
Tuning and Sizing
Guidelines for Data
Engineering Integration
(10.4.x)

© Copyright Informatica LLC 2021. Informatica and the Informatica logo are trademarks or registered trademarks of
Informatica LLC in the United States and many jurisdictions throughout the world. A current list of Informatica
trademarks is available on the web at https://www.informatica.com/trademarks.html.

Abstract
You can tune Informatica Data Engineering Integration for better performance. This article provides sizing
recommendations for the Hadoop cluster and the Informatica domain, tuning recommendations for various Data
Engineering Integration components, best practices to design efficient mappings, and troubleshooting tips. This article
is intended for Data Engineering Integration users, such as Hadoop administrators, Informatica administrators, and
Informatica developers.

Supported Versions
• Data Engineering Integration 10.4 x

Table of Contents
Overview. 3

Deployment Types. 3

Deployment Criteria. 3

Deployment Type Comparison. 4

Sizing Recommendations. 5

Hadoop Cluster Hardware Recommendations. 5

Azure Databricks Cluster Sizing Guidelines. 7

Informatica Domain Sizing . 8

Data Engineering Streaming Sizing and Tuning Recommendations. 8

Tune the Hardware and the Hadoop Cluster. 8

Tune the Informatica Domain and Application Services. 9

Analyst Service. 9

Content Management Service. 10

Data Integration Service. 10

Mass Ingestion Service. 12

Model Repository Service. 13

Search Service. 14

Tune the Blaze Engine. 14

Mapping Optimization. 14

Transformation Optimization. 16

Filter Optimization for Hive Sources. 18

Tune the Spark Engine. 20

Spark Configuration. 20

Transformation Optimization. 21

Troubleshooting Spark Job Failures. 26

Amazon EMR Distribution Tips. 28

REST API Mapping Service Tips. 29

Tune the Sqoop Parameters. 29

Sqoop Command Line Arguments. 30

2

Sqoop Tuning Guidelines. 30

Tune the TDCH for Sqoop Parameters. 31

TDCH for Sqoop Tuning Tips. 32

TDCH for Sqoop Import and Export Guidelines. 32

Tune the Oracle Database. 32

Tune the PostgreSQL Database. 33

Case Studies. 33

Case Study: Application Deployment. 33

Case Study: Data Integration Service Application Load and Start-Up. 35

Case Study: Data Integration Service Concurrency. 36

Case Study: Java String Port Conversion Overhead. 37

Case Study: Data Integration Service Concurrency with Multiple HS2 Load Balancers. 38

Case Study: Traditional Update Strategy versus Hive MERGE. 39

Case Study: Python Transformation. 40

Case Study: Sqoop TDCH Export and Import. 41

Case Study: Sqoop Oracle Import (Reader). 42

Case Study: Sqoop Oracle Export (Writer). 43

Case Study: Amazon EMR Auto-Scaling. 44

Overview
Tuning Data Engineering Integration for better performance includes tuning the Hadoop environment and the
Informatica domain environment.

You can tune Data Engineering Integration in the following areas:

• Hardware

• Hadoop cluster parameters

• Domain parameters and application services in the domain

• Data Engineering engines

Deployment Types
Sizing and tuning recommendations vary based on the deployment type. Based on certain deployment factors in the
domain and Hadoop environments, Informatica categorizes Data Engineering Integration into the following types:

• Sandbox deployment

• Basic deployment

• Standard deployment

• Advanced deployment

Deployment Criteria
The following criteria determine the Data Engineering Integration deployment type:

3

Number of active users

Number of users working on the Model repository at design time, using the Analyst tool, or running data
engineering jobs in the native or Hadoop run-time environment at any given point of time.

Number of concurrent pushdown mappings

Total number of mappings running on the Blaze, Spark, or Hive engines that are concurrently submitted to the
Data Integration Service.

Number of objects in the Model repository

Total number of design-time and run-time objects in the Model repository. For example, data objects,
mappings, workflows, and applications.

Number of deployed applications

Total number of applications deployed across all the Data Integration Services in the Informatica domain.

Number of objects per application

Total number of objects of all types that are deployed as part of a single application.

Total operational data volume

Total volume of data being processed in the Hadoop environment at any given point of time.

Total number of data nodes

Total number of data nodes in the Hadoop cluster.

yarn.nodemanager.resource.cpu-vcores

A property in the yarn-site.xml on the Hadoop cluster that specifies the number of virtual cores for
containers.

yarn.nodemanager.resource.memory-mb

A property in the yarn-site.xml on the Hadoop cluster that specifies the maximum physical memory available
for containers.

Deployment Type Comparison
Compare Data Engineering Integration deployment types based on the standard values for each deployment factor.

Domain Environment

The following table contains guidelines for deployment factors in the domain environment:

Deployment Factor Sandbox
Deployment

Basic Deployment Standard
Deployment

Advanced
Deployment

Number of active users 1 5 10 50

Number of concurrent pushdown
mappings

< 10 10 – 1000 1000 – 2000 2000 – 5000

Number of objects in the Model
repository

< 1000 < 5000 < 20,000 20,000 +

Number of deployed applications < 10 < 25 < 100 < 500

Number of objects per application < 10 10 - 50 50 -100 50 -100

4

Deployment Factor Sandbox
Deployment

Basic Deployment Standard
Deployment

Advanced
Deployment

Total operational data volume on
the compute cluster
(for batch processing use cases)

10 GB 100 GB 500 GB 1 TB +

Messages processed per second
(for streaming use cases with
Informatica® Data Engineering
Streaming)

100,000 500,000 1 Million 10 Million

Hadoop Environment

The following table contains guidelines for deployment factors in the Hadoop environment:

Deployment Factor Sandbox
Deployment

Basic
Deployment

Standard
Deployment

Advanced
Deployment

Total number of data nodes 3 5 - 10 10 - 50 50 +

yarn.nodemanager.resource.cpu-vcores 12 24 24 36

yarn.nodemanager.resource.memory-mb 12288 MB 24576 MB 49152 MB 98304 MB

Based on the deployment type that you use to categorize Data Engineering Integration, you can use infacmd autotune
autotune to automatically tune certain properties in your environment.

For more information, see the Data Engineering Administrator Guide.

Sizing Recommendations
Based on your deployment type, use the sizing guidelines for the Hadoop and domain environments.

Hadoop Cluster Hardware Recommendations
The following table lists the minimum and optimal hardware requirements for the Hadoop cluster:

Hardware Sandbox Deployment Basic or Standard
Deployment

Advanced Deployment

CPU speed 2 - 2.5 GHz 2 - 2.5 GHz 2.5 - 3.5 GHz

Logical or virtual CPU cores 16 24 - 32 48

Total system memory 16 GB 64 GB 128 GB

Local disk space for
yarn.nodemanager.local-dirs1

256 GB 500 GB 2.4 TB

DFS block size 128 MB 256 MB 256 MB

5

Hardware Sandbox Deployment Basic or Standard
Deployment

Advanced Deployment

HDFS replication factor 3 3 3

Disk capacity 32 GB 256 GB - 1 TB 1.2 TB

Total number of disks for HDFS 2 8 12

Total HDFS capacity per node 64 GB 2 - 8 TB At least 14 TB

Number of nodes 2 + 4 - 10+ 12 +

Total HDFS capacity on the cluster 128 GB 8 - 80 TB 144 TB

Actual HDFS capacity (with replication) 43 GB 2.66 TB 57.6 TB

/tmp mount point 20 GB 20 GB 30 GB

Installation disk space requirement 12 GB 12 GB 12 GB

Network bandwidth (Ethernet card) 1 Gbps 2 Gbps (bonded channel) 10 Gbps (Ethernet card)

1 A property in the yarn-site.xml that contains a list of directories to store localized files. You can find the localized file
directory in: ${yarn.nodemanager.local-dirs}/usercache/${user}/appcache/application_${appid}. You
can find the work directories of individual containers, container_${contid}, as the subdirectories of the localized file
directory.

MapR Cluster Recommendation

When you run mappings on the Blaze, Spark, or Hive engine, local cache files are generated under the directory
specified in the yarn.nodemanager.local-dirs property in the yarn-site.xml. However, the directory might not contain
sufficient disk capacity on a MapR cluster.

To make sure that the directory has sufficient disk capacity, perform the following steps:

1. Create a volume on HDFS.

2. Mount the volume through NFS.

3. Configure the NFS mount location in yarn.nodemanager.local-dirs.

For more information, refer to the MapR documentation.

Amazon EMR Sizing Guidelines

The following table lists the requirements for an Amazon EMR cluster:

Deployment Environment Sandbox Basic/Standard Advanced

Storage type HDD optimized HDD optimized HDD optimized

Number of EBS volumes per node 2 2-4 6-8

EBS volume size for HDFS 100 GB 100-250 GB 250-500 GB

Total HDFS capacity per node 200 GB 200-1000 GB 1.5-4.5 TB

6

http://doc.mapr.com/display/MapR/Configure+Spark+with+the+NodeManager+Local+Directory+Set+to+MapR-FS

Deployment Environment Sandbox Basic/Standard Advanced

Replication factor 2 2 3

YARN VCores per node 14 14-30 36

YARN memory per node 28 GB 54 GB 144 GB

Total operational data volume 10 GB 100-500 GB 1 TB +

Recommended minimum number of nodes 2 5-10 10 +

Recommended instance types, Informatica version
10.4.0

m5.4xlarge, c4.4xlarge m5.4xlarge, c4.8xlarge m5.10xlarge

Recommended instance types, Informatica version
10.4.1

m5.4xlarge, c5.4xlarge m5.4xlarge, c5.8xlarge m5.10xlarge

HDInsight Sizing Guidelines

The following table lists the requirements for an HDInsight cluster:

Deployment Environment Sandbox Basic/Standard Advanced

Storage type Storage v2 (general
purpose v2), ADLS Gen2

Storage v2 (general
purpose v2), ADLS Gen2

Storage v2 (general purpose
v2), ADLS Gen2

Total operational data volume 10 GB 100-500 GB 1 TB +

Recommended instance types D4 v2, D5 v2 D4 v2, D5 v2 D4 v2, D5 v2

Recommended minimum
number of nodes

2 5-10 10 +

Azure Databricks Cluster Sizing Guidelines
The following table lists the requirements for a Databricks cluster on the Azure platform:

Deployment Environment Sandbox Basic/Standard Advanced

Storage type Storage v2 (general
purpose v2), ADLS Gen2

Storage v2 (general purpose
v2), ADLS Gen2

Storage v2 (general purpose
v2), ADLS Gen2

Total operational data
volume

10 GB 100-500 GB 1 TB +

Recommended instance
types

Standard_D8s_v4,
Standard_DS13_v2

Standard_DS4_v2,
Standard_DS5_v2,
Standard_DS13_v2

Standard_DS4_v2,
Standard_DS5_v2,
Standard_DS13_v2

Recommended minimum
number of nodes

2 5-10 10 +

7

Informatica Domain Sizing
The following table lists the minimum hardware requirements for the server on which the Informatica domain runs:

Deployment Type Use Case Total
Virtual Cores

Ram
Per Node

Disk Space
Per Node1

Sandbox Proof of concept, or a sandbox
environment with minimal users

16 32 GB 50 GB

Basic Low-volume processing, low
concurrency

24 32 GB 100 GB +

Standard High-volume processing, low
concurrency

48 64 GB 100 GB +

Advanced High-volume processing, high
concurrency

96 64 GB 100 GB +

1 Disk space requirement is for Informatica services. Additional disk capacity is required to process data in the native run-
time environment.

Note: Informatica services are designed to scale. You can begin with a basic deployment type. Over time, you can
promote your domain to a standard or advanced deployment type to increase computational resources.

Data Engineering Streaming Sizing and Tuning Recommendations
Use Informatica® Data Engineering Streaming mappings to collect streaming data, build the business logic for the data,
and push the logic to a Spark engine for processing. The Spark engine uses Spark Streaming to process data.
Streaming mapping includes streaming sources such as Kafka or JMS. The Spark engine reads the data, divides the
data into micro batches, and publishes it.

Streaming mappings run continuously. When you create and run a streaming mapping, a Spark application is created
on the Hadoop cluster which runs forever unless killed or cancelled through the Data Integration Service. Because a
batch is triggered for every micro batch interval that is configured for the mapping, consider the following
recommendations:

• The processing time for each batch must remain the same over the entire duration.

• The batch processing time of every batch must be less than batch interval.

Tune the Hardware and the Hadoop Cluster
Tune the following hardware parameters for better performance:

• CPU frequency

• NIC card ring buffer size

Tune the following Hadoop cluster parameters for better performance:

• Hard disk

• Transparent huge page

• HDFS block size

• HDFS access timeout

• YARN settings for parallel jobs

8

Tune the Informatica Domain and Application Services
Informatica service processes can use a large number of files and Informatica services can use a large number of user
processes. To account for all the files and user processes, you can change the file descriptor and max user processes
settings.

To change the settings, edit the infaservice.sh file at the following location:

<INFA_HOME>/tomcat/bin/

For example:

/export/home/<INFA_HOME>/tomcat/bin/infaservice.sh

The following table lists the optimal values for the domain parameters:

Domain Parameters Sandbox Deployment Basic Deployment Standard Deployment Advanced Deployment

Heap requirement 512 MB (Default) 512 MB (Default) 2 GB 4 GB

File descriptors 1024 (Default) 26000 32000 64000

Max user processes 1024 (Default) 8000 16000 32000

You can tune the following application services for performance:

• Analyst Service

• Content Management Service

• Data Integration Service

• Mass Ingestion Service

• Model Repository Service

• Search Service

Analyst Service
You can tune the maximum heap size for the Analyst Service.

The following table lists the guidelines to tune the heap sizes:

Parameter Sandbox Deployment Basic Deployment Standard Deployment Advanced Deployment

Max heap size 768 MB 1 GB 2 GB 4 GB

Note: The number of active concurrent users working on the Analyst tool and the number of objects processed per
user determine the heap size.

9

Content Management Service
You can tune the maximum heap size for the Content Management Service.

The following table lists the guidelines to tune the heap sizes:

Parameter Sandbox Deployment Basic Deployment Standard Deployment Advanced Deployment

Max heap size 1 GB 2 GB 4 GB 4 GB

Note: The number and size of the reference tables determine the heap size.

Data Integration Service
You can configure the maximum heap size and the batch execution pool sizes for the Hadoop and native
environments.

The following table lists the recommended values for the Data Integration Service parameters:

Parameter Sandbox
Deployment

Basic Deployment Standard
Deployment

Advanced
Deployment

Max heap size 1 GB (default) 6 GB 8 GB 16 GB

Execution pool size for the
Hadoop environment

100 1000 2000 5000

Execution pool size for the native
environment

10 10 15 30

Note: The number of concurrent pushdown jobs submitted to the Data Integration Service determine the heap size and
the execution pool size.

If you implement CI/CD, use a maximum heap size of 8 GB to scale CI/CD operations for up to 1,000 objects.

Best Practices for Handling Highly Concurrent Workloads

If you tend to run highly concurrent workloads (over ~5000 concurrent jobs), consider the following best practices:

• Create a separate Model repository for persisting monitoring statistics.

• If the workloads include Sqoop sources, set the custom property ExecutionContextOptions.SqoopPoolSize on
the Data Integration Service.

Custom Property Description

ExecutionContextOptions.SqoopPoo
lSize

Number of concurrent Sqoop jobs.
If you set the ExecutionContextOptions.SqoopPoolSize to a value of -1, the
concurrency for Sqoop is determined by the value set for the Maximum Hadoop
Batch Pool Size property.
If you want to restrict the number of Sqoop jobs that run in parallel, you can set
ExecutionContextOptions.SqoopPoolSize to a value between 0 and 100. The
value you specify controls the concurrency of Sqoop jobs.
Default is 100. Recommended value is -1.

For more information about this property, see the "Sqoop Concurency" section and KB article 570014.

10

https://kb.informatica.com/howto/6/Pages/22/570014.aspx

• Because an increase in the number of concurrent jobs increases monitoring activity, you can also set the
following custom property on the Data Integration Service Process custom properties to increase the buffer
size:

Custom Property Description Default Recommendation

MonitoringOptions.St
atsBufferSize

Size of the monitoring statistics buffer, measured
in number of jobs

10000 25000

Use the infacmd gateway service to run highly concurrent pushdown mappings.

The gateway service is a single-client Java process that intercepts requests from the infacmd client. The
gateway service submits the requests as mappings or workflows to the Data Integration Service using
threads to limit system resource consumption.

Configure the infacmd gateway service on a remote machine other than the Data Integration Service host
machine. Configure the following properties:

Parameter Sandbox Deployment Basic Deployment Standard Deployment Advanced Deployment

CPU cores 1 1 2 4

Memory 512 MB 1 GB 2 GB 4 GB

To enable and configure the gateway service, edit the properties file in the following location:

<Informatica_installation_directory>/isp/bin/plugins/ms/clientgateway/
msgatewayconfig.properties

In the properties file, configure the following property:

Property Value

enable_client_gateway true

For details on configuring the gateway service, refer to the following article:

Gateway Service to Submit Mappings and Workflows to the Data Integration Service

Additional Guidelines

Consider the following additional guidelines for the Data Integration Service:

• Application deployment requires communication between the Data Integration Service and the associated
Model Repository Service. To fetch objects and to write to the database schema of the Model Repository
Service, tune the database cursors as follows:

Number of database cursors >= Number of objects in the application
• To run jobs in the native environment and to preview data, the Data Integration Service requires at least one

physical core for each job execution.

• If the Data Integration Service is enabled to use multiple partitions for native jobs, the Data Integration Service
node resource requirements increase based on the parallelism. If the number of jobs in the native environment
are typically high, you must allocate additional resources for other jobs.

11

https://kb.informatica.com/whitepapers/4/Pages/1/516726.aspx

Profiling Parameters

To optimize performance, perform profiling using the Blaze engine. Tuning profiling performance involves configuring
the Data Integration Service parameters, the profile database warehouse properties, and the advanced profiling
properties.

Mass Ingestion Service
Mass ingestion is a data engineering solution that you can use to replicate or ingest data from different relational
sources to a data lake or a Hadoop cluster.

To improve job performance, consider the best practices in the following areas:

Data Integration Service deployment

Create a Data Integration Service that is dedicated to mass ingestion jobs. Deploy mass ingestion
specifications to the dedicated service.

Sqoop concurrency

Sqoop pool size determines the number of deployed Sqoop jobs that you can run concurrently in the Hadoop
environment.

By default, Sqoop pool size is set to 100. You can disable the Hadoop batch execution pool by setting the
value of the Maximum Hadoop Batch Execution Pool Size property to -1. This forces the Data Integration
Service to control Sqoop concurrency by treating each Sqoop job equally.

The following table describes the Maximum Hadoop Batch Execution Pool Size property:

Property Description Reccomended
Value

Maximum Hadoop Batch
Execution Pool Size

Maximum number of deployed jobs that can run
concurrently in the Hadoop environment. The Data
Integration Service moves Hadoop mapping jobs from the
queue to the Hadoop job pool when enough resources are
available.
Default: 100.

-1

See the "Best Practices for Highly Concurrent Workloads" section of the “Data Integration Service” on page 10
topic.

Relational database concurrency

To allow concurrent Sqoop jobs to establish connections to the database, ensure that the database supports
concurrent database connections.

Sqoop performance

Mass ingestion uses Sqoop jobs to ingest data from relational tables to Hive or HDFS targets on the Hadoop
cluster. By default, Sqoop jobs spawn 4 tasks. Each task establishes one connection to the relational
database.

12

To reconfigure the number of tasks in a Sqoop job, configure the following Sqoop argument in the JDBC
connection:

Argument Description

-num-mappers
-m

Number of mappers (tasks) to run concurrently. Default is 4 when Sqoop jobs run on the Spark
engine.

Note: When you reconfigure the JDBC connection, the changes affect all Sqoop jobs that use the connection.
For example, if you reconfigure the JDBC connection to increase the number of tasks to 10, then 50
concurrent Sqoop jobs spawn 500 tasks and require 500 database connections.

Polling time

The polling time determines how often the Mass Ingestion tool updates the status of ingestion jobs.

By default, the polling time is 30 seconds. You can decrease the polling time to increase the number of
requests and refresh the ingestion job status more frequently.

To configure the polling time, set the following custom property on the Mass Ingestion Service:

POLLING_TIME=<time in seconds>
Mass ingestion specifications

When you create a mass ingestion specification, ingest no more than 2,000 relational tables in the
specification.

Model Repository Service
You can tune the maximum heap size for the separate Model Repository Service instances that you use for design and
for monitoring.

The following table lists the guidelines to tune heap sizes:

Parameter Sandbox
Deployment

Basic Deployment Standard
Deployment

Advanced
Deployment

Max heap size -- Design Model
repository

1 GB 1 GB 2 GB 4 GB

Max heap size -- Monitoring
Model repository

1 GB 1 GB 2 GB 4 GB

Note: Heap size requirements on the Model Repository Service are primarily driven by the number of simultaneous
save, fetch, and delete operations and the number of concurrent mapping executions. Model Repository Service
actions, such as application deploy, redeploy, import, and export, also affect the heap size requirements and the
efficiency of design-time operations.

If you implement CI/CD, use a maximum heap size of 8 GB on the design Model repository to scale CI/CD operations
for up to 1,000 objects.

Additional Guidelines

Consider the following additional guidelines for the Model Repository Service:

• Create a separate Model Repository Service for persisting monitoring statistics.

• Schedule a periodic purge of monitoring statistics and retain only the required statistics.

13

• When you upgrade the Model Repository Service, the minimum JVM heap requirement is 4 GB.

When you create a Model Repository Service for monitoring, you must size your database to account for the growth of
monitoring statistics. Consider the rate of growth in monitoring statistics when you decide statistics retention policies
and schedule purge policies for the Model Repository Service. For instance, the monitoring statistics for 1,000
mappings require around 200 MB. Retaining the statistics for 30 days with a daily workload of 1,000 mappings requires
around 6 GB of tablespace on the database.

Search Service
You can tune the maximum heap size for the Search Service.

The following table lists the guidelines to tune the heap sizes:

Parameter Sandbox Deployment Basic Deployment Standard Deployment Advanced Deployment

Max heap size 768 MB 1 GB 2 GB 4 GB

Note: The size of the Model Repository Service and the profiling warehouse and the volume of business glossary data
being processed determine the heap size.

The following table lists additional Search Service properties that you can tune:

Parameter Description and Recommendation

Index Location Directory that contains the search index files.
To save index files, you allocate disk space on one of the nodes in the domain. Make sure that the disk
location has enough space to write index files.
Recommendation: Disk space must be approximately twice the size of the schema.

Extraction
Interval

Interval in seconds at which the Search Service updates the search index. The Search Service checks for
changes in the metadata before reindexing. Default extraction interval is 60 seconds.
Recommendation: The extraction interval must be greater than or equal to the time taken to complete
indexing the first time.

Tune the Blaze Engine
When you develop mappings in the Developer tool to run on the Blaze engine, consider the following tuning
recommendations and performance best practices.

Mapping Optimization
Consider the following best practices when you develop mappings to run on the Blaze engine:

Tune port precision values.

When you import Hive data objects, the precision of string ports is set to 4000 by default. Aggregator and
Rank transformations are automatically converted to sorted Aggregator and sorted Rank transformations.
The sorted Aggregator and Rank transformations have a variable length cache which reduces the size of
generated cache. The variable length cache eliminates the need to manually tune precision for string ports
and reduces the chance of mapping failures due to inadequate disk space.

14

Performance best practice: String ports with large precision require a larger buffer memory for data
processing, which reduces the number of rows that are processed per block. When performance is critical,
tune string ports to avoid large precision.

Avoid unnecessary data type conversions.

Mismatched port data types and mismatched port precisions increase the computational overhead. Ensure
that the port precisions and data types are consistent across sources, transformations, and targets within a
mapping.

The following image shows a mismatch between the data type and the precision values in some of the ports
in the Read transformation and the Expression transformation:

Optimize transformation cache.

When processing cache-based transformations, such as Aggregator, Joiner, Sorter, and Lookup
transformations, the Data Integration Service stores conditional values and output values in the
transformation cache.

If the memory allocated to the cache-based transformation is not sufficient, the cache data is spilled or
written to disk. To avoid data spill to disk, set explicit cache sizes for each Lookup, Joiner, Sorter, and
Aggregator transformation in a mapping.

In the Developer tool, select a transformation and set numeric values in bytes for the following run-time
properties in the Advanced tab:

• <Transformation type> Data Cache Size

• <Transformation type> Index Cache Size

15

Transformation Optimization
You can optimize transformations to enable the Blaze engine to process transformations in a mapping efficiently.

Sequence Generator Transformation

To Maintain Row Order, the Sequence Generator transformation generates the following types of global and unique
sequences. The following image shows where you can configure the Maintain Row Order property:

The Sequence Generator transformation generates the following types of sequence numbers:

Global sequence

When you configure the transformation to maintain row order, the mapping runs in a single partition to
generate a global unique running sequence. You must run the job in a single partition with only one mapper or
reducer. When the Blaze engine performs distributed processing it cannot generate numbers in sequential
order.

Configure the transformation to maintain row order only if your business needs require a global unique
running sequence.

Unique sequence

When you do not configure the transformation to maintain row order, the mapping runs in multiple partitions
to efficiently generate unique sequence numbers.

Data Processor Transformation

Consider the following best practices for mappings that contain a Data Processor transformation:

• For mappings that run on the Blaze engine, it is required to enable partitioning for Data Processor
transformations. To enable partitioning, perform the following steps:

1. In the Developer tool, open the mapping and select the Data Processor transformation.

2. In the Properties view, click the Advanced tab.

16

3. Select Enable partitioning for Data Processor transformations.
The following image shows the Advanced tab of a Data Processor transformation:

• When a mapping with a Data Processor transformation meets all of the following conditions, the Blaze engine
processes the entire mapping in a single tasklet:

- The mapping source file is of a non-splittable input format.

- The transformation contains multiple output groups.

The Data Processor transformation might output a higher data volume than the source. For such scenarios,
configure the Blaze engine to first stage the data generated by the transformation at each output group.

The following image shows a mapping with a Data Processor transformation with multiple output groups:

17

To stage data at every output group, set the following mapping run-time property in the Developer tool:

Parameter Value

Blaze.StageOutputGroupDataForInstances The name of the Data Processor transformation instance.

When the Blaze engine is configured to first stage the data, it performs the following tasks:

- Re-partitions the data.

- Processes the staged data.

- Creates the correct number of tasklets based on the staged data volume.

Aggregator Transformation

Disable map-side aggregation if a unique key is used as the group by key in an Aggregator transformation.

In the Blaze engine, map-side aggregation is analogous to the aggregation done in the map phase in a MapReduce job
that runs on the Hive engine. Source data is aggregated based on the group-by port set in an Aggregator
transformation. The aggregated data then moves to the data shuffle stage for the second level of aggregation.

If you specify a unique key as the group by port, disable the map-side aggregation in a mapping that runs on the Blaze
engine.

In the Developer tool, set the following run-time property in the Run-time tab to disable map-side aggregation for the
mapping:

Parameter Value

GridExecutor.EnableMapSideAgg False

Filter Optimization for Hive Sources
To optimize mappings that read from a partitioned Hive source, you typically add filter conditions on a relational data
object to remove rows at the source. The filter limits the data that flows through the mapping pipeline which gives a
performance benefit. However, when the Blaze engine reads from a Hive source with a filter condition, the engine
interprets the filters as SQL overrides, translates into multiple grid tasks, and adds a performance overhead.

The Blaze engine translates the filters into the following grid tasks:

• A grid task to create a HiveServer2 job for the filter override to stage the intermediate data.

• A grid task to operate against the staged data and to apply the downstream mapping logic.

18

For example, the following image shows the Blaze engine execution plan with two grid tasks for a passthrough
mapping with a filter:

To avoid the performance overhead, set the following custom flag as an advanced property of the mapping:

Hive.SourceFilterAsInfaExpression = true
If multiple mappings require the flag, add the custom flag at the Data Integration Service level.

The following image shows the custom flag that you added as an execution parameter for the mapping:

The following image shows the Blaze engine execution plan with a single grid task after you set the custom flag:

Note: Use a valid Informatica expression as a filter condition. The filter condition must not refer to the table name. For
example, instead of LineItem.l_tax > $dataasofdate, use l_tax > $dataasofdate.

The following image shows the Query view of the relational data object where you define the filter condition:

19

Tune the Spark Engine
When you develop mappings in the Developer tool to run on the Spark engine, consider the following prerequisites,
tuning recommendations, and performance best practices.

Meet the following prerequisites:

• On the Hadoop cluster, configure the Spark History Server.

• On the Hadoop cluster, enable the Spark Shuffle Service.

• To run mappings on the Spark engine, configure the Hadoop connection with the location of the Spark HDFS
staging directory and the Spark event log directory.
Use the same directory as the event log directory from which the Spark History Server is reading. The Spark
Event Log Directory is the base directory that logs Spark events. Within this base directory, Spark creates a
subdirectory for each application, and logs the events specific to the application in this directory.

For more information about configuring Spark History Server and Spark Shuffle Service, refer to the Hadoop distribution
documentation or the Apache Spark documentation.

For more information about configuring the Hadoop connection, refer to the Data Engineering Integration User Guide.

Spark Configuration
Configure properties for the Spark engine in the Hadoop connection.

You can use the following properties to tune job execution when you run jobs with the Spark engine:

spark.executor.memory

Amount of memory to use per executor process. Specify a value with a size unit suffix "k", "m", "g" or "t". For
example, 512k or 1g. Default: 1 GB.

spark.executor.cores

The number of cores to use on each executor. Default: 1.

Infaspark.shuffle.max.partitions

Sets the number of shuffle partitions to the maximum number of partitions seen across all input sources.
Default: 10000.

Recommended value: Allocate approximately 8 dynamic shuffle partitions for each gigabyte of shuffle data.
For example, for 400 GB of shuffle data, set this value to 3200.

For columnar formats like ORC for Hortonworks or Parquet for Cloudera, you might set this property to a
lower value.

If the data being shuffled in mid-stream is less than ~250 GB, you can reduce the value of
infaspark.shuffle.max.partitions to 1000 for increased performance.

spark.driver.memory

Sets the driver process memory to a default value of 4 GB. The driver requires more memory based on the
number of data sources and data nodes.

Recommended value: Allocate at least 256 MB for every data source participating in map join. For example, if
a mapping has eight data sources, set the driver memory to at least 2 GB (8 x 256).

spark.driver.maxResultSize

Limit of total size of serialized results of all partitions for each Spark action in bytes. Should be at least 1M,
or 0 for unlimited. Jobs will be aborted if the total size is above this limit. Default: 1 GB.

20

https://spark.apache.org/docs/latest/monitoring.html

The following table lists the tuning recommendations for sandbox, basic, standard, and advanced deployment types:

Property Sandbox
Deployment

Basic
Deployment

Standard
Deployment

Advanced
Deployment
(Default)

spark.executor.memory 2 GB 4 GB 6 GB 6 GB

spark.executor.cores 2 2 2 2

Infaspark.shuffle.max.partitions
(8 * per GB data at shuffle)

800 800 4000 10000

spark.driver.memory 1 GB 2 GB 4 GB 4 GB + (default)

spark.driver.maxResultSize 1 GB 1 GB 2 GB 4 GB + (default)

Transformation Optimization
You can optimize transformations to enable the Spark engine to process transformations in a mapping efficiently.

Java Transformation

Consider the following elements when you optimize the Java transformation to run on the Spark engine:

Complex data types

When you process complex data types in the Java transformation, the Spark executor memory requirements
increase depending on the complexity and the level of nesting in the hierarchical data.

With higher complexity and nesting, jobs that are executed on the Spark engine might not progress or they
might eventually fail with an Out of Memory error. If these issues occur, increase the Spark executor memory
or run only one task per executor.

To increase the Spark executor memory, configure the run-time property spark.executor.memory for the
Hadoop execution environment. To run one task per executor, configure the run-time property
spark.executor.cores for the Hadoop execution environment and set the value equal to 1.

String ports

When you process string ports in the Java transformation, there is an overhead cost due to UTF conversions.
The overhead cost is a factor of the number of string ports that are processed in the Java transformation.

Performance best practice: Propagate only the ports that are necessary to the Java transformation.

For more details, refer to the following case study:

“Case Study: Java String Port Conversion Overhead” on page 37

Joiner Transformation

You can optimize Joiner transformations to enable the Spark engine to efficiently perform a full outer join.

To increase memory for a full outer join and to determine shuffle partitions, perform the following two-step tuning
process:

1. Ensure every executor core has at least 3 GB of memory.
For example, set spark.executor.memory=6 GB and spark.executor.cores=2.

21

2. Set spark.sql.shuffle.partitions = <master splits> + <detailed partitions>.
The spark.sql.shuffle.partitions property determines the number of partitions to use when shuffling data for
joins or aggregations.

For example, with a DFS block size of 256 MB, 100 GB of master data will have 400 splits and 200 GB of
details will have 800 partitions.

Lookup Transformation

When a mapping runs on the Spark engine, the Spark engine translates unconnected Lookup transformations to join
operations each time that you reference the transformation using a lookup expression. When there are more than five
unconnected lookup expressions in a single mapping, the performance might degrade considerably depending on the
size of the lookup source.

If the mapping logic requires multiple unconnected lookup expressions, consider running the mapping on the Blaze
engine. The Blaze engine is optimized to generate the lookup cache one time and reuse the cache each time that an
unconnected lookup expression references the same lookup source.

Router Transformation

Using more than one output group in a Router transformation might cause poor performance. To avoid performance
impact, configure the following properties:

Property and Value Description

infaspark.sql.forcePersist=true Persists data in the memory and disk to avoid repeated reads for each output group.

spark.rdd.compress=true Enables compression to store data more efficiently.

You can set these properties either in the Spark advanced properties for the Hadoop connection or at the mapping
level. If you set the properties in the Spark configuration, the values apply to all mappings that you run on the Spark
engine.

Sequence Generator Transformation

To Maintain Row Order, the Sequence Generator transformation generates the following types of global and unique
sequences. The following image shows where you can configure the Maintain Row Order property:

22

The Sequence Generator transformation generates the following types of sequence numbers:

Global sequence

When you configure the transformation to maintain row order, the mapping runs in a single partition to
generate a global unique running sequence. You must run the job in a single partition with only one mapper or
reducer. When the Spark engine performs distributed processing it cannot generate numbers in sequential
order.

Configure the transformation to maintain row order only if your business needs require a global unique
running sequence.

Unique sequence

When you do not configure the transformation to maintain row order, the mapping runs in multiple partitions
to efficiently generate unique sequence numbers.

For information about troubleshooting the Sequence Generator transformation, see “Troubleshooting Spark Job
Failures” on page 26.

Update Strategy Transformation

To conduct near real-time analytics in data lakes and enterprise data warehouses, it is necessary to perform frequent
incremental loads. In most cases, Hive is the preferred analytic store.

To perform incremental loads on Hive, you must use transactions that are ACID-compliant, support bucketed tables,
and support ORC file formats.

The following issues depict some constraints to performing incremental loads:

• Cloudera CDH does not endorce ORC file formats and ACID-enabled tables.

• Updates are not compatible with partitioned tables on Amazon EMR due to a Hive issue.

To accommodate for these constraints, you can implement alternate strategies to perform incremental loads. One
strategy is to perform an ACID merge. You can perform an ACID merge through Hive MERGE statements in an Update
Strategy transformation.

23

When you use MERGE statements in mappings that run on the Spark engine, the statements perform ACID transactions
on Hive tables. You can use the statements to efficiently perform record-level INSERT, UPDATE, and DELETE
operations.

To use Hive MERGE statements, select the option in the advanced properties of the Update Strategy transformation.
You can toggle the option to use a MERGE statement or a traditional update strategy approach. The traditional update
strategy approach does not employ ACID transactions.

The following image shows the Hive MERGE option in the advanced properties of an Update Strategy transformation:

When you enable Hive MERGE in an Update Strategy transformation, the following changes in performance occur:

• ~ 25% decrease in performance for INSERT statements.

• ~ 40% increase in performance for UPDATE statements.

• Comparable performance for DELETE statements.

Based on this analysis, Hive MERGE results in better performance if the update strategy task involves a large number
of UPDATE statements. When there is a combination of INSERT, UPDATE, and DELETE statements, Hive MERGE is
expected to produce better results than the traditional update strategy approach.

For more information on the performance analysis, see "“Case Study: Traditional Update Strategy versus Hive
MERGE” on page 39"

Hive MERGE Run-time Failures

When you use Hive MERGE statements to perform update strategy tasks, the mapping might fail at run time.

The MERGE statement internally performs a map join during transactional operations on Hive tables. Due to this
behavior, it is possible to encounter a run-time failure for mapping tasks that contain an Update Strategy
transformation and a partitioned bucketed Hive table.

Task failures occur due to the following error:

java.lang.OutOfMemoryError: Java heap space

24

The following image shows a log file that contains the error:

If you encounter the error, you can use one of the following workarounds:
Option 1. Disable map join.

To disable map join, set hive.auto.convert.join=false for the Environment SQL in the Hive connection
properties.

Option 2. Reduce the map join threshold.

If the map join threshold has been modified, reduce the threshold. The default value is 10MB. To reduce the
value, set hive.auto.convert.join.noconditionaltask.size=10000000, or to a lower value in bytes, for the
Environment SQL in the Hive connection properties.

The issue is tracked in HIVE-8044.

Alternate Strategies to Perform Incremental Loads

In addition to Hive MERGE, you can use the following alternate strategies to perform incremental loads:

Use a traditional update strategy approach.

Define expressions in an Update Strategy transformation with IIF or DECODE functions to set rules for
updating rows.

Because the approach has restrictions on Cloudera CDH and Amazon EMR distributions, you might want to
use a different strategy.

Perform updates using the partition merge solution.

Detect, stage, and update only the impacted partitions on the incremental records from upstream systems.

Perform updates using key-value stores.

Use inserts into key-value stores. The inserts are treated as upserts, so they are a convenient choice for
handling updates.

For detailed information on these alternate approaches, see the Informatica® How-To Library article "Strategies for
Incremental Updates on Hive in Big Data Management 10.2.1" on https://docs.informatica.com/.

Update Strategy Transformations Using Relational Table Targets

To tune the performance of an Update Strategy transformation with JDBC-connected relational table targets, use the
following properties:

Spark.JdbcNumPartitions

The number of partitions to write to the relational database.

Each Spark task opens a connection to the database. This might result in too many connections. Use this
property to limit the number of open connections to the database.

25

https://issues.apache.org/jira/browse/HIVE-8044
https://docs.informatica.com/

To calculate the value of Spark.JdbcNumPartitions, use the formula Min(X,Y) where:

X = (Data volume in GB) * 4

and

Y = (Max connections allowed on database)

For example, where Data volume = 2 GB, and Max connections allowed on database = 10, the formula is:

Min(8,10)
The value of Spark.JdbcNumPartitions should be 8.

Spark.JdbcBatchSize

Number of rows to be sent to the database target as a batch. Must be an integer. Default: 10000.

When the number of columns/fields is large and results in a large row size, consider reducing the value of
this property to ~5000-8000.

Troubleshooting Spark Job Failures
This section provides information on troubleshooting common error messages and limitations that you might
encounter when you enable dynamic resource allocation on the Spark engine. These errors might occur when you
process a large volume of data, such as 10 TB or more, or when a job has a large shuffle volume.

Could not find CoarseGrainedScheduler.

When you stop a process, you might lose one or more executors with the following error:

cluster.YarnScheduler: Lost executor 8 on myhost1.com: remote Rpc client disassociated

One of the most common reasons for executor failure is insufficient memory. When an executor consumes
more memory than the maximum limit, YARN causes the executor to fail. By default, Spark does not set an
upper limit for the number of executors if dynamic allocation is enabled. (SPARK-14228)

Configure the following advanced properties for Spark in the Hadoop connection:

Property Description

spark.dynamicAllocation.maxExecutors Set a limit for the number of executors. Determine the value based on
available cores and memory per node.

spark.executor.memory Increase the amount of memory per executor process. The default value is
6 GB.

Total size of serialized results is bigger than spark.driver.maxResultSize.

The spark.driver.maxResultSize property determines the limit for total size of serialized results across all
partitions for each Spark action, such as the collect action. Spark driver issues a collect() for the whole
broadcast data set. The spark default of 1 GB is overridden and increased to 4 GB. This value should suffice
most use cases. If the spark driver fails with the following error message, consider increasing this value:

Total size of serialized results is bigger than spark.driver.maxResultSize

26

Configure the following advanced property for Spark in the Hadoop connection:

Property Description

spark.driver.maxResultSize Set the result size to a size equal to or greater than the driver memory, or 0 for
unlimited.

java.util.concurrent.TimeoutException; Futures timed out after [300 seconds].

The default broadcast timeout limit is set to 300 seconds. Increase the SQL broadcast timeout limit.

Configure the following advanced property for Spark in the Hadoop connection:

Property Description

spark.sql.broadcastTimeout Set the timeout limit to at least 600 seconds.

A job fails due to Spark speculative execution of tasks.

With spark speculation, the Spark engine relaunches one or more tasks that are running slowly in a stage. To
successfully run the job, disable spark speculation.

Configure the following advanced property for Spark in the Hadoop connection:

Property Description

spark.speculation Set the value to false.

The Spark driver process hangs.

The Spark driver process might hang due to multiple reasons. The Spark driver process dump and the YARN
application logs might not reveal any information to isolate the cause.

The following Informatica Knowledge Base article describes a step-by-step process that you can use to
troubleshoot mappings that fail due to the Spark driver process:

HOW TO: Troubleshoot a mapping that fails on the Spark engine when the Spark driver process hangs

ShuffleMapStage 12 (rdd at InfaSprk1.scala:48) has failed the maximum allowable number of times: 4.

The Spark shuffle service fails because the garbage collector exceeded the overhead limit. This forces the
Node Manager to shut down, which eventually causes the Spark job to fail.

To resolve this issue, perform the following steps:

1. Open the YARN node manager.

2. In the NodeManager Java heap size property, increase the maximum heap size in MB.

For further debugging, check the Node Manager logs:

 java.lang.OutOfMemoryError : GC overhead limit exceeded
 2016-12-0 7 19:38:29,934 FATAL
 yarn.YarnUncaughtExceptionHandler
(YarnUncaughtExceptionHandler.java:uncaughtException 51))-
Thread Thread[IPCServer handler 0on 8040,5,main] threw
an error. Shutting down now...

27

https://kb.informatica.com/howto/6/Pages/21/544841.aspx

NoRouteToHostException shown in the YARN application master log with the Sequence Generator transformation.

Spark tasks communicate with the Data Integration Service through the Data Integration Service HTTP port to
get the sequence range. Ensure that the Data Integration Service is accessible through the HTTP port from all
Hadoop Cluster nodes. Spark tasks, including the Sequence Generator transformation, will fail if the HTTP
port is not accessible.

The NoRouteToHostException in the YARN application master log indicates that the Data Integration Service
HTTP port is not accessible from the Hadoop cluster nodes. The following example shows the
NoRouteToHostException in the YARN application master log:

18/06/29 14:26:31
WARN TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0,
<DIS_Host_Name>, executor 1):
java.net.NoRouteToHostException: No route to host (Host
unreachable) at
java.net.PlainSocketImpl.socketConnect(Native
Method)

MapR Issue: Slowness Due to File Copy from tmp to Target Directory

Consider the following troubleshooting tips for the MapR distribution.

Copying a file from the tmp directory to the target

While a job is in progress, Spark creates an intermediate target directory to which all processing tasks write data. Each
task creates its own temporary file in this intermediate folder.

Source splits are determined based on the dfs.blockSize. For example, a 256 MB block size results in 4 splits per GB of
data. The number of files written to the tmp directory depends either on the source partitions, in the case of non-shuffle
mappings, or on the number of shuffle partitions. Due to a limitation on MapR, whenever there are a large number of
partitions, the sequential copying of files from the temporary directory to the target might result in slow performance.
The Yarn logs contain a warning message for each copied file.

For example, you might see a warning like the following message:

maprfs:///user/hive/warehouse/tpch_text_1000.db/lineitem_tgt/.hive-
staging_hive_2018-12-20_13-13-45_870_781706737290042111-1/-ext-10000/part-00953-4b1fe48f-
a41b-4525-ae7a-662d08cb5963-c000 to maprfs:/user/hive/warehouse/tpch_text_1000.db/lineitem_tgt/
part-00953-4b1fe48f-a41b-4525-ae7a-662d08cb5963-c000 because HDFS encryption zones are different

Amazon EMR Distribution Tips
Consider the following performance tuning and troubleshooting tips for the Amazon EMR distribution.

Tuning Amazon EMR Ephemeral Clusters

When you deploy ephemeral Amazon EMR clusters, consider the following best practices to improve workflow
performance:

• Deploy the cluster in the same region and availability zone as the EC2 instance where you deployed the
Informatica domain.

• Deploy the cluster with a small number of core EC2 instances. The default number of core EC2 instances is 2.
Scale up or scale down depending on your requirements.

• Use Amazon S3 buckets to archive all Hadoop and application logs for future analysis.

Best Practices for Amazon EMR Auto-Scaling

You can enable auto-scaling to dynamically adjust to performance thresholds on the Spark engine. Consider the
following best practices for auto-scaling rules:

28

Implement auto-scaling rules for Spark applications that run for at least 10 minutes.

By default, the AWS CloudWatch auto-scaling evaluation period is 5 minutes. Another 5 to 7 minutes are
required to add additional nodes to the cluster. If Spark applications do not run for at least 10 minutes, it is
more cost-efficient to disable auto-scaling on the ephemeral cluster.

Always specify MinCapacity and MaxCapacity

MinCapacity and MaxCapacity determine the minimum and maximum number of cluster nodes that auto-
scaling rules can create. You can set MinCapacity to the default number of core nodes that are created on
the ephemeral cluster.

REST API Mapping Service Tips
Consider the following configuration and performance tuning tips when you use the REST API to run deployed
mappings.

Using the REST API from a remote client

When you make a mapping service request from a remote client, ensure that any parameter files required to
run the mapping are present on the Data Integration Service node.

Persisting monitoring statistics

When you configure monitoring on the domain, ensure that you use a dedicated Model Repository Service
that is only used to persist monitoring statistics.

Running concurrent jobs

When you run concurrent jobs, use the Administrator tool to configure the following properties for the Data
Integration Service:

• In the Properties tab under Execution Options, set Maximum Hadoop Batch Execution Pool Size to a value
larger than the number of concurrent jobs.

• In the Processes tab under HTTP Configuration Properties, set the following properties:

Property Value

Maximum Concurrent Requests 400

Maximum Backlog Requests 400

Tune the Sqoop Parameters
Use Sqoop to process data between relational databases and HDFS through MapReduce programs. You can use
Sqoop to import and export data. When you use Sqoop, you do not need to install the relational database client and
software on any node in the Hadoop cluster.

29

Sqoop Command Line Arguments
You can tune certain parameters to optimize performance of Sqoop readers and writers. Add the parameters in the
JDBC connection or to Sqoop mappings.

The following table lists the parameters that you can tune:

Parameter Applies To Description

batch Writer Specifies that you can group the related SQL statements into a
batch when you export data.

direct Reader and
writer

Specifies the direct import fast path when you import data from
a relational source.
Note: Applies to Oracle and TDCH connectors.

Dsqoop.export.records.per.statement Writer Specifies to insert multiple rows with a single statement.

Enable primary key Reader Enables the primary key constraint on the source table to
optimize performance when reading data from a source.

fetch-size Reader Specifies the number of entries that Sqoop can import at a time.

num-mappers Reader and
writer

Specifies the number of map tasks that can run in parallel.

compress or z Reader Enables compression.

Dmapreduce.map.java.opts Reader Specifies the Java options per statement if Java runs out of
memory.

Dmapred.child.java.opts Reader Specifies the Java options per mapper if Java runs out of
memory.

Sqoop Tuning Guidelines
The following table lists the tuning recommendations for Sqoop parameters based on the data volume of the
deployment types:

Parameter Sandbox or Basic
Deployment

Standard Deployment Advanced Deployment
(Default)

fetch-size 1000 10000 20000

num-mappers 4 10 20

Dsqoop.export.records.per.statement 1000 10000 10000

Dmapreduce.map.java.opts 1 GB 2 GB 4 GB

Dmapred.child.java.opts 1 GB 2 GB 4 GB

30

Tune the TDCH for Sqoop Parameters
When you read data from or write data to Teradata, you can use Teradata Connector for Hadoop (TDCH) specialized
connectors for Sqoop. When you run Sqoop mappings on the Blaze and Spark engines, you can configure the Cloudera
Connector Powered by Teradata and Hortonworks Connector for Teradata.

The following table lists the parameters that you can tune:

Parameter Applies
To

Description

batch.insert Writer This Teradata target plugin associates an SQL JDBC session with each mapper in the
TDCH job when loading a target table in Teradata.

internal.fastexport Reader This Teradata source plugin associates a FastExport JDBC session with each mapper in
the TDCH job to retrieve data from the source table in Teradata.

internal.fastload Writer This Teradata target plugin associates a FastLoad JDBC session with each mapper in
the TDCH job when loading a target table in Teradata.

split.by.amp Reader The connector creates one mapper per available Teradata AMP, and each mapper
subsequently retrieves data from each AMP. As a result, no staging table is required.

split.by.hash Reader This input method is similar to the split.by.partition method. Instead of directly
operating on value ranges of one column, this method operates on the hash of the
column. Use this method to extract data in situations where split.by.value and
split.by.partition are not appropriate.

split.by.partition Reader This method is preferred to extract a large amount of data from the Teradata system.
Behavior of this method depends on whether the source table is partitioned or not.

split.by.value Reader This method creates input splits as ranges on the split by column, which is typically the
table’s primary key. Each split is subsequently processed by a single mapper to transfer
the data using SELECT queries.

The following image shows the additional Sqoop arguments that you specify at the mapping level:

31

Tuning Guidelines

Consider the following guidelines when you tune internal.fastload, internal.fastexport, and batch.insert methods:

• internal.fastLoad. Informatica has a restriction on number of sessions that can be opened at a time to write to
Teradata. Use the following formula to determine the number of sessions with an upper limit of 100 sessions
per job:

If number of AMPs <= 20, then use 1 per AMP.

If number of AMPs > 20, then use (20 + (Number of AMPs / 20))
• internal.fastexport. Uses 1 session per AMP with an upper limit of 4 sessions per job. If the number of

mappers specified is more than the max number of sessions that can be opened, TDCH restricts the mappers
to max sessions.

• batch.insert. If the number of AMPs is high such as 170, 180, or more, then Informatica observed that the
performance of the batch.insert method is better.

TDCH for Sqoop Tuning Tips
Consider the following tuning tips for Sqoop TDCH:

• If you use an IP address in the connection, all connections connect to a single server which can be a
bottleneck.

• COP stands for Communications Processor. COP Discovery refers to the process of performing multiple DNS
lookups to identify all the Teradata Database nodes that the client software could potentially connect to. Using
cop address allows connections to round-robin over cop servers to connect each mapper to a different node.
For example:
Teradatacop1 or teradatacop1.domain.com

Teradatacop2 or teradatacop2.domain.com

Teradatacop3 or teradatacop3.domain.com

• Laddered Concurrent Connect (LCC) occurs second, and uses the two-dimensional array as the list of possible
IP addresses to choose from. The purpose of LCC is to make multiple TCP socket connect attempts in parallel.
LCC provides 3-4x faster throughput with parallel connections.

TDCH for Sqoop Import and Export Guidelines
Spark job scales linearly during Sqoop import and export. You can tune Spark jobs based on cluster resources.
Configure the following advanced properties for Spark in the Hadoop connection:

spark.executor.instances=<number of executor instances>

The following formula determines the total running containers:

Total running containers = (Number of cores) x (Number of executor instances)

The Spark engine uses 2 executor instances by default. So, only 4 containers run in parallel. For better performance,
fine tune the spark.executor.instances property.

Tune the Oracle Database
To optimize the performance of Oracle databases, perform the following tasks:

• Analyze database statistics to fine tune queries.

• Maintain different physical disks for different tablespaces.

• Determine the expected database growth.

32

• Use the EXPLAIN PLAN statement to fine tune queries.

• Avoid foreign key constraints.

• Drop indexes before loading data.

• Set open cursors and sessions optimally for mappers to process queries in parallel.

Tune the PostgreSQL Database
Perform configuration tasks to use a PostgreSQL database for the Model repository.

Ensure that the PostgreSQL installation has sufficient disk space for data files. By default, the files are in the directory
<PostgreSQL installation folder>/data.

Ensure that the following properties are set in the PostgreSQL configuration file:

• Set max_connections to 4000.

• Set shared_buffers to 16GB.

• Set max_locks_per_transaction to 1024.

Case Studies
Refer to the following case studies for a general idea on the performance numbers.

Case Study: Application Deployment
Application deployment requires communication between the Data Integration Service and the associated Model
Repository Service. The Data Integration Service fetches the object and writes to the database schema of the Model
Repository Service.

Environment

Chipset Intel® Xeon® CPU E5-2680 v3 @ 2.50GHz

Cores 48 cores

Memory 132 GB

Operating system Red Hat Enterprise Linux 7.6

Performance Chart

The following chart shows the time taken to deploy applications with a different number of objects:

33

Conclusions

Based on the case study, consider the following best practices for application deployment when you have a similar
configuration:

Number of objects in applications

Having a large number of objects in the same application is not desirable. It increases the deployment time.
It also increases the resource usage of the Data Integration Service and the Model Repository Service.
Distributing objects in an optimal manner between various applications is key to achieve better performance.

Recommendation: ~ 50 objects per application.

Workaround for incremental application deployment

To deploy the changes made to the application, you stop the application and redeploy it. This process causes
downtime. Applications must be designed to minimize the effects on this downtime. If the number of objects
in the application are less, the effect of the downtime will be less severe.

Recommendation: The number of objects in an application should not exceed ~ 60 objects per application.

Cursor requirements on the database

The process of application deployment needs to use cursors at the database layer (the schema associated
with the Model Repository service). If applications are designed to be too large (1000+ of objects within) or
with deep hierarchy of objects, the cursor usage will be greater at the database level.

Recommendation: Required number of cursors >= Number of objects in application.

34

Case Study: Data Integration Service Application Load and Start-Up
The following case study observes the load and start-up of deployed applications on the Data Integration Service.

Test Setup

The study compares the following types of applications:

• 40-object applications. Each application contains 40 application objects that include 32 mappings and 8
physical data objects.

• 100-object applications. Each application contains 100 application objects that include 50 mappings and 50
physical data objects.

The applications are deployed in sets of 100, 500, or 1,000 applications to the Data Integration Service.

The database used by the Model Repository Service is deployed on the same machine as the domain node.

Environment

Chipset Intel® Xeon® CPU E5-2680 v3 @ 2.50GHz

Cores 12 cores

Memory 132 GB

Operating system Red Hat Enterprise Linux server release 7.6

Performance Chart

The following chart shows the time taken to start up the Data Integration Service based on the number of applications
deployed to the Data Integration Service and the number of objects in each application:

Conclusions

The total number of objects in an application has little to no effect on application load/startup time. To reduce the
number of deployed applications on a Data Integration Service, group related entities to place 40 - 60 application
objects that include mappings and workflows in one application.

35

Case Study: Data Integration Service Concurrency
The following case study tested a large number of concurrent mappings running on a single node Data Integration
Service. The mappings used TPC-DS benchmark queries of medium complexity with Hive sources and parameterized
HDFS targets. During the test, peak CPU utilization was ~20 cores (80%) for less than 5 minutes. The average
utilization was ~8 cores.

Environment

Chipset Intel® Xeon® Processor X5675 @ 3.06 GHz

Cores 4 x 6 cores

Memory 32 GB

Operating system Red Hat Enterprise Linux 6.1

Hadoop distribution Cloudera 5.15

Hadoop cluster 25 nodes

Performance Chart

The following performance chart compares the dispatch times for 2K and 5K concurrent jobs. Dispatch time is the
time taken by DIS to submit all the mappings to the cluster:

Conclusions

• When you submit concurrent mapping requests, use the infacmd gateway service to optimize performance.
For more details, refer to the following Informatica Knowledge Base article:

Gateway Service to Submit Mappings and Workflows to the Data Integration Service

36

https://kb.informatica.com/whitepapers/4/Pages/1/516726.aspx

Case Study: Java String Port Conversion Overhead
The following case study compares performance between string ports and numeric ports and evaluates the UTF
conversion overhead for port processing.

Test Setup

The study compares one operation on 25 string ports to one operation on 25 numeric ports. The operation is
performed in the Java transformation. For additional comparison, the same operation is performed in the Expression
transformation.

Environment

Chipset Intel® Xeon® CPU E5-2650 v4 @ 2.20GHz

Cores 12 cores

Memory 256 GB

Operating system Red Hat Enterprise Linux 7.2

Hadoop cluster 12 nodes

String ports 7 ports

Data volume ~ 750 GB

Performance Chart

The following performance chart compares the time taken for the operation to process the string and numeric ports in
the Java transformation and the Expression transformation:

Conclusions

Based on the case study, the Java transformation experiences an overhead cost of around 10% for numeric ports. For
string ports, the same overhead cost is around 40%.

37

Case Study: Data Integration Service Concurrency with Multiple HS2 Load
Balancers
The following case study shows the benefits of having multiple Hive Server2 Load Balancers for large concurrent
mappings running on a Data Integration Service 4 node grid.

The mappings used TPC-DS benchmark queries of medium complexity with Hive sources and parameterized HDFS
targets. During the test, peak CPU utilization was ~20 cores (80%) for less than 5 minutes. The average utilization was
~4 cores.

Environment

Cloudera Cluster Data Integration Service
4 Node Grid

Chipset Intel® Xeon® Processor X5675 @ 3.06 GHz Intel® Xeon® Gold 6132 CPU @ 2.60GHz

Cores 4 x 6 cores 4 x 14 cores

Memory 32 GB 125 GB

Operating System Red Hat Enterprise Linux 6.1 Red Hat Enterprise Linux 7.5 (Maipo)

Hadoop Distribution Cloudera 5.15 -

Hadoop Cluster Size 25 nodes -

Hive Server 2 Load Balancer Configuration

Test staff configured the HiveServer 2 load balancers using the following steps:

• Install the HA Proxy package or another load balancer recommended by your IT team.

• Configure the HA proxy service to listen on port 10000 and include the HS2 instances.

• Configure the HA Proxy service to start on bootup.

• In Cloudera Manager, include the Load Balancer server address in the HiveServer2 Load Balancer configuration
properties.

• Restart the Hive service.

Performance Chart

The following performance chart compares the dispatch times for 10K concurrent jobs on a Hadoop cluster. Cluster
Dispatch time is the time taken by the Data Integration Service to submit all mappings to the cluster:

38

Conclusions

The test found that dispatch time improved ~40% with two HiveServer 2 instances.

Case Study: Traditional Update Strategy versus Hive MERGE
The following case study compares the amount of time that an update strategy task requires to complete depending
on the number of INSERT and UPDATE statements in the task and whether the task implements Hive MERGE.

Environment

Chipset Intel® Xeon® CPU E5-2680 v3 @ 2.50GHz

Cores 12 cores

Memory 128 GB

Operating system Red Hat Enterprise Linux 7.3

Hadoop cluster 14 nodes

Data volume ~ 75 GB

39

Performance Chart

The following performance chart shows a comparison of the time taken for an update strategy task to complete when
the task contains a combination of INSERT and UPDATE statements:

Conclusions

Based on the case study, a 30% increase in performance is observed in the update strategy task when the task
implements Hive MERGE.

When you perform incremental updates and the percentage of UPDATE statements is higher than the percentage of
INSERT statements, consider using Hive MERGE.

Case Study: Python Transformation
The following case study compares performance of a mapping containing a Python transformation handling data of
various sizes.

Environment

Chipset Intel® Xeon® CPU E5-2680 v3 @ 2.50GHz

Cores 12 cores

Memory 128 GB

Operating system Red Hat Enterprise Linux 7.3

Hadoop cluster 12 nodes

Data volume 100 GB –– 1 TB

Performance Chart

The following performance chart compares performance of a mapping containing a Python transformation handling
data of various sizes:

40

Case Study: Sqoop TDCH Export and Import
The following case study uses a simple pass-through mapping that reads data from Teradata and writes to HDFS or
Hive using TDCH for Sqoop. It also reads data from HDFS or Hive and writes to Teradata.

Environment

Chipset Intel® Xeon® Processor X5675 @ 3.2 GHz

Cores 2 x 6 cores

Memory 256 GB

Operating system Red Hat Enterprise Linux 7.0

Hadoop distribution Cloudera Enterprise 5.11.1

Hadoop cluster 7 nodes

Data set TPC-H.Lineitem SF-10, ~7.5 GB. 16 Col, 600 Million Rows, Row Size- ~405 Bytes

41

Performance Chart

The following chart shows the execution time for TDCH export:

The following chart shows the execution time for TDCH import:

Conclusions

• For the Sqoop writer, the number of mappers increased from the default 4 to 144. With the maximum session
restriction for the internal.fastLoad method, the actual sessions created were 25.

• For the Sqoop reader, the number of mappers increased from the default 1 to 144. Default value is 1 because
the table has a primary key defined. When the number of mappers increase, set the value of the
spark.executor.instances property equal to the number of mappers for optimal performance.

Case Study: Sqoop Oracle Import (Reader)
The following case study uses a simple pass-through mapping that reads data from Oracle source and writes to HDFS
using Sqoop.

42

Environment

Chipset Intel® Xeon® Processor X5675 @ 3.2 GHz

Cores 2 x 6 cores

Memory 256 GB

Operating system Red Hat Enterprise Linux 7.0

Hadoop distribution Cloudera Enterprise 5.11.1

Hadoop cluster 7 nodes

Data set TPC-H.Lineitem SF-100, ~75 GB. 16 Col, 6 Billion Rows, Row Size- ~405 Bytes

Performance Chart

The following chart shows the execution time for Oracle import:

Case Study: Sqoop Oracle Export (Writer)
The following case study uses a simple pass-through mapping that reads data from HDFS and writes to Oracle using
Sqoop.

Environment

Chipset Intel® Xeon® Processor X5675 @ 3.2 GHz

Cores 2 x 6 cores

Memory 256 GB

Operating system Red Hat Enterprise Linux 7.0

43

Hadoop distribution Cloudera Enterprise 5.11.1

Hadoop cluster 7 nodes

Performance Chart

The following chart shows the execution time for Oracle export:

Recommendations

Consider the following recommendations:

• Design mappings to enable sources and targets to handle requests in parallel.

• Verify that the cluster has adequate resources to process data in parallel. Passing a large number of mappings
does not improve the performance linearly if cluster resources are inadequate.

Case Study: Amazon EMR Auto-Scaling
The following case study analyzes the performance of a cluster workflow that is deployed to an ephemeral Amazon
EMR cluster.

Test Setup

The study uses the following cluster workflow:

The cluster workflow contains three mapping tasks, Task 1, Task 2, and Task 3. The mapping tasks are identical
mappings that process the same data volume. The tasks are executed sequentially.

44

The workflow is submitted to an ephemeral Amazon EMR cluster that employs auto-scaling. The auto-scaling rules
have a minimum capacity set to 4 nodes and a maximum capacity set to 10 nodes. The auto-scaling rules add nodes
to the cluster in increments of 2.

The following image shows the auto-scaling policy:

Environment

Chipset Intel® Xeon® Processor X5675 @ 3.2 GHz

Cores 2 x 6 cores

Memory 256 GB

Operating system Red Hat Enterprise Linux 7.0

45

Hadoop distribution Cloudera Enterprise 5.11.1

Hadoop cluster 7 nodes

Performance Chart

The following performance chart shows a timeline of the workflow execution on the Amazon EMR cluster:

The performance chart shows the following events:

• Creating an ephemeral cluster took 7 minutes.

• The first mapping task ran on 4 data nodes and took around 13 minutes to complete.

• While the first task ran, the auto-scaling policy was prompted to add 2 data nodes to the cluster, but it took
around 8 minutes for the additionally commissioned nodes to be available for processing.

• By the time that the additional nodes became available, the execution of the first mapping task was
completed.

The second mapping task leveraged the additional nodes and ran on 6 data nodes. The additional computational
resources reduced the execution run time from around 13 minutes to around 8 minutes.

Conclusions

Auto-scaling rules for ephemeral clusters on AWS can be defined in multiples of 5 minutes. Once the auto-scaling rules
are prompted, it can take between 5 to 10 minutes for additionally commissioned nodes to become available.

Based on these observations, Informatica recommends that you implement auto-scaling rules only when processing
large volumes of data, such as Spark applications that run mapping jobs over multiple iterations.

Authors
Angela Rae

Mark Pritchard

46

	Abstract
	Supported Versions
	Table of Contents
	Overview
	Deployment Types
	Deployment Criteria
	Deployment Type Comparison

	Sizing Recommendations
	Hadoop Cluster Hardware Recommendations
	Amazon EMR Sizing Guidelines
	HDInsight Sizing Guidelines

	Azure Databricks Cluster Sizing Guidelines
	Informatica Domain Sizing

	Data Engineering Streaming Sizing and Tuning Recommendations
	Tune the Hardware and the Hadoop Cluster
	Tune the Informatica Domain and Application Services
	Analyst Service
	Content Management Service
	Data Integration Service
	Mass Ingestion Service
	Model Repository Service
	Search Service

	Tune the Blaze Engine
	Mapping Optimization
	Transformation Optimization
	Sequence Generator Transformation
	Data Processor Transformation
	Aggregator Transformation

	Filter Optimization for Hive Sources

	Tune the Spark Engine
	Spark Configuration
	Transformation Optimization
	Java Transformation
	Joiner Transformation
	Lookup Transformation
	Router Transformation
	Sequence Generator Transformation
	Update Strategy Transformation

	Troubleshooting Spark Job Failures
	MapR Issue: Slowness Due to File Copy from tmp to Target Directory

	Amazon EMR Distribution Tips
	REST API Mapping Service Tips
	Tune the Sqoop Parameters
	Sqoop Command Line Arguments
	Sqoop Tuning Guidelines

	Tune the TDCH for Sqoop Parameters
	TDCH for Sqoop Tuning Tips
	TDCH for Sqoop Import and Export Guidelines

	Tune the Oracle Database
	Tune the PostgreSQL Database
	Case Studies
	Case Study: Application Deployment
	Case Study: Data Integration Service Application Load and Start-Up
	Case Study: Data Integration Service Concurrency
	Case Study: Java String Port Conversion Overhead
	Case Study: Data Integration Service Concurrency with Multiple HS2 Load Balancers
	Case Study: Traditional Update Strategy versus Hive MERGE
	Case Study: Python Transformation
	Case Study: Sqoop TDCH Export and Import
	Case Study: Sqoop Oracle Import (Reader)
	Case Study: Sqoop Oracle Export (Writer)
	Case Study: Amazon EMR Auto-Scaling

	Authors

