.

Suspending the Workflow
When a task in the workflow fails, you might want to suspend the workflow, fix the error, and recover the
workflow. The Integration Service suspends the workflow when you enable the Suspend on Error option in the
workflow properties. Optionally, you can set a suspension email so the Integration Service sends an email
when it suspends a workflow.

When you enable the workflow to suspend on error, the Integration Service suspends the workflow when one
of the following tasks fail:

• Session

• Command

• Worklet

• Email

When a task fails in the workflow, the Integration Service stops running tasks in the path. The Integration
Service does not evaluate the output link of the failed task. If no other task is running in the workflow, the
Workflow Monitor displays the status of the workflow as “Suspended.”

If you have the high availability option, the Integration Service suspends the workflow depending on how
automatic task recovery is set. If you configure the workflow to suspend on error and do not enable
automatic task recovery, the workflow suspends when a task fails. If you enable automatic task recovery, the
Integration Service first attempts to restart the task up to the specified recovery limit, and then suspends the
workflow if it cannot restart the failed task.

If one or more tasks are still running in the workflow when a task fails, the Integration Service stops running
the failed task and continues running tasks in other paths. The Workflow Monitor displays the status of the
workflow as “Suspending.”

Suspending the Workflow 153

When the status of the workflow is “Suspended” or “Suspending,” you can fix the error, such as a target
database error, and recover the workflow in the Workflow Monitor. When you recover a workflow, the
Integration Service restarts the failed tasks and continues evaluating the rest of the tasks in the workflow.
The Integration Service does not run any task that already completed successfully.

Note: Editing a suspended workflow or tasks inside a suspended workflow can cause repository
inconsistencies.

To suspend a workflow:

1. In the Workflow Designer, open the workflow.

2. Click Workflows > Edit.

3. In the General tab, enable Suspend on Error.

4. Click OK.

Configuring Suspension Email
You can configure the workflow so that the Integration Service sends an email when it suspends a workflow.
Select an existing reusable email task for the suspension email. When a task fails, the Integration Service
starts suspending the workflow and sends the suspension email. If another task fails while the Integration
Service is suspending the workflow, you do not receive the suspension email again.

The Integration Service sends a suspension email if another task fails after you resume the workflow.

Configuring Workflow Recovery
To configure a workflow for recovery, you must enable the workflow for recovery or configure the workflow to
suspend on task error. When the workflow is configured for recovery, you can recover it if it stops, aborts,
terminates, or suspends.

The following table describes each recoverable workflow status:

Status Description

Aborted You abort the workflow in the Workflow Monitor or through pmcmd. You can also choose to abort all
running workflows when you disable the service process in the Administrator tool. You can recover an
aborted workflow if you enable the workflow for recovery. You can recover an aborted workflow in the
Workflow Monitor or by using pmcmd.

Stopped You stop the workflow in the Workflow Monitor or through pmcmd. You can also choose to stop all
running workflows when you disable the service or service process in the Administrator tool. You can
recover a stopped workflow if you enable the workflow for recovery. You can recover a stopped
workflow in the Workflow Monitor or by using pmcmd.

Suspended A task fails and the workflow is configured to suspend on a task error. If multiple tasks are running,
the Integration Service suspends the workflow when all running tasks either succeed or fail. You can
fix the errors that caused the task or tasks to fail before you run recovery.
By default, a workflow continues after a task fails. To suspend the workflow when a task fails,
configure the workflow to suspend on task error.

154 Chapter 9: Workflow Recovery

Status Description

Terminated The service process running the workflow shuts down unexpectedly. Tasks terminate on all nodes
running the workflow. A workflow can terminate when a task in the workflow terminates and you do
not have the high availability option. You can recover a terminated workflow if you enable the
workflow for recovery. When you have high availability, the service process fails over to another node
and workflow recovery starts.

Note: A failed workflow is a workflow that completes with failure. You cannot recover a failed workflow.

Recovering Stopped, Aborted, and Terminated Workflows
When you enable a workflow for recovery, the Integration Service saves the workflow state of operation to a
file during the workflow run. You can recover a stopped, terminated, or aborted workflow. Enable recovery on
the Properties tab of the workflow.

Recovering Suspended Workflows
You can configure a workflow to suspend if a task in the workflow fails. By default, a workflow continues to
run when a task fails. You can suspend the workflow at task failure, fix the task that failed, and recover the
workflow. When you suspend a workflow, the workflow state of operation stays in memory. You can fix the
error that caused the task to fail and recover the workflow from the point of interruption. If the task fails
again, the Integration Service suspends the workflow again. You can recover a suspended workflow, but you
cannot restart it. Configure a workflow to suspend on the General tab of the workflow properties.

You can also configure the workflow to send an email when a task suspends.

Configuring Task Recovery
When you recover a workflow, the Integration Service recovers the tasks based on the recovery strategy for
each task. Depending on the task, the recovery strategy can be fail task and continue workflow, resume from
the last checkpoint, or restart task.

When you enable workflow recovery, you can recover a task that you abort or stop. You can recover a task
that terminates due to network or service process failures. When you configure a workflow to suspend on
error, you can recover a failed task when you recover the workflow.

Configuring Task Recovery 155

The following table describes each recoverable task status:

Status Description

Aborted You abort the workflow or task in the Workflow Monitor or through pmcmd. You can also choose to
abort all running workflows when you disable the service or service process in the Administrator tool.
You can also configure a session to abort based on mapping conditions.
You can recover the workflow in the Workflow Monitor to recover the task or you can recover the
workflow using pmcmd.

Stopped You stop the workflow or task in the Workflow Monitor or through pmcmd. You can also choose to
stop all running workflows when you disable the service or service process in the Administrator tool.
You can recover the workflow in the Workflow Monitor to recover the task or you can recover the
workflow using pmcmd.

Failed The Integration Service failed the task due to errors. You can recover a failed task using workflow
recovery when the workflow is configured to suspend on task failure. When the workflow is not
suspended you can recover a failed task by recovering just the session or recovering the workflow
from the session.
You can fix the error and recover the workflow in the Workflow Monitor or you can recover the
workflow using pmcmd.

Terminated The Integration Service stops unexpectedly or loses network connection to the master service
process. You can recover the workflow in the Workflow Monitor or you can recover the workflow using
pmcmd after the Integration Service restarts.

Task Recovery Strategies
Each task in a workflow has a recovery strategy. When the Integration Service recovers a workflow, it
recovers tasks based on the recovery strategy:

• Restart task. When the Integration Service recovers a workflow, it restarts each recoverable task that is
configured with a restart strategy. You can configure Session and Command tasks with a restart recovery
strategy. All other tasks have a restart recovery strategy by default.

• Fail task and continue workflow. When the Integration Service recovers a workflow, it does not recover
the task. The task status becomes failed, and the Integration Service continues running the workflow.

Configure a fail recovery strategy if you want to complete the workflow, but you do not want to recover the
task. You can configure Session and Command tasks with the fail task and continue workflow recovery
strategy.

• Resume from the last checkpoint. The Integration Service recovers a stopped, aborted, or terminated
session from the last checkpoint. You can configure a Session task with a resume strategy.

The following table describes the recovery strategy for each task type:

Task Type Recovery Strategy Comments

Assignment Restart task. -

Command Restart task.
Fail task and continue workflow.

Default is fail task and continue workflow.

Control Restart task. -

Decision Restart task. -

156 Chapter 9: Workflow Recovery

Task Type Recovery Strategy Comments

Email Restart task. The Integration Service might send duplicate email.

Event-Raise Restart task. -

Event-Wait Restart task. -

Session Resume from the last checkpoint.
Restart task.
Fail task and continue workflow.

Default is fail task and continue workflow.

Timer Restart task. If you use a relative time from the start time of a task or
workflow, set the timer with the original value less the
passed time.

Worklet n/a The Integration Service does not recover a worklet. You can
recover the session in the worklet by expanding the worklet
in the Workflow Monitor and choosing Recover Task.

Command Task Strategies
When you configure a Command task, you can choose a recovery strategy to restart or fail:

• Fail task and continue workflow. If you want to suspend the workflow on Command task error, you must
configure the task with a fail strategy. If the Command task has more than one command, and you
configure a fail strategy, you need to configure the task to fail if any command fails.

• Restart task. When the Integration Service recovers a workflow, it restarts a Command task that is
configured with a restart strategy.

Configure the recovery strategy on the Properties page of the Command task.

Session Task Strategies
When you configure a session for recovery, you can recover the session when you recover a workflow, or you
can recover the session without running the rest of the workflow.

When you configure a session, you can choose a recovery strategy of fail, restart, or resume:

• Resume from the last checkpoint. The Integration Service saves the session state of operation and
maintains target recovery tables. If the session aborts, stops, or terminates, the Integration Service uses
the saved recovery information to resume the session from the point of interruption.

You cannot configure a session with a resume strategy if it uses mapping variables.

• Restart task. The Integration Service runs the session again when it recovers the workflow. When you
recover with restart task, you might need to remove the partially loaded data in the target or design a
mapping to skip the duplicate rows.

• Fail task and continue workflow. When the Integration Service recovers a workflow, it does not recover
the session. The session status becomes failed, and the Integration Service continues running the
workflow.

Configure the recovery strategy on the Properties page of the Session task.

Configuring Task Recovery 157

Automatically Recovering Terminated Tasks
When you have the high availability option, you can configure automatic recovery of terminated tasks. When
you enable automatic task recovery, the Integration Service recovers terminated Session and Command
tasks without user intervention if the workflow is still running. You configure the number of times the
Integration Service attempts to recover the task. Enable automatic task recovery in the workflow properties.

Resuming Sessions
When you configure session recovery to resume from the last checkpoint, the Integration Service creates
checkpoints in $PMStorageDir to determine where to start processing session recovery. When the Integration
Service resumes a session, it restores the session state of operation, including the state of each source,
target, and transformation. The Integration Service determines how much of the source data it needs to
process.

When the Integration Service resumes a session, the recovery session must produce the same data as the
original session. The session is not valid if you configure recovery to resume from the last checkpoint, but
the session cannot produce repeatable data.

The Integration Service can recover flat file sources including FTP sources. It can truncate or append to flat
file and FTP targets.

When you recover a session from the last checkpoint, the Integration Service restores the session state of
operation to determine the type of recovery it can perform:

• Incremental. The Integration Service starts processing data at the point of interruption. It does not read or
transform rows that it processed before the interruption. By default, the Integration Service attempts to
perform incremental recovery.

• Full. The Integration Service reads all source rows again and performs all transformation logic if it cannot
perform incremental recovery. The Integration Service begins writing to the target at the last commit
point. If any session component requires full recovery, the Integration Service performs full recovery on
the session.

The following table describes when the Integration Service performs incremental or full recovery, depending
on the session configuration:

Component Incremental Recovery Full Recovery

Commit type The session uses a source-based commit. The
mapping does not contain any transformation
that generates commits.

The session uses a target-based commit or
user-defined commit.

Transformation
Scope

Transformations propagate transactions and
the transformation scope must be Transaction
or Row.

At least one transformation is configured
with the All transformation scope.

File Source A file source supports incremental reads. n/a

FTP Source The FTP server must support the seek operation
to allow incremental reads.

The FTP server does not support the seek
operation.

158 Chapter 9: Workflow Recovery

Component Incremental Recovery Full Recovery

Relational Source A relational source supports incremental reads
when the output is deterministic and repeatable.
If the output is not deterministic and repeatable,
the Integration Service supports incremental
relational source reads by staging SQL results
to a storage file.

n/a

VSAM Source n/a Integration Service performs full recovery.

XML Source n/a Integration Service performs full recovery.

XML Generator
Transformation

An XML Generator transformation must be
configured with Transaction transformation
scope.

n/a

XML Target An XML target must be configured to generate a
new XML document on commit.

n/a

Working with Repeatable Data
When you configure recovery to resume from the last checkpoint, the recovery session must be able to
produce the same data in the same order as the original session.

When you validate a session, the Workflow Manager verifies that the transformations are configured to
produce repeatable and deterministic data. The session is not valid if you configure recovery to resume from
the last checkpoint, but the transformations are not configured for repeatable and deterministic data.

Session data is repeatable when all targets receive repeatable data from the following mapping objects:

• Source. The output data from the source is repeatable between the original run and the recovery run.

• Transformation. The output data from each transformation to the target is repeatable.

Source Repeatability
You can resume a session from the last checkpoint when each source generates the same set of data and
the order of the output is repeatable between runs. Source data is repeatable based on the type of source in
the session.

Relational Source
A relational source might produce data that is not the same or in the same order between workflow runs.
When you configure recovery to resume from the last checkpoint, the Integration Service stores the SQL
result in a cache file to guarantee the output order for recovery.

If you know the SQL result will be the same between workflow runs, you can configure the source qualifier to
indicate that the data is repeatable and deterministic. When the relational source output is deterministic and
the output is always repeatable, the Integration Service does not store the SQL result in a cache file. When
the relational output is not repeatable, the Integration Service can skip creating the cache file if a
transformation in the mapping always produces ordered data.

Working with Repeatable Data 159

SDK Source
If an SDK source produces repeatable data, you can enable Output is Deterministic and Output is Repeatable
in the SDK Source Qualifier transformation.

Flat File Source
A flat file does not change between session and recovery runs. If you change a source file before you recover
a session, the recovery session might produce unexpected results.

Transformation Repeatability
You can configure a session to resume from the last checkpoint when transformations in the session
produce the same data between the session and recovery run. All transformations have properties that
determine if the transformation can produce repeatable data. A transformation can produce the same data
between a session and recovery run if the output is deterministic and the output is repeatable.

Warning: If you configure a transformation as repeatable and deterministic, it is your responsibility to ensure
that the data is repeatable. If you try to recover a session with transformations that do not generate
repeatable and deterministic data, the recovery process can result in corrupted data.

Output is Deterministic
A transformation generates deterministic output when it always creates the same output data from the same
input data.

Output is Repeatable
A transformation generates repeatable data when it generates rows in the same order between session runs.
Transformations produce repeatable data based on the transformation type, the transformation
configuration, or the mapping configuration.

Transformations produce repeatable data in the following circumstances:

• Always. The order of the output data is consistent between session runs even if the order of the input
data is inconsistent between session runs.

• Based on input order. The transformation produces repeatable data between session runs when the order
of the input data from all input groups is consistent between session runs. If the input data from any input
group is not ordered, then the output is not ordered.

When a transformation generates repeatable data based on input order, during session validation, the
Workflow Manager validates the mapping to determine if the transformation can produce repeatable data.
For example, an Expression transformation produces repeatable data only if it receives repeatable data.

• Never. The order of the output data is inconsistent between session runs.

Configuring a Mapping for Recovery
You can configure a mapping to enable transformations in the session to produce the same data between the
session and recovery run. When a mapping contains a transformation that never produces repeatable data,
you can add a transformation that always produces repeatable data immediately after it.

For example, you connect a transformation that never produces repeatable data directly to a transformation
that produces repeatable data based on input order. You cannot configure recovery to resume from the last
checkpoint unless the data is repeatable. To enable the session for recovery, you can add a transformation
that always produces repeatable data after the transformation that never produces repeatable data.

160 Chapter 9: Workflow Recovery

The following figure shows a mapping that you cannot recover with resume from the last checkpoint:

The mapping contains two Source Qualifier transformations that produce repeatable data. The mapping
contains a Union and Custom transformation that never produce repeatable data. The Lookup transformation
produces repeatable data when it receives repeatable data. Therefore, the target does not receive repeatable
data and you cannot configure the session to resume recovery.

You can modify the mapping to enable resume recovery. Add a Sorter transformation configured for distinct
output rows immediately after the transformations that never output repeatable data. Add the Sorter
transformation after the Custom transformation.

The following figure shows the mapping with a Sorter transformation connected to the Custom
transformation:

The Lookup transformation produces repeatable data because it receives repeatable data from the Sorter
transformation.

The following table describes when transformations produce repeatable data:

Transformation Repeatable Data

Aggregator Always.

Application Source Qualifier Based on input order.

Custom Based on input order. Configure the property according to the transformation
procedure behavior.

Data Masking Based on input order. Configure the property according to the transformation
procedure behavior. To produce repeatable data, configure repeatable masking
or key masking for each port.

Expression Based on input order.

External Procedure Based on input order. Configure the property according to the transformation
procedure behavior.

Filter Based on input order.

Working with Repeatable Data 161

Transformation Repeatable Data

HTTP Based on input order. Configure the property according to the transformation
procedure behavior.

Joiner Based on input order.

Java Based on input order. Configure the property according to the transformation
procedure behavior.

Lookup, dynamic Always. The lookup source must be the same as a target in the session.

Lookup, static Based on input order.

MQ Source Qualifier Always.

Normalizer, pipeline Based on input order.

Normalizer, VSAM Always. The normalizer generates source data in the form of unique primary
keys. When you resume a session the session might generate different key
values than if it completed successfully.

Rank Always.

Router Based on input order.

Sequence Generator Always. The Integration Service stores the current value to the repository.

Sorter, configured for distinct
output rows

Always.

Sorter, not configured for distinct
output rows

Based on input order.

Source Qualifier, flat file Always.

Source Qualifier, relational Based on input order. Configure the transformation according to the source
data. The Integration Service stages the data if the data is not repeatable.

SQL Transformation Based on input order. Configure the transformation according to the source
data.

Stored Procedure Based on input order. Configure the property according to the transformation
procedure behavior.

Transaction Control Based on input order.

Union Never.

Unstructured Data Based on input order. Configure the property according to the transformation
procedure behavior.

Update Strategy Based on input order.

XML Generator Always.

162 Chapter 9: Workflow Recovery

Transformation Repeatable Data

XML Parser Based on input order. Configure the transformation according to the source
data.

XML Source Qualifier Always.

You can configure the Output is Repeatable and Output is Deterministic properties for the following
transformations, or you can add a transformation that produces repeatable data immediately after these
transformations:

• Application Source Qualifier

• Custom

• External Procedure

• Source Qualifier, relational

• Stored Procedure

Steps to Recover Workflows and Tasks
You can recover a workflow if you configure the workflow for recovery. You can recover a session when you
configure a session recovery strategy. When you configure a session recovery strategy, you do not have to
enable workflow recovery to recover a session.

You can use one of the following methods to recover a workflow or task:

• Recover a workflow. Continue processing the workflow from the point of interruption.

• Recover a session. Recover a session but not the rest of the workflow.

• Recover a workflow from a session. Recover a session and continue processing a workflow.

If the Integration Service uses operating system profiles, recover the session or workflow using the same
operating system profile that the Integration Service used to run the session or workflow.

If you want to restart a workflow or task without recovery, you can restart the workflow or task in cold start
mode. Recovery behavior for real-time sessions varies depending on the real-time source.

Recovering a Workflow
When you recover a workflow, the Integration Service restores the workflow state of operation and continues
processing from the point of failure. The Integration Service uses the task recovery strategy to recover the
task that failed.

You configure a workflow for recovery by configuring the workflow to suspend when a task fails, or by
enabling recovery in the Workflow Properties.

You can recover a workflow using the Workflow Manager, the Workflow Monitor, or pmcmd. The Integration
Service appends log events to the existing session log when you recover the workflow.

Steps to Recover Workflows and Tasks 163

Recovering a Workflow Using the Workflow Monitor
To recover a workflow using the Workflow Monitor:

1. Select the workflow in the Workflow Monitor.

2. Right-click the workflow and choose Recover.

The Integration Service recovers the failed tasks and runs the rest of the workflow.

You can also use the pmcmd recoverworkflow command to recover a workflow.

Recovering a Session
You can recover a failed, terminated, aborted, or stopped session without recovering the workflow. If the
workflow completed, you can recover the session without running the rest of the workflow. You must
configure a recovery strategy of restart or resume from the last checkpoint to recover a session. The
Integration Service recovers the session according to the task recovery strategy. You do not need to suspend
the workflow or enable workflow recovery to recover a session. The Integration Service creates another
session log when you recover a session.

To recover a session from the Workflow Monitor:

1. Double-click the workflow in the Workflow Monitor to expand it and display the task.

2. Right-click the session and choose Recover Task.

The Integration Service recovers the failed session according to the recovery strategy.

You can also use the pmcmd starttask with the -recover option to recover a session.

Recovering a Workflow From a Session
If a session stops, aborts, or terminates and the workflow does not complete, you can recover the workflow
from a session if you configured a session recovery strategy. When you recover the session, the Integration
Service uses the recovery strategy to recover the session and continue the workflow. You can recover a
session even if you do not suspend the workflow or enable workflow recovery. The Integration Service
creates another session log when you recover a workflow from a session.

To recover a workflow from a session in the Workflow Monitor:

1. Double-click the workflow in the Workflow Monitor to expand it and display the session.

2. Right-click the session and choose Restart Workflow by Recovering this Task.

The Integration Service recovers the failed session according to the recovery strategy.

You can use the pmcmd startworkflow with the -recover option to recover a workflow from a session.

Note: To recover a session within a worklet, expand the worklet and then choose to recover the task.

Rules and Guidelines for Session Recovery
Use the following rules and guidelines when recovering sessions:

• The Integration Service creates a new session log when it runs a recovery session.

• A session reports performance statistics for the last successful run.

164 Chapter 9: Workflow Recovery

• You can recover a session containing a transformation that uses the random number generator (RAND)
function if you provide a seed parameter.

• During session recovery, the PowerCenter Integration Service resets mapping variables to the start value.

Configuring Recovery to Resume from the Last Checkpoint
Use the following rules and guidelines when configuring recovery to resume from last checkpoint:

• You must use pass-through partitioning for each transformation.

• You cannot configure recovery to resume from the last checkpoint for a session that runs on a grid.

• When you configure a session for full pushdown optimization, the Integration Service runs the session on
the database. As a result, it cannot perform incremental recovery if the session fails. When you perform
recovery for sessions that contain SQL overrides, the Integration Service must drop and recreate views.

• When you modify a workflow or session between the interrupted run and the recovery run, you might get
unexpected results. The Integration Service does not prevent recovery for a modified workflow. The
recovery workflow or session log displays a message when the workflow or the task is modified since last
run.

• The pre-session command and pre-SQL commands run only once when you resume a session from the
last checkpoint. If a pre- or post- command or SQL command fails, the Integration Service runs the
command again during recovery. Design the commands so you can rerun them.

• You cannot configure a session to resume if it writes to a relational target in bulk mode.

Unrecoverable Workflows or Tasks
In some cases, the Integration Service cannot recover a workflow or task. You cannot recover a workflow or
task under the following circumstances:

• You change the number of partitions. If you change the number of partitions after a session fails, the
recovery session fails.

• The interrupted task has a fail recovery strategy. If you configure a Command or Session recovery to fail
and continue the workflow recovery, the task is not recoverable.

• Recovery storage file is missing. The Integration Service fails the recovery session or workflow if the
recovery storage file is missing from $PMStorageDir or if the definition of $PMStorageDir changes
between the original and recovery run.

• Recovery table is empty or missing from the target database. The Integration Service fails a recovery
session under the following circumstances:

- You deleted the table after the Integration Service created it.

- The session enabled for recovery failed immediately after the Integration Service removed the recovery
information from the table.

You might get inconsistent data if you perform recovery under the following circumstances:

• The sources or targets change after the initial session. If you drop or create indexes or edit data in the
source or target tables before recovering a session, the Integration Service may return missing or repeat
rows.

• The source or target code pages change after the initial session failure. If you change the source or
target code page, the Integration Service might return incorrect data. You can perform recovery if the code
pages are two-way compatible with the original code pages.

Rules and Guidelines for Session Recovery 165

C h a p t e r 1 0

Stopping and Aborting
This chapter includes the following topics:

• Stopping and Aborting Overview, 166

• Types of Errors, 167

• Integration Service Handling for Session Failure, 168

• Stopping or Aborting the Workflow, 168

• Steps to Stop or Abort, 169

Stopping and Aborting Overview
You can stop or abort a task, workflow, or worklet at any time.

You can stop or abort a session just as you can stop or abort any task. You can also abort a session by using
the ABORT() function in the mapping logic. Session errors can cause the Integration Service to stop a session
early. You can control the stopping point by setting an error threshold in a session, using the ABORT function
in mappings, or requesting the Integration Service to stop the session. You cannot control the stopping point
when the Integration Service encounters fatal errors, such as loss of connection to the target database.

If a session fails as a result of error, you can recover the workflow to recover the session.

When you stop a workflow, the Integration Service tries to stop all the tasks that are currently running in the
workflow. If the workflow contains a worklet, the Integration Service also tries to stop all the tasks that are
currently running in the worklet. If it cannot stop the workflow, you need to abort the workflow.

The Integration Service can stop the following tasks completely:

• Session

• Command

• Timer

• Event-Wait

• Worklet

When you stop a Command task that contains multiple commands, the Integration Service finishes executing
the current command and does not run the rest of the commands. The Integration Service cannot stop tasks
such as the Email task. For example, if the Integration Service has already started sending an email when you
issue the stop command, the Integration Service finishes sending the email before it stops running the
workflow.

The Integration Service aborts the workflow if the Repository Service process shuts down.

166

Types of Errors
Session errors can be fatal or non-fatal. A non-fatal error is an error that does not force the session to stop
on its first occurrence. A fatal error occurs when the Integration Service cannot access the source, target, or
repository.

Threshold Errors
You can choose to stop a session on a designated number of non-fatal errors. A non-fatal error is an error
that does not force the session to stop on its first occurrence. Establish the error threshold in the session
properties with the Stop on Errors option. When you enable this option, the Integration Service counts non-
fatal errors that occur in the reader, writer, and transformation threads.

The Integration Service maintains an independent error count when reading sources, transforming data, and
writing to targets. The Integration Service counts the following non-fatal errors when you set the Stop on
Errors option in the session properties:

• Reader errors. Errors encountered by the Integration Service while reading the source database or source
files. Reader threshold errors can include alignment errors while running a session in Unicode mode.

• Writer errors. Errors encountered by the Integration Service while writing to the target database or target
files. Writer threshold errors can include key constraint violations, loading nulls into a not null field, and
database trigger responses.

• Transformation errors. Errors encountered by the Integration Service while transforming data.
Transformation threshold errors can include conversion errors, and any condition set up as an ERROR,
such as null input.

When you create multiple partitions in a pipeline, the Integration Service maintains a separate error threshold
for each partition. When the Integration Service reaches the error threshold for any partition, it stops the
session. The writer may continue writing data from one or more partitions, but it does not affect the ability to
perform a successful recovery.

Note: If alignment errors occur in a non line-sequential VSAM file, the Integration Service sets the error
threshold to 1 and stops the session.

Fatal Errors
A fatal error occurs when the Integration Service cannot access the source, target, or repository. This can
include loss of connection or target database errors, such as lack of database space to load data. If the
session uses a Normalizer or Sequence Generator transformation, the Integration Service cannot update the
sequence values in the repository, and a fatal error occurs.

If the session does not use a Normalizer or Sequence Generator transformation, and the Integration Service
loses connection to the repository, the Integration Service does not stop the session. The session completes,
but the Integration Service cannot log session statistics into the repository.

You can stop a session from the Workflow Manager or though pmcmd.

You can abort a session from the Workflow Manager. You can also use the ABORT function in the mapping
logic to abort a session when the Integration Service encounters a designated transformation error.

Types of Errors 167

Integration Service Handling for Session Failure
The Integration Service handles session errors in different ways, depending on the error or event that causes
the session to fail.

The following table describes the Integration Service behavior when a session fails:

Cause for Session Errors Integration Service Behavior

- Error threshold met due to
reader errors

- Stop command using Workflow
Manager or pmcmd

Integration Service performs the following tasks:
- Stops reading.
- Continues processing data.
- Continues writing and committing data to targets.
If the Integration Service cannot finish processing and committing data, you
need to issue the Abort command to stop the session.

Abort command using Workflow
Manager

Integration Service performs the following tasks:
- Stops reading.
- Continues processing data.
- Continues writing and committing data to targets.
If the Integration Service cannot finish processing and committing data within 60
seconds, it kills the DTM process and terminates the session.

- Fatal error from database
- Error threshold met due to

writer errors

Integration Service performs the following tasks:
- Stops reading and writing.
- Rolls back all data not committed to the target database.
If the session stops due to fatal error, the commit or rollback may or may not be
successful.

- Error threshold met due to
transformation errors

- ABORT()
- Invalid evaluation of

transaction control expression

Integration Service performs the following tasks:
- Stops reading.
- Flags the row as an abort row and continues processing data.
- Continues to write to the target database until it hits the abort row.
- Issues commits based on commit intervals.
- Rolls back all data not committed to the target database.

Stopping or Aborting the Workflow
You can specify when and how you want the Integration Service to stop or abort a workflow by using the
Control task in the workflow. After you start a workflow, you can stop or abort it through the Workflow
Monitor or pmcmd. You can issue the stop or abort command at any time during the execution of a workflow.

You can stop or abort a workflow by performing one of the following actions:

• Use a Control task in the workflow.

• Issue a stop or abort command in the Workflow Monitor.

• Issue a stop or abort command in pmcmd.

168 Chapter 10: Stopping and Aborting

Stopping or Aborting a Task
You can stop or abort a task within a workflow from the Workflow Monitor. When you stop or abort a task, the
Integration Service stops processing the task. The Integration Service does not process other tasks in the
path of the stopped or aborted task. The Integration Service continues processing concurrent tasks in the
workflow. If the Integration Service cannot stop the task, you can abort the task.

When you abort a task, the Integration Service kills the process on the task. The Integration Service continues
processing concurrent tasks in the workflow when you abort a task.

You can also stop or abort a worklet. The Integration Service stops and aborts a worklet similar to stopping
and aborting a task. The Integration Service stops the worklet while executing concurrent tasks in the
workflow. You can also stop or abort tasks within a worklet.

Stopping or Aborting a Session Task
If the Integration Service is executing a Session task when you issue the stop command, the Integration
Service stops reading data. It continues processing and writing data and committing data to targets. If the
Integration Service cannot finish processing and committing data, you can issue the abort command.

The Integration Service handles the abort command for the Session task like the stop command, except it
has a timeout period of 60 seconds. If the Integration Service cannot finish processing and committing data
within the timeout period, it kills the DTM process and terminates the session.

Steps to Stop or Abort
You can stop or abort a task, workflow, or worklet in the Workflow Monitor at any time. When you stop a task
in the workflow, the Integration Service stops processing the task and all other tasks in its path. The
Integration Service continues running concurrent tasks. If the Integration Service cannot stop processing the
task, you need to abort the task. When the Integration Service aborts a task, it kills the DTM process and
terminates the task.

Behavior for real-time sessions depends on the real-time source.

To stop or abort workflows, tasks, or worklets in the Workflow Monitor:

1. In the Navigator, select the task, workflow, or worklet you want to stop or abort.

2. Click Tasks > Stop or Tasks > Abort.

The Workflow Monitor displays the status of the stop or abort command in the Output window.

Steps to Stop or Abort 169

C h a p t e r 1 1

Concurrent Workflows
This chapter includes the following topics:

• Concurrent Workflows Overview, 170

• Configuring Unique Workflow Instances, 171

• Configuring Concurrent Workflows of the Same Name, 171

• Using Parameters and Variables, 173

• Steps to Configure Concurrent Workflows, 174

• Starting and Stopping Concurrent Workflows, 174

• Monitoring Concurrent Workflows, 176

• Viewing Session and Workflow Logs, 176

• Rules and Guidelines for Concurrent Workflows, 177

Concurrent Workflows Overview
A concurrent workflow is a workflow that can run as multiple instances concurrently. A workflow instance is
a representation of a workflow. When you configure a concurrent workflow, you enable the Integration
Service to run one instance of the workflow multiple times concurrently, or you define unique instances of the
workflow that run concurrently.

Configure a concurrent workflow with one of the following workflow options:

• Allow concurrent workflows with the same instance name. Configure one workflow instance to run
multiple times concurrently. Each instance has the same source, target, and variables parameters. The
Integration Service identifies each instance by the run ID. The run ID is a number that identifies a workflow
instance that has run.

• Configure unique workflow instances to run concurrently. Define each workflow instance name and
configure a workflow parameter file for the instance. You can define different sources, targets, and
variables in the parameter file.

When you run concurrent workflows, the Workflow Monitor displays each workflow by workflow name and
instance name. If the workflow has no unique instance names, the Workflow Monitor displays the same
workflow name for each concurrent workflow run.

The Integration Service appends either an instance name or a run ID and time stamp to the workflow and
session log names to create unique log files for concurrent workflows.

170

Configuring Unique Workflow Instances
You can configure more than one instance of a workflow and run each instance at the same time. When you
configure a workflow instance, you provide a unique name for the instance and configure a workflow
parameter file for the instance.

Configure workflow instances to run a workflow with different sources and targets. For example, your
organization receives sales data from three divisions. You create a workflow that reads the sales data and
writes it to the database. You configure three instances of the workflow. Each instance has a different
workflow parameter file that defines which sales file to process. You can run all instances of the workflow
concurrently.

When you start the workflow, you can choose which instances to run. When you configure a concurrent
workflow to run with unique instances, you can run the instances concurrently. To run one instance multiple
times concurrently, configure the workflow to run with the same instance name.

Recovering Workflow Instances by Instance Name
You can recover workflow instances from the Workflow Monitor or pmcmd. When you enable a workflow for
recovery, the Integration Service appends the workflow run ID to the recovery storage file name.

When you recover a concurrent workflow, identify the instance that you want to recover. In the Workflow
Monitor right-click the instance to recover. When you recover with pmcmd, enter the instance name
parameter.

Rules and Guidelines for Running Concurrent Instances of the
Same Instance Name

Use the following rules and guidelines when you run concurrent instances of the same instance name:

• The Integration Service overwrites variables between concurrent workflow runs when the variables are the
same for each run.

• You can stop or abort a workflow by run ID from pmcmd.

• You can stop or abort workflow tasks by run ID from pmcmd.

• The Workflow Monitor does not display the run ID for each instance. The run ID appears in the workflow
log, session log, and the Run Properties panel of the Workflow Monitor.

• When you configure a concurrent workflow to run with the same instance name, the log file names always
contain time stamps.

Configuring Concurrent Workflows of the Same
Name

You can enable a workflow to run concurrently without defining unique instance names. You can run more
than one instance of the same workflow name. The PowerCenter Integration Service distinguishes between
each workflow instance by a run identifier number, or run ID. Each workflow run has a unique run ID.
ThePowerCenter Integration Service appends the run ID to the workflow and session log names, recovery file
names, and other temporary file names to create separate files for each workflow.

Configuring Unique Workflow Instances 171

Run concurrent workflows with the same instance name when the workflows read from a real-time source,
such as a message queue or web service. For example, you manage data from multiple project teams. Create
a workflow that reads data from a message queue that determines the source data and targets. You can run
the instance multiple times concurrently and pass different connection parameters to the workflow instances
from the message queue.

Running Concurrent Web Service Workflows
When you run a web service workflow, the Integration Service can run more than one instance of a workflow
to improve performance. When you configure a workflow to run as a web service, you configure the number
of workflow instances to run on a hub and when to start a new workflow instance.

When you enable a workflow as a web service, the Workflow Designer enables the workflow to run
concurrently with the same workflow name. The Web Services Hub determines when to start a new instance
of a web service workflow based on the Maximum Run Count Per Hub and the Service Time property you
configure for the web service.

When the Web Services Hub starts a web service workflow instance, the instance has the same name as the
other workflow instance.

Note: When you enable a workflow as a web service, the Workflow Designer enables the workflow to run
concurrently by default.

Configuring Workflow Instances of the Same Name
When you enable a workflow to run concurrently with the same instance name, you can also configure
workflow instances and parameter files for the workflow. You can start each instance more than one time
concurrently.

For example, if you define a workflow and create two instances, you can start the workflow and run both
instances. You can start the workflow again to run the same instances concurrently.

The Workflow Monitor Task View shows four instances running concurrently:

wf_sales [Instance1]
wf_sales [Instance2]
wf_sales [Instance1]
wf_sales [Instance2]

Recovering Workflow Instances of the Same Name
When you enable the workflow for recovery, the PowerCenter Integration Service appends the run ID to the
workflow recovery storage file. You can recover workflows of the same name through pmcmd. You cannot
recover through the Workflow Monitor. When you recover a concurrent workflow, you must enter the run ID
parameter.

When you recover a concurrent workflow, you must identify which instance to recover. In the Workflow
Monitor right-click the instance to recover. When you recover with pmcmd, you enter the run ID parameter.

Note: You cannot recover a session from the last checkpoint if the workflow updates a relational target.

172 Chapter 11: Concurrent Workflows

Rules and Guidelines for Running Concurrent Instances of the
Same Instance Name

Use the following rules and guidelines when you run concurrent instances of the same instance name:

• The Integration Service overwrites variables between concurrent workflow runs when the variables are the
same for each run.

• You can stop or abort a workflow by run ID from pmcmd.

• You can stop or abort workflow tasks by run ID from pmcmd.

• The Workflow Monitor does not display the run ID for each instance. The run ID appears in the workflow
log, session log, and the Run Properties panel of the Workflow Monitor.

• When you configure a concurrent workflow to run with the same instance name, the log file names always
contain time stamps.

Using Parameters and Variables
To prevent conflicts, configure a parameter file for each workflow instance.

The following table lists the parameters to configure for concurrent workflows:

Parameter Type Parameter Name

Database Connection $DBConnectionName

Source File $InputFileName

Target File $OutputFileName

Reject File $BadFileName

Lookup File $LookupFileName

The Integration Service persists workflow variables by workflow run instance name.

Accessing the Run Instance Name or Run ID
When you enable a workflow to run concurrently with unique instance names, the Integration Service
distinguishes between workflow run instances by the run instance name. You can configure the same run
instance name for more than one workflow because each workflow instance is defined by a combination of
the workflow name and the run instance name. When you enable a workflow to run concurrently with the
same instance name, the Integration Service distinguishes between workflow run instances by the run ID.

The built-in variables $PMWorkflowRunInstanceName and $PMWorkflowRunId return the workflow run
instance name and run ID as string values. These variables are read-only. You can access them in the
workflow or the mapping to retrieve the name or run ID of the workflow instance. You can apply these
variables to expressions, file-watch events, or data. You can also use them to configure unique file names.

For example, create a pre-defined Event-Wait task to delete an indicator file after it appears. Define the file
name with $PMWorkflowRunInstance name. When you run two concurrent workflows with unique instance
names, each workflow Event-Wait task waits for and deletes a different indicator file.

Using Parameters and Variables 173

Note: When you run a workflow that is not enabled to run concurrently, $PMWorkflowRunInstanceName has
no value.

Steps to Configure Concurrent Workflows
You can enable a workflow for concurrent execution when you create or edit the workflow.

To enable a workflow for concurrent execution:

1. In the Workflow Manager, open the Workflow.

2. On the workflow General tab, enable concurrent execution.

The workflow is enabled to run concurrently with the same instance name.

3. To configure different instance names, click Configure Concurrent Execution.

The Configure Concurrent Execution dialog box appears.

4. Choose one of the following options:

• Allow concurrent run only with unique instance name. The Integration Service can run concurrent
workflows if the instance names are unique.

• Allow concurrent run with the same instance name. The Integration Service can run concurrent
workflows with the same name.

5. Optionally, click the Add button to add workflow instance names.

The workflow instance name is not case sensitive. The Workflow Designer validates the characters in
the instance name. You cannot use the following special characters in the instance name:

$. + - = ~ ` ! % ^ & * () [] {} ' \ " ; : / ? , < > \\ | \t \r \n
6. Optionally, enter the path to a workflow parameter file for the instance. To use different sources, targets,

or variables for each workflow instance, configure a parameter file for each instance.

7. Click OK.

Starting and Stopping Concurrent Workflows
You can start concurrent workflows in the Workflow Designer or the Workflow Monitor. You can also start
workflows from pmcmd. To run unique workflow instances choose the instances to run when you start the
workflow.

Starting Workflow Instances from Workflow Designer
You can choose which workflow instances to run when you start a workflow from the Workflow Designer.
Follow these steps to start a workflow that has at least one instance defined.

To start workflow instances from the Workflow Designer:

1. Open the folder containing the workflow.

2. From the Navigator, select the workflow that you want to start.

3. Right-click the workflow and select Start Workflow Advanced.

174 Chapter 11: Concurrent Workflows

4. Choose the workflow run instances to start. By default, all instances are selected. You can clear all the
workflow instances and choose the instances to start.

5. Click OK to start the workflow instances.

The Workflow Monitor displays each concurrent workflow name and instance name.

Starting One Concurrent Workflow
When a concurrent workflow does not have unique instance names or when you do not want to run the
configured instances, you can start a workflow with the Workflow Designer. If you start the concurrent
workflow with the Start Workflow option, the Integration Service runs the workflow with the attributes and
variables you define on the workflow Properties and Variables tabs. The Integration Service does not run any
of the configured workflow instances.

To start one concurrent workflow instance:

1. Open the folder containing the workflow.

2. From the Navigator, select the workflow that you want to start.

3. Right-click the workflow in the Navigator and choose Start Workflow.

The Integration Service runs one instance of the workflow with the attributes from the workflow
Properties and Variables tabs.

Starting Concurrent Workflows from the Command Line
You can start one workflow instance at a time from the command line. The pmcmd startworkflow command
has a parameter for an instance name. When you start a workflow from the command line and you enter an
instance name parameter, the Integration Service runs that instance of the workflow. To run more than one
workflow instance, run the pmcmd startworkflow command multiple times.

If you do not enter an instance name parameter with startworkflow, the Integration Service runs the workflow
with the attributes and variables you define on the workflow Properties and Variables tabs. The Integration
Service does not run any of the configured workflow instances.

Creating Workflow Instances from the Command Line
You can dynamically create an instance when you start the workflow with pmcmd. Enter an instance name
and parameter file name. If the instance name is not configured, the Integration Service generates an
instance. The Integration Service can persist variables for the instance in the repository, but the instance
does not appear on the Concurrent Execution Configuration dialog box for the workflow.

Stopping or Aborting Concurrent Workflows
You can stop or abort a concurrent workflow from the Workflow Monitor or pmcmd. To stop or abort the
workflow from the Workflow Monitor, right-click workflow in the Navigator and select Stop or Abort. The
Workflow Monitor displays the status of the stop or abort command in the Output window.

To stop or abort a concurrent workflow from pmcmd, identify the workflow instance by entering the instance
name or the workflow run ID parameter on the command line. To stop or abort a task in a concurrent
workflow, enter the workflow instance name or run ID of the concurrent workflow that contains the task to
stop. When a concurrent workflow does not have unique instance names, you can find the workflow run ID in
the workflow log or the workflow run properties of the Workflow Monitor.

Starting and Stopping Concurrent Workflows 175

Monitoring Concurrent Workflows
When you run a concurrent workflow, the Workflow Monitor displays each workflow run by workflow name. If
the workflow has a unique instance name, the Workflow Monitor displays the instance name with the
workflow name.

The following figure shows concurrent workflow and instance names in the Workflow Monitor Task view:

When you view concurrent workflows in Gantt Chart View, the Workflow Monitor displays one timeline for
each workflow name or workflow instance name. When the workflow has unique instance names, the
Workflow Monitor displays the instance name for each workflow run, such as RunInstance1 and
RunInstance2. You can scroll the Time Window to view information about specific workflow runs.

Viewing Session and Workflow Logs
The Integration Service names concurrent workflow session and workflow log files based on the way you
configure concurrency:

• Unique instance names. The Integration Service appends the instance name to the log file name.

• Instances of the same name. The Integration Service appends a run ID and time stamp to the log file
name.

The Integration Service writes the run ID and the workflow type to the workflow log. The workflow type
describes if the workflow is a concurrent workflow.

For example:

Workflow SALES_REV started with run id [108], run instance name [WF_CONCURRENT_SALES1],
run type [Concurrent Run with Unique Instance Name].

Each session log also includes an entry that describes the workflow run ID and instance name:

Workflow: [SALES_REV] Run Instance Name: [WF_CONCURRENT_SALES1] Run Id: [108]
Note: If you cannot view all the workflow log messages when the error severity level is at warning, change the
error severity level of the workflow log. Change the log level from warning to info in the advanced properties
of the PowerCenter Integration Service process.

Log Files for Unique Workflow Instances
When you configure a workflow to run concurrently with unique instance names, the Integration Service
creates logs for each instance. Each log file name includes the instance name:

<workflow_name>.<workflow_instance_name>
<session_name>.<workflow_instance_name>

176 Chapter 11: Concurrent Workflows

For example if the workflow log file name is wf_store_sales.log, and the instance name is store1_workflow,
the Integration Service creates the following log file names for the binary workflow log file and the text
workflow log file:

wf_store_sales.log.store1_workflow.bin
wf_store_sales.log.store1_workflow

To avoid overwriting the log files, you can archive the log files or save the log files by time stamp.

Log Files for Workflow Instances of the Same Name
When you configure the workflow to run concurrently with the same instance name, the Integration Service
creates logs for each instance. Each log file name includes a run ID and time stamp by default:

<workflow_name>.<runID>.<timestamp>
<session_name>.<run ID>.<timestamp>

For example if the workflow log file name is wf_store_sales.log, and the run ID is 845, the Integration Service
creates the following log file names for the binary workflow log file and the text workflow log file if workflow
runs on July 12, 2007 at 11:20:45:

wf_store_sales.log.845.20070712112045.bin
wf_store_sales.log.845.20070712112045

When you configure the workflow to run concurrently with the same instance name, and you also define
instance names, the Integration Service appends the instance name and the time stamp to the log file name.
For example:

<workflow_name>.<instance_name>.<run ID>.20070712112045.bin
<session_name>.<instance_name>.<run ID>.20070712112045.bin

The Integration Service writes the instance name and run ID to the workflow log. For example:

Workflow wf_Stores started with run ID[86034], run instance name[Store1_workflow]

Rules and Guidelines for Concurrent Workflows
Use the following rules and guidelines for concurrent workflows:

• You cannot reference workflow run instances in parameter files. To use separate parameters for each
instance, you must configure different parameter files.

• If you use the same cache file name for more than one concurrent workflow instance, each workflow
instance will be valid. However, sessions will fail if conflicts occur writing to the cache.

• You can use pmcmd to restart concurrent workflows by run ID or instance name.

• If you configure multiple instances of a workflow and you schedule the workflow, the Integration Service
runs all instances at the scheduled time. You cannot run instances on separate schedules.

• Configure a worklet to run concurrently on the worklet General tab.

• You must enable a worklet to run concurrently if the parent workflow is enabled to run concurrently.
Otherwise the workflow is invalid.

• You can enable a worklet to run concurrently and place it in two non-concurrent workflows. The
Integration Service can run the two worklets concurrently.

• Two workflows enabled to run concurrently can run the same worklet. One workflow can run two
instances of the same worklet if the worklet has no persisted variables.

• A session in a worklet can run concurrently with a session in another worklet of the same instance name
when the session does not contain persisted variables.

Rules and Guidelines for Concurrent Workflows 177

The following transformations have restrictions with concurrent workflows:

• Aggregator transformation. You cannot use an incremental aggregation in a concurrent workflow. The
session fails.

• Lookup transformation. Use the following rules and guidelines for Lookup transformations in concurrent
workflows:

- You can use static or dynamic lookup cache with concurrent workflows.

- When the cache is non-persistent, the Integration Service adds the workflow run ID as a prefix to the
cache file name.

- When the cache is an unnamed persistent cache, the Integration Service adds the run instance name as
a prefix to the cache file name.

- If the cache is a dynamic, unnamed, persistent cache and the current workflow is configured to allow
concurrent runs with the same instance name, the session fails.

- If the lookup cache name is parameterized, the Integration Service names the cache file with the
parameter value. Pass a different file name for each run instance.

• Sequence Generator transformation. To avoid generating the same set of sequence numbers for
concurrent workflows, configure the number of cached values in the Sequence Generator transformation.

178 Chapter 11: Concurrent Workflows

C h a p t e r 1 2

Grid Processing
This chapter includes the following topics:

• Grid Processing Overview, 179

• Running Workflows on a Grid, 180

• Running Sessions on a Grid, 180

• Working with Partition Groups, 181

• Grid Connectivity and Recovery, 183

• Configuring a Workflow or Session to Run on a Grid, 183

Grid Processing Overview
When a PowerCenter domain contains multiple nodes, you can configure workflows and sessions to run on a
grid. When you run a workflow on a grid, the Integration Service runs a service process on each available
node of the grid to increase performance and scalability. When you run a session on a grid, the Integration
Service distributes session threads to multiple DTM processes on nodes in the grid to increase performance
and scalability.

You create the grid and configure the Integration Service in the Administrator tool. To run a workflow on a
grid, you configure the workflow to run on the Integration Service associated with the grid. To run a session
on a grid, configure the session to run on the grid.

The following image shows the relationship between the workflow and nodes when you run a workflow on a
grid:

179

The Integration Service distributes workflow tasks and session threads based on how you configure the
workflow or session to run:

• Running workflows on a grid. The Integration Service distributes workflows across the nodes in a grid. It
also distributes the Session, Command, and predefined Event-Wait tasks within workflows across the
nodes in a grid.

• Running sessions on a grid. The Integration Service distributes session threads across nodes in a grid.

Note: To run workflows on a grid, you must have the Server grid option. To run sessions on a grid, you must
have the Session on Grid option.

Running Workflows on a Grid
When you run a workflow on a grid, the master service process runs the workflow and all tasks except
Session, Command, and predefined Event-Wait tasks, which it may distribute to other nodes. The master
service process is the Integration Service process that runs the workflow, monitors service processes
running on other nodes, and runs the Load Balancer. The Scheduler runs on the master service process node,
so it uses the date and time for the master service process node to start scheduled workflows.

The Load Balancer is the component of the Integration Service that dispatches Session, Command, and
predefined Event-Wait tasks to the nodes in the grid. The Load Balancer distributes tasks based on node
availability. If the Integration Service is configured to check resources, the Load Balancer also distributes
tasks based on resource availability.

For example, a workflow contains a Session task, a Decision task, and a Command task. You specify a
resource requirement for the Session task. The grid contains four nodes, and Node 4 is unavailable. The
master service process runs the Start and Decision tasks. The Load Balancer distributes the Session and
Command tasks to nodes on the grid based on resource availability and node availability.

The following image shows a workflow distributed to the nodes on a grid:

1. Reader threads run on Node 1 where resources are available.
2. Transformation threads run on Node 2 where resources are available.
3. Writer threads run on Node 3 where resources are available.
4. Node 4 is unavailable, so no threads run on it.

Running Sessions on a Grid
When you run a session on a grid, the master service process runs the workflow and all tasks except Session,
Command, and predefined Event-Wait tasks as it does when you run a workflow on a grid. The Scheduler runs
on the master service process node, so it uses the date and time for the master service process node to start

180 Chapter 12: Grid Processing

scheduled workflows. In addition, the Load Balancer distributes session threads to DTM processes running
on different nodes.

When you run a session on a grid, the Load Balancer distributes session threads based on the following
factors:

• Node availability. The Load Balancer verifies which nodes are currently running, enabled, and available for
task dispatch.

• Resource availability. If the Integration Service is configured to check resources, it identifies nodes that
have resources required by mapping objects in the session.

• Partitioning configuration. The Load Balancer dispatches groups of session threads to separate nodes
based on the partitioning configuration.

You might want to configure a session to run on a grid when the workflow contains a session that takes a
long time to run.

For example, a workflow contains a session with one partition. To balance the load, you configure the
session to run on a grid and configure the Integration Service to check resources. The Load Balancer
distributes the reader, writer, and transformation threads to DTM processes running on the nodes in the grid.
The reader threads require a resource, so the Load Balancer distributes them to a DTM process on the node
where resources are available.

The following image shows session threads distributed to DTM processes running on nodes in a grid:

1. Reader threads run on node where resources are available.
2. Transformation threads run on available node.
3. Writer threads run on available node.
4. Command task runs on available node.

Working with Partition Groups
When you run a session on a grid, the Data Transformation Manager process (DTM) forms groups of session
threads called partition groups. A partition group is a group of reader, writer, or transformation threads that
run in a single DTM process. A partition group might include one or more pipeline stages. A pipeline stage is
the section of a pipeline executed between any two partition points. Some transformations are not
partitionable across a grid. When a transformation is not partitionable across a grid, the DTM creates a single
partition group for the transformation threads and runs those threads on a single node.

Forming Partition Groups Without Resource Requirements
If the session has more than one partition, the DTM forms partition groups based on the partitioning
configuration.

Working with Partition Groups 181

For example, you configure a session with two partitions. The DTM creates partition groups for the threads in
each partition, and the Load Balancer distributes the groups to two nodes. Partition group 1 runs on Node 1,
and partition group 2 runs on Node 2.

The following image shows two partition groups for a session that contains two partitions:

Forming Partition Groups With Resource Requirements
When you specify resource requirements for a mapping object, the DTM process creates partition groups
based on the resources available on a particular node. For example, if the source files for the session are
available on a particular node and you specified a resource requirement for the Source Qualifier
transformation, the DTM process forms partition groups based on this requirement.

To meet the resource requirements of the Source Qualifier transformation, the DTM process creates a
partition group from the reader threads. The Load Balancer distributes the reader threads to the node where
the resource is available.

Note: To cause the Load Balancer to distribute threads to nodes where required resources are available, you
must configure the Integration Service to check resources.

Rules and Guidelines for Creating Partition Groups
The Integration Service uses the following rules and guidelines to create partition groups:

• The Integration Service limits the number of partition groups to the number of nodes in a grid.

• When a transformation is partitionable locally, the DTM process forms one partition group for the
transformation threads, and runs that group in one DTM process. The following transformations are
partitioned locally:

- Custom transformation configured to partition locally

- External Procedure transformation

- Cached Lookup transformation

- Unsorted Joiner transformation

- SDK Reader or Writer transformation configured to partition locally

Working with Caches
The Integration Service creates index and data caches for the Aggregator, Rank, Joiner, Sorter, and Lookup
transformations. When the session contains more than one partition, the transformation threads may be

182 Chapter 12: Grid Processing

distributed to more than one node in the grid. To create a single data and index cache for these
transformation threads, verify that the root directory and cache directory point to the same location for all
nodes in the grid.

When the Integration Service creates a cache for a Lookup transformation in a shared location, it builds a
cache for the first partition group, and subsequent partition groups use this cache. When you do not
configure a shared location for the Lookup transformation cache files, each service process on a separate
node fetches data from the database or source files to create a cache. If the source data changes frequently,
the caches created on separate nodes can be inconsistent.

Related Topics:
• “Session Caches” on page 263

Grid Connectivity and Recovery
When you run a workflow or session on a grid, service processes and DTM processes run on different nodes.
Network failures can cause connectivity loss between processes running on separate nodes. Services may
shut down unexpectedly, or you may disable the Integration Service or service processes while a workflow or
session is running. The Integration Service failover and recovery behavior in these situations depends on the
service process that is disabled, shuts down, or loses connectivity. Recovery behavior also depends on the
following factors:

• High availability option. When you have high availability, workflows fail over to another node if the node or
service shuts down. If you do not have high availability, you can manually restart a workflow on another
node to recover it.

• Recovery strategy. You can configure a workflow to suspend on error. You configure a recovery strategy
for tasks within the workflow. When a workflow suspends, the recovery behavior depends on the recovery
strategy you configure for each task in the workflow.

• Shutdown mode. When you disable an Integration Service or service process, you can specify that the
service completes, aborts, or stops processes running on the service. Behavior differs when you disable
the Integration Service or you disable a service process. Behavior also differs when you disable a master
service process or a worker service process. The Integration Service or service process may also shut
down unexpectedly. In this case, the failover and recovery behavior depend on which service process
shuts down and the configured recovery strategy.

• Running mode. If the workflow runs on a grid, the Integration Service can recover workflows and tasks on
another node. If a session runs on a grid, you cannot configure a resume recovery strategy.

• Operating mode. If the Integration Service runs in safe mode, recovery is disabled for sessions and
workflows.

Note: You cannot configure an Integration Service to fail over in safe mode if it runs on a grid.

Configuring a Workflow or Session to Run on a Grid
Before you can run a session or workflow on a grid, the grid must be assigned to multiple nodes, and the
Integration Service must be configured to run on the grid. You create the grid and assign the Integration
Service in the Administrator tool. You may need to verify these settings with the domain administrator.

Grid Connectivity and Recovery 183

To run a workflow or session on a grid, configure the following properties and settings:

• Workflow properties. On the General tab of the workflow properties, assign an Integration Service to run
the workflow. Verify that the Integration Service is configured to run on a grid.

• Session properties. To run a session on a grid, enable the session to run on a grid in the Config Object tab
of the session properties.

• Resource requirements. You configure resource requirements on the General tab of the Session,
Command, and predefined Event-Wait tasks.

Rules and Guidelines for Configuring a Workflow or Session to Run
on a Grid

Use the following rules and guidelines when you configure a session or workflow to run on a grid:

• To run sessions over the grid, verify that the operating system and bit mode is the same for each node of
the grid. A session might not run on the grid if the nodes run on different operating systems or bit modes.

• If you override a service process variable, ensure that the Integration Service can access input files,
caches, logs, storage and temporary directories, and source and target file directories.

• To ensure that a Session, Command, or predefined Event-Wait task runs on a particular node, configure
the Integration Service to check resources and specify a resource requirement for a the task.

• To ensure that session threads for a mapping object run on a particular node, configure the Integration
Service to check resources and specify a resource requirement for the object.

• When you run a session that creates cache files, configure the root and cache directory to use a shared
location to ensure consistency between cache files.

• Ensure the Integration Service builds the cache in a shared location when you add a partition point at a
Joiner transformation and the transformation is configured for 1:n partitioning. The cache for the Detail
pipeline must be shared.

• Ensure the Integration Service builds the cache in a shared location when you add a partition point at a
Lookup transformation, and the partition type is not hash auto-keys.

• When you run a session that uses dynamic partitioning, and you want to distribute session threads across
all nodes in the grid, configure dynamic partitioning for the session to use the “Based on number of nodes
in the grid” method.

• You cannot run a debug session on a grid.

• You cannot configure a resume recovery strategy for a session that you run on a grid.

• Configure the session to run on a grid when you work with sessions that take a long time to run.

• Configure the workflow to run on a grid when you have multiple concurrent sessions.

• You can run a persistent profile session on a grid, but you cannot run a temporary profile session on a
grid.

• When you use a Sequence Generator transformation, increase the number of cached values to reduce the
communication required between the master and worker DTM processes and the repository.

• To ensure that the Log Viewer can accurately order log events when you run a workflow or session on a
grid, use time synchronization software to ensure that the nodes of a grid use a synchronized date/time.

• If the workflow uses an Email task in a Windows environment, configure the same Microsoft Outlook
profile on each node to ensure the Email task can run.

184 Chapter 12: Grid Processing

C h a p t e r 1 3

Load Balancer
This chapter includes the following topics:

• Load Balancer Overview, 185

• Assigning Service Levels to Workflows, 185

• Assigning Resources to Tasks, 186

Load Balancer Overview
The Load Balancer dispatches tasks to Integration Service processes running on nodes. When you run a
workflow, the Load Balancer dispatches the Session, Command, and predefined Event-Wait tasks within the
workflow. If the Integration Service is configured to check resources, the Load Balancer matches task
requirements with resource availability to identify the best node to run a task. It may dispatch tasks to a
single node or across nodes.

To identify the nodes that can run a task, the Load Balancer matches the resources required by the task with
the resources available on each node. It dispatches tasks in the order it receives them. When the Load
Balancer has more Session and Command tasks to dispatch than the Integration Service can run at the time,
the Load Balancer places the tasks in the dispatch queue. When nodes become available, the Load Balancer
dispatches the waiting tasks from the queue in the order determined by the workflow service level.

You assign resources and service levels using the Workflow Manager. You can perform the following tasks:

• Assign service levels. You assign service levels to workflows. Service levels establish priority among
workflow tasks that are waiting to be dispatched.

• Assign resources. You assign resources to tasks. Session, Command, and predefined Event-Wait tasks
require PowerCenter resources to succeed. If the Integration Service is configured to check resources, the
Load Balancer dispatches these tasks to nodes where the resources are available.

Assigning Service Levels to Workflows
Service levels determine the order in which the Load Balancer dispatches tasks from the dispatch queue.
When multiple tasks are waiting to be dispatched, the Load Balancer dispatches high priority tasks before
low priority tasks. You create service levels and configure the dispatch priorities in the Administrator tool.

You assign service levels to workflows on the General tab of the workflow properties.

185

Assigning Resources to Tasks
PowerCenter resources are the database connections, files, directories, node names, and operating system
types required by a task to make the task succeed. The Load Balancer may use resources to dispatch tasks.
If the Integration Service is not configured to run on a grid or check resources, the Load Balancer ignores
resource requirements. It dispatches all tasks to the master Integration Service process running on the node.

If the Integration Service runs on a grid and is configured to check resources, the Load Balancer uses
resources to dispatch tasks. The Integration Service matches the resources required by tasks in a workflow
with the resources available on each node in the grid to determine which nodes can run the tasks. The Load
Balancer distributes the Session, Command, and predefined Event-Wait tasks to nodes with available
resources. For example, if a session requires a file resource for a reserved words file, the Load Balancer
dispatches the session to nodes that have access to the file. A task fails if the Integration Service cannot
identify a node where the required resource is available.

In the Administrator tool, you define the resources that are available to each node. Resources are either
predefined or user-defined. Predefined resources include connections available to a node, node name, and
operating system type. User-defined resources include file/directory resources and custom resources.

In the task properties, you assign PowerCenter resources to nonreusable tasks that require those resources.
You cannot assign resources to reusable tasks.

The following table lists resource types and the repository objects to which you can assign them:

Resource Type Predefined/
User-Defined

Repository Objects that Use Resources

Custom User-defined Session, Command, and predefined Event-Wait task instances and all mapping
objects within a session.

File/Directory User-defined Session, Command, and predefined Event-Wait task instances, and the
following mapping objects within a session:
- Source qualifiers
- Aggregator transformation
- Custom transformation
- External Procedure transformation
- Joiner transformation
- Lookup transformation
- Sorter transformation
- Custom transformation
- Java transformation
- HTTP transformation
- SQL transformation
- Union transformation
- Targets

Node Name Predefined Session, Command, and predefined Event-Wait task instances and all mapping
objects within a session.

Operating
System Type

Predefined Session, Command, and predefined Event-Wait task instances and all mapping
objects within a session.

186 Chapter 13: Load Balancer

If you try to assign a resource type that does not apply to a repository object, the Workflow Manager displays
the following error message:

The selected resource cannot be applied to this type of object. Please select a
different resource.

The Workflow Manager assigns connection resources. When you use a relational, FTP, or external loader
connection, the Workflow Manager assigns the connection resource to sources, targets, and transformations
in a session instance. You cannot manually assign a connection resource in the Workflow Manager.

To assign resources to a task instance:

1. Open the task properties in the Worklet or Workflow Designer.

If the task is an Event-Wait task, you can assign resources only if the task waits for a predefined event.

2. On the General tab, click Edit.

3. In the Edit Resources dialog box, click the Add button to add a resource.

4. In the Select Resource dialog box, choose an object you want to assign a resource to. The Resources list
shows the resources available to the nodes where the Integration Service runs.

5. Select the resource to assign and click Select.

6. In the Edit Resources dialog box, click OK.

Assigning Resources to Tasks 187

C h a p t e r 1 4

Workflow Variables
This chapter includes the following topics:

• Workflow Variables Overview, 188

• Predefined Workflow Variables, 189

• User-Defined Workflow Variables, 193

• Using Worklet Variables, 197

• Assigning Variable Values in a Worklet, 197

Workflow Variables Overview
You can create and use variables in a workflow to reference values and record information. For example, use
a variable in a Decision task to determine whether the previous task ran properly. If it did, you can run the
next task. If not, you can stop the workflow.

Use the following types of workflow variables:

• Predefined workflow variables. The Workflow Manager provides predefined workflow variables for tasks
within a workflow.

• User-defined workflow variables. You create user-defined workflow variables when you create a
workflow.

Use workflow variables when you configure the following types of tasks:

• Assignment tasks. Use an Assignment task to assign a value to a user-defined workflow variable. For
example, you can increment a user-defined counter variable by setting the variable to its current value plus
1.

• Decision tasks. Decision tasks determine how the Integration Service runs a workflow. For example, use
the Status variable to run a second session only if the first session completes successfully.

• Links. Links connect each workflow task. Use workflow variables in links to create branches in the
workflow. For example, after a Decision task, you can create one link to follow when the decision
condition evaluates to true, and another link to follow when the decision condition evaluates to false.

• Timer tasks. Timer tasks specify when the Integration Service begins to run the next task in the workflow.
Use a user-defined date/time variable to specify the time the Integration Service starts to run the next
task.

Use the Expression Editor to create an expression that uses variables. When you build an expression, you can
select predefined variables on the Predefined tab. You can select user-defined variables on the User-Defined
tab. The Functions tab contains functions that you use with workflow variables. Use the point-and-click
method to enter an expression using a variable.

188

Use the following keywords to write expressions for user-defined and predefined workflow variables:

• AND

• OR

• NOT

• TRUE

• FALSE

• NULL

• SYSDATE

Predefined Workflow Variables
Each workflow contains a set of predefined variables that you use to evaluate workflow and task conditions.
Use the following types of predefined variables:

• Task-specific variables. The Workflow Manager provides a set of task-specific variables for each task in
the workflow. Use task-specific variables in a link condition to control the path the Integration Service
takes when running the workflow. The Workflow Manager lists task-specific variables under the task
name in the Expression Editor.

• Built-in variables. Use built-in variables in a workflow to return run-time or system information such as
folder name, Integration Service Name, system date, or workflow start time. The Workflow Manager lists
built-in variables under the Built-in node in the Expression Editor.

Tip: When you set the error severity level for log files to Tracing in the Integration Service, the workflow
log displays the values of workflow variables. Use this logging level for troubleshooting only.

The following table lists the task-specific workflow variables available in the Workflow Manager:

Task-Specific
Variables

Description Task
Types

Datatype

Condition Evaluation result of decision condition expression.
If the task fails, the Workflow Manager keeps the condition set
to null.
Sample syntax:

$Dec_TaskStatus.Condition = <TRUE | FALSE |
NULL | any integer>

Decision Integer

EndTime Date and time the associated task ended. Precision is to the
second.
Sample syntax:

$s_item_summary.EndTime > TO_DATE('11/10/2004
08:13:25')

All tasks Date/Time

Predefined Workflow Variables 189

Task-Specific
Variables

Description Task
Types

Datatype

ErrorCode Last error code for the associated task. If there is no error, the
Integration Service sets ErrorCode to 0 when the task
completes.
Sample syntax:

$s_item_summary.ErrorCode = 24013
Note: You might use this variable when a task consistently fails
with this final error message.

All tasks Integer

ErrorMsg Last error message for the associated task.
If there is no error, the Integration Service sets ErrorMsg to an
empty string when the task completes.
Sample syntax:

$s_item_summary.ErrorMsg = 'PETL_24013 Session
run completed with failure
Variables of type Nstring can have a maximum length of 600
characters.
Note: You might use this variable when a task consistently fails
with this final error message.

All tasks Nstring

FirstErrorCode Error code for the first error message in the session.
If there is no error, the Integration Service sets FirstErrorCode
to 0 when the session completes.
Sample syntax:

$s_item_summary.FirstErrorCode = 7086

Session Integer

FirstErrorMsg First error message in the session.
If there is no error, the Integration Service sets FirstErrorMsg to
an empty string when the task completes.
Sample syntax:

$s_item_summary.FirstErrorMsg = 'TE_7086
Tscrubber: Debug info… Failed to evalWrapUp'
Variables of type Nstring can have a maximum length of 600
characters.

Session Nstring

PrevTaskStatus Status of the previous task in the workflow that the Integration
Service ran. Statuses include:
- ABORTED
- FAILED
- STOPPED
- SUCCEEDED
Use these key words when writing expressions to evaluate the
status of the previous task.
Sample syntax:

$Dec_TaskStatus.PrevTaskStatus = FAILED

All tasks Integer

190 Chapter 14: Workflow Variables

Task-Specific
Variables

Description Task
Types

Datatype

SrcFailedRows Total number of rows the Integration Service failed to read
from the source.
Sample syntax:

$s_dist_loc.SrcFailedRows = 0

Session Integer

SrcSuccessRows Total number of rows successfully read from the sources.
Sample syntax:

$s_dist_loc.SrcSuccessRows > 2500

Session Integer

StartTime Date and time the associated task started. Precision is to the
second.
Sample syntax:

$s_item_summary.StartTime > TO_DATE('11/10/2004
08:13:25')
Note: SESSSTARTTIME returns the current date and time value
on the node that runs the session after the Integration Service
initializes the session. If a mapping or mapplet uses
SESSSTARTTIME, StartTime and SESSSTARTTIME will have
different values for a session.

All tasks Date/Time

Status Status of the previous task in the workflow. Statuses include:
- ABORTED
- DISABLED
- FAILED
- NOTSTARTED
- STARTED
- STOPPED
- SUCCEEDED
Use these key words when writing expressions to evaluate the
status of the current task.
Sample syntax:

$s_dist_loc.Status = SUCCEEDED

All tasks Integer

TgtFailedRows Total number of rows the Integration Service failed to write to
the target.
Sample syntax:

$s_dist_loc.TgtFailedRows = 0

Session Integer

TgtSuccessRows Total number of rows successfully written to the target
Sample syntax:

$s_dist_loc.TgtSuccessRows > 0

Session Integer

TotalTransErrors Total number of transformation errors.
Sample syntax:

$s_dist_loc.TotalTransErrors = 5

Session Integer

Predefined Workflow Variables 191

All predefined workflow variables except Status have a default value of null. The Integration Service uses the
default value of null when it encounters a predefined variable from a task that has not yet run in the workflow.
Therefore, expressions and link conditions that depend upon tasks not yet run are valid. The default value of
Status is NOTSTARTED.

Using Predefined Workflow Variables in Expressions
When you use a workflow variable in an expression, the Integration Service evaluates the expression and
returns True or False. If the condition evaluates to true, the Integration Service runs the next task. The
Integration Service writes an entry in the workflow log similar to the following message:

INFO : LM_36506 : (1980|1040) Link [Session2 --> Session3]: condition is TRUE for the
expression [$Session2.PrevTaskStatus = SUCCEEDED].

The Expression Editor displays the predefined workflow variables on the Predefined tab. The Workflow
Manager groups task-specific variables by task and lists built-in variables under the Built-in node. To use a
variable in an expression, double-click the variable. The Expression Editor displays task-specific variables in
the Expression field in the following format:

$<TaskName>.<predefinedVariable>

Evaluating Condition in a Workflow
Use Condition in link conditions to evaluate the result of a decision condition expression.

The following figure shows a workflow with link conditions using Condition:

Figure 4. Condition Variable Example

The decision condition expression for the FileExist Decision task is $Check_for_file.Status = SUCCEEDED.
The mapping includes two link conditions: $FileExists.Condition = False triggers the email task and
$FileExists.Condition = True triggers the Command task, Process_the_File.

When you run the workflow, the Integration Service evaluates the link condition and returns the value based
on the decision condition expression of the FileExists Decision task. The Integration Service triggers either
the email task or the command task depending on the Check_for_File task outcome.

Evaluating Task Status in a Workflow
Use Status in link conditions to test the status of the previous task in the workflow.

192 Chapter 14: Workflow Variables

The following figure shows a workflow with link conditions using Status:

Figure 5. Status Variable Example

When you run the workflow, the Integration Service evaluates the link condition, $Session2.Status =
SUCCEEDED, and returns the value based on the status of Session2.

Evaluating Previous Task Status in a Workflow
Use PrevTaskStatus in link conditions to test the status of the previous task in the workflow that the
Integration Service ran.

Use PrevTaskStatus if you disable a task in the workflow. Status and PrevTaskStatus return the same value
unless the condition uses a disabled task.

The following figure shows a workflow with link conditions using PrevTaskStatus:

Figure 6. PrevTaskStatus Variable Example

When you run the workflow, the Integration Service skips Session2 because the session is disabled. When the
Integration Service evaluates the link condition, $Session2.PrevTaskStatus = SUCCEEDED, it returns the value
based on the status of Session1.

Tip: If you do not disable Session2, the Integration Service returns the value based on the status of Session2.
You do not need to change the link condition when you enable and disable Session2.

User-Defined Workflow Variables
You can create variables within a workflow. When you create a variable in a workflow, it is valid only in that
workflow. Use the variable in tasks within that workflow. You can edit and delete user-defined workflow
variables.

Use user-defined variables when you need to make a workflow decision based on criteria you specify. For
example, you create a workflow to load data to an orders database nightly. You also need to load a subset of
this data to headquarters periodically, every tenth time you update the local orders database. Create separate
sessions to update the local database and the one at headquarters.

User-Defined Workflow Variables 193

The following figure shows the workflow:

Figure 7. Workflow Using Workflow Variable

Use a user-defined variable to determine when to run the session that updates the orders database at
headquarters.

To configure user-defined workflow variables, complete the following steps:

1. Create a persistent workflow variable, $$WorkflowCount, to represent the number of times the workflow
has run.

2. Add a Start task and both sessions to the workflow.

3. Place a Decision task after the session that updates the local orders database.

Set up the decision condition to check to see if the number of workflow runs is evenly divisible by 10.
Use the modulus (MOD) function to do this.

4. Create an Assignment task to increment the $$WorkflowCount variable by one.

5. Link the Decision task to the session that updates the database at headquarters when the decision
condition evaluates to true. Link it to the Assignment task when the decision condition evaluates to
false.

When you configure workflow variables using conditions, the session that updates the local database runs
every time the workflow runs. The session that updates the database at headquarters runs every 10th time
the workflow runs.

Workflow Variable Start and Current Values
Conceptually, the Integration Service holds two different values for a workflow variable during a workflow run:

• Start value of a workflow variable

• Current value of a workflow variable

The start value is the value of the variable at the start of the workflow. The start value could be a value
defined in the parameter file for the variable, a value saved in the repository from the previous run of the
workflow, a user-defined initial value for the variable, or the default value based on the variable datatype.

The Integration Service looks for the start value of a variable in the following order:

1. Value in parameter file

2. Value saved in the repository (if the variable is persistent)

3. User-specified default value

4. Datatype default value

194 Chapter 14: Workflow Variables

For example, you create a workflow variable in a workflow and enter a default value, but you do not define a
value for the variable in a parameter file. The first time the Integration Service runs the workflow, it evaluates
the start value of the variable to the user-defined default value.

If you declare the variable as persistent, the Integration Service saves the value of the variable to the
repository at the end of the workflow run. The next time the workflow runs, the Integration Service evaluates
the start value of the variable as the value saved in the repository.

If the variable is non-persistent, the Integration Service does not save the value of the variable. The next time
the workflow runs, the Integration Service evaluates the start value of the variable as the user-specified
default value.

If you want to override the value saved in the repository before running a workflow, you need to define a value
for the variable in a parameter file. When you define a workflow variable in the parameter file, the Integration
Service uses this value instead of the value saved in the repository or the configured initial value for the
variable.

The current value is the value of the variable as the workflow progresses. When a workflow starts, the current
value of a variable is the same as the start value. The value of the variable can change as the workflow
progresses if you create an Assignment task that updates the value of the variable.

If the variable is persistent, the Integration Service saves the current value of the variable to the repository at
the end of a successful workflow run. If the workflow fails to complete, the Integration Service does not
update the value of the variable in the repository.

The Integration Service states the value saved to the repository for each workflow variable in the workflow
log.

Datatype Default Values
If the Integration Service cannot determine the start value of a variable by any other means, it uses a default
value for the variable based on its datatype.

The following table lists the datatype default values for user-defined workflow variables:

Datatype Workflow Manager Default Value

Date/Time 1/1/1753 00:00:00.000000000 A.D.

Double 0

Integer 0

Nstring Empty string

Creating User-Defined Workflow Variables
You can create workflow variables for a workflow in the workflow properties.

To create a workflow variable:

1. In the Workflow Designer, create a new workflow or edit an existing one.

2. Select the Variables tab.

3. Click Add.

User-Defined Workflow Variables 195

4. Enter the information in the following table and click OK:

Field Description

Name Variable name. The correct format is $$VariableName. Workflow variable names are not
case sensitive.
Do not use a single dollar sign ($) for a user-defined workflow variable. The single dollar
sign is reserved for predefined workflow variables.

Datatype Datatype of the variable. You can select from the following datatypes:
- Date/Time

- Double

- Integer

- Nstring

Persistent Whether the variable is persistent. Enable this option if you want the value of the
variable retained from one execution of the workflow to the next.

Default Value Default value of the variable. The Integration Service uses this value for the variable
during sessions if you do not set a value for the variable in the parameter file and there
is no value stored in the repository.
Variables of type Date/Time can have the following formats:
- MM/DD/RR

- MM/DD/YYYY

- MM/DD/RR HH24:MI

- MM/DD/YYYY HH24:MI

- MM/DD/RR HH24:MI:SS

- MM/DD/YYYY HH24:MI:SS

- MM/DD/RR HH24:MI:SS.MS

- MM/DD/YYYY HH24:MI:SS.MS

- MM/DD/RR HH24:MI:SS.US

- MM/DD/YYYY HH24:MI:SS.US

- MM/DD/RR HH24:MI:SS.NS

- MM/DD/YYYY HH24:MI:SS.NS
You can use the following separators: dash (-), slash (/), backslash (\), colon (:),
period (.), and space. The Integration Service ignores extra spaces. You cannot use one-
or three-digit values for year or the “HH12” format for hour.
Variables of type Nstring can have a maximum length of 600 characters.

Is Null Whether the default value of the variable is null. If the default value is null, enable this
option.

Description Description associated with the variable.

5. To validate the default value of the new workflow variable, click the Validate button.

6. Click Apply to save the new workflow variable.

7. Click OK.

196 Chapter 14: Workflow Variables

Using Worklet Variables
Worklet variables are similar to workflow variables. A worklet has the same set of predefined variables as any
task. You can also create user-defined worklet variables. Like user-defined workflow variables, user-defined
worklet variables can be persistent or non-persistent.

Persistent Worklet Variables
User-defined worklet variables can be persistent or non-persistent. To create a persistent worklet variable,
select Persistent when you create the variable. When you create a persistent worklet variable, the worklet
variable retains its value the next time the Integration Service runs the worklet in the parent workflow.

For example, you have a worklet with a persistent variable. Use two instances of the worklet in a workflow to
run the worklet twice. You name the first instance of the worklet Worklet1 and the second instance Worklet2.

When you run the workflow, the persistent worklet variable retains its value from Worklet1 and becomes the
initial value in Worklet2. After the Integration Service runs Worklet2, it retains the value of the persistent
variable in the repository and uses the value the next time you run the workflow.

Worklet variables only persist when you run the same workflow. A worklet variable does not retain its value
when you use instances of the worklet in different workflows.

Overriding the Initial Value
For each worklet instance, you can override the initial value of the worklet variable by assigning a workflow
variable to it.

To override the initial value of a worklet variable:

1. Double-click the worklet instance in the Workflow Designer workspace.

2. On the Variables tab, click the Add button in the pre-worklet variable assignment.

3. Click the open button in the User-Defined Worklet Variables field to select a worklet variable.

4. Click Apply.

The worklet variable in this worklet instance has the selected workflow variable as its initial value.

Rules and Guidelines for Using Worklet Variables
Use the following rules and guidelines when you work with worklet variables:

• You cannot use parent workflow variables in the worklet.

• You can assign the value of a workflow variable to a worklet variable to initialize it.

• You cannot use user-defined worklet variables in the parent workflow.

• You can use predefined worklet variables in the parent workflow, just as you use predefined variables for
other tasks in the workflow.

Assigning Variable Values in a Worklet
You can update the values of variables before or after a worklet runs. This allows you to pass information
from one worklet to another within the same workflow or parent worklet. For example, you have a workflow

Using Worklet Variables 197

that contains two worklets that need to increment the same counter. You can increment the counter in the
first worklet, pass the updated counter value to the second worklet, and increment the counter again in the
second worklet.

You can also pass information from a worklet to a non-reusable session or from a non-reusable session to a
worklet as long as the worklet and session are in the same workflow or parent worklet. You can assign
variables in reusable and non-reusable worklets.

You can update the values of different variables depending on whether you assign them before or after a
worklet runs. You can update the following types of variables before or after a worklet runs:

• Pre-worklet variable assignment. You can update user-defined worklet variables before a worklet runs.
You can assign these variables the values of parent workflow or worklet variables or the values of
mapping variables from other tasks in the workflow or parent worklet.

You can update worklet variables with values from the parent of the worklet. Therefore, if a worklet is in
another worklet within a workflow, you can assign values from the parent worklet variables, but not the
workflow variables.

• Post-worklet variable assignment. You can update parent workflow or worklet variables after the worklet
completes. You can assign these variables the values of user-defined worklet variables.

You assign variables on the Variables tab when you edit a worklet.

Passing Variable Values between Worklets
You can assign variable values in a worklet to pass values from one worklet to any subsequent worklet in the
same workflow or parent worklet. For example, a workflow contains two worklets wklt_CreateCustList and
wklt_UpdateCustOrders. Worklet wklt_UpdateCustOrders needs to use the value of a worklet variable updated
in wklt_CreateCustList.

The following figure shows the workflow:

To pass the worklet variable value from wklt_CreateCustList to wklt_UpdateCustOrders, complete the
following steps:

1. Configure worklet wklt_CreateCustList to use a worklet variable, for example, $$URLString1.

2. Configure worklet wklt_UpdateCustOrders to use a worklet variable, for example, $$URLString2.

3. Configure the workflow to use a workflow variable, for example, $$PassURLString.

4. Configure worklet wklt_CreateCustList to assign the value of worklet variable $$URLString1 to workflow
variable $$PassURLString after the worklet completes.

5. Configure worklet wklt_UpdateCustOrders to assign the value of workflow variable $$PassURLString to
worklet variable $$URLString2 before the worklet starts.

198 Chapter 14: Workflow Variables

Configuring Variable Assignments
Assign variables on the Variables tab when you edit a worklet. Assign values to the following types of
variables before or after a worklet runs:

• Pre-worklet variable assignment. Update user-defined worklet variables with the values of parent
workflow or worklet variables or the values of mapping variables from other tasks in the workflow or
parent worklet that run before this worklet.

• Post-worklet variable assignment. Update parent workflow and worklet variables with the values of user-
defined worklet variables.

To assign variables in a worklet:

1. Edit the worklet for which you want to assign variables.

2. Click the Variables tab.

3. Select the variable assignment type:

• Pre-worklet variable assignment. Assign values to user-defined worklet variables before a worklet
runs.

• Post-worklet variable assignment. Assign values to parent workflow and worklet variables after a
worklet completes.

4. Click the edit button in the variable assignment field.

5. In the pre- or post-worklet variable assignment area, click the add button to add a variable assignment
statement.

6. Click the open button in the User-Defined Worklet Variables and Parent Workflow/Worklet Variables
fields to select the variables whose values you wish to read or assign. For pre-worklet variable
assignment, you may enter parameter and variable names into these fields. The Workflow Manager does
not validate parameter and variable names.

The Workflow Manager assigns values from the right side of the assignment statement to variables on
the left side of the statement. So, if the variable assignment statement is “$$SiteURL_WFVar=$
$SiteURL_WkltVar,” the Workflow Manager assigns the value of $$SiteURL_WkltVar to $$SiteURL_WFVar.

7. Repeat steps 5 to 6 to add more variable assignment statements.

To delete a variable assignment statement, click one of the fields in the assignment statement, and click
the cut button.

8. Click OK.

Assigning Variable Values in a Worklet 199

C h a p t e r 1 5

Parameters and Variables in
Sessions

This chapter includes the following topics:

• Working with Session Parameters, 200

• Mapping Parameters and Variables in Sessions, 205

• Assigning Parameter and Variable Values in a Session, 206

Working with Session Parameters
Session parameters represent values that can change between session runs, such as database connections
or source and target files.

Session parameters are either user-defined or built-in. Use user-defined session parameters in session or
workflow properties and define the values in a parameter file. When you run a session, the Integration Service
matches parameters in the parameter file with the parameters in the session. It uses the value in the
parameter file for the session property value. In the parameter file, folder and session names are case
sensitive.

For example, you can write session logs to a log file. In the session properties, use $PMSessionLogFile as the
session log file name, and set $PMSessionLogFile to TestRun.txt in the parameter file. When you run the
session, the Integration Service creates a session log named TestRun.txt.

User-defined session parameters do not have default values, so you must define them in a parameter file. If
the Integration Service cannot find a value for a user-defined session parameter, it fails the session, takes an
empty string as the default value, or fails to expand the parameter at run time.

You can run a session with different parameter files when you use pmcmd to start a session. The parameter
file you set with pmcmd overrides the parameter file in the session or workflow properties.

Use built-in session parameters to get run-time information such as folder name, service names, or session
run statistics. You can use built-in session parameters in post-session shell commands, SQL commands, and
email messages. You can also use them in input fields in the Designer and Workflow Manager that accept
session parameters. The Integration Service sets the values of built-in session parameters. You cannot
define built-in session parameter values in the parameter file. The Integration Service expands these
parameters when the session runs.

200

The following table describe the user-defined session parameters:

Parameter Type Naming Convention Description

Session Log File $PMSessionLogFile Defines the name of the session log between session
runs.

Number of Partitions $DynamicPartitionCount Defines the number of partitions for a session.

Source File $InputFileName Defines a source file name.
Define the parameter name using the appropriate prefix.

Lookup File $LookupFileName Defines a lookup file name.
Define the parameter name using the appropriate prefix.

Target File $OutputFileNames Defines a target file name.
Define the parameter name using the appropriate prefix.

Reject File $BadFileName Defines a reject file name.
Define the parameter name using the appropriate prefix.

Database Connection $DBConnectionName Defines a relational database connection for a source,
target, lookup, or stored procedure.
Name the parameter using the appropriate prefix.

External Loader
Connection

$LoaderConnectionName Defines external loader connections.
Define the parameter name using the appropriate prefix.

FTP Connection $FTPConnectionName Defines FTP connections.
Define the parameter name using the appropriate prefix.

Queue Connection $QueueConnectionName Defines database connections for message queues.
Define the parameter name using the appropriate prefix.

Source or Target
Application Connection

$AppConnectionName Defines connections to source and target applications.
Define the parameter name using the appropriate prefix.

General Session
Parameter

$ParamName Defines any other session property. For example, you can
use this parameter to define a table owner name, table
name prefix, FTP file or directory name, lookup cache file
name prefix, or email address. You can use this parameter
to define source, lookup, target, and reject file names, but
not the session log file name or database connections.
Define the parameter name using the appropriate prefix.

The following table describes the built-in session parameters:

Parameter Type Naming Convention Description

Folder name $PMFolderName Returns the folder name.

Integration
Service name

$PMIntegrationServiceName Returns the Integration Service name.

Working with Session Parameters 201

Parameter Type Naming Convention Description

Mapping name $PMMappingName Returns the mapping name.

Repository
Service name

$PMRepositoryServiceName Returns the Repository Service name.

Repository user
name

$PMRepositoryUserName Returns the repository user name.

Session name $PMSessionName Returns the session name.

Session run mode $PMSessionRunMode Returns the session run mode (normal or
recovery).

Source number of
affected rows

$PMSourceQualifierName@numAffectedRows Returns the number of rows the
Integration Service successfully read
from the named Source Qualifier.
Define the parameter name using the
appropriate prefix and suffix.

Source number of
applied rows

$PMSourceQualifierName@numAppliedRows Returns the number of rows the
Integration Service successfully read
from the named Source Qualifier.
Define the parameter name using the
appropriate prefix and suffix.

Source number of
rejected rows

$PMSourceQualifierName@numRejectedRows Returns the number of rows the
Integration Service dropped when reading
from the named Source Qualifier.
Define the parameter name using the
appropriate prefix and suffix.

Source table
name

$PMSourceName@TableName Returns the table name for the named
source instance.
Define the parameter name using the
appropriate prefix and suffix.

Target number of
affected rows

$PMTargetName@numAffectedRows Returns the number of rows affected by
the specified operation for the named
target instance.
Define the parameter name using the
appropriate prefix and suffix.

Target number of
applied rows

$PMTargetName@numAppliedRows Returns the number of rows the
Integration Service successfully applied
to the named target instance.
Define the parameter name using the
appropriate prefix and suffix.

Target number of
rejected rows

$PMTargetName@numRejectedRows Returns the number of rows the
Integration Service rejected when writing
to the named target instance.
Define the parameter name using the
appropriate prefix and suffix.

202 Chapter 15: Parameters and Variables in Sessions

Parameter Type Naming Convention Description

Target table name $PMTargetName@TableName Returns the table name for the named
target instance.
Define the parameter name using the
appropriate prefix and suffix.

Workflow name $PMWorkflowName Returns the workflow name.

Workflow run ID $PMWorkflowRunId Returns the workflow run ID.

Workflow run
instance name

$PMWorkflowRunInstanceName Returns the workflow run instance name.

Define parameter names using the appropriate prefix and suffix. For example, for a source instance named
“Customers,” the parameter for source table name is $PMCustomers@TableName. If the Source Qualifier is
named “SQ_Customers,” the parameter for source number of affected rows is
$PMSQ_Customers@numAffectedRows.

Changing the Session Log Name
You can configure a session to write log events to a file. In the session properties, the Session Log File
Directory defaults to the service process variable, $PMSessionLogDir. The Session Log File Name defaults to
$PMSessionLogFile.

In a parameter file, you set $PMSessionLogFile to TestRun.txt. In the Administrator tool, you defined
$PMSessionLogDir as \\server\infa_shared\SessLogs. When the Integration ServiceIntegration Service
runs the session, it creates a session log file named TestRun.txt in the \\server\infa_shared\SessLogs
directory.

Changing the Target File and Directory
Use a target file parameter in the session properties to change the target file and directory for a session. You
can enter a path that includes the directory and file name in the Output Filename field. If you include the
directory in the Output Filename field you must clear the Output File Directory. The Integration Service
concatenates the Output File Directory and the Output Filename to determine the target file location.

For example, a session uses a file parameter to read internal and external weblogs. You want to write the
results of the internal weblog session to one location and the external weblog session to another location.

In the session properties, you name the target file $OutputFileName and clear the Output File Directory field.
In the parameter file, set $OutputFileName to E:/internal_weblogs/November_int.txt to create a target file
for the internal weblog session. After the session completes, you change $OutputFileName to F:/
external_weblogs/November_ex.txt for the external weblog session.

You can create a different parameter file for each target and use pmcmd to start a session with a specific
parameter file. This parameter file overrides the parameter file name in the session properties.

Changing Source Parameters in a File
You can define multiple parameters for a session property in a parameter file and use one of the parameters
in a session. You can change the parameter name in the session properties and run the session again with a
different parameter value.

Working with Session Parameters 203

For example, you create a session parameter named $InputFile_Products in a parameter file. You set the
parameter value to “products.txt.” In the same parameter file, you create another parameter called
$InputFile_Items. You set the parameter value to “items.txt.”

When you set the source file name to $InputFile_Products in the session properties, the Integration Service
reads products.txt. When you change the source file name to $InputFile_Items, the Integration Service reads
items.txt.

Changing Connection Parameters
Use connection parameters to rerun sessions with different sources, targets, lookup tables, or stored
procedures. You create a connection parameter in the session properties of any session. You can reference
any connection in a parameter. Name all connection session parameters with the appropriate prefix, followed
by any alphanumeric and underscore character.

For example, you run a session that reads from two relational sources. You access one source with a
database connection named “Marketing” and the other with a connection named “Sales.” In the session
properties, you create a source database connection parameter named $DBConnection_Source. In the
parameter file, you define $DBConnection_Source as Marketing and run the session. Set
$DBConnection_Source to Sales in the parameter file for the next session run.

If you use a connection parameter to override a connection for a source or target, you can override the
connection attributes in the parameter file. You can override connection attributes when you use a non-
relational connection parameter for a source or target instance. When you define the connection in the
parameter file, the Integration Service searches for specific, user-defined session parameters that define the
connection attributes. For example, you create an FTP connection parameter called
$FTPConnectionMyFTPConn and define it in the parameter file. The Integration Service searches the
parameter file for the following parameters:

• $Param_FTPConnectionMyFTPConn_Remote_Filename

• $Param_FTPConnectionMyFTPConn_Is_Staged

• $Param_FTPConnectionMyFTPConn_Is_Transfer_Mode_ASCII

If you do not define a value for any of these parameters, the Integration Service uses the value defined in the
connection object.

The connection attributes you can override are listed in the following template file:

<PowerCenter Installation Directory>/server/bin/ConnectionParam.prm

Getting Run-Time Information
Use built-in session parameters to get run-time information such as folder name, Integration Service name,
and source and target table name. You can use built-in session parameters in post-session shell commands,
SQL commands, and email messages. You can also use them in input fields in the Designer and Workflow
Manager that accept session parameters.

For example, you want to send a post-session email after session “s_UpdateCustInfo” completes that
includes session run statistics for Source Qualifier “SQ_Customers” and target “T_CustInfo.” Enter the
following text in the body of the email message:

Statistics for session $PMSessionName
Integration service: $PMIntegrationServiceName
Source number of affected rows: $PMSQ_Customers@numAffectedRows
Source number of dropped rows: $PMSQ_Customers@numRejectedRows
Target number of affected rows: $PMT_CustInfo@numAffectedRows
Target number of applied rows: $PMT_CustInfo@numAppliedRows
Target number of rejected rows: $PMT_CustInfo@numRejectedRows

204 Chapter 15: Parameters and Variables in Sessions

You can also use email variables to get the session name, Integration Service name, number of rows loaded,
and number of rows rejected.

Rules and Guidelines for Creating File Parameters and Database
Connection Parameters

Session file parameters and database connection parameters provide the flexibility to run sessions against
different files and databases.

Use the following rules and guidelines when you create file parameters:

• When you define the parameter file as a resource for a node, verify the Integration Service runs the
session on a node that can access the parameter file. Define the resource for the node, configure the
Integration Service to check resources, and edit the session to require the resource.

• When you create a file parameter, use alphanumeric and underscore characters. For example, to name a
source file parameter, use $InputFileName, such as $InputFile_Data.

• All session file parameters of a particular type must have distinct names. For example, if you create two
source file parameters, you might name them $SourceFileAccts and $SourceFilePrices.

• When you define the parameter in the file, you can reference any directory local to the Integration Service.

• Use a parameter to define the location of a file. Clear the entry in the session properties that define the
file location. Enter the full path of the file in the parameter file.

• You can change the parameter value in the parameter file between session runs, or you can create
multiple parameter files. If you use multiple parameter files, use the pmcmd Startworkflow command with
the -paramfile or -localparamfile options to specify which parameter file to use.

Use the following rules and guidelines when you create database connection parameters:

• You can change connections for relational sources, targets, lookups, and stored procedures.

• When you define the parameter, you can reference any database connection in the repository.

• Use the same $DBConnection parameter for more than one connection in a session.

Mapping Parameters and Variables in Sessions
Use mapping parameters in the session properties to alter certain mapping attributes. For example, use a
mapping parameter in a transformation override to override a filter or user-defined join in a Source Qualifier
transformation.

If you use mapping variables in a session, you can clear any of the variable values saved in the repository by
editing the session. When you clear the variable values, the Integration Service uses the values in the
parameter file the next time you run a session. If the session does not use a parameter file, the Integration
Service uses the values assigned in the pre-session variable assignment. If there are no assigned values, the
Integration Service uses the initial values defined in the mapping.

To view or delete values for mapping variables saved in the repository:

1. In the Navigator window of the Workflow Manager, right-click the Session task and select View
Persistent Values.

You can see the variable name and value.

2. Click Delete Values to delete existing variable values.

3. Click OK.

Mapping Parameters and Variables in Sessions 205

Assigning Parameter and Variable Values in a
Session

You can update the values of certain parameters and variables before or after a non-reusable session runs.
This allows you to pass information from one session to another within the same workflow or worklet. For
example, you have a workflow that contains two sessions that need to increment the same counter. You can
increment the counter in the first session, pass the updated counter value to the second session, and
increment the counter again in the second session. Or, you have a worklet that contains sessions that access
the same web site. You can configure the first session to get a session ID from the web site and then pass
the session ID value to subsequent sessions.

You can also pass information from a session to a worklet or from a worklet to a session as long as the
session and worklet are in the same workflow or parent worklet.

Note: You cannot assign parameters and variables in reusable sessions.

The types of parameters and variables you can update depend on whether you assign them before or after a
session runs. You can update the following types of parameters and variables before or after a session runs:

• Pre-session variable assignment. You can update mapping parameters, mapping variables, and session
parameters before a session runs. You can assign these parameters and variables the values of workflow
or worklet variables in the parent workflow or worklet. Therefore, if a session is in a worklet within a
workflow, you can assign values from the worklet variables, but not the workflow variables.

You cannot update mapplet variables in the pre-session variable assignment.

• Post-session on success variable assignment. You can update workflow or worklet variables in the
parent workflow or worklet after the session completes successfully. You can assign these variables the
values of mapping parameters and variables.

• Post-session on failure variable assignment. You can update workflow or worklet variables in the parent
workflow or worklet when the session fails. You can assign these variables the values of mapping
parameters and variables.

You assign parameters and variables on the Components tab of the session properties.

Passing Parameter and Variable Values between Sessions
You can assign parameter and variable values in a session to pass values from one session to any
subsequent session in the same workflow or worklet. For example, a workflow contains two sessions
s_NewCustomers and s_MergeCustomers. Session s_MergeCustomers needs to use the value of a mapping
variable updated in s_NewCustomers.

The following figure shows the workflow:

To pass the mapping variable value from s_NewCustomers to s_MergeCustomers, complete the following
steps:

1. Configure the mapping associated with session s_NewCustomers to use a mapping variable, for
example, $$Count1.

2. Configure the mapping associated with session s_MergeCustomers to use a mapping variable, for
example, $$Count2.

206 Chapter 15: Parameters and Variables in Sessions

3. Configure the workflow to use a user-defined workflow variable, for example, $$PassCountValue.

4. Configure session s_NewCustomers to assign the value of mapping variable $$Count1 to workflow
variable $$PassCountValue after the session completes successfully.

5. Configure session s_MergeCustomers to assign the value of workflow variable $$PassCountValue to
mapping variable $$Count2 before the session starts.

Configuring Variable Assignments
Assign variables on the Variables tab when you edit a worklet. Assign values to the following types of
variables before or after a worklet runs:

• Pre-worklet variable assignment. Update user-defined worklet variables with the values of parent
workflow or worklet variables or the values of mapping variables from other tasks in the workflow or
parent worklet that run before this worklet.

• Post-worklet variable assignment. Update parent workflow and worklet variables with the values of user-
defined worklet variables.

To assign variables in a worklet:

1. Edit the worklet for which you want to assign variables.

2. Click the Variables tab.

3. Select the variable assignment type:

• Pre-worklet variable assignment. Assign values to user-defined worklet variables before a worklet
runs.

• Post-worklet variable assignment. Assign values to parent workflow and worklet variables after a
worklet completes.

4. Click the edit button in the variable assignment field.

5. In the pre- or post-worklet variable assignment area, click the add button to add a variable assignment
statement.

6. Click the open button in the User-Defined Worklet Variables and Parent Workflow/Worklet Variables
fields to select the variables whose values you wish to read or assign. For pre-worklet variable
assignment, you may enter parameter and variable names into these fields. The Workflow Manager does
not validate parameter and variable names.

The Workflow Manager assigns values from the right side of the assignment statement to variables on
the left side of the statement. So, if the variable assignment statement is “$$SiteURL_WFVar=$
$SiteURL_WkltVar,” the Workflow Manager assigns the value of $$SiteURL_WkltVar to $$SiteURL_WFVar.

7. Repeat steps 5 to 6 to add more variable assignment statements.

To delete a variable assignment statement, click one of the fields in the assignment statement, and click
the cut button.

8. Click OK.

Assigning Parameter and Variable Values in a Session 207

C h a p t e r 1 6

Parameter Files
This chapter includes the following topics:

• Parameter Files Overview, 208

• Parameter and Variable Types, 209

• Where to Use Parameters and Variables, 210

• Overriding Connection Attributes in the Parameter File, 217

• Parameter File Structure, 218

• Configuring the Parameter File Name and Location, 221

• Parameter File Example, 223

• Guidelines for Creating Parameter Files, 224

• Troubleshooting Parameters and Parameter Files, 225

• Tips for Parameters and Parameter Files, 226

Parameter Files Overview
A parameter file is a list of parameters and variables and their associated values. These values define
properties for a service, service process, workflow, worklet, or session. The Integration Service applies these
values when you run a workflow or session that uses the parameter file.

Parameter files provide you with the flexibility to change parameter and variable values each time you run a
session or workflow. You can include information for multiple services, service processes, workflows,
worklets, and sessions in a single parameter file. You can also create multiple parameter files and use a
different file each time you run a session or workflow. The Integration Service reads the parameter file at the
start of the workflow or session to determine the start values for the parameters and variables defined in the
file. You can create a parameter file using a text editor such as WordPad or Notepad.

Consider the following information when you use parameter files:

• Types of parameters and variables. You can define different types of parameters and variables in a
parameter file. These include service variables, service process variables, workflow and worklet variables,
session parameters, and mapping parameters and variables.

• Properties you can set in parameter files. Use parameters and variables to define many properties in the
Designer and Workflow Manager. For example, you can enter a session parameter as the update override
for a relational target instance, and set this parameter to the UPDATE statement in the parameter file. The
Integration Service expands the parameter when the session runs.

208

• Parameter file structure. Assign a value for a parameter or variable in the parameter file by entering the
parameter or variable name and value on a single line in the form name=value. Groups of parameters and
variables must be preceded by a heading that identifies the service, service process, workflow, worklet, or
session to which the parameters or variables apply.

• Parameter file location. Specify the parameter file to use for a workflow or session. You can enter the
parameter file name and directory in the workflow or session properties or in the pmcmd command line.

Parameter and Variable Types
A parameter file can contain different types of parameters and variables. When you run a session or workflow
that uses a parameter file, the Integration Service reads the parameter file and expands the parameters and
variables defined in the file.

You can define the following types of parameter and variable in a parameter file:

• Service variables. Define general properties for the Integration Service such as email addresses, log file
counts, and error thresholds. $PMSuccessEmailUser, $PMSessionLogCount, and
$PMSessionErrorThreshold are examples of service variables. The service variable values you define in
the parameter file override the values that are set in the Administrator tool.

• Service process variables. Define the directories for Integration Service files for each Integration Service
process. $PMRootDir, $PMSessionLogDir, and $PMBadFileDir are examples of service process variables.
The service process variable values you define in the parameter file override the values that are set in the
Administrator tool. If the Integration Service uses operating system profiles, the operating system user
specified in the operating system profile must have access to the directories you define for the service
process variables.

• Workflow variables. Evaluate task conditions and record information in a workflow. For example, you can
use a workflow variable in a Decision task to determine whether the previous task ran properly. In a
workflow, $TaskName.PrevTaskStatus is a predefined workflow variable and $$VariableName is a user-
defined workflow variable.

• Worklet variables. Evaluate task conditions and record information in a worklet. You can use predefined
worklet variables in a parent workflow, but you cannot use workflow variables from the parent workflow in
a worklet. In a worklet, $TaskName.PrevTaskStatus is a predefined worklet variable and $$VariableName
is a user-defined worklet variable.

• Session parameters. Define values that can change from session to session, such as database
connections or file names. $PMSessionLogFile and $ParamName are user-defined session parameters.

• Mapping parameters. Define values that remain constant throughout a session, such as state sales tax
rates. When declared in a mapping or mapplet, $$ParameterName is a user-defined mapping parameter.

• Mapping variables. Define values that can change during a session. The Integration Service saves the
value of a mapping variable to the repository at the end of each successful session run and uses that
value the next time you run the session. When declared in a mapping or mapplet, $$VariableName is a
mapping variable.

You cannot define the following types of variables in a parameter file:

• $Source and $Target connection variables. Define the database location for a relational source, relational
target, lookup table, or stored procedure.

• Email variables. Define session information in an email message such as the number of rows loaded, the
session completion time, and read and write statistics.

Parameter and Variable Types 209

• Local variables. Temporarily store data in variable ports in Aggregator, Expression, and Rank
transformations.

• Built-in variables. Variables that return run-time or system information, such as Integration Service name
or system date.

• Transaction control variables. Define conditions to commit or rollback transactions during the processing
of database rows.

• ABAP program variables. Represent SAP structures, fields in SAP structures, or values in the ABAP
program.

Where to Use Parameters and Variables
You can use parameters and variables to assign values to properties in the Designer and Workflow Manager
and to override some service and service process properties. For example, you can use a parameter to
specify the Lookup cache file name prefix or the default remote directory for an FTP connection.

If the property is a SQL statement or command, you can either use parameters and variables within the
statement or command, or you can enter a parameter or variable in the input field for the property, and set
the parameter or variable to the entire statement or command in the parameter file.

For example, you want to use a parameter or variable in a relational target override. You can enter a
parameter or variable within the UPDATE statement of a relational target override and define the parameter
or variable below the appropriate heading in the parameter file. Or, to define the UPDATE statement in a
parameter file, complete the following steps:

1. In the Designer, edit the target instance, enter session parameter $ParamMyOverride in the Update
Override field, and save the mapping.

2. In the Workflow Manager, configure the workflow or session to use a parameter file.

3. Set $ParamMyOverride to the SQL UPDATE statement below the appropriate heading in the parameter
file.

You can also use a parameter file to override service and service process properties defined in the
Administrator tool. For example, you can override the session log directory, $PMSessionLogDir. To do this,
configure the workflow or session to use a parameter file and set $PMSessionLogDir to the new file path in
the parameter file.

You can specify parameters and variables for the following PowerCenter objects:

• Sources. You can use parameters and variables in input fields related to sources.

• Targets. You can use parameters and variables in input fields related to targets.

• Transformations. You can use parameters and variables in input fields related to transformations.

• Tasks. You can use parameters and variables in input fields related to tasks in the Workflow Manager.

• Sessions. You can use parameters and variables in input fields related to Session tasks.

• Workflows. You can use parameters and variables in input fields related to workflows.

• Connections. You can use parameters and variables in input fields related to connection objects.

210 Chapter 16: Parameter Files

The following table lists the input fields related to sources where you can specify parameters and variables:

Source Type Field Valid Parameter and Variable Types

Relational Source Table Name Workflow variables, worklet variables, session
parameters, mapping parameters, and mapping
variables.
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

PeopleSoft SetID,
Effective date,
Tree name,
Set control value,
Extract date

All.

TIBCO TIB/Adapter SDK repository URL Service and service process variables.

Web Service Endpoint URL Mapping parameters and variables
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

The following table lists the input fields related to targets where you can specify parameters and variables:

Target Type Field Valid Parameter and Variable Types

Relational Update override
Pre- and post-session SQL
commands

All.
You can specify parameters and variables in these
fields when you override them in the session
properties (Mapping tab) in the Workflow Manager.

Relational Target Table Name Workflow variables, worklet variables, session
parameters, mapping parameters, and mapping
variables.
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

XML Cache directory Service and service process variables.
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

TIBCO TIB/Adapter SDK repository URL Service and service process variables.

Web Service Endpoint URL Mapping parameters and variables.
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

Where to Use Parameters and Variables 211

The following table lists the input fields related to transformations where you can specify parameters and
variables:

Transformation Type Field Valid Parameter and Variable Types

Transformations that
allow you to use the
Expression Editor

Transformation expressions Mapping parameters and variables.

Aggregator, Joiner,
Lookup, Rank,
XML Generator

Cache directory Service and service process variables.
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

Aggregator, Joiner,
Lookup, Rank, Sorter

Cache sizes Mapping parameters.
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

Custom,
External Procedure,
HTTP, XML Parser

Runtime location Service and service process variables.
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

Data Masking Seed Mapping parameters and variables.

External Procedure Initialization properties Service and service process variables.

HTTP Base URL Mapping parameters and variables.

Lookup SQL override
Cache file name prefix

All.
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

Lookup Connection information Session parameters $DBConnectionName and
$AppConnectionName, connection variables
$Source and $Target, mapping parameters and
variables.
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

Sorter Default work directory Service and service process variables.
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

Source Qualifier
(relational source)

SQL query
User-defined join
Source filter condition
Pre- and post-session SQL
commands

All.
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

212 Chapter 16: Parameter Files

Transformation Type Field Valid Parameter and Variable Types

SQL Script file name Mapping parameters and variables.
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

Stored Procedure Call text (unconnected Stored
Procedure)

All.
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

Stored Procedure Connection information Session parameter $DBConnectionName,
connection variables $Source and $Target.
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

Web Services Consumer Endpoint URL Mapping parameters and variables.
You can specify parameters and variables in this
field when you override it in the session properties
(Mapping tab) in the Workflow Manager.

The following table lists the input fields related to Workflow Manager tasks where you can specify
parameters and variables:

Task Type Field Valid Parameter and Variable Types

Assignment task Assignment (user defined variables
and expression)

Workflow and worklet variables

Command task Command (name and command) Service, service process, workflow, and worklet
variables

Command task Pre- and post-session shell
commands

All

Decision task Decision name (condition to be
evaluated)

Workflow and worklet variables

Email task Email user name, subject, and text Service, service process, workflow, and worklet
variables

Event-Wait task File watch name (predefined events) Service, service process, workflow, and worklet
variables

Link Link condition Service, service process, workflow, and worklet
variables

Session See the table on page 214.

Timer task Absolute time: Workflow date-time
variable to calculate the wait

Workflow and worklet variables

Where to Use Parameters and Variables 213

The following table lists the input fields related to sessions where you can specify parameters and variables:

Tab Field Valid Parameter and Variable Types

Properties tab Session log file name Built-in session parameter $PMSessionLogFile.

Properties tab Session log file directory Service and service process variables.

Properties tab Parameter file name Workflow and worklet variables.

Properties tab $Source and $Target connection
values

Session parameters $DBConnectionName and
$AppConnectionName, connection variables
$Source and $Target.

Properties tab Pushdown optimization session
property

Mapping parameter $$PushdownConfig.

Config Object tab Session log count Service variable $PMSessionLogCount.

Config Object tab Session error threshold Service variable $PMSessionErrorThreshold.

Config Object tab Table name prefix for relational
error logs

All.

Config Object tab Error log file name and directory Service variables, service process variables,
workflow variables, worklet variables, session
parameters.

Config Object tab Number of partitions for dynamic
partitioning

Built-in session parameter
$DynamicPartitionCount.

Mapping tab Transformation properties that
override properties you configure in
a mapping

Varies according to property. For more information,
see the table on page 211.

Mapping tab Relational connection values Session parameter $DBConnectionName,
connection variables $Source and $Target.

Mapping tab Queue connection values Session parameter $QueueConnectionName.
You can override connection attributes for this
connection type in the parameter file.

Mapping tab FTP connection values Session parameter $FTPConnectionName.
You can override connection attributes for this
connection type in the parameter file.

Mapping tab Application connection values Session parameter $AppConnectionName.
You can override connection attributes for this
connection type in the parameter file.

Mapping tab External loader connection values Session parameter $LoaderConnectionName.
You can override connection attributes for this
connection type in the parameter file.

Mapping tab FTP remote file name All.

214 Chapter 16: Parameter Files

Tab Field Valid Parameter and Variable Types

Mapping tab Lookup source file name and
directory

Service variables, service process variables,
workflow variables, worklet variables, session
parameters.

Mapping tab Pre- and post-session SQL
commands (source and target)

All.

Mapping tab Code page for file sources and
targets

Workflow variables, worklet variables, session
parameter $ParamName.

Mapping tab Source input file name and directory Service variables, service process variables,
workflow variables, worklet variables, session
parameters.

Mapping tab Source input file command Service variables, service process variables,
workflow variables, worklet variables, session
parameters.

Mapping tab Table owner name for relational
sources

All.

Mapping tab Target merge file name and
directory

Service variables, service process variables,
workflow variables, worklet variables, session
parameters.

Mapping tab Target merge command Service variables, service process variables,
workflow variables, worklet variables, session
parameters.

Mapping tab Target header and footer
commands

Service variables, service process variables,
workflow variables, worklet variables, session
parameters.

Mapping tab Target output file name and
directory

Service variables, service process variables,
workflow variables, worklet variables, session
parameters.

Mapping tab Target reject file name and directory Service variables, service process variables,
workflow variables, worklet variables, session
parameters.

Mapping tab Target table name prefix All.

Mapping tab Teradata FastExport temporary file Service and service process variables.

Mapping tab Control file content override for
Teradata external loaders

All.

Mapping tab Recovery cache directory for
WebSphere MQ, JMS, SAP ALE IDoc,
TIBCO, webMethods, Web Service
Provider sources

Service and service process variables.

Mapping tab Durable Subscription Name Session parameter $ParamName.

Mapping tab MQ Source Qualifier filter condition All.

Where to Use Parameters and Variables 215

Tab Field Valid Parameter and Variable Types

Mapping tab SAP stage file name and directory Service variables, service process variables,
workflow variables, worklet variables, session
parameters.

Mapping tab SAP source file directory Service variables, service process variables,
workflow variables, worklet variables, session
parameters.

Components tab Post-session email (user name,
subject, and text)

All.

Components tab Post-session email attachment file
name

All.

The following table lists the input fields related to workflows where you can specify parameters and
variables:

Tab Field Valid Parameter and Variable Types

Properties tab Workflow log file name and
directory

Service, service process, workflow, and worklet
variables.

Properties tab Workflow log count Service variable $PMWorkflowLogCount.

General tab Suspension email (user name,
subject, and text)

Service, service process, workflow, and worklet
variables.

The following table lists the input fields related to connection objects in the Workflow Manager where you
can specify parameters and variables:

Connection Type Field Valid Parameter and Variable Types

Relational Database user name, password Session parameter $ParamName.
Encrypt the password in the parameter file using
the pmpasswd command line program with the
CRYPT_DATA encryption type.

Relational: Source,
Target, Lookup,
Stored Procedure

Connection and transaction
environment SQL

All.

FTP User name, password for host
machine

Session parameter $ParamName.
Encrypt the password in the parameter file using
the pmpasswd command line program with the
CRYPT_DATA encryption type.

FTP Default remote directory All.

Application Application user name, password Session parameter $ParamName.
Encrypt the password in the parameter file using
the pmpasswd command line program with the
CRYPT_DATA encryption type.

216 Chapter 16: Parameter Files

Connection Type Field Valid Parameter and Variable Types

Application: Web
Services Consumer

Endpoint URL Session parameter $ParamName, mapping
parameters and variables.

Application: HTTP Base URL Session parameter $ParamName.

Application: JMS JMS Destination Session parameter $ParamName.

Loader Database user name, password Session parameter $ParamName.
Encrypt the password in the parameter file using
the pmpasswd command line program with the
CRYPT_DATA encryption type.

Overriding Connection Attributes in the Parameter
File

If you use a session parameter to define a connection for a source or target, you can override the connection
attributes in the parameter file. Use the $FTPConnectionName, $QueueConnectionName,
$LoaderConnectionName, or $AppConnectionName session parameter.

When you define a connection in the parameter file, the Integration Service searches for specific, user-
defined session parameters that define the connection attributes. For example, you create a Message Queue
connection parameter called $QueueConnectionMyMQ and define it in the “[s_MySession]” section in the
parameter file. The Integration Service searches this section of the parameter file for the “rows per message”
parameter, $Param_QueueConnectionMyMQ_Rows_Per_Message.

When you install PowerCenter, the installation program creates a template file named ConnectionParam.prm
that lists the connection attributes you can override for FTP, queue, loader, and application connections. The
ConnectionParam.prm file is located in the following directory:

<PowerCenter Installation Directory>/server/bin
When you define a connection in the parameter file, copy the template for the appropriate connection type
and paste it into the parameter file. Then supply the parameter values.

For example, to override connection attributes for an FTP connection in the parameter file, perform the
following steps:

1. Configure the session or workflow to run with a parameter file.

2. In the session properties Mapping tab, select the source or target instance in the Connections node.

3. Click the Open button in the value field and configure the connection to use a session parameter. For
example, use $FTPConnectionMyFTPConn for an FTP connection.

4. Open the ConnectionParam.prm template file in a text editor and scroll down to the section for the
connection type whose attributes you want to override. For example, for an FTP connection, locate the
“Connection Type: FTP” section:

 Connection Type : FTP

Overriding Connection Attributes in the Parameter File 217

...

Template

====================

$FTPConnection<VariableName>=

$Param_FTPConnection<VariableName>_Remote_Filename=

$Param_FTPConnection<VariableName>_Is_Staged=

$Param_FTPConnection<VariableName>_Is_Transfer_Mode_ASCII=
5. Copy the template text for the connection attributes you want to override. For example, to override the

“Remote File Name” and “Is Staged” attributes, copy the following lines:

$FTPConnection<VariableName>=

$Param_FTPConnection<VariableName>_Remote_Filename=

$Param_FTPConnection<VariableName>_Is_Staged=
6. Paste the text into the parameter file. Replace <VariableName> with the connection name, and supply the

parameter values. For example:

[MyFolder.WF:wf_MyWorkflow.ST:s_MySession]

$FTPConnectionMyFTPConn=FTP_Conn1

$Param_FTPConnectionMyFTPConn_Remote_Filename=ftp_src.txt

$Param_FTPConnectionMyFTPConn_Is_Staged=YES
Note: The Integration Service interprets spaces or quotation marks before or after the equals sign as
part of the parameter name or value.

If you do not define a value for an attribute, the Integration Service uses the value defined for the
connection object.

Parameter File Structure
A parameter file contains a list of parameters and variables with assigned values. You group parameters and
variables in different sections of the parameter file. Each section is preceded by a heading that identifies the
Integration Service, Integration Service process, workflow, worklet, or session to which you want to define
parameters or variables. You define parameters and variables directly below the heading, entering each
parameter or variable on a new line. You can list parameters and variables in any order within a section.

Enter the parameter or variable definition in the form name=value. For example, the following lines assign a
value to service variable $PMSuccessEmailUser and session parameter $ParamTgtOverride:

$PMSuccessEmailUser=rsmith@mail.com
$ParamTgtOverride=UPDATE T_SALES SET DATE_SHIPPED = :TU.DATE_SHIPPED, TOTAL_SALES
= :TU.TOTAL_SALES WHERE :TU.EMP_NAME = EMP_NAME and EMP_NAME = 'MIKE SMITH'

The Integration Service interprets all characters between the beginning of the line and the first equals sign as
the parameter name and all characters between the first equals sign and the end of the line as the parameter
value. Therefore, if you enter a space between the parameter name and the equals sign, the Integration
Service interprets the space as part of the parameter name. If a line contains multiple equals signs, the
Integration Service interprets all equals signs after the first one as part of the parameter value.

218 Chapter 16: Parameter Files

Warning: The Integration Service uses the period character (.) to qualify folder, workflow, and session names
when you run a workflow with a parameter file. If the folder name contains a period (.), the Integration Service
cannot qualify the names properly and fails the workflow.

Parameter File Sections
You can define parameters and variables in any section in the parameter file. If you define a service or
service process variable in a workflow, worklet, or session section, the variable applies to the service process
that runs the task. Similarly, if you define a workflow variable in a session section, the value of the workflow
variable applies only when the session runs.

The following table describes the parameter file headings that define each section in the parameter file and
the scope of the parameters and variables that you define in each section:

Heading Scope

[Global] All Integration Services, Integration Service processes,
workflows, worklets, and sessions.

[Service:service name] The named Integration Service and workflows, worklets, and
sessions that this service runs.

[Service:service name.ND:node name] The named Integration Service process and workflows,
worklets, and sessions that this service process runs.

[folder name.WF:workflow name] The named workflow and all sessions within the workflow.

[folder name.WF:workflow name.WT:worklet name] The named worklet and all sessions within the worklet.

[folder name.WF:workflow name.WT:worklet
name.WT:worklet name...]

The nested worklet and all sessions within the nested
worklet.

[folder name.WF:workflow name.ST:session name]
-or-
[folder name.WF:workflow name.WT:worklet
name.ST:session name]
-or-
[folder name.session name]
-or-
[session name]

The named session.

Create each heading only once in the parameter file. If you specify the same heading more than once in a
parameter file, the Integration Service uses the information in the section below the first heading and ignores
the information in the sections below subsequent identical headings. For example, a parameter file contains
the following identical headings:

[HET_TGTS.WF:wf_TCOMMIT1]
$$platform=windows
...
[HET_TGTS.WF:wf_TCOMMIT1]
$$platform=unix
$DBConnection_ora=Ora2

In workflow wf_TCOMMIT1, the value for mapping parameter $$platform is “windows,” not “unix,” and session
parameter $DBConnection_ora is not defined.

Parameter File Structure 219

If you define the same parameter or variable in multiple sections in the parameter file, the parameter or
variable with the smallest scope takes precedence over parameters or variables with larger scope. For
example, a parameter file contains the following sections:

[HET_TGTS.WF:wf_TGTS_ASC_ORDR]
$DBConnection_ora=Ora2
[HET_TGTS.WF:wf_TGTS_ASC_ORDR.ST:s_TGTS_ASC_ORDR]
$DBConnection_ora=Ora3

In session s_TGTS_ASC_ORDR, the value for session parameter $DBConnection_ora is “Ora3.” In all other
sessions in the workflow, it is “Ora2.”

Comments
You can include comments in parameter files. The Integration Service ignores lines that are not valid
headings and do not contain an equals sign character (=). The following lines are examples of parameter file
comments:

Created 10/11/06 by JSmith.
*** Update the parameters below this line when you run this workflow on Integration
Service Int_01. ***
; This is a valid comment because this line contains no equals sign.

Null Values
You can assign null values to parameters and variables in the parameter file. When you assign null values to
parameters and variables, the Integration Service obtains the value from the following places, depending on
the parameter or variable type:

• Service and service process variables. The Integration Service uses the value set in the Administrator
tool.

• Workflow and worklet variables. The Integration Service uses the value saved in the repository (if the
variable is persistent), the user-specified default value, or the datatype default value.

• Session parameters. Session parameters do not have default values. If the Integration Service cannot find
a value for a session parameter, it may fail the session, take an empty string as the default value, or fail to
expand the parameter at run time. For example, the Integration Service fails a session where the session
parameter $DBConnectionName is not defined.

• Mapping parameters and variables. The Integration Service uses the value saved in the repository
(mapping variables only), the configured initial value, or the datatype default value.

To assign a null value, set the parameter or variable value to “<null>” or leave the value blank. For example,
the following lines assign null values to service process variables $PMBadFileDir and $PMCacheDir:

$PMBadFileDir=<null>
$PMCacheDir=

Sample Parameter File
The following text is an excerpt from a parameter file that contains service variables for one Integration
Service and parameters for four workflows:

--
File created by RSmith 11/12/2005
--
[Service:IntSvs_01]
$PMSuccessEmailUser=pcadmin@mail.com
$PMFailureEmailUser=pcadmin@mail.com
[HET_TGTS.WF:wf_TCOMMIT_INST_ALIAS]
$$platform=unix

220 Chapter 16: Parameter Files

[HET_TGTS.WF:wf_TGTS_ASC_ORDR.ST:s_TGTS_ASC_ORDR]
$$platform=unix
$DBConnection_ora=Ora2
$ParamAscOrderOverride=UPDATE T_SALES SET CUST_NAME = :TU.CUST_NAME, DATE_SHIPPED
= :TU.DATE_SHIPPED, TOTAL_SALES = :TU.TOTAL_SALES WHERE CUST_ID = :TU.CUST_ID
[ORDERS.WF:wf_PARAM_FILE.WT:WL_PARAM_Lvl_1]
$$DT_WL_lvl_1=02/01/2005 01:05:11
$$Double_WL_lvl_1=2.2
[ORDERS.WF:wf_PARAM_FILE.WT:WL_PARAM_Lvl_1.WT:NWL_PARAM_Lvl_2]
$$DT_WL_lvl_2=03/01/2005 01:01:01
$$Int_WL_lvl_2=3
$$String_WL_lvl_2=ccccc

Configuring the Parameter File Name and Location
When you start a workflow or session, use a parameter file to pass parameter and variable values to the
Integration Service. You can specify the parameter file name and directory in the workflow or session
properties or in the pmcmd command line. If the Integration Service uses operating system profiles, the
operating system user specified in the operating system profile must have access to the parameter file.

The parameter file you use with pmcmd overrides the parameter file in the workflow or session properties. If
you do not enter a parameter file name in the pmcmd command line, the Integration Service uses the
parameter file you specify in the workflow properties for the workflow and all sessions in the workflow. If you
do not enter a parameter file name in the pmcmd command line or the workflow properties, the Integration
Service uses the parameter file you specify in the session properties.

Using a Parameter File with Workflows or Sessions
You can specify the parameter file name and directory in the workflow or session properties. Specify a
workflow or worklet variable as the session parameter file name if you configure a workflow to run
concurrently, and you want to use different parameter files for the sessions in each workflow run instance.

If you specify a parameter file for a workflow or session, and the Integration Service cannot locate the
parameter file, it fails the workflow or session.

Entering a Parameter File in the Workflow Properties
To enter a parameter file in the workflow properties:

1. Open a Workflow in the Workflow Manager.

2. Click Workflows > Edit.

The Edit Workflow dialog box appears.

3. Click the Properties tab.

4. Enter the parameter file location and name in the Parameter Filename field.

You can enter either a direct path or a service process variable. Use the appropriate delimiter for the
Integration Service operating system. If you configured the PowerCenter environment for high
availability, include the service process variable in the path

5. Click OK.

Configuring the Parameter File Name and Location 221

Entering a Parameter File in the Session Properties
To enter a parameter file in the session properties:

1. Open a session in the Workflow Manager.

The Edit Tasks dialog box appears.

2. Click the Properties tab, and open the General Options settings.

3. Enter the parameter file location and name in the Parameter Filename field.

You can enter a direct path or a service process variable. Use the appropriate delimiter for the
Integration Service operating system. If you configured the PowerCenter environment for high
availability, include the service process variable in the path.

You can also enter a user-defined workflow or worklet variable. Enter a workflow or worklet variable to
define the session parameter file name in the workflow parameter file.

4. Click OK.

Using Variables to Specify Session Parameter Files
You can enter a workflow or worklet variable as the session parameter file name. Enter a workflow or worklet
variable as the session parameter file name if you configure a workflow to run concurrently and you want to
define different parameter and variable values for the sessions in each workflow run instance.

When you define a workflow parameter file and a session parameter file for a session within the workflow,
the Integration Service uses the workflow parameter file, and ignores the session parameter file. To use a
variable to define the session parameter file name, you must define the session parameter file name and set
$PMMergeSessParamFile=TRUE in the workflow parameter file. The $PMMergeSessParamFile property
causes the Integration Service to read both the session and workflow parameter files.

For example, you configured a workflow to run two concurrent instances that contains three sessions:

For the first and second workflow instances, you want the sessions to use the following session parameter
files:

Session Session Parameter File Name
(First workflow run instance)

Session Parameter File Name
(Second workflow run instance)

s_1 s_1Inst1.txt s_1Inst2.txt

s_2 s_2Inst1.txt s_2Inst2.txt

s_3 s_3Inst1.txt s_3Inst2.txt

222 Chapter 16: Parameter Files

Create workflow variables to store the session parameter file names. For example, you create user-defined
workflow variables $$s_1ParamFileName, $$s_2ParamFileName, and $$s_3ParamFileName. In the session
properties for each session, set the parameter file name to a workflow variable:

Session Session Parameter File Name
in Session Properties

s_1 $$s_1ParamFileName

s_2 $$s_2ParamFileName

s_3 $$s_3ParamFileName

In the workflow parameter file for each workflow instance, set each workflow variable to the correct session
parameter file name, and set $PMMergeSessParamFile=TRUE.

If you use a variable as the session parameter file name, and you define the same parameter or variable in
both the session and workflow parameter files, the Integration Service sets parameter and variable values
according to the following rules:

• When a parameter or variable is defined in the same section of the workflow and session parameter files,
the Integration Service uses the value in the workflow parameter file.

• When a parameter or variable is defined in both the session section of the session parameter file and the
workflow section of the workflow parameter file, the Integration Service uses the value in the session
parameter file.

Using a Parameter File with pmcmd
Use parameter files with the pmcmd startworkflow or starttask commands. These commands allow you to
specify the parameter file to use when you start a workflow or session.

The pmcmd ‑paramfile option defines which parameter file to use when a session or workflow runs. The
‑localparamfile option defines a parameter file on a local machine that you can reference when you do not
have access to parameter files on the Integration Service machine.

The following command starts workflowA using the parameter file, myfile.txt:

pmcmd startworkflow -uv USERNAME -pv PASSWORD -s SALES:6258 -f east ‑w wSalesAvg -
paramfile '\$PMRootDir/myfile.txt' workflowA

The following command starts taskA using the parameter file, myfile.txt:

pmcmd starttask -uv USERNAME -pv PASSWORD -s SALES:6258 -f east ‑w wSalesAvg -paramfile
'\$PMRootDir/myfile.txt' taskA

Parameter File Example
The example in this section describes a session in which you may want to use a parameter file. The session
can be rerun with different state and time values. The example shows the parameters and variables you may
want to set, lists the parameter and variable values, and explains what to change when you rerun the session.

You have a session, s_MonthlyCalculations, in the Production folder. The session uses session parameters to
connect to source files and target databases and to write a session log file. If the session fails, the
Integration Service sends an email message to pcadmin@mail.com. The session uses a string mapping

Parameter File Example 223

parameter, $$State, that you set to “MA,” and a datetime mapping variable, $$Time. $$Time has an initial
value of “9/30/2005 05:04:00” in the repository, but you override this value to “10/1/2005 05:04:11.”

The following table describes the parameters and variables for the s_MonthlyCalculations session:

Parameter or Variable Type Parameter or Variable Name Definition

Service Variable $PMFailureEmailUser pcadmin@mail.com

String Mapping Parameter $$State MA

Datetime Mapping Variable $$Time 10/1/2005 05:04:11

Source File (Session Parameter) $InputFile1 Sales.txt

Database Connection (Session Parameter) $DBConnection_Target Sales

Session Log File (Session Parameter) $PMSessionLogFile d:/session logs/firstrun.txt

The parameter file for the session includes the folder and session name and each parameter and variable:

[Production.s_MonthlyCalculations]
$PMFailureEmailUser=pcadmin@mail.com
$$State=MA
$$Time=10/1/2005 05:04:11
$InputFile1=sales.txt
$DBConnection_target=sales
$PMSessionLogFile=D:/session logs/firstrun.txt

The next time you run the session, you might edit the parameter file to change the state to MD and delete the
$$Time variable. This allows the Integration Service to use the value for the variable that the previous
session stored in the repository.

Guidelines for Creating Parameter Files
Use the following rules and guidelines when you create parameter files:

• List all session parameters. Session parameters do not have default values. If the Integration Service
cannot find a value for a session parameter, it may fail the session, take an empty string as the default
value, or fail to expand the parameter at run time. Session parameter names are not case sensitive.

• List all necessary mapping parameters and variables. Mapping parameter and variable values become
start values for parameters and variables in a mapping. Mapping parameter and variable names are not
case sensitive.

• Enter folder names for non-unique session names. When a session name exists more than once in a
repository, enter the folder name to indicate the location of the session.

• Precede parameters and variables in mapplets with the mapplet name. Use the following format:

mapplet_name.parameter_name=value
mapplet2_name.variable_name=value

• Use multiple parameter files. You assign parameter files to workflows, worklets, and sessions
individually. You can specify the same parameter file for all of these tasks or create multiple parameter
files.

224 Chapter 16: Parameter Files

• When defining parameter values, do not use unnecessary line breaks or spaces. The Integration Service
interprets additional spaces as part of a parameter name or value.

• Use correct date formats for datetime values. Use the following date formats for datetime values:

- MM/DD/RR

- MM/DD/YYYY

- MM/DD/RR HH24:MI

- MM/DD/YYYY HH24:MI

- MM/DD/RR HH24:MI:SS

- MM/DD/YYYY HH24:MI:SS

- MM/DD/RR HH24:MI:SS.MS

- MM/DD/YYYY HH24:MI:SS.MS

- MM/DD/RR HH24:MI:SS.US

- MM/DD/YYYY HH24:MI:SS.US

- MM/DD/RR HH24:MI:SS.NS

- MM/DD/YYYY HH24:MI:SS.NS

You can use the following separators: dash (-), slash (/), backslash (\), colon (:), period (.), and space.
The Integration Service ignores extra spaces. You cannot use one- or three-digit values for year or the
“HH12” format for hour.

• Do not enclose parameter or variable values in quotes. The Integration Service interprets everything after
the first equals sign as part of the value.

• Use a parameter or variable value of the proper length for the error log table name prefix. If you use a
parameter or variable for the error log table name prefix, do not specify a prefix that exceeds 19
characters when naming Oracle, Sybase, or Teradata error log tables. The error table names can have up
to 11 characters, and Oracle, Sybase, and Teradata databases have a maximum length of 30 characters
for table names. The parameter or variable name can exceed 19 characters.

Troubleshooting Parameters and Parameter Files

I have a section in a parameter file for a session, but the Integration Service does not seem to
read it.

Make sure to enter folder and session names as they appear in the Workflow Manager. Also, use the
appropriate prefix for all user-defined session parameters.

I am trying to use a source file parameter to specify a source file and location, but the Integration
Service cannot find the source file.

Make sure to clear the source file directory in the session properties. The Integration Service concatenates
the source file directory with the source file name to locate the source file.

Also, make sure to enter a directory local to the Integration Service and to use the appropriate delimiter for
the operating system.

I am trying to run a workflow with a parameter file and one of the sessions keeps failing.

Troubleshooting Parameters and Parameter Files 225

The session might contain a parameter that is not listed in the parameter file. The Integration Service uses
the parameter file to start all sessions in the workflow. Check the session properties, and then verify that all
session parameters are defined correctly in the parameter file.

I ran a workflow or session that uses a parameter file, and it failed. What parameter and variable
values does the Integration Service use during the recovery run?

For service variables, service process variables, session parameters, and mapping parameters, the
Integration Service uses the values specified in the parameter file, if they exist. If values are not specified in
the parameter file, then the Integration Service uses the value stored in the recovery storage file. For
workflow, worklet, and mapping variables, the Integration Service always uses the value stored in the
recovery storage file.

Tips for Parameters and Parameter Files

Use a single parameter file to group parameter information for related sessions.

When sessions are likely to use the same database connection or directory, you might want to include them
in the same parameter file. When connections or directories change, you can update information for all
sessions by editing one parameter file.

Use pmcmd and multiple parameter files for sessions with regular cycles.

Sometimes you reuse session parameters in a cycle. For example, you might run a session against a sales
database everyday, but run the same session against sales and marketing databases once a week. You can
create separate parameter files for each session run. Instead of changing the parameter file in the session
properties each time you run the weekly session, use pmcmd to specify the parameter file to use when you
start the session.

Use reject file and session log parameters in conjunction with target file or target database
connection parameters.

When you use a target file or target database connection parameter with a session, you can keep track of
reject files by using a reject file parameter. You can also use the session log parameter to write the session
log to the target machine.

Use a resource to verify the session runs on a node that has access to the parameter file.

In the Administrator tool, you can define a file resource for each node that has access to the parameter file
and configure the Integration Service to check resources. Then, edit the session that uses the parameter file
and assign the resource. When you run the workflow, the Integration Service runs the session with the
required resource on a node that has the resource available.

You can override initial values of workflow variables for a session by defining them in a session
section.

If a workflow contains an Assignment task that changes the value of a workflow variable, the next session in
the workflow uses the latest value of the variable as the initial value for the session. To override the initial
value for the session, define a new value for the variable in the session section of the parameter file.

You can define parameters and variables using other parameters and variables.

226 Chapter 16: Parameter Files

For example, in the parameter file, you can define session parameter $PMSessionLogFile using a service
process variable as follows:

$PMSessionLogFile=$PMSessionLogDir/TestRun.txt

Tips for Parameters and Parameter Files 227

C h a p t e r 1 7

FastExport
This chapter includes the following topics:

• Using FastExport Overview, 228

• Step 1. Create a FastExport Connection, 229

• Step 2. Change the Reader, 231

• Step 3. Change the Source Connection, 231

• Step 4. Override the Control File (Optional), 231

• Rules and Guidelines for Using FastExport, 232

Using FastExport Overview
FastExport is a utility that uses multiple Teradata sessions to quickly export large amounts of data from a
Teradata database. You can create a PowerCenter session that uses FastExport to read Teradata sources.

To use FastExport, create a mapping with a Teradata source database. The mapping can include multiple
source definitions from the same Teradata source database joined in a single Source Qualifier
transformation. In the session, use FastExport reader instead of Relational reader. Use a FastExport
connection to the Teradata tables you want to export in a session.

FastExport uses a control file that defines what to export. When a session starts, the Integration Service
creates the control file from the FastExport connection attributes. If you create a SQL override for the
Teradata tables, the Integration Service uses the SQL to generate the control file. You can override the control
file for a session by defining a control file in the session properties.

The Integration Service writes FastExport messages in the session log and information about FastExport
performance in the FastExport log. PowerCenter saves the FastExport log in the folder defined by the
Temporary File Name session attribute. The default extension for the FastExport log is .log.

To use FastExport in a session, complete the following steps:

1. Create a FastExport connection in the Workflow Manager and configure the connection attributes.

2. Open the session and change the reader from Relational to Teradata FastExport.

3. Change the connection type and select a FastExport connection for the session.

4. Optionally, create a FastExport control file in a text editor and save it in the repository.

228

Step 1. Create a FastExport Connection
Create a FastExport connection in the Workflow Manager. If you edit a FastExport connection, all sessions
using the connection use the updated connection.

To create a FastExport connection:

1. Click Connections > Application in the Workflow Manager.

The Connection Browser dialog box appears.

2. Click New.

3. Select a Teradata FastExport connection and click OK.

4. Enter a name for the FastExport connection.

5. Enter the database user name.

6. Enter the password for the database user name or click Use Parameter in Password to use the session
parameter $ParamName for the database password.

If you enable Use Parameter in Password, define the password in the workflow or session parameter file
and encrypt it by using the pmpasswd CRYPT_DATA option.

7. Select the code page that FastExport uses to read Teradata sources.

FastExport uses the fexpcodepagemapfile.dat file to map the code page name to the Teradata character
set that FastExport supports. Verify that the file includes the code page and that the assigned character
set is enabled on the Teradata database.

8. Enter the FastExport attributes and click OK.

The following table describes the attributes that you configure for a Teradata FastExport connection:

Attribute Default Value Description

TDPID n/a Teradata database ID.

Tenacity 4 Number of hours that FastExport tries to log on to the Teradata
database. When FastExport tries to log on but the maximum number of
Teradata sessions is already running, FastExport waits for the amount
of time defined by the SLEEP option. After the SLEEP time, FastExport
tries to log on to the Teradata Database again.
FastExport repeats this process until it has either logged on for the
required number of sessions or exceeded the TENACITY hours time
period.

Max Sessions 1 Maximum number of FastExport sessions per FastExport job. Max
Sessions must be between 1 and the total number of access module
processes (AMPs) on your system.

Sleep 6 Number of minutes FastExport pauses before retrying a login.
FastExport attempts a login until the login succeeds or the Tenacity
hours elapse.

Block Size 64000 Maximum block size to use for the exported data.

Data Encryption Disabled Enables data encryption for FastExport. You can use data encryption
with the version 8 Teradata client.

Step 1. Create a FastExport Connection 229

Attribute Default Value Description

Logtable Name FE_<source_table_n
ame>

Restart log table name. The FastExport utility uses the information in
the restart log table to restart jobs that halt because of a Teradata
database or client system failure. Each FastExport job should use a
separate logtable. If you specify a table that does not exist, the
FastExport utility creates the table and uses it as the restart log.
PowerCenter does not support restarting FastExport, but if you stage
the output, you can restart FastExport manually.

Executable Name fexp Teradata command used to read the source data. Use the default value.

Database Name n/a The name of the Teradata database you want to connect to. The
Integration Service generates the SQL statement using the database
name as a prefix to the table name.

Verifying the Code Page Mapping File
When you create a FastExport connection, you select the PowerCenter code page that FastExport uses to
read Teradata sources. FastExport uses the fexpcodepagemapfile.dat file to map the PowerCenter code page
name to the Teradata character set that FastExport supports. For example, if you select “MS Windows Latin 1
(ANSI), superset of Latin1” as the connection code page, PowerCenter uses the code page named “MS1252”
while Teradata uses the character set named “Latin1252_0A.”

The fexpcodepagemapfile.dat file maps the most appropriate Teradata character sets to PowerCenter code
pages as specified in Teradata International Character Set Support. Teradata character sets must be enabled
on the database before you can use them. By default, only the following character sets are enabled on a
Teradata database:

• ASCII

• EBCDIC

• UTF8

• UTF16

If the PowerCenter code page you select in the FastExport connection does not exist in
fexpcodepagemapfile.dat or if the assigned Teradata character set is not enabled on the database, the
Integration Service fails the session.

The fexpcodepagemapfile.dat file is located in <PowerCenter installation directory>\server\bin. Verify
that the file includes the PowerCenter code page you select in the FastExport connection and that the
assigned character set is enabled on the Teradata database. You can use a text editor to assign additional
PowerCenter code pages to Teradata character sets or to modify the existing mappings. Assign a
PowerCenter code page to a Teradata character set by entering the names on a single line in the following
format:

<PowerCenter_code_page> = <Teradata_character_set>.
For example, MS1252 = Latin1252_0A

Use the following rules and guidelines when you edit the file:

• To designate a comment, start a line with an exclamation point (!).

• A line cannot consist of blank spaces or tab characters only.

• If the file maps a single PowerCenter code page to multiple Teradata character sets, FastExport uses the
character set that is assigned last in the file.

230 Chapter 17: FastExport

Note: Teradata does not distinguish between Big Endian and Lower Endian for UTF-16 encoding of Unicode. If
you process UTF-16 characters, select the “UTF-16 encoding of Unicode (Platform Endian)” code page when
creating the FastExport connection in the Workflow Manager.

Step 2. Change the Reader
The default reader for Teradata is relational. To use FastExport, change the reader to Teradata FastExport.

Step 3. Change the Source Connection
To use FastExport in the session, change the Teradata source connection to a Teradata FastExport
connection. You can override some session attributes.

The following table describes the session attributes you can change for FastExport:

Attribute Default Value Precision

Is Staged Disabled If enabled, FastExport writes data to a stage file. Otherwise,
FastExport writes data to a named pipe.

Fractional seconds
precision

0 The precision for fractional seconds following the decimal point
in a timestamp. You can enter 0 to 6. For example, a timestamp
with a precision of 6 is 'hh:mi:ss.ss.ss.ss.' The fractional
seconds precision must match the setting in the Teradata
database.

Temporary File $PMTempDir\ PowerCenter uses the temporary file name to generate the
names for the log file, control file, and the staged output file.
Enter a complete path for the file.

Control File Override Blank The control file text. Use this attribute to override the control
file the Integration Service creates for a session.

Step 4. Override the Control File (Optional)
By default, the Integration Service generates a FastExport control file based on session and connection
properties when you run a session with FastExport. The Integration Service saves the control file it generates
in the temporary file directory and overwrites it the next time you run the session.

You can override the control file that the Integration Service generates. When you override the control file, the
Workflow Designer saves the control file to the repository. The Integration Service uses the saved control file
when you run the session.

Each FastExport statement must meet the following criteria:

• Begin on a new line.

Step 2. Change the Reader 231

• Start with a period (.).

• End with a semicolon (;).

The following table describes the control file statements you can use with PowerCenter:

Control File Statement Description

.LOGTABLE utillog; The restart logtable name.

LOGON tdpz/user,pswd; The database login string, including the database, user name, and
password.

BEGIN EXPORT The first export command.

.SESSIONS 20; The number of Teradata sessions.

.EXPORT OUTFILE ddname2; The destination file for the exported data.

SELECT EmpNo, Hours FROM charges The SQL statements to select data.

WHERE Proj_ID = 20 -

ORDER BY EmpNo ; -

.END EXPORT ; Indicates the end of an export task and initiates the export process.

LOGOFF ; Disconnect from the database.

To override the control file:

1. Create a control file in a text editor.

2. Copy the control file text to the clipboard.

3. Paste the control file text into the Control File Override field.

The Workflow Manager does not validate the control file syntax. Teradata verifies the control file syntax when
you run a session. If the control file is invalid, the session fails.

Tip: You can change the control file to read-only to use the control file for each session. The Integration
Service does not overwrite the read-only file.

Rules and Guidelines for Using FastExport
Use the following rules and guidelines when you use FastExport with PowerCenter:

• When you use an SQL override for Teradata, PowerCenter uses it to create the FastExport control file. If
you do not use an SQL override, PowerCenter generates a control file based on the connected ports in the
source qualifier.

• FastExport supports a maximum export file size of 2 GB on a UNIX MP-RAS operating system. Other
operating systems have no file size limitation.

• You cannot concatenate exported data files.

• The session fails if you use a pre-session SQL command and FastExport.

232 Chapter 17: FastExport

C h a p t e r 1 8

External Loading
This chapter includes the following topics:

• External Loading Overview, 233

• External Loader Behavior, 234

• Loading to IBM DB2, 235

• Loading to Oracle, 241

• Loading to Sybase IQ, 243

• Loading to Teradata, 245

• Configuring External Loading in a Session, 254

• Troubleshooting External Loading, 256

External Loading Overview
You can configure a session to use IBM DB2, Oracle, Sybase IQ, and Teradata external loaders to load
session target files into their respective databases. External loaders can increase session performance by
loading information directly from a file or pipe rather than running the SQL commands to insert the same
data into the database.

Use multiple external loaders within one session. For example, if a mapping contains two targets, you can
create a session that uses an Oracle external loader connection and a Sybase IQ external loader connection.

Before You Begin
Before you run external loaders, complete the following tasks:

• Disable constraints. You disable constraints built into the tables receiving the data before performing the
load. For information about disabling constraints, see the database documentation.

• Turn off or disable database logging. To preserve high performance, you can increase commit intervals
and turn off database logging. However, to perform database recovery on failed sessions, you must have
database logging turned on.

• Configure code pages. IBM DB2, Oracle, Sybase IQ, and Teradata database servers must use the same
code page as the target flat file code page. The Integration Service creates the control files and target flat
files using the target flat file code page. If you use a code page other than 7-bit ASCII for the target flat
file, run the Integration Service in Unicode data movement mode.

233

• Configure the external loader connection as a resource. If the Integration Service is configured to run on
a grid, configure the external loader connection as a resource on the node where the external loader is
available.

External Loader Behavior
When you run a session that uses an external loader, the Integration Service creates a control file and a
target flat file. The control file contains information such as data format and loading instructions for the
external loader. The control file has an extension of .ctl. You can view the control file and the target flat file in
the target file directory.

When you run a session, the Integration Service deletes and recreates the target file. The external loader uses
the control file to load session output to the database. The Integration Service processes datetime data
before loading to the database in the following ways:

• If the session is configured to trim subseconds, the Integration Service processes datetime data with a
precision of 19.

• If the session is not configured to trim subseconds, the Integration Service processes datetime data
based on the precision specified in the target flat file. Precision ranges from 19 to 29. Subseconds are
trimmed according to the precision specified.

• If the precision specified in the target file is greater than that specified for the database, the Integration
Service limits the precision to the maximum precision specified for the database.

The Integration Service waits for all external loading to complete before it performs post-session commands,
runs external procedures, and sends post-session email.

The Integration Service writes external loader initialization and completion messages in the session log. For
more information about the external loader performance, check the external loader log. The loader saves the
log in the same directory as the target flat files. The default extension for external loader logs is .ldrlog.

The behavior of the external loader depends on how you choose to load the data. You can load data to a
named pipe or to a flat file.

Loading Data to a Named Pipe
The external loader starts to load data to the database as soon as the data appears in the pipe. The loader
deletes the named pipe as soon as it completes the load.

On UNIX, the Integration Service writes to a named pipe that is named after the configured target file name.

On Windows, the Integration Service writes data to a named pipe using the specified format:

\\.\pipe\<pipe name>
The pipe name is the same as the configured target file name.

Staging Data to a Flat File
When you stage data to a flat file on Windows or UNIX, the Integration Service writes data to a flat file, which
is named after the configured target file name. The external loader starts loading data to the target database
after the Integration Service writes all the data to the target flat file. The external loader does not delete the
target flat file after loading it to the database. Make sure the target file directory can accommodate the size
of the target flat file.

234 Chapter 18: External Loading

Note: The Integration Service rounds numerical values based on the scale of the port when staging data to a
flat file. It does not round results when you use an external loader that loads the data to a named pipe or if
you configure the target for a normal load.

If a session aborts or fails before the Integration Service writes all the data to the flat file target, the external
loader does not start. If a session aborts or fails after the Integration Service writes all the data to the flat file
target, the external loader completes loading data to the target database before the external loader exits.

Partitioning Sessions with External Loaders
When you configure multiple partitions in a session using a flat file target, the Integration Service creates a
separate flat file for each partition. Some external loaders cannot load data from multiple files. When you use
an external loader in a session with multiple partitions, you must configure the target partition type according
to the external loader you use.

When you use an external loader that can load data from multiple files, you can choose any partition type
available for a flat file target. You also choose an external loader connection for each partition. The
Integration Service creates an output file for each partition, and the external loader loads the output from
each target file to the database. Use any partition type for the target when you use the following loaders:

• Oracle, with parallel load enabled

• Teradata Tpump

If you use a loader that cannot load from multiple files, use round-robin partitioning to route the data to a
single target file. You choose an external loader connection for each partition. However, the Integration
Service uses the loader connection for the first partition. The Integration Service creates a single output file,
and the external loader loads the output from the target file to the database. If you choose any other partition
type for the target, the Integration Service fails the session. Use round-robin partition type for the target when
you use the following loaders:

• IBM DB2 EE

• IBM DB2 EEE Autoloader

• Oracle, with parallel load disabled

• Sybase IQ

• Teradata MultiLoad

• Teradata Fastload

Loading to IBM DB2
When you load to IBM DB2 targets, use the IBM DB2 EE or IBM DB2 EEE external loader. Both external loaders
perform insert and replace operations on targets. They can also restart or terminate load operations. Both
external loaders can partition data and load the partitioned data simultaneously to the corresponding
database partitions.

IBM DB2 EE External Loader
Use the IBM DB2 EE external loader to load into one of the following databases:

• IBM DB2 EE version 8.x

• IBM DB2 EEE version 8.x

Loading to IBM DB2 235

• IBM DB2 version 9.x

The IBM DB2 EE external loader invokes one of the following executables located in the Integration Service
installation directory:

• db2load. Use for the IBM DB2 client earlier than version 9.5.

• db2load95. Use for the IBM DB2 client version 9.5.

When you create the external loader connection, specify the executable file name depending on the IBM DB2
client version installed on the machine where the Integration Service process runs.

The IBM DB2 EE external loader can load data to an IBM DB2 server on a machine that is remote from the
Integration Service.

Processing LOB Data
The IBM DB2 EE external loader cannot load LOB data, such as Blob, Clob, or Dbclob data. When you run a
session that uses the IBM DB2 EE external loader and the source contains LOB data, the external loader
successfully loads the remaining data to the target depending on the following mapping configurations:

• LOB ports are unconnected. The external loader successfully loads all remaining data to the target.

• LOB ports are connected. When loading to a database version 8.x, the external loader loads the LOB data
as NULL and correctly loads the remaining data. When loading to a database version 9.x, the external
loader does not load any data. It logs rejected rows in the external loader log.

IBM DB2 EEE External Loader
Use the IBM DB2 EEE external loader to load into an IBM DB2 EEE version 8.x database. The IBM DB2 EEE
external loader invokes the IBM DB2 Autoloader program to load data. The Autoloader program uses the
db2atld executable. The IBM DB2 EEE loader requires that the IBM DB2 server be on the same machine
hosting the Integration Service.

Note: If the IBM DB2 EEE server is on a machine that is remote from the Integration Service, use the IBM DB2
EE external loader or connect to the IBM DB2 EEE database using a relational database connection. Use
database partitioning for the IBM DB2 target. When you use database partitioning, the Integration Service
queries the IBM DB2 system for table partition information and loads partitioned data to the corresponding
nodes in the target database.

Rules and Guidelines for IBM DB2 EEE External Loaders
Use the following rules and guidelines when you use external loaders to load to IBM DB2:

• The IBM DB2 external loaders load from a delimited flat file. Verify that the target table columns are wide
enough to store all of the data.

• For a connection that uses IBM DB2 client authentication, enter the PmNullUser user name and
PmNullPasswd when you create the external loader connection. PowerCenter uses IBM DB2 client
authentication when the connection user name is PmNullUser and the connection is to an IBM DB2
database.

• For a session with multiple partitions, use the round-robin partition type to route data to a single target
file.

• If you configure multiple targets in the same pipeline to use IBM DB2 external loaders, each loader must
load to a different tablespace on the target database.

• You must have the correct authority levels and privileges to load data to the database tables.

236 Chapter 18: External Loading

Setting Operation Modes
IBM DB2 operation modes specify the type of load the external loader runs. You can configure the IBM DB2
EE or IBM DB2 EEE external loader to run in one of the following operation modes:

• Insert. Adds loaded data to the table without changing existing table data.

• Replace. Deletes all existing data from the table, and inserts the loaded data. The table and index
definitions do not change.

• Restart. Restarts a previously interrupted load operation.

• Terminate. Terminates a previously interrupted load operation and rolls back the operation to the starting
point, even if consistency points were passed. The tablespaces return to normal state, and the external
loader makes all table objects consistent.

Configuring Authorities, Privileges, and Permissions
IBM DB2 privileges allow you to create or access database resources. Authority levels allow you to group
privileges and perform higher-level database manager maintenance and utility operations. Together, these
act to control access to the database manager and its database objects. You can access objects for which
you have the required privilege or authority.

To load data into a table, you must have one of the following authorities:

• SYSADM authority

• DBADM authority

• LOAD authority on the database and one of the following privileges:

- INSERT privilege on the table when the load utility is invoked in insert, terminate, or restart mode.

- INSERT and DELETE privilege on the table when the load utility is invoked in replace, terminate, or restart
mode.

In addition, you must have proper read access and read/write permissions:

• The database instance owner must have read access to the external loader input files.

• If you run IBM DB2 as a service on Windows, you must configure the service start account with a user
account that has read/write permissions to use LAN resources, including drives, directories, and files.

• If you load to IBM DB2 EEE, the database instance owner must have write access to the load dump file
and the load temporary file.

Configuring IBM DB2 EE External Loader Attributes
The IBM DB2 EE external loader creates a single log or multiple logs depending on the following databases
that you are loading to:

• IBM DB2 EE version 8.x or non-partitioned IBM DB2 version 9.x. The external loader creates a single
external loader log with the extension .ldrlog in the same directory as the target flat files.

• IBM DB2 EEE version 8.x or partitioned IBM DB2 version 9.x. The external loader creates multiple external
loader logs in the same directory as the target flat files. The loader logs have the following extensions:

- ldrlog.load.number. Created by the Load Agent external loader process. The Load Agent creates two log
files.

- ldrlog.part.partition_number. Created by the Partitioning Agent external loader process. The Partitioning
Agent can create multiple log files depending on the number of partitions in the target table.

Loading to IBM DB2 237

- ldrlog.prep.partition_number. Created by the Pre-partitioning Agent external loader process. The Pre-
partitioning Agent can create multiple log files depending on the number of partitions in the target table.

- ldrlog. Created by the IBM DB2 EE external loader.

The following table describes attributes for IBM DB2 EE external loader connections:

Attributes Default
Value

Description

Opmode Insert IBM DB2 external loader operation mode. Select one of the following
operation modes:
- Insert
- Replace
- Restart
- Terminate

External Loader
Executable

db2load Name of the IBM DB2 EE external loader executable file. Enter one of the
following file names depending on the IBM DB2 client version installed on
the machine where the Integration Service process runs:
- db2load. Use for the IBM DB2 client earlier than version 9.5.
- db2load95. Use for the IBM DB2 client version 9.5.

DB2 Server Location Remote Location of the IBM DB2 database server relative to the Integration Service.
Select Local if the database server resides on the machine hosting the
Integration Service. Select Remote if the database server resides on
another machine.

Is Staged Disabled Method of loading data. Select Is Staged to load data to a flat file staging
area before loading to the database. By default, the data is loaded to the
database using a named pipe.

Recoverable Enabled Sets tablespaces in backup pending state if forward recovery is enabled. If
you disable forward recovery, the IBM DB2 tablespace will not set to backup
pending state. If the IBM DB2 tablespace is in backup pending state, you
must fully back up the database before you perform any other operation on
the tablespace.

Loading Blank Spaces using the IBM DB2 EE External Loader
If you need to load blank spaces through the IBM DB2 EE external loader, you must configure the session. In
staged mode, configure the flat file to use double optional quotes. In non-staged mode, add the following line
to the control file:

MODIFIEDBY = keepblanks
Configure the control file to be read-only.

IBM DB2 EE External Loader Return Codes
The IBM DB2 EE external loader indicates the success or failure of a load operation with a return code. The
Integration Service writes the external loader return code to the session log. Return code (0) indicates that
the load operation succeeded. The Integration Service writes the following message to the session log if the
external loader successfully completes the load operation:

WRT_8029 External loader process <external loader name> exited successfully.

238 Chapter 18: External Loading

Any other return code indicates that the load operation failed. The Integration Service writes the following
error message to the session log:

WRT_8047 Error: External loader process <external loader name> exited with error <return
code>.

The following table describes the return codes for the IBM DB2 EE external loader:

Code Description

0 External loader operation completed successfully.

1 External loader cannot locate the control file.

2 External loader could not open the external loader log file.

3 External loader could not access the control file because the control file is locked by another process.

4 IBM DB2 database returned an error.

Configuring IBM DB2 EEE External Loader Attributes
You can configure the IBM DB2 EEE external loader to use different loading modes when loading to the
database. Loading modes determine how the IBM DB2 EEE external loader loads data across partitions in the
database. You can configure the IBM DB2 EEE external loader to use the following loading modes:

• Split and load. Partitions the data and loads it simultaneously using the corresponding database
partitions.

• Split only. Partitions the data and writes the output to files in the specified split file directory.

• Load only. Does not partition the data. It loads data in existing split files using the corresponding
database partitions.

• Analyze. Generates an optimal partitioning map with even distribution across all database partitions. If
you run the external loader in split and load mode after you run it in analyze mode, the external loader
uses the optimal partitioning map to partition the data.

The IBM DB2 EEE external loader creates multiple logs based on the number of database partitions it loads
to. For each partition, the external loader appends a number corresponding to the partition number to the
external loader log file name. The IBM DB2 EEE external loader log file format is
file_name.ldrlog.partition_number.

The Integration Service does not archive or overwrite IBM DB2 EEE external loader logs. If an external loader
log of the same name exists when the external loader runs, the external loader appends new external loader
log messages to the end of the existing external loader log file. You must manually archive or delete the
external loader log files.

For information about IBM DB2 EEE external loader return codes, see the IBM DB2 documentation.

Loading to IBM DB2 239

The following table describes attributes for IBM DB2 EEE external loader connections:

Attribute Default Value Description

Opmode Insert IBM DB2 external loader operation mode. Select one of the following
operation modes:
- Insert
- Replace
- Restart
- Terminate

External Loader
Executable

db2atld Name of the IBM DB2 EEE external loader executable file.

Split File Location n/a Location of the split files. The external loader creates split files if you
configure SPLIT_ONLY loading mode.

Output Nodes n/a Database partitions on which the load operation is to be performed.

Split Nodes n/a Database partitions that determine how to split the data. If you do not
specify this attribute, the external loader determines an optimal splitting
method.

Mode Split and load Loading mode the external loader uses to load the data. Select one of the
following loading modes:
- Split and load
- Split only
- Load only
- Analyze

Max Num Splitters 25 Maximum number of splitter processes.

Force No Forces the external loader operation to continue even if it determines at
startup time that some target partitions or tablespaces are offline.

Status Interval 100 Number of megabytes of data the external loader loads before writing a
progress message to the external loader log. Specify a value between 1
and 4,000 MB.

Ports 6000-6063 Range of TCP ports the external loader uses to create sockets for internal
communications with the IBM DB2 server.

Check Level Nocheck Checks for record truncation during input or output.

Map File Input n/a Name of the file that specifies the partitioning map. To use a customized
partitioning map, specify this attribute. Generate a customized
partitioning map when you run the external loader in Analyze loading
mode.

Map File Output n/a Name of the partitioning map when you run the external loader in Analyze
loading mode. You must specify this attribute if you want to run the
external loader in Analyze loading mode.

Trace 0 Number of rows the external loader traces when you need to review a
dump of the data conversion process and output of hashing values.

240 Chapter 18: External Loading

Attribute Default Value Description

Is Staged Disabled Method of loading data. Select Is Staged to load data to a flat file staging
area before loading to the database. Otherwise, the data is loaded to the
database using a named pipe.

Date Format mm/dd/yyyy Date format. Must match the date format you define in the target
definition. IBM DB2 supports the following date formats:
- MM/DD/YYYY
- YYYY-MM-DD
- DD.MM.YYYY
- YYYY-MM-DD

Loading to Oracle
When you load to Oracle targets, use the Oracle SQL Loader to perform insert, update, and delete operations
on targets.

The Oracle external loader creates a reject file for data rejected by the database. The reject file has an
extension of .ldrreject. The loader saves the reject file in the target files directory.

Rules and Guidelines for Oracle External Loaders
Use the following rules and guidelines when you use external loaders to load to Oracle:

• If you select an Oracle external loader, the default external loader executable name is sqlload. This is
accurate for most UNIX platforms, but if you use Windows, check the Oracle documentation to find the
name of the external loader executable.

• For a connection that uses Oracle OS Authentication, enter the PmNullUser user name and PmNullPasswd
when you create the external loader connection. PowerCenter uses Oracle OS Authentication when the
connection user name is PmNullUser and the connection is to an Oracle database.

• The target flat file for an Oracle external loader can be fixed-width or delimited.

• For optimal performance when writing to a partitioned target, select Direct Path. For more information,
see the Oracle documentation.

• If you configure a session to write subsecond data to a Timestamp column in an Oracle 10.x or
Oracle 11.x target, the Integration Service writes subsecond data up to microseconds by default. To
ensure greater precision, edit the control file and change the Timestamp precision. For example, specify
TIMESTAMP(9) to process nanoseconds.

Loading to Oracle 241

• For optimal performance, use the following guidelines to determine settings for partitioned and non-
partitioned targets:

Target Load Method Parallel Load Load Mode

Partitioned Direct Path enable Append

Partitioned Conventional Path enable n/a

Non-partitioned n/a disable* n/a

* If you disable parallel load, you must choose round-robin partitioning to route data to a single target file.

Loading Multibyte Data to Oracle
When you load multibyte data to Oracle, data precision is measured in bytes for fixed-width files and in
characters for delimited files. Make sure the target table columns are wide enough to store all the data.

Oracle supports character-oriented datatypes, such as Nchar, where the precision is measured in characters.
If you use the Nchar datatype, multiply the maximum number of characters by K, where K is the maximum
number of bytes a character contains in the selected target code page. This ensures that the Integration
Service does not truncate data before loading the target file.

Configuring Oracle External Loader Attributes
The following table describes the attributes for Oracle external loader connections:

Attribute Default Value Description

Error Limit 1 Number of errors to allow before the external loader stops the load
operation.

Load Mode Append Loading mode the external loader uses to load data. Select one of
the following loading modes:
- Append
- Insert
- Replace
- Truncate

Load Method Use Conventional Path Method the external loader uses to load data. Select one of the
following load methods:
- Use Conventional Path.
- Use Direct Path (Recoverable).
- Use Direct Path (Unrecoverable).

Enable Parallel Load Enable Parallel Load Determines whether the Oracle external loader loads data in parallel
to a partitioned Oracle target table.
- Enable Parallel Load to load to partitioned targets.
- Do Not Enable Parallel Load to load to non-partitioned targets.

242 Chapter 18: External Loading

Attribute Default Value Description

Rows Per Commit 10000 For Conventional Path load method, this attribute specifies the
number of rows in the bind array for load operations. For Direct
Path load methods, this attribute specifies the number of rows the
external loader reads from the target flat file before it saves the
data to the database.

External Loader
Executable

sqlload Name of the external loader executable file.

Log File Name n/a Path and name of the external loader log file.

Is Staged Disabled Method of loading data. Select Is Staged to load data to a flat file
staging area before loading to the database. Otherwise, the data is
loaded to the database using a named pipe.

Loading to Sybase IQ
When you load to Sybase IQ, use the Sybase IQ external loader to perform insert operations. The Integration
Service can load multibyte data to Sybase IQ targets. The Integration Service can write to a flat file when the
Sybase IQ server is on the same machine or on a different machine as the Integration Service. The Integration
Service can write to a named pipe if the Integration Service is local to the Sybase IQ database server.

Rules and Guidelines for Sybase IQ External Loaders
Use the following rules and guidelines when you use external loaders to load to Sybase IQ:

• Ensure that target tables do not violate primary key constraints.

• Configure a Sybase IQ user with read/write access before you use a Sybase IQ external loader.

• Target flat files for a Sybase IQ external loader can be fixed-width or delimited.

• The Sybase IQ external loader cannot perform update or delete operations on targets.

• For a session with multiple partitions, use the round-robin partition type to route data to a single target
file.

• If the Integration Service and Sybase IQ server are on different machines, map or mount a drive from the
machine hosting the Integration Service to the machine hosting the Sybase IQ server.

Loading Multibyte Data to Sybase IQ
Use the following guidelines when you load multibyte data to Sybase IQ targets.

Delimited Flat File Targets
For delimited flat files, data precision is measured in characters. When you insert multibyte character data in
the target, you do not need to allow for additional precision for multibyte data. Sybase IQ does not allow
optional quotation marks. You must choose None for Optional Quotes if you have a delimited target flat file.

Loading to Sybase IQ 243

When you load multibyte data to Sybase IQ, null characters and delimiters can be up to four bytes each. To
avoid reading the delimiter as a regular character, each byte of the delimiter must have an ASCII value of less
than 0x40.

Fixed-Width Flat File Targets
For fixed-width flat files, data precision is measured in bytes, not characters. When you load multibyte data
into a fixed-width flat file target, configure the precision to accommodate the multibyte data. The Integration
Service writes the row to the reject file if the precision is not large enough to accommodate the multibyte
data.

Configuring Sybase IQ External Loader Attributes
You use an external loader connection type for Sybase IQ in PowerCenter. Provide the Sybase IQ database
login credentials with the connect string attributes.

The connect string for Sybase IQ 15.x must contain the following attributes:

uid=user ID; pwd=password; eng=Sybase IQ database server name
For example, you might use the following connect string:

uid=qasrvr65;pwd=qasrvr65;eng=SUNQA2SybaseIQ
Note: The session might fail if you use quotation marks in the connect string.

The following table describes the attributes for Sybase IQ external loader connections:

Attribute Default Value Description

Block Factor 10000 Number of records per block in the target Sybase table. The
external loader applies the block factor attribute to load operations
for fixed-width flat file targets only for Sybase IQ versions up to
15.x.

Block Size 50000 Size of blocks used in Sybase database operations. The external
loader applies the block size attribute to load operations for
delimited flat file targets only for Sybase IQ versions up to 15.x.

Checkpoint Enabled If enabled, the Sybase IQ database issues a checkpoint after
successfully loading the table. If disabled, the database issues no
checkpoints.

Notify Interval 1000 Number of rows the Sybase IQ external loader loads before it writes
a status message to the external loader log.

244 Chapter 18: External Loading

Attribute Default Value Description

Server Datafile Directory n/a The Sybase IQ server location that is accessible from the machine
that hosts the Integration Service. If you specify the target file
location, the Sybase IQ server might fail to access the file.
Specify this attribute relative to the database server installation
directory.
If the directory is in a Windows system, use a backslash (\) in the
directory path:
D:\mydirectory\inputfile.out
If the directory is in a UNIX system, use a forward slash (/) in the
directory path:
/mydirectory/inputfile.out
Enter the directory path by using the syntax for the machine hosting
the database server installation. For example, if the Integration
Service is on a Windows machine and the Sybase IQ server is on a
UNIX machine, use UNIX syntax.

External Loader Executable For Sybase
15.x: dbisql -
host<hostname
> -port<port
number>

Name of the Sybase IQ external loader executable. When you create
a Sybase IQ external loader connection, the Workflow Manager sets
the name of the external loader executable file to dbisql by default.
If you use an executable file with a different name, you must update
the External Loader Executable field. If the external loader
executable file directory is not in the system path, you must enter
the file path and file name in this field.

Is Staged Enabled Method of loading data. Select Is Staged to load data to a flat file
staging area before loading to the database. Clear the attribute to
load data from a named pipe. The Integration Service can write to a
named pipe if the Integration Service is local to the Sybase IQ
database.

Loading to Teradata
When you load to Teradata targets, use one of the following external loaders:

• Multiload. Performs insert, update, delete, and upsert operations for large volume incremental loads. Use
this loader when you run a session with a single partition. Multiload acquires table level locks, making it
appropriate for offline loading.

• TPump. Performs insert, update, delete, and upsert operations for relatively low volume updates. Use this
loader when you run a session with multiple partitions. TPump acquires row-hash locks on the table,
allowing other users to access the table as TPump loads to it.

• FastLoad. Performs insert operations for high volume initial loads, or for high volume truncate and reload
operations. Use this loader when you run a session with a single partition. Use this loader on empty tables
with no secondary indexes.

If you use a Teradata external loader to perform update or upsert operations, use the Target Update Override
option in the Mapping Designer to override the UPDATE statement in the external loader control file. For
upsert, the INSERT statement in the external loader control file remains unchanged.

Loading to Teradata 245

Rules and Guidelines for Teradata External Loaders
Use the following rules and guidelines when you use external loaders to load to Teradata:

• The Integration Service can use Teradata external loaders to load fixed-width and delimited flat files to a
Teradata database. Since all Teradata loaders delimit individual records using the line-feed (\n) character,
you cannot use the line-feed character as a delimiter for Teradata loaders.

• If a session contains one partition, the target output file name, including the file extension, must not
exceed 27 characters. If the session contains multiple partitions, the target output file name, including the
file extension, must not exceed 25 characters.

• You cannot use the Teradata external loaders to load binary data.

• When you load to Teradata using named pipes, set the checkpoint value to 0 to prevent external loaders
from performing checkpoint operations.

• You can specify error, log, or work table names, depending on the loader you use. You can also specify
error, log, or work database names.

• You can override the control file in the session properties.

• When you use Teradata, you can enter PmNullPasswd as the database password to prevent the password
from appearing in the control file. Instead, the Integration Service writes an empty string for the password
in the control file.

Overriding the Control File
When you edit the loader connection in a session, you can override the control file. You might want to
override the control file to change some loader properties that you cannot edit in the loader connection. For
example, you can specify the tracing option in the control file.

When you override the control file, the Workflow Manager saves the control file to the repository. The
Integration Service uses the saved control file when you run the session and for each subsequent session run
until you clear the control file attribute. If you change a target or loader connection setting after you edit the
control file, the control file does not include those changes. To include those changes, you must generate the
control file again and edit it.

If you do not override the control file, the Integration Service generates a new control file based on the
session and loader properties each time you run a session. The Integration Service generates the control file
in the output file directory. It overwrites each time you run the session.

Note: The Workflow Manager does not validate the control file syntax. Teradata verifies the control file syntax
when you run a session. If the control file is invalid, the session fails.

You can view the edited control file by opening the Control File Editor.

To override a control file:

1. In the Workflow Manager, open the session properties.

2. Click the Mapping tab and open the Transformations view.

3. Click the Targets node.

4. In the Connections settings, in the Value field, click Change.

5. In the Control File Content Override field, click Open.

The Control File Editor dialog box appears.

6. Click Generate.

The Workflow Manager generates the control file based on the session and loader properties.

7. Edit the generated control file and click OK to save the changes.

246 Chapter 18: External Loading

Creating User Variables in the Control File
When you configure MultiLoad or TPump external loader attributes, you can create user variables. User
variables are custom-defined substitution variables that you use in the control file. User variables capture
session specific information that may not be available in the connection object attributes. User variables are
often used for pre- or post-load processing.

You define the user variable name and substitution value in the connection object. In the control file, you add
the substitution variable prefix and the user variable name to the corresponding command. When you run the
session, the Integration Service replaces the substitution variable prefix and the user variable name in the
control file with the substitution value. If you change the substitution value after you edit the control file, the
control file uses the new value.

Use the following rules and guidelines when you create user variables:

• When you create the user variable, use the following syntax:

<User_Variable_Name>=<Substitution_Value>
• If you include spaces in the user variable name or the substitution value, the session may fail.

• When you add the user variable to the control file, use the following syntax:

:CF.<User_Variable_Name>

Example
After the Integration Service loads data to the target, you want to display the system date to an output file. In
the connection object, you configure the following user variable:

OutputFileName=output_file.txt
In the control file, you configure the following:

DISPLAY ‘&SYSDATE’ TO FILE ‘:CF.OutputFileName’
When you run the session, the Integration Service replaces :CF.OutputFileName with output_file.txt in the
control file.

Configuring Teradata MultiLoad External Loader Attributes
Use the following rules and guidelines when you work with the MultiLoad external loader:

• You can perform insert, update, delete, and upsert operations on targets. You can also use data driven
mode to perform insert, update, or delete operations based on an Update Strategy or Custom
transformation.

• For a session with multiple partitions, use the round-robin partition type to route data to a single target
file.

• If you invoke a greater number of sessions than the maximum number of concurrent sessions the
database allows, the session may hang. You can set the minimum value for Tenacity and Sleep to ensure
that sessions fail rather than hang.

To configure attributes for the Teradata MultiLoad external loader, click Connections > Loader, select the
Type, and click Edit.

Loading to Teradata 247

The following table shows the attributes that you configure for the Teradata MultiLoad external loader:

Attribute Default
Value

Description

TDPID n/a Teradata database ID.

Database Name n/a Optional database name. If you do not specify a database name, the Integration
Service uses the target table database name defined in the mapping.

Date Format n/a Date format. The date format in the connection object must match the date
format you define in the target definition. The Integration Service supports the
following date formats:
- DD/MM/YYYY
- MM/DD/YYYY
- YYYY/DD/MM
- YYYY/MM/DD

Error Limit 0 Total number of rejected records that MultiLoad can write to the MultiLoad
error tables. Uniqueness violations do not count as rejected records.
An error limit of 0 means that there is no limit on the number of rejected
records.

Checkpoint 10,000 Interval between checkpoints. You can set the interval to the following values:
- 60 or more. MultiLoad performs a checkpoint operation after it processes

each multiple of that number of records.
- 1–59. MultiLoad performs a checkpoint operation at the specified interval, in

minutes.
- 0. MultiLoad does not perform any checkpoint operation during the import

task.

Tenacity 10,000 Amount of time, in hours, MultiLoad tries to log in to the required sessions. If a
login fails, MultiLoad delays for the number of minutes specified in the Sleep
attribute, and then retries the login. MultiLoad keeps trying until the login
succeeds or the number of hours specified in the Tenacity attribute elapses.

Load Mode Upsert Mode to generate SQL commands: Insert, Delete, Update, Upsert, or Data
Driven.
When you select Data Driven loading, the Integration Service follows
instructions in an Update Strategy or Custom transformation to determine how
to flag rows for insert, delete, or update. The Integration Service writes a
column in the target file or named pipe to indicate the update strategy. The
control file uses these values to determine how to load data to the target. The
Integration Service uses the following values to indicate the update strategy:
0 - Insert
1 - Update
2 - Delete

Drop Error Tables Enabled Drops the MultiLoad error tables before beginning the next session. Select this
option to drop the tables, or clear it to keep them.

External Loader
Executable

mload Name and optional file path of the Teradata external loader executable. If the
external loader executable directory is not in the system path, you must enter
the full path.

248 Chapter 18: External Loading

Attribute Default
Value

Description

Max Sessions 1 Maximum number of MultiLoad sessions per MultiLoad job. Max Sessions must
be between 1 and 32,767.
Running multiple MultiLoad sessions causes the client and database to use
more resources. Therefore, setting this value to a small number may improve
performance.

Sleep 6 Number of minutes MultiLoad waits before retrying a login. MultiLoad tries
until the login succeeds or the number of hours specified in the Tenacity
attribute elapses.
Sleep must be greater than 0. If you specify 0, MultiLoad issues an error
message and uses the default value, 6 minutes.

Is Staged Disabled Method of loading data. Select Is Staged to load data to a flat file staging area
before loading to the database. Otherwise, the data is loaded to the database
using a named pipe.

Error Database n/a Error database name. Use this attribute to override the default error database
name. If you do not specify a database name, the Integration Service uses the
target table database.

Work Table
Database

n/a Work table database name. Use this attribute to override the default work table
database name. If you do not specify a database name, the Integration Service
uses the target table database.

Log Table Database n/a Log table database name. Use this attribute to override the default log table
database name. If you do not specify a database name, the Integration Service
uses the target table database.

User Variables n/a User-defined variable used in the default control file.

The following table shows the attributes that you configure when you override the Teradata MultiLoad
external loader connection object in the session properties:

Attribute Default
Value

Description

Error Table 1 n/a Table name for the first error table. Use this attribute to override the
default error table name. If you do not specify an error table name, the
Integration Service uses ET_<target_table_name>.

Error Table 2 n/a Table name for the second error table. Use this attribute to override the
default error table name. If you do not specify an error table name, the
Integration Service uses UV_<target_table_name>.

Work Table n/a Work table name overrides the default work table name. If you do not
specify a work table name, the Integration Service uses
WT_<target_table_name>.

Log Table n/a Log table name overrides the default log table name. If you do not specify
a log table name, the Integration Service uses ML_<target_table_name>.

Control File Content
Override

n/a Control file text. Use this attribute to override the control file the
Integration Service uses when it loads to Teradata.

Loading to Teradata 249

Configuring Teradata TPump External Loader Attributes
You can perform insert, update, delete, and upsert operations on targets. You can also use data driven mode
to perform insert, update, or delete operations based on an Update Strategy or Custom transformation.

If you run a session with multiple partitions, select a Teradata TPump external loader for each partition.

To configure attributes for the Teradata TPump external loader, click Connections > Loader, select the Type,
and click Edit.

The following table shows the attributes that you configure for the Teradata TPump external loader:

Attribute Default
Value

Description

TDPID n/a Teradata database ID.

Database Name n/a Optional database name. If you do not specify a database name, the
Integration Service uses the target table database name defined in the
mapping.

Error Limit 0 Limits the number of rows rejected for errors. When the error limit is
exceeded, TPump rolls back the transaction that causes the last error. An
error limit of 0 causes TPump to stop processing after any error.

Checkpoint 15 Number of minutes between checkpoints. You must set the checkpoint to a
value between 0 and 60.

Tenacity 4 Amount of time, in hours, TPump tries to log in to the required sessions. If
a login fails, TPump delays for the number of minutes specified in the
Sleep attribute, and then retries the login. TPump keeps trying until the
login succeeds or the number of hours specified in the Tenacity attribute
elapses.
To disable Tenacity, set the value to 0.

Load Mode Upsert Mode to generate SQL commands: Insert, Delete, Update, Upsert, or Data
Driven.
When you select Data Driven loading, the Integration Service follows
instructions in an Update Strategy or Custom transformation to determine
how to flag rows for insert, delete, or update. The Integration Service writes
a column in the target file or named pipe to indicate the update strategy.
The control file uses these values to determine how to load data to the
database. The Integration Service uses the following values to indicate the
update strategy:
0 - Insert
1 - Update
2 - Delete

Drop Error Tables Enabled Drops the TPump error tables before beginning the next session. Select
this option to drop the tables, or clear it to keep them.

External Loader
Executable

tpump Name and optional file path of the Teradata external loader executable. If
the external loader executable directory is not in the system path, you must
enter the full path.

Max Sessions 1 Maximum number of TPump sessions per TPump job. Each partition in a
session starts its own TPump job. Running multiple TPump sessions
causes the client and database to use more resources. Therefore, setting
this value to a small number may improve performance.

250 Chapter 18: External Loading

Attribute Default
Value

Description

Sleep 6 Number of minutes TPump waits before retrying a login. TPump tries until
the login succeeds or the number of hours specified in the Tenacity
attribute elapses.

Packing Factor 20 Number of rows that each session buffer holds. Packing improves network/
channel efficiency by reducing the number of sends and receives between
the target flat file and the Teradata database.

Statement Rate 0 Initial maximum rate, per minute, at which the TPump executable sends
statements to the Teradata database. If you set this attribute to 0, the
statement rate is unspecified.

Serialize Disabled Determines whether or not operations on a given key combination (row)
occur serially.
You may want to enable this if the TPump job contains multiple changes to
one row. Sessions that contain multiple partitions with the same key range
but different filter conditions may cause multiple changes to a single row.
In this case, you may want to enable Serialize to prevent locking conflicts
in the Teradata database, especially if you set the Pack attribute to a value
greater than 1.
If you enable Serialize, the Integration Service uses the primary key
specified in the target table as the Key column. If no primary key exists in
the target table, you must either clear this option or indicate the Key
column in the data layout section of the control file.

Robust Disabled When Robust is not selected, it signals TPump to use simple restart logic.
In this case, restarts cause TPump to begin at the last checkpoint. TPump
reloads any data that was loaded after the checkpoint. This method does
not have the extra overhead of the additional database writes in the robust
logic.

No Monitor Enabled When selected, this attribute prevents TPump from checking for statement
rate changes from, or update status information for, the TPump monitor
application.

Is Staged Disabled Method of loading data. Select Is Staged to load data to a flat file staging
area before loading to the database. Otherwise, the data is loaded to the
database using a named pipe.

Error Database n/a Error database name. Use this attribute to override the default error
database name. If you do not specify a database name, the Integration
Service uses the target table database.

Log Table Database n/a Log table database name. Use this attribute to override the default log
table database name. If you do not specify a database name, the
Integration Service uses the target table database.

User Variables n/a User-defined variable used in the default control file.

Loading to Teradata 251

The following table shows the attributes that you configure when you override the Teradata TPump external
loader connection object in the session properties:

Attribute Default
Value

Description

Error Table n/a Error table name. Use this attribute to override the default error table name.
If you do not specify an error table name, the Integration Service uses
ET_<target_table_name><partition_number>.

Log Table n/a Log table name. Use this attribute to override the default log table name. If
you do not specify a log table name, the Integration Service uses
TL_<target_table_name><partition_number>.

Control File Content
Override

n/a Control file text. Use this attribute to override the control file the
Integration Service uses when it loads to Teradata.

Configuring Teradata FastLoad External Loader Attributes
Use the following guidelines when you work with the FastLoad external loader:

• Each FastLoad job loads data to one Teradata database table. If you want to load data to multiple tables
using FastLoad, you must create multiple FastLoad jobs.

• For a session with multiple partitions, use the round-robin partition type to route data to a single target
file.

• The target table must be empty with no defined secondary indexes.

• FastLoad does not load duplicate rows from the output file to the target table in the Teradata database if
the target table has a primary key.

• If you load date values to the target table, you must configure the date format for the column in the target
table in the format YYYY-MM-DD.

• You cannot use FastLoad to load binary data.

• You can use comma (,), tab (\t), and pipe (|) as delimiters.

To configure attributes for the Teradata FastLoad external loader, click Connections > Loader, select the
Type, and click Edit.

The following table shows the attributes that you configure for the Teradata FastLoad external loader:

Attribute Default
Value

Description

TDPID n/a Teradata database ID.

Database Name n/a Database name.

Error Limit 1,000,000 Maximum number of rows that FastLoad rejects before it stops loading data to
the database table.

Checkpoint 0 Number of rows transmitted to the Teradata database between checkpoints. If
processing stops while a FastLoad job is running, you can restart the job at the
most recent checkpoint.
If you enter 0, FastLoad does not perform checkpoint operations.

252 Chapter 18: External Loading

Attribute Default
Value

Description

Tenacity 4 Number of hours FastLoad tries to log in to the required FastLoad sessions
when the maximum number of load jobs are already running on the Teradata
database. When FastLoad tries to log in to a new session, and the Teradata
database indicates that the maximum number of load sessions is already
running, FastLoad logs off all new sessions that were logged in, delays for the
number of minutes specified in the Sleep attribute, and then retries the login.
FastLoad keeps trying until it logs in for the required number of sessions or
exceeds the number of hours specified in the Tenacity attribute.

Drop Error Tables Enabled Drops the FastLoad error tables before beginning the next session. FastLoad
will not run if non-empty error tables exist from a prior job.
Select this option to drop the tables, or clear it to keep them.

External Loader
Executable

fastload Name and optional file path of the Teradata external loader executable. If the
external loader executable directory is not in the system path, you must enter
the full path.

Max Sessions 1 Maximum number of FastLoad sessions per FastLoad job. Max Sessions must
be between 1 and the total number of access module processes (AMPs) on the
system.

Sleep 6 Number of minutes FastLoad pauses before retrying a login. FastLoad tries
until the login succeeds or the number of hours specified in the Tenacity
attribute elapses.

Truncate Target
Table

Disabled Truncates the target database table before beginning the FastLoad job.
FastLoad cannot load data to non-empty tables.

Is Staged Disabled Method of loading data. Select Is Staged to load data to a flat file staging area
before loading to the database. Otherwise, the data is loaded to the database
using a named pipe.

Error Database n/a Error database name. Use this attribute to override the default error database
name. If you do not specify a database name, the Integration Service uses the
target table database.

The following table shows the attributes that you configure when you override the Teradata FastLoad
external loader connection object in the session properties:

Attribute Default
Value

Description

Error Table 1 n/a Table name for the first error table overrides the default error table name. If
you do not specify an error table name, the Integration Service uses
ET_<target_table_name>.

Error Table 2 n/a Table name for the second error table overrides the default error table name. If
you do not specify an error table name, the Integration Service uses
UV_<target_table_name>.

Control File Content
Override

n/a Control file text. Use this attribute to override the control file the Integration
Service uses when it loads to Teradata.

Loading to Teradata 253

Configuring External Loading in a Session
Before you can configure external loading in a session, you must create an external loader connection in the
Workflow Manager and configure the external loader attributes.

Complete the following steps to use an external loader for a session:

1. Configure the session to write to flat file instead of to a relational database.

2. Configure the file properties.

3. Select an external loader connection in the session properties.

Configuring a Session to Write to a File
To use an external loader, create the target definition in the mapping according to the target database type.
The session configures a relational target type by default. To select an external loader connection, you must
configure the session to write to a file instead of a relational target. To configure the session to write to a file,
change the writer type from relational writer to file writer. You change the writer type using the Writers
settings on the Mapping tab.

To change the writer type for the target, select the target instance and change the writer type from Relational
Writer to File Writer.

Configuring File Properties
After you configure the session to write to a file, you can set the file properties. You need to specify the
output file name and directory, and the reject file name and directory. You configure these properties in the
Properties settings on the Mapping tab. To set the file properties, select the target instance.

The following table shows the attributes in Properties settings:

Attribute Description

Output File Directory Name and path of the output file directory. Enter the directory name in this field. By
default, the Integration Service writes output files to the directory $PMTargetFileDir.
If you enter a full directory and file name in the Output Filename field, clear this field.
External loader sessions may fail if you use double spaces in the path for the output
file.

Output Filename Name of the output file. Enter the file name, or file name and path. By default, the
Workflow Manager names the target file based on the target definition used in the
mapping: target_name.out. External loader sessions may fail if you use double spaces
in the path for the output file.

Reject File Directory Name and path of the reject file directory. By default, the Integration Service writes all
reject files to the directory $PMBadFileDir.
If you enter a full directory and file name in the Reject Filename field, clear this field.

254 Chapter 18: External Loading

Attribute Description

Reject Filename Name of the reject file. Enter the file name, or file name and directory. The Integration
Service appends information in this field to that entered in the Reject File Directory
field. For example, if you have “C:/reject_file/” in the Reject File Directory field, and
enter “filename.bad” in the Reject Filename field, the Integration Service writes
rejected rows to C:/reject_file/filename.bad.
By default, the Integration Service names the reject file after the target instance name:
target_name.bad.
You can also enter a reject file session parameter to represent the reject file or the
reject file and directory. Name all reject file parameters $BadFileName.

Set File Properties Definition of flat file properties. When you use an external loader, you must define the
flat file properties by clicking the Set File Properties link.
For Oracle external loaders, the target flat file can be fixed-width or delimited.
For Sybase IQ external loaders, the target flat file can be fixed-width or delimited.
For Teradata external loaders, the target flat file must be fixed-width.
For IBM DB2 external loaders, the target flat file must be delimited.

Note: Do not select Merge Partitioned Files or enter a merge file name. You cannot merge partitioned output
files when you use an external loader.

Selecting an External Loader Connection
After you configure file properties, you can select the external loader connection. To select the external
loader connection, choose the connection type and the connection object. You configure connection options
in the Connections settings on the Mapping tab.

If the session contains multiple partitions, and you choose a loader that can load from multiple output files,
you can select a different connection for each partition, but each connection must be of the same type. For
example, you can select different Teradata TPump external loader connections for each partition, but you
cannot select a Teradata TPump connection for one partition and an Oracle connection for another partition.

If the session contains multiple partitions, and you choose a loader that can load from only one output file,
use round-robin partitioning to route data to a single target file. You can choose a loader for each connection,
but the Integration Service uses the connection for the first partition.

To select an external loader connection:

1. On the Mapping tab, select the target instance in the Navigator.

2. Select the Loader connection type.

3. Click the Open button in the Value field.

4. Select a connection object or variable:

• Use object. Select a loader connection object. Click the Override button to override connection
attributes. The attributes you can override vary according to loader type.

• Use connection variable. Use the $LoaderConnectionName session parameter, and define the
parameter in the parameter file. Override connection attributes in the parameter file.

5. Click OK.

Configuring External Loading in a Session 255

Troubleshooting External Loading

I am trying to set up a session to load data to an external loader, but I cannot select an external
loader connection in the session properties.

Verify that the mapping contains a relational target. When you create the session, select a file writer in the
Writers settings of the Mapping tab in the session properties. Then open the Connections settings and select
an external loader connection.

I am trying to run a session that uses TPump, but the session fails. The session log displays an
error saying that the Teradata output file name is too long.

The Integration Service uses the Teradata output file name to generate names for the TPump error and log
files and the log table name. To generate these names, the Integration Service adds a prefix of several
characters to the output file name. It adds three characters for sessions with one partition and five
characters for sessions with multiple partitions.

Teradata allows log table names of up to 30 characters. Because the Integration Service adds a prefix, if you
are running a session with a single partition, specify a target output file name with a maximum of 27
characters, including the file extension. If you are running a session with multiple partitions, specify a target
output file name with a maximum of 25 characters, including the file extension.

I tried to load data to Teradata using TPump, but the session failed. I corrected the error, but the
session still fails.

Occasionally, Teradata does not drop the log table when you rerun the session. Check the Teradata database,
and manually drop the log table if it exists. Then rerun the session.

256 Chapter 18: External Loading

C h a p t e r 1 9

FTP
This chapter includes the following topics:

• FTP Overview, 257

• Integration Service Behavior, 258

• Configuring FTP in a Session, 259

FTP Overview
You can configure a session to use File Transfer Protocol (FTP) to read from flat file or XML sources or write
to flat file or XML targets. The Integration Service can use FTP to access any machine it can connect to,
including mainframes. With both source and target files, use FTP to transfer the files directly or stage them in
a local directory. Access source files directly or use a file list to access indirect source files in a session.

To use FTP file sources and targets in a session, complete the following tasks:

1. Create an FTP connection object in the Workflow Manager and configure the connection attributes.

2. Configure the session to use the FTP connection object in the session properties.

Configure an FTP connection to use SSH File Transfer Protocol (SFTP) if you are connecting to an SFTP
server. SFTP enables file transfer over a secure data stream. The Integration Service creates an SSH2
transport layer that enables a secure connection and access to the files on an SFTP server.

Rules and Guidelines for Using FTP
Use the following guidelines when using FTP with flat file or XML sources and targets:

• Specify the source or target output directory in the session properties. If you do not specify a directory,
the Integration Service stages the file in the directory where the Integration Service runs on UNIX or in the
Windows system directory.

• You cannot run sessions concurrently if the sessions use the same FTP source file or target file located
on a mainframe.

• If you abort a workflow containing a session that stages an FTP source or target from a mainframe, you
may need to wait for the connection to timeout before you can run the workflow again.

• To run a session using an FTP connection for an SFTP server that requires public key authentication, the
public key and private key files must be accessible on nodes where the session will run.

257

Integration Service Behavior
The behavior of the Integration Service using FTP depends on the way you configure the FTP connection and
the session. The Integration Service can use FTP to access source and target files in the following ways:

• Source files. Stage source files on the machine hosting the Integration Service or access the source files
directly from the FTP host. Use a single source file or a file list that contains indirect source files for a
single source instance.

• Target files. Stage target files on the machine hosting the Integration Service or write to the target files
on the FTP host.

You can stage an FTP file to eliminate the risk of partial transfers due to network failure. Create staged files
on the machine that hosts the Integration Service. The Integration Service starts the read operation after the
FTP process creates the staged file. When you use FTP at the target, the FTP process starts after the
Integration Service writes the staged file. If the network fails before the staged file is complete, you can
delete the staged file and run the session again.

You can configure staging in the FTP connection object or through pre- or post-session shell commands.

Using FTP with Source Files
Use FTP in a session that reads flat file or XML file sources. You can stage the source files for a session on
the machine hosting the Integration Service. Use a single source file or a file list for each source instance.

When you stage source data, the Integration Service uses FTP to create a local file. It uses the local file as
the source for the session. The Integration Service does not move data into the pipeline until the staged file
is complete.

If you do not stage the source data, the Integration Service uses FTP to access the source file directly. If the
network fails, you must run the session again.

The following table describes the behavior of the Integration Service using FTP with source files:

Source Type Is Staged Integration Service Behavior

Direct Yes Integration Service copies the file from the FTP host to the machine hosting
the Integration Service after the session begins.

Direct No Integration Service uses FTP to access the source file directly.

Indirect Yes Integration Service reads the file list and copies the file list and the source
files to the machine hosting the Integration Service after the session begins.

Indirect No Integration Service copies the file list to the machine hosting the Integration
Service after the session begins. The Integration Service uses FTP to access
the source files directly.

Using FTP with Target Files
Use FTP in a session that writes to flat file or XML file targets. You can stage the target files on the machine
hosting the Integration Service before copying them to the FTP host.

When you stage target data, the Integration Service creates a target file locally and transfers it to the FTP
host when the session completes. If you do not stage the target file, the Integration Service writes directly to
the target file on the FTP host. If the network fails, you must run the session again.

258 Chapter 19: FTP

If you have the Partitioning option, use FTP for multiple target partition instances. You can write to multiple
target files or a merge file on the Integration Service or the FTP host.

Configuring FTP in a Session
Before you can configure a session to use FTP, you must create an FTP connection object in the Workflow
Manager. The Integration Service uses the FTP connection attributes to connect to the FTP server.

After you create an FTP connection in the Workflow Manager, you can configure a session to use FTP. To use
a secure connection, select an FTP connection object configured for SFTP. Use any session with flat file or
XML sources or targets.

To configure the session, complete the following tasks for each source and target that requires an FTP
connection:

• Select an FTP connection.

• Configure source file properties.

• Configure target file properties.

To stage the source or target file on the Integration Service machine, edit the FTP connection in the session
properties to configure the directory and file name for the staged file.

Configuring SFTP in a Session
To run a session using an FTP connection for an SFTP server that requires public key authentication, the
public key and private key files must be accessible on nodes where the session will run.

If the Integration Service is configured to run on primary and backup nodes, make the key files accessible on
each node configured to run the Integration Service process.

If the Integration Service is configured to run on a grid, make the key files accessible on each node
configured to run on the grid. If you cannot put the files on each node in the grid, create a resource in the
domain and assign it to each node where you put the files. When you create a session, configure it to use the
resource.

For example, create a custom resource called SFTP. When you create a session, you can require the session
to use the SFTP resource. The Load Balancer will only dispatch the session to nodes where the key files are
accessible.

Selecting an FTP Connection
To configure a session to use FTP, select the connection type and the connection object. Select an FTP
connection object for each source and target that will use the FTP connection. To use SFTP, select an FTP
connection object that is configured for SFTP. You configure connection options in the Connections settings
on the Mapping tab.

To select an FTP connection for a source or target instance:

1. On the Mapping tab, select the source or target instance in the Transformation view.

2. Select the FTP connection type.

3. Click the Open button in the Value field.

Configuring FTP in a Session 259

4. Select a connection object or variable:

• Use object. Select an FTP connection object. Click the Override button to override connection
attributes.

• Use connection variable. Use the $FTPConnectionName session parameter, and define the parameter
in the parameter file. Override connection attributes in the parameter file.

You can override the following attributes:

Attribute Description

Remote Filename The remote file name for the source or target. If you use an indirect source file, enter the
indirect source file name.
You must use 7-bit ASCII characters for the file name. The session fails if you use a
remote file name with Unicode characters.
If you enter a fully qualified name for the source file name, the Integration Service ignores
the path entered in the Default Remote Directory field. The session will fail if you enclose
the fully qualified file name in single or double quotation marks.
You can use a parameter or variable for the remote file name. Use any parameter or
variable type that you can define in the parameter file. For example, you can use a
session parameter, $ParamMyRemoteFile, as the source or target remote file name, and
set $ParamMyRemoteFile to the file name in the parameter file.

Is Staged Stages the source or target file on the Integration Service. Default is not staged.

Is Transfer Mode
ASCII

Changes the transfer mode. When enabled, the Integration Service uses ASCII transfer
mode. You can use ASCII mode when transferring files on Windows machines to ensure
that the end of line character is translated properly in text files. When disabled, the
Integration Service uses binary transfer mode. Use binary transfer mode when
transferring files on UNIX machines. Default is disabled.

5. Click OK.

Configuring Source File Properties
If you access source files with FTP, configure the source file properties after you choose the FTP connection
for the source instance. The source file properties determine the source file type and the staging location.
You can configure source file properties in the Properties settings on the Mapping tab.

If you stage the source file, select the source file name, directory, and file type.

If you do not stage the source file, specify the source file type. The Integration Service uses the remote file
name and directory from the FTP connection object and ignores the source file name and directory.

260 Chapter 19: FTP

The following table describes the source file properties on the Mapping tab:

Attribute Description

Source File Type Indicates whether the source file contains the source data or a list of files with the same
file properties. Choose Direct if the source file contains the source data. Choose Indirect if
the source file contains a list of files.

Source File Directory Name and path of the local source file directory used to stage the source data. By default,
the Integration Service uses the service process variable directory, $PMSourceFileDir, for
file sources. The Integration Service concatenates this field with the Source file name field
when it runs the session.
If you do not stage the source file, the Integration Service uses the file name and directory
from the FTP connection object.
The Integration Service ignores this field if you enter a fully qualified file name in the
Source file name field.

Source File Name Name of the local source file used to stage the source data. You can enter the file name or
the file name and path. If you enter a fully qualified file name, the Integration Service
ignores the Source file directory field.
If you do not stage the source file, the Integration Service uses the remote file name and
default directory from the FTP connection object.

Configuring Target File Properties
If you write to target files with FTP, specify the target file properties after you specify the FTP connection for
the target instance. The target file properties determine the reject file and directory and staging location.
Specify target file properties in the Properties settings on the Mapping tab.

If you stage the target file, configure the target file name and directory and the reject file name and directory.
If you do not stage the target file, configure the reject file and directory. The Integration Service uses the
remote file name and directory from the FTP connection object.

If you have the Partitioning option, you can also select merge file properties.

The following table describes the target file attributes on the Mapping tab:

Attribute Description

Output File Directory Name and path of the local target file directory used to stage the target data. By default, the
Integration Service uses the service process variable directory, $PMTargetFileDir. The
Integration Service concatenates this field with the Output file name field when it runs the
session.
If you do not stage the target file, the Integration Service uses the file name and directory
from the FTP connection object.
The Integration Service ignores this field if you enter a fully qualified file name in the Output
file name field.

Output File Name Name of the local target file used to stage the target data. You can enter the file name, or
the file name and path. If you enter a fully qualified file name, the Integration Service
ignores the Output file directory field.
If you do not stage the source file, the Integration Service uses the remote file name and
default directory from the FTP connection object.

Configuring FTP in a Session 261

Partitioning FTP File Targets
When you choose an FTP connection type for the partitioned targets in a session, you configure FTP settings
for the target partitions.

You can merge the target files or individual target files for each partition.

Use the following rules and guidelines when you configure FTP settings for target partitions:

• You must use an FTP connection for each target partition.

• You can choose to stage the files when selecting the connection object for the target partition. You must
stage the files to use sequential merge.

• If the FTP connections for the target partitions have any settings other than a remote file name, the
Integration Service does not create a merge file.

The following table describes the actions that Integration Service completes for partitioned FTP file targets:

Merge Type Integration Service Behavior

No Merge The Integration Service generates one target file for each partition. If you stage the files, the
Integration Service transfers the target files to the remote location at the end of the session.
If you do not stage the files, the Integration Service generates the target files at the remote
location.

Sequential Merge Enables the Is Staged option in the connection object. The Integration Service creates one
output file for each partition. At the end of the session, the Integration Service completes the
following actions:
1. Merges the individual output files into a merge file.
2. Deletes the individual output files.
3. Transfers the merge file to the remote location.

File List If you stage the files, the Integration Service creates the following files:
- Output file for each partition
- File list that contains the names and paths of the local files
- File list that contains the names and paths of the remote files
At the end of the session, the Integration Service transfers the files to the remote location. If
the individual target files are in the Merge File Directory, file list contains relative paths.
Otherwise, the file list contains absolute paths.
If you do not stage the files, the Integration Service writes the data for each partition at the
remote location and creates a remote file list that contains a list of the individual target files.
Use the file list as a source file in another mapping.

Concurrent Merge If you stage the files, the Integration Service concurrently writes the data for all target
partitions to a local merge file. At the end of the session, the Integration Service transfers the
merge file to the remote location. The Integration Service does not write to any intermediate
output files.
If you do not stage the files, the Integration Service concurrently writes the target data for all
partitions to a merge file at the remote location.

262 Chapter 19: FTP

C h a p t e r 2 0

Session Caches
This chapter includes the following topics:

• Session Caches Overview, 263

• Cache Memory, 264

• Cache Files, 265

• Configuring the Cache Size, 267

• Cache Partitioning, 270

• Aggregator Caches, 271

• Joiner Caches, 273

• Lookup Caches, 275

• Rank Caches, 277

• Sorter Caches, 278

• XML Target Caches, 279

• Optimizing the Cache Size, 279

Session Caches Overview
The Integration Service allocates cache memory for XML targets and Aggregator, Joiner, Lookup, Rank, and
Sorter transformations in a mapping. The Integration Service creates index and data caches for the XML
targets and Aggregator, Joiner, Lookup, and Rank transformations. The Integration Service stores key values
in the index cache and output values in the data cache. The Integration Service creates one cache for the
Sorter transformation to store sort keys and the data to be sorted.

You configure memory parameters for the caches in the session properties. When you first configure the
cache size, you can calculate the amount of memory required to process the transformation or you can
configure the Integration Service to automatically configure the memory requirements at run time.

After you run a session, you can tune the cache sizes for the transformations in the session. You can analyze
the transformation statistics to determine the cache sizes required for optimal session performance, and
then update the configured cache sizes.

If the Integration Service requires more memory than what you configure, it stores overflow values in cache
files. When the session completes, the Integration Service releases cache memory, and in most
circumstances, it deletes the cache files.

263

If the session contains multiple partitions, the Integration Service creates one memory cache for each
partition. In particular situations, the Integration Service uses cache partitioning, creating a separate cache
for each partition.

The following table describes the type of information that the Integration Service stores in each cache:

Mapping Object Cache Types and Descriptions

Aggregator - Index. Stores group values as configured in the group by ports.
- Data. Stores calculations based on the group by ports.

Joiner - Index. Stores all master rows in the join condition that have unique keys.
- Data. Stores master source rows.

Lookup - Index. Stores lookup condition information.
- Data. Stores lookup data that is not stored in the index cache.

Rank - Index. Stores group values as configured in the group by ports.
- Data. Stores ranking information based on the group by ports.

Sorter - Sorter. Stores sort keys and data.

XML Target - Index. Stores primary and foreign key information in separate caches.
- Data. Stores XML row data while it generates the XML target.

Cache Memory
The Integration Service creates each memory cache based on the configured cache size. When you create a
session, you can configure the cache sizes for each transformation instance in the session properties.

The Integration Service might increase the configured cache size for one of the following reasons:

• The configured cache size is less than the minimum cache size required to process the operation. The
Integration Service requires a minimum amount of memory to initialize each session. If the configured
cache size is less than the minimum required cache size, then the Integration Service increases the
configured cache size to meet the minimum requirement. If the Integration Service cannot allocate the
minimum required memory, the session fails.

• The configured cache size is not a multiple of the cache page size. The Integration Service stores cached
data in cache pages. The cached pages must fit evenly into the cache. Thus, if you configure 10 MB
(1,048,576 bytes) for the cache size and the cache page size is 10,000 bytes, then the Integration Service
increases the configured cache size to 1,050,000 bytes to make it a multiple of the 10,000-byte page size.

When the Integration Service increases the configured cache size, it continues to run the session and writes a
message similar to the following message in the session log:

MAPPING> TE_7212 Increasing [Index Cache] size for transformation <transformation name>
from <configured index cache size> to <new index cache size>.

Review the session log to verify that enough memory is allocated for the minimum requirements.

For optimal performance, set the cache size to the total memory required to process the transformation. If
there is not enough cache memory to process the transformation, the Integration Service processes some of
the transformation in memory and pages information to disk to process the rest.

264 Chapter 20: Session Caches

Use the following information to understand how the Integration Service handles memory caches differently
on 32-bit and 64-bit machines:

• An Integration Service process running on a 32-bit machine cannot run a session if the total size of all the
configured session caches is more than 2 GB. If you run the session on a grid, the total cache size of all
session threads running on a single node must not exceed 2 GB.

• If a grid has 32-bit and 64-bit Integration Service processes and a session exceeds 2 GB of memory, you
must configure the session to run on an Integration Service on a 64-bit machine.

Cache Files
When you run a session, the Integration Service creates at least one cache file for each transformation. If the
Integration Service cannot process a transformation in memory, it writes the overflow values to the cache
files.

The following table describes the types of cache files that the Integration Service creates for different
mapping objects:

Mapping Object Cache File

Aggregator, Joiner, Lookup, and
Rank transformations

The Integration Service creates the following types of cache files:
- One header file for each index cache and data cache
- One data file for each index cache and data cache

Sorter transformation The Integration Service creates one sorter cache file.

XML target The Integration Service creates the following types of cache files:
- One data cache file for each XML target group
- One primary key index cache file for each XML target group
- One foreign key index cache file for each XML target group

The Integration Service creates cache files based on the Integration Service code page.

When you run a session, the Integration Service writes a message in the session log indicating the cache file
name and the transformation name. When a session completes, the Integration Service releases cache
memory and usually deletes the cache files. You may find index and data cache files in the cache directory
under the following circumstances:

• The session performs incremental aggregation.

• You configure the Lookup transformation to use a persistent cache.

• The session does not complete successfully. The next time you run the session, the Integration Service
deletes the existing cache files and creates new ones.

Note: Since writing to cache files can slow session performance, configure the cache sizes to process the
transformation in memory.

Naming Convention for Cache Files
The Integration Service uses the different naming conventions for index, data, and sorter cache files.

Cache Files 265

The following table describes the naming convention for each type of cache file:

Cache Files Naming Convention

Data and sorter [<Name Prefix> | <prefix> <session ID>_<transformation ID>]_[partition index]_[OS]
[BIT].<suffix> [overflow index]

Index <prefix> <session id>_<transformation id>_<group id>_<key type>.<suffix> <overflow>

The following table describes the components of the cache file names:

File Name
Component

Description

Name Prefix Cache file name prefix configured in the Lookup transformation. For Lookup transformation
cache file.

Prefix Describes the type of transformation:
- Aggregator transformation is PMAGG.
- Joiner transformation is PMJNR.
- Lookup transformation is PMLKUP.
- Rank transformation is PMAGG.
- Sorter transformation is PMSORT.
- XML target is PMXML.

Session ID Session instance ID number.

Transformation ID Transformation instance ID number.

Group ID ID for each group in a hierarchical XML target. The Integration Service creates one index cache
for each group. For XML target cache file.

Key Type Type of key. Can be foreign key or primary key. For XML target cache file.

Partition Index If the session contains more than one partition, this identifies the partition number. The
partition index is zero-based, so the first partition has no partition index. Partition index 2
indicates a cache file created in the third partition.

OS Identifies the operating system of the machine running the Integration Service process:
- W is Windows.
- S is Solaris.
- A is AIX.
- L is Linux.
- M is Mainframe.
For Lookup transformation cache file.

BIT Identifies the bit platform of the machine running the Integration Service process: 32-bit or 64-
bit. For Lookup transformation cache file.

266 Chapter 20: Session Caches

File Name
Component

Description

Suffix Identifies the type of cache file:
- Index cache file is .idx0 for the header file and .idxn for the data files.
- Data cache file is .dat0 for the header file and .datn for the data files.
- Sorter cache file is .PMSORT().

Overflow Index If a cache file handles more than 2 GB of data, the Integration Service creates more cache
files. When creating these files, the Integration Service appends an overflow index to the file
name, such as PMAGG*.idx2 and PMAGG*.idx3. The number of cache files is limited by the
amount of disk space available in the cache directory.
Note: When the Sorter transformation cache file handles more than 2 GB of data, the
PowerCenter Integration Service does not create more cache files.

For example, the name of the data file for the index cache is PMLKUP748_2_5S32.idx1. PMLKUP identifies
the transformation type as Lookup, 748 is the session ID, 2 is the transformation ID, 5 is the partition index, S
(Solaris) is the operating system, and 32 is the bit platform.

Cache File Directory
The Integration Service creates the cache files by default in the $PMCacheDir directory. If the Integration
Service process does not find the directory, it fails the session and writes a message to the session log
indicating that it could not create or open the cache file.

The Integration Service may create multiple cache files. The number of cache files is limited by the amount of
disk space available in the cache directory.

If you run the Integration Service on a grid and only some Integration Service nodes have fast access to the
shared cache file directory, configure each session with a large cache to run on the nodes with fast access to
the directory. To configure a session to run on a node with fast access to the directory, complete the
following steps:

1. Create a PowerCenter resource.

2. Make the resource available to the nodes with fast access to the directory.

3. Assign the resource to the session.

If all Integration Service processes in a grid have slow access to the cache files, set up a separate, local
cache file directory for each Integration Service process. An Integration Service process may have faster
access to the cache files if it runs on the same machine that contains the cache directory.

Configuring the Cache Size
Configure the amount of memory for a cache in the session properties. The cache size specified in the
session properties overrides the value set in the transformation properties.

The amount of memory you configure depends on how much memory cache and disk cache you want to use.
If you configure the cache size and it is not enough to process the transformation in memory, the Integration
Service processes some of the transformation in memory and pages information to cache files to process
the rest of the transformation. For optimal session performance, configure the cache size so that the
Integration Service can process all data in memory.

Configuring the Cache Size 267

If the session is reusable, all instances of the session use the cache size configured in the reusable session
properties. You cannot override the cache size in the session instance.

Use one of the following methods to configure a cache size:

• Cache calculator. Use the calculator to estimate the total amount of memory required to process the
transformation.

• Auto cache memory. Use auto memory to specify a maximum limit on the cache size that is allocated for
processing the transformation. Use this method if the machine on which the Integration Service process
runs has limited cache memory.

• Numeric value. Configure a specific value for the cache size. Configure a specific value when you want to
tune the cache size.

You configure the memory requirements differently when the Integration Service uses cache partitioning. If
the Integration Service uses cache partitioning, it allocates the configured cache size for each partition. To
configure the memory requirements for a transformation with cache partitioning, calculate the total
requirements for the transformation and divide by the number of partitions.

The cache size requirements for a transformation may change when the inputs to the transformation change.
Monitor the cache sizes in the session logs on a regular basis to help you tune the cache size.

Calculating the Cache Size
Use the cache calculator to estimate the total amount of memory required to process the transformation.
You must provide inputs to calculate the cache size. The inputs depend on the type of transformation. For
example, to calculate the cache size for an Aggregator transformation, you supply the number of groups.

You can select one of the following modes in the cache calculator:

• Auto. Choose auto mode if you want the Integration Service to determine the cache size at run time based
on the maximum memory configured on the Config Object tab.

• Calculate. Select to calculate the total requirements for a transformation based on inputs. The cache
calculator requires different inputs for each transformation. You must select the applicable cache type to
apply the calculated cache size. For example, to apply the calculated cache size for the data cache and
not the index cache, select only the Data Cache Size option.

The cache calculator estimates the cache size required for optimal session performance based on your input.
After you configure the cache size and run the session, you can review the transformation statistics in the
session log to tune the configured cache size.

Note: You cannot use the cache calculator to estimate the cache size for an XML target.

Auto Cache Size
By default, the memory cache for a transformation is set to auto mode. The Integration Service automatically
allocates cache memory to all transformations that have their caches set to auto mode. You can set the
maximum amount of cache memory that the Integration Service can allocate to the transformations.

To set the maximum cache memory for transformations in auto cache mode, configure the following session
properties:

Maximum Memory Allowed for Auto Memory Attributes

Maximum amount of memory to allocate for the session cache. The Integration Service allocates
memory from the session cache to all transformations with cache memory set to auto. The default unit
is bytes. Append KB, MB, or GB to the value to specify other units. For example, 1048576 or 1024 KB or 1
MB.

268 Chapter 20: Session Caches

Maximum Percentage of Total Memory Allowed for Auto Memory Attributes

Percentage of machine memory to allocate for the session cache. The Integration Service allocates
memory from the session cache to all transformations with cache memory set to auto.

When you set the maximum cache size for the session, the Integration Service calculates the maximum
percentage of memory and compares that against the maximum amount of memory that you specify. Then it
allocates the lower amount of memory to transformations in auto cache mode. If multiple transformations
are in auto cache mode, the Integration Service allocates the memory to all transformations in auto cache
mode.

For example, the machine that hosts the Integration Service has 1 GB of memory. You set the Maximum
Memory Allowed for Auto Memory Attributes property to 800 MB. You also set the Maximum Percentage of
Total Memory Allowed for Auto Memory Attributes property to 10%. The Integration Service allocates 102.4
MB of memory to the session cache and divides the cache memory among all transformations in auto cache
mode.

The maximum session cache size you set affects only transformations with cache mode set to auto. The
Integration Service allocates memory separately to transformations for which you configure a specific cache
size.

If a session has multiple transformations that require caching, you can set the cache mode for some
transformations to auto and specify a cache size for other transformations. The Integration Service allocates
the memory specified for transformations in auto cache mode in addition to the memory it allocates to
transformations configured with numeric cache sizes.

For example, a session has three transformations that require caching. You set two transformations to auto
cache mode and specify a maximum memory cache size of 800 MB for the session. You also specify a cache
size of 500 MB for the third transformation. The Integration Service allocates a total of 1,300 MB of memory.

If the Integration Service uses cache partitioning, the Integration Service distributes the maximum cache size
specified for the auto cache memory across all transformations in the session and divides the cache memory
for each transformation among all of its partitions.

Configuring a Numeric Cache Size
You can configure a specific value for the cache size. You configure a specific value when you tune a cache
size. The first time you configure the cache size, you can use the cache calculator or auto cache memory.
After you configure the cache size and run the session, you can analyze the transformation statistics in the
session log to tune the cache size. The session log shows the cache size required to process the
transformation in memory without paging to disk. Use the cache size specified in the session log for optimal
session performance.

Steps to Configure the Cache Size
You can configure the cache size for a transformation in the session properties. When you configure the
cache size, you specify the total requirements for the transformation, unless the Integration Service uses
cache partitioning.

You configure the cache size differently if the Integration Services uses cache partitioning. To calculate the
cache size when the Integration Service uses cache partitioning, calculate the total requirements for the
transformation, and divide by the number of partitions.

To configure the cache size in the session:

1. In the Workflow Manager, open the session.

2. Click the Mapping tab.

Configuring the Cache Size 269

3. Select the mapping object in the left pane.

The right pane of the Mapping tab shows the object properties where you can configure the cache size.

4. Use one of the following methods to set the cache size:

Enter a value for the cache size, click OK, and then skip to step 8. If you enter a value, all values are in
bytes by default. However, you can enter a value and specify one of the following units: KB, MB, or GB. If
you enter the units, do not enter a space between the value and unit. For example, enter 350000KB,
200MB, or 1GB.

-or-

Enter ‘Auto’ for the cache size, click OK, and then skip to step 8.

-or-

Click the Open button to open the cache calculator.

5. Select a mode.

Select the Auto mode to limit the amount of cache allocated to the transformation. Skip to step 8.

-or-

Select the Calculate mode to calculate the total memory requirement for the transformation.

6. Provide the input based on the transformation type, and click Calculate.

Note: If the input value is too large and you cannot enter the value in the cache calculator, use auto
memory cache.

The cache calculator calculates the cache sizes in kilobytes.

7. If the transformation has a data cache and index cache, select Data Cache Size, Index Cache Size, or
both.

8. Click OK to apply the calculated values to the cache sizes you selected in step 7.

Cache Partitioning
When you create a session with multiple partitions, the Integration Service may use cache partitioning for the
Aggregator, Joiner, Lookup, Rank, and Sorter transformations. When the Integration Service partitions a
cache, it creates a separate cache for each partition and allocates the configured cache size to each
partition. The Integration Service stores different data in each cache, where each cache contains only the
rows needed by that partition. As a result, the Integration Service requires a portion of total cache memory
for each partition.

When the Integration Service uses cache partitioning, it accesses the cache in parallel for each partition. If it
does not use cache partitioning, it accesses the cache serially for each partition.

The following table describes the situations when the Integration Service uses cache partitioning for each
applicable transformation:

Transformation Description

Aggregator Transformation You create multiple partitions in a session with an Aggregator transformation. You do
not have to set a partition point at the Aggregator transformation.

Joiner Transformation You create a partition point at the Joiner transformation.

270 Chapter 20: Session Caches

Transformation Description

Lookup Transformation You create a hash auto-keys partition point at the Lookup transformation.

Rank Transformation You create multiple partitions in a session with a Rank transformation. You do not
have to set a partition point at the Rank transformation.

Sorter Transformation You create multiple partitions in a session with a Sorter transformation. You do not
have to set a partition point at the Sorter transformation.

Configuring the Cache Size for Cache Partitioning
You configure the memory requirements differently when the Integration Service uses cache partitioning. If
the Integration Service uses cache partitioning, it allocates the configured cache size for each partition. To
configure the memory requirements for a transformation with cache partitioning, calculate the total
requirements for the transformation and divide by the number of partitions.

For example, you create four partitions in a session with an Aggregator transformation. You determine that
an Aggregator transformation requires 400 MB of memory for the data cache. Configure 100 MB for the data
cache size for the Aggregator transformation. When you run the session, the Integration Service allocates
100 MB for each partition, using a total of 400 MB for the Aggregator transformation.

Use the cache calculator to calculate the total requirements for the transformation. If you use dynamic
partitioning, you can determine the number of partitions based on the dynamic partitioning method. If you
use dynamic partitioning based on the nodes in a grid, the Integration Service creates one partition for each
node. If you use dynamic partitioning based on the source partitioning, use the number of partitions in the
source database.

Aggregator Caches
The Integration Service uses cache memory to process Aggregator transformations with unsorted input.
When you run the session, the Integration Service stores data in memory until it completes the aggregate
calculations.

The Integration Service creates the following caches for the Aggregator transformation:

• Index cache. Stores group values as configured in the group by ports.

• Data cache. Stores calculations based on the group by ports.

By default, the Integration Service creates one memory cache and one disk cache for both the data and index
in the transformation.

When you create multiple partitions in a session with an Aggregator transformation, the Integration Service
uses cache partitioning. It creates one disk cache for all partitions and a separate memory cache for each
partition.

Incremental Aggregation
The first time you run an incremental aggregation session, the Integration Service processes the source. At
the end of the session, the Integration Service stores the aggregated data in two cache files, the index and
data cache files. The Integration Service saves the cache files in the cache file directory. The next time you

Aggregator Caches 271

run the session, the Integration Service aggregates the new rows with the cached aggregated values in the
cache files.

When you run a session with an incremental Aggregator transformation, the Integration Service creates a
backup of the Aggregator cache files in $PMCacheDir at the beginning of a session run. The Integration
Service promotes the backup cache to the initial cache at the beginning of a session recovery run. The
Integration Service cannot restore the backup cache file if the session aborts.

When you create multiple partitions in a session that uses incremental aggregation, the Integration Service
creates one set of cache files for each partition.

Configuring the Cache Sizes for an Aggregator Transformation
You configure the cache sizes for an Aggregator transformation with unsorted ports.

You do not need to configure cache memory for Aggregator transformations that use sorted ports. The
Integration Service uses system memory to process an Aggregator transformation with sorted ports.

The following table describes the input you provide to calculate the Aggregator cache sizes:

Option Name Description

Number of Groups Number of groups. The Aggregator transformation aggregates data by group. Calculate the
number of groups using the group by ports. For example, if you group by Store ID and Item ID,
you have 5 stores and 25 items, and each store contains all 25 items, then calculate the number
of groups as:

5 * 25 = 125 groups

Data Movement
Mode

The data movement mode of the Integration Service. The cache requirement varies based on the
data movement mode. Each ASCII character uses one byte. Each Unicode character uses two
bytes.

Enter the input and then click Calculate to calculate the data and index cache sizes. The calculated values
appear in the Data Cache Size and Index Cache Size fields.

Troubleshooting Aggregator Caches
Use the information in this section to help troubleshoot caching for an Aggregator transformation.

The following warning appears when I use the cache calculator to calculate the cache size for an
Aggregator transformation:

CMN_2019 Warning: The estimated data cache size assumes the number of aggregate
functions equals the number of connected output-only ports. If there are more aggregate
functions, increase the cache size to cache all data in memory.

You can use one or more aggregate functions in an Aggregator transformation. The cache calculator
estimates the cache size when the output is based on one aggregate function. If you use multiple aggregate
functions to determine a value for one output port, then you must increase the cache size.

Review the transformation statistics in the session log and tune the cache size for the Aggregator
transformation in the session.

272 Chapter 20: Session Caches

Joiner Caches
The Integration Service uses cache memory to process Joiner transformations. When you run a session, the
Integration Service reads rows from the master and detail sources concurrently and builds index and data
caches based on the master rows. The Integration Service performs the join based on the detail source data
and the cached master data.

The Integration Service stores a different number of rows in the caches based on the type of Joiner
transformation.

The following table describes the information that Integration Service stores in the caches for different types
of Joiner transformations:

Joiner
Transformation
Type

Index Cache Data Cache

Unsorted Input Stores all master rows in the join condition
with unique index keys.

Stores all master rows.

Sorted Input with
Different Sources

Stores 100 master rows in the join condition
with unique index keys.

Stores master rows that correspond to the
rows stored in the index cache. If the master
data contains multiple rows with the same
key, the Integration Service stores more than
100 rows in the data cache.

Sorted Input with
the Same Source

Stores all master or detail rows in the join
condition with unique keys. Stores detail
rows if the Integration Service processes the
detail pipeline faster than the master
pipeline. Otherwise, stores master rows. The
number of rows it stores depends on the
processing rates of the master and detail
pipelines. If one pipeline processes its rows
faster than the other, the Integration Service
caches all rows that have already been
processed and keeps them cached until the
other pipeline finishes processing its rows.

Stores data for the rows stored in the index
cache. If the index cache stores keys for the
master pipeline, the data cache stores the
data for master pipeline. If the index cache
stores keys for the detail pipeline, the data
cache stores data for detail pipeline.

If the data is sorted, the Integration Service creates one disk cache for all partitions and a separate memory
cache for each partition. It releases each row from the cache after it joins the data in the row.

If the data is not sorted and there is not a partition at the Joiner transformation, the Integration Service
creates one disk cache and a separate memory cache for each partition. If the data is not sorted and there is
a partition at the Joiner transformation, the Integration Service creates a separate disk cache and memory
cache for each partition. When the data is not sorted, the Integration Service keeps all master data in the
cache until it joins all data.

When you create multiple partitions in a session, you can use 1:n partitioning or n:n partitioning. The
Integration Service processes the Joiner transformation differently when you use 1:n partitioning and when
you use n:n partitioning.

1:n Partitioning
You can use 1:n partitioning with Joiner transformations with sorted input. When you use 1:n partitioning, you
create one partition for the master pipeline and more than one partition in the detail pipeline. When the
Integration Service processes the join, it compares the rows in a detail partition against the rows in the

Joiner Caches 273

master source. When processing master and detail data for outer joins, the Integration Service outputs
unmatched master rows after it processes all detail partitions.

n:n Partitioning
You can use n:n partitioning with Joiner transformations with sorted or unsorted input. When you use n:n
partitioning for a Joiner transformation, you create n partitions in the master and detail pipelines. When the
Integration Service processes the join, it compares the rows in a detail partition against the rows in the
corresponding master partition, ignoring rows in other master partitions. When processing master and detail
data for outer joins, the Integration Service outputs unmatched master rows after it processes the partition
for each detail cache.

Tip: If the master source has a large number of rows, use n:n partitioning for better session performance.

To use n:n partitioning, you must create multiple partitions in the session and create a partition point at the
Joiner transformation. You create the partition point at the Joiner transformation to create multiple partitions
for both the master and detail source of the Joiner transformation.

If you create a partition point at the Joiner transformation, the Integration Service uses cache partitioning. It
creates one memory cache for each partition. The memory cache for each partition contains only the rows
needed by that partition. As a result, the Integration Service requires a portion of total cache memory for each
partition.

Configuring the Cache Sizes for a Joiner Transformation
You can configure the index and data cache sizes for a Joiner transformation session properties.

When you use 1:n partitioning, the Integration Service replicates the memory cache for each partition. Each
partition requires as much memory as the total requirements for the transformation. When you configure the
cache size for the Joiner transformation with 1:n partitioning, set the cache size to the total requirements for
the transformation.

When you use n:n partitioning, each partition requires a portion of the total memory required to process the
transformation. When you configure the cache size for the Joiner transformation with n:n partitioning,
calculate the total requirements for the transformation, and then divide it by the number of partitions.

You can use the cache calculator to determine the cache size required to process the transformation. For
example, you use the cache calculator to determine that the Joiner transformation requires 2,000,000 bytes
of memory for the index cache and 4,000,000 bytes of memory for the data cache. You create four partitions
for the pipeline. If you use 1:n partitioning, configure 2,000,000 bytes for the index cache and 4,000,000 bytes
for the data cache. If you use n:n partitioning, configure 500,000 bytes for the index cache and 1,000,000
bytes for the data cache.

The following table describes the input you provide to calculate the Joiner cache sizes:

Input Description

Number of Master
Rows

Number of rows in the master source. Applies to a Joiner transformation with unsorted input.
The number of master rows does not affect the cache size for a sorted Joiner transformation.
Note: If rows in the master source share unique keys, the cache calculator overestimates the
index cache size.

Data Movement
Mode

The data movement mode of the Integration Service. The cache requirement varies based on the
data movement mode. ASCII characters use one byte. Unicode characters use two bytes.

Enter the input and then click Calculate to calculate the data and index cache sizes. The calculated values
appear in the Data Cache Size and Index Cache Size fields.

274 Chapter 20: Session Caches

Troubleshooting Joiner Caches
Use the information in this section to help troubleshoot caching for a Joiner transformation.

The following warning appears when I use the cache calculator to calculate the cache size for a
Joiner transformation with sorted input:

CMN_2020 Warning: If the master and detail pipelines of a sorted Joiner
transformation are from the same source, the Integration Service cannot determine how
fast it will process the rows in each pipeline. As a result, the cache size estimate may
be inaccurate.

The master and detail pipelines process rows concurrently. If you join data from the same source, the
pipelines may process the rows at different rates. If one pipeline processes its rows faster than the other, the
Integration Service caches all rows that have already been processed and keeps them cached until the other
pipeline finishes processing its rows. The amount of rows cached depends on the difference in processing
rates between the two pipelines.

The cache size must be large enough to store all cached rows to achieve optimal session performance. If the
cache size is not large enough, increase it.

Note: This message applies if you join data from the same source even though it also appears when you join
data from different sources.

The following warning appears when I use the cache calculator to calculate the cache size for a
Joiner transformation with sorted input:

CMN_2021 Warning: Increase the data cache size if the sorted Joiner transformation
processes master rows that share the same key. To determine the new cache size, divide
the existing cache size by 2.5 and multiply the result by the average number of master
rows per key.

When you calculate the cache size for the Joiner transformation with sorted input, the cache calculator bases
the estimated cache requirements on an average of 2.5 master rows for each unique key. If the average
number of master rows for each unique key is greater than 2.5, increase the cache size accordingly. For
example, if the average number of master rows for each unique key is 5 (double the size of 2.5), then double
the cache size calculated by the cache calculator.

Lookup Caches
If you enable caching in a Lookup transformation, the Integration Service builds a cache in memory to store
lookup data. When the Integration Service builds a lookup cache in memory, it processes the first row of data
in the transformation and queries the cache for each row that enters the transformation. If you do not enable
caching, the Integration Service queries the lookup source for each input row.

The result of the Lookup query and processing is the same, whether or not you cache the lookup source.
However, using a lookup cache can increase session performance. You can optimize performance by caching
the lookup source when the source is large.

If the lookup does not change between sessions, you can configure the transformation to use a persistent
lookup cache. When you run the session, the Integration Service rebuilds the persistent cache if any cache
file is missing or invalid.

Lookup Caches 275

The Integration Service creates the following caches for the Lookup transformation:

• Data cache. For a connected Lookup transformation, stores data for the connected output ports, not
including ports used in the lookup condition. For an unconnected Lookup transformation, stores data from
the return port.

• Index cache. Stores data for the columns used in the lookup condition.

The Integration Service creates disk and memory caches based on the lookup caching and partitioning
information.

The following table describes the caches that the Integration Service creates based on the cache and
partitioning information:

Lookup Conditions Disk Cache Memory Cache

- Static cache
- No hash auto-keys partition point

One disk cache for all partitions. One memory cache for each
partition.

- Dynamic cache
- No hash auto-keys partition point

One disk cache for all partitions. One memory cache for all partitions.

- Static or dynamic cache
- Hash auto-keys partition point

One disk cache for each partition. One memory cache for each
partition.

When you create multiple partitions in a session with a Lookup transformation and create a hash auto-keys
partition point at the Lookup transformation, the Integration Service uses cache partitioning.

When the Integration Service uses cache partitioning, it creates caches for the Lookup transformation when
the first row of any partition reaches the Lookup transformation. If you configure the Lookup transformation
for concurrent caches, the Integration Service builds all caches for the partitions concurrently.

Sharing Caches
The Integration Service handles shared lookup caches differently depending on whether the cache is static or
dynamic:

• Static cache. If two Lookup transformations share a static cache, the Integration Service does not
allocate additional memory for shared transformations in the same pipeline stage. For shared
transformations in different pipeline stages, the Integration Service does allocate additional memory.

Static Lookup transformations that use the same data or a subset of data to create a disk cache can
share the disk cache. However, the lookup keys may be different, so the transformations must have
separate memory caches.

• Dynamic cache. When Lookup transformations share a dynamic cache, the Integration Service updates
the memory cache and disk cache. To keep the caches synchronized, the Integration Service must share
the disk cache and the corresponding memory cache between the transformations.

Configuring the Cache Sizes for a Lookup Transformation
You can configure the cache sizes for the Lookup transformation in the session properties.

276 Chapter 20: Session Caches

The following table describes the input you provide to calculate the Lookup cache sizes:

Input Description

Number of Rows with
Unique Lookup Keys

Number of rows in the lookup source with unique lookup keys.

Data Movement Mode The data movement mode of the Integration Service. The cache requirement varies based
on the data movement mode. ASCII characters use one byte. Unicode characters use two
bytes.

Enter the input and then click Calculate to calculate the data and index cache sizes. The calculated values
appear in the Data Cache Size and Index Cache Size fields.

Rank Caches
The Integration Service uses cache memory to process Rank transformations. It stores data in rank memory
until it completes the rankings.

When the Integration Service runs a session with a Rank transformation, it compares an input row with rows
in the data cache. If the input row out-ranks a stored row, the Integration Service replaces the stored row with
the input row.

For example, you configure a Rank transformation to find the top three sales. The Integration Service reads
the following input data:

 SALES
10,000
12,210
5,000
2,455
6,324

The Integration Service caches the first three rows (10,000, 12,210, and 5,000). When the Integration Service
reads the next row (2,455), it compares it to the cache values. Since the row is lower in rank than the cached
rows, it discards the row with 2,455. The next row (6,324), however, is higher in rank than one of the cached
rows. Therefore, the Integration Service replaces the cached row with the higher-ranked input row.

If the Rank transformation is configured to rank across multiple groups, the Integration Service ranks
incrementally for each group it finds.

The Integration Service creates the following caches for the Rank transformation:

• Data cache. Stores ranking information based on the group by ports.

• Index cache. Stores group values as configured in the group by ports.

By default, the Integration Service creates one memory cache and disk cache for all partitions.

If you create multiple partitions for the session, the Integration Service uses cache partitioning. It creates one
disk cache for the Rank transformation and one memory cache for each partition, and routes data from one
partition to another based on group key values of the transformation.

Configuring the Cache Sizes for a Rank Transformation
You can configure the cache sizes for the Rank transformation in the session properties.

Rank Caches 277

The following table describes the input you provide to calculate the Rank cache sizes:

Input Description

Number of Groups Number of groups. The Rank transformation ranks data by group. Determine the number of
groups using the group by ports. For example, if you group by Store ID and Item ID, have 5 stores
and 25 items, and each store has all 25 items, then calculate the number of groups as:

5 * 25 = 125 groups

Number of Ranks Number items in the ranking. For example, if you want to rank the top 10 sales, you have 10
ranks. The cache calculator populates this value based on the value set in the Rank
transformation.

Data Movement
Mode

The data movement mode of the Integration Service. The cache requirement varies based on the
data movement mode. ASCII characters use one byte. Unicode characters use two bytes.

Enter the input and then click Calculate to calculate the data and index cache sizes. The calculated values
appear in the Data Cache Size and Index Cache Size fields.

Sorter Caches
The Integration Service uses cache memory to process Sorter transformations. The Integration Service
passes all incoming data into the Sorter transformation before it performs the sort operation.

The Integration Service creates a sorter cache to store sort keys and data while the Integration Service sorts
the data. By default, the Integration Service creates one memory cache and disk cache for all partitions.

If you create multiple partitions in the session, the Integration Service uses cache partitioning. It creates one
disk cache for the Sorter transformation and one memory cache for each partition. The Integration Service
creates a separate cache for each partition and sorts each partition separately.

If you do not configure the cache size to sort all of the data in memory, a warning appears in the session log,
stating that the Integration Service made multiple passes on the source data. The Integration Service makes
multiple passes on the data when it has to page information to disk to complete the sort. The message
specifies the number of bytes required for a single pass, which is when the Integration Service reads the data
once and performs the sort in memory without paging to disk. To increase session performance, configure
the cache size so that the Integration Service makes one pass on the data.

Configuring the Cache Size for a Sorter Transformation
You can configure the sorter cache for a Sorter transformation in the session properties.

The following table describes the input you provide to calculate the Sorter cache size:

Input Description

Number of Rows Number of rows.

Data Movement
Mode

The data movement mode of the Integration Service. The cache requirement varies based on the
data movement mode. ASCII characters use one byte. Unicode characters use two bytes.

278 Chapter 20: Session Caches

Enter the input and then click Calculate to calculate the sorter cache size. The calculated value appears in the
Sorter Cache Size field.

XML Target Caches
The Integration Service uses cache memory to create an XML target. The Integration Service stores the data
and XML hierarchies in cache memory while it generates the XML target.

The Integration Service creates the following types of caches for an XML target:

• Data cache. Stores XML row data while it generates an XML target document. Stores one data cache for
all groups.

• Index caches. Stores primary keys or foreign keys. Creates a primary key index cache and a foreign key
index cache for each group.

Configuring the Cache Size for an XML Target
You configure the cache size for an XML target in the target or session properties. By default, cache size is
set to “auto.” The Integration Service determines the required amount of cache memory at run-time.

You can also configure the cache size and specify the amount of cache memory in bytes. Complete the
following steps to calculate the cache size:

1. Estimate the number of rows in each group.

2. Use the following formula to calculate the cache size for each group:

Group cache size = Data cache size + Primary key index cache size + Foreign key
index cache size

3. Use the following formula to calculate the total cache size:

Total cache size = Sum(Cache size of all groups)

The following equation shows how to calculate the size of the data cache for a group:

(Number of rows in a group) x (Row size of the group)

The following equation shows how to calculate the size of the primary key tree size for a group:

(Number of rows in a group) x (Primary key index cache size)

The following equation shows how to calculate the size of the foreign key tree size for a group:

Sum ((Number of rows in parent group) x (Foreign key index cache size))

Note: You cannot use the cache calculator to configure the cache size for an XML target.

Optimizing the Cache Size
For optimal session performance, configure the cache size so that the Integration Service processes the
transformation in memory without paging to disk. Session performance decreases when the Integration
Service pages to disk.

When you use the cache calculator to calculate the cache size, the cache calculator estimates the cache size
required for optimal session performance based on your input. You can tune the estimate by using the cache

XML Target Caches 279

size specified in the session log. After you run the session, review the transformation statistics in the session
log to get the cache size.

For example, you run an Aggregator transformation called AGGTRANS. The session log contains the
following text:

MAPPING> TT_11031 Transformation [AGGTRANS]:
MAPPING> TT_11114 [AGGTRANS]: Input Group Index = [0], Input Row Count [110264]
MAPPING> TT_11034 [SQ_V_PETL]: Input - 110264
MAPPING> TT_11115 [AGGTRANS]: Output Group Index = [0]
MAPPING> TT_11037 [FILTRANS]: Output - 1098,Dropped - 0
MAPPING> CMN_1791 The index cache size that would hold [1098] aggregate groups of input
rows for [AGGTRANS], in memory, is [286720] bytes
MAPPING> CMN_1790 The data cache size that would hold [1098] aggregate groups of input
rows for [AGGTRANS], in memory, is [1774368] bytes

The log shows that the index cache requires 286,720 bytes and the data cache requires 1,774,368 bytes to
process the transformation in memory without paging to disk.

The cache size may vary depending on changes to the session or source data. Review the session logs after
subsequent session runs to monitor changes to the cache size.

You must set the tracing level to Verbose Initialization in the session properties to enable the Integration
Service to write the transformation statistics to the session log.

Note: The session log does not contain transformation statistics for a Sorter, a Joiner transformation with
sorted input, an Aggregator transformation with sorted input, or an XML target.

280 Chapter 20: Session Caches

C h a p t e r 2 1

Incremental Aggregation
This chapter includes the following topics:

• Incremental Aggregation Overview, 281

• Integration Service Processing for Incremental Aggregation, 282

• Reinitializing the Aggregate Files, 282

• Moving or Deleting the Aggregate Files, 283

• Partitioning Guidelines with Incremental Aggregation, 283

• Preparing for Incremental Aggregation, 284

Incremental Aggregation Overview
When using incremental aggregation, you apply captured changes in the source to aggregate calculations in
a session. If the source changes incrementally and you can capture changes, you can configure the session
to process those changes. This allows the Integration Service to update the target incrementally, rather than
forcing it to process the entire source and recalculate the same data each time you run the session.

For example, you might have a session using a source that receives new data every day. You can capture
those incremental changes because you have added a filter condition to the mapping that removes pre-
existing data from the flow of data. You then enable incremental aggregation.

When the session runs with incremental aggregation enabled for the first time on March 1, you use the entire
source. This allows the Integration Service to read and store the necessary aggregate data. On March 2, when
you run the session again, you filter out all the records except those time-stamped March 2. The Integration
Service then processes the new data and updates the target accordingly.

Consider using incremental aggregation in the following circumstances:

• You can capture new source data. Use incremental aggregation when you can capture new source data
each time you run the session. Use a Stored Procedure or Filter transformation to process new data.

• Incremental changes do not significantly change the target. Use incremental aggregation when the
changes do not significantly change the target. If processing the incrementally changed source alters
more than half the existing target, the session may not benefit from using incremental aggregation. In this
case, drop the table and recreate the target with complete source data.

Note: Do not use incremental aggregation if the mapping contains percentile or median functions. The
Integration Service uses system memory to process these functions in addition to the cache memory you
configure in the session properties. As a result, the Integration Service does not store incremental
aggregation values for percentile and median functions in disk caches.

281

Integration Service Processing for Incremental
Aggregation

The first time you run an incremental aggregation session, the Integration Service processes the entire
source. At the end of the session, the Integration Service stores aggregate data from that session run in two
files, the index file and the data file. The Integration Service creates the files in the cache directory specified
in the Aggregator transformation properties.

Each subsequent time you run the session with incremental aggregation, you use the incremental source
changes in the session. For each input record, the Integration Service checks historical information in the
index file for a corresponding group. If it finds a corresponding group, the Integration Service performs the
aggregate operation incrementally, using the aggregate data for that group, and saves the incremental
change. If it does not find a corresponding group, the Integration Service creates a new group and saves the
record data.

When writing to the target, the Integration Service applies the changes to the existing target. It saves
modified aggregate data in the index and data files to be used as historical data the next time you run the
session.

If the source changes significantly and you want the Integration Service to continue saving aggregate data
for future incremental changes, configure the Integration Service to overwrite existing aggregate data with
new aggregate data.

Each subsequent time you run a session with incremental aggregation, the Integration Service creates a
backup of the incremental aggregation files. The cache directory for the Aggregator transformation must
contain enough disk space for two sets of the files.

When you partition a session that uses incremental aggregation, the Integration Service creates one set of
cache files for each partition.

The Integration Service creates new aggregate data, instead of using historical data, when you perform one
of the following tasks:

• Save a new version of the mapping.

• Configure the session to reinitialize the aggregate cache.

• Move the aggregate files without correcting the configured path or directory for the files in the session
properties.

• Change the configured path or directory for the aggregate files without moving the files to the new
location.

• Delete cache files.

• Decrease the number of partitions.

When the Integration Service rebuilds incremental aggregation files, the data in the previous files is lost.

Note: To protect the incremental aggregation files from file corruption or disk failure, periodically back up the
files.

Reinitializing the Aggregate Files
If the source tables change significantly, you might want the Integration Service to create new aggregate
data, instead of using historical data. To have the Integration Service create new aggregate data, configure
the session to reinitialize the aggregate cache.

282 Chapter 21: Incremental Aggregation

For example, you can reinitialize the aggregate cache if the source for a session changes incrementally every
day and completely changes once a month. When you receive the new source data for the month, you might
configure the session to reinitialize the aggregate cache, truncate the existing target, and use the new source
table during the session.

After you run a session that reinitializes the aggregate cache, edit the session properties to disable the
Reinitialize Aggregate Cache option. If you do not clear Reinitialize Aggregate Cache, the Integration Service
overwrites the aggregate cache each time you run the session.

Note: When you move from Windows to UNIX, you must reinitialize the cache. Therefore, you cannot change
from a Latin1 code page to an MSLatin1 code page, even though these code pages are compatible.

Moving or Deleting the Aggregate Files
After you run an incremental aggregation session, avoid moving or modifying the index and data files that
store historical aggregate information.

If you move the files into a different directory, and you want the Integration Service to use the aggregate files,
you must also change the path to those files in the session properties. As well, if you change the path to the
files, but you do not move the files, the Integration Service rebuilds the files the next time you run the
session.

If you change certain session or Integration Service properties, the Integration Service cannot use the
incremental aggregation files, and it fails the session. To avoid session failure, delete existing incremental
aggregation files when you perform any of the following tasks:

• Change the Integration Service data movement mode from ASCII to Unicode or from Unicode to ASCII.

• Change the Integration Service code page to an incompatible code page.

• Change the session sort order when the Integration Service runs in Unicode mode.

• Change the Enable High Precision session option.

Finding Index and Data Files
By default, the Integration Service stores the index and data files in the directory entered in the process
variable, $PMCacheDir, in the Workflow Manager. The Integration Service names the index file PMAGG*.idx*.
The Integration Service names the data file PMAGG*.dat*.

When you run the session, the Integration Service writes the file names in the session log. To locate the files,
look in the previous session log for the SM_7034 and SM_7035 messages that indicate the cache file name
and location. The following messages show sample entries in the session log:

MAPPING> SM_7034 Aggregate Information: Index file is [C:\Informatica
\PowerCenter8.0\server\infa_shared\Cache\PMAGG8_4_2.idx2]
MAPPING> SM_7035 Aggregate Information: Data file is [C:\Informatica
\PowerCenter8.0\server\infa_shared\Cache\PMAGG8_4_2.dat2]

Partitioning Guidelines with Incremental Aggregation
When you use incremental aggregation in a session with multiple partitions, the Integration Service creates
one set of cache files for each partition.

Moving or Deleting the Aggregate Files 283

Use the following guidelines when you change the number of partitions or the cache directory:

• Change the cache directory for a partition. If you change the directory for a partition and you want the
Integration Service to reuse the cache files, you must move the cache files for the partition associated
with the changed directory.

- If you change the directory for the first partition, and you do not move the cache files, the Integration
Service rebuilds the cache files for all partitions.

- If you change the directory for partitions 2-n, and you do not move the cache files, the Integration Service
rebuilds the cache files that it cannot locate.

• Decrease the number of partitions. If you delete a partition and you want the Integration Service to reuse
the cache files, you must move the cache files for the deleted partition to the directory configured for the
first partition. If you do not move the files to the directory of the first partition, the Integration Service
rebuilds the cache files that it cannot locate.

Note: If you increase the number of partitions, the Integration Service realigns the index and data cache
files the next time you run a session. It does not need to rebuild the files.

• Move cache files. If you move cache files for a partition and you want the Integration Service to reuse the
files, you must also change the partition directory. If you do not change the directory, the Integration
Service rebuilds the files the next time you run a session.

• Delete cache files. If you delete cache files, the Integration Service rebuilds them the next time you run a
session.

If you change the number of partitions and the cache directory, you may need to move cache files for both.
For example, if you change the cache directory for the first partition and you decrease the number of
partitions, you need to move the cache files for the deleted partition and the cache files for the partition
associated with the changed directory.

Preparing for Incremental Aggregation
When you use incremental aggregation, you need to configure both mapping and session properties:

• Implement mapping logic or filter to remove pre-existing data.

• Configure the session for incremental aggregation and verify that the file directory has enough disk space
for the aggregate files.

Configuring the Mapping
Before enabling incremental aggregation, you must capture changes in source data. You can use a Filter or
Stored Procedure transformation in the mapping to remove pre-existing source data during a session.

284 Chapter 21: Incremental Aggregation

Configuring the Session
Use the following guidelines when you configure the session for incremental aggregation:

• Verify the location where you want to store the aggregate files. The index and data files grow in
proportion to the source data. Be sure the cache directory has enough disk space to store historical data
for the session.

When you run multiple sessions with incremental aggregation, decide where you want the files stored.
Then, enter the appropriate directory for the process variable, $PMCacheDir, in the Workflow Manager.
You can enter session-specific directories for the index and data files. However, by using the process
variable for all sessions using incremental aggregation, you can easily change the cache directory when
necessary by changing $PMCacheDir.

Changing the cache directory without moving the files causes the Integration Service to reinitialize the
aggregate cache and gather new aggregate data.

In a grid, Integration Services rebuild incremental aggregation files they cannot find. When an Integration
Service rebuilds incremental aggregation files, it loses aggregate history.

• Verify the incremental aggregation settings in the session properties. You can configure the session for
incremental aggregation in the Performance settings on the Properties tab.

You can also configure the session to reinitialize the aggregate cache. If you choose to reinitialize the
cache, the Workflow Manager displays a warning indicating the Integration Service overwrites the existing
cache and a reminder to clear this option after running the session.

Note: You cannot use incremental aggregation when the mapping includes an Aggregator transformation
with Transaction transformation scope. The Workflow Manager marks the session invalid.

Preparing for Incremental Aggregation 285

C h a p t e r 2 2

Session Log Interface
This chapter includes the following topics:

• Session Log Interface Overview, 286

• Implementing the Session Log Interface, 286

• Functions in the Session Log Interface, 287

• Session Log Interface Example, 291

Session Log Interface Overview
By default, the Integration Service writes session events to binary log files on the node where the service
process runs. In addition, the Integration Service can pass the session event information to an external
library. In the external shared library, you can provide the procedure for how the Integration Service writes the
log events.

PowerCenter provides access to the session event information through the Session Log Interface. When you
create the shared library, you implement the functions provided in the Session Log Interface.

When the Integration Service writes the session events, it calls the functions specified in the Session Log
Interface. The functions in the shared library you create must match the function signatures defined in the
Session Log Interface.

Implementing the Session Log Interface
To configure the Integration Service to use a custom procedure for handling session event information,
complete the following steps:

1. Create a shared library that implements the Session Log Interface.

2. When you configure the Integration Service properties on the Administrator tool, set the
ExportSessionLogLibName property to the name of the shared library that you create.

The Integration Service and the Session Log Interface
When you set the ExportSessionLogLibName property of the Integration Service to the name of a shared
library, the Integration Service performs the procedures defined in the shared library in addition to creating
the event log files.

286

The Integration Service uses the shared library in the following manner:

1. The Integration Service loads the shared library and calls the INFA_InitSessionLog() function before it
logs the first event in the session.

2. Each time the Integration Service logs an event to the session log file, it calls the
INFA_OutputSessionLog() function to pass the message, codes, and session information to the shared
library.

3. When the session completes and the last event is logged, the Integration Service calls the
INFA_EndSessionLog() and then unloads the shared library.

To ensure that the shared library can be correctly called by the Integration Service, follow the guidelines for
writing the shared library.

Rules and Guidelines for Implementing the Session Log Interface
Use the following rules and guidelines when you write the code to implement the Session Log Interface:

• You must implement all the functions in the Session Log Interface.

• All calls from the Integration Service to the functions in the Session Log Interface are serialized except for
abnormal termination. The Integration Service makes the calls to the functions as it logs events to the
session log. Therefore, when you implement the functions in the Session Log Interface, you do not need to
use mutex objects to ensure that only one thread executes a section of code at a time.

• When you implement the Session Log Interface in UNIX, do not perform any signal handling within the
functions. This ensures that the functions do not interfere with the way that PowerCenter handles signals.
Do not register or unregister any signal handlers.

• Since the Integration Service is a multi-threaded process, you must compile the shared library as a multi-
threaded library so that it can be loaded correctly.

Functions in the Session Log Interface
The functions in the Session Log Interface do not return values. Therefore, a session cannot fail because of
an Integration Service call to a function in the Session Log Interface.

The following table describes the functions in the Session Log Interface:

Function Description

INFA_InitSessionLog Provides information about the session for which the Integration Service will
write the event logs.

INFA_OutputSessionLogMsg Called each time an event is logged. Passes the information about the event.

INFA_OutputSessionLogFatalMsg Called when the last event is logged before an abnormal termination.

INFA_EndSessionLog Called after the last message is sent to the session log and the session
terminates normally.

INFA_AbnormalSessionTermination Called after the last message is sent to the session log and the session
terminates abnormally.

Functions in the Session Log Interface 287

The functions described in this section use the time structures declared in the standard C header file time.h.
The functions also assume the following declarations:

typedef int INFA_INT32;

typedef unsigned int INFA_UINT32;

typedef unsigned short INFA_UNICHAR;

typedef char INFA_MBCSCHAR;

typedef int INFA_MBCS_CODEPAGE_ID;

INFA_InitSessionLog
void INFA_InitSessionLog(void ** dllContext,

 const INFA_UNICHAR * sServerName,

 const INFA_UNICHAR * sFolderName,

 const INFA_UNICHAR * sWorkflowName,

 const INFA_UNICHAR * sessionHierName[]);
The Integration Service calls the INFA_InitSessionLog function before it writes any session log event. The
parameters passed to this function provide information about the session for which the Integration Service
will write the event logs.

INFA_InitSessionLog has the following parameters:

Parameter Data Type Description

dllContext Unspecified User-defined information specific to the shared library. This
parameter is passed to all functions in subsequent function calls.
You can use this parameter to store information related to network
connection or to allocate memory needed during the course of
handling the session log output. The shared library must allocate
and deallocate any memory associated with this parameter.

sServerName unsigned short Name of the Integration Service running the session.

sFolderName unsigned short Name of the folder that contains the session.

sWorkflowName unsigned short Name of the workflow associated with the session

sessionHierName[] unsigned short array Array that contains the session hierarchy. The array includes the
repository, workflow, and worklet (if any) to which the session
belongs. The size of the array divided by the size of the pointer
equals the number of array elements.

INFA_OutputSessionLogMsg
void INFA_OutputSessionLogMsg(

 void * dllContext,

 time_t curTime,

 INFA_UINT32 severity,

288 Chapter 22: Session Log Interface

 const INFA_UNICHAR * msgCategoryName,

 INFA_UINT32 msgCode,

 const INFA_UNICHAR * msg,

 const INFA_UNICHAR * threadDescription);
The Integration Service calls this function each time it logs an event. The parameters passed to the function
include the different elements of the log event message. You can use the parameters to customize the
format for the log output or to filter out messages.

INFA_OutputSessionLogMsg has the following parameters:

Parameter Data Type Description

dllContext Unspecified User-defined information specific to the shared library. You can use this
parameter to store information related to network connection or to
allocate memory needed during the course of handling the session log
output. The shared library must allocate and deallocate any memory
associated with this parameter.

curTime time_t Time that the Integration Service logs the event.

severity unsigned int Code that indicates the type of the log event message. The event logs
use the following severity codes:
32: Debug Messages
 8: Informational Messages
 2: Error Messages

msgCategoryName constant
unsigned short

Code prefix that indicates the category of the log event message.
In the following example message, the string BLKR is the value passed
in the msgCategoryName parameter.

READER_1_1_1> BLKR_16003 Initialization completed
successfully.

msgCode unsigned int Number that identifies the log event message.
In the following example message, the string 16003 is the value passed
in the msgCode parameter.

READER_1_1_1> BLKR_16003 Initialization completed
successfully.

msg constant
unsigned short

Text of the log event message.
In the following example message, the string Initialization completed
successfully is the value passed in the msg parameter.

READER_1_1_1> BLKR_16003 Initialization completed
successfully.

threadDescription constant
unsigned short

Code that indicates which thread is generating the event log.
In the following example message, the string READER_1_1_1 is the value
passed in the threadDescription parameter.

READER_1_1_1> BLKR_16003 Initialization completed
successfully.

Functions in the Session Log Interface 289

INFA_OutputSessionLogFatalMsg
void INFA_OutputSessionLogFatalMsg(void * dllContext, const char * msg);

The Integration Service calls this function to log the last event before an abnormal termination. The
parameter msg is MBCS characters in the Integration Service code page.

When you implement this function in UNIX, make sure that you call only asynchronous signal safe functions
from within this function.

INFA_OutputSessionLogFatalMsg has the following parameters:

Parameter Data Type Description

dllContext Unspecified User-defined information specific to the shared library. You can use this
parameter to store information related to network connection or to
allocate memory needed during the course of handling the session log
output. The shared library must allocate and deallocate any memory
associated with this parameter.

msg constant char Text of the error message. Typically, these messages are assertion
error messages or operating system error messages.

INFA_EndSessionLog
void INFA_EndSessionLog(void * dllContext);

The Integration Service calls this function after the last message is sent to the session log and the session
terminates normally. You can use this function to perform clean up operations and release memory and
resources.

INFA_EndSessionLog has the following parameter:

Parameter Data Type Description

dllContext Unspecified User-defined information specific to the shared library. You can use
this parameter to store information related to network connection or
to allocate memory needed during the course of handling the
session log output. The shared library must allocate and deallocate
any memory associated with this parameter.

INFA_AbnormalSessionTermination
void INFA_AbnormalSessionTermination(void * dllContext);

The Integration Service calls this function after the last message is sent to the session log and the session
terminates abnormally. The Integration Service calls this function after it calls the
INFA_OutputSessionLogFatalMsg function. If the Integration Service calls this function, then it does not call
INFA_EndSessionLog.

For example, the Integration Service calls this function when the DTM aborts or times out. In UNIX, the
Integration Service calls this function when a signal exception occurs.

Include only minimal functionality when you implement this function. In UNIX, make sure that you call only
asynchronous signal safe functions from within this function.

290 Chapter 22: Session Log Interface

INFA_AbnormalSessionTermination has the following parameter:

Parameter Data Type Description

dllContext Unspecified User-defined information specific to the shared library. You can use
this parameter to store information related to network connection or
to allocate memory needed during the course of handling the
session log output. The shared library must allocate and deallocate
any memory associated with this parameter.

Session Log Interface Example
Informatica provides a sample program that uses the Session Log Interface. The sample program sends
session log events to a text file called sesslog.log. You can view the sample program to gain more
understanding about how to use the Session Log Interface to handle session log events based on your
requirements. You can also compile the sample program and build an external library to send session log
events to a text file.

The session log sample program is available when you install the PowerCenter SDK files from the Informatica
Development Platform installer. By default, the session log sample program is installed in the following
directory:

<SDKInstallationDir>/SessionLog_API/samples

Building the External Session Log Library
Use the make files provided with the sample program demo_sesslog.cpp to build the external library. The
command to compile the library depends on the platform on which you build it.

Building the Library in UNIX
The following table shows the command to build the library on the different platforms:

Platform Compiler Command

Solaris CC make -f makefile_sol

HP-UX aCC make -f makefile_hpux

HP-UX 64 bit aCC make -f makefile_hpux64

AIX xCl_r make -f makefile_aix

AIX 64 bit xCl_r make -f makefile_aix64

Linux g++ make -f makefile_linux

Building the Library in Windows
Use Microsoft Visual C++ 6.0 to build the sample session log library in Windows. Open the sample program
demo_sesslog.dsw in Visual C++ 6.0 and build the project.

Session Log Interface Example 291

Using the External Session Log Library
After you build the library, you can use it to write the output of the session log into a file.

To use the sample external session log library, complete the following steps:

1. Log in to the Administrator tool and select the Integration Service for which you want to set up the
session log file.

2. On the Properties tab of the Integration Service, edit the configuration properties.

3. Set the ExportSessionLogLibName property to the path and file name of the session log library you
created from the session log sample program.

292 Chapter 22: Session Log Interface

C h a p t e r 2 3

Understanding Buffer Memory
This chapter includes the following topics:

• Understanding Buffer Memory Overview, 293

• Automatic Buffer Memory Settings, 294

• Configuring Buffer Memory, 294

• Configuring Session Cache Memory, 295

Understanding Buffer Memory Overview
When you run a session, the Integration Service process starts the Data Transformation Manager (DTM). The
DTM allocates buffer memory to the session at run time based on the DTM Buffer Size setting in the session
properties.

The DTM divides the memory into buffer blocks as configured in the Default Buffer Block Size setting in the
session properties. The reader, transformation, and writer threads use buffer blocks to move data from
sources to targets. The buffer block size should be larger than the precision for the largest row of data in a
source or target.

The Integration Service allocates at least two buffer blocks for each source and target in a partition. For XML
sources and targets, the buffer blocks must be at least twice the number of groups in the sources and
targets. An XML reader with denormalized columns and XML schemas with circular references may require
additional buffer blocks.

You configure buffer memory settings by adjusting the following session properties:

DTM Buffer Size

The DTM buffer size specifies the amount of buffer memory that the Integration Service uses when the
DTM processes a session. Configure the DTM buffer size on the Properties tab in the session properties.

Default Buffer Block Size

The buffer block size specifies the amount of buffer memory used to move a block of data from the
source to the target. Configure the buffer block size on the Config Object tab in the session properties.

The Integration Service calculates a minimum memory allocation for the buffer memory and buffer blocks. By
default, the Integration Service allocates 64,000 bytes per block or the size of the largest row of any source or
target in the mapping, whichever is larger.

If the DTM cannot allocate the configured amount of buffer memory for the session, the session cannot
initialize. Usually, you do not need more than 1 GB for the buffer memory.

293

You can manually set a value for the buffer size, or you can configure the session to allow the Integration
Service to determine the buffer memory size that the session requires.

Automatic Buffer Memory Settings
At initialization, the DTM allocates the buffer memory that the session will use at run time. You can configure
the Integration Service to automatically allocate the buffer memory size or you can set the memory buffer
and block size.

By default, the PowerCenter Integration Service automatically calculates the buffer memory required for a
session based on the transformation requirements and the sources and targets in the mapping. The
calculation is not based on the amount of memory on the host machine or on how much of that memory is
available. In some cases, the PowerCenter Integration Service might allocate only a small portion of the
available memory to the session.

If the buffer memory automatically calculated by the PowerCenter Integration Service does not appear to
produce the memory footprint that you expect for a session, you can specify the size of the buffer memory
and the size of the blocks that the PowerCenter Integration Service allocates to the session.

Related Topics:
• “Session Caches Overview” on page 263

Using Session Configuration Objects for Memory Configuration
You can use session configuration objects to configure memory settings for multiple sessions. You can set a
different memory setting for each session configuration object.

Each folder in the repository has a default session configuration object that contains session properties such
as commit and load settings, log options, and error handling settings. When you create a session, the
Workflow Manager applies the default configuration object settings to the session. You can also choose a
configuration object to use for the session.

You can create multiple configuration objects if you want to apply different configuration settings to multiple
sessions. For example, you might configure memory settings in the session configuration object when you
migrate from a test to a production environment or when you have multiple sessions with different automatic
memory requirements.

Configuring Buffer Memory
The Integration Service can determine the memory requirements for a session or you can manually set the
DTM buffer size and the default buffer block size.

You can configure the buffer memory settings in the session properties.

1. Open the session, and click the Config Object tab.

2. Enter a value for the Default Buffer Block Size.

You can specify auto or a numeric value.

294 Chapter 23: Understanding Buffer Memory

The default unit is bytes. Append KB, MB, or GB to the value to specify other units. For example, 1048576
or 1024KB or 1MB.

3. Click the Properties tab.

4. Enter a value for the DTM buffer size.

You can specify auto or a numeric value. If the session requires more memory than what you set for the
DTM buffer size, session performance decreases and the session can fail.

The default unit is bytes. Append KB, MB, or GB to the value to specify other units. For example, 1048576
or 1024KB or 1MB.

Configuring Session Cache Memory
The Integration Service can determine memory requirements for the following session caches:

• Lookup transformation index and data caches

• Aggregator transformation index and data caches

• Rank transformation index and data caches

• Joiner transformation index and data caches

• Sorter transformation cache

• XML target cache

You can configure auto for the index and data cache size in the transformation properties or on the mappings
tab of the session properties.

Session Cache Limits
The Integration Service uses the session cache to allocate memory for transformations that have memory
cache set to auto mode. You can limit the amount of memory in the session cache. When you limit the
session cache, you limit the amount of memory the Integration Service can use for the session so that some
memory remain for other processes.

You must specify the cache memory limit both as a numeric value and as a percentage of total memory. The
Integration Service bases the percentage value on the total physical memory of the machine where the
Integration Service runs.

The Integration Service compares the numeric value and the percentage value to determine which value is
lower. It uses the lower value as the total memory to allocate to the session cache.

The following attributes of the session configuration object set limits to the memory cache allocated for the
session:

Maximum Memory Allowed for Auto Memory Attributes

Amount of memory to allocate for the session cache. The total auto cache memory cannot exceed the
value of this property even if the percentage of the machine memory used is less than the value in the
Maximum Percentage of Total Memory Allowed for Auto Memory Attributes property. This situation can
occur when a session runs on a machine with a large amount of physical memory.

Maximum Percentage of Total Memory Allowed for Auto Memory Attributes

Percentage of machine memory to allocate for the session cache. The total auto cache memory cannot
exceed this percentage even if the value in the Maximum Memory Allowed for Auto Memory Attributes

Configuring Session Cache Memory 295

property is higher. This situation can occur when a session runs on a machine with very little physical
memory.

The Integration Service allocates memory from the session cache to all transformations with cache memory
set to auto. It divides the memory among all transformations caches.

For example, you configure automatic caching for three Lookup transformations in a session. Then, you
configure a memory cache limit of 500 MB for the session. When you run the session, the Integration Service
divides the 500 MB of allocated memory among the index and data caches for all three Lookup
transformations. The memory cache limit for the session does not apply to transformations that you did not
configure for automatic caching.

If the session cache is set to automatic allocation, the Integration Service allocates a minimum of 1 MB for
the index cache and 2 MB for the data cache of each transformation that is set to automatic cache
allocation. If the session cache limit does not provide enough memory for the minimum index and data cache
allocation, the Integration Service overrides the cache limit and allocates the minimum amount of memory to
the index and data caches.

For example, the session cache is limited to 4 MB of memory and two transformations are set to automatic
cache allocation. The Integration Service overrides the session cache limit and allocates the minimum 1 MB
for the index cache and 2 MB for the data cache of each transformation that is set to automatic cache
allocation. The total amount of memory allocated to the transformation caches is 6 MB.

When you run a session on a grid and you configure Maximum Memory Allowed For Auto Memory Attributes,
the Integration Service divides the allocated memory cache among all the nodes in the grid. When you
configure Maximum Percentage of Total Memory Allowed For Auto Memory Attributes, the Integration
Service allocates the specified percentage of memory cache to each node in the grid.

Configuring Automatic Memory Settings for Session Caches
To configure automatic memory settings for session caches:

1. Open the transformation in the Transformation Developer or the Mappings tab of the session properties.

2. In the transformation properties, select or enter auto for the following cache size settings:

• Index and data cache

• Sorter cache

• XML cache

3. Open the session in the Task Developer or Workflow Designer, and click the Config Object tab.

4. Enter a value for the Maximum Memory Allowed for Auto Memory Attributes.

This value specifies the maximum amount of memory to use for session caches.

The default unit is bytes. Append KB, MB, or GB to the value to specify other units. For example, 1048576
or 1024KB or 1MB.

5. Enter a value for the Maximum Percentage of Total Memory Allowed for Auto Memory Attributes.

This value specifies the maximum percentage of total memory the session caches may use.

296 Chapter 23: Understanding Buffer Memory

C h a p t e r 2 4

High Precision Data
This chapter includes the following topics:

• High Precision Data Overview, 297

• Bigint, 297

• Decimal, 298

High Precision Data Overview
High precision data determines how large numbers are represented with greater accuracy. The precision
attributed to a number includes the scale of the number. For example, the value 11.47 has a precision of 4
and a scale of 2. Large numbers can lose accuracy because of rounding when used in a calculation that
produces an overflow. Incorrect results may arise because of a failure to truncate the high precision data.

High precision data values have greater accuracy. Enable high precision if you require accurate values.

You enable high precision on the properties tab of the session. The Integration Service processes high
precision data differently for bigint and decimal values.

Bigint
In calculations that can produce decimal values, the Integration Service processes bigint values as doubles
or decimals. When a session contains a calculation that can produce decimal values and runs without high
precision, the Integration Service converts bigint values to doubles before it performs the calculation. The
transformation Double datatype supports precision of up to 15 digits, while the Bigint datatype supports
precision of up to 19 digits. Therefore, precision loss can occur in calculations that produce bigint values
with precision of more than 15 digits.

For example, an expression transformation contains the following calculation:

POWER(BIGINTVAL, EXPVAL)
Before it performs the calculation, the Integration Service converts the inputs to the POWER function to
double values. If the BIGINTVAL port contains the bigint value 9223372036854775807, the Integration
Service converts this value to 9.22337203685478e+18, losing the last four digits of precision. If the EXPVAL
port contains the value 1.0 and the result port is a bigint, this calculation produces a row error since the
result, 9223372036854780000, exceeds the maximum bigint value.

297

When you use a bigint value in a calculation that can produce decimal values and you run the session with
high precision, the Integration Service converts the bigint values to decimals. The transformation Decimal
datatype supports precision of up to 28 digits. Therefore, precision loss does not occur in a calculation
unless the result produces a value with precision greater than 28 digits. In this case, the Integration Service
stores the result as a double.

Decimal
When a session runs without high precision, the Integration Service converts decimal values to doubles. The
transformation Decimal datatype supports precision of up to 28 digits, while the Double datatype supports
precision of up to 15 digits. Therefore, precision loss occurs if the decimal value has a precision greater than
15 digits.

For example, you have a mapping with Decimal (20,0) that passes the number 40012030304957666903. If
the session does not run with high precision, the Integration Service converts the decimal value to double and
passes 4.00120303049577 x 1019.

To ensure precision of up to 28 digits, use the Decimal datatype and enable high precision in the session
properties. When you run a session with high precision, the Integration Service processes decimal values as
Decimal. Precision loss does not occur in a calculation unless the result produces a value with precision
greater than 28 digits. In this case, the Integration Service stores the result as a double.

298 Chapter 24: High Precision Data

I n d e x

{pushdown optimization in Teradata
derived tables 82

$PMStorageDirPMStorageDir
session state of operations 149

A
ABORT function

session failure 167
aborting

Integration Service handling 166
sessions 169
tasks 169
workflows 168

active databases
description 68

active sources
generating commits 127
source-based commit 126, 127

aggregate caches
reinitializing 282

aggregate files
deleting 283
moving 283
reinitializing 282

Aggregator cache
description 271
overview 271

Aggregator transformation
adding to concurrent workflows 177
cache partitioning 270, 271
caches 271
configure caches 272
inputs for cache calculator 272
pushdown optimization 94
sorted ports 272
using partition points 29

$AppConnection
using 200

Append if Exists
flat file target property 40

application connections
parameter types 210
password, parameter types 210
session parameter 200
user name, parameter types 210

Assignment tasks
variables in 188, 210

attributes
partition-level 22

automatic memory settings
configuring 294

automatic task recovery
configuring 158

B
$BadFile

using 200
naming convention 200

Base URL
parameter and variable types 210

Based on Number of CPUs
setting 21

Based on Number of Partitions
setting 21

bigint
high precision handling 297

block size
FastExport attribute 229

buffer block size
configuring 293

buffer memory
allocating 293
buffer blocks 293
configuring 293

bulk loading
using user-defined commit 130

C
cache calculator

Aggregator transformation inputs 272
description 268
Joiner transformation inputs 274
Lookup transformation inputs 276
Rank transformation inputs 277
Sorter transformation inputs 278
using 269

cache directories
optimal, choosing 267
sharing 267
variable types 210

cache files
locating 283
naming convention 265

cache partitioning
Aggregator transformation 270, 271
configuring cache size 270
described 23
incremental aggregation 271
Joiner transformation 270, 274
Lookup transformation 49, 270, 275
performance 23
Rank transformation 270, 277
Sorter transformation 270, 278
transformations 270

cache size
configuring 267
optimizing 279

299

cache size (continued)
session memory requirements, configuring 295

caches
Aggregator transformation 271
auto memory 268
cache calculator 268, 269
configuring 269
configuring for Aggregator transformation 272
configuring for Joiner transformation 274, 278
configuring for Lookup transformation 276
configuring for Rank transformation 277
configuring for XML target 279
configuring maximum memory limits 295
data caches on a grid 182
for non-reusable sessions 267
for reusable sessions 267
for sorted-input Aggregator transformations 272
for transformations 263
index caches on a grid 182
Joiner transformation 273
Lookup transformation 275
memory 264
methods to configure 267
numeric value 269
optimizing 279
overriding 267
overview 263
partitioning 23
persistent lookup 275
Rank transformation 277
resetting with real-time sessions 134
session cache files 263
Sorter transformation 278
XML targets 279

changed source data
real-time data 107

checkpoint
session recovery 158
session state of operation 149, 158

code pages
external loader files 233

cold start
real-time sessions 119

command
partitioned sources 33
partitioned targets 40

Command property
configuring partitioned targets 40
partitioning file sources 34

Command tasks
assigning resources 186
variable types 210

Command Type
partitioning file sources 34

commit interval
configuring 136
description 125
source- and target-based 125

commit source
source-based commit 127

commit type
configuring 111
real-time sessions 111

committing data
target connection groups 126
transaction control 130

concurrent connections
in partitioned pipelines 38

concurrent merge
file targets 41

concurrent read partitioning
session properties 34

concurrent workflows
adding instance names 174
configuring to run with same name 171
configuring unique instances 171
creating workflow instances with pmcmd 175
description 170
rules and guidelines 177
running web service workflows 172
scheduling 177
Start Workflow Advanced option 174
Start Workflow option 175
starting and stopping 174
starting from command line 175
steps to configure 174
stopping from command line 175
transformation restrictions 177
using different session parameter files 222
using parameters 173
viewing in Workflow Monitor 176
viewing logs 176

concurrent worklets
description 177

Configure Concurrent Execution
configuring workflow instances 174

connection environment SQL
parameter and variable types 210

ConnectionParam.prm file
using 217

connections
changing Teradata FastExport connections 231
creating Teradata FastExport connections 229
parameter file template 217

control file override
description 231
loading Teradata 246
setting Teradata FastExport statements 231
steps to override Teradata FastExport 231

Control tasks
stopping or aborting the workflow 168

creating
data files directory 285
error log tables 139
file list for partitioned sources 34
FTP sessions 259
index directory 285
workflow variables 195

CUME function
partitioning restrictions 52

Custom transformation
partitioning guidelines 51
pipeline partitioning 41
threads 42

D
data

capturing incremental source changes 281, 284
data cache

for incremental aggregation 283
naming convention 265

data encryption
FastExport attribute 229

300 Index

data files
creating directory 285
finding 283

data movement mode
affecting incremental aggregation 283

database connections
parameter 204
parameter types 210
password, parameter types 210
pushdown compatible 71
session parameter 200
user name parameter types 210

database partitioning
description 20, 53
Integration Service handling for sources 58
multiple sources 58
one source 57
performance 57, 59
rules and guidelines for Integration Service 58
rules and guidelines for sources 59
rules and guidelines for targets 59
targets 59

database sequences
dropping during recovery 84
dropping orphaned sequences 84
pushdown optimization 84
troubleshooting 84

database views
creating with pushdown optimization 82
dropping during recovery 84
dropping orphaned views 84
pushdown optimization 84
troubleshooting 84

$DBConnection
using 200
naming convention 200

decimal
high precision handling 297

Decision tasks
variable types 210
variables in 188

directories
for historical aggregate data 285
shared caches 267

DTM (Data Transformation Manager)
buffer size 294

DTM buffer size requirement
configuring 294

durable subscription name
variable types for JMS 210

dynamic partitioning
based on number of CPUs 21
based on number of nodes in grid 21
based on number of partitions 21
description 20
disabled 21
number of partitions, parameter types 210
performance 20
rules and guidelines 21
using source partitions 21
using with partition types 22

$DynamicPartitionCount
description 200

E
effective dates

PeopleSoft, parameter and variable types 210
email

post-session, parameter and variable types 210
suspension, variable types 210

Email tasks
suspension email 154
variable types 210

end of file
transaction control 131

endpoint URL
parameter and variable types 210
web services, parameter and variable types 210

environment SQL
parameter and variable types 210

error handling
error log files 144
options 146
overview 168
PMError_MSG table schema 141
PMError_ROWDATA table schema 140
PMError_Session table schema 142
pushdown optimization 80
transaction control 131

error log files
directory, parameter and variable types 210
name, parameter and variable types 210
overview 144
table name prefix length restriction 224

error log tables
creating 139
overview 139

error logs
options 146
overview 138
session errors 168

error messages
external loader 234

error threshold
pipeline partitioning 167
stop on errors 167
variable types 210

errors
fatal 167
threshold 167

Event-Wait tasks
file watch name, variable types 210

executable name
FastExport attribute 229

Expression transformation
pushdown optimization 94

expressions
parameter and variable types 210
pushdown optimization 74

external loader
behavior 234
code page 233
configuring as a resource 233
DB2 235
error messages 234
Integration Service support 233
loading multibyte data 242–244
on Windows systems 234
Oracle 241
overview 233
processing subseconds 234

Index 301

external loader (continued)
setting up Workflow Manager 254
Sybase IQ 243
Teradata 245
using with partitioned pipeline 39

external loader connections
parameter types 210
password, parameter types 210
session parameter 200
user name, parameter types 210

External Procedure transformation
initialization properties, variable types 210
partitioning guidelines 51

Extract Date
PeopleSoft, parameter and variable types 210

F
fail task recovery strategy

description 156, 157
fatal errors

session failure 167
file list

creating for partitioned sources 34
merging target files 41

file sources
code page, parameter and variable types 210
directories, parameter and variable types 210
input file commands, parameter and variable types 210
names, parameter and variable types 210
partitioning 33

file targets
code page, parameter and variable types 210
partitioning 39

filter conditions
adding 63
in partitioned pipelines 32
parameter and variable types 210
WebSphere MQ, parameter and variable types 210

Filter transformation
pushdown optimization 95

flat file logging
error log file directory, configuring 146
error log file name, configuring 146
error log type, configuring 146

flat files
configuring recovery 160
Footer Command property 40
Header Command property 40
Header Options property 40
output file session parameter 200
preserving input row order 37
source file session parameter 200

flush latency
configuring 110
description 110

Flush Session Recovery Data (property)
Integration Service 115

footer
creating in file targets 40
parameter and variable types 210

Footer Command
flat file targets 40

fractional seconds precision
Teradata FastExport attribute 231

FTP
accessing source files 259

FTP (continued)
accessing target files 259
connecting to file targets 39
creating a session 259
overview 257
partitioning targets 262
remote directory, parameter and variable types 210
remote file name, parameter and variable types 210
SFTP 257

FTP connections
parameter types 210
password, parameter types 210
session parameter 200
user name parameter types 210

$FTPConnection
using 200

full pushdown optimization
description 67

full recovery
description 158

functions
available in databases 75
pushdown optimization 75
Session Log Interface 287

G
generating

commits with source-based commit 127
grid

cache requirements 182
configuring resources 183
configuring session properties 183
configuring workflow properties 183
distributing sessions 180, 183
distributing workflows 180, 183
Integration Service behavior 183
Integration Service property settings 183
overview 179
pipeline partitioning 181
recovering sessions 183
recovering workflows 183
requirements 184
running sessions 180
specifying maximum memory limits 295

H
hash auto-key partitioning

description 20
overview 60

hash partitioning
adding hash keys 60
description 53

hash user keys
description 20

hash user keys partitioning
overview 60
performance 60

header
creating in file targets 40
parameter and variable types 210

Header Command
flat file targets 40

Header Options
flat file targets 40

302 Index

high precision
Bigint datatype 297
Decimal datatype 297
handling 297

HTTP transformation
pipeline partitioning 41
threads 42

I
IBM DB2

database partitioning 53, 57, 59
IBM DB2 EE

attributes 237
external loading 235
Loading Blank Spaces 238

IBM DB2 EEE
attributes 239
external loading 235

idle databases
description 68

idle time
configuring 110

incremental aggregation
cache partitioning 271
changing session sort order 283
configuring the session 285
deleting files 283
Integration Service data movement mode 283
moving files 283
overview 281
partitioning data 283
preparing to enable 284
processing 282
reinitializing cache 282

incremental changes
capturing 284

incremental recovery
description 158

index cache
for incremental aggregation 283

index caches
naming convention 265

indexes
creating directory 285
finding 283

INFA_AbnormalSessionTermination
Session Log Interface 290

INFA_EndSessionLog
Session Log Interface 290

INFA_InitSessionLog
Session Log Interface 288

INFA_OutputSessionLogFatalMsg
Session Log Interface 290

INFA_OutputSessionLogMsg
Session Log Interface 288

Informix
row-level locking 38

Input Type
file source partitioning property 34

$InputFile
using 200
naming convention 200

instances
workflow instances description 170

Integration Service
assigning a grid 183

Integration Service (continued)
behavior on a grid 183
calling functions in the Session Log Interface 286
commit interval overview 125
external loader support 233
grid overview 179
running sessions on a grid 180

Integration Service code page
affecting incremental aggregation 283

is staged
FastExport session attribute 231

J
Java transformation

pipeline partitioning 41
threads 42

JMS Destination
parameter and variable types 210

joiner cache
description 273

Joiner transformation
cache partitioning 270, 274
caches 273
configure caches 274, 278
inputs for cache calculator 274
joining sorted flat files 44
joining sorted relational data 46
partitioning 273
partitioning guidelines 51
pushdown optimization 96

K
Keep absolute input row order

session properties 37
Keep relative input row order

session properties 37
key range partitioning

adding 61
adding key ranges 62
adding partition key 62
description 20, 53
Partitions View 25
performance 62
pushdown optimization 89

L
latency

description 106
links

variable types 210
variables in 188

Load Balancer
assigning priorities to tasks 185
assigning resources to tasks 186
workflow settings 185

$LoaderConnection
using 200

logging
pushdown optimization 80

logtable name
FastExport attribute 229

Index 303

lookup caches
description 275
file name prefix, parameter and variable types 210

lookup databases
database connection session parameter 200

lookup files
lookup file session parameter 200

lookup source files
using parameters 200

Lookup SQL Override option
parameter and variable types 210

Lookup transformation
adding to concurrent workflows 177
cache partitioning 49, 270, 275
caches 275
configure caches 276
connection information, parameter and variable types 210
inputs for cache calculator 276
pushdown optimization 97
source file, parameter and variable types 210

$LookupFile
using 200
naming convention 200

lookups
persistent cache 275

M
mapping parameters

$$PushdownConfig[mapping parameters
pushdown config] 85

in parameter files 209
in session properties 205
overriding 205
passing values between sessions 206

mapping variables
available in databases 75
in parameter files 209
in partitioned pipelines 23
passing values between sessions 206
pushdown optimization 75

mappings
session failure from partitioning 24

max sessions
FastExport attribute 229

maximum memory limit
configuring for caches 295
session on a grid 295

memory
caches 264
configuring automatic settings 294
configuring settings for multiple sessions 294

memory requirements
DTM buffer size 294
session cache size 295

memory settings
configuring for multiple sessions 294

Merge Command
description 40
parameter and variable types 210

Merge File Directory
description 40
parameter and variable types 210

Merge File Name
description 40
parameter and variable types 210

Merge Type
description 40

merging target files
commands 40
concurrent merge 41
file list 41
FTP 39
FTP file targets 262
local connection 39, 40
sequential merge 41
session properties 40

message count
configuring 110

message processing
real-time sessions 116, 117
recovery queues 117
recovery tables 116
recovery topics 117
rules and guidelines 120

message queue
processing real-time data 107
using with partitioned pipeline 39

message recovery
description 111
enabling 112
prerequisites 112
real-time sessions 111, 115, 117
recovery files 111, 115
recovery queues 111, 117
recovery tables 111, 117
recovery topics 111, 117
rules and guidelines 121
session recovery data flush 115

messages and message queues
real-time data 107

Microsoft Access
pipeline partitioning 38

MOVINGAVG function
partitioning restrictions 52

MOVINGSUM function
partitioning restrictions 52

multibyte data
Oracle external loader 242
Sybase IQ external loader 243
Teradata FastExport 229

multiple group transformations
partitioning 19

multiple input group transformations
creating partition points 29

N
naming conventions

session parameters 200
Netezza connections

pushdown optimization, rules and guidelines 70
non-persistent variables

definition 194
non-reusable sessions

caches 267
Normalizer transformation

using partition points 29
number of CPUs

setting for dynamic partitioning 21
number of nodes in grid

setting with dynamic partitioning 21

304 Index

number of partitions
overview 19
performance 19
session parameter 200
setting for dynamic partitioning 21

O
open transaction

definition 133
operators

available in databases 74
pushdown optimization 74

Optimize throughput
session properties 37

Oracle
database partitioning 53, 57

Oracle external loader
attributes 242
data precision 242
delimited flat file target 242
external loader support 233, 241
fixed-width flat file target 242
multibyte data 242
partitioned target files 242
reject file 241

Output File Directory property
FTP targets 261
parameter and variable types 210
partitioning target files 40

Output File Name property
FTP targets 261
parameter and variable types 210
partitioning target files 40

Output is Deterministic (property)
about 160

Output is Repeatable (property)
about 160

Output Type property
partitioning file targets 40

$OutputFile
using 200
naming convention 200

overriding
Teradata loader control file 246

P
parameter files

comments, adding 220
configuring concurrent workflow instances 173
datetime formats 224
defining properties in 210
description 208
example of use 223
guidelines for creating 218, 224
headings 219
input fields that accept parameters and variables 210
location, configuring 221
name, configuring 221
null values, entering 220
overriding connection attributes 217
overview 208
parameter and variable types in 209
precedence of 223
sample parameter file 220

parameter files (continued)
scope of parameters and variables in 218
sections 219
session parameter file name, variable types 210, 222
specifying which to use 208
structure of 218
template file 217
tips for creating 226
troubleshooting 225
using variables to specify 222
using with pmcmd 223
using with sessions 221
using with workflows 221

parameters
database connection 204
defining in parameter files 210
input fields that accept parameters 210
overview of types 209
session 200

partition count
session parameter 200

partition groups
description 181
stages 181

partition keys
adding 60, 62
adding key ranges 62
rows with null values 62
rules and guidelines 63

partition names
setting 26

partition points
adding and deleting 28
adding, steps 25
Custom transformation 41, 42
editing 25
HTTP transformation 41, 42
Java transformation 41, 42
Joiner transformation 43
Lookup transformation 49
overview 18

partition types
changing 26
default 55
description 53
key range 61
overview 20
pass-through 64
performance 54
round-robin 65
setting 55
using with partition points 55

partition-level attributes
description 22

partitioning
incremental aggregation 283
Joiner transformation 273
performance 65
pipeline lookup source table 50
using FTP with multiple targets 258

partitioning restrictions
Informix 38
number of partitions 24
numerical functions 52
relational targets 38
Sybase IQ 38
transformations 51
unconnected transformations 29

Index 305

partitioning restrictions (continued)
XML Generator 51
XML targets 51

partitions
adding 26
deleting 26
description 19
entering description 26
merging for pushdown optimization 89
merging target data 40
scaling 20
session properties 40
with XML Generator 51

pass-through partition type
description 20
overview 53
performance 64
processing 64
pushdown optimization 89

performance
cache settings 267
commit interval 126

persistent variables
definition 194
in worklets 197

pipeline
description 17, 28, 53

pipeline lookup
partitioning the source table 50

pipeline partitioning
adding hash keys 60
adding key ranges 62
cache 23
concurrent connections 38
configuring a session 25
configuring for sorted data 43
configuring pushdown optimization 87
configuring to optimize join performance 43
Custom transformation 41
database compatibility 38
description 17, 28, 53
dynamic partitioning 20
editing partition points 25
error threshold 167
example of use 54
external loaders 39, 235
file lists 34
file sources 33
file targets 39
filter conditions 32
FTP file targets 262
guidelines 33
hash auto-keys partitioning 60
hash user keys partitioning 60
HTTP transformation 41
Java transformation 41
Joiner transformation 43
key range 61
loading to Informix 38
mapping variables 23
merging target files 39, 40
message queues 39
multiple group transformations 19
numerical functions restrictions 52
object validation 24
on a grid 181
partition keys 60, 62
partitioning indirect files 34

pipeline partitioning (continued)
pass-through partitioning type 64
performance 60, 62, 65
pipeline stage 17
recovery 167
relational targets 38
round-robin partitioning 65
rules 24
Sequence Generator transformation 50
sorted flat files 44
sorted relational data 46
Sorter transformation 48, 51
SQL queries 31
threads and partitions 19
Transaction Control transformation 55
valid partition types 55

pipeline stage
description 17

PM_REC_STATE table
creating manually 152
description 150
real-time sessions 116

PM_RECOVERY table
creating manually 152
deadlock retry 150
description 150
format 150

PM_TGT_RUN_ID
creating manually 152
description 150
format 150

PMError_MSG table
schema 141

PMError_ROWDATA table
schema 140

PMError_Session table
schema 142

$PMSessionLogFile
using 200

$PMStorageDir
workflow state of operations 149

$PMWorkflowRunId
concurrent workflows 173

$PMWorkflowRunInstanceName
concurrent workflows 173

post-session email
parameter and variable types 210

post-session shell command
parameter and variable types 210

post-session variable assignment
performing after failure 206
performing on success 206

post-worklet variable assignment
performing 197

PowerExchange Client for PowerCenter
real-time data 107

Pre 85 Timestamp Compatibility option, for pushdown optimization on
Netezza 70
pre- and post-session SQL

commands, parameter and variable types 210
pre-session variable assignment

performing 206
pre-worklet variable assignment

performing 197
priorities

assigning to tasks 185
pushdown compatibility

description 71

306 Index

pushdown compatibility (continued)
incompatible database users 72
requirements 71

pushdown group
viewing 90

pushdown groups
description 90
Pushdown Optimization Viewer, using 90

pushdown optimization
$$PushdownConfig parameter[pushdown optimization

pushdown config] 85
adding transformations to mappings 90
Aggregator transformation 94
configuring partitioning 87
configuring sessions 87
creating database views 82
database sequences 84
database views 84
error handling 80
Expression transformation 94
expressions 74
Filter transformation 95
full pushdown optimization 67
functions 75
Joiner transformation 96
key range partitioning, using 89
loading to targets 89
logging 80
mapping variables 75
merging partitions 89
native database drivers 69
operators 74
overview 66
parameter types 210
pass-through partition type 89
performance issues 67
recovery 80
Router transformation 99
rules and guidelines 90
Sequence Generator transformation 100
sessions 67
Sorter transformation 101
source database partitioning 59
Source Qualifier transformation 102
source-side optimization 67
SQL generated 67
SQL versus ANSI SQL 69
target-side optimization 67
targets 103
temporary sequences 81
temporary views 82
transformations 92
Union transformation 104
Update Strategy transformation 105

Pushdown Optimization Viewer
viewing pushdown groups 90

$$PushdownConfig
description 85

Q
queue connections

parameter types 210
session parameter 200

$QueueConnection
using 200

R
rank cache

description 277
Rank transformation

cache partitioning 270, 277
caches 277
configure caches 277
inputs for cache calculator 277
using partition points 29

reader
selecting for Teradata FastExport 231

reader time limit
configuring 110

real-time data
changed source data 107
messages and message queues 107
overview 107
supported products 123
web service messages 107

real-time flush latency
configuring 110

real-time processing
description 106
sample mapping 121

real-time products
overview 123

real-time sessions
aborting 118
cold start 119
commit type, configuring 111
configuring 109
description 106
flush latency, configuring 110
idle time, configuring 110
message count, configuring 110
message processing 116, 117
message recovery 115, 117
overview 106
PM_REC_STATE table 116
reader time limit, configuring 110
recovering 119
resilience 120
restarting 119
resuming 119
rules and guidelines 120
sample mapping 121
stopping 118
supported products 123
terminating conditions, configuring 109
transformation scope 134
transformations 120

recoverable tasks
description 155

recovering
sessions containing Incremental Aggregator 149
sessions from checkpoint 158
with repeatable data in sessions 159

recovering workflows
recovering instances by run ID 172
recovering workflows by instance name 171

recovery
completing unrecoverable sessions 165
dropping database sequences 84
dropping database views 84
flat files 160
full recovery 158
incremental 158

Index 307

recovery (continued)
overview 148
pipeline partitioning 167
PM_RECOVERY table format 150
PM_TGT_RUN_ID table format 150
pushdown optimization 80
real-time sessions 111
recovering a task 163
recovering a workflow from a task 164
recovering by instance name 171
recovering workflows by run ID 172
resume from last checkpoint 156, 157
rules and guidelines 164
SDK sources 160
session state of operations 149
sessions on a grid 183
strategies 156
target recovery tables 150
validating the session for 159
workflow state of operations 149
workflows on a grid 183

recovery cache folder
variable types for JMS 210
variable types for TIBCO 210
variable types for webMethods 210
variable types for WebSphere MQ 210

recovery files
message recovery 111, 115

recovery queues
message processing 117
message recovery 111, 117

recovery strategy
fail task and continue workflow 156, 157
restart task 156, 157
resume from last checkpoint 156, 157

recovery tables
description 150
manually creating from scripts 152
message processing 116
message recovery 111, 117

recovery topics
message processing 117
message recovery 111, 117

reinitializing
aggregate cache 282

reject file
Oracle external loader 241
parameter and variable types 210
session parameter 200
transaction control 131

reject file directory
parameter and variable types 210
target file properties 40

Reject File Name
description 40

relational database logging
error log type, configuring 146

relational targets
partitioning 38
partitioning restrictions 38

repeatable data
recovering workflows 159
with sources 159
with transformations 160

resilience
real-time sessions 120

resources
assigning external loader 233

resources (continued)
assigning to tasks 186

restart task recovery strategy
description 156, 157

resume from last checkpoint
recovery strategy 156, 157

resume recovery strategy
using recovery target tables 150
using repeatable data 159

reusable sessions
caches 267

rolling back data
transaction control 130

round-robin partitioning
description 20, 53, 65

Router transformation
pushdown optimization 99

runtime location
variable types 210

runtime partitioning
setting in session properties 21

S
scheduling workflows

concurrent workflows 177
script files

parameter and variable types 210
SDK sources

recovering 160
Sequence Generator transformation

adding to concurrent workflows 177
partitioning 50
partitioning guidelines 29, 51
pushdown optimization 100

sequential merge
file targets 41

service levels
assigning to tasks 185

service process variables
in parameter files 209

service variables
in parameter files 209

session
state of operations 149

session errors
handling 168

session log count
variable types 210

Session Log Interface
description 286
functions 287
guidelines 287
implementing 286
INFA_AbnormalSessionTermination 290
INFA_EndSessionLog 290
INFA_InitSessionLog 288
INFA_OutputSessionLogFatalMsg 290
INFA_OutputSessionLogMsg 288
Integration Service calls 286

session logs
directory, variable types 210
external loader error messages 234
file name, parameter types 210
passing to external library 286
session parameter 200
workflow recovery 164

308 Index

session on grid
description 180
partitioning for Sequence Generator transformations 50

session parameter file name
variable types 210, 222

session parameters
application connection parameter 200
built-in 200
database connection parameter 200
external loader connection parameter 200
file name, variable types 210, 222
FTP connection parameter 200
in parameter files 209
naming conventions 200
number of partitions 200
overview 200
passing values between sessions 206
queue connection parameter 200
reject file parameter 200
session log parameter 200
setting as a resource 205
source file parameter 200
target file parameter 200
user-defined 200

session properties
FastExport sources 231
sort order 283
target-based commit 136

session recovery data flush
message recovery 115

sessions
aborting 166, 169
assigning resources 186
assigning variables pre- and post-session 206
configuring for pushdown optimization 87
configuring to optimize join performance 43
distributing over grids 180, 183
external loading 233, 254
failure 24, 167
full pushdown optimization 67
parameters 200
passing information between 206
passing information between, example 206
pushdown optimization 67
recovering on a grid 183
running on a grid 180
source-side pushdown optimization 67
stopping 166, 169
target-side pushdown optimization 67
using FTP 259
using SFTP 259

Set Control Value
PeopleSoft, parameter and variable types 210

SetID
PeopleSoft, parameter and variable types 210

SFTP
creating a session 259
description 257
key file location 259
running a session on a grid 259

shared library
implementing the Session Log Interface 287

shell commands
parameter and variable types 210

sleep
FastExport attribute 229

sort order
affecting incremental aggregation 283

sort order (continued)
preserving for input rows 37

sorted flat files
partitioning for optimized join performance 44

sorted ports
caching requirements 272

sorted relational data
partitioning for optimized join performance 46

sorter cache
description 278
naming convention 265

Sorter transformation
cache partitioning 270, 278
caches 278
inputs for cache calculator 278
partitioning 51
partitioning for optimized join performance 48
pushdown optimization 101
work directory, variable types 210

$Source connection value
parameter and variable types 210

source data
capturing changes for aggregation 281

source databases
database connection session parameter 200

Source File Directory
description 260

Source File Name
description 34, 260

Source File Type
description 34, 260

source files
accessing through FTP 257, 259
session parameter 200
session properties 34
using parameters 200

source location
session properties 34

source pipeline
description 17, 28, 53

Source Qualifier transformation
pushdown optimization 102
pushdown optimization, SQL override 82
using partition points 29

source tables
parameter and variable types 210

source-based commit
active sources 127
configuring 111
description 126
real-time sessions 111

source-side pushdown optimization
description 67

sources
commands 33
partitioning 33
preserving input row sort order 37
reading concurrently 34
session properties 34

SQL
generated for pushdown optimization 67
queries in partitioned pipelines 31

SQL override
pushdown optimization 82

SQL query
parameter and variable types 210

staging files
SAP file name and directory, variable types 210

Index 309

Start Workflow Advanced
starting concurrent workflows 174

state of operations
checkpoints 149, 158
session recovery 149
workflow recovery 149

status
suspended 153
suspending 153

stop on
error threshold 167

stopping
Integration Service handling 166
sessions 169
tasks 169
workflows 168

Stored Procedure transformation
call text, parameter and variable types 210
connection information, parameter and variable types 210

subseconds
external loading 234

suspended
status 153

suspending
behavior 153
email 154
status 153
workflows 153

suspension email
variable types 210

Sybase IQ
partitioning restrictions 38

Sybase IQ external loader
attributes 244
data precision 244
delimited flat file targets 243
fixed-width flat file targets 244
multibyte data 243
overview 243
support 233

T
table name prefix

relational error logs, length restriction 224
relational error logs, parameter and variable types 210
target, parameter and variable types 210

table names
qualifying for pushdown compatibility 72
syntax for idle databases 72

table owner name
parameter and variable types 210

target commands
targets 40
using with partitions 40

target connection groups
committing data 126
Transaction Control transformation 136

$Target connection value
parameter and variable types 210

target databases
database connection session parameter 200

target files
appending 40
session parameter 200

target recovery tables
description 150

target recovery tables (continued)
manually creating 152

target tables
parameter and variable types 210

target update
parameter and variable types 210

target-based commit
configuring 111
real-time sessions 111
WriterWaitTimeOut 126

target-based commit interval
description 126

target-side pushdown optimization
description 67

targets
accessing through FTP 257, 259
deleting partition points 29
merging output files 39, 40
partitioning 38, 39
pushdown optimization 103
using pushdown optimization 89

tasks
aborting 169
assigning resources 186
automatic recovery 158
Load Balancer settings 185
recovery strategies 156
stopping 169

TDPID
description 229

temporary files
Teradata FastExport attribute 231

tenacity
FastExport attribute 229

Teradata external loader
code page 245
control file content override, parameter and variable types 210
date format 245
FastLoad attributes 252
MultiLoad attributes 247
overriding the control file 246
support 233
TPump attributes 250

Teradata FastExport
changing the source connection 231
connection attributes 229
creating a connection 229
description 228
fexp command 229
overriding the control file 231
reading multibyte characters 229
rules and guidelines 232
selecting the reader 231
session attributes description 231
staging data 231
steps for using 228
TDPID attribute 229
temporary file, variable types 210

terminating conditions
configuring 109

threads
Custom transformation 42
HTTP transformation 42
Java transformation 42
partitions 19

TIB/Repository
TIB/Adapter SDK repository URL, variable types 210

310 Index

Timer tasks
variables in 188, 210

transaction
defined 133

transaction boundary
dropping 133
transaction control 133

transaction control
bulk loading 130
end of file 131
Integration Service handling 130
open transaction 133
overview 133
points 133
real-time sessions 133
reject file 131
rules and guidelines 136
transformation error 131
transformation scope 134
user-defined commit 130

Transaction Control transformation
partitioning guidelines 55
target connection groups 136

transaction control unit
description 136

transaction environment SQL
parameter and variable types 210

transaction generator
transaction control points 133

transformation expressions
parameter and variable types 210

transformation scope
description 134
real-time processing 134
transformations 134

transformations
caches 263
configuring pushdown optimization 92
partitioning restrictions 51
producing repeatable data 160
real-time sessions 120
recovering sessions with Incremental Aggregator 149

trees
PeopleSoft, parameter and variable types 210

U
unconnected transformations

partitioning restrictions 29
Union transformation

pushdown optimization 104
UNIX systems

external loader behavior 234
Update Strategy transformation

pushdown optimization 105
updating

incrementally 284
user-defined commit

bulk loading 130
user-defined joins

parameter and variable types 210

V
validating

session for recovery 159

variable values
calculating across partitions 23

variables
$PMWorkflowRunId 173
$PMWorkflowRunInstanceName 173
defining in parameter files 210
input fields that accept variables 210
overview of types 209
workflow 188

Vertica connections
pushdown optimization, rules and guidelines 70

W
web service messages

real-time data 107
Web Services Hub

running concurrent workflows 172
Windows systems

external loader behavior 234
workflow

state of operations 149
workflow instance

adding workflow instances 174
creating dynamically 175
description 170
starting and stopping 174
starting from command line 175
using $PMWorkflowRunInstanceName variable 173
viewing in Workflow Monitor 176

workflow log files
viewing concurrent workflows 176

workflow logs
file name and directory, variable types 210
workflow log count, variable types 210

Workflow Manager
running sessions on a grid 179
running workflows on a grid 179

Workflow Monitor
viewing concurrent workflows 176

workflow properties
service levels 185

workflow run ID
description 171
viewing in the workflow log 177

workflow variables
built-in variables 189
creating 195
datatypes 189, 195
datetime formats 195
default values 189, 194, 195
in parameter files 209
keywords 188
naming convention 195
non-persistent variables 194
passing values to and from sessions 206
passing values to and from worklets 197
persistent variables 194
predefined 189
start and current values 194
user-defined 193
using 188
using in expressions 192

workflows
aborting 168
concurrent instances 170
configuring concurrent with same name 171

Index 311

workflows (continued)
configuring instance names 174
configuring unique instances 171
dispatching tasks 185
distributing over grids 180, 183
parameter file 194
recovering on a grid 183
running on a grid 180
scheduling concurrent workflows 177
service levels 185
starting concurrent workflows with pmcmd 175
status 153
stopping 168
suspending 153
variables 188

worklet variables
in parameter files 209
passing values between worklets 197
passing values to and from sessions 206

worklets
adding to concurrent workflows 177
assigning variables pre- and post-worklet 197
assigning variables pre- and post-worklet, procedure 199, 207
overriding variable value 197

worklets (continued)
parameters tab 197
passing information between 197
passing information between, example 198
persistent variable example 197
persistent variables 197
variables 197

WriterWaitTimeOut
target-based commit 126

X
XML Generator transformation

partitioning restrictions 51
XML target cache

description 279
variable types 210

XML targets
caches 279
configure caches 279
partitioning restrictions 51
target-based commit 126

312 Index

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrixes
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Understanding Pipeline Partitioning
	Understanding Pipeline Partitioning Overview
	Partitioning Attributes
	Partition Points
	Number of Partitions
	Partition Types

	Dynamic Partitioning
	Configuring Dynamic Partitioning
	Rules and Guidelines for Dynamic Partitioning
	Using Dynamic Partitioning with Partition Types
	Configuring Partition-Level Attributes

	Cache Partitioning
	Mapping Variables in Partitioned Pipelines
	Partitioning Rules
	Partition Restrictions for Editing Objects
	Partition Restrictions for PowerExchange

	Configuring Partitioning
	Adding Partition Points to a Pipeline
	Configuring a Partition Point
	Partition Points Node
	Non-Partition Points Node

	Chapter 2: Partition Points
	Partition Points Overview
	Adding and Deleting Partition Points
	Rules and Guidelines for Adding and Deleting Partition Points

	Partitioning Relational Sources
	Entering an SQL Query
	Entering a Filter Condition

	Partitioning File Sources
	Rules and Guidelines for Partitioning File Sources
	Using One Thread to Read a File Source
	Using Multiple Threads to Read a File Source
	Configuring for File Partitioning

	Partitioning Relational Targets
	Database Compatibility

	Partitioning File Targets
	Configuring Connection Settings
	Configuring File Properties

	Partitioning Custom Transformations
	Working with Multiple Partitions
	Creating Partition Points
	Working with Threads

	Partitioning Joiner Transformations
	Partitioning Sorted Joiner Transformations
	Using Sorted Flat Files
	Using Sorted Relational Data
	Using Sorter Transformations
	Optimizing Sorted Joiner Transformations with Partitions

	Partitioning Lookup Transformations
	Cache Partitioning Lookup Transformations
	Partitioning Pipeline Lookup Transformation Cache

	Partitioning Sequence Generator Transformations
	Partitioning Sorter Transformations
	Configuring Sorter Transformation Work Directories

	Partitioning XML Generator Transformations
	Restrictions for Transformations
	Restrictions for Numerical Functions

	Chapter 3: Partition Types
	Partition Types Overview
	Setting Partition Types in the Pipeline

	Setting Partition Types
	Database Partitioning Partition Type
	Partitioning Database Sources
	Target Database Partitioning

	Hash Auto-Keys Partition Type
	Hash User Keys Partition Type
	Key Range Partition Type
	Adding a Partition Key
	Adding Key Ranges

	Pass-Through Partition Type
	Round-Robin Partition Type

	Chapter 4: Pushdown Optimization
	Pushdown Optimization Overview
	Pushdown Optimization Types
	Running Source-Side Pushdown Optimization Sessions
	Running Target-Side Pushdown Optimization Sessions
	Running Full Pushdown Optimization Sessions

	Active and Idle Databases
	Working with Databases
	Comparing the Output of the Integration Service and Databases
	Rules and Guidelines for IBM DB2
	Rules and Guidelines for Netezza
	Rules and Guidelines for Teradata
	Rules and Guidelines for Vertica

	Pushdown Compatibility
	Incompatible Users for Database Connections
	Qualifying Names of Tables in Idle Databases

	Working with Dates
	Working with Expressions
	Operators
	Variables
	Functions
	Rules and Guidelines for Functions in Pushdown Optimization

	Error Handling, Logging, and Recovery
	Error Handling
	Logging
	Recovery

	Working with Slowly Changing Dimensions
	Working with Sequences and Views
	Sequences
	Views
	Troubleshooting Orphaned Sequences and Views

	Using the $$PushdownConfig Mapping Parameter
	Configuring Sessions for Pushdown Optimization
	Pushdown Options
	Partitioning
	Target Load Rules
	Viewing Pushdown Groups

	Chapter 5: Pushdown Optimization Transformations
	Pushdown Optimization and Transformations Overview
	General Pushdown Restrictions

	Aggregator Transformation
	Expression Transformation
	Filter Transformation
	Joiner Transformation
	Lookup Transformation
	Unconnected Lookup Transformation
	Lookup Transformation with an SQL Override

	Router Transformation
	Sequence Generator Transformation
	Sorter Transformation
	Source Qualifier Transformation
	Source Qualifier Transformation with an SQL Override

	Target
	Union Transformation
	Update Strategy Transformation

	Chapter 6: Real-time Processing
	Real-time Processing Overview
	Understanding Real-time Data
	Messages and Message Queues
	Web Service Messages
	Change Data from PowerExchange Change Data Capture Sources

	Configuring Real-time Sessions
	Terminating Conditions
	Idle Time
	Message Count
	Reader Time Limit

	Flush Latency
	Commit Type
	Message Recovery
	Prerequisites
	Steps to Enable Message Recovery

	Recovery File
	Message Recovery for JMS and WebSphere MQ Sources
	Message Recovery for SAP IDoc, TIBCO, and webMethods Sources
	Message Recovery
	Session Recovery Data Flush

	Recovery Table
	PM_REC_STATE Table
	Message Processing
	Message Recovery

	Recovery Queue and Recovery Topic
	Message Processing
	Message Recovery

	Recovery Ignore List
	Stopping Real-time Sessions
	Restarting and Recovering Real-time Sessions
	Restarting Real-time Sessions
	Recovering Real-time Sessions
	Restart and Recover Commands

	Rules and Guidelines for Real-time Sessions
	Rules and Guidelines for Message Recovery
	Real-time Processing Example
	Informatica Real-time Products

	Chapter 7: Commit Points
	Commit Points Overview
	Target-Based Commits
	Source-Based Commits
	Determining the Commit Source
	Switching from Source-Based to Target-Based Commit

	User-Defined Commits
	Rolling Back Transactions

	Understanding Transaction Control
	Transformation Scope
	Understanding Transaction Control Units
	Rules and Guidelines for Working with Transaction Control
	Creating Target Files by Transaction

	Setting Commit Properties

	Chapter 8: Row Error Logging
	Row Error Logging Overview
	Error Log Code Pages

	Understanding the Error Log Tables
	PMERR_DATA
	PMERR_MSG
	PMERR_SESS
	PMERR_TRANS

	Understanding the Error Log File
	Configuring Error Log Options

	Chapter 9: Workflow Recovery
	Workflow Recovery Overview
	State of Operation
	Workflow State of Operation
	Session State of Operation
	Target Recovery Tables

	Recovery Options
	Suspending the Workflow
	Configuring Suspension Email

	Configuring Workflow Recovery
	Recovering Stopped, Aborted, and Terminated Workflows
	Recovering Suspended Workflows

	Configuring Task Recovery
	Task Recovery Strategies
	Automatically Recovering Terminated Tasks

	Resuming Sessions
	Working with Repeatable Data
	Source Repeatability
	Transformation Repeatability
	Configuring a Mapping for Recovery

	Steps to Recover Workflows and Tasks
	Recovering a Workflow
	Recovering a Session
	Recovering a Workflow From a Session

	Rules and Guidelines for Session Recovery
	Configuring Recovery to Resume from the Last Checkpoint
	Unrecoverable Workflows or Tasks

	Chapter 10: Stopping and Aborting
	Stopping and Aborting Overview
	Types of Errors
	Threshold Errors
	Fatal Errors

	Integration Service Handling for Session Failure
	Stopping or Aborting the Workflow
	Stopping or Aborting a Task

	Steps to Stop or Abort

	Chapter 11: Concurrent Workflows
	Concurrent Workflows Overview
	Configuring Unique Workflow Instances
	Recovering Workflow Instances by Instance Name
	Rules and Guidelines for Running Concurrent Instances of the Same Instance Name

	Configuring Concurrent Workflows of the Same Name
	Running Concurrent Web Service Workflows
	Configuring Workflow Instances of the Same Name
	Recovering Workflow Instances of the Same Name
	Rules and Guidelines for Running Concurrent Instances of the Same Instance Name

	Using Parameters and Variables
	Accessing the Run Instance Name or Run ID

	Steps to Configure Concurrent Workflows
	Starting and Stopping Concurrent Workflows
	Starting Workflow Instances from Workflow Designer
	Starting One Concurrent Workflow
	Starting Concurrent Workflows from the Command Line
	Stopping or Aborting Concurrent Workflows

	Monitoring Concurrent Workflows
	Viewing Session and Workflow Logs
	Log Files for Unique Workflow Instances
	Log Files for Workflow Instances of the Same Name

	Rules and Guidelines for Concurrent Workflows

	Chapter 12: Grid Processing
	Grid Processing Overview
	Running Workflows on a Grid
	Running Sessions on a Grid
	Working with Partition Groups
	Forming Partition Groups Without Resource Requirements
	Forming Partition Groups With Resource Requirements
	Rules and Guidelines for Creating Partition Groups
	Working with Caches

	Grid Connectivity and Recovery
	Configuring a Workflow or Session to Run on a Grid
	Rules and Guidelines for Configuring a Workflow or Session to Run on a Grid

	Chapter 13: Load Balancer
	Load Balancer Overview
	Assigning Service Levels to Workflows
	Assigning Resources to Tasks

	Chapter 14: Workflow Variables
	Workflow Variables Overview
	Predefined Workflow Variables
	Using Predefined Workflow Variables in Expressions
	Evaluating Condition in a Workflow
	Evaluating Task Status in a Workflow
	Evaluating Previous Task Status in a Workflow

	User-Defined Workflow Variables
	Workflow Variable Start and Current Values
	Datatype Default Values
	Creating User-Defined Workflow Variables

	Using Worklet Variables
	Persistent Worklet Variables
	Overriding the Initial Value
	Rules and Guidelines for Using Worklet Variables

	Assigning Variable Values in a Worklet
	Passing Variable Values between Worklets
	Configuring Variable Assignments

	Chapter 15: Parameters and Variables in Sessions
	Working with Session Parameters
	Changing the Session Log Name
	Changing the Target File and Directory
	Changing Source Parameters in a File
	Changing Connection Parameters
	Getting Run-Time Information
	Rules and Guidelines for Creating File Parameters and Database Connection Parameters

	Mapping Parameters and Variables in Sessions
	Assigning Parameter and Variable Values in a Session
	Passing Parameter and Variable Values between Sessions
	Configuring Variable Assignments

	Chapter 16: Parameter Files
	Parameter Files Overview
	Parameter and Variable Types
	Where to Use Parameters and Variables
	Overriding Connection Attributes in the Parameter File
	Parameter File Structure
	Parameter File Sections
	Comments
	Null Values
	Sample Parameter File

	Configuring the Parameter File Name and Location
	Using a Parameter File with Workflows or Sessions
	Using a Parameter File with pmcmd

	Parameter File Example
	Guidelines for Creating Parameter Files
	Troubleshooting Parameters and Parameter Files
	Tips for Parameters and Parameter Files

	Chapter 17: FastExport
	Using FastExport Overview
	Step 1. Create a FastExport Connection
	Verifying the Code Page Mapping File

	Step 2. Change the Reader
	Step 3. Change the Source Connection
	Step 4. Override the Control File (Optional)
	Rules and Guidelines for Using FastExport

	Chapter 18: External Loading
	External Loading Overview
	Before You Begin

	External Loader Behavior
	Loading Data to a Named Pipe
	Staging Data to a Flat File
	Partitioning Sessions with External Loaders

	Loading to IBM DB2
	IBM DB2 EE External Loader
	IBM DB2 EEE External Loader
	Rules and Guidelines for IBM DB2 EEE External Loaders
	Setting Operation Modes
	Configuring Authorities, Privileges, and Permissions
	Configuring IBM DB2 EE External Loader Attributes
	Configuring IBM DB2 EEE External Loader Attributes

	Loading to Oracle
	Rules and Guidelines for Oracle External Loaders
	Loading Multibyte Data to Oracle
	Configuring Oracle External Loader Attributes

	Loading to Sybase IQ
	Rules and Guidelines for Sybase IQ External Loaders
	Loading Multibyte Data to Sybase IQ
	Configuring Sybase IQ External Loader Attributes

	Loading to Teradata
	Rules and Guidelines for Teradata External Loaders
	Overriding the Control File
	Creating User Variables in the Control File
	Configuring Teradata MultiLoad External Loader Attributes
	Configuring Teradata TPump External Loader Attributes
	Configuring Teradata FastLoad External Loader Attributes

	Configuring External Loading in a Session
	Configuring a Session to Write to a File
	Configuring File Properties
	Selecting an External Loader Connection

	Troubleshooting External Loading

	Chapter 19: FTP
	FTP Overview
	Rules and Guidelines for Using FTP

	Integration Service Behavior
	Using FTP with Source Files
	Using FTP with Target Files

	Configuring FTP in a Session
	Configuring SFTP in a Session
	Selecting an FTP Connection
	Configuring Source File Properties
	Configuring Target File Properties

	Chapter 20: Session Caches
	Session Caches Overview
	Cache Memory
	Cache Files
	Naming Convention for Cache Files
	Cache File Directory

	Configuring the Cache Size
	Calculating the Cache Size
	Auto Cache Size
	Configuring a Numeric Cache Size
	Steps to Configure the Cache Size

	Cache Partitioning
	Configuring the Cache Size for Cache Partitioning

	Aggregator Caches
	Incremental Aggregation
	Configuring the Cache Sizes for an Aggregator Transformation
	Troubleshooting Aggregator Caches

	Joiner Caches
	1:n Partitioning
	n:n Partitioning
	Configuring the Cache Sizes for a Joiner Transformation
	Troubleshooting Joiner Caches

	Lookup Caches
	Sharing Caches
	Configuring the Cache Sizes for a Lookup Transformation

	Rank Caches
	Configuring the Cache Sizes for a Rank Transformation

	Sorter Caches
	Configuring the Cache Size for a Sorter Transformation

	XML Target Caches
	Configuring the Cache Size for an XML Target

	Optimizing the Cache Size

	Chapter 21: Incremental Aggregation
	Incremental Aggregation Overview
	Integration Service Processing for Incremental Aggregation
	Reinitializing the Aggregate Files
	Moving or Deleting the Aggregate Files
	Finding Index and Data Files

	Partitioning Guidelines with Incremental Aggregation
	Preparing for Incremental Aggregation
	Configuring the Mapping
	Configuring the Session

	Chapter 22: Session Log Interface
	Session Log Interface Overview
	Implementing the Session Log Interface
	The Integration Service and the Session Log Interface
	Rules and Guidelines for Implementing the Session Log Interface

	Functions in the Session Log Interface
	INFA_InitSessionLog
	INFA_OutputSessionLogMsg
	INFA_OutputSessionLogFatalMsg
	INFA_EndSessionLog
	INFA_AbnormalSessionTermination

	Session Log Interface Example
	Building the External Session Log Library
	Using the External Session Log Library

	Chapter 23: Understanding Buffer Memory
	Understanding Buffer Memory Overview
	Automatic Buffer Memory Settings
	Using Session Configuration Objects for Memory Configuration

	Configuring Buffer Memory
	Configuring Session Cache Memory
	Session Cache Limits
	Configuring Automatic Memory Settings for Session Caches

	Chapter 24: High Precision Data
	High Precision Data Overview
	Bigint
	Decimal

	Index

