4;» Informatica

Informatica® B2B Data Transformation
10.5.7

Libraries Guide

Informatica B2B Data Transformation Libraries Guide
10.5.1

© Copyright Informatica LLC 2012, 2021

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

Informatica, and the Informatica logo are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A
current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be trade
names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © 0SS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright © University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright® MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/Igpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (®) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antir.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http:/jotm.objectweb.org/bsd_license.html; . http://www.w3.org/
Consortium/Legal/2002/copyright-software-20021231; http://www.slIf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http:/forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/fag.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/

EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http:/jsoncpp.sourceforge.net/LICENSE; http://
jdbe.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/1z4/; https://github.com/jedisct1/libsodium/blob/master/
LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cdd|1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsgl.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe Walnes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1.THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2.IN'NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2021-11-03

https://www.informatica.com/legal/patents.html

Table of Contents

4

o -1 T+ 8
Informatica RESOUrCesS. 8
Informatica Network. 8
Informatica Knowledge Base. 8
Informatica Documentation. 9
Informatica Product Availability Matrices. 9
Informatica Velocity. e 9
Informatica Marketplace. 9
Informatica Global Customer Support. 9

Chapter 1: Libraries for Industry Standards........................c.ooe... 10

Purpose of Libraries. e 10
Library Structure. 11
Obtaining Libraries. e 11
Library Documentation. e 11
Installing Libraries. e 11
Installing Libraries that Use the Library Editor. 12
Installing Libraries that Do Not Use the Library Editor. 12
Version Compatibility of Libraries. 12
XML-Based Industry Standards. 12

Chapter 2: Using Libraries..........ccoiiiiiiiiiiiiiiiiiiiiiiiiiieieee.... 14

Libraries and the Data Processor Transformation. 14
How to Create the Data Processor Transformation. 14
Creating the Data Processor Transformation. 15
Creating a Library Object. 15

Library Object Development. e 15
Edit Libraries with the Library Editor. 16

Create a Library Transformation withthe Wizard. 18
Creating the Data Processor Transformation with the Wizard. 18

Identifying the Startup Component for a Library Object. 18

Further Changes to Library Transformations. 19

Chapter 3: Descriptions of the Libraries................ccoiiiiiiiiiiiii.. 20

ACORD AL3 Library.o 20
ACORD AL3 Message Structure. 21
XML of an ACORD AL3 MESSAQE. v v v it e e e e e e e e e e e e 21

ACORD-MDM Mappers Library. e e 22
Output MDM JavaBeans File XML Structure. 22
ACORD LNA file XML Structure. 23

Table of Contents

Creating an ACORD-MDM Mapper Transformation in the Developer Tool. 23

BAILLibrary. e 24
BAI2 Message Structure. 24
XML Version of a BAI2Z MeSSage. ottt e e e 24
BAI Lockbox Message Structure. 25
XML of a BAl Lockbox Message. 25

Bloomberg Library. 26
Bloomberg Message Structure. e 26
XML Version of a Bloomberg Message. 27
Field Definition Files. 28
Installing the Bloomberg Library. e 28
Creating a Bloomberg Transformation. 28

COBOL Processing Library. 29
Creating a Transformation for COBOL. i 29
COBOL Data Definitions. 30
Test Procedures. 30
Editing a Transformation for COBOL. 31

CREST Library.o 32
CREST Message StruCture. o e e e e e e e 32
XML of @ CREST MeSSaQe. o o it e e e e e e e e e e 32

DTCC-NSCC Library. 33
DTCC-NSCC Message Structure. e e e e 33
XML of a DTCC-NSCC MESSage. . . . o v v it e e e e e e e e e e e e e e e e e 33
DTCC-NSCC Message Properties. e e 33
Configure the Streamer to Parse Large Inputs. 35
Validation. 36
Handling DTCC REJECT MeESSaQes. v v i it e et e e e e e e e e e e e e 36

EDIFACT Library. 36
EDIFACT Message Structure. e e e 37
XML of an EDIFACT MeSSaQge. o o v it et e e e e e e e e e e e e e 37
EDIFACT Message Properties. e e 37
Validation and Acknowledgments. 39

EDI-XT2 Library. . . . oo 41
X12 Message Structure. 11
XML of an XT2 MESSage. o et e e e e 42
EDI-X12 Message Properties. e 42
Validation of X12 Messages. e 45
X12 Message Acknowledgments. 45

EDI Libraries Based on X12. 47

FIX Library. . . . 48
FIX Message Structure. e 48
XML of a FIXMeSSage. oo 48

Table of Contents 5

6

FpML Library. 49

FpML Validation Error Reports. e 49
HIPAA LIbrary. . . . oo 49
HIPAA Message Structure. 50
XML Version of a HIPAAMeESSage. e e e e 50
HIPAA Message Properties. 51
Validation and Acknowledgment Behavior. 53
Configuring the Edifecs Engine Version 8.x 53
Using Validation and Acknowledgments. 55
HIX Library. 56
HIX Message Structure. e 57
XML of aHIX MeSsage. 57
Message Acknowledgements. 58
Disabling Validations. 59
Serializer and Restricted Serializer. 60
HIX Validation Error Reports. e 60
HL7 Library. e 60
HL7 Message Structure. 61
XML Version of an HL7 Message. e e 61
HL7 Message Properties. 61
IATAPADIS Library. 64
IATA PADIS Message Structure. e 64
XML of an IATA PADIS MeSSage. o v v vt e e e e e e e e e 64
IDC-IDSILibrary. 65
IDC-IDSI Message Structure. e 65
XML of an IDC-IDSIMeSSsage. oo vt e e e 66
MDM JavaBeans Library. e 66
Source JavaBeans XML File Structure. 67
Output XML File Structure. e 68
Installing the MDM Library. e 69
Creating an MDM JavaBeans Transformation. 69
NACHA Library. e 69
NACHA Message Structure. e 69
XML of a NACHA MESSAQE. o ittt e e e e e e e e e e 70
NCPDP Library. e 70
NCPDP Message Structure. 71
XML of an NCPDP MESSage. o o ittt e e e e e e e e e e 71
SEPA Library. e 71
SEPA Validation Error Reports. 72
SWIFT Library. o 72
SWIFT MT Message Structure. e e e 73
XML Version of a SWIFT MT ME@SSaQe. o v v v i i e e e e e 73

Table of Contents

SWIFT Message Properties. e 74

Installing Lookup Tables. e 77
Message Splitter. e 77
SWIFT MT Parsers and Serializers. 78
MX Validators. 79
Telekurs VDF Library. e e 80
Telekurs VDF Message Structure. e 80
XML of a Telekurs VDF Message.ottt e e e e e 80
Thomson Reuters Library. 81
Thomson Reuters Report Structure. 81
XML Version of a Thomson Reuters Report. 81
Installing a Thomson Reuters Library. 82
Creating a Thomson Reuters Transformation. 83

Chapter 4: Generate Library Objects............cccviiiiiiiiiiiiiniae..... 84

Generate Library Objects OVerview. e 84
Generating the Library Objects. e 84
Discarding the Library Objects. 85
Testing the Transformation. 85
11 T =) A R 86

Table of Contents

7

Preface

See the Data Transformation Libraries Guide to learn how to use the library transformation components to
transform data to or from industry-standard messaging formats and how to customize the library

components for specialized needs, for example, to change the way that a message type is transformed. The
libraries are described in the guide.

The guide assumes that you understand the standards of the libraries you use and that you know how to
deploy and run Data Transformation services.

Informatica Resources

Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Network

The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:
e Search the Knowledge Base for product resources.

e View product availability information.

e Create and review your support cases.

e Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base

Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com

Informatica Documentation

Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Product Availability Matrices

Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity

Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace

The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support

You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and
select the eSupport option.

Preface 9

https://docs.informatica.com
mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com

CHAPTER 1

Libraries for Industry Standards

This chapter includes the following topics:

e Purpose of Libraries, 10

e Obtaining Libraries, 11

e |Installing Libraries, 11

e XML-Based Industry Standards, 12

Purpose of Libraries

Data Transformation libraries contain predefined transformation components for use with the following
industry messaging standards:

e ACORD AL3

e ACORD-MDM Mappers

o BAI

e Bloomberg Per Security, Back Office and Extended Back Office
e CREST

e DTCC-NSCC

e EDIFACT

e EDI-X12 and related EDI standards
e FIX

¢ FpML

e HIPAA

e HL7

e |ATA PADIS

e |DC-IDSI

e MDM JavaBeans

e NACHA

e NCPDP

e SEPA

e SWIFT

10

e Telekurs VDF
e Thomson Reuters DataScope Select

Each library contains a large number of components, such as parsers, serializers, and XML schemas,
designed for use with industry standard and specific application messages. You can use these components
to transform documents from industry standards to XML and from XML to other formats.

Library components offer the following advantages:
e You can use predefined library components, rather than design and implement the components yourself.
¢ Predesigned components ensure standardized implementation and consistency among your applications.

e Robust construction supports all options and syntactic intricacies unique to each industry standard.

Library Structure

A Library is a set of transformations. All Libraries contain Parsers, Serializers, and XML schemas. Some
Libraries contain additional components for message validation, acknowledgments, and diagnostic displays.
A Library object is a set of components that convert a specific industry message type.

When you create a Data Processor transformation, you can include a Library object instead of creating your
own Scripts to transform a standard industry message type. You can use a Library object without
modification, or you can edit it based on your requirements.

Each Library object transforms a particular industry standard. For example, the HL7 Library contains
components for each of the message types or data structures available in the HL7 messaging standard for
medical information systems.

The Library contains specific types of message types. For example, the HL7 Library contains messages such
as:

ADT A0l Admit a Patient
ADT AQ02 Transfer a Patient

Obtaining Libraries

The Data Transformation libraries are updated and released at frequent intervals. To get a library, contact
Informatica. Specify the name of the library and your Data Transformation version. With certain limitations, a
single library release can be used with multiple Data Transformation versions.

Library Documentation

In addition to reading this book, be sure to read the documentation supplied with each library, such as a
ReadMe file, Release Notes, or other explanatory material.

Installing Libraries

Install the Libraries on a Microsoft Windows computer where you run Data Transformation on the Developer
tool.

Obtaining Libraries 11

To install the DTCC-NSCC, EDIFACT, EDI-X12, HIPAA, HL7, or SWIFT libraries, use the installation procedure
for Libraries that use the Library editor.

To install the ACORD, BAI, CREST, EDI-UCS & WINS, EDI-VICS, FIX, FpML, HIX, IATA, IDC, MDM Mappings,
NACHA, NCPDP, SEPA, or Telekurs libraries, use the installation procedure for Libraries that do not use the
Library editor.

Installing Libraries that Use the Library Editor

Before you can use a Data Transformation library, you must install it. Use the same steps to update a library.
Note: If you are running the previous version of HL7, you can update the library from the version 10.1.1
library .zip file.

1. Copy the library .zip file to your local file system and unzip the file.

2. From the unzipped folder, copy the folder \<1ib name>\Developer\DT to the directory <Install Dir>

\<version>\clients\.

Installing Libraries that Do Not Use the Library Editor

Before you can use a Data Transformation library, you must install it. Use the same steps to update a library.

1. Copy the library .zip file to your local file system.
2. Unzip the file in the directory <Install Dir>\<version>\clients\DT\DxT Libraries.

If the DxT Libraries folder does not exist, create it and then copy the file.

Version Compatibility of Libraries

Use the libraries relevant to your current Data Transformation version. This ensures that you have the most
recent version of each library component.

You can import projects from older library versions into the Developer tool. Import the projects as Data
Transformation services. You can use the Scripts and edit them in the IntelliScript editor.

XML-Based Industry Standards

12

In addition to the libraries supporting specific industry messaging types, Data Transformation has been
certified for use with the following XML-based standards. Certification means that Data Transformation was
explicitly tested and correctly processes XML data conforming to the standard.

Note: Some of the table entries are XML versions of standards for which there are Data Transformation
libraries. The library schemas are not necessarily the same as the schemas defined in the standards.

ACORD XML:
XML version of the ACORD standard for the insurance industry.
FIXML

XML version of the Financial Information eXchange standard. For more information, see “FIX Library” on
page 48.

Chapter 1: Libraries for Industry Standards

FpML

Financial products Markup Language for complex financial products. For more information, see
http://www.fpml.org.

HL7 Version 3
XML version of the HL7 standard for the health industry.
IFX

Interactive Financial eXchange standard for sharing financial information. For more information, see
http://www.ifxforum.org/standards.

MISMO

Mortgage Industry Standards Maintenance Organization for mortgage and investment products and
services. For more information, see http://www.mismo.org.

National Information Exchange Model for exchange of information between US governmental agencies
and private industries. For more information, see http://www.niem.gov/.

OAGi
Open Applications Group Inc. standard for business process interoperability. For more information, see
http://www.openapplications.org.

RosettaNet
Standard for B2B commerce and collaborative processes. For more information, see
http://www.rosettanet.org.

SEPA
Single Euro Payments Area electronic payments standard. For more information, see “SEPA Library” on
page 71.

SWIFT MX
XML version of the SWIFT standard for the financial industry. For more information, see "MX
Validators” on page 79.

TWIST

Transaction Workflow Innovation Standards Team for electronic commerce. For more information, see
http://www.twiststandards.org.

UNIFI (1SO 20022)

UNIversal Financial Industry messaging standard. For more information, see http://www.is020022.org.

XML-Based Industry Standards

13

http://www.fpml.org
http://www.ifxforum.org/standards
http://www.mismo.org
http://www.mismo.org
http://www.openapplications.org
http://www.rosettanet.org
http://www.twiststandards.org
http://www.iso20022.org

CHAPTER 2

Using Libraries

This chapter includes the following topics:

e Libraries and the Data Processor Transformation, 14

e Library Object Development, 15

e Create a Library Transformation with the Wizard, 18

e Identifying the Startup Component for a Library Object, 18

e Further Changes to Library Transformations, 19

Libraries and the Data Processor Transformation

14

A Data Processor transformation uses Scripts and Library objects to transform industry message type inputs
into other formats, and vice-versa.

A Library transformation contains a large number of objects and components, such as Parsers, Serializers,
and XML schemas, that transform the industry standard input and specific application messages into XML
output. A Library transformation might contain objects for message validation, acknowledgments, and
diagnostic displays. A Library transformation uses objects to transform the messaging type from industry
standard input to XML and from XML to the library standard format.

You can create Library objects for ACORD, BAI, CREST, DTCC-NSCC, EDIFACT, EDI-UCS & WINS, EDI-VICS, EDI-
X12, FIX, FpML, HIPAA, HIX, HL7, IATA, IDS, MDM Mapping, NACHA, NCPDP, SEPA, SWIFT, and Telekurs
libraries.

You can use a dedicated Library editor to edit the Library specifications for the DTCC-NSCC, EDIFACT, EDI-
X12, HIPAA, HL7, and SWIFT libraries. A Library object contains a root element, container elements, and data
elements. The types of container and data elements vary according to message type. You can add and delete
elements and configure the properties of elements to change validation settings.

When you create transformations for the Bloomberg, COBOL, and Thomson Reuters libraries, they do not
contain Library objects.

How to Create the Data Processor Transformation

To create a Library transformation, for most libraries you use the New Transformation wizard to create a
Data Processor transformation and then configure it with a Library object.

For the ACORD, BAI, CREST, DTCC-NSCC, EDIFACT, EDI-UCS & WINS, EDI-VICS, EDI-X12, FIX, FpLM, HIPAA,
HIX, HL7, IATA, IDC, IDS, MDM Mappings, NACHA, NCPDP, SEPA, SWIFT and Telekurs libraries, create a blank
Data Processor transformation. After you create the transformation, you add a Library object.

Creating the Data Processor Transformation

Create a Data Processor transformation in the Developer tool. After that, you can create a Library object in
the transformation. For the Bloomberg, COBOL, and Thomson Reuters libraries, you can use the New
Transformation wizard to auto-generate a Data Processor transformation.

1. Inthe Developer tool, click File > New > Transformation.
2. Select the Data Processor transformation and click Next.

3. Enter a name for the transformation and browse for a Model repository location to put the
transformation.

4. Select to create a blank Data Processor transformation and click Finish.

The Developer tool creates the empty transformation in the repository. The transformation appears in
the Overview view.

Creating a Library Object

Create a Library object on the Data Processor transformation Objects view. Select the message type,
component and name. Optionally, you can define a sample message type source file that you can use to test
the Library object.

Before you create a Library object in the Data Processor transformation, install the library software package
on your computer.

1. In the Objects view, click New.

2. Select Library and click Next.

3. Browse to select the message type.

4. Choose to create a Parser or Serializer.

Create a Parser if the Library object input is a message type and the output is XML. Create a Serializer if
the Library object input is XML and the output is a message type.

5. If the Library is the first component to process data in the Data Processor transformation, enable Set as
startup component.

Click Next.

6. If you have a sample message type source file that you can use to test the Library with, browse for and
select the file from the file system.

You can change the sample file.
7. Click Finish.

Library Object Development

A Data Processor transformation uses a Library object to transform a message type from industry standard
input to XML, and vice-versa, and from XML to other formats. You can use the Library editor to customize the
message type structures and elements for the DTCC-NSCC, EDIFACT, EDI-X12, HIPAA, HL7, and SWIFT
libraries.

To change the structure of the message type, you can add, edit, and delete elements from the Library object
in the Library editor. You can also test and run the Library object from the Library editor.

For the ACORD, BAI, Bloomberg, CREST, EDI-UCS & WINS, EDI-VICS, FIX, FpLM, HIX, IATA, IDC, NACHA,
NCPDP, SEPA, Telekurs, and Thompson Reuters libraries, you do not use the Library editor to change the

Library Object Development 15

16

structure of a message. You can use the IntelliScript editor to edit the transformation Parsers, Serializers,
and Mappers.

Edit Libraries with the Library Editor

You can use a dedicated Library editor to edit the Library specifications for the EDI-X12, SWIFT, HL7, HIPAA,
DTCC-NSCC, and EDIFACT libraries.

The Library editor lets you customize the message type structures and elements with an editor that is
customized for each message type. You can add, edit and delete elements from the Library object with the
Library Editor.

Message Structures and Properties

The message structures used in a particular library are defined in the corresponding industry standard. This
section presents a brief description of the structures and the properties that you can edit in the Library
Customization Tool. We have attempted to define the terms in everyday language, rather than the precise but
highly technical language used in the standards.

For more information about the precise definition of each term, see the appropriate industry standard. For
example, for detailed information about HIPAA message structures and properties, see the HIPAA
documentation.

Hierarchical Structure

The Library editor displays the hierarchical structure of a message. It labels each structural element with an
icon. The following table describes the icons the editor uses to display HIPAA messages:

Icon Structural Element

= Transaction set.
Description: A message.

-4 Loop
Description: A group of segments, possibly repeated.

o, Segment
Description: A sequence of data elements or composites.

- Composite
Description: A structure that contains data elements.

- Data element
Description: A simple data item.

The HIPAA standard defines the meaning of these elements and how they are nested. For example, a
segment can contain composites and data elements. A composite contains data elements.

The icons and structure elements differ for other industry standards. In some standards, the elements have
names such as message, record, and field instead of transaction, segment, and data element. Some
standards define additional logical constructs such as options or alternatives.

Chapter 2: Using Libraries

Global and Positional Settings
The Library editor can display two types of settings for each element:

¢ Global settings. Properties that apply to all instances of an element. If the same element is defined in
multiple contexts of the message, editing the global settings affects all the instances.

e Positional settings. Properties that apply to a single definition of the element in the message. Editing the

positional settings affects only the message context that you have selected in the Library editor.

In the HIPAA library, for example, a global setting might permit an element to contain any of 10 enumerated
values. A positional setting might limit the same element to a subset of two values.

Adding an Element with the Library Editor

A Library message contains a root element, container elements, and data elements. Use the Library editor to

add an element to a message.

1. Inthe Objects view, select the Library editor object and click Open.
The Library editor appears.
2. Click the Add element icon and choose where you want to add the element.
* New. Append the element to the end of the list of elements.
¢ Insert Above. Insert the element above the element selected in the Library editor.
¢ Insert Below. Insert the element below the element selected in the Library editor.
¢ Insert Within. Insert the element within the container element selected in the Library editor.

3. Select whether to copy an existing element or create a new element and click OK.

Editing the Element Properties with the Library Editor

Use the Library editor to edit a container element or data element in a Library. When you change the
properties of an element, you change the specifications for the message type.

1. In the Message Definition window of the Library editor, select the element to edit.
The Properties window displays the element properties.
2. Inthe Properties window, select a property and enter the new property value.

If you enter an incorrect value type or an out-of-range value, you will be prompted to correct the value.

Testing a Library
Test the Library object in the Data Viewer view.
Before you test the Library, select a sample input file to test.

1. To select a sample input file, in the Library editor General panel, near the Sample input field, browse to
select a sample input file.

2. Open the Data Viewer view.

3. To select the Library message type that you edited as the component to run, click Synchronize with
Editor.

4. Click Run.
The Developer tool runs the Library object Parser. The output results appear in the Output window.

5. If there are validation errors, the Output Errors panel in the Output window lists the errors and their
location. To find the source of the error, double-click the error.

Library Object Development

17

6.

To view the validation error files, click the file names in the Additional Outputs panel in the Output
window.

When you click the ErrorsFound. txt or Errors.xml file name, the file opens in an external browser.

Create a Library Transformation with the Wizard

For the Bloomberg, COBOL, MDM JavaBeans, and Thomson Reuters libraries, you use the New
Transformation wizard to auto-generate a Data Processor transformation.

Creating the Data Processor Transformation with the Wizard

Use the New Transformation wizard to auto-generate a Data Processor transformation.

1.
2.
3.

In the Developer tool, click File > New > Transformation.
Select the Data Processor transformation and click Next.

Enter a name for the transformation and browse for a Model repository location to put the
transformation.

Select to create a Data Processor transformation with a wizard, and then click Next.

Select an input format. Browse to select a schema, copybook, example file, or specification file if
required for certain input formats.

Select an output format. Browse to select a schema, copybook, example file, or specification file if
required for the output format.

Click Finish. The wizard creates the transformation in the repository.

The transformation does not contain a Library object, but might contain a Parser, Serializer, Mapper, or
an object with common components. If you selected a schema, example file, or specification file, the
wizard also creates a schema in the repository that is equivalent to the hierarchy in the file. You can edit
the Script components with the IntelliScript editor.

|ldentifying the Startup Component for a Library
Object

Library objects typically have a complex structure, with multiple components defined at the top level and
nested levels of the IntelliScript script. The structure is designed to support all the options defined in the
industry standard.

18

Each Library object has a startup component that the Data Processor transformation activates when you run
the Library object.

1.
2.

In the Overview view, check the component listed in the Service startup component field.

To change the startup component, click Browse and select a Script component.

Chapter 2: Using Libraries

Further Changes to Library Transformations

Advanced users might want to change the way that a message type is transformed. A Library transformation
contains many components, such as Scripts with Parsers, Serializers, and XML schemas, that define the
transformation.

To access and edit the Scripts, XMaps and schemas that you create with the Library editor, you must
generate the Library objects. For more information, see “ Generate Library Objects Overview” on page 84.

Further Changes to Library Transformations 19

CHAPTER 3

Descriptions of the Libraries

This chapter includes the following topics:

e ACORD AL3 Library, 20

e ACORD-MDM Mappers Library, 22
e BAl Library, 24

e Bloomberg Library, 26

e COBOL Processing Library, 29

e CREST Library, 32

e DTCC-NSCC Library, 33

e EDIFACT Library, 36

e EDI-X12 Library, 41

e EDI Libraries Based on X12, 47

e FIX Library, 48
e FpML Library, 49
e HIPAA Library, 49
e HIX Library, 56

e HL7 Library, 60
e |ATA PADIS Library, 64

e |DC-IDSI Library, 65

e MDM JavaBeans Library, 66
o NACHA Library, 69

e NCPDP Library, 70

e SEPA Library, 71

e SWIFT Library, 72
e Telekurs VDF Library, 80

e Thomson Reuters Library, 81

ACORD AL3 Library

The ACORD AL3 library implements the AL3 messaging standard used in the insurance industry. AL3 is
maintained by the Association for Cooperative Operations Research and Development (ACORD), a nonprofit

20

insurance association. AL3 messages handle the transmission of insurance information such as policies and
claims. For more information, see http://www.acord.org/standards/al3.aspx.

The ACORD AL3 library transformations do not validate their input. If the input is invalid, the transformations
might fail or they might generate unexpected output.

ACORD AL3 Message Structure

ACORD has a positional format. It uses question marks as placeholders for missing data.

The following sample is an excerpt of an ACORD message that deals with watercraft insurance:

1MHG176 IBM716ESTEDL 222222722222222°2°2°2°2231225 AFW
50270000010406111100051 70

2004061111000512TRG212 70 3P PBOAT FMG

0001040611 040511 PCH

20040611200405112TCG135

2TAG212 00003278 P06260822

WTRP PRODUCER

2ACI200 Stephen F. Newman, Inc.

1600 Delaware Avenue, Suite 999 Seneca NY1499916837168563387
5BIS172 B10001 P Ester W. Powell

9BIS168 B10001 3672 Almond drive
Hopatka NY14888 7166090166
5ISI183 B200015BISB10001 2?2 22222227222 22222222°27272°22227

5S5NG117 B200015BISB10001 01DECJane W. Fieldstone
5BPI285 F100015BISB10001 P06260822 22222227227
FISH 040511050511

XML of an ACORD AL3 Message

The ACORD AL3 library processes XML structures such as the following example:

<AL3 301 WaterCraft>
<Message Header Group>
<Header 00>1MHG176</Header 00>
<Message Address Origination 01>IBM716ESTEDL</Message Address Origination 01>
<Message Address Destination 02>?2?2?2?2?2?2?2?</Message Address Destination 02>
<Contract Number 03>231225</Contract Number 03>
<Password User 04 />
<System Type Code 05>AFW</System Type Code 05>
<Interface Software Revision Level 06>5027</Interface Software Revision Level 06>
<Message_ Sequence Number 07>000001</Message Sequence Number 07>
<Message_Transmission_Date Time 08>0406111100051</Message_Transmission_Date Time_ 08>
<Count_Unit Code 09 />
<Special Handling 10 />
<Message Standard Revision Level 11>70</Message Standard Revision Level 11>
<Transmission Status Flag 12 />
<Message Response Code 13 />
<Error Code 14 />
<Network Reference Code 15 />
<Network Reserved For Future Use 16 />
<Message Transmission Date Time 17>200406111100051</
MessageiTrangmissioniDate:Time:l7> B
</Message_Header_ Group>

ACORD AL3 Library 21

http://www.acord.org/standards/al3.aspx

ACORD-MDM Mappers Library

The ACORD library implements the LA messaging standard used in the insurance industry. The MDM
JavaBeans library creates components that transform flat XML representations of JavaBeans components to
and from hierarchical XML files. The ACORD-MDM Mappers library contains Mappers that translate MDM
JavaBeans XML files to ACORD LNA XML files and then back to output MDM JavaBeans XML files.

Before you run the Mappers, use the Developer tool to transform the MDM JavaBeans XML file to an output
XML file. For more information about the MDM JavaBeans library, see “MDM JavaBeans Library” on page
66.

You can use the Developer tool to import and run the mappers as XMap objects.

The following table describes the files in the XMap directory of the ACORD-MDM Mappers library:

File Name Description

ACORD_LNA_to_MDM_<version>.xml | Mapper that translates from an ACORD LNA file to an output MDM JavaBeans
XML file with the Developer tool.

MDM_to_ACORD_LNA_<version>.xml | Mapper that translates from an output MDM JavaBeans XML file to an ACORD
LNA file with the Developer tool.

The following table describes the folders in the ACORD-MDM Mappers directory of the ACORD-MDM Mappers
library:

File Name Description

ACORD_LNA_to_MDM | Folder with mapper files that translate from an ACORD LNA file to an output MDM JavaBeans
XML file with the Developer tool. You cannot modify the mapper scripts after you import the
files.

MDM_to_ACORD_LNA | Folder with mapper that translate from an output MDM JavaBeans XML file to an ACORD LNA
file with the Developer tool. You cannot modify the mapper scripts after you import the files.

Output MDM JavaBeans File XML Structure

The ACORD-MDM Mappers library translates to and from output MDM JavaBeans XML files. The MDM
JavaBeans library generates the output XML file with the following name: input.xml

The following example shows the XML structure of an output MDM JavaBeans XML file:

<agreemts>
<MDM:com.siperian.inservice.bo.Agreemt>
<agrmntTp>Policy</agrmntTp>
<identifier>79876543210</identifier>
<productSpecification>
<MDM:com.siperian.inservice.bo.ProductSpecification>
<shortname>123456</shortname>
</MDM:com.siperian.inservice.bo.ProductSpecification>
</productSpecification>
</MDM:com.siperian.inservice.bo.Agreemt>
</agreemts>
<controlData>
<MDM:com.infa.b2b.ControlData>
<transRefGUID>01231212121234567890</transRefGUID>
<transType>Values Inquiry</transType>
</MDM:com.infa.b2b.ControlData>
</controlData>

22 Chapter 3: Descriptions of the Libraries

ACORD LNA file XML Structure

The ACORD-MDM Mappers library translates to and from ACORD LNA files.

The following example shows the XML structure of an ACORD LNA file:

<ACORD:TXLifeRequest PrimaryObjectID="Holding 1">
<ACORD:TransRefGUID>01231212121234567890</ACORD:TransRefGUID>
<ACORD:TransType tc="212">Values Inquiry</ACORD:TransType>
<ACORD:TransSubType tc="21207"/>
<ACORD:BusinessService>
<ACORD:ServiceName>http://www.acord.org/schema/ws-porttypes/PnP/1/
FundArrangementValuesInquiry</ACORD:ServiceName>
<ACORD:ServiceVersion>
<ACORD:TransVersion>1.0</ACORD:TransVersion>
</ACORD:ServiceVersion>
</ACORD:BusinessService>
<ACORD:TransExeDate>2007-03-29</ACORD: TransExeDate>
<ACORD:TransExeTime>10:49:01</ACORD:TransExeTime>
<ACORD:OQOLifE>
<ACORD:Holding id="Holding 1">
<ACORD:HoldingTypeCode tc="2">Policy</ACORD:HoldingTypeCode>
<ACORD:Policy>
<ACORD:PolNumber>79876543210</ACORD: PolNumber>
<ACORD:ProductCode>123456</ACORD:ProductCode>
<ACORD:CarrierCode>12345</ACORD:CarrierCode>
</ACORD:Policy>
</ACORD:Holding>
</ACORD:0OLifE>
</ACORD:TXLifeRequest>

Creating an ACORD-MDM Mapper Transformation in the Developer

Tool

Import the Mappers to the Developer tool to create a Data Processor transformation with XMap objects.

Before you translate from an MDM JavaBeans XML file to an ACORD LNA file, use the MDM JavaBeans

library to generate an XML file from an MDM JavaBeans file.

1.

For more information about XMap and the Developer tool, see the Data Transformation User Guide.

In the Developer tool, click File > Import.

The Import wizard opens to the Select screen.

Select Informatica > Import Object Metadata File (Advanced) and click Next.
The Import File screen appears.

Click Browse and select the mapper XML file that you want to import.

The Select Objects to Import screen appears.

In the Source pane, select the XMap and the schemas for the mapper and click Add to Target.

Click Next.
The Summary screen appears.
Click Finish.

The Developer tool imports the mapper and creates a Data Processor transformation with XMap objects.

ACORD-MDM Mappers Library

23

BAI Library

The BAl library implements the following specifications developed by the BAI financial service industry
organization:

e Cash Management Balance Reporting Specifications Version 2 (BAI2)
e Lockbox Communications Standards for Banks (BAI Lockbox)

The BAl library transformations do not validate their input. If the input is invalid, the transformations might
fail or they might generate unexpected output.

For more information about the specifications, see http://www.bai.org/operations/reportingcodes.asp.

BAI2 Message Structure

BAI2 messages have a record format. Each record ends with a line break and contains comma-delimited
fields.

The first two digits of each record indicate the record type. In the following excerpt, the 01 record is a file
header, containing information such as the sender and receiver IDs. The 02 records label account groups. The
other records contain the data for specific bank transactions. The 88 records are continuation lines.

01,122099999,123456789,040621,0200,1,65,,2/
02,031001234,122099999,1,040620,2359,,2/
03,0123456789,,010,+4350000,,,040,2830000,,/
88,072,1020000,,,074,500000,,/
16,115,450000,5,100000,200000,150000,,,/
16,115,10000000,5,5000000,4000000,1000000/
88,AX13612,B096132, AMALGAMATED CORP. LOCKBOX

88, DEPOSIT-MISC. RECEIVABLES

49,9150000,4/
03,9876543210,,010,-500000,,,100,1000000,,,400,2000000,,,190/
88,500000,,,110,1000000,,,072,500000,,,074,500000,,,040/
88,-1500000,,/

16,115,500000,S,,200000,300000,,,LOCK BOX NO.68751
49,4000000,5/

98,13150000,2,11/

02,053003456,122099999,1,040620,2359,,2/
03,4589761203,,010,10000000,,,040,5000000,,,074,4000000,,/

XML Version of a BAI2 Message

The BAI library processes XML representations of BAI2 messages such as the following example:

<BAI>
<Delimiters>
<RecordDelimiter>/</RecordDelimiter>
<FieldDelimiter>,</FieldDelimiter>
</Delimiters>
<FileHeader 01>
<SenderIdentification>072000096</SenderIdentification>
<ReceiverIdentification>072000096</ReceiverIdentification>
<FileCreationDate>060322</FileCreationDate>
<FileCreationTime>0433</FileCreationTime>
<FileIdentificationNumber>1</FileIdentificationNumber>
<PhysicalRecordLength>80</PhysicalRecordLength>
<VersionNumber>2</VersionNumber>
</FileHeader 01>
<LoopGroups>
<GroupHeader 02>
<UltimateReceiverIdentification>000000000</UltimateReceiverIdentification>
<OriginatorIdentification>072000096</OriginatorIdentification>
<GroupStatus>1</GroupStatus>

24 Chapter 3: Descriptions of the Libraries

http://www.bai.org/operations/reportingcodes.asp

<AsOfDate>060321</AsOfDate>
<AsOfTime>0433</AsOfTime>
<CurrencyCode />
<AsOfDateModifier>2</AsOfDateModifier>
</GroupHeader 02>
<LoopAccounts>
<AccountIdentifier 03>
<CustomerAccountNumber>1000000001</CustomerAccountNumber>
<CurrencyCode />
<TypeCode>015</TypeCode>
<Amount>+0000016668216</Amount>
<FundsType />
<TypeCode>040</TypeCode>
<Amount>+0000016668216</Amount>

BAI Lockbox Message Structure

BAI Lockbox messages have a positional structure. The following excerpt is an example:

100412109254801210002480611210505
241210925480121000248000000000040008000801
5001001020174506112141210925480121000248
60010010000377969111000614634566970 071324 MAYDAY
4001001601034145204 0000016750
4001001602034145409 0000009500

XML of a BAI Lockbox Message

The BAl library processes XML representations of BAl Lockbox messages such as the following example:

<BAI Lockbox>
<ImmediateAddressHeader>
<PriorityCode>00</PriorityCode>
<ImmediateDestination>4121092548</ImmediateDestination>
<0riginCode>0121000248</0riginCode>
<DepositDate>061121</DepositDate>
<TransmissionTime>0505</TransmissionTime>
</ImmediateAddressHeader>
<ServiceRecord>
<UltimateDestination>4121092548</UltimateDestination>
<0riginCode>0121000248</0riginCode>
<ReferenceCode>0000000000</ReferenceCode>
<ServiceType>400</ServiceType>
<RecordSize>80</RecordSize>
<BlockingFactor>0080</BlockingFactor>
<FormatCode>1</FormatCode>
</ServiceRecord>
<Lockbox>
<DetailHeader>
<BatchNumber>001</BatchNumber>
<ItemNumber>001</ItemNumber>
<LockboxCode>0201745</LockboxCode>
<DepositDate>061121</DepositDate>
<UltimateDestination>4121092548</UltimateDestination>
<0riginCode>0121000248</0OriginCode>
</DetailHeader>
<Batch>
<DetailRecord>
<BatchNumber>1</BatchNumber>
<ItemNumber>1</ItemNumber>
<RemittanceAmount>377969</RemittanceAmount>
<RemitterIdentification>11100061</RemitterIdentification>

BAI Library

Bloomberg Library

The Bloomberg library validates Bloomberg response messages and converts them to XML.
The Bloomberg library performs the following types of validation:
e Field datatype and width

e Business rules defined by Informatica

The Bloomberg field type definitions change on a daily basis. The Data Transformation Bloomberg library can
create a service from a sample request or response message. The service contains a parser for small input
files and a streamer for large input files.

The following table describes the files that the service produces:

File Description

output.xml Contains all of the data in the original Bloomberg request or response.
Errors.xml Contains a detailed description of errors in the input.

ErrorsFound.txt Boolean flag that indicates whether the service detected errors in the input.

Note: When you use a streamer to process large files, some comments do not appear in the output.

Bloomberg Message Structure

A Bloomberg message is made up of a header section, a field-definition section, and a data section. The
header section and the field-definition section are optional.

The following example of a Bloomberg message shows a header section, a field-definition section, and a data
section:

START-OF-FILE
RUNDATE=20110911
PROGRAMNAME=getdata
REPLYFILENAME:DLMRT_comma_bulklist.Out
FIRMNAME=d1927
PROGRAMFLAG=oneshot
COLUMNHEADER=yes
SECMASTER=yes
CREDITRISK=yes
DELIMITER=,
OUTPUTFORMAT=bulklist

START-OF-FIELDS
CALL SCHEDULE
END-OF-FIELDS

TIMESTARTED=Sun Sep 11 10:44:19 EDT 2011
START-OF-DATA

US4581401001 US|10]1]

US4581401001 US Equity|0|1] |

431022KWl Equity|10]1] |

431022KW1 Corp [10/02/20091100.0000
431022KW1 Govt [10/02/2009(1100.0000
US694032BD48 Muni [11/01/2007/103.203500
END-OF-DATA

TIMEFINISHED=Sun Sep 11 10:44:22 EDT 2011

END-OF-FILE

26 Chapter 3: Descriptions of the Libraries

XML Version of a Bloomberg Message

The following example shows the XML version of a Bloomberg message:

<?xml version="1.0" encoding="windows-1252" 2>
<BBG:BloombergDatalicense xmlns:BBG="http://www.informatica.com/B2B/Bloomberg"
product="PerSecurity"
current date="20110911" time started="Sun Sep 11 10:44:19 EDT 2011"
time finished="Sun Sep 11 10:44:22 EDT 2011">
<Header>
<Flag name="RUNDATE">
<Value>20110911</Value>
</Flag>
<Flag name="PROGRAMNAME">
<Value>getdata</Value>
</Flag>
<Flag name="REPLYFILENAME">
<Value>DLMRT comma_bulklist.out</Value>

</Flag>

<Flag name="FIRMNAME">
<Value>dl1927</Value>

</Flag>

<Flag name="PROGRAMFLAG">
<Value>oneshot</Value>

</Flag>

<Flag name="COLUMNHEADER">
<Value>yes</Value>

</Flag>

<Flag name="SECMASTER">
<Value>yes</Value>

</Flag>

<Flag name="CREDITRISK">
<Value>yes</Value>

</Flag>

<Flag name="DELIMITER">
<Value>,</Value>
</Flag>
<Flag name="OUTPUTFORMAT">
<Value>bulklist</Value>
</Flag>
</Header>
<Fields>
<Field name="CALL SCHEDULE" />
</Fields>
<Record object 1d="US4581401001 US">
<CALL_SCHEDULE />
</Record>
<Record object 1d="US4581401001 US Equity">
<CALL_SCHEDULE />
</Record>
<Record object id="431022KWl1 Equity">
<CALL_SCHEDULE />
</Record>
<Record object 1d="431022KWl Corp">
<CALL_SCHEDULE>
<Row>
<BC_DT>10/02/2009</BC_DT>
<BC_CALL_SCHEDULE_PX>100.0000</BC_CALL SCHEDULE PX>
</Row>
</CALL_SCHEDULE>
</Record>
<Record object id="431022KW1 Govt">
<CALL_SCHEDULE>
<Row>
<BC_DT>10/02/2009</BC_DT>
<BC_CALL SCHEDULE PX>100.0000</BC_CALL SCHEDULE PX>
</Row>
</CALL_SCHEDULE>
</Record>
<Record object 1d="US694032BD48 Muni">
<CALL SCHEDULE>

Bloomberg Library 27

28

<Row>

<BC_DT>11/01/2007</BC_DT>
<BC_CALL_SCHEDULE_PX>103.203500</BC_CALL_SCHEDULE_PX>

</Row>
</CALL_SCHEDULE>
</Record>

</BBG:BloombergDatalLicense>

Field Definition Files

The fields in Bloomberg responses are defined in files. You can get the most up-to-date files from the

Bloomberg FTP site.

The following table describes the field definition files:

File Description
lookup.out Defines valid values for fields and the structure of bulk format fields.
fields.csv Defines fields for Per Security, Back Office, and Extended Back Office.

crisk_fields.csv

Defines fields for the Credit Risk Module.

backoffice_fields.xls

Defines fields for Back Office.

backoffice_extended_fields.xIs

Defines fields for Extended Back Office.

Installing the Bloomberg Library

Before you create a Bloomberg service, you must install the Bloomberg library, and then restart the Developer

tool.

Note: If you are running a previous version, you can update the library from this release 10 .ZIP file, following
the Installing Libraries steps in the Data Transformation Libraries Guide.

1. Toinstall the library, copy the Bloomberg library .ZIP file to your local file system and unzip the file.

2. From the unzipped folder, copy the file Bloomberg PS_Import.tgp to the directory <Install Dir>

\<version>\clients\DT\autoInclude\system.

3. Copy the folder CmInternal Bloomberg to the directory <Install Dir>\<version>\clients\DT\bin

\internalServices.

Creating a Bloomberg Transformation

Create a Bloomberg transformation when you install the Bloomberg library, or when the Bloomberg field

definition files change.

1. Inthe Developer tool, click File > New > Transformation.

2. Select the Data Processor transformation and click Next.

3. Enter a name for the transformation and browse for a Model Repository location to put the

transformation.

4. Select Create a data processor using a wizard and click Next.

Chapter 3: Descriptions of the Libraries

© © N o

10.
11.

Select the Bloomberg input format. Select one of the following types:
e Bloomberg Back Office file

e Bloomberg Extended Back Office file

¢ Bloomberg Per Security file

Click Next.

Browse to select a Bloomberg request file or response file. Click Next.
Select an output format and click Next.

Click Finish.

The Developer tool creates the transformation in the repository for the Bloomberg message type with a
Parser and Streamer. The transformation appears in the Overview view.

In the Settings view Output panel, select Disable automatic output.

To run the Streamer, in the Overview view, select the Streamer as the startup component.

COBOL Processing Library

The COBOL library transforms COBOL data to and from XML. When you use the wizard to create a
transformation with COBOL input or output, you select a COBOL copybook to define the expected structure of
the input or output data.

When you create a Data Processor transformation with COBOL input or output with the wizard, Developer
adds the following objects to the transformation:

A schema object that defines an XML representation of the COBOL data structure.

For COBOL input, Developer adds a Parser that transforms input data from the COBOL data definition to
XML.

For COBOL output, Developer adds a Serializer that transforms XML to COBOL.

Note: You can create a Data Processor transformation that uses COBOL input or output, but not both. To
process EBCDIC encoded COBOL, ensure that you change the encoding settings for the Data Processor
transformation to EBCDIC.

Creating a Transformation for COBOL

Use the Data Processor transformation wizard to create a Data Processor transformation with COBOL input
or output.

1.
2.
3.

In the Developer tool, click File > New > Transformation.
Select the Data Processor transformation and click Next.

Enter a name for the transformation and browse for a Model Repository location to put the
transformation.

Select Create a data processor using a wizard and click Next.
Select an input format and click Next.
If you select COBOL as an input format, browse to select a COBOL copybook. Click Next.

The copybook specification file generally has an *. txt extension. Developer adds an XSD schema file
representing the copybook to the Model repository.

COBOL Processing Library

29

30

7. Select an output format and click Next.
8. If you select COBOL as an output format, browse to select an COBOL copybook. Click Next.

If you selected COBOL as the input format, you do not have the option to select COBOL as the output
format.

9. Click Finish.

The Developer tool creates the transformation in the repository. The Overview view appears in the
Developer tool.

10. In the Objects view, double-click the Parser to open it in the IntelliScript editor.

11. If the COBOL data is encoded in EBCDIC, in the Settings view change the input or output encoding to the
relevant EBCDIC codepage.

COBOL Data Definitions

The COBOL copybook that you use to create a Data Processor transformation can contain data definitions of
any complexity. The COBOL copybook and input must comply with data definition rules described in this
section.

Supported Data Definitions

The COBOL import supports data definitions of any complexity. For example, the data definitions can use the
packed decimal (comp-3), binary (comp-1, coMP-2, or coMmp-4), and logical decimal point (99v99) data types.
They can contain features such as REDEFINES, OCCURS, and OCCURS DEPENDING ON clauses.

Data Definition Rules

A COBOL data definition must comply with the following rules:

e No more than 72 characters for each line, and no text beyond column 72

e The first line must be a remark, with a * in column 7, or it must start with a level number
e The first level number must be in column 1 or 8.

Unsupported Data Definitions

The Data Processor transformation does not support the following COBOL data definitions:
e The special level numbers 66, 77, and 88

e USAGE clauses at a group level

e INDEXED BY clauses

e POINTER and PROCEDURE-POINTER

Test Procedures

When you test the COBOL Parser you transform sample COBOL data to XML and verify the output. After you
test the Parser, you can run the COBOL serializer on the output of the Parser.

Chapter 3: Descriptions of the Libraries

Testing a COBOL Parser

To test the COBOL Parser you need an input file that contains sample COBOL data. The data structure must
conform to the data definition that you imported. The Parser transforms sample COBOL data to XML and you
verify the output.

1. Inthe Object view, double-click the COBOL Parser.
The Parser appears in the script panel of the IntelliScript editor.
2. Right-click the Parser name, and then click Set as Startup Component.

3. Expand the IntelliScript tree, and then edit the example source property of the Parser. Change its value
from Text to LocalFile.

The wizard configures the COBOL Parser in a way that does not require an example source document.
When you finish testing, you can remove the example source. The example source has no effect on the
transformation at run-time.

4. To assign an example file, expand the LocalFile component by clicking the double right arrows >>.
Double-click the file name property and browse to the input file that contains the sample COBOL data.

5. In the Data Viewer view Input panel, you can examine the example file. If the document does not display,
right-click the Parser name in the IntelliScript, and click Open Example Source.

6. Click Run > Run Data Viewer to test the Parser.
7. Inthe Data Viewer view Output panel, examine the Parser output.

8. To confirm that the Parser ran without error, in the Data Viewer view Output panel, click the Show Events
button. Examine the execution log in the Data Processor Events view.

Testing a COBOL Serializer

After you test a COBOL Parser, you can run the COBOL Serializer on the output of the Parser.

1. Inthe Data Transformation Explorer, double-click the TGP script file of the Serializer.
The Serializer appears in the script panel of the IntelliScript editor.
2. Right-click the Serializer name, and then click Set as Startup Component.

3. Click Run > Run to activate the Serializer. At the prompt, browse to the Results\output.xml file, which
you generated when you ran the Parser.

4. Examine the execution log in the Events view. Confirm that the Serializer ran without error.

5. To view the Serializer output, double-click the Results\output.xml file in the Data Transformation
Explorer.

The display should be the same as the original input on which you ran the Parser.

Editing a Transformation for COBOL

You can edit a transformation for COBOL that you generate with the Data Processor transformation wizard.

If you do this, document your editing. The documentation might be essential if you later revise the COBOL
data definition, re-import it to a new transformation, and need to reproduce your editing.

COBOL Processing Library 31

CREST Library

32

The CREST library processes the messages produced by an electronic settlement system used for stock and

bond transactions in the United Kingdom. The CREST standard is maintained by Euroclear.

The CREST library transformations do not validate their input. If the input is invalid, the transformations might

fail or they might generate unexpected output.

For more information about the standard, see https://www.euroclear.com/site/public/EUI.

CREST Message Structure

A CREST message is a file containing multiple messages delimited by headers and trailers. The fields contain

a colon-delimited tag followed by data.

:79:
:79:
:79:
:79:
:/UFTQ/0003457
:/IUSE/UKUSERO1
: /UOPR/0P001

: /HSMT/ADVN
:/HVRN/003
:/HMDE/L
:/HSEQ/00000002
:/HFPI/PRTO1
:/HDPI/PRTO1

: TRANSREF-01

/HSMT/ZHDR
/HVRN/001
/HMDE/L
/HSEQ/00000001

:31P:19980123

XML of a CREST Message

The CREST library processes XML structures such as the following example:

<CREST>
<FileTransferHeader>

<SubMessageType>ZHDR</SubMessageType>
<VersionNumber>001</VersionNumber>

<Mode>L</Mode>
<FileTransferItemNumber>00000001</FileTransferItemNumber>
<FileTransfer>0003457</FileTransfer>
<UserId>UKUSER01</UserId>
<OperatorReference>0P001</OperatorReference>

</FileTransferHeader>
<SubMessage>

<ADVN_ 3>

<SubMessageHeader>
<SubMessageType>ADVN</SubMessageType>
<VersionNumber>003</VersionNumber>
<Mode>L</Mode>
<FileTransferItemResponseNumber>00000002</FileTransferItemResponseNumber>
<FunctionParticipantID>PRT01</FunctionParticipantID>
<DataParticipantID>PRT01</DataParticipantID>

</SubMessageHeader>

<TransactionDetails>
<TRANSACTIONiREFERENCE>TRANSREF—Ol</TRANSACTION7REFERENCE>
<TRADE DATE>19980123</TRADE DATE>

Chapter 3: Descriptions of the Libraries

DTCC-NSCC Library

The Depository Trust and Clearing Corporation (DTCC) provides broker-to-broker securities transaction
processing services, such as clearance, settlement, and information services for stocks, bonds, and mutual
finds.

The National Securities Clearing Corporation (NSCC), a DTCC subsidiary, provides clearing, settlement, and
risk management services for US broker-to-broker trades involving equities, corporate and municipal debt,
and unit investment trusts. The NSCC messaging protocol is the proprietary system by which DTCC
customers exchange financial information and transactions. For more information about DTCC and NSCC,
see http://www.dtcc.com.

The Data Transformation DTCC-NSCC library provides components that transform NSCC messages.

You can use the Library editor to edit the DTCC-NSCC Library object.

DTCC-NSCC Message Structure

DTCC-NSCC messages have a positional layout that includes both fixed and variable-length fields. The
following example is a small excerpt of an APP - Initial Application and Premium message for purchase of an
annuity:

1TRANS20070122 792ANNUITIES APP/SUB/CX0001 10230079204 0000000093DTCCCDT
20070122 14:00
RDT 20070122 14:00

XML of a DTCC-NSCC Message

The DTCC-NSCC library processes XML structures such as the following example:

<APP xmlns="http://www.informatica.com/B2B/DTCC/NSCC">
<AutorouteHeader>

<ApplicationDate>20070122</ApplicationDate>
<SenderIdentifier />
<0lderReportNumber>792</0lderReportNumber>
<ProductDescription>ANNUITIES APP/SUB/CX</ProductDescription>
<0ldBranchNumber>000</01dBranchNumber>
<MulticycleTransmissionCounter />
<RetransmissionIndicator>1</RetransmissionIndicator>
<ProductIdentifier>02300792</ProductIdentifier>
<ApplicationsMulticycleCounter>04</ApplicationsMulticycleCounter>
<RecipientIdentirfier />
<RecordCount>0000093</RecordCount>
<Fillerl />
<DateCreated>20070122</DateCreated>
<Fillerl/>
<TimeCreated>14:00</TimeCreated>

DTCC-NSCC Message Properties

For DTCC-NSCC messages, the Library editor displays Transaction, Loop, Record, Field, Redefine, and Option
properties.

DTCC-NSCC Library 33

http://www.dtcc.com

34

The following table describes the Transaction Set properties:

Property Description

Library type DTCC-NSCC.
Global setting.

ID Message ID.
Global setting.

Name Message name.
Global setting.

The following table describes the Loop properties:

Property Description

ID Loop identifier.
Global setting.

Positional setting.

Repetitions | Number of times that the loop is repeated, for example, 1 or 2. For an unlimited number, enter >1.

The following table describes the Record properties:

Property Description

ID Record identifier.
Global setting.

Record type | DTCC-NSCC record type.
Global setting.

Sequence Sequence number of the record.
Global setting.

Usage Required, optional, conditional, or not used.
Positional setting.

Positional setting.

Repetitions | Number of times that the segment is repeated, for example, 1 or 2. For an unlimited number, enter >1.

The following table describes the Redefine properties:

Property Description

ID Redefine identifier.
Global setting.

Global setting.

Condition element The name of an element that is used to evaluate conditions defined in the nested options.

Chapter 3: Descriptions of the Libraries

The following table describes the Option properties:

Property | Description
ID Option identifier.
Global setting.
Condition | A string value. If the string has the same value as the condition element of the redefine, the option is

included in the redefined structure.
Global setting.

The following table describes the Field properties:

Property Description

ID Field identifier.
Global setting.

Number Field number.
Global setting.

Enumerations A list of permitted data values.
Global setting.

Usage Required, optional, conditional, or not used.
Positional setting.

Length Length of the data.
Positional setting.

Type Data type of the field, for example, AN.
Positional setting.

Reject code A field identifier for display in error messages if the field contains invalid data.
Positional setting.

Description Data description.
Positional setting.

If memory is insufficient, the library Parsers cannot process very large inputs in a single block. Instead, you
can use a Streamer to break the input into segments and parse them. The DTCC-NSCC library provides a set

Configure the Streamer to Parse Large Inputs

of sample Streamers.

The input that you pass to the Streamer must terminate with the following string, signaling the end of the

data:

#INFA EOF#

In Streamer mode, the DTCC-NSCC library Parsers do not validate the uniqueness of contract IDs.

To use the sample Streamers, import the sample Script with the Streamers into the Developer tool, then copy

the Scripts to a Data Processor transformation with a DTCC-NTCC Library object.

DTCC-NSCC Library

Validation

The DTCC-NSCC library Parsers validate the input messages. The Parsers implement DTCC validation types
such as mandatory field checks, field-level validation, order of messages, and rule validation. For more
information about these validation types, see the DTCC documentation.

By default, the library enables the validation. In cases where the input has already been validated, you can
disable the validation. To do this, pass a service parameter called strictMode to the Parser, and set its value
to false. Alternatively, edit the IntelliScript and initialize the strictMode variable to a value of false.

To selectively disable certain types of validations, you can edit the message schemas in the Library editor.
For example, you can change a mandatory field to optional.

The library contains Serializers in two versions. Serializers with names ending in _Serializer Restricted
perform strict validation according to the DTCC standard. Serializers with names ending in _Serializer
perform a lesser degree of validation.

Except in extreme cases, validation errors do not cause the library Parsers or Serializers to fail.

Validation Reports

In addition to the standard parser or serializer output, the DTCC-NSCC transformations write validation
messages output ports. The following table describes the output ports:

Output port name | Output

errors An XML listing of any validation errors that the transformation found.
errorsFound A boolean value: true if the transformation found validation errors, or false if it found no
errors.

An application can pass the port locations to the transformation service. For more information about output
ports, see the Data Transformation User Guide.

Handling DTCC REJECT Messages

To parse REJ messages, set the parameter strictMode to false, and pass the service parameter to the parser.
Alternatively, edit the parser with the IntelliScript editor and initialize the strictMode variable to a value of
false.

EDIFACT Library

36

The EDIFACT library implements the EDIFACT international electronic data interchange standard maintained
by the United Nations. For more information, see http://www.unece.org/trade/untdid/welcome.htm.

You can use the Library editor to edit the EDIFACT Library object.

Chapter 3: Descriptions of the Libraries

http://www.unece.org/trade/untdid/welcome.htm

EDIFACT Message Structure

An EDIFACT message contains segments and fields, separated by a hierarchy of delimiters characters as in
the following example:

UNA:+,? '

UNB+UNOA: 2+BANESTO+TELEFONICA DE ESPANA S.A.+050321:1204+0030200503211"
UNH+20050321120412+BANSTA:098:96A:UN"'
BGM+XZ8+20050321120412+9"'
DTM+137:20050321:102"'
RFF+ACW:20050321113331"
DTM+171:20050321:102"'

LIN+1'

SEQ+YF2+1"

GIS+1'

DTM+140:20050321:102"'

MOA+9:0,00"

CNT+2:1"

CNT+X27:1"

AUT+INTERV49 107835"
UNT+14+20050321120412"
UNZ+1+0030200503211"

XML of an EDIFACT Message

The EDIFACT library processes XML structures such as the following example:

<interchange>
<delimiters>
<field separator>+</field separator>
<segmentiseparator>'</segmentiseparator>
<composite separator>:</composite separator>
<escape character>?</escape character>
</Delimiters>
<UNA>
<R01>:</RO1>
<R02>+</R02>
<R03>,</R03>
<R04>?</R04>
<RO5 />
<R06>'</R0O6>
</UNA>
<UNB>
<RO1>
<RO1>UNOA</RO1>
<R02>2</R02>
</R0O1>
<R02>
<RO1>BANESTO</R0O1>
</R02>

EDIFACT Message Properties

For EDIFACT messages, the Library editor displays the Transaction Set, Loop, Segment, Composite, and Data
Element properties.

EDIFACT Library 37

38

The following table describes the Transaction Set properties:

Property Description

Library type EDIFACT.
Global setting.

Library version Library version number.
Global setting.

ID Message ID.
Global setting.

Name Message name.
Global setting.

The following table describes the Loop properties:

Property Description

ID Loop identifier.
Global setting.

Name Loop name.
Global setting.

Optional True or false.
Positional setting.

Positional setting.

Repetitions | Number of times that the loop is repeated, for example, 1 or 2. For an unlimited number, enter 9999.

The following table describes the Segment properties:

Property Description

ID Segment identifier.
Global setting.

Name Segment name.
Global setting.

Optional True or false.
Positional setting.

Positional setting.

Repetitions | Number of times that the segment is repeated, for example, 1 or 2. For an unlimited number, enter 9999.

Chapter 3: Descriptions of the Libraries

The following table describes the Composite properties:

Property Description

ID Composite identifier.
Global setting.

Name Composite name.
Global setting.

Optional True or false.
Positional setting.

The following table describes the Data Element properties:

Property Description

ID Data element identifier.
Global setting.

Name Data element name.
Global setting.

Type Data element type.
Global setting.

Min length Minimum length of the data.
Global setting.

Max length Maximum length of the data.
Global setting.

Enumerations A list of permitted data values.
Global setting.

Optional True or false.
Positional setting.

Validation and Acknowledgments

The EDIFACT library contains two versions of the library directories, providing different levels of input
validation. The version providing stricter validation also provides a transaction acknowledgment mechanism.

Library Directories with Validations
An Edifact library provides schemas and Parsers that validates input against the EDIFACT standard.

A validating Parser does not fail if it encounters non-conforming input. Instead, the Parser labels its XML
output with an error-code attribute that has a value specified in the EDIFACT standard. For example, if a
mandatory field is missing, both the field and the segment containing it are labeled with error codes. The
error output has the following appearance:

<BGM segErrorCd="18">
<R01 compErrorCd="18">

EDIFACT Library 39

40

The Parsers validate the following features of the input:

<R01 errorCd="12">352</R01>
</R0O1>

</BGM>

e Input type

e Enumerations

e Mandatory fields

e Minimum and maximum length

The following table describes the EDIFACT error codes:

Code Description

12 Invalid value

13 Missing

18 Unspecified error

35 Too many data element or segment repetitions
36 Too many segment group repetitions

37 Invalid type of character(s)

39 Data element too long

40 Data element too short

EDIFACT Acknowledgments

If you use the with validations components of the EDIFACT library, you can configure a transformation to
generate EDIFACT CONTRL acknowledgments automatically. To do this, the transformation can run a
predefined Parser on the XML output of the library component. The output of this Parser is the
acknowledgment, including a summary of the validation errors.

To generate EDIFACT CONTRL acknowledgments:

1.
2.
3.

Run the transformation defined in the EDIFACT XML to CONTRL service of the EDIFACT library.

As the input of the transformation, pass the XML output of a library Parser.

The following table describes the service parameters to pass to the transformation:

Parameter Required/ Instructions

Optional
inInterchangeReferenceNumber Required Outgoing interchange reference number.
inExpectedInterchangeReferenceNumber | Required Expected incoming interchange reference number

for the partner.

Chapter 3: Descriptions of the Libraries

Parameter Required/ Instructions
Optional

inCorrectRecipientldentification Optional UNB-03 identification of the incoming interchange
recipient.

inSupportedSyntaxidentifiers Optional A comma-delimited list of supported syntax
identifiers, for example:
UNOA, UNOB, UNOC

inSupportedSyntaxVersions Optional A comma-delimited list of supported syntax
versions, for example:
1,2,3

inTestIndicator Optional Set the value to 1 to indicate an outgoing
interchange test message. The default is empty,
meaning a production message.

The transformation generates the CONTRL acknowledgment, including a summary of the validation
errors.

Library Directories without Validations

The EDIFACT library services in the without validations directory provide a lesser degree of validation than
those inthe with validations directory.

The schemas of the without validations projects define all fields as optional. Nevertheless, the parsers
check for mandatory data.

The parsers use the optional property to implement the validation. If a field is mandatory according to the
EDIFACT standard, the optional property of the corresponding anchor is false. If a mandatory field is
missing, this causes the parser to fail. In that case, the parser does not generate XML output. The event log
reports the failure.

EDI-X12 Library

The Data Transformation EDI-X12 library contains components that convert messages between X12 and
XML, and generate validation error reports and acknowledgements.

X12 is a standard for electronic data interchange (EDI) between trading partners over data networks. X12 is
developed and maintained by the Accredited Standards Committee (ASC). For more information, see
http://www.x12.0rg.

You can use the Library editor to edit the EDI-X12 Library object.

X12 Message Structure

The X12 standard defines the structure of X12 messages.
A valid X12 message is made up of the following layers:

¢ Interchange. The outer layer that wraps the entire X12 message.

EDI-X12 Library 41

http://www.x12.org

e Functional group. The middle layer that wraps one or more transaction sets.
e Transaction set. The inner layer that contains the data.

Each transaction set contains a header, one or more data segments, and a trailer. A transaction set might
contain data such as a purchase order, an invoice, or a statement of account.

The following example illustrates an X12 Vessel Content Details transaction set. In this example, segments
are delimited by tildes (~) and data elements are delimited by asterisks (*).

ST*109*0001~B4*15*%0*%2*%19960515*1424*Statu*Equi*Equipment *D*XXXX*

Location Identifier*A*3~N9*01*Reference Identification*

Free-form Description*19960515*%1424*01*01"Reference Identification”01"
Reference Identification”0l”Reference Identification~Q2*X*XX*19960515*
19960515%19960515*10045*21392*A*Flight/Voy*01*Reference Identification*
B*Vessel Name*10691*B*E~VI*AAD*Event*19960515*%1424*City Name*XX*XX*001*
XXXXXX*25946*Tr*Free-Form Message*(01*25878*XXXXXX*T17*437*272*2457*
12935~R4*1*A*Location Identifier*Port Name*XX*Terminal Name*Pier*XX~DTM*
001*19960515*1424*01*CC*Date Time Period~V9*AAD*Event*19960515*1424%

City Name*XX*XX*001*XXXXXX*4685*Tr*Free-Form Message*01*13647*XXXXXX*813*
605*52%20035*%12104~N9*01*Reference Identification*Free-form Description*
19960515*1424*01*01"Reference Identification”0l1”Reference Identification”
01"Reference Identification~SG*2*001*XX*19960515*%1424*01~SE*11*0001~

XML of an X12 Message

The following example illustrates part of the XML output of an EDI-X12 service:

<interchange>
<delimiters>
<field separator>*</field separator>
<segment_separator>~</segment_separator>
<composite separator>"</composite separator>
<escape character>?</escape character>
</Delimiters>
<ISA>
<R01>00</R0O1>
<R02 />
<R03>00</R03>
<R04 />
<R05>01</R05>
<R06>003897733</R06>
<R07>2%2</R0O7>
<R08>SLRGATEWAY</R08>
<R09>050202</R09>
<R10>1338</R10>
<R11>U</R11>
<R12>00401</R12>
<R13>000000708</R13>

EDI-X12 Message Properties

For EDI-X12 messages, the Library editor displays the Transaction Set, Loop, Segment, Data Element, and
Composite properties.

42 Chapter 3: Descriptions of the Libraries

The following table describes the Transaction Set properties:

Property Description

Library type EDI-X12.
Global settings.

Library version The library version number.
Global settings.

ID Message identifier.
Global settings.

Name Message name.
Global settings.

The following table describes the Loop properties:

Property Description

ID Loop identifier.
Global settings.

Name Loop name.
Global settings.

Optional True or false.
Global settings.

Positional settings.

Repetitions | Number of times that the loop is repeated, for example, 1 or 2. For an unlimited number, enter 9999.

The following table describes the Segment properties:

Property Description

ID Segment identifier.
Global settings.

Name Segment name.
Global settings.

Optional True or false.
Positional settings.

Repetitions | Number of times that the segment is repeated, for example, 1 or 2. For an unlimited number, enter 9999.

Positional settings.

EDI-X12 Library

43

44

The following table describes the Composite properties:

Property Description

ID Composite identifier.
Global settings.

Name Composite name.
Global settings.

Optional True or false.
Positional settings.

The following table describes the Data Element properties:

Description

Data element identifier.
Global settings.

Data element name.
Global settings.

Data element type.
Global settings.

Minimum length of the data.
Global settings.

Maximum length of the data.
Global settings.

A list of permitted data values.
Global settings.

True or false.
Positional settings.

Chapter 3: Descriptions of the Libraries

Validation of X12 Messages

When a Data Processor transformation converts an X12 message to XML, it validates the message for
conformity with the X12 standard and generates an error report.

Each Data Transformation X12 service provides a parser and two serializers. The parser performs strict
validation. The following table describes the serializers by validation type:

Type

Serializer Validation | Description

Loose validation

Service name ends with _Serializer. If the service finds validation errors, it generates
XML output and an error report.

Strict validation

Service name ends with _Serializer Restricted. If the service finds validation errors, it
generates only an error report.

Use the Library editor to disable or modify certain types of validations.

Both serializer types generate SE, GE, and IEA trailer segments. You can omit the SE, GE, and IEA data from
the XML input of the serializers.

X12 Validation Error Reports

When an EDI-X12 service finds validation errors in the input message, it generates an error report.

When you run an EDI-X12 service, you specify the AdditionalOutputPort for each of the error outputs. The
following table describes the error outputs:

Name Description
Errors An XML listing of validation errors that the service found, including the standard X12 error codes.
ErrorsFound Indicates whether the service found validation errors. The errorsFound output port can have the

following values:
- true. The X12 message contained validation errors.
- false. The X12 message did not contain validation errors.

ValidationReport

An HTML representation of the Errors.xml file.

X12 Message Acknowledgments

X12 message acknowledgements indicate whether a message was received and whether it is valid.

The EDI-X12 library contains services that generate the following types of X12 acknowledgments:

e 997 acknowledgement. Confirms the receipt and validity of a transaction.

e 999 acknowledgement. Confirms the receipt and validity of a transaction.

e TA1 acknowledgement. Confirms the receipt and validity of the interchange envelope, such as the sender
and receiver data.

EDI-X12 Library

45

Generating 997 or 999 Acknowledgments
You can generate 997 or 999 acknowledgements from the error report output of an EDI-X12 parser service.
Note: 997 or 999 acknowledgements are relevant only to parser services.

» Run one of the following services from the library:
e ACK_997_Generator
e ACK_999_Generator

The following table describes the values to pass to the service:

Parameter Value

Input document Errors output.

inOutgoinglnterchangeControlNum Identifies the message. Default is 1.
ber

Generating TA1 Acknowledgments

You can generate a TA1 acknowledgement from an input message. You can also validate the sender ID and
qualifier against a list of known senders.
1. To enable validation of sender ID and qualifier, edit the lookup file.

You can find the inInterchangeIdsAndQualifiersForSenders.xml lookup file in the project directory.
Enter each sender in the following format:
<Entry key="sender id" value="sender qualifier"/>

2. Runthe TA1_Generator service from the EDI-X12 library.

The following table describes the values to pass to the service:

Parameter

Description

Input document

The X12 message. Required.

inOutgoingInterchangeControlNumber

Outgoing interchange control number. Default is 1.
Required.

inInterchangeReceiverld

Receiver data. Optional.

inInterchangeReceiverldQualifier

Receiver data. Optional.

inExpectedInterchangeControlNumbers

Enter the values in a list that begins with a semicolon and
has a semicolon after each value. Optional. For example:

71:2;:3;

inSupportedFunctionalGroups

Enter the values in a list that begins with a semicolon and
has a semicolon after each value. Optional.

inSupportedFunctionalGroupVersions

Enter the values in a list that begins with a semicolon and
has a semicolon after each value. Optional.

Chapter 3: Descriptions of the Libraries

Parameter Description

inValidinterchangeVersionlDs Enter the values in a list that begins with a semicolon and
has a semicolon after each value. Optional.

inSupportedinterchangeVersionIDs Enter the values in a list that begins with a semicolon and
has a semicolon after each value. Optional.

inValidinterchangeControlStandardsldentifiers Enter the values in a list that begins with a semicolon and
has a semicolon after each value. Optional.

inSupportedinterchangeControlStandardsidentifiers | Enter the values in a list that begins with a semicolon and
has a semicolon after each value. Optional.

inValidSegmentTerminators Enter the values in a list that begins with a semicolon and
has a semicolon after each value. Optional.

inValidDataElementSeparators Enter the values in a list that begins with a semicolon and
has a semicolon after each value. Optional.

inValidComponentElementSeparators Enter the values in a list that begins with a semicolon and
has a semicolon after each value. Optional.

inValidResponsibleAgencyCodes Enter the values in a list that begins with a semicolon and
has a semicolon after each value. Optional.

inValidAuthorizationInformationQualifiers Enter the values in a list that begins with a semicolon and
has a semicolon after each value. Optional.

inAddNewlinesToOutgoingMessage By default, the TAT message has the same linebreak
format as the input messsages. To override the defaults,
specify one of the following values:

- NONE

- CR

- LF

- CRLF

Optional.

luVersionReleaselndustryTolmplementation By default the TAT message generates the 999
acknowledgment. To generate the 997 acknowledgment,
specify 997. Optional.

EDI Libraries Based on X12

In addition to the EDI-X12 library, Data Transformation provides several libraries implementing X12-based
standards used in specific industries. The following list describes the libraries:

EDI-UCS_and_WINS library

Library implementing the Uniform Communication Standard (UCS) and Warehouse Information Network
Standard (WINS), used in the grocery and warehouse industries, respectively. For more information
about the standards, see http://www.uc-council.org/ean_ucc_system/stnds_and_tech/ucs.html.

EDI Libraries Based on X12 47

http://www.uc-council.org/ean_ucc_system/stnds_and_tech/ucs.html

EDI-VICS library

Library implementing the Voluntary Interindustry Commerce Solutions standard, used in the retail
industry. For more information about the standard, see http://www.vics.org/home.

These library transformations do not validate their input. If the input is invalid, the transformations might fail
or they might generate unexpected output.

FIX Library

The FIX library supports the Financial Information eXchange protocol for real-time electronic exchange of
securities transactions. The protocol is maintained by FIX Protocol, Ltd.

The FIX library transformations do not validate their input. If the input is invalid, the transformations might
fail or they might generate unexpected output.

For more information about the protocol, see http://www.fixprotocol.org.

FIX Message Structure

A FIX message is a string containing fields delimited by special characters. Each field has a numerical
identifier followed by data.

In the following excerpt, the delimiter is ANSI character 01, which is an invisible character. For clarity, we
have depicted the delimiter by using the caret symbol (*).

8=FIX.
4.179=154"35=6"49=BRKR"56=INVMGR"34=239"52=19980604-08:00:36"23=115687728=N"55=PIRI.MI"
54=1727=300000744=5950.001"25=H"10=168

XML of a FIX Message

The FIX library processes XML structures such as the following example:

<IndicationOfInterest>

<Header>
<BeginString>FIX.4.1</BeginString>
<BodyLength>154</BodyLength>
<MsgType>6</MsgType>
<SenderCompID>BRKR</SenderCompID>
<TargetCompID>INVMGR</TargetCompID>
<MsgSeqgNum>239</MsgSegNum>
<SendingTime>19980604-8:00:36</SendingTime>

</Header>

<Body>
<I0Iid>115687</I0Iid>
<I0ITransType>n</I0ITransType>
<Symbol>PIRI.MI</Symbol>
<Side>1</Side>
<I0IShares>300000</I0IShares>
<Price>5950.001</Price>
<I0IQltyInd>H</IOIQltyInd>

</Body>

<Trailer>
<CheckSum>168</CheckSum>

</Trailer>

</IndicationOfInterest>

48 Chapter 3: Descriptions of the Libraries

http://www.vics.org/home
http://www.fixprotocol.org

FpML Library

The FpML library implements the industry-standard FpML protocol for complex financial products.

The FpML library implements the Financial Products Markup Language standard for electronic deals and
processes regarding over the counter (OTC) derivatives. The FpML library establishes the industry protocol
for sharing information about financial derivatives and structured products and dealing in these derivatives
and products.

The FpML library supports the following views:

e Confirmation
e Reporting
e Recordkeeping

e Transparency

The library validates messages according to the FpML rules in the specifications.

FpML Validation Error Reports

When an FpML service finds validation errors in the input message, it generates an error report.

When you run an FpML service, you specify the AdditionalOutputPort for each of the error outputs. The
following table describes the error outputs:

Name Description

Errors An XML listing of validation errors that the service found, including the standard FpML error codes.

ErrorsFound | Indicates whether the service found validation errors. The errorsFound output port can have the
following values:

- true. The FpML message contained validation errors.

- false. The FpML message did not contain validation errors.

HIPAA Library

HIPAA is an industry standard for administrative and financial health-care transactions. For more
information, see the following websites:

e http://aspe.hhs.gov/admnsimp/fagtx.htm

e http://www.hipaa.org

HIPAA is based on the X12 standard. For more information about X12, see “EDI-X12 Library” on page 41.

In addition to the regular parser, serializer, and schema components provided in every Data Transformation
library, there is a special HIPAA library component that validates input messages and generates
acknowledgments. The special component implements the complete set of validation and acknowledgment
types defined in the HIPAA standard up through version 5010A1.

You can use the Library editor to edit the HIPAA Library object.

FpML Library 49

http://aspe.hhs.gov/admnsimp/faqtx.htm
http://www.hipaa.org/

HIPAA Message Structure

The following excerpt illustrates a HIPAA message. The example is a Benefit Enrollment and Maintenance
transaction, used by an insurance sponsor to provide benefit enrollment information to payers.

ISA*00**00**22*EDI0021*22*54828*032403*1253*U*00405*000000905*1*T*:
GS*BE*EDI0021*54828*20030324*1253*5*X*004050X125~
ST*834*26608~
BGN*00*26608%20021226*1200*ES*2~

N1*P5*UES CORP*FI*111222333~

N1*IN*UNITED HEALTHCARE*FI*777888999~
INS*Y*18*%021*28*A***FT~

REF*0F*851027461~

REF*1L*199301~

DTP*356*D8*20021219~
NM1*IL*1*CANOE*NANCY*A*MRS.*I*99%99999999~
PER*IP**HP*4104038790*WP*4104035500*EX*5684~
N3*9999 ROSE VILLAGE*FIRST FLOOR~
N4*FLOWERS*ND*999995*CY*WHEELING~
DMG*D8%*19740801*F*M~

HD*021**PPO*PLAN COVERAGE DESCRIPTION*ESP~
DTP*348*D8*20021219~

SE*16*26608~

ST*834*%26608~
BGN*00*26608*20021226*1200*ES*2~

N1*P5*UES CORP*FI*111222333~

N1*IN*UNITED HEALTHCARE*FI*777888999~
INS*N*01*021*28*A***FT~

REF*0F*948047150~

REF*1L*199301~

HIPAA messages consist of multiple segments. Each segment begins with an identifying code. The following
table describes a few examples of the identifying codes contained in the sample message:

Identifying Code Segment Description

ISA Interchange Control header

GS Functional Group Header segment
ST Header segment

BGN Beginning segment

N1 Name

SE Trailer segment

XML Version of a HIPAA Message

The HIPAA library produces XML structures such as the following example:

<interchange xmlns="http://www.informatica.com/B2B/HIPAA/4010" xmlns:H834="http://
www.informatica.com/B2B/HIPAA/4010/834" >
<delimiters>
<field separator>*</field separator>
<composite separator>:</composite separator>
<segment separator>!</segment separator>
</Delimiters>
<ISA>
<R01>00</R0O1>
<R02 />
<R03>00</R03>
<R04 />

50 Chapter 3: Descriptions of the Libraries

<R05>7%7%</R0O5>
<R06>101018</R0O6>
<R07>ZZ</RO7>
<R08>107039</R08>
<R09>04101</R0O9>
<R10>1334</R10>

HIPAA Message Properties

For HIPAA messages, the Library editor displays the Transaction Set, Loop, Segment, Data Element, and

Composite properties.

The following table describes the Transaction Set properties:

Property

Description

Library type

HIPAA.
Global settings.

Library version

Library version number.
Global settings.

Message identifier.
Global settings.

Standard name

Message name.
Global settings.

Internal ID

An internal message identifier.
Global settings.

Functional group ID

The group to which the message belongs.
Global settings.

The following table describes the Loop properties:

Property Description

ID Loop identifier.

Global settings.

Repetitions | Number of times that the loop is repeated, for example, 1 or 2. For an unlimited number, enter >1.
Positional settings.

HIPAA Library

51

52

The following table describes the Segment properties:

Property

Description

ID

Segment identifier.
Global settings.

Standard name

Segment name.
Global settings.

Child dependencies

Defines relational conditions between data elements within the segment.
Global settings.

Segment qualifier

Index of the data element that qualifies the segment.
Global settings.

Usage Required, optional, conditional, or not used.
Positional settings.
Repetitions Number of times that the segment is repeated, for example, 1 or 2. For an unlimited number,

enter >1.
Positional settings.

Industry name

Industry-standard descriptive name of the segment.
Positional settings.

The following table describes the Composite properties:

Property

Description

ID

Composite identifier.

Standard name

Composite name.

Usage

Required, optional, conditional, or not used.
Positional settings.

The following table describes the Data Element properties:

Property

Description

ID

Data element identifier.
Global settings.

Standard name

Data element name.
Global settings.

Chapter 3:

Type Data element type.

Min length Minimum length of the data.
Global settings.

Descriptions of the Libraries

Property Description

Max length Maximum length of the data.
Global settings.

Enumerations A list of permitted data values.
Global settings.

Usage Required, optional, conditional, or not used.
Positional settings.

Enum subset Subset of the enumerated values that is valid in this instance of the data element.
Positional settings.

Validation and Acknowledgment Behavior

The HIPAA library is supplied in two versions, called HIPAA and HIPAA Validation:

e The HIPAA version contains parsers and other components that do not validate incoming messages and
that do not generate acknowledgments.

o The HIPAA Validation version contains the same parsers and other components as the HIPAA version. In
addition, the HIPAA Validation version contains a special project that implements the full set of validation
and acknowledgment types defined in the HIPAA standard.

Behavior without Validation

The HIPAA parsers are designed to be as forgiving as possible. If the input HIPAA message is invalid, the
parsers do not fail, but the XML output might contain missing or incorrect data.

Behavior with Validation

By using the HIPAA Validation version, you can pass incoming messages to a validation and
acknowledgment project before you pass them to the regular processors. In this way, you can incorporate
logic ensuring that the input data conforms fully to the HIPAA specifications.

Configuring the Edifecs Engine Version 8.x

To use the validation and acknowledgment features, you must first setup and run the Edifecs XEngine.

Configuring the Edifecs Server Version 8.x
Configure the Edifecs version 8.x server to work with Data Transformation.

1. Open the Edifecs Application Manager.

2. To open the Repository, in the System view expand the Configuration Manager node and double-click the
Repository.

The Repository view appears.

3. Inthe Repository view, click Upload and browse to the following route file:
XEServer (8.3.0) webservice profile.zip

4. In the Repository view, select the .zip file and click Deploy.

HIPAA Library 53

54

The Installation Wizard dialog box appears.

Select New Profile and name the profile as Informatica_webservice. Click Next twice.
Click Deploy.

The Informatica_webservice profile appears in the System view.

To open the Admin Console, in the System view expand the XEServer node and double-click the Admin
Console.

Check the HTTP port for the Informatica_webservice profile.
Select the Informatica_webservice profile and click Start.

Create an Edifecs_Results folder in the server machine. Ensure that the folder is accessible from the
machine running Data Transformation.

e On a Windows machine, create a folder at the following path: C:\public\Edifecs Results

e Ona Windows or Linux machine, create a folder at the following path: /Edifecs Results

Configuring Data Transformation for Validation with Edifecs Engine Version

8.x

To configure Data Transformation to use HIPAA Validation:

1.
2.

In the Data Transformation installation directory, edit the file CMConfig.xml.

Find the cMLibraries element and edit it as in the following example:

<CMLibraries>
<HipaaValidationWsS>
<RemoteWS>
<LocalPath>\\HIPAAValidationServer\HIPAAValidation\ JMS Results</LocalPath>
<RemotePath>/opt/Informatica/HIPAAValidation/ JMS Results</RemotePath>
</RemoteWs>
<Url>http://10.40.40.54:8077</Url>
<Version>8</Version>
</HipaaValidationWS>
</CMLibraries>

The following table describes the parameters:

Parameter Description

LocalPath The path to the Edifecs Results file that Data Transformation uses to access the directory.
The path is relative to the Data Transformation machine.

The Edifecs Results file is a temporary directory that both Data Transformation and the
Edifecs Engine use to transfer data.

RemotePath | The path to the Edifecs Results file that the Edifecs Engine uses to access the directory. The
path is relative to the Edifecs Engine machine.

Url The IP address or host name of the Edifecs server machine, and the HTTP port number that you
configured in $XESRoot/webservice/bin/apache-tomcat-5.5.20/conf/server.xml.

Version Specify the major Edifecs version you have installed, such as version 8.

Chapter 3: Descriptions of the Libraries

Using Validation and Acknowledgments

The HIPAA Validation version of the HIPAA library contains a special component called HIPAA Validation.
This component implements the validation and acknowledgment mechanisms.

The project can process all types of HIPAA messages. It can perform all the validation types defined in the
HIPAA standard, for example, checking for mandatory fields and balancing. The project can generate TA1,
997,999, 824, and 277 acknowledgments. For more information about the validation and acknowledgment
types, see the HIPAA documentation.

You can use the HIPAR Validation component in the following way:

1. Inthe Developer tool, user Parsers from the HIPAA Validation library to create one or more HIPAA Libra
objects.

ry

2. Create and deploy an additional Library object, based on the HIPAA Validation component of the HIPAA

Validation library.

3. When an application receives a HIPAA message, it can pass it to the HIPAA Validation component for
validation and generation of acknowledgments.

4. Asrequired, the application passes the acknowledgments back to the sender.

5. If the input passed the validation tests, that application passes the input to the regular parser service,
generating an XML representation of the HIPAA message.

Optionally, you can configure transformations that combine these steps. For example, a single
transformation might pass the same input to HIPAA Validation and to aregular Parser, in sequence.

Creating a Validation Component
You can create a HIPAA Validation component as part of a Library object.

To create a HIPAA_Validation component, create a Library object and select a HIPAA Validation message
type.

1. Inthe Data Processor transformation Objects view, click New.

2. Select Library and click Next.

3. Browse to select the message type HIPAA Validation.

4

Click Finish.

Selecting Validation and Acknowledgment Options

1. Inthe Developer tool, in a Data Processor transformation, create a HIPAA Validation Library object. To

create the Library object, perform the following steps:

a. Inthe Objects view for the Data Processor transformation, click New.
b. Select Library and click Next.

c. Select the HIPAA > Validation message type.

d. Choose to create a Parser or Serializer.

e. If you have a sample message type source file that you can use to test the Library with, browse for
and select the file from the file system.

f. Click Finish.

HIPAA Library

55

2. To select validation and acknowledgment options, open the HIPAA Validation CMLIBHIPAA.tgp
element. The following table describes the validation and acknowledgment options:

Option

Explanation

Separate valid transactions
from invalid transactions

If selected, the service copies valid and invalid input messages to different
output ports. If not selected, the services copies all messages to the valid port.

Validate transactions

Select this option to enable the validation. If not selected, the service can still
generate acknowledgments.

Generate acknowledgments

Select the acknowledgment types to generate. You can select types TA1, 997,
999, 824, and 277.

Validation error reporting
format

Select XML output, HTML output, or both.

You can use XML for data processing applications such as further processing in
Data Transformation. You can use HTML for display.

Validation types

You can select HIPAA validation types 1 to 7.

By default, all the options are selected. Select or clear the relevant options.

Validation Output

The HIPAA Validation service writes validation messages to the following output ports:

Output port name

Output

Acknowledgments

The generated acknowledgments.

ErrorsCount The number of errors in the input message.
HtmIReport An HTML validation report.
XmIReport An XML validation report.

InvalidTransactions

A copy of all invalid transactions in the input message.

ValidTransactions

A copy of all valid transactions in the input message.

An application can pass the port locations to the HIPAR Validation service. For more information about
output ports, see the Data Transformation User Guide.

HIX Library

The Data Transformation HIX Library addresses the ASCX12 healthcare industry standard. The HIX library
uses the Health Insurance Exchange protocol to exchange information for government-regulated and
standardized health care plans in the United States.

The HIX protocol is based on the HIPAA standard. In addition, the HIX Library contains HIPAA messages that
are relevant to the ASCX12 standard. The messages have Validation Level 1 and 2 only.

56 Chapter 3: Descriptions of the Libraries

Note: Do not use HIPAA or EDI-X12 validation components with the HIX Library. The HIX Library contains
separate validation components. These components process supported ASCX12 messages.

The HIX Library message components contain all the relevant variables for the ASCX12 standard. Individual
states might require that only a subset of these variables be used. You can configure message variables and
rules to address specific state requirements.

The HIX Library is optimized for transaction-based messages and achieves high performance with relatively
short messages. If you use the library to run large batches of messages, the performance of the library is not
optimal.

You can improve the performance of projects that process large batches of messages by disabling
validations for those projects. For example, processing a short message of approximately 1 MB in size with
no validations takes a few seconds, while processing the same message with all the available validations
might take up to a few minutes.

Size and processing time are not directly proportional. With large messages, the ratio between time to
process without validations and time to process with validations might be larger, and the processing of large
batches of messages is not optimal even when all the validations are disabled.

HIX Message Structure

A HIX message is a string that contains fields delimited by special characters. Each field has an identifier
followed by data.

The following excerpt is an example of the Related Payments message type (820).

ISA*00*.......... *01*SECRET....*ZZ*SUBMITTERS.ID..*ZZ*RECEIVERS.ID...*030101*1253*"*00501
*000000905*1*T*:~

GS*RA*SENDER CODE*RECEIVERCODE*19991231*0802*1*X*005010X306~
ST*820*0001*005010X306~
BPR*C*310*C*ACH*CCP*******()]1*]199999999*DA*98765*20121103~
TRN*3*78905~

N1*PE*BATA INSURANCE CO.*FI*012222222~

ENT*1~

NM1*IL*1*DOE*JOHN****C1*777222~

REF*IG*555666~

RMR*ZZ*1**30~

ENT*2~

NM1*IL*1*FIRSTONE*EMILY****C1*777333~

REF*IG*555777~

RMR*ZZ*1**45~

ENT*3~

NM1*EY*1*MIDDLEONE*JULIE****C1*777444~

REF*IG*544477~

RMR*ZZ*1**50~

DTM*582****RD8*20120901-20121031~

ENT*4~

NM1*EY*1*NEWONE*KELLY****EI*777111~

RMR*ZZ*2**450~

SE*27*0001~

GE*1*1~

IEA*1*000000905~

XML of a HIX Message

The HIX library processes XML structures such as the following example:

<?xml version="1.0" encoding="windows-1252" 2>
- <X5010:interchange xmlns:X5010="http://www.informatica.com/B2B/HIX/5010"
xmlns:X5010 820="http://www.informatica.com/B2B/HIX/5010/820">
- <delimiters>
<field separator>*</field separator>
<segment separator segment separator suffix="">~</segment separator>
<composite separator>:</composite separator>

HIX Library 57

58

<repeat separator />
</delimiters>
- <X5010:ISA>
<R01>00</R0O1>

<R03>01</R0O3>
<R04>SECRET....</R04>
<R05>7%7%</R0O5>
<R06>SUBMITTERS.ID..</R06>
<R07>22%</R0O7>
<RO8>RECEIVERS.ID...</R08>
<R09>030101</R0O9>
<R10>1253</R10>
<R11>"</R11>
<R12>00501</R12>
<R13>000000905</R13>
<R14>1</R14>
<R15>T</R15>
<R16>:</R16>
</X5010:ISA>
- <X5010:GS>
<RO1>RA</RO1>
<R02>SENDER CODE</R02>
<RO3>RECEIVERCODE</R03>
<R04>19991231</R04>
<R05>0802</R05>
<R06>1</R06>
<RO7>X</R07>
<R08>005010%X306</R0O8>
</X5010:GS>
- <X5010:GE>
<R01>1</RO1>
<R02>1</R02>
</X5010:GE>
- <X5010:IEA>
<R01>1</R0O1>
<R02>000000905</R02>
</X5010:IEA>
</X5010:interchange>

Message Acknowledgements

Message acknowledgements indicate whether a message has been received and whether it is valid.
The HIX library contains services that generate the following types of EDI acknowledgments:
997 acknowledgements
Confirms the receipt and validity of a transaction.
999 acknowledgements
Confirms the receipt and validity of a transaction.
TA1 acknowledgement
Confirms the receipt and validity of the interchange envelope, such as the sender data and receiver data.
Generating 997 or 999 Acknowledgments

You can generate 997 or 999 acknowledgements from the error report output of an HIX parser service. To
generate an acknowledgement, run one of the following services from the library:

e ACK_997_Generator
e ACK_999_Generator

Note: The 997 or 999 acknowledgements are relevant only to parser services.

Chapter 3: Descriptions of the Libraries

Generating TA1 Acknowledgments

Use the TA1_Generator to generate acknowledgements. The input is the message text file, as with a parser.

Disabling Validations

Disable validations for a project in the IntelliScrip editor. You can disable a single validation type, multiple
validation types, or disable all level 2 validations. The project doesn't run validations that you disable.

1. Open the main script that runs the project in the IntelliScript editor.

For example, to disable validations for the HIPPA version 5010A1 parser, open the project
HIPPA 5010A1 Main Parser CMLIBHIX.tgp.

2. To disable specific validation types, perform the following tasks:

a. Based on the type of validations to disable, expand the type1Validation group, the type2Validation
group, or both.

b. On the line of the validation type, right-click ValidateValue and select Disable. Disable as many
validations as required.

The following image shows how you disable the validation of delimiters in the type1Validation
group:

£ % typetvalidation = Group >>
contains

- ﬁ Interchange validation : ValidateValue<optional=(/H5010A1:interchanges, $errors, $ErrorsFoundFlag, "Interchange validation’|XValidateFile(), XvalidateFile
| Tl Calculatevalue('$1+ $2', SallErrors, , ,, |SallErors, $errors]) 1
I T Length validation : ValidateValue<optional>(/H5010AT:interchanges, Serrors, SErrorsFoundFlag, "Length validation’|XValidateFile(), XValidateFile()]

—- ﬂ, CalculateValue('$1 + $2°, $allErrors, |$allErrors, Serrors])
5 ﬂ Type lidateValue<optional=1/H5010A1:interchanges. Serrors. $ErrorsFoundFlag, ‘Type validation’|XValidateFil lidateFile()])

— T CalculateValue('$1+ 52", SallErrors, . [SallEmrors, Serrors])

+— T, DateTimePeriod validation * ValidateValue <optional=(/H5010A1:interchanges, $errors, SErrorsFoundFlag, ‘DateTimePeriod validation'|XValidateFile (), XVzl
2 T4, CalculateValue('$1 + $2', SallErrors, , ., [$allErrors, Serrors])

& T‘,{, SyntaxNotes validation : ValidateValue=optional=(/H5010A1:interchanges, Serrors, SErrorsFoundFlag, “SyntaxNotes validation’|XValidateFile(), XValidateFil}
& T4 Calculatevalue('$1 + $2°, SallErors, . ,, [SallEm
— T4 Delimiters validation %

= . SEmrorsFoundFlag, "Delimiters validation'[XValidateFile(), XValidateFile()])

| Tl CalculateValue('s1 + 52" SalE View Marking
—& m Structure validation - ValidateVa Set as Startup Component ErrorsFoundFlag, “Structure validation®|XValidateFile(). XValidateFile(]])
I T4 CalculateValue('$1 + $2", SallE
. Cut Ctri+X
£ < type2validation = Group => Copy Ctrl+C
contains Paste Ctrl+V
—— <= EC_L2Validation
| T4 Repetition validation - Validatey Insert Ins | $ErrorsFoundFlag, “Repetition vali "[Xvali ile(), ile()l) i
| [CalculateValue('$1 +$2°, SallE Delete Del
| [Code validation : ValidateValue forsFoundFlag, “Code validation’[XValidateFile(}, XValidateFile()])
—& ‘Eg CalculateValue('$1 + $2°, SallE Make Optional
& T Not Used vali i MakE Mandatory ISErrorsFoundFiag, “Not Used validation'[XValidateFile(), XValidateFile)))
—&8 m CalculateValue('31 + $2°, SallE
— T), Required validation : ValidateV: Enable $SErrorsFoundFlag, idation” X\ ile(), XVali ile{)])
- T CalculateValue('$1 + 52, SallE Disable
—— <= Dependencies_vrl
—& ﬂ, Sequencing validation ' Validat Script Mode fs, SErrorsFoundFlag, idation’| i ile(], le:
| Tl CalculateValue('$1 + $2°, SallErOrs,T7TS: ~SEITOTS])

The project doesn't run the validation types you disabled.
3. Todisable all level 2 validations, expand L2_Validation, right-click value, and enter false.

The following images shows a project where level 2 validations are disabled:

+{3 HIPAA_Main_Parser = Parser(, ,,, ‘Vertical Content Version: JAN-20", , |Locator(}, Locator()]|SetValue(), Group(), All
"\}. type1Validation = Group(|ValidateValue=optional=(), CalculateValue(], ValidateValue<optional=(], CalculateValue(], Val
% type2validation = Group<optional=(|. ValidateValue<optional=(), CalculateValue(}, ValidateValue<optional=(), Calculate
B (5 L2_Validation = Variable ==
— g val_type =xs:boolean
LE g initialization = Initialvalue
L € value = ‘false’ |

The project doesn't run level 2 validations.

HIX Library

Serializer and Restricted Serializer

Trailers

If the input.xml file contains trailers, the Serializer will serialize the data as contained in the input. If one of
the trailers is missing, such as the SE, GE, or IEA trailer, the Serializer determines which data is missing and
serializes the data to the output. txt file.

HL Segment
The Serializer calculates the following data:

e HLO1 Hierarchical ID Number, the sequencing number
e HLO2 Hierarchical Parent ID Number

e HLO3 Hierarchical Level Code

e HLO04 Hierarchical Child Code

If the input.xmnl file contains valid data, the transformation does not generate an error. If the HL segment in
the input.xml file contains data that is not valid, the transformation logs an error to the Errors.xml file and
the Serializer fixes the data. After the Serializer fixes the values, the HL segment in the output.txt file is
valid.

HIX Validation Error Reports

When a HIX service finds validation errors in the input message, it generates an error report.

When you run a HIX service, you specify the AdditionalOutputPort for each of the error outputs. The following
table describes the error outputs:

Name Description
Errors An XML listing of validation errors that the service found, including the standard X12 error codes.
ErrorsFound Indicates whether the service found validation errors. The errorsFound output port can have the

following values:
- true. The HIX message contained validation errors.
- false. The HIX message did not contain validation errors.

ValidationReport | An HTML representation of the Exrrors.xml file.

Note: If the input data contains an incorrectly used delimiter, the error report that the HIX service generates
does not contain the <DataElementValue> tag.

HL7 Library

60

The HL7 library implements the Health Level Seven version 2.x messaging standard used in the health
services industry. The HL7 standard is used world-wide in hospital and medical information systems. For
more information about the standard, see http://www.hl7.org.

The HL7 library transformations do not validate their input. If the input is invalid, the transformations might
fail or they might generate unexpected output.

You can use the Library editor to edit the HL7 Library object.

Chapter 3: Descriptions of the Libraries

http://www.hl7.org/

HL7 Message Structure

An HL7 message is composed of segments that are separated by line breaks. Each segment has a three-
character label, such as MSH (message header) or PID (patient identification). Each segment contains a
predefined hierarchy of fields and sub-fields. The fields are delimited by the characters immediately following
the MsH designator, typically | ~~\&. The message type is specified by a field in the MSH segment.

The following example is a message of type ADT, subtype 201, which is an Admit a Patient message.

In the example, the patient's name, smith~William"A, follows the P1D label by five | delimiters. The last and
first names, smith and William, are separated by a ~ delimiter.

For readability, we have inserted extra line breaks, in addition to the line breaks that were originally in the
message.

MSH|~~\&|ADT1|MCM|FINGER|MCM|198808181126 | SECURITY |ADT"A01|MSG00001|P[2.3.1
EVN|A01/198808181123
PID|1||PATID123475"M11"ADT1"MR"MCM~123456789"""USSSA"SS]| |
SMITH"WILLIAM"A"III|[19610615|M||C|1200 N ELM STREET""JERUSALEM"TN"99999°?
10201GL1(999)999?12121(999)999?33331|S||PATID12345001"2"M10"ADT1"AN"A|
123456789]987654"NC

NK1|1|SMITH"OREGANO"K|WI"WIFE| || |NK"NEXT OF KIN
PV1|1|I1200072012701||||004777~CASTRONFRANK"J. || |SUR| || [ADM|AO

XML Version of an HL7 Message

The library implements XML structures conforming to the HL7 version 2.x XML schemas. The following
excerpt is an example:

<HL7:ADT A0l xmlns:HL7="http://www.informatica.com/B2B/HL7">
<HL7:MSH>
<MSH.1>|</MSH.1>
<MSH.2>"~\&</MSH.2>
<MSH. 3>
<HD.1>ADT1</HD.1>
</MSH.3>
<MSH.4>
<HD.1>MCM</HD.1>
</MSH.4>
<MSH.5>
<HD.1>LABADT</HD.1>
</MSH.5>
<MSH. 6>
<HD.1>MCM</HD.1>
</MSH. 6>
<MSH. 7>
<TS.1>198808181126</TS.1>
</MSH.T7>
<MSH.8>SECURITY</MSH. 8>
<MSH. 9>
<MSG.1>ADT</MSG.1>
<MSG.2>A01</MSG.2>
</MSH. 9>
<MSH.10>MSG00001</MSH.10>

HL7 Message Properties

For HL7 messages, the Library editor displays the Message, Segment Group, Segment, Field, Type, and
Component properties.

HL7 Library 61

62

The following table describes the Message properties:

Property Description

ID Message identifier.
Global settings.

Library type HL7.

Global settings.

Library version

Library version number.
Global settings.

Description Description.
Global settings.
Category Category to which the message belongs.

Global settings.

The following table describes the Segment Group properties:

Property

Description

ID

Segment group identifier.
Global settings.

Requirement

Mandatory or optional.
Positional settings.

Repetitions

Number of times that the segment group is repeated, for example, 1 or 2. For an unlimited number,
enter >1.

Positional settings.

The following table describes the Segment properties:

Property Description

ID Segment identifier.
Global settings.

Description Description.

Global settings.

Requirement

Mandatory or optional.
Positional settings.

Repetitions

Number of times that the segment is repeated, for example, 1 or 2. For an unlimited number, enter >1.
Positional settings.

Chapter 3: Descriptions of the Libraries

The following table describes the Field properties:

Property Description

ID Field identifier, usually the ID of the parent segment followed by an index number.
Global settings.

Type Field type.
Global settings.

Description Description.
Global settings.

Requirement | Mandatory or optional.
Positional settings.

>1.

Positional settings.

Repetitions Number of times that the subsegment is repeated, for example, 1 or 2. For an unlimited number, enter

The following table describes the Type properties:

Property Description

ID The type of the parent field or component.
Global settings.

Description Description.
Global settings.

The following table describes the Component properties:

Property Description

ID Component identifier, usually the ID of the parent type followed by an index number.
Global settings.

Type Component type.
Global settings.

Description Description.
Global settings.

Requirement Mandatory or optional.
Global settings.

HL7 Library

63

IATA PADIS Library

The IATA PADIS library implements the Passenger and Airport Data Interchange Standards maintained by the
International Air Transport Association. For more information, see
http://www.iata.org/workgroups/padis.htm.

The IATA PADIS library transformations do not validate their input. If the input is invalid, the transformations
might fail or they might generate unexpected output.

IATA PADIS Message Structure

An IATA PADIS message contains segments and fields separated by characters such as ' and +:

UNH+1+APSRES:94:2:IA+X000000"
MAP+2+DL+:ITAREQ: 2"
UNT+3+1"'

XML of an IATA PADIS Message

The IATA PADIS library processes XML structures such as the following example:

<Interchange>
<delimiters>
<field separator>+</field separator>
<segment separator>'</segment separator>
<composite separator>:</composite separator>
</Delimiters>
<Transactions>
<ASPRES>
<UNH>
<R01>1</R0O1>
<R02>
<RO1>ASPRES</R01>
<R02>94</R02>
<R03>2</R03>
<R04>IA</R0O4>
</R02>
<R03>X000000</R0O3>
</UNH>
<LOOP_GRI1>
<MAP>
<RO1>
<R01>2</R0O1>
</R0O1>
<R02>DL</R02>
<R0O3>
<R02>ITAREQ</R02>
<R03>2</R03>
</R0O3>
</MAP>
</LOOP7GR1>
<UNT>
<R01>3</R0O1>
<R02>1</R02>
</UNT>
</ASPRES>
</Transactions>
</Interchange>

64 Chapter 3: Descriptions of the Libraries

http://www.iata.org/workgroups/padis.htm

IDC-IDSI Library

Interactive Data Corporation (IDC) and its subsidiary, Interactive Data Services, Inc. (IDSI), provide reference
data for evaluating securities.

The Data Transformation IDC-IDSI library performs the following actions:

e Parses input data in IDSI 320-column format.

o Validates the data for the following characteristics:
- Code

- Format

- Some business logic

e Converts the data to XML.

The parsers have the following output ports:

o Default output. An XML file containing the parsed input.

e Errors. An XML validation-error report.

e ErrorsFound. If the transformation encounters a validation error, returns true. If the transformation does
not find an error, returns false.

IDC-IDSI

Message Structure

IDC-IDSI messages have a 320-column, positional layout that includes both fixed and variable-length fields.
The following example is a small excerpt of an IDC-IDSI message:

A0699G10 $AUKU F999%AUSTRIAMIKROSYSTEMS AG, UNTESHS 011800003200041250004105000410500041050080 9993
A35855AB NSAPP321731SAPPI PAPIER HLDG AG DEBT 7.500% 6/15/32011900000000078500007850000785000079000680K0615
B3344DAA NDELH409999DELHAIZE GROUP DEBT 5.700%10/01/4001190000000009771300977130097713009882%0680K1001
C06840AU NBANK146081BANK NOVA SCOTIA DEBT 1.450% 7/26/14011900000000100957010095701009570100978680V072¢
CO780KAR NBARR396726¢BARRICK AUSTRALIA FIN PTY LTDEBT 5.950%10/15/39%011900000000114571011457101145710116006680K1015
C0780KAB NBARRZ06726BARRICK AUSTRALIA FIN PTY LTDEBT 4.950% 1/15/20011900000000110585011058501105850111141680K0115
C1473¥XRZ NCAIS136019CAISSE CENTRALE DESJARDINS DEBT 1.700% 9/16/13011900000000100197010019701001970100210680K0%1¢
C14802AR NCCSI159999CCS INCORPORATED DEBT 11.000%11/15/1501190000000009%000005%00000990000099000680K1115
C21847AB NCATA162621CATALYST PAPER CORP DEBT 11.000%12/15/16011900000000064500006450000645000065000680K1215
00079FBH MSHH 146726ABN AMRO BK N V LONDON BRH DEBT 1/16/14011%000000000000000102900010250000000006R090116
00081TAB LABD 15357%ACCO BRANDS CORP NOTE 7.625% 8/15/15011%000000000000000102500010250000000006R030815
001041AX NAFBT126029AFB&T ATHENS GA CD 2.100% 9/11/12011%00000000101047010104701010470101052680C0911
001041AY NAFBT126029AFB&T ATHENS GA CD 1.400% 1/27/12011%00000000100008010000801000080100011680C0127
001055AF LAFL 406321AFLAC INC NOTE 6.450% 8/15/40011%000000000000000106608010660800000006R030815
001084AK LZZZZ143523AGCO CORP NOTE 6.875% 4/15/14050200000000000000000000000000000000000658530502
001192AC LATG 134924AGL CAP CORP NOTE 4.450% 4/15/130115000000000000000103246010324600000006R030415
001192AD LATG 344924AGL CAP CORP NOTE €.000%10/01/340115000000000000000116240011624000000006R031001
001192AE LATG 154924AGL CAP CORP NOTE 4.950% 1/15/150115000000000000000107694010769400000006R030115
001192AF LATG 164924AGL CAP CORP NOTE 6€.375% 7/15/160115000000000000000116304011630400000006R030715
001192AG LAGL 194924AGL CAP CORP NOTE 5.250% 8/15/150115000000000000000112863011286300000006R030815
001192AH LAGL 414924AGL CAP CORP NOTE 5.875% 3/15/410115%000000000000000119527011952700000006R030315
001192AJ LAGL 214924AGL CAP CORP NOTE 3.500% 9/15/210119000000000000000099819009981200000006RA030915
00176LEBULAMR 124512AMR CORP DEL MEDTERM NTS BE MTNF 9.140% 2/21/120119000000000000000022125002212500000006A7M0221
00508XAD LATU 173545ACTUANT CORP NOTE €.875% &/15/170119000000000000000103000010300000000006R030615
00758220 WADTGNX672eADVISORS DISCIPLINED TR GNMA ADVINCM 2 011900000000007178000717800071780007126E80 9999
00758221 WAZVQ216726ADVISORS DISCIPLINED TR UT GNMAINCZRR 011500000000007178000717800071780007126E80 99939
00758235 WADTNAX6726ADVISORS DISCIPLINED TR UT TXEMT BDIC 011900000000010133001013300101330010129E80 9999
01556537 IASCZ X6722ZALGER FDS SMLCAP GRWTH Z 011900000000007550000755000075500007480780 9999
01556538 IASMZ X6722ZALGER FDS SMID CAP GRW Z 011900000000016110001€11000161100015240780 9999
01556539 IALCZ X6722ZALGER FDS LRGCAP GRWTH 2 011900000000012440001244000124400012350780 99939
01556541 IACAZ X6722ZALGER FDS CAPTL APP FD 2 0119000000000151920001519000151900015120780 9999
01556543 TAOFI X6722ALGER FDS GRWTH OPPTYS I 011%00000000010470001047000104700010370780 9999

IDC-IDSI Library 65

XML of an IDC-IDSI Message

The IDC-IDSI Library produces XML structures like the following example:

<?xml version="1.0" encoding="windows-1252"?>
<IDC:DataFeed xmlns:IDC="http://www.informatica.com/B2B/IDC_IDSI" xmlns:xsi="http://
www.w3.0rg/2001/XMLSchema-instance">
<Header>
</Header>
<Body>
<Row xsi:type="IDC:IDSI320service HeaderRecordFormatType">
<Serviceformat>320</Serviceformat>
<pricesevaluations>P</pricesevaluations>
<bulletins> </bulletins>
<dividends> </dividends>
<PricingEvaluationdate>
<raw>20120119</raw>
<data>20120119</data>
</PricingEvaluationdate>
<Productiondate>
<raw>20120120</raw>
<data>20120120</data>
</Productiondate>
<Statementssuppliedbythecustomer> </
Statementssuppliedbythecustomer>
<FileIndicators>
<Listedbondspriceevaluationhierarchy>3</Listedbondspriceevaluationhierarchy>
<Replacepreviousclosewithopenprice>0</Replacepreviousclosewithopenprice>
<Replaceaveragewithbidorzero>0</Replaceaveragewithbidorzero>
<Replaceclosingpricewithoptionsmarkingprice>0</
Replaceclosingpricewithoptionsmarkingprice>
<DualEquityFlag>1</DualEquityFlag>
<DualADRFlag>2</DualADRFlag>
<PinkOTCMarketsQuoteFlag>1</PinkOTCMarketsQuoteFlag>
<Identifyask onlyquotes>0</Identifyask onlyquotes>
<FactoradjustedCMOs>0</FactoradjustedCMOs>
<OptionsNBBOpricingcoverageflag>0</OptionsNBBOpricingcoverageflag>
<Priceevaluationcoverageflag>1</Priceevaluationcoverageflag>
</FileIndicators>
</Row>
</Body>
</IDC:DataFeed>

MDM JavaBeans Library

The MDM JavaBeans library creates components that transform flat XML representations of JavaBeans
components to and from hierarchical XML files.

Before you build the MDM JavaBeans library, you export the interconnected JavaBeans components from
Master Data Management to a flat XML file with the XMLEncoder function in Java 6 or later. Make sure to
include all of the elements that you want to transform with the library.

You use the Developer tool to create the project that contains the transformed files, Mappers, and schemas.

After you build the library, you can use the transformed files in an external tool or import them back to Master
Data Management as model schemas. You can also transform the hierarchical XML files back to flat
JavaBeans files with the XMLDecoder function in Java 6 or later.

66 Chapter 3: Descriptions of the Libraries

The following table describes the files that are generated after the library processes the files:

File Name DeScription

MDMJavaBeans.xml Source XML file from Master Data Management.

<project_name>_MDMJavaBeans.xsd Source XSD schema from Master Data
Management.

input.xml Output XML file to use as the input XML file for
mappings.

<project_name>_<schema_root_name>.xsd Output XSD schema.

<project_name>_From_MDMJavaBeans_To_XML.tgp Script that transforms the source MDM JavaBeans

file to the output XML file.

<project_name>_To_MDMJavaBeans.tgp Script that transforms the output XML file to an
MDM JavaBeans file.

<project_name>_From_MDMJavaBeans_UserDefined_Mapper.tgp | Script template for mapping the input.xml file to
other message types.

<project_name>_To_MDMJavaBeans_UserDefined_Mapper.tgp Script template for mapping other message type to
the input.xml file.

After you transform the MDM JavaBeans file, you can use the MDM Mappers library to translate between the
output XML file and an ACORD LNA file. You use the Developer tool to import and run the MDM Mappers. For
more information about the MDM Mappers library, see “ACORD-MDM Mappers Library” on page 22.

Source JavaBeans XML File Structure

A JavaBeans XML file contains representations of the JavaBeans components that export from the
interconnected JavaBeans model.

The following example shows the XML structure of an MDM JavaBeans file:

<object class="com.infa.b2b.INFA ACORD MDM">
<void property="agreemt">
<array class="com.siperian.inservice.bo.Agreemt" length="2">
<void index="0">
<object class="com.siperian.inservice.bo.Agreemt">

<void property="agreemtype">
<string>testvalue</string>

</void>

<void property="amount">
<string>testvalue</string>

</void>

<void property="approvaldate">

<object class="java.util.Date">
<long>1330027204389</long>

</object>

</void>

<void property="createDate">

<object class="java.util.Date">
<long>1330027204386</long>

</object>

</void>

<void property="creator">
<string>testvalue</string>

</void>

<void property="currencycode">

MDM JavaBeans Library 67

<string>testvalue</string>

</void>

<void property="effectiveperiod">
<string>testvalue</string>

</void>

<void property="identifier">
<string>testvalue</string>

</void>

<void property="issuedate">
<object class="java.util.Date">
<long>1330027204389</long>
</object>

</void>

<void property="lastUpdateDate">
<object class="java.util.Date">
<long>1330027204386</long>
</object>

</void>

<void property="lineofbusinesscode">
<string>testvalue</string>

</void>

</object>

</void>
</array>
</void>
</object>
</java>

Output XML File Structure

The MDM JavaBeans library transforms the source MDM JavaBeans XML file to an output XML file with the
name input.xml. You use the output file as the input for transformations and mappings. For example, you
can use the ACORD-MDM Mappers library to translate the XML file to an ACORD LNA file with the Developer
tool.

The following example shows the XML structure of an input.xml file:

<agreemt>
<MDM:com.siperian.inservice.bo.Agreemt>
<agreemtype>testvalue</agreemtype>
<amount>testvalue</amount>
<approvaldate>
<MDM:java.util.Date>
<long>1330027204389</long>
</MDM:java.util.Date>
</approvaldate>
<createDate>
<MDM:java.util.Date>
<long>1330027204386</long>
</MDM:java.util.Date>
</createDate>
<creator>testvalue</creator>
<currencycode>testvalue</currencycode>
<effectiveperiod>testvalue</effectiveperiod>
<identifier>testvalue</identifier>
<issuedate>
<MDM:java.util.Date>
<1long>1330027204389</1long>
</MDM:java.util.Date>
</issuedate>
<lastUpdateDate>
<MDM:java.util.Date>
<long>1330027204386</long>
</MDM:java.util.Date>
</lastUpdateDate>
<lineofbusinesscode>testvalue</lineofbusinesscode>
</MDM:com.siperian.inservice.bo.Agreemt>
</agreemt>

68 Chapter 3: Descriptions of the Libraries

Installing the MDM Library

Before you create an MDM Java Beans service, you must install the library, and then restart the Developer
tool.

1. Toinstall the library, copy the MDM JavaBeans.zip file to your local file system and unzip the file.

2. From the unzipped folder, copy the file MDM import.tgp to the directory <Install Dir>\<version>
\clients\DT\autoInclude\system.

3. Copy the folder cmInternal MDM JavaBeans to the directory <Install Dir>\<version>\clients\DT

\bin\internalServices.

Creating an MDM JavaBeans Transformation

Create the MDM JavaBeans transformation in the Developer tool after you install the MDM JavaBeans library.

1. Inthe Developer tool, click File > New > Transformation.

2. Select the Data Processor transformation and click Next.

3. Enter a name for the transformation and browse for a Model Repository location to put the
transformation.

4. Select Create a data processor using a wizard and click Next.

5. Select the MDM JavaBeans input format and click Next.

6. Browse to select an MDM JavaBeans sample file and click Next.

7. Select an output format and click Next.

8. Click Finish.

The Developer tool creates the transformation in the repository. The transformation contains the source
files, the output files and the mapper scripts. The transformation appears in the Overview view.

9. Inthe Settings view Output panel, select Disable automatic output.
10. To run the Streamer, in the Overview view, select the Streamer as the startup component.

After you create the transformation, you can use the MDM Mappers library to translate the output XML file to
and from an ACORD LNA file. Use the Developer tool to import the MDM mappers.

NACHA Library

The NACHA library implements the Automated Clearing House standard maintained by the NACHA Electronic
Payments Association and used by financial institutions.

The NACHA library transformations do not validate their input. If the input is invalid, the transformations
might fail or they might generate unexpected output.

For more information, see http://www.nacha.org.

NACHA Message Structure

A NACHA message contains positional records. The following excerpt illustrates a NACHA message:

101 091000022 1130006090208240516A094101US BANK CORP PAY SYS CHASE OF
X
5200BEST WIDGETS USA 1234567890CTXPAYMENT

NACHA Library 69

http://www.nacha.org

0208282401113000600000666

602152545851 FDHHDFHDFHDFHFHFH1254565236 1254ADRFVFRTG5467HYJ
1125456523658745
602152545851 FDHHDFHDFHDFHFHFH1254565236 1254ADRFVFRTG5467HYJ
1125456523658745

XML of a NACHA Message

The NACHA library processes XML structures such as the following example:

<File>
<FileHeaderRecord>
<PriorityCode>1</PriorityCode>
<ImmediateDestination>91000022</ImmediateDestination>
<ImmediateOrigin>113000609</ImmediateOrigin>
<FileCreationDate>20824</FileCreationDate>
<FileCreationTime>516</FileCreationTime>
<FieldIdModifier>A</FieldIdModifier>
<RecordSize>094</RecordSize>
<BlockingFactor>10</BlockingFactor>
<FormatCode>1</FormatCode>
<ImmediateDestinationName>US BANK CORP PAY SYS</ImmediateDestinationName>
<ImmediateOriginName>CHASE OF TX</ImmediateOriginName>
<ReferenceCode />
</FileHeaderRecord>
<Batch>
<BatchHeaderRecord>
<ServiceClassCode>200</ServiceClassCode>
<Name>BEST WIDGETS USA</Name>
<DiscretionaryData />
<Identification>1234567890</Identification>
<StandardEntryClassCode>CTX</StandardEntryClassCode>
<EntryDescription>PAYMENT</EntryDescription>
<DescriptiveDate />
<EffectiveEntryDate>20828</EffectiveEntryDate>
<SettlementDateJulian>240</SettlementDateJulian>
<OriginatorStatusCode>1</OriginatorStatusCode>
<OriginatingDfildentification>11300060</OriginatingDfildentification>
<BatchNumber>666</BatchNumber>
</BatchHeaderRecord>
<Record>
<CTX>
<CTXEntryDetailRecord>
<TransactionCode>2</TransactionCode>
<ReceivingDfildentification>15254585</ReceivingDfildentification>
<CheckDigit>1</CheckDigit>
<DfiAccountNumber>FDEHHFDHDFHDFHFHFH</DfiAccountNumber>

NCPDP Library

70

The National Council for Prescription Drug Programs (NCPDP) develops standards for information
processing in the pharmacy services sector of the health care industry. Insurance companies use NCPDP
transactions to process pharmacy drug claims.

The Data Transformation NCPDP library implements two NCPDP standards for communicating pharmacy
claims:

o NCPDP Batch Transaction Standard versions 1.1 and 1.2. Used to transmit multiple claims in batch
format.

e NCPDP Telecommunication Standard Format versions 5.1 and D.0. Used to transmit individual claims
from the point-of-sale to the insurance carrier.

Chapter 3: Descriptions of the Libraries

The NCPDP library transformations do not validate their input. If the input is invalid, the transformations
might fail or they might generate unexpected output.

For more information about NCPDP, see http://www.ncpdp.org.

NCPDP Message Structure

NCPDP messages have a positional layout containing both fixed and variable-length fields. The segments
and fields are delimited by control characters such as STX (ASCII 0x02), ETX (0x03), FS (0x1C), GS (0x1D),
and RS (Ox1E).

The following illustration is a fragment of an NCPDP billing message.

EREACOTCOBR 3300714200711262141FP51LOUIFRCD
pAG1000000001901800351B13539210 1040537670280 200710171111111111
EEIRELM 0 BEC e SEECY434562240MEAIC419410205@8CS 1EEACACRECEJACESCHNEECH323 PENNSYLVAN.
ERIEEAMO4@EC2 434562 240MIBECCO@EAICDIRCESCNEECE L

ERHEEEEAM 0 TEEEM 1 AED2 666603 2@PE103@ADT49502068 53 1AESELEEERKCEEE 7360000 @ED33AEDES
EREEAMOZEEZ06AEDEF47 947 @EDRSTELL
EEEELMOSEE4CIEERSCOIARECYSEETC1s003@AES200T71102EEHE4@EHCOSMEADV10sCERHCO TIREDV1EES
EREELM11EE0C00 { BE0X2 TDEEDU136H

EREEAM] 2 @EPLIEEPE2 007101 7TEEFC2 007101 7TREFDPREEAFYOEEFESLC

=

XML of an NCPDP Message

The NCPDP library processes XML structures such as the following example:

<File>
<Batch>
<BatchHeaderRecord>
<TransmissionType>Transaction</TransmissionType>
<SenderID>COBA</SenderID>
<BatchNumber>3300714</BatchNumber>
<CreationDate>20071126</CreationDate>
<CreationTime>2141</CreationTime>
<FileType>Production</FileType>
<VersionReleaseNumber>51</VersionReleaseNumber>
<ReceiverID>LOUIPROD</ReceiverID>
</BatchHeaderRecord>
<DetailDataRecord>
<TransactionReferenceNumber>0000000019</TransactionReferenceNumber>
<TransmissionTransactionType="Billing">
<Header>
<BinNumber>18003</BinNumber>
<VersionReleaesNumber>51</VersionReleaesNumber>

SEPA Library

The SEPA library implements the Single Euro Payments Area messaging standard used in the banking
industry. The library validates messages according to the formatting rules of the European Payments Council
and the rules defined in 1ISO 20022. The library does not support SEPA usage rules.

The parsers have the following output ports:

e Default output. An unaltered copy of the input SEPA message.

e Errors. An XML validation-error report.

SEPA Library 71

http://www.ncpdp.org

e ErrorsFound. If the transformation encounters a validation error, returns true. If the transformation does
not find an error, returns false.

The SEPA transformation projects are grouped in the following categories:
e SCT. SEPA Credit Transfer.

e SDD_CORE. SEPA Direct Debit Core.

e SDD_B2B. SEPA Direct Debit Business-to-Business.

The SEPA project names have the following suffixes, which correspond to the SEPA implementation guides:
e |B. Interbank.

e (C2C. Customer-to-customer.

e B2C. Bank-to-customer.

e EM. e-Mandate Service.

For more information about SEPA, see:

e http://www.is020022.org/

e http://www.europeanpaymentscouncil.eu/

SEPA Validation Error Reports

When an SEPA service finds validation errors in the input message, it generates an error report.

When you run an SEPA service, you specify the AdditionalOutputPort for each of the error outputs. The
following table describes the error outputs:

Name Description

Errors An XML listing of validation errors that the service found, including the standard SEPA error codes.

ErrorsFound | Indicates whether the service found validation errors. The errorsFound output port can have the
following values:

- true. The SEPA message contained validation errors.

- false. The SEPA message did not contain validation errors.

SWIFT Library

72

SWIFT is a messaging standard for the financial industry, maintained by the Society for Worldwide Interbank
Financial Telecommunication. The standard defines messages for purposes such as electronic funds
transfer and check processing. For more information, see http://www.swift.com/. There are two versions of
the standard:

o SWIFT MT, for text-based messages
e SWIFT MX, for XML-based messages

The Data Transformation SWIFT library implements transformations that process MT and MX messages. The
SWIFT organization has certified the Data Transformation implementation for use with SWIFT versions 2008,
2009, 2010, and 2011. SWIFT has authorized Data Transformation to display the SWIFT-Ready Application
logo.

Chapter 3: Descriptions of the Libraries

http://www.swift.com/

For MT messages, the library provides parsers, serializers, schemas, and validation components. For MX

messages, the library provides validation components.

You can use the Library editor to edit the SWIFT Library object.

SWIFT MT Message Structure

The following excerpt illustrates a SWIFT MT transaction. The example is a Request for Transfer message:

{1:FOLDEUTDEFFEDIX0317000005}{2:I101ABCDEFGHIJKAUL1020}{4:
:20:Sender Ref Dom(1

:21R:Customer Ref

:28D:1/1

:50L:Instructing Party

:50H:/00190020974010046074

DB SPAIN

:30:030120
:21:REFF21-1
:32B:EURL, 00
:57D:/ES999999999
Madrid
:59:/64930056505

DB Spain

Barcelona

:70:First paymentll
:71A:0UR
:21:REFF21-2
:32B:EUR2, 00
:57D:/E999999999
Madrid
:59:/64930056506

DB Spain

Barcelona
:70:Second payment2
:71A:0UR

XML Version of a SWIFT MT Message

The SWIFT library parsers transform SWIFT MT messages to XML structures such as the following example.

The serializers transform the XML representation to the native MT representation.

<MT101>
<BasicHeaderBlock>
<ApplicationIdentifier>F</ApplicationIdentifier>
<Serviceldentifier>01</Serviceldentifier>
<LTAddress>
</LTAddress>
<SessionNumber></SessionNumber>
<SequenceNumber></SequenceNumber>
</BasicHeaderBlock>
<ApplicationHeaderInputBlock>
<Indicator>I</Indicator>
<MessageType>101</MessageType>
<DestinationAddress>
<BankCode>ABCD</BankCode>
<CountryCode>EF</CountryCode>
<LocationCode>GH</LocationCode>
<LogicalTerminalCode>1</LogicalTerminalCode>
<BranchCode>JKA</BranchCode>
</DestinationAddress>
<MessagePriority>U</MessagePriority>
<DeliveryMonitoring>1</DeliveryMonitoring>
<ObsolescencePeriod>020</0ObsolescencePeriod>
</BpplicationHeaderInputBlock>

73

SWIFT Message Properties

For SWIFT messages, the Library editor displays the Message, Sequence, Field, Option, Line, Alternative
Layout, Code Group, Code, and Fixed Component properties.

The following table describes the Message properties:

Property Description

ID Message identifier.
Global settings.

Name Message name.
Global settings.

The following table describes the Sequence properties:

Property Description

Name Sequence name.
Global settings.

Repetitions R if repetitions are allowed, or S if only single occurrences are allowed.
Positional settings.

Requirement Mandatory or optional.
Positional settings.

The following table describes the Field properties:

Property Description

Code Identifier for the field.
Global settings.

Name Field name.
Global settings.

Letter options Letters such as A, B identifying the valid Option elements nested within the field.
Global settings.

Repetitions R if repetitions are allowed, or S if only single occurrences are allowed.
Positional settings.

Requirement Mandatory or optional.
Positional settings.

74 Chapter 3: Descriptions of the Libraries

The following table describes the Option properties:

Property

Description

Letter option

A letter such as A or B identifying the option.
Global settings.

The following table describes the Line properties:

Property

Description

Repetitions

The number of repetitions allowed for the line.
Global settings.

The following table describes the Alternative Layout properties:

Property

Description

(None)

An alternative layout element has no editable properties.

The following table describes the Component properties:

Property Description

Name Component name.
Global settings.

Prefix A prefix such as / preceding the data.
Global settings.

Length Length of the data.
Global settings.

Fixed If true, the component has a fixed length defined by the Length property.
If false, the Component has a variable length. The Length property defines the maximum length.
Global settings.

Char set Character set used to encode the data.

Global settings.

Requirement

Mandatory or optional.
Global settings.

SWIFT Library

75

The following table describes the Code Group properties:

Property Description

Description A comment describing the valid values of a component.
Global settings.

Error code The error code to report in the event of a validation error.
Global settings.

Qualifier dependency | A value of a qualifier component. The code group is valid only if the qualifier has the specified
value.

Global settings.

The following table describes the Code properties:

Property Description

Value A valid value for a component.
Global settings.

Name The name of the value.
Global settings.

Description A comment describing the value.
Global settings.

Order Integer identifier of a mutually exclusive set of values. Two codes having the same Order cannot
appear together.

Global settings.

Requirement | Mandatory or optional.
Global settings.

Repetitive If true, the value can appear more than once.
Global settings.

The following table describes the Fixed Component properties:

Property Description

Name Fixed component name.
Global settings.

Requirement Mandatory or optional.
Global settings.

Format Layout of the fixed component.
Global settings.

76 Chapter 3: Descriptions of the Libraries

Installing Lookup Tables

Before you can use the SWIFT library, you must install lookup tables for BIC, country, and currency codes.

Sample Lookup Tables

For licensing reasons, the SWIFT library cannot provide production versions of the lookup tables. Instead, the
library installs a set of sample lookup tables that you can use for testing. You can find the tables in the
following directory:

<INSTALL DIR>\DataTransformation\ServiceDB\SWIFT Lookup

Generating and Installing Production Lookup Tables

The library contains a component that generates production versions of the lookup tables, from directory
files that you can download from SWIFT. The production tables replace the sample tables in the
SWIFT Lookup directory.

1. Get the BIC directories from the following URL: http://www.swift.com/

In the Developer tool, create a Data Processor transformation.
In the Data Processor transformation Objects view, click New.
Select Library and click Next.

Browse to select the Create_SWIFT_Lookups message type.
Click Finish.

Export the Data Processor transformation as a Data Transformation service.

© N o g b~ 0D

Open a command prompt, and then enter the following command:
CM console <service name> -f<name of SWIFT directory file>
For example, enter:
CM console Create SWIFT Lookups -fc:\CT 20090502.TXT
An XML file appears in the current directory, for example, CountryCode Lookup.xml.
9. Copy the XML file to the SWIFT Lookups directory in the Data Transformation repository.

The file overwrites the sample file of the same name.

Message Splitter

A dedicated Script named MTnnn_splitter.tgp splits MT messages 940, 942 and 950 when they are longer
then the maximum message length. The Script is available in the restricted Serializer project.

The SWIFT UHB defines the logic used to split the messages. By default, the message is not partitioned. To
split a message, set the value of the variable SplitLargeMessage to true in MTnnn_splitter.tgp.

The output is split into separate output files by the following method:

e The output XML contain a list of message parts, the file names, and the file path. By default, the Results
folder contains the output files. To change the output path, set the value of vOutputPath.

e The output file names are determined by the value of the message field 20, a sequence part number, and a
flag that identifies whether the file contains the last part. For example, a message that is split into five
parts will have the following file names:
12345TraRF123456_1_N.txt

12345TraRF123456_2_N.txt

SWIFT Library 77

http://www.swift.com/

78

12345TraRF123456_3_N.txt
12345TraRF123456_4_N.txt
12345TraRF123456_5_Y.txt
To change the logic for file names, change the rules in the splitter group section createUniqueFileName.

e Field 103, the Message User Reference field, is updated by default. If the value is set, it is the same for all
message parts. To change the setting, enable the MUR logic in the group section
calculateMessageUserReference, or create proprietary logic.

Note: If the variable SplitLargeMessage is set to true, but the message length is within the maximum length
limit, the Script splits the message with the splitter logic defined in this section.

To transform the MT940, MT942, or MT950 messages with the Developer tool, ensure that the

SWIFT Lookups folder is in the folder named C:\Users\<user>\AppData\Local\Temp\2\DTTemp. If needed,
copy the folder from the ServiceDB to the folder C:\Users\<user>\AppData\Local\Temp\2\DTTemp. If you run
the service from outside the ServiceDB, you need to ensure that the SWIFT Lookups folder is in the same path
as the project.

If message MT940 generates validation error code C24 during the split procedure, then the splitter fails. The
C24 error code has the following description:
C24 error code

If field 86 is present in any occurrence of the repetitive sequence, it must be preceded by a field 61. In
addition, if field 86 is present, it must be present on the same page or message of the statement as the
related field 61.

SWIFT MT Parsers and Serializers

The MT directory of the SWIFT library contains Parsers and Serializers for MT messages.

Parsers

The library parsers use a validateValue action to validate their input. The action is configured with one or
more Validation Rule Language (VRL) files.

For the following message types, SWIFT requires strict validation for Messaging Data Services (MDS)
certification. The VRL rules enforce the complete set of validations required by the SWIFT standard:

101,102+, 102, 103+, 103, 104, 105, 110, 111, 112, 200, 201, 202, 202C0OV, 203, 204, 205, 205C0OV, 210, 300,
304, 305, 320, 321, 330, 340, 341, 350, 360, 362, 380, 381, 400, 410, 412, 420, 422, 430, 450, 456, 500, 501,
502, 503, 504, 505, 506, 507, 508, 509, 510, 513, 514, 515, 516, 517, 518, 519, 524, 526, 530, 527, 535, 536,
537, 538, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 558, 559, 564, 565, 566, 567, 568, 569, 575, 576,
578, 586, 600, 601, 604, 605, 606, 607, 608, 609, 620, 670, 671, 700, 701, 705, 707, 710, 711, 720, 730, 732,
734,740, 742,747,750, 752, 754, 756, 760, 767, 768, 769, 800, 801, 802, 900, 910, 920, 935, 940, 941, 942,
950, 960, 961, 962, 963, 964, 970, 971, 972, 973, n90, n91, n92, n95, n96, n98, n99

For other message types, SWIFT does not require strict validation. The Validation Rules are correspondingly
less strict.

If a parser finds a validation error, it does not fail. Instead, it writes data to the following output ports:
e Default output. Returns the transformed SWIFT message.
e Errors. An XML validation-error report.

e ErrorsFound. If the transformation encountered a validation error, returns true. If the transformation did
not find an error, returns false.

Chapter 3: Descriptions of the Libraries

For more information about validatevalue and Validation Rules, see the Data Transformation User Guide.

Enabling or Disabling VRL Rules

By default, the library enables all the VRL rules. In the Developer tool, you can view the rules. You can choose
which rules to enable or disable.

To view or disable VRL rules:

1. In the Objects view for the Data Processor transformation, double-click a Validation Rule object.
The Validation Rule editor displays the Validation Rule object structure.

2. Select a rule from the Validation Rule object structure.
The Validation Rule editor displays the rule properties in the Properties pane.

3. Todisable the rule, in the Properties pane, clear the Enable field.

Serializers that Perform Comprehensive Validation

Each SWIFT MT library directories contain serializers having names ending in _restricted serializer. For
example, an MT101 project contains a serializer called MT101 restricted serializer.

These serializers perform strict schema validation on their input. If a_restricted serializer finds a
validation error, it does not fail. Instead, it writes data to the following output ports:

o Default output. Returns the transformed SWIFT message.
e Errors. An XML validation-error report.

o ErrorsFound. If the transformation encountered a validation error, returns true. If the transformation did
not find an error, returns false.

Serializers that Perform Schema Validation

In addition to the restricted serializer components, the MT library directories contain serializers having
names ending in _serializer. These serializers perform a lesser degree of validation.

If a_serializer finds a validation error, the transformation fails.

MX Validators

For each MX message type, the Mx directory of the SWIFT library contains a validation project.

Each project contains a parser that processes an input MX XML message. The parser contains a
ValidateValue action and VRL rules that validate the input.

The parsers have the following output ports:

o Default output. An unaltered copy of the input MX message.
e Errors. An XML validation-error report.

e ErrorsFound. If the transformation encountered a validation error, returns true. If the transformation did
not find an error, returns false.

SWIFT Library 79

Telekurs VDF Library

Telekurs Financial is a financial information provider headquartered in Switzerland. It provides a Valordata
Feed (VDF) service delivering financial data. The Telekurs VDF library processes the message structures
used in the VDF service.

The VDF library transformations do not validate their input. If the input is invalid, the transformations might
fail or they might generate unexpected output.

For more information about VDF, see the following URL:

http://www.telekurs-financial.com/tkfich_index/tkfich_products/tkfich_products_processing_products/
tkfich_products_processing_products_vdf.htm

Telekurs VDF Message Structure

A VDF message contains segments and fields, delimited by characters such as ' and :. The following excerpt
illustrates a VDF message:

FAD+207:69361602:4: :TKFAD:6:1+20071112:093426952"'VAI+S:KK+CH:8784173"MGA+S:SSSS
+1+1420071112'0OF1I
+5:5SSSSSSSSSSSSSSS+CH:472672+P+290+20080215++3472672+75447079+1+1+100++2+CH:472672"'FMB
+5:SSSSSS

SSSSSSSSSS+8++4+1++3+20071112++++++2+501'VAK+S : KKSSSS+TKN: 4+NOKIA P FEB290 08+Stockoption
+Put

XML of a Telekurs VDF Message

The Telekurs VDF library processes XML structures such as the following example:

<TKFAD>
<Record>
<INSTRUMENT ADMINISTRATION DOC HEADER1 1>
<DEFINITION OF DOC TRANSACTION1 1 1>
<VDF Release numberl 1 1 1>207</VDF Release numberl 1 1 1>

<DOC_transaction ID1 1 1 2>69361602</DOC_transaction ID1 1 1 2>
<DOC transaction typel 1 1 3>4</DpOC_ transaction _typel 1 1 3>
<DOC transaction flagl 1 1 4 />

<DOC ID1 1 1 5>TKFAD</DOC ID1 1 1 5>

<DOC generatlonl 1 1 6>6</DOC generationl 1 1 6>

<DOC processing statusl 1 1 7>1</DOC _processing statusl 1 1 7>

</DEFINITION OF DOC TRANSACTION1 1 1>
<DEFINITION OF DOC TIME STAMP GMT1 1 2>
<Datel 1 2 1>20071112</Datel 1 2 1>

<Timel 1 2 2>093426952</Timel 1 2 2>

</DEFINITION OF DOC _TIME STAMP GMT1 1 2>
</INSTRUMENT ADMINISTRATION DOC_HEADERI 1>
<INSTRUMENT IDENTIFICATION1 2>
<SEGMENT ELEMENT QUALIFIERl 2 1>
<Segment quallflerl 21 1>S</Segment ~qualifierl 2 1 1>
<Element qualifierl 2 1 2>KK</Element quallflerl 2.1 2>

</SEGMENT ELEMENT QUALIFIERL 2 1>

80 Chapter 3: Descriptions of the Libraries

http://www.telekurs-financial.com/tkfich_index/tkfich_products/tkfich_products_processing_products/
http://www.telekurs-financial.com/tkfich_index/tkfich_products/tkfich_products_processing_products/tkfich_products_processing_products_vdf.htm

Thomson Reuters Library

The Thomson Reuters library validates Thomson Reuters reports in XML format. If the report is in a delimited
text format, the library converts it to XML and then validates it. If the report is XML, the library modifies the
XML before validation.

Reports in text format can be delimited by the following characters:

e Comma

e Pipe

e Semicolon

e Tab

The Thomson Reuters library performs the following types of validation:

¢ Field datatype and width

e Business rules defined by Informatica

e Codes defined by Thomson Reuters

Validation of Thomson Reuters Corporate Actions reports is based on the SWIFT 2011 specification.

The following table describes the files that the service produces:

File Description

output.xml Contains all of the data in the original Thomson Reuters report.

Errors.xml Contains a detailed description of errors in the input.

ErrorsFound.txt Boolean flag that indicates whether the service detected errors in the input.

Thomson Reuters Report Structure

A Thomson Reuters report is made up of a header section, a column header section, a data section, and a
trailer section. The header section, the column header section, and the trailer section are optional.

The following example of a comma-delimited Thomson Reuters report shows a header section, a column
header section, a data section, and a trailer section:

06.11.2011 05:05:10

06.11.2011 05:05:14

3

Asset ID,Asset Type,Bridge Symbol,Capitalization Amount,Capitalization Effective
Date,Coupon Rate

0x000019000023013b, CORP,US*;CPK-8.25-0314,,,8.25
0x00038600d5d26def, OTHR, GB*; WIGAN-3-PRP,,, 3
0x0003e70125312cdd, CORP,CA*; ALMFC-4.35-0417,,,4.35

First trailer line

Second trailer line

XML Version of a Thomson Reuters Report

The following example shows the XML version of a Thomson Reuters report:

<?xml version="1.0" encoding="windows-1252"?>
<TR:DataFeed xmlns:TR="http://www.informatica.com/B2B/ThomsonReuters"
current date="20111124">

<Header>

Thomson Reuters Library 81

82

<Row>
<Start Time>06.11.2011 05:00:57</Start Time>
</Row>
<Row>
<End Time>06.11.2011 05:00:58</End Time>
</Row>
<Row>
<Row Count>3</Row Count>
</Row> -
</Header>
<Body>
<Row>
<Asset ID>0x000019000023013b</Asset ID>
<Asset Type>CORP</Asset Type>
<Bridge Symbol>US*;CPK-8.25-0314</Bridge Symbol>
<Capitalization Amount></Capitalization Amount>
<Capitalization Effective Date></Capitalization Effective Date>
<Coupon_Rate>8.25</Coupon_Rate>
</Row>
<Row>
<Asset ID>0x00038600d5d26def</Asset ID>
<Asset Type>OTHR</Asset Type>
<Bridge Symbol>GB*;WIGAN-3-PRP</Bridge Symbol>
<Capitalization Amount></Capitalization Amount>
<Capitalization Effective Date></Capitalization Effective Date>
<Coupon_Rate>3</Coupon Rate>
</Row>
<Row>
<Asset ID>0x0003e70125312cdd</Asset ID>
<Asset Type>CORP</Asset Type>
<Bridge Symbol>CA*;ALMFC-4.35-0417</Bridge Symbol>
<Capitalization Amount></Capitalization Amount>
<Capitalization Effective Date></Capitalization Effective Date>
<Coupon Rate>4.35</Coupon Rate>
</Row> B
</Body>
<Trailer>
<Row>
<FixedValue>First trailer line</FixedValue>
</Row>
<Row>
<FixedValue>Second trailer line</FixedValue>
</Row>
</Trailer>
</TR:DataFeed>

Installing a Thomson Reuters Library

Before you create a Thomson Reuters service, you must install the Thomson Reuters library, and then restart
the Developer tool.

Note: If you are running a previous version, you can update the library from this release 10 .ZIP file, following
the Installing Libraries steps in the Data Transformation Libraries Guide.

1. Toinstall the library, copy the Thomson Reuters library .ZIP file to your local file system and unzip the
file.

2. From the unzipped folder, copy the file TR_import.tgp to the directory <Install Dir>\<version>
\clients\DT\autoInclude\system.

3. Copy the folder CmInternal Reuters to the directory <Install Dir>\<version>\clients\DT\bin

\internalServices.

4. Copy the folder Gcodes_Lookups to the ServiceDB directory.

Chapter 3: Descriptions of the Libraries

Creating a Thomson Reuters Transformation

Before you create a Thomson Reuters transformation, you must install the Thomson Reuters library, and then
restart the Developer tool.

w

10.
11.

© © N o a &

In the Developer tool, click File > New > Transformation.
Select the Data Processor transformation and click Next.

Enter a name for the transformation and browse for a Model Repository location to put the
transformation.

Select Create a data processor using a wizard and click Next.

Select the Thomson Reuters input format. Select one of the following types:
Click Next.

Browse to select a Thomson Reuters DataScope Select definition file. Click Next.
Select an output format and click Next.

Click Finish.

The Developer tool creates the transformation in the repository for the Thomson Reuters message type
with a Parser and Streamer. The transformation appears in the Overview view.

In the Settings view Output panel, select Disable automatic output.

To run the Streamer, in the Overview view, select the Streamer as the startup component.

Thomson Reuters Library 83

CHAPTER 4

Generate Library Objects

This chapter includes the following topics:

e Generate Library Objects Overview, 84

e Generating the Library Objects, 84

e Discarding the Library Objects, 85

e Testing the Transformation, 85

Generate Library Objects Overview

Advanced users might want to change the way that a message type is transformed. A Library transformation
contains a large number of objects and components, such as Scripts with Parsers, Serializers, and XML
schemas, that define the transformation. A Library transformation might contain objects for message
validation, acknowledgments, and diagnostic displays.

To access and edit the Scripts, XMaps and schemas that you create with the Library editor, you must
generate the Library objects. After you generate the Library objects, use the IntelliScript editor to edit Parsers,
Serializers, and Mappers. For example, you want to change the output structure to suit your requirements.
You generate the Library objects and edit a Parser with the IntelliScript editor.

After you generate Library objects, or if the Library objects were pre-generated, you cannot edit the Library
elements with the Library editor. To use the Library editor again, you must discard the generated Library
objects for those libraries that you can edit with the Library editor. For example, you might decide that you
want to add input fields but not change the structure of the output. Discard the Library objects and after that
add custom elements with the Library editor.

Note: Any changes that you made to the generated Library objects are lost when you discard the generated
objects.

Generating the Library Objects

84

Generate the Library objects so that you can access them directly with the Data Processor transformation
editors. After you generate the Library objects, you cannot use the Library editor to edit the Library.

You must generate Library objects to access and edit the pre-configured parsers, mappers, serializers, and
XML schemas associated with the Library.

1. In the Objects view, right-click the Library and select Generate Library Objects.

To access the Library objects, select Yes.

The Developer tool creates a Generated Library Objects folder that contains the Library objects. The
startup component is generated.

Note: If you want to change which Library objects are generated, select a different component.
To edit a Script or schema, select it and click Open.

Use the IntelliScript editor to edit the Script.

Discarding the Library Objects

To edit the Library elements with the Library editor, you must remove the Library objects that you generated.
When you discard the Library objects, any change that you made to the them is lost.

1.
2.

In the Objects view, right-click the Library and select Discard Generate Library Objects.
To discard the Library objects from the Data Processor transformation editors, select Yes.

The Generated Library Objects folder that is discarded. The Library components and objects still exist,
but are not accessible through the Data Processor transformation editors.

Testing the Transformation

Test the Data Processor transformation in the Data Viewer view.

Before you test the transformation, verify that you defined the startup component. You can define the startup
component in a Script or you can select the startup component on the Overview tab. You also need to have
chosen an example input file to test with.

1.
2.

Open the Data Viewer view.
Click Run.

The Developer tool validates the transformation. If there is no error, the Developer tool shows the
example file in the Input area. The output results appear in the Output panel.

Click Show Events to show the Data Processor Events view.
Double-click an event in the Data Processor Events view in order to debug the event in the Script editor.

Click Synchronize with Editor to change the input file when you are testing multiple components, each
with a different example input file.

If you modify the example file contents in the file system, the changes appear in the Input area.

Discarding the Library Objects 85

INDEX

A

AAR
library 47
acknowledgments
generating EDIFACT 40
generating X12 45
HIPAA 53
ACORD AL3
library 20
ACORD XML
certified industry standard 12
ACORD-MDM Mappers
ACORD LNA XML structure 23
creating project 23
definition 22
files 22

MDM JavaBeans XML structure 22

add-on

HIPAA Validation 53
AL3

ACORD library 20
ASC X12

library 41

B

BAI
library 24
Bloomberg
creating service 28
installing service 28, 69, 82
Bloomberg field definition files
description 28
Bloomberg library
description 26

C

COBOL
importing data definition 29
supported features 30
testing Parser 31
testing Serializer 31

CREST
library 32

D

Data Processor transformation
testing a library 17
testing in the Data Viewer 85

86

DTCC_NSCC
validation 36

DTCC-NSCC
customization properties 33
library 33

E

EDI-AAR
library 47
EDI-UCS_and_WINS
library 47
EDI-VICS
library 47
EDI-X12
customization properties 42
library 41
validation 45
EDIFACT
customization properties 37
library 36
validation 39

F

field definition files, Bloomberg
description 28
FIX
library 48
FIXML
certified industry standard 12
FpML
certified industry standard 12

H

HIPAA
customization properties 51
installing validation add-on 53
library 49
using validation and acknowledgments 55
validation and acknowledgments 53
HIPAA library
HIPAA Validation version 53
non-validating HIPAA version 53
HIX
library 56
HIX Library
description 56
HL7
customization properties 61
library 60

HL7 Version 3
certified industry standard 12

IATA PADIS
library 64
IDC-IDSI
library 65
IFX
certified industry standard 12
installation
libraries 11
installing
library 12
1SO 20022
certified industry standard 12

L

libraries
documentation 11
installation 11
obtaining 11
version compatibility 12
library
installing 12
updating 12
Library Customization Tool
message structures 16
Library transformation
creating 14

M

MDM JavaBeans
creating project 69
definition 66
files 66
output XML structure 68
source XML structure 67
MISMO
certified industry standard 12
MT messages
SWIFT 72
MX messages
SWIFT 72

N

NACHA
library 69

NCPDP
library 70

NSCC
library 33

O

OAGiI
certified industry standard 12

P

PADIS

IATA library 64
Parser

for COBOL data 29

R

Reuters, Thomson
creating service 83

Reuters, Thomson library
description 81

RosettaNet
certified industry standard 12

S

schema
for COBOL data 29
SEPA
certified industry standard 12
library 49, 71
Serializer
for COBOL data 29
standards
certified XML 12
startup component
in library projects 18
SWIFT
customization properties 74
library 72
validation 78
SWIFT MX
certified industry standard 12
synchronize with editor
Data Processor transformation 85

T

Telekurs VDF
library 80
test a library
Data Processor transformation 17
Thomson Reuters
creating service 83
Thomson Reuters library
description 81
TWIST
certified industry standard 12

U

ucs
library 47
UNIFI
certified industry standard 12

\Y

validation
DTCC-NSCC 36
EDI-X12 45

Index

87

validation (continued)
EDIFACT 39
HIPAA 53
SWIFT 78
VDF
Telekurs library 80
VICS
library 47

W

WINS
library 47

88 Index

X

X12
EDI library 41

XML messaging standards
certified 12

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Libraries for Industry Standards
	Purpose of Libraries
	Library Structure

	Obtaining Libraries
	Library Documentation

	Installing Libraries
	Installing Libraries that Use the Library Editor
	Installing Libraries that Do Not Use the Library Editor
	Version Compatibility of Libraries

	XML-Based Industry Standards

	Chapter 2: Using Libraries
	Libraries and the Data Processor Transformation
	How to Create the Data Processor Transformation
	Creating the Data Processor Transformation
	Creating a Library Object

	Library Object Development
	Edit Libraries with the Library Editor

	Create a Library Transformation with the Wizard
	Creating the Data Processor Transformation with the Wizard

	Identifying the Startup Component for a Library Object
	Further Changes to Library Transformations

	Chapter 3: Descriptions of the Libraries
	ACORD AL3 Library
	ACORD AL3 Message Structure
	XML of an ACORD AL3 Message

	ACORD-MDM Mappers Library
	Output MDM JavaBeans File XML Structure
	ACORD LNA file XML Structure
	Creating an ACORD-MDM Mapper Transformation in the Developer Tool

	BAI Library
	BAI2 Message Structure
	XML Version of a BAI2 Message
	BAI Lockbox Message Structure
	XML of a BAI Lockbox Message

	Bloomberg Library
	Bloomberg Message Structure
	XML Version of a Bloomberg Message
	Field Definition Files
	Installing the Bloomberg Library
	Creating a Bloomberg Transformation

	COBOL Processing Library
	Creating a Transformation for COBOL
	COBOL Data Definitions
	Test Procedures
	Editing a Transformation for COBOL

	CREST Library
	CREST Message Structure
	XML of a CREST Message

	DTCC-NSCC Library
	DTCC-NSCC Message Structure
	XML of a DTCC-NSCC Message
	DTCC-NSCC Message Properties
	Configure the Streamer to Parse Large Inputs
	Validation
	Handling DTCC REJECT Messages

	EDIFACT Library
	EDIFACT Message Structure
	XML of an EDIFACT Message
	EDIFACT Message Properties
	Validation and Acknowledgments

	EDI-X12 Library
	X12 Message Structure
	XML of an X12 Message
	EDI-X12 Message Properties
	Validation of X12 Messages
	X12 Message Acknowledgments

	EDI Libraries Based on X12
	FIX Library
	FIX Message Structure
	XML of a FIX Message

	FpML Library
	FpML Validation Error Reports

	HIPAA Library
	HIPAA Message Structure
	XML Version of a HIPAA Message
	HIPAA Message Properties
	Validation and Acknowledgment Behavior
	Configuring the Edifecs Engine Version 8.x
	Using Validation and Acknowledgments

	HIX Library
	HIX Message Structure
	XML of a HIX Message
	Message Acknowledgements
	Disabling Validations
	Serializer and Restricted Serializer
	HIX Validation Error Reports

	HL7 Library
	HL7 Message Structure
	XML Version of an HL7 Message
	HL7 Message Properties

	IATA PADIS Library
	IATA PADIS Message Structure
	XML of an IATA PADIS Message

	IDC-IDSI Library
	IDC-IDSI Message Structure
	XML of an IDC-IDSI Message

	MDM JavaBeans Library
	Source JavaBeans XML File Structure
	Output XML File Structure
	Installing the MDM Library
	Creating an MDM JavaBeans Transformation

	NACHA Library
	NACHA Message Structure
	XML of a NACHA Message

	NCPDP Library
	NCPDP Message Structure
	XML of an NCPDP Message

	SEPA Library
	SEPA Validation Error Reports

	SWIFT Library
	SWIFT MT Message Structure
	XML Version of a SWIFT MT Message
	SWIFT Message Properties
	Installing Lookup Tables
	Message Splitter
	SWIFT MT Parsers and Serializers
	MX Validators

	Telekurs VDF Library
	Telekurs VDF Message Structure
	XML of a Telekurs VDF Message

	Thomson Reuters Library
	Thomson Reuters Report Structure
	XML Version of a Thomson Reuters Report
	Installing a Thomson Reuters Library
	Creating a Thomson Reuters Transformation

	Chapter 4: Generate Library Objects
	Generate Library Objects Overview
	Generating the Library Objects
	Discarding the Library Objects
	Testing the Transformation

	Index

