
Informatica® Cloud Data Integration

Google BigQuery Connectors

Informatica Cloud Data Integration Google BigQuery Connectors
October 2024

© Copyright Informatica LLC 2020, 2024

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica, the Informatica logo, Informatica Cloud, and PowerCenter are trademarks or registered trademarks of Informatica LLC in the United States and many
jurisdictions throughout the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company
and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2024-10-14

https://www.informatica.com/legal/patents.html

Table of Contents

Preface . 7
Informatica Resources. 7

Informatica Network. 7

Informatica Knowledge Base. 7

Informatica Documentation. 7

Informatica Product Availability Matrices. 8

Informatica Velocity. 8

Informatica Marketplace. 8

Informatica Global Customer Support. 8

Part I: Introduction to Google BigQuery connectors. 9

Chapter 1: Google BigQuery connectors overview. 10

Chapter 2: Connector comparison. 11
Mapping functionality. 11

Source functionality. 12

Target functionality. 13

Chapter 3: Task examples. 15
Synchronization task use case. 15

Mapping and mapping task use case. 15

Mapping task with Oracle CDC sources use case. 15

Mapping in advanced mode use case. 16

Part II: Data Integration with Google BigQuery V2 Connector. 17

Chapter 4: Introduction to Google BigQuery V2 Connector. 18
Google BigQuery V2 Connector assets. 18

Google BigQuery example. 18

Administration of Google BigQuery V2 Connector. 19

Chapter 5: Google BigQuery V2 connections. 20
Connect to Google BigQuery. 20

Before you begin. 20

Connection details. 20

Authentication type. 21

Proxy server settings. 23

Configure proxy settings for NTLM authentication. 24

Table of Contents 3

Chapter 6: Mappings for Google BigQuery V2. 25
Google BigQuery Storage API. 25

Mappings with different connection modes. 27

Rules and guidelines for Google BigQuery V2 connection modes. 30

Google BigQuery V2 sources in mappings. 32

Read modes. 36

Custom query source type. 38

Adding multiple source objects. 39

Partitioning. 41

Google BigQuery V2 targets in mappings. 42

Write modes. 48

Mapping tasks with CDC sources. 50

Upsert task operation. 52

Data driven operation for mappings. 52

Using Merge query for update, upsert, and delete operations. 53

Determine the order of processing for multiple targets. 53

Clustering order. 54

Stop on errors. 55

Google BigQuery V2 lookups in mappings . 56

Unconnected lookup transformation. 59

Configuring an unconnected lookup transformation. 60

Enabling lookup caching. 62

Optimize lookup performance in staging mode. 63

Setting default column value for the lookup and output ports. 64

Rules and guidelines for Lookup transformation. 64

Process SQL queries using an SQL transformation. 66

Configuring an SQL transformation. 67

Using a parameterized connection in an SQL transformation. 68

Rules and guidelines for SQL transformation. 68

Pre-SQL and post-SQL commands. 69

Data filters. 70

Handling dynamic schemas. 70

Rules and guidelines for dynamic schema handling. 71

Configure unique staging object names for concurrent mappings. 71

Hierarchy Parser transformation in mappings. 73

Hierarchy Builder transformation in mappings. 73

Assign a label to the transformations. 74

Rules and guidelines for mapping and mapping tasks. 74

Rules and guidelines for mappings in advanced mode. 79

Troubleshooting a mapping task. 82

Troubleshooting a mapping in advanced mode. 82

4 Table of Contents

Chapter 7: Migrating a mapping. 84
Use the same object path for the migrated mapping. 84

Use a different object path for the migrated mapping. 84

Migration options. 85

Rules and guidelines for migrating a mapping. 86

Chapter 8: Upgrading to Google BigQuery V2 Connector. 87
Connection switching example. 88

Advanced properties retained after the switch. 90

Rules and guidelines. 91

Chapter 9: SQL ELT with Google BigQuery V2 Connector. 93
SQL ELT configuration options. 93

SQL ELT query preview. 94

Mappings in SQL ELT mode for Google BigQuery. 94

Sources in mappings in SQL ELT mode. 95

Targets in mappings in SQL ELT mode. 95

Transformations in mappings in SQL ELT mode. 96

Functions in mappings in SQL ELT mode. 96

Operators in mappings in SQL ELT mode. 99

Rules and guidelines in mappings in SQL ELT mode. 99

SQL ELT optimization for mapping tasks. 100

SQL ELT optimization. 100

SQL ELT optimization using a Google BigQuery V2 connection. 104

Read from and write to Google BigQuery. 117

Read from Google Cloud Storage and write to Google BigQuery. 120

Read from Amazon S3 and write to Google BigQuery. 121

Rules and guidelines for SQL ELT optimization. 123

Troubleshooting a SQL ELT optimization task. 125

Chapter 10: Data type reference. 127
Google BigQuery V2 and transformation data types. 127

Part III: Data Integration with Google BigQuery Connector. 130

Chapter 11: Introduction to Google BigQuery Connector. 131
Data Integration Hosted Agent. 131

Google BigQuery Connector assets. 131

Google BigQuery example. 132

Administration of Google BigQuery Connector. 132

Table of Contents 5

Chapter 12: Google BigQuery connections. 135
Connection modes. 135

Connection mode example. 135

Rules and guidelines for Google BigQuery connection modes. 139

Google BigQuery connection properties. 140

Configuring the proxy settings on Windows. 141

Configuring the proxy settings on Linux. 143

Chapter 13: Synchronization Tasks with Google BigQuery Connector. 145
Pre SQL and post SQL commands. 145

Google BigQuery sources in synchronization tasks. 146

Read modes. 146

Advanced Properties for Google BigQuery sources. 147

Data filters. 149

Simple Data Filters. 149

Advanced Data Filters. 149

Google BigQuery targets in synchronization tasks . 149

Write modes. 150

Advanced synchronization task options for Google BigQuery targets. 150

Advanced properties for Google BigQuery targets. 151

Upsert task operation. 153

Chapter 14: Mappings and mapping tasks with Google BigQuery. 155
Pre SQL and post SQL commands. 155

Google BigQuery sources in mappings. 156

Google BigQuery targets in mappings. 159

Upsert task operation. 162

Partitioning. 162

Key range partitioning. 162

Hierarchy Parser transformation in mappings. 164

Hierarchy Builder transformation in mappings. 164

Rules and Guidelines for mappings and mapping tasks. 164

Chapter 15: Data type reference . 165
Google BigQuery and transformation data types. 165

Index. 167

6 Table of Contents

Preface
Use Google BigQuery Connectors to learn about Google BigQuery and Google BigQuery V2 Connectors. Use
Part I to know the overview and the functionality comparison between Google BigQuery V2 and Google
BigQuery connectors. Use Part II and Part III to learn about the functionality available for Google BigQuery
connectors.

Informatica Resources
Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Network
The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:

• Search the Knowledge Base for product resources.

• View product availability information.

• Create and review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

7

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://docs.informatica.com

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Product Availability Matrices
Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center through the Informatica Network or by telephone.

To find online support resources on the Informatica Network, click Contact Support in the Informatica
Intelligent Cloud Services Help menu to go to the Cloud Support page. The Cloud Support page includes
system status information and community discussions. Log in to Informatica Network and click Need Help to
find additional resources and to contact Informatica Global Customer Support through email.

The telephone numbers for Informatica Global Customer Support are available from the Informatica web site
at https://www.informatica.com/services-and-training/support-services/contact-us.html.

8 Preface

mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/support-services/contact-us.html

Part I: Introduction to Google
BigQuery connectors

This part contains the following chapters:

• Google BigQuery connectors overview, 10

• Connector comparison, 11

• Task examples, 15

9

C h a p t e r 1

Google BigQuery connectors
overview

You can use Google BigQuery connectors to read data from and write data to Google BigQuery. Use the
connectors to create sources and targets that represent records in Google BigQuery.

When you use Google BigQuery connectors to create and run a Data Integration task, the Secure Agent reads
from and writes data to Google BigQuery based on the taskflow and Google BigQuery connection
configuration.

You can move data from any data source to Google BigQuery. Use the following connectors to create
connections and integrate data to and from Google BigQuery:

Google BigQuery V2 Connector

This is the recommended connector to connect to Google BigQuery. Use Google BigQuery V2 Connector
to create a mapping, dynamic mapping task, data transfer task, or a mapping task.

Google BigQuery Connector

This is an older version of Google BigQuery Connector. Use Google BigQuery Connector to read or write
data only when you want to use a synchronization task.

10

C h a p t e r 2

Connector comparison
Based on your requirements to integrate or ingest data, you can use either Google BigQuery Connector or
Google BigQuery V2 Connector to create data integration tasks.

The functionality to create integration tasks and configure read and write operations differ in both
connectors. Informatica recommends to use Google BigQuery V2 connector as the new features and
enhancements are provided for Google BigQuery V2 Connector.

Mapping functionality
The following table compares the mapping functionality supported by Google BigQuery connectors:

Mapping functionality Google BigQuery Connector Google BigQuery V2 Connector

Hosted agent Yes Yes

Proxy server Yes Yes

Synchronization task Yes No

Mapping task Yes Yes (Preferred)

Dynamic mapping task No Yes

Data transfer task No Yes

Write CDC data to Google
BigQuery Targets

No Yes

SQL ELT optimization Use an ODBC connection with
ODBC Subtype=Google
BigQuery to enable source or
full SQL ELT optimization
between Google BigQuery
source and target.

Use a Google Cloud Storage V2 source connection
and an Google BigQuery V2 target connection to
enable full SQL ELT optimization between Google
Cloud Storage source and Google BigQuery target.
Note: SQL ELT optimization does not apply to
mappings in advanced mode.

11

Mapping functionality Google BigQuery Connector Google BigQuery V2 Connector

Lookup transformation No Cache, uncached, connected, and unconnected
Note: Uncached lookups, Unconnected with cached
lookups, and dynamic lookup cache do not apply to
mappings in advanced mode.

SQL transformation No Yes
Note: SQL transformation does not apply to
mappings in advanced mode.

Source functionality
When you import an object from Google BigQuery to read data, you can configure the advance source
properties to determine the read operation behavior. For example, you can read data in staging mode or you
can configure pre-SQL and post-SQL configurations.

The following table lists the source functionality you can use when you read data from an Google BigQuery
source for Google BigQuery and Google BigQuery V2 connectors:

Feature Google BigQuery Connector Google BigQuery V2 Connector

Custom query No Yes

Legacy SQL for custom query No Yes

Region ID No Yes

Allow Large Results Yes Yes

Query results destination table Yes Yes

Persist query results destination
table

Yes Yes

Job poll interval Yes Yes

Read mode - direct Yes Yes

Read mode - staging Yes Yes

Local staging file directory Yes Yes

Multiple threads for downloading
staging files

Yes Yes

Staging file compression Yes Yes

Pre-SQL and pre-SQL
configurations

Yes Yes

12 Chapter 2: Connector comparison

Feature Google BigQuery Connector Google BigQuery V2 Connector

Post-SQL and post-SQL
configurations

Yes Yes

SQL override query No Yes

Legacy SQL for SQL override
query

No Yes

Retry Options No Yes

Target functionality
When you import an object from Google BigQuery to write data, you can configure the advance target
properties to determine the write operation behavior. For example, you can write data in streaming mode or
you can retain Google Cloud Storage staging files after the write operation is complete using bulk mode.

The following table lists the target functionality you can use when you write data to a Google BigQuery target:

Target functionality Google BigQuery mapping Google BigQuery V2 mapping

Write mode - bulk Yes Yes

Specify optional custom
properties in connection

No Yes

Create disposition Yes Yes

Write disposition Yes Yes

Region ID No Yes

Staging file in Google Cloud
Storage

Yes Yes

Persist staging file after writing
to Google BigQuery

Yes Yes

Staging file directory Yes Yes

Write mode - streaming Yes Yes

Write mode - CDC No Yes

Use merge query for update,
upsert, and delete operations

No Yes

Streaming template table suffix Yes Yes

Rows per streaming request Yes Yes

Target functionality 13

Target functionality Google BigQuery mapping Google BigQuery V2 mapping

Staging file compression Yes Yes

Job poll interval Yes Yes

Multiple threads for uploading
staging file

Yes Yes

Allow quoted newlines Yes Yes

Field delimiter Yes Yes

Quote character Yes Yes

Allow jagged rows Yes Yes

Pre-SQL and pre-SQL
configurations

Yes Yes

Post-SQL and post-SQL
configurations

Yes Yes

Enable Merge No Yes

Update Override No Yes

Truncate target table No Yes

14 Chapter 2: Connector comparison

C h a p t e r 3

Task examples
This section lists all the task examples that Google BigQuery and Google BigQuery V2 Connectors support.

Synchronization task use case
You work for an e-commerce organization that stores sales order details in a MySQL database. Your
organization needs to move the data from the MySQL database to an Google BigQuery target.

Use Google BigQuery Connector to create a synchronization task to write to an Google BigQuery target.

Mapping and mapping task use case
You work for an organization that stores purchase order details, such as customer ID, item codes, and item
quantity in an on-premise MySQL database. You need to analyze purchase order details to know the items
ordered in a particular state and move data from the on-premise MySQL database to state-wise target tables
in an affordable cloud-based environment.

Use Google BigQuery V2 Connector to create a mapping to state-wise read purchase records from the MySQL
database and write them to multiple Google BigQuery targets to prepare an upcoming marketing campaign
for all states.

Mapping task with Oracle CDC sources use case
Your organization needs to replicate real-time changed data from a mission-critical Oracle production system
to minimize intrusive, non-critical work, such as offline reporting or analytical operations system.

Use Google BigQuery V2 Connector to capture changed data from the Oracle CDC source and write the
changed data to an Google BigQuery target table. Add the Oracle CDC sources in mappings, and then run the
associated mapping tasks to write the changed data to the target.

15

Mapping in advanced mode use case
You work for an organization that stores large amount of purchase order details, such as customer ID, item
codes, and item quantity in Google Cloud Storage. You need to port the data from Google Cloud Storage to
another cloud-based environment to quickly analyze the purchase order details and to increase future
revenues.

Use Google BigQuery V2 Connector to create a mapping in advanced mode to achieve faster performance
when you read all the purchase records from Google Cloud Storage and write the records to a Google
BigQuery target.

16 Chapter 3: Task examples

Part II: Data Integration with
Google BigQuery V2 Connector

This part contains the following chapters:

• Introduction to Google BigQuery V2 Connector, 18

• Google BigQuery V2 connections, 20

• Mappings for Google BigQuery V2, 25

• Migrating a mapping, 84

• Upgrading to Google BigQuery V2 Connector, 87

• SQL ELT with Google BigQuery V2 Connector, 93

• Data type reference, 127

17

C h a p t e r 4

Introduction to Google BigQuery
V2 Connector

You can use Google BigQuery V2 Connector to securely read data from or write data to Google BigQuery.

You can read from or write to Google BigQuery tables. You can also read from standard and materialized
views.

When you enable cross-region replication in Google BigQuery for disaster recovery purposes, you can read
from or write to datasets in these replicated regions.

When you use Google BigQuery V2 Connector, you can create a Google BigQuery V2 connection and use the
connection in Data Integration mappings and tasks.

You can switch mappings to advanced mode to include transformations and functions that enable advanced
functionality.

When you run a task or mapping, the Secure Agent uses the JAVA client libraries of the Google APIs to
integrate with Google BigQuery.

Google BigQuery V2 Connector assets
Create assets in Data Integration to integrate data using Google BigQuery V2 Connector.

When you use Google BigQuery V2 Connector, you can include the following Data Integration assets:

• Data transfer task

• Dynamic mapping task

• Mapping

• Mapping task

For more information about configuring assets and transformations, see Mappings, Transformations, and
Tasks in the Data Integration documentation.

Google BigQuery example
Your organization is an open source log data collector, which collects log data from multiple sources and
unifies them.

18

Logs help you understand how systems and applications perform. As the scale and complexity of the system
increases, it is difficult to manage multiple logs from different sources.

To overcome this problem, you can use Google BigQuery V2 Connector to write data to a Google BigQuery
target and query terabytes of logs in seconds. You can then use the data to fix and improve the system
performance in near real time.

Administration of Google BigQuery V2 Connector
Google BigQuery is a RESTful web service that the Google Cloud Platform provides.

The Google BigQuery Connector uses the following Google APIs to integrate with Google BigQuery:

• google-api-services-bigquery-v2-rev20220827-2.0.0

• google-cloud-bigquery-2.16.0

Before you use Google BigQuery V2 Connector, you must complete the following prerequisite tasks:

• Ensure you have the project ID, dataset ID, source table name, and target table name when you create
mappings in Data Integration.

• Verify that you have read and write access to the Google BigQuery dataset that contains the source table
and target table.

• When you read data from or write data to a Google BigQuery table, you must have the required
permissions to run the mapping successfully.

• If your organization passes data through a proxy, virtual private cloud, or protective firewall, you must
configure your firewall to allow the www.googleapis.com and www.accounts.google.com URI for Google
BigQuery V2 Connector to transfer data through a proxy, virtual private cloud, or firewall.

• If you use bulk mode to write data to Google BigQuery, verify that you have write access to the Google
Cloud Storage path where the Secure Agent creates the staging file.

• If you use DTM staging mode to write data to Google BigQuery, ensure that you configure the Secure
Agent to enable the DTM staging mode.

• If you use staging mode to read data from Google BigQuery, verify that you have read access to the
Google Cloud Storage path where the Secure Agent creates the staging file to store the data from the
Google BigQuery source.

• To read or write Avro, Parquet, or JSON files, verify that your organization does not have more than one
Cloudera 6.1 distribution enabled.

Administration of Google BigQuery V2 Connector 19

C h a p t e r 5

Google BigQuery V2 connections
Create a Google BigQuery V2 connection to securely read data from or write data to Google BigQuery.

You can use a Google BigQuery V2 connection to specify sources, targets, and lookups in mappings and
mapping tasks. You can also use the Google BigQuery V2 connection in an SQL transformation.

Connect to Google BigQuery
Let's configure the Google BigQuery V2 connection properties to connect to Google BigQuery.

Before you begin
Before you configure a connection, ensure that you download the Google service account key file in JSON
format. The service account key file is created when you create a Google service account.

You require the client email, private key, and project ID from the service account key JSON file to create a
Google BigQuery connection.

The following video shows you how to get the information you need from your Google BigQuery account:

Connection details
The following table describes the basic connection properties:

Property Description

Connection Name Name of the connection.
Each connection name must be unique within the organization. Connection names can contain
alphanumeric characters, spaces, and the following special characters: _ . + -,
Maximum length is 255 characters.

Description Description of the connection. Maximum length is 4000 characters.

20

Property Description

Type Google BigQuery V2

Runtime
Environment

The name of the runtime environment where you want to run tasks.
Select a Secure agent, Hosted Agent, or serverless runtime environment.

Authentication type
Select the Service Account authentication type to access Google BigQuery and configure the authentication-
specific parameters.

Service Account authentication
Service Account authentication requires at a minimum your Google BigQuery service account email, service
account key, and project ID.

The following table describes the basic connection properties for Service Account authentication:

Property Description

Service Account
Email

The client_email value from the Google service account key JSON file.

Service Account Key The private_key value from the Google service account key JSON file.

Project ID The project_id value from the Google service account key JSON file.
If you have created multiple projects with the same service account, enter the ID of the project
that contains the dataset that you want to connect to.

Note: If you want to validate the credentials for the Service Account Email, Service Account Key, and Project
ID during a test connection, set the flag CredentialValidation:true in the Provide Optional Properties field
in advanced settings.

Advanced settings

The following table describes the advanced connection properties for Service Account authentication:

Property Description

Enable BigQuery
Storage API

Select this option to use Google BigQuery Storage to stage the files when you read or write data.
Default is unselected.

Storage Path Path in Google Cloud Storage where the agent creates a local stage file to store the data
temporarily. The agent uses this storage when it reads data in staging mode or writes data in bulk
mode.
Use one of the following formats:
- gs://<bucket_name>
- gs://<bucket_name>/<folder_name>
When you enable cross-region replication in Google BigQuery, enter a Google Cloud Storage path
that supports dual region storage.
This property is not applicable if you use Google BigQuery Storage to stage the files.

Connect to Google BigQuery 21

Property Description

Connection
Mode

The mode that you want to use to read data from or write data to Google BigQuery.
Select one of the following connection modes:
- Simple. Flattens each field within the Record data type field as a separate field in the mapping.
- Hybrid¹. Displays all the top-level fields in the Google BigQuery table including Record data type

fields. Google BigQuery V2 Connector displays the top-level Record data type field as a single
field of the String data type in the mapping.

- Complex¹. Displays all the columns in the Google BigQuery table as a single field of the String
data type in the mapping.

Default is Simple.
This property is applicable if you use Google Cloud Storage to stage the files.

Use Legacy SQL
for Custom
Query¹

Select this option to use legacy SQL to define a custom query. If you clear this option, use
standard SQL to define a custom query.
This property is applicable if you use Google Cloud Storage to stage the files.
This property doesn't apply if you configure the Google BigQuery V2 connection in hybrid or
complex mode.

Dataset Name
for Custom
Query¹

When you define a custom query, specify a Google BigQuery dataset.

Schema
Definition File
Path¹

Directory on the Secure Agent machine where the Secure Agent creates a JSON file with the
sample schema of the Google BigQuery table. The JSON file name is the same as the Google
BigQuery table name.
Alternatively, you can specify a storage path in Google Cloud Storage where the Secure Agent
creates a JSON file with the sample schema of the Google BigQuery table. You can download the
JSON file from the specified storage path in Google Cloud Storage to a local machine.
The schema definition file is required if you configure complex connection mode in the following
scenarios:
- You add a Hierarchy Builder transformation in a mapping to read data from relational sources

and write data to a Google BigQuery target.
- You add a Hierarchy Parser transformation in a mapping to read data from a Google BigQuery

source and write data to relational targets.
When you use a serverless runtime environment, specify a storage path in Google Cloud Storage.
This property is applicable if you use Google Cloud Storage to stage the files.

Region ID The region name where the Google BigQuery dataset that you want to access resides.
Note: Ensure that you specify a bucket name or the bucket name and folder name in the Storage
Path property that resides in the specified region.
For more information about the regions supported by Google BigQuery, see Dataset locations.

Staging Dataset¹ The Google BigQuery dataset name where you want to create the staging table to stage the data.
You can define a Google BigQuery dataset that is different from the source or target dataset.
This property is applicable if you use Google Cloud Storage to stage the files.

Provide Optional
Properties¹

Comma-separated key-value pairs of custom properties in the Google BigQuery V2 connection to
configure certain source and target functionalities.
For more information about the list of custom properties that you can specify, see
Optional Properties configuration Knowledge Base.

22 Chapter 5: Google BigQuery V2 connections

https://cloud.google.com/bigquery/docs/locations
https://knowledge.informatica.com/s/article/632722?language=en_US

Property Description

Enable Retry¹ Select this option if you want the Secure Agent to attempt a retry to receive the response from the
Google BigQuery endpoint.
You can configure the retry strategy to read data from Google BigQuery in direct or staging mode
and write data to Google BigQuery in bulk mode.
The retry strategy is not applicable in the CDC and streaming modes when you write data to a
Google BigQuery target.
The connection retry option also applies to a connection configured to use the proxy server to
connect to the endpoint.
Default is unselected.

Maximum Retry
Attempts

Appears only if you select the Enable Retry property.
The maximum number of retry attempts that the Secure Agent performs to receive the response
from the Google BigQuery endpoint.
If the Secure Agent fails to connect to Google BigQuery within the maximum retry attempts, the
connection fails.
Default is 6 attempts.

Initial Retry
Delay

Appears only if you select the Enable Retry property.
The initial wait time in seconds before the Secure Agent attempts to retry the connection.
Default is 1 second.

Retry Delay
Multiplier

Appears only if you select the Enable Retry property.
The multiplier that the Secure Agent uses to exponentially increase the wait time between
successive retry attempts up to the maximum retry delay time.
Default multiplier is 2.0. You can also use fractional values.

Maximum Retry
Delay

Appears only if you select the Enable Retry property.
The maximum wait time in seconds that the Secure Agent waits between successive retry
attempts.
Default is 32 seconds.

Total Timeout Appears only if you select the Enable Retry property.
The total time duration in seconds that the Secure Agent attempts to retry the connection after
which the connection fails.
Default is 50 seconds.

¹ Doesn't apply to mappings in advanced mode.

Proxy server settings
If your organization uses an outgoing proxy server to connect to the Internet, the Secure Agent connects to
Informatica Intelligent Cloud Services through the proxy server.

You can configure the Secure Agent to use the proxy server on Windows and Linux. You can use the
unauthenticated or authenticated proxy server. The proxy settings applies to connections used in mappings
and in mappings in advanced mode.

Proxy server settings 23

To configure the proxy settings for the Secure Agent, perform the following tasks:

• Configure the Secure Agent through the Secure Agent Manager on Windows or shell command on Linux.

For instructions, see "Configure the proxy settings on Windows" or "Configure the proxy settings on Linux"
in Getting Started in the Data Integration help.

• Configure the JVM options for the DTM in the Secure Agent properties. For instructions, see the
Proxy server settings Knowledge Base article.

To configure the proxy settings for the serverless runtime environment, see "Using a proxy server" in Runtime
Environments in the Administrator help.

Configure proxy settings for NTLM authentication
You can use a proxy server that uses NTLM authentication to connect to Google BigQuery. To configure the
proxy settings for NTLM authentication, perform the following steps:

1. In Administrator, select Runtime Environments.

2. Select the Secure Agent for which you want to configure from the list of available Secure Agents.

3. In the upper-right corner, click Edit.

4. In the System Configuration Details section, select the Type as DTM for the Data Integration Server.

5. Edit the JVMOption1 and add the following value:
-Dhttp.auth.ntlm.domain=<domain name>

6. Select the Type as Platform for the Data Integration Server.

7. Edit the INFA_DEBUG property and add the following value:
-Dhttp.auth.ntlm.domain=<domain name>

8. Click Save.

9. Restart the Secure Agent.

24 Chapter 5: Google BigQuery V2 connections

https://knowledge.informatica.com/s/article/Configure-proxy-server-settings-through-the-JVM-options-for-Data-Integration-connectors?language=en_US&type=external

C h a p t e r 6

Mappings for Google BigQuery V2
When you configure a mapping, you describe the flow of data from the source to the target.

A mapping defines reusable data flow logic that you can use in mapping tasks.

When you create a mapping, you define the Source, Target, and Lookup transformations to represent a
Google BigQuery V2 object. Use the Mapping Designer in Data Integration to add the Source, Target, or
Lookup transformations in the mapping canvas and configure the Google BigQuery V2 source, target, and
lookup properties.

In advanced mode, the Mapping Designer updates the mapping canvas to include transformations and
functions that enable advanced functionality.

The Google BigQuery V2 Connector uses Spark BigQuery connector library to write the data in a mapping in
advanced mode. This library utilizes the Google BigQuery Storage API to directly write the data into Google
BigQuery and does not use Google Cloud Storage for intermediate staging.

You can use Monitor to monitor the jobs.

Google BigQuery Storage API
When you configure a connection, you can choose to use Google BigQuery Storage to stage the data. To
enable Google BigQuery Storage, select the Enable BigQuery Storage API property in the connection
advanced properties.

You can use hybrid connection mode to import the metadata and stage files that contain hierarchical data
types such as record and repeat.

You can use the standard SQL format for the custom query, but you cannot use the legacy SQL format.

Read operation
• Uses the Staging mode as read mode.

• You can configure the following runtime attributes for the read operation:

- Connection

- Source Type

- Object

- Parameter

- Query

- Filter

25

- Source Dataset ID

- Source Table Name

- Source Staging Dataset

- Number of Rows to Read

- Allow Large Results

- Query Results Table Name

- Job Poll Interval In Seconds

- Read Mode

- Persist Destination Table

- pre SQL

- post SQL

- pre SQL Configuration

- post SQL Configuration

- SQL Override Query

- Use Legacy SQL For SQL Override

Write operation
• Uses the Bulk mode as write mode.

• You cannot use update, delete, and merge target operations on the rows in a target table that were written
in the last 30 minutes. If you configure a mapping with this scenario, the mapping fails with one of the
following errors:

- [ERROR] The Google BigQuery V2 Target definition post-SQL operation failed with the
following error: [UPDATE or DELETE statement over table
table1_BQ_Storage.tgt_mct_151_table1 would affect rows in the streaming buffer, which is
not supported].

- [ERROR] Error occured while trying to Initialize Data Source Operation |
com.informatica.cci.runtime.internal.utils.impl.CExceptionImpl: Unable to render embedded
object: File (Truncate Target Failed UPDATE or DELETE statement over table automation-
bigquery-project.table1_BQ_Storage.tgt_mct_151_table1 would affect rows in the streaming
buffer, which is not supported) not found.

• You cannot use the write empty option in the Write Disposition property.

• You can use the write truncate option in the Write Disposition property only with a truncated target
table.

• You can configure the following runtime attributes for the write operation:

- Connection

- Object

- Target Type. You can use single object as the Target Type.

- Operation. You can use only the Insert operation.

- Write Mode

- Create New at Runtime

- Data Driven Condition

- Update Columns

26 Chapter 6: Mappings for Google BigQuery V2

- Target Dataset ID

- UpdateMode

- Enable Data Driven

- Enable Merge

- Update Override

- Target Table Name

- Target Staging Dataset

- Create Disposition

- Job Poll Interval In Seconds

- pre SQL

- post SQL

- Suppress post SQL on Error

- pre SQL Configuration

- post SQL Configuration

- Truncate target table

Mappings with different connection modes
You can configure a Google BigQuery V2 connection to use one of the following connection modes:
Simple mode

If you use simple mode, Google BigQuery V2 Connector flattens each field within the Record data type
field as a separate field in the field mapping.

Hybrid mode

If you use hybrid mode, Google BigQuery V2 Connector displays all the top-level fields in the Google
BigQuery table including Record data type fields. Google BigQuery V2 Connector displays the top-level
Record data type field as a single field of the String data type in the field mapping.

Complex mode

If you use complex mode, Google BigQuery displays all the columns in the Google BigQuery table as a
single field of the String data type in the field mapping.

Google BigQuery V2 Connector reads and writes the Google BigQuery data based on the connection mode
that you configure for the Google BigQuery V2 connection.

You have a Customers table in Google BigQuery that contains primitive fields and the Address field of the
Record data type. The Address field contains two primitive sub-fields, City and State, of the String data type.

The following image shows the schema of the Customers table in Google BigQuery:

Mappings with different connection modes 27

The following table shows the Customers table data in Google BigQuery:

ID Name Address.City Address.State Mobile Totalpayments

14 John LOS ANGELES CALIFORNIA +1-9744884744 18433.90

+1-8267389993

29 Jane BOSTON MANHATTAN +1-8789390309 28397.33

+1-9876553784

+1-8456437848

Simple mode

If you use simple connection mode, Google BigQuery V2 Connector flattens each field within the Record data
type field as a separate field in the Field Mapping tab.

28 Chapter 6: Mappings for Google BigQuery V2

The following table shows two separate fields, Address_City and Address_State, for the respective sub-fields
within the Address Record field in the Customers table:

ID Name Address_City Address_State Mobile Totalpayments

14 John LOS ANGELES CALIFORNIA +1-9744884744 18433.90

14 John LOS ANGELES CALIFORNIA +1-8267389993 18433.90

29 Jane BOSTON MANHATTAN +1-8789390309 28397.33

29 Jane BOSTON MANHATTAN +1-9876553784 28397.33

29 Jane BOSTON MANHATTAN +1-8456437848 28397.33

The following image shows the fields in the Field Mapping tab of the Target transformation:

Hybrid mode

If you use hybrid connection mode, Google BigQuery V2 Connector displays all the top-level fields in the
Google BigQuery table including Record data type fields. Google BigQuery V2 Connector displays the top-level
Record data type field as a single field of the String data type in the Field Mapping tab.

The following image shows the Field Mapping tab of the Target transformation:

Mappings with different connection modes 29

Complex mode

If you use complex connection mode, Google BigQuery V2 Connector displays all the columns in the Google
BigQuery table as a single field of the String data type in the Field Mapping tab.

The following image shows the STRING_DATA field in the Field Mapping tab of the Target transformation:

Rules and guidelines for Google BigQuery V2 connection modes
Simple mode

Consider the following rules and guidelines when you configure a Google BigQuery V2 connection to use
simple connection mode:

• You cannot configure mappings in advanced mode.

• You can read data from a repeated column from a Google BigQuery source table only when you select
Direct as the Read Mode.

• You cannot create a Google BigQuery target table that contains repeated columns using the Create Target
option.

• If the Google BigQuery source table contains repeated columns, you cannot configure data filters for
these columns.

• If the Google BigQuery table contains more than one repeated column, you cannot preview data.

• If the Google BigQuery target table contains a repeated column of the Record data type, you cannot
configure update, upsert, and delete operations for these columns.

• You can use CSV format as the data format of the staging file only when the Google BigQuery table does
not contain columns of the Record data type or repeated columns.

• If the Google BigQuery target table contains columns of the Record data type and repeated columns, you
cannot configure update, upsert, and delete operations for these columns when you do not use the Merge
query.

30 Chapter 6: Mappings for Google BigQuery V2

• When you read data from a Google BigQuery source, you must not map more than one repeated column in
a single mapping. You must create multiple mappings for each repeated column.

• You cannot import multiple source tables in a Source transformation.

Hybrid mode

Consider the following rules and guidelines when you configure a Google BigQuery V2 connection to use
hybrid connection mode:

• You cannot preview data.

• You cannot use a legacy SQL statement to define a custom query. You must use a standard SQL to define
a custom query

• If the Google BigQuery source table contains columns of the Record data type and repeated columns, you
cannot configure data filters for these columns.

• When you do not use the Merge query and the key field is a column of the Record data type or a repeated
column, you cannot configure update, upsert, and delete operations.

• You must select JSON (Newline Delimited) format as the data format of the staging file under the
advanced target properties. You can use CSV format as the data format of the staging file only when the
Google BigQuery table does not contain columns of the Record data type or repeated columns.

• The following CSV formatting options in the advanced target properties are not applicable:

- Allow Quoted Newlines

- Field Delimiter

- Allow Jagged Rows

Complex mode

Consider the following rules and guidelines when you configure a Google BigQuery V2 connection to use
complex connection mode:

• You cannot configure mappings in advanced mode.

• You cannot import multiple source tables in a Source transformation.

• You cannot preview data.

• You cannot use a legacy SQL statement to define a custom query. You must use a standard SQL to define
a custom query

• You cannot create a Google BigQuery target table using the Create Target option.

• You cannot truncate the Google BigQuery target table before loading data to the target using the Truncate
target table option.

• When you configure a Google BigQuery source connection to use complex connection mode, you cannot
configure data filters for the source.

• You cannot configure update, upsert, and delete operations.

• You must select JSON (Newline Delimited) format as the data format of the staging file under the
advanced target properties.

• You cannot use CSV format as the data format of the staging file. The following CSV formatting options in
the advanced target properties are not applicable:

- Allow Quoted Newlines

- Field Delimiter

- Allow Jagged Rows

• You cannot use key range partitioning for Google BigQuery sources.

Mappings with different connection modes 31

Google BigQuery V2 sources in mappings
To read data from Google BigQuery, configure a Google BigQuery object as the Source transformation in a
mapping.

Specify the name and description of Google BigQuery source. Configure the source and advanced properties
for the source object in mappings.

The following table describes the source properties that you can configure for a Google BigQuery source:

Property Description

Connection Name of the Google BigQuery V2 source connection. Select a source connection, or click New
Parameter to define a new parameter for the source connection.
If you want to overwrite the parameter at runtime, select the Allow parameter to be overridden at run
time option when you create a parameter.

Source Type Type of the Google BigQuery source object.
Select Single Object, Multiple Objects¹, Query¹ or Parameter.
When you select single object as the source type, you can choose a table or view. For the other source
object types, you can choose a table.

Object Name of the Google BigQuery source object based on the source type selected.

Parameter A parameter file where you define values that you want to update without having to edit the task.
Select an existing parameter for the source object or click New Parameter to define a new parameter
for the source object. The Parameter property appears only if you select Parameter as the source type.
If you want to overwrite the parameter at runtime, select the Allow parameter to be overridden at run
time option when you create a parameter. When the task runs, the agent uses the parameters from the
file that you specify in the task advanced session properties.

Query¹ Click on Define Query and enter a valid custom query.
The Query property appears only if you select Query as the source type.
You can parameterize a custom query object at runtime in a mapping.
Select the source advanced property Use EXPORT DATA Statement to stage to use the ORDER BY
clause in a custom query in staging mode.

Filter Configure a simple filter or an advanced filter to remove rows at the source. You can improve
efficiency by filtering early in the data flow.
A simple filter includes a field name, operator, and value. Use an advanced filter to define a more
complex filter condition, which can include multiple conditions using the AND or OR logical operators.
Only simple filter is applicable for mappings in advanced mode.

¹ Doesn't apply to mappings in advanced mode.

32 Chapter 6: Mappings for Google BigQuery V2

The following table describes the advanced properties that you can configure for a Google BigQuery source:

Property Description

Source
Dataset ID

Optional. Overrides the Google BigQuery dataset name that you specified in the Source
transformation.

Source Table
Name

Optional. Overrides the Google BigQuery table name that you specified in the Source transformation.

Source Staging
Dataset¹

Optional. Overrides the Google BigQuery staging dataset name that you specified in the connection
and the Source Dataset ID source advanced property.

Number of
Rows to Read

Specifies the number of rows to read from the Google BigQuery source table.

Allow Large
Results¹

Determines whether Google BigQuery V2 Connector must produce arbitrarily large result tables to
query large source tables.
If you select this option, you must specify a destination table to store the query results.

Query Results
Table Name¹

Required if you select the Allow Large Results option.
Specifies the destination table name to store the query results. If the table is not present in the
dataset, Google BigQuery V2 Connector creates the destination table with the name that you
specify.

Job Poll
Interval In
Seconds¹

The number of seconds after which Google BigQuery V2 Connector polls the status of the read job
operation.
Default is 10.

Read Mode Specifies the read mode to read data from the Google BigQuery source.
You can select one the following read modes:
- Direct. In direct mode, Google BigQuery V2 Connector reads data directly from the Google

BigQuery source table.
Note: When you use hybrid and complex connection mode, you cannot use direct mode to read
data from the Google BigQuery source.

- Staging¹. In staging mode, Google BigQuery V2 Connector exports data from the Google BigQuery
source into Google Cloud Storage. After the export is complete, Google BigQuery V2 Connector
downloads the data from Google Cloud Storage into the local stage file and then reads data from
the local stage file.

Default is Direct mode.

Use EXPORT
DATA
statement to
stage

Uses the EXPORT DATA statement to export data from Google BigQuery to Google Cloud Storage.
If the query contains an ORDER BY clause, the specified order is maintained when you export the
data.
This property applies to staging mode.

Number of
Threads for
Downloading
Staging Files¹

Specifies the number of files that Google BigQuery V2 Connector downloads at a time to enable
parallel download.
This property applies to staging mode.

Google BigQuery V2 sources in mappings 33

Property Description

Data format of
the staging
file¹

Specifies the data format of the staging file. You can select one of the following data formats:
- Avro
- JSON (Newline Delimited). Supports flat and record data with nested and repeated fields.
- CSV. Supports flat data.

Note: In a .csv file, columns of the Timestamp data type are represented as floating point
numbers that cause the milliseconds value to differ.

- Parquet
This property applies to staging mode.

Local Stage
File Directory¹

Specifies the directory on your local machine where Google BigQuery V2 Connector stores the
Google BigQuery source data temporarily before it reads the data.
This property applies to staging mode.
Note: This property is not applicable when you use a serverless runtime environment.

Staging File
Name¹

Name of the staging file where data from the Google BigQuery source table is exported to Google
Cloud Storage.
This property applies to staging mode.

Enable Staging
File
Compression¹

Indicates whether to compress the size of the staging file in Google Cloud Storage before Google
BigQuery V2 Connector reads data from the staging file.
You can enable staging file compression to reduce cost and transfer time.
This property applies to staging mode.

Persist Extract
Staging File
After
Download¹

Indicates whether Google BigQuery V2 Connector must persist the staging file after it reads data
from the staging file.
By default, Google BigQuery V2 Connector deletes the staging file.

Persist
Destination
Table¹

Indicates whether Google BigQuery V2 Connector must persist the query results table after it reads
data from the query results table.
By default, Google BigQuery V2 Connector deletes the query results table.

pre SQL¹ SQL statement that you want to run before reading data from the source.
For example, if you want to select records in the database before you read the records from the
table, specify the following pre SQL statement:
SELECT * FROM [api-project-80697026669:EMPLOYEE.DEPARTMENT] LIMIT 1000;

post SQL¹ SQL statement that you want to run after reading data from the source.
For example, if you want to update records in a table after you read the records from a source table,
specify the following post SQL statement:
UPDATE [api-project-80697026669.EMPLOYEE.PERSONS_TGT_DEL]
SET phoneNumber.number=1000011, phoneNumber.areaCode=100 where
fullname='John Doe'

pre SQL
Configuration¹

Specify a pre SQL configuration.
For example,
DestinationTable:PRESQL_SRC,DestinationDataset:EMPLOYEE,
FlattenResults:False,WriteDisposition:WRITE_TRUNCATE,UseLegacySql:False

34 Chapter 6: Mappings for Google BigQuery V2

Property Description

post SQL
Configuration¹

Specify a post SQL configuration.
For example,
DestinationTable:POSTSQL_SRC,DestinationDataset:EMPLOYEE,
FlattenResults:True,WriteDisposition:WRITE_TRUNCATE,UseLegacySql:False

SQL Override
Query¹

Overrides the default SQL query used to read data from the Google BigQuery source.
Note: When you specify SQL override query, you must specify a dataset name in the Source Dataset
ID advanced source property.
Ensure that the list of selected columns, data types, and the order of the columns that appear in the
query matches the columns, data types, and order in which they appear in the source object.
Ensure that you only map all the columns in the SQL override query to the target.
Does not apply when you enable partitioning.
Select the source advanced property Use EXPORT DATA Statement to stage to use the ORDER BY
clause in a SQL Override Query in staging mode. When staging optimization is enabled in a mapping,
the columns mapped in the SQL Override Query must match the columns in the source object.

Use Legacy
SQL For SQL
Override¹

Indicates that the SQL Override query is specified in legacy SQL.
Use the following format to specify a legacy SQL query for the SQL Override Query property:
SELECT <Col1, Col2, Col3> FROM [projectID:datasetID.tableName]
Clear this option to define a standard SQL override query.
Use the following format to specify a standard SQL query for the SQL Override Query property:
SELECT * FROM `projectID.datasetID.tableName`

Label¹ You can assign a label for the transformation to organize and filter the associated jobs in the
Google Cloud Platform Log Explorer.
For more information about labels and their usage requirements, see “Assign a label to the
transformations” on page 74.

Billing Project
ID¹

The project ID for the Google Cloud project that is linked to an active Google Cloud Billing account
where the Secure Agent runs query and extract jobs.
If you omit the project ID here, the Secure Agent runs query and extract jobs in the Google Cloud
project corresponding to the Project ID value specified in the Google BigQuery V2 connection.

Retry Options¹ Comma-separated list to specify the following retry options:
- Retry Count. The number of retry attempts to read data from Google BigQuery.
- Retry Interval. The time in seconds to wait between each retry attempt.
- Retry Exceptions. The list of exceptions separated by pipe (|) character for which the retries are

made.
Use the following format to specify the retry options:
For example,
RetryCount:5,RetryInterval:1,RetryExceptions:java.net.ConnectException|
java.io.IOException
Note: The retry options are available for preview. Preview functionality is supported for evaluation
purposes but is unwarranted and is not production-ready. Informatica recommends that you use in
non-production environments only. Informatica intends to include the preview functionality in an
upcoming release for production use, but might choose not to in accordance with changing market
or technical circumstances. For more information, contact Informatica Global Customer Support. To
use the functionality, your organization must have the appropriate licenses.

Google BigQuery V2 sources in mappings 35

Property Description

Number of
Spark
Partitions²

Specifies the maximum number of partitions that the Spark engine splits the data into.
Default is 1.

¹ Doesn't apply to mappings in advanced mode.
² Applies only to mappings in advanced mode.

You can set the tracing level in the advanced properties session to determine the amount of details that logs
contain.

The following table describes the tracing levels that you can configure:

Property Description

Terse The Secure Agent logs initialization information, error messages, and notification of rejected data.

Normal The Secure Agent logs initialization and status information, errors encountered, and skipped rows
due to transformation row errors. Summarizes session results, but not at the level of individual
rows.

Verbose
Initialization

In addition to normal tracing, the Secure Agent logs additional initialization details, names of index
and data files used, and detailed transformation statistics.

Verbose Data In addition to verbose initialization tracing, the Secure Agent logs each row that passes into the
mapping. Also notes where the Secure Agent truncates string data to fit the precision of a column
and provides detailed transformation statistics.
When you configure the tracing level to verbose data, the Secure Agent writes row data for all rows
in a block when it processes a transformation.

Read modes
When you use Google BigQuery V2 Connector, you can read data by using direct mode or staging mode.
Before you choose a mode, see the Google documentation to understand the cost implications and trade-offs
for each mode.

You can read data from a Google BigQuery source by using one of the following modes:
Direct Mode

Use direct mode when the volume of data that you want to read is small. In direct mode, Google
BigQuery V2 Connector directly reads data from a Google BigQuery source. You can configure the
number of rows that you want Google BigQuery V2 Connector to read in one request.

Staging Mode

Use staging mode when you want to read large volumes of data in a cost-efficient manner.

In staging mode, Google BigQuery V2 Connector first exports the data from the Google BigQuery source
into Google Cloud Storage. After the export is complete, Google BigQuery V2 Connector downloads the
data from Google Cloud Storage into a local stage file. You can configure the local stage file directory in
the advanced source properties. Google BigQuery V2 Connector then reads the data from the local stage
file.

When you enable staging file compression, Google BigQuery V2 Connector compresses the size of the
staging file in Google Cloud Storage. Google BigQuery V2 Connector then downloads the staging file and

36 Chapter 6: Mappings for Google BigQuery V2

decompresses the staging file before it reads the file. To improve the performance and download data in
parallel, you can configure the number of threads for downloading the staging file.

If a job fails, Google BigQuery V2 Connector deletes the staging file unless you configure the task or
mapping to persist the staging file.

Optimize read performance in staging mode
You can configure Data Integration to create a flat file for staging when you read data from a Google
BigQuery source to optimize the staging performance.

You can enhance the read operation performance by setting a staging property,
INFA_DTM_RDR_STAGING_ENABLED_CONNECTORS, for the Secure Agent. Data Integration first copies the data
from Google BigQuery source into a flat file located in the local staging file directory. When the staging file
contains all the data, Data Integration reads the data.

You can optimize the staging performance when you read data from single or multiple Google BigQuery
objects.

Enabling Google BigQuery V2 Connector to optimize the read performance

Perform the following tasks to set the staging property:

1. In Administrator, click Runtime Environments. The Runtime Environments page appears.

2. Select the Secure Agent for which you want to set the custom configuration property.

3. Click Edit Secure Agent icon corresponding to the Secure Agent you want to edit in Actions. The Edit
Secure Agent page appears.

4. In the System Configuration Details section, select the Service as Data Integration Server and the type
as Tomcat.

5. Set the value of the Tomcat property INFA_DTM_RDR_STAGING_ENABLED_CONNECTORS to the plugin ID of
the Google BigQuery V2 Connector.
You can find the plugin ID in the manifest file located in the following directory:

<Secure Agent installation directory>/<GoogleBigQueryV2 package>/CCIManifest
6. Click Save.

7. Restart the Secure Agent.

8. In the Google BigQuery V2 connection, set the UseRFC4180CSVParser:true custom property in the
Provide Optional Properties connection property.

You can check the session logs. If the flat file is created successfully, Data Integration logs the following
message in the session log:

The reader is configured to run in [DTM_STAGING_CSV] mode.

In the Google BigQuery advanced source properties, set the read mode as staging and set the Data Format of
the staging file property to CSV.

When you enable the staging mode to read source data, you can see the following message in the logs:

READER_1_1_1> SDKS_38636 [2022-07-26 14:59:29.056] Plug-in #601601: DTM Staging is enabled
for connector for Source Instance [Source].

When you disable the staging mode to read source data, you can see the following message in the logs:

READER_1_1_1> SDKS_38637 [2022-07-26 16:46:04.312] Plug-in #601601: DTM Staging is disabled
for connector for Source Instance [Source].

Google BigQuery V2 sources in mappings 37

Rules and guidelines when you optimize the read performance

Consider the following rules when you enable the staging property:

• If you run a mapping enabled for SQL ELT optimization, the mapping does not consider the staging
property and runs without staging optimization.

• When you read data of the byte data type from the Google BigQuery source, ensure that the size or
precision of the binary data does not exceed 62,914,560 bytes.

• Ensure that the total size or precision of all the columns in the Google BigQuery source does not exceed
125,829,120 bytes.

• If the format of the staging file is CSV and you read from a single Google BigQuery table with multiple
objects as the source type, the mapping runs without staging optimization.

• If you do not specify a valid path for the local staging file directory, the mapping fails and the session logs
do not display a meaningful error message.

• When you parameterize both the Google BigQuery object type and the advanced fields, and select the
Allow Parameter to be overridden at run time option while configuring the input parameters, the mapping
does not consider the staging property and runs without staging optimization.

• When you configure staging optimization to process source data with the Numeric data type with a scale
greater than 9 and a precision greater than 28, the mapping truncates the data to a scale of 9 while writing
to the target. To preserve the same scale and precision of the Numeric data type in the target, perform the
following tasks:

- Map the BigNumeric data type in the source to the Decimal data type in the target.

- Create a table in the backend database with a scale of 9.

- Specify the rounding-off mode for the data.

• When you configure staging optimization to process data and the source contains data of the Numeric or
BigNumeric data types with a precision greater than 28 digits, the mapping fails with the following error:
[ERROR] Error occurred for Transformation - Source while writing the data to DTM Buffer -
Data Conversion Failed

Custom query source type
You can use a custom query as a source object when you use a Google BigQuery V2 connection.

You might want to use a custom query as the source when a source object is large. You can use the custom
query to reduce the number of fields that enter the data flow. You can configure a custom query to read data
from one project while having the Google BigQuery V2 connection set up in another project. You can also
create a parameter for the source type when you design your mapping so that you can define the query in the
Mapping Task wizard.

To use a custom query as a source, select Query as the source type when you configure the source
transformation and then use valid and supported SQL to define the query.

You can use legacy SQL or standard SQL to define a custom query. To define a legacy SQL custom query, you
must select the Use Legacy SQL For Custom Query option when you create a Google BigQuery V2
connection. You can unselect the Use Legacy SQL For Custom Query option to define a standard SQL custom
query. For more information about Google BigQuery Legacy SQL functions and operators, see
Legacy SQL functions and operators.

38 Chapter 6: Mappings for Google BigQuery V2

https://cloud.google.com/bigquery/docs/reference/legacy-sql

Rules and guidelines for Google BigQuery custom queries

When you configure a custom query, consider the following guidelines:

• You cannot use custom query as a source for the following configurations:

- Key range partitions

- Data filters

- Sort

• When you specify the SESSSTARTTIME variable in a custom query to return the current date and time, use
any of the following formats in the SELECT query:

•CAST('$$$SESSSTARTTIME' as TIMESTAMP(0))
•SELECT PARSE_TIMESTAMP('%m/%d/%Y %H:%M:%E6S', '$$$SESSSTARTTIME') as t1 --2022-10-06
18:53:28 UTC
•SELECT cast(substr(cast('$$$SESSSTARTTIME' as string),0,19) as datetime FORMAT 'MM/DD/
YYYY HH24:MI:SS') as t2;

• If you provide the billing project ID in the source advanced properties, and you want to use the staging
mode for the read operation and enable the Use EXPORT DATA statement to stage property, you must
specify the project ID in the custom query.

• When you configure a view, you can query only to a maximum of 14 nested levels.

• When you use the query source type in a mapping to read from multiple tables, and you configure a join
for one or more tables that have the same column names, the mapping fails.
For example, see the following SQL query that involves a full outer join between two tables EMPLOYEE
and DEPARTMENT that are part of the SALES.PUBLIC schema, where two columns have the same name,
CITY:

SELECT EMP_ID, NAME, CITY, DEPT_ID, DEPT_NAME, CITY FROM SALES.PUBLIC.EMPLOYEE FULL OUTER
JOIN SALES.PUBLIC.DEPARTMENT ON EMP_ID = DEPT_ID
To distinguish the conflicting column names, add aliases that the database can refer to while joining the
tables:

SELECT e.EMP_ID, e.NAME, e.CITY as ecity,d.DEPT_ID, d.DEPT_NAME, d.CITY as dcity FROM
SALES.PUBLIC.EMPLOYEE e FULL OUTER JOIN SALES.PUBLIC.DEPARTMENT d ON e.EMP_ID = d.DEPT_ID

Adding multiple source objects
When you create a Source transformation, you can select Google BigQuery V2 multiple object as the source
type and then configure a join to combine the tables. You can define an advanced relationship or a query to
join the tables. You must use the standard SQL to define the query to join the tables.

1. In the Source transformation, click the Source Type as Multiple Objects.

2. From the Actions menu, click Add Source Object.

3. Select the source object that you want to add from the displayed list and click OK.

4. From the Related Objects Actions menu, select Advanced Relationship.

5. In the Advanced Relationship window, you can click Add Object to add more objects.

6. Set your own conditions or specify a query to define the relationship between the tables.

Google BigQuery V2 sources in mappings 39

Note: When you configure a join expression, select the fields and define a join condition or a query
syntax. You must prefix the Project ID before the Dataset ID in the join condition to combine multiple
tables. Use the following example to configure the join condition or join query with the Project ID prefix:

• Join condition:

`P1.D3.T3`.col5 = `P1.D2.T2`.col3 ON `P1D2.T2`.col4 = `P1.D1.T1`.col2
• Join query:

`P1.D1.T1` LEFT OUTER JOIN `P1.D2.T2` FULL OUTER JOIN `P1.D3.T3` ON `P1.D3.T3`.col5 =
`P1.D2.T2`.col3 ON `P1.D2.T2`.col4 = `P1.D1.T1`.col2

In the example, P represents the Project ID, D represents the Dataset ID, and T represents the Table
Name.

Note: If you configure a filter, prefix the Project ID before the Dataset ID in the filter condition. For
example, provide the simple filter condition as, `Project.Dataset.Table`.column
Note: If you specify a SQL override query for multiple source tables, you must use the following format
for the SQL override query: select `project_id.dataset.table`.col1
AL_dataset_table_col1,`project_id.dataset.table`.col2 AL_dataset_table_col2,
`project_id.dataset1.table1`.col1
AL_dataset1_table1_col1,`project_id.dataset1.table1`.col2 AL_dataset1_table1_col2 from
`project_id.dataset.table` <join condition> `project_id.dataset1.table1` ON
`project_id.dataset.table`.col = `project_id.dataset1.table1`.col1 where <condition>
In the example, AL represents the alias prefix for the column names.

7. Click OK.

The following image shows an example of an advanced join condition defined between the Google
BigQuery V2 tables:

Rules and guidelines for adding multiple source objects
Consider the following rules and guidelines when you add multiple source objects:

• When you import multiple source tables, ensure that you use a Google BigQuery V2 connection in hybrid
mode.

• You cannot configure partitioning when you use the advanced relationship option.

• You must not import multiple source tables with the same name from different datasets.

• You cannot use a self join when you add multiple source tables.

• When you specify a cross join condition to read data from multiple Google BigQuery tables, use the
following format:
project_id.datasetname.tablename CROSS JOIN project_id.datasetname.tablename

• When you configure a Filter transformation, you must not apply a filter condition with the column of
Record data type in the source object.

• When you configure a Joiner or Router transformation, you must not apply a condition with the column of
Record data type in the source object.

40 Chapter 6: Mappings for Google BigQuery V2

• When you configure a mapping to read data from multiple sources, ensure that the source objects does
not contain columns of Record data type or Repeated columns with the same name. Otherwise, the
mapping fails with the following error:
com.google.cloud.hadoop.repackaged.bigquery.com.google.api.client.googleapis.json.
GoogleJsonResponseException: 400 Bad Request

• When you use special characters in column names for an advanced relationship, the query generated is
not valid and the mapping task fails.

• When you click Add Object to add more objects in the Advanced Relationship window, the table might fail
to load or take a long time to load. If this issue occurs, import the object again.

Partitioning
When you read data from a Google BigQuery source and use simple or hybrid connection mode, you can
configure key range partitioning to optimize the mapping performance at run time.

Key range partitioning
You can configure key range partitioning in a mapping that uses the simple or hybrid connection mode to
read data from Google BigQuery sources. With key range partitioning, the Secure Agent distributes rows of
source data based on the fields that you define as partition keys. The Secure Agent compares the field value
to the range values for each partition and sends rows to the appropriate partitions.

Use key range partitioning for columns that have an even distribution of data values. Otherwise, the partitions
might have unequal size. For example, a column might have 10 rows between key values 1 and 1000 and the
column might have 999 rows between key values 1001 and 2000. If the mapping includes multiple sources,
use the same number of key ranges for each source.

When you define key range partitioning for a column, the Secure Agent reads the rows that are within the
specified partition range. For example, if you configure two partitions for a column with the ranges as 10
through 20 and 30 through 40, the Secure Agent does not read the rows 20 through 30 because these rows
are not within the specified partition range.

You can also use an in-out parameter file to specify the key range values for the partition key columns in a
mapping.

You can configure a partition key for fields of the following data types:

• String

• Integer

• Numeric (only if you use a Google BigQuery connection in hybrid mode)

• Timestamp
Use the following format: YYYY-MM-DD HH24:MI:SS

Guidelines for key range partitioning in mappings

When you configure key range partitioning in a mapping, consider the following guidelines:

• You cannot configure a partition key for Record data type columns and repeated columns.

• You cannot configure key range partitioning if a row in the partition key column contains a null value.

• You cannot parameterize the value for the partition key column name in the Partition Key property.

• You cannot parameterize the key range values for a partition key column of the Timestamp data type.

• When you run a mapping with SQL ELT optimization, you cannot parameterize the key range values.

Google BigQuery V2 sources in mappings 41

• You cannot use key range partitions when a mapping includes any of the following transformations:

- Web Services

- JSON to Relational

Configuring Key Range Partitioning
Perform the following steps to configure key range partitioning for Google BigQuery sources:

1. In the Source Properties, click the Partitions tab.

2. Select the required partition key from the list.

3. Click Add New Key Range to define the number of partitions and the key ranges based on which the
Secure Agent must partition data.

Use a blank value for the start range to indicate the minimum value. Use a blank value for the end range
to indicate the maximum value.

The following image displays the Partitions tab:

Google BigQuery V2 targets in mappings
To write data to a Google BigQuery target, configure a Google BigQuery object as the Target transformation
in a mapping.

Specify the name and description of Google BigQuery target. Configure the target and advanced properties
for the target object in mappings.

42 Chapter 6: Mappings for Google BigQuery V2

The following table describes the target properties that you can configure for a Google BigQuery target:

Property Description

Connection Name of the Google BigQuery V2 target connection. Select a target connection or click New
Parameter to define a new parameter for the target connection.
If you want to overwrite the parameter at runtime, select the Allow parameter to be overridden at run
time option when you create a parameter. When the task runs, the agent uses the parameters from
the file that you specify in the task advanced session properties.

Target Type Type of the Google BigQuery target objects available.
You can write data to a single or multiple Google BigQuery target objects. You can also parameterize
the object.

Parameter Select an existing parameter for the target object or click New Parameter to define a new parameter
for the target object. The Parameter property appears only if you select Parameter as the target type.
If you want to overwrite the parameter at runtime, select the Allow parameter to be overridden at run
time option when you create a parameter. When the task runs, the agent uses the parameters from
the file that you specify in the task advanced session properties.
Does not apply when you perform a data driven operation.

Object Name of the Google BigQuery target object based on the target type selected.

Create New at
Runtime

Creates a target table at runtime in Google BigQuery. The target table can also contain clustered
columns.
Enter a name for the target object and path for the target object and select the source fields that you
want to use. By default, all source fields are used.
You must specify a valid dataset ID for the Path attribute.
The target name can contain alphanumeric characters. You cannot use special characters in the file
name except the underscore character (_). You cannot parameterize the target at runtime.
For more information about how to create a target table with clustered columns, see “Clustering
order” on page 54.

Operation You can select one the following operations:
- Insert
- Update
- Upsert (Update or Insert)
- Delete
- Data Driven
Note: If you use complex connection mode, you cannot configure update, upsert, and delete
operations.

Data Driven
Condition

Flags rows for an insert, update, delete, or reject operation based on the data driven expression you
specify.
You must specify the data driven condition for non-CDC sources. For CDC sources, you must leave
the field empty as the rows in the CDC source tables are already marked with the operation types.
Note: Appears only when you select Data Driven as the operation type.

Update
Columns

Specifies the temporary primary key columns to update, upsert or delete target data. If the Google
BigQuery target does not include a primary key column, and the mapping performs an update, upsert,
or delete task operation, click Add to add a temporary key.
You can select multiple columns. By default, no columns are specified.

Google BigQuery V2 targets in mappings 43

The following table describes the advanced properties that you can configure for a Google BigQuery target:

Property Description

UpdateMode Determines the mode that the Secure Agent uses to update rows in the Google BigQuery target.
You can select one of the following modes:
- Update As Update. The Secure Agent updates all rows flagged for update if the entries exist.
- Update Else Insert. The Secure Agent first updates all rows flagged for update if the entries

exist in the target. If the entries do not exist, the Secure Agent inserts the entries.
Default is Update as Update.
Not applicable when you perform a data driven operation.

Enable Data
Driven¹

Implements data driven operation to honor flagged rows for an insert, update, delete, or reject
operation based on the data driven condition.
Select this option when you select Data Driven as the target operation.

Enable Merge Implements the Merge query to perform an update, upsert, delete or data driven operation on a
Google BigQuery target table.
If you select the Enable Data Driven property, you must select this option.
Default is disabled.

Target Dataset
ID

Optional. Overrides the Google BigQuery dataset name that you specified in the connection.

Target Table
Name

Optional. Overrides the Google BigQuery target table name that you specified in the Target
transformation.
Note: If you specify an update override query, Google BigQuery V2 Connector ignores this property.

Target Staging
Dataset¹

Optional. Overrides the Google BigQuery staging dataset name that you specified in the
connection and the Target Dataset ID target advanced property.

Create
Disposition

Specifies whether Google BigQuery V2 Connector must create the target table if it does not exist.
You can select one of the following values:
- Create if needed. If the table does not exist, Google BigQuery V2 Connector creates the table.
- Create never. If the table does not exist, Google BigQuery V2 Connector does not create the

table and displays an error message.
Create disposition is applicable only when you perform an insert operation on a Google BigQuery
target.

Write
Disposition

Specifies how Google BigQuery V2 Connector must write data in bulk mode if the target table
already exists.
You can select one of the following values:
- Write append. If the target table exists, Google BigQuery V2 Connector appends the data to the

existing data in the table.
- Write truncate. If the target table exists, Google BigQuery V2 Connector overwrites the existing

data in the table.
- Write empty. If the target table exists and contains data, Google BigQuery V2 Connector

displays an error and does not write the data to the target. Google BigQuery V2 Connector
writes the data to the target only if the target table does not contain any data.

Write disposition is applicable for bulk mode.
Write disposition is applicable only when you perform an insert operation on a Google BigQuery
target.

44 Chapter 6: Mappings for Google BigQuery V2

Property Description

Write Mode Specifies the mode to write data to the Google BigQuery target.
You can select one of the following modes:
- Bulk. Google BigQuery V2 Connector first writes the data to a staging file in Google Cloud

Storage. When the staging file contains all the data, Google BigQuery V2 Connector loads the
data from the staging file to the BigQuery target. Google BigQuery V2 Connector then deletes
the staging file unless you configure the task to persist the staging file.

- Streaming¹. Google BigQuery V2 Connector directly writes data to the BigQuery target. Google
BigQuery V2 Connector writes the data into the target row by row.

- CDC¹. Applies only when you capture changed data from a CDC source. In CDC mode, Google
BigQuery V2 Connector captures changed data from any CDC source and writes the changed
data to a Google BigQuery target table.

Default is Bulk mode.
Streaming mode is not applicable when you perform a data driven operation.

Streaming
Template Table
Suffix¹

Specify the suffix to add to the individual target tables that Google BigQuery V2 Connector creates
based on the template target table.
This property applies to streaming mode.
If you select the Enable Merge option, Google BigQuery V2 Connector ignores this property.
Streaming mode is not applicable when you perform a data driven operation.

Rows per
Streaming
Request¹

Specifies the number of rows that Google BigQuery V2 Connector streams to the BigQuery target
for each request.
Default is 500 rows.
The maximum row size that Google BigQuery V2 Connector can stream to the Google BigQuery
target for each request is 10 MB.
This property applies to streaming mode.
Streaming mode is not applicable when you perform a data driven operation.

Staging File
Name

Name of the staging file that Google BigQuery V2 Connector creates in the Google Cloud Storage
before it loads the data to the Google BigQuery target.
This property applies to bulk mode.

Data format of
the staging file

Specifies the data format of the staging file. You can select one of the following data formats:
- Avro¹
- JSON (Newline Delimited). Supports flat and record data with nested and repeated fields.
- Parquet¹
- CSV¹. Supports flat data.

Note: In a .csv file, columns of the Timestamp data type are represented as floating point
numbers that cause the milliseconds value to differ.

Only JSON format is applicable for mappings in advanced mode.
This property applies to bulk and CDC mode.
Avro and parquet format is not applicable when you perform a data driven operation.

Persist Staging
File After
Loading

Indicates whether Google BigQuery V2 Connector must persist the staging file in the Google Cloud
Storage after it writes the data to the Google BigQuery target. You can persist the staging file if
you want to archive the data for future reference.
By default, Google BigQuery V2 Connector deletes the staging file in Google Cloud Storage.
This property applies to bulk mode.

Google BigQuery V2 targets in mappings 45

Property Description

Enable Staging
File
Compression¹

Select this option to compress the size of the staging file before Google BigQuery writes the data
to the Google Cloud Storage and decompress the staging file before it loads the data to the
Google BigQuery target.
You can enable staging file compression to reduce cost and transfer time.

Job Poll Interval
In Seconds¹

The number of seconds after which Google BigQuery V2 Connector polls the status of the write job
operation.
Default is 10.

Number of
Threads for
Uploading
Staging File¹

The number of files that Google BigQuery V2 Connector must create to upload the staging file in
bulk mode.

Local Stage File
Directory¹

Specifies the directory on your local machine where Google BigQuery V2 Connector stores the files
temporarily before writing the data to the staging file in Google Cloud Storage.
This property applies to bulk mode.
Note: This property is not applicable when you use a serverless runtime environment.

Allow Quoted
Newlines¹

Indicates whether Google BigQuery V2 Connector must allow the quoted data sections with
newline character in a .csv file.

Field Delimiter¹ Indicates whether Google BigQuery V2 Connector must allow field separators for the fields in
a .csv file.

Allow Jagged
Rows¹

Indicates whether Google BigQuery V2 Connector must accept the rows without trailing columns in
a .csv file.

Use Default
Column Values

Applicable when the selected data format for the staging file is CSV when the mapping contains
unconnected ports. Includes the default column values for the unconnected port from the staging
file to create the target. This is applicable when you have defined the default constraint value in
the Google BigQuery source column. When you do not enable this option, the agent creates a
target only with the connected ports. The agent populates null or empty strings for unconnected
ports.

Update Override¹ Optional. Overrides the update SQL statement that the Secure Agent generates to update the
Google BigQuery target.
To use the update override query, you must set the Operation property to Update and the
UpdateMode property to Update As Update.
Use the following format to define an update override query:
UPDATE `<project_name>.<dataset_name>.<table_name>` as <alias_name>
SET <alias_name>.<col_name1>=:<temp_table>.<col_name1>,
<alias_name>.<col_name2>=:<temp_table>.<col_name2> FROM
<dataset_name>.:<temp_table> WHERE <conditional expression>
For example,
UPDATE `project1.custdataset.cust_table1` as ab
SET ab.fld_str=:custtemp.fld_str, ab.fld_int=:custtemp.fld_int FROM
custdataset.:custtemp WHERE ab.fld_string_req = :custtemp.fld_string_req
Not applicable when you perform a data driven operation.

46 Chapter 6: Mappings for Google BigQuery V2

Property Description

pre SQL¹ SQL statement that you want to run before writing data to the target.
For example, if you want to select records from the database before you write the records into the
table, specify the following pre-SQL statement:
SELECT * FROM 'api-project-80697026669.EMPLOYEE.RegionNation' LIMIT 1000

post SQL¹ SQL statement that you want to run after writing the data into the target.
For example, if you want to update records in a table after you write the records into the target
table, specify the following post-SQL statement:
UPDATE [api-project-80697026669.EMPLOYEE.PERSONS_TGT_DEL]
SET phoneNumber.number =1000011, phoneNumber.areaCode=100 where
fullname='John Doe'

Suppress post
SQL on Error¹

Indicates whether the Secure Agent must abort the post-SQL query execution in case the task fails
to write data to the Google BigQuery target table due to errors.
Default is disabled.

pre SQL
Configuration¹

Specify a pre-SQL configuration.
For example,
DestinationTable:PRESQL_TGT2,
DestinationDataset:EMPLOYEE,
FlattenResults:False,
WriteDisposition:WRITE_TRUNCATE,
UseLegacySql:False

post SQL
Configuration¹

Specify a post-SQL configuration.
For example,
DestinationTable:POSTSQL_SRC,
DestinationDataset:EMPLOYEE,
FlattenResults:True,
UseLegacySQL:False

Quote Char¹ Specifies the quote character to skip when you write data to Google BigQuery. When you write data
to Google BigQuery and the source table contains the specified quote character, the task fails.
Change the quote character value to a value that does not exist in the source table.
Default is double quotes.

Truncate target
table

Truncates the Google BigQuery target table before loading data to the target.
Default is disabled.

Allow Duplicate
Inserts

Indicates that the Secure Agent can insert duplicate rows into the Google BigQuery target.
Applicable only when you perform a data driven operation and DD_INSERT is specified in the data
driven condition.
Default is not selected.

Disable
Duplicate
Update Rows¹

Determines if multiple incoming rows attempt to update the same target row, the Secure Agent
must process only one of the incoming rows and ignore the rest of the incoming rows.
Select this option to configure the mapping to process only one of the incoming rows and ignore
the rest of the incoming rows.
Default is disabled.

Google BigQuery V2 targets in mappings 47

Property Description

Label¹ You can assign a label for the transformation to organize and filter the associated jobs in the
Google Cloud Platform Log Explorer.
For more information about labels and their usage requirements, see “Assign a label to the
transformations” on page 74.

Billing Project ID The project ID for the Google Cloud project that is linked to an active Google Cloud Billing account
where the Secure Agent runs query and load jobs.
If you omit the project ID here, the Secure Agent runs query and load jobs in the Google Cloud
project corresponding to the Project ID value specified in the Google BigQuery V2 connection.

Forward
Rejected Rows

Applicable only when you configure DD_REJECT constant in the data driven condition to reject all
the rows.
Otherwise, this property is not applicable for Google BigQuery V2 Connector.

¹Doesn't apply to mappings in advanced mode.

Write modes
When you use Google BigQuery V2 Connector, you can write data by using bulk mode or streaming mode.
Before you choose a mode, see the Google documentation to understand the cost implications and trade-offs
for each mode.

You can write data to a Google BigQuery target by using one of the following modes:

Bulk mode

Use bulk mode when you want to write large volumes of data in a cost-efficient manner.

In bulk mode, Google BigQuery V2 Connector first writes the data to a staging file in Google Cloud
Storage. When the staging file contains all the data, Google BigQuery V2 Connector loads the data from
the staging file to the Google BigQuery target.

When you enable staging file compression, Google BigQuery V2 Connector compresses the size of the
staging file before it writes data to Google Cloud Storage. Google BigQuery V2 Connector writes the
compressed file to Google Cloud Storage and then submits a load job to the Google BigQuery target.

Note: Enabling compression reduces the time that Google BigQuery V2 Connector takes to write data to
Google Cloud Storage. However, there will be a performance degradation when Google BigQuery V2
Connector writes data from Google Cloud Storage to the Google BigQuery target.

After writing the data into the Google BigQuery target, Google BigQuery V2 Connector deletes the staging
file unless you configure the task or mapping to persist the staging file. You can choose to persist the
staging file if you want to archive the data for future reference.

If a job fails, Google BigQuery V2 Connector deletes the staging file unless you configure the task or
mapping to persist the staging file.

Streaming mode

Use streaming mode when you want the Google BigQuery target data to be immediately available for
querying and real-time analysis. Evaluate Google's streaming quota policies and billing policies before
you use streaming mode.

In streaming mode, Google BigQuery V2 Connector directly writes data to the Google BigQuery target.
Google BigQuery V2 Connector appends the data into the Google BigQuery target.

48 Chapter 6: Mappings for Google BigQuery V2

You can configure the number of rows that you want Google BigQuery V2 Connector to stream in one
request. If you want to stream a larger number of rows than the maximum permissible limit prescribed
by Google, you can write the data to multiple smaller target tables instead of one large target table. You
can create a template table based on which Google BigQuery must create multiple tables. You can define
a unique suffix for each table. Google BigQuery creates each table based on the template table and adds
the suffix to uniquely identify each table.

CDC mode

Use CDC mode only when you capture changed data from a CDC source. In CDC mode, you can configure
Google BigQuery V2 Connector to capture changed data from any CDC source and write the changed
data to a Google BigQuery target table.

Optimize write performance in staging mode
You can configure Data Integration to create a flat file for staging when you write data to a Google BigQuery
target in bulk mode. You can set Data Integration to optimize the staging performance.

Data Integration first writes the data to a flat file located in the local staging file directory. When the staging
file contains all the data, Data Integration loads the data from the staging file to the Google BigQuery target.

In the Google BigQuery advanced target properties, set the Local Stage File Directory property to a directory
on your local machine where you want to create the flat file and set the Data Format of the staging file
property to CSV.

When you run the mapping, the flat file is created in the local stage file directory that you specified.

Note: If you do not specify a local stage file directory, the flat file is created in the temp directory in the Linux
or Windows machine where the Secure Agent runs.

When the mapping run is completed, the Secure Agent deletes the local staging file.

Enabling Google BigQuery V2 Connector to optimize the staging performance

Perform the following tasks to set the staging property, INFA_DTM_STAGING_ENABLED_CONNECTORS, for the
Tomcat in the Secure Agent properties:

1. In Administrator, click Runtime Environments.
The Runtime Environments page appears.

2. Select the Secure Agent for which you want to set the custom configuration property.

3. Click Edit Secure Agent icon corresponding to the Secure Agent you want to edit in Actions .The Edit
Secure Agent page appears.

4. In the System Configuration Details section, select the Service as Data Integration Server and the type
as Tomcat.

5. Set the value of the Tomcat property INFA_DTM_STAGING_ENABLED_CONNECTORS to the plugin ID of
the Google BigQuery V2 Connector.
You can find the plugin ID in the manifest file located in the following directory:

<Secure Agent installation directory>/downloads/<GoogleBigQueryV2 package>/CCIManifest
The following image shows the INFA_DTM_STAGING_ENABLED_CONNECTORS property set for the
Secure Agent:

6. Click Save.

7. Restart the Secure Agent.

Google BigQuery V2 targets in mappings 49

You can check the session logs. If the flat file is created successfully, Data Integration logs the following
message in the session log: INFA_DTM_STAGING mode is enabled for the write operation.

If you do not set the staging property, Data Integration performs staging without the optimized settings,
which might impact the performance of the task.

Rules and guidelines when you optimize the write performance

Consider the following rules when you enable the staging property:

• If you run a mapping enabled for SQL ELT optimization, the mapping runs without SQL ELT optimization.

• When the mapping writes a column of the String data type that contains null values to a column of the
String data type set to Required constraint in the Google BigQuery target table, the job fails and does not
write the data to any of the target columns.

• When you write Numeric data to the Google BigQuery target, the Numeric data in the local staging flat file
contains trailing zeroes. However, the Secure Agent writes the Numeric data correctly in the Google
BigQuery target table.

• When you write data of the Binary data type to the Google BigQuery target, ensure that size or precision of
the Binary data does not exceed more than 78643200 bytes.

• When you write data with a precision of more than 15 digits in the float data type, the data becomes
corrupted.

Mapping tasks with CDC sources

You can use Google BigQuery V2 Connector to capture changed data from any CDC source and write the
changed data to a Google BigQuery target. Add the CDC sources in mappings, and then run the associated
mapping tasks to write the changed data to the target. When you capture changed data from a CDC source,
you can only configure a single Google BigQuery V2 target transformation in a mapping. You can configure
multiple Google BigQuery V2 targets to write changed data from a CDC source. You can configure multiple
pipelines in a mapping to write changed data from multiple CDC sources to multiple Google BigQuery V2
targets.

When the mapping task processes the changed data from a CDC source such as Oracle Express CDC V2,
Google BigQuery V2 Connector creates a state table and a staging table in Google BigQuery. When the
changed data is received from the CDC source, Google BigQuery V2 Connector uploads the changed data to
the staging table. Then, it generates a Job_Id and writes the Job_Id to the state table along with the restart
information. Google BigQuery V2 Connector then merges the stage table with the actual target table in
Google BigQuery.

Each time you run the mapping task, Google BigQuery V2 Connector creates the state table, if it does not
exist, to store the state information. Google BigQuery V2 Connector uses the following naming convention for
the state table name:

state_table_cdc_<MappingTaskID>_<UniqueIdentifierForTargetInstance(s)>

Similarly, Google BigQuery V2 Connector uses the following naming convention for the staging table name:

staging_table_cdc_<MappingTaskID>_<TargetInstanceName>

Mapping tasks with CDC sources example
Your organization needs to replicate real-time changed data from a mission-critical production system to
minimize intrusive, non-critical work, such as offline reporting or analytical operations system. You can use
Google BigQuery V2 Connector to capture changed data from any CDC source and write the changed data to

50 Chapter 6: Mappings for Google BigQuery V2

a Google BigQuery target. Add the CDC sources in mappings, and then run the associated mapping tasks to
write the changed data to the target.

1. In Data Integration, click New > Mapping > Create.

The New Mapping dialog box appears.

2. Enter a name and description for the mapping.

3. On the Source transformation, specify a name and description in the general properties.

4. On the Source tab, select any configured CDC connection and specify the required source properties.

5. On the Target transformation, specify a name and description in the general properties.

6. On the Target tab, perform the following steps to configure the target properties:

a. In the Connection field, select the Google BigQuery V2 connection.

b. In the Target Type field, select the type of the target object.

c. In the Object field, select the required target object.

d. In the Operation field, select Data Driven to properly handle insert, update, and delete records from
the source.

e. In the Data Driven Condition field, leave the field empty.

f. In the Update Column field, select the key columns to upsert or update data to or delete data from
Google BigQuery.

g. In the Advanced Properties section, you must select CDC in the Write Mode property.

h. You can only configure the following advanced target properties for CDC mode:

• Target Dataset ID

• Target Table Name

• Job Poll Interval In Seconds

• pre SQL

• post SQL

• pre SQL Configuration

• post SQL Configuration

7. On the Field Mapping tab, map the incoming fields to the target fields. You can manually map an
incoming field to a target field or automatically map fields based on the field names.

8. In the Actions menu, click New Mapping Task.

The New Mapping Task page appears.

9. In the Definition tab, enter the task name and select the configured mapping.

10. In the CDC Runtime tab, specify the required properties for the selected CDC source.

For more information about the CDC Runtime properties, see the source properties for the selected CDC
source.

11. On the Runtime Options tab, add the following properties in the Advanced Session Properties section:

a. Select Commit on End of File from the menu, and keep the property disabled.

b. Select Recovery Strategy and set Resume from last checkpoint as the value of the property.

12. Click Save > Run the mapping task.

Alternatively, you can create a schedule that runs the mapping task on a recurring basis without manual
intervention. You can define the schedule to minimize the time between mapping task runs.

In Monitor, you can monitor the status of the logs after you run the task.

Google BigQuery V2 targets in mappings 51

Rules and guidelines for Google BigQuery V2 CDC target
Consider the following guidelines when working with a Google BigQuery V2 change data capture (CDC)
target:

• Informatica recommends that the Secure Agent, the CDC source, and PowerExchange for CDC are
configured in the same region as Google BigQuery.

• To increase performance and avoid run-time environment memory issues, increase the Java heap size in
the JVM option for type DTM. Set JVMOption1 to -Xmx1024m in the System Configuration Details section
of the Secure Agent and restart the Secure Agent.

• To improve performance, specify a higher commit interval for the Maximum Rows Per Commit property
on the CDC Runtime page in the mapping task wizard. However, in case of failure, recovery takes more
time for a higher commit interval.

• It is recommended to use update queries on the CDC source database only if the Google BigQuery target
table is partitioned and clustered.

• You must define a column as required in the Google BigQuery target table.

• If you define a column as required in the Google BigQuery target table, you must map a column in the CDC
source to the required column in the Google BigQuery target in the mapping.

• When you use a Google BigQuery V2 connection in complex mode, you cannot write changed data from a
CDC source to a Google BigQuery V2 target.

• When you capture changed data from a CDC source and the Google BigQuery V2 target contains a
repeated column of the Record data type, the mapping fails.

Upsert task operation
When you perform an upsert operation on a Google BigQuery target, you must configure the upsert fields for
the target table. You can use an ID field for standard objects. Ensure that you include the upsert field in the
field mappings for the task.

Rules and Guidelines

Consider the following rules and guidelines when you perform an upsert operation on a Google BigQuery
target without using Merge query:

• You cannot use the streaming mode to write data to a Google BigQuery target.

• When you configure a Google BigQuery V2 connection to use simple or hybrid connection mode, you
cannot configure upsert operations for columns of the Record data type and repeated columns.

• When you perform an upsert operation on a Google BigQuery target and if multiple incoming rows attempt
to update the same target row, ensure that you select the Disable Duplicate Update Rows and the Enable
Merge target advanced property.

Data driven operation for mappings
When you flag rows for an insert, update, delete, or reject operation based on the data driven condition for a
Google BigQuery target in a mapping, you must select the Enable Data Driven and Enable Merge properties.

Rules and Guidelines

Consider the following rules and guidelines when you perform a data driven operation on a Google BigQuery
target:

• You cannot parameterize the target connection or object.

• You cannot use the Google BigQuery V2 connection in complex mode.

52 Chapter 6: Mappings for Google BigQuery V2

• When you configure a data driven condition, ensure to map the fields involved in the condition within the
field mapping.

• Ensure that you do not specify a column of Record data type, repeated columns, or Record data type with
repeated columns in the data driven condition.

• When you use a Google BigQuery connection in simple mode, ensure that you do not specify a column of
Byte, Record data type, or repeated columns in the data driven condition.

• When you use a Google BigQuery connection in hybrid mode, ensure that you do not specify a column of
Byte, Record data type with repeated columns, or Primitive data type with repeated columns in the data
driven condition.

• When you define the DD_UPDATE constant in the data driven condition, ensure that there are no null
values in the update column.

• When you use the DD_REJECT constant in the data driven condition to reject all the rows, ensure that you
have selected the Persist Staging File After Loading advanced target property.

• Ensure that the target table is not an external table.

• When you use the Google BigQuery V2 connection in simple connection mode and specify an update
column of record data type with nested fields, you must ensure that you select JSON as the staging file
format.

• You need to specify a condition for a data driven operation. If you keep the condition field empty, the
mapping fails.

• You cannot use Disable Duplicate Update Rows target advanced property to perform a data driven
operation.

Using Merge query for update, upsert, and delete operations
You can implement the Merge query to perform the following operations on a Google BigQuery target:

• Update

• Upsert

• Delete

To implement Merge query, select the Enable Merge option in the advanced target properties.

Rules and Guidelines

Consider the following rules and guidelines when you use Merge query:

• When you configure a Google BigQuery V2 connection to use simple and select CSV as the staging file
format, the Google BigQuery target table must not contain columns of record data type.

• When you configure a Google BigQuery V2 connection to use simple, the Google BigQuery target table
must not contain repeated columns.

• When you configure a Google BigQuery V2 connection to use hybrid connection mode, the Google
BigQuery target table must not contain repeated column as a key field.

Determine the order of processing for multiple targets
You can configure a mapping to write to multiple targets in a single pipeline, with each target configured for
any write operation. The order of the target operation is not deterministic.

However, if you want to process the target operations to process in a specific order such as delete, update,
and insert, you need to set certain properties in the Secure Agent and in the task properties.

Google BigQuery V2 targets in mappings 53

Set -DEnableSingleCommit=true in the Secure Agent properties

Perform the following tasks to set the property for the Secure Agent:

1. Open Administrator and select Runtime Environments.

2. Select the Secure Agent for which you want to set the property.

3. On the upper-right corner of the page, click Edit.

4. In the System Configuration Details section, select the Type as DTM for the Data Integration Service.

5. Edit the JVM options and set the property to -DEnableSingleCommit=true.

Set the EnableSingleCommit property in the task properties

Perform the following tasks to set the property in the task:

1. On the Runtime Options page in the mapping task properties, navigate to the Advanced Session
Properties section.

2. From the Session Property Name list, select Custom Properties, and set the Session Property Value to
Yes.

Clustering order
You can create a target table with clustered columns at runtime. Clustering organizes the data based on the
specified columns into optimally-sized storage blocks, which enhances the query performance.

The clustering order determines the sort order of the data within the table. To define the clustering order,
enter up to four fields, each separated by a comma.

You can use the following data types in the clustering columns:

• Bignumeric

• Bool

• Date

• Datetime

• INT64

• Numeric

• String

• Timestamp

Rules and guidelines

Consider the following rules and guidelines when you configure clustered tables in the Google BigQuery
target:

• When you set the clustering order, the mapping can fail for the following issues:

- The number of clustering fields exceeds the defined limit.

54 Chapter 6: Mappings for Google BigQuery V2

- An incorrect name for the clustering field.

- The clustering field is of the Byte or Float data type.

The related error message for the mapping failure is not logged in the session log. You can find the
related error message logged in the Tomcat log.

• When you use Simple connection mode in a mapping, you need to provide the clustering field name for the
Record data type in the Clustering Order property using an underscore instead of a dot. For example,
provide the field name as _(Master_String) instead of .(Master.String). If you use a dot in the
clustering field name, the mapping fails.

Stop on errors
You can configure the maximum number of load job errors at the target that a mapping task can encounter
before it fails.

The error threshold can include malformed rows and data conversion errors in the load job, but the errors
resulting from update, delete, or merge queries are excluded.

You can set the error threshold value in the Stop on errors session property in a mapping task. You can set
the value from 0 to 2147483647. Values less than 0, alphabets, or special characters are not allowed.

To configure the stop on error functionality, ensure that the mapping task is configured with the following
conditions:

• The Enable BigQuery Storage API property is not selected in the connection.

• Bulk is selected as the write mode.

• CSV or JSON is selected as the data format.

The mapping task maintains an independent error count for each transformation and table partition. When
the error threshold exceeds in any of the transformations in a mapping, the mapping fails.

The following examples describe the mapping behavior based on the error threshold you set:

• If you don't set a value or set the value to 0, the mapping fails at the first error.

• If you set the value to 3, the mapping runs successfully for the first two errors and then fails when the
third error occurs.

If you want to parameterize this session property, set the Stop on Errors session property to
$PMSessionErrorThreshold and provide its threshold value in the DTM custom configurations of the Secure
Agent. This threshold value applies to all mapping tasks and you cannot override it with a different value for
different mappings.

Rules and guidelines

Consider the following rules and guidelines when you configure the stop on error functionality in a mapping
task:

• You cannot configure the stop on error functionality in the following mapping scenarios:

- Mapping in advanced mode.

- Mapping enabled with staging optimization.

- Mapping enabled with SQL ELT optimization.

• You cannot access the Error Rows File for the mapping task from the Results section.

Google BigQuery V2 targets in mappings 55

Google BigQuery V2 lookups in mappings
You can create lookups for objects in a Google BigQuery V2 mapping. You can retrieve data from a Google
BigQuery V2 lookup object based on the specified lookup condition.

When you configure a lookup in a Google BigQuery V2 mapping, you select the lookup connection and lookup
object. You also define the behavior when a lookup condition returns more than one match.

You can use the = (Equal to) and != (Not equal to) operators in a lookup condition.

You can add the following lookups to a Google BigQuery object when you configure field mappings in a
mapping task:

• Connected with cached or uncached

• Unconnected with cached

• Dynamic lookup cache

You can only configure a cached lookup for mappings in advanced mode.

Note: You cannot configure an uncached lookup for a lookup object that uses a Google BigQuery V2
connection in complex connection mode.

The following table describes the Google BigQuery V2 lookup object properties that you can configure in a
Lookup transformation:

Property Description

Connection Name of the lookup connection.

Source Type Type of the source object. Select Single Object or Parameter.

Lookup Object Name of the Google BigQuery lookup object for the mapping.

Multiple Matches Behavior when the lookup condition returns multiple matches. You can return all rows, any row,
the first row, the last row, or an error.
You can select from the following options in the lookup object properties to determine the
behavior:
- Return first row¹
- Return last row¹
- Return any row
- Return all rows
- Report error
Only return any row, return all rows, and report error is applicable for mappings in advanced mode.

¹ Doesn't apply to mappings in advanced mode.

56 Chapter 6: Mappings for Google BigQuery V2

The following table describes the Google BigQuery V2 lookup object advanced properties that you can
configure in a Lookup transformation with caching enabled:

Property Description

Source
Dataset ID

Optional. Overrides the Google BigQuery dataset name that you specified in the connection.

Source Table
Name

Optional. Overrides the Google BigQuery table name that you specified in the Lookup
transformation.

Number of
Rows to Read

Specifies the number of rows to read from the Google BigQuery source table.

Allow Large
Results¹

Determines whether Google BigQuery V2 Connector creates arbitrarily large result tables to query
large source tables.
If you select this option, you must specify a destination table to store the query results.

Query Results
Table Name¹

Required if you select the Allow Large Results option.
Specifies the destination table name to store the query results. If the table is not available in the
dataset, Google BigQuery V2 Connector creates the destination table with the name that you
specify.

Job Poll
Interval In
Seconds¹

The number of seconds after which Google BigQuery V2 Connector polls the status of the read job
operation.
Default is 10.

Read Mode Specifies the read mode to read data from the Google BigQuery source.
You can select one the following read modes:
- Direct. In direct mode, Google BigQuery V2 Connector reads data directly from the Google

BigQuery source table.
Note: When you use hybrid and complex connection mode, you cannot use direct mode to read
data from the Google BigQuery source.

- Staging¹. In staging mode, Google BigQuery V2 Connector exports data from the Google BigQuery
source into Google Cloud Storage. After the export is complete, Google BigQuery V2 Connector
downloads the data from Google Cloud Storage into the local stage file and then reads data from
the local stage file.

Default is Direct mode.

Number of
Threads for
Downloading
Staging Files¹

Specifies the number of files that Google BigQuery V2 Connector downloads at a time to enable
parallel download.
This property applies to staging mode.

Data format of
the staging
file¹

Specifies the data format of the staging file. You can select one of the following data formats:
- Avro
- JSON (Newline Delimited). Supports flat and record data with nested and repeated fields.
- Parquet
- CSV. Supports flat data.

Note: In a .csv file, columns of the Timestamp data type are represented as floating point
numbers that cause the milliseconds value to differ.

This property applies to staging mode.

Local Stage
File Directory¹

Specifies the directory on your local machine where Google BigQuery V2 Connector stores the
Google BigQuery source data temporarily before it reads the data.
This property applies to staging mode.

Google BigQuery V2 lookups in mappings 57

Property Description

Staging File
Name¹

Name of the staging file where data from the Google BigQuery source table is exported to Google
Cloud Storage.
This property applies to staging mode.

Enable Staging
File
Compression¹

Indicates whether to compress the size of the staging file in Google Cloud Storage before Google
BigQuery V2 Connector reads data from the staging file.
You can enable staging file compression to reduce cost and transfer time.
This property applies to staging mode.

Persist
Destination
Table¹

Indicates whether Google BigQuery V2 Connector must persist the query results table after it reads
data from the query results table.
By default, Google BigQuery V2 Connector deletes the query results table.

pre SQL¹ SQL statement that you want to run before reading data from the source.
For example, if you want to select records in the database before you read the records from the
table, specify the following pre SQL statement:
SELECT * FROM [api-project-80697026669:EMPLOYEE.DEPARTMENT] LIMIT 1000;

post SQL¹ SQL statement that you want to run after reading data from the source.
For example, if you want to update records in a table after you read the records from a source table,
specify the following post SQL statement:
UPDATE [api-project-80697026669.EMPLOYEE.PERSONS_TGT_DEL]
SET phoneNumber.number=1000011, phoneNumber.areaCode=100 where
fullname='John Doe'

pre SQL
Configuration¹

Specify a pre SQL configuration.
For example,
DestinationTable:PRESQL_SRC,DestinationDataset:EMPLOYEE,
FlattenResults:False,WriteDisposition:WRITE_TRUNCATE,UseLegacySql:False

post SQL
Configuration¹

Specify a post SQL configuration.
For example,
DestinationTable:POSTSQL_SRC,DestinationDataset:EMPLOYEE,
FlattenResults:True,WriteDisposition:WRITE_TRUNCATE,UseLegacySql:False

SQL Override
Query¹

Overrides the default SQL query used to read data from the Google BigQuery source.
When you specify SQL override query, you must specify a dataset name in the Source Dataset ID
advanced source property.
Ensure that the list of selected columns, data types, and the order of the columns that appear in the
query matches the columns, data types, and order in which they appear in the source object.
Ensure that you only map all the columns in the SQL override query to the target.
Does not apply when you enable partitioning.

Use Legacy
SQL For SQL
Override¹

Indicates that the SQL Override query is specified in legacy SQL.
Use the following format to specify a legacy SQL query for the SQL Override Query property:
SELECT <Col1, Col2, Col3> FROM [projectID:datasetID.tableName]
Clear this option to define a standard SQL override query.
Use the following format to specify a standard SQL query for the SQL Override Query property:
SELECT * FROM 'projectID.datasetID.tableName'

58 Chapter 6: Mappings for Google BigQuery V2

Property Description

Label¹ You can assign a label for the transformation to organize and filter the associated jobs in the
Google Cloud Platform Log Explorer.
For more information about labels and their usage requirements, see “Assign a label to the
transformations” on page 74.

Billing Project
ID¹

The project ID for the Google Cloud project that is linked to an active Google Cloud Billing account
where the Secure Agent runs query and extract jobs.
If you omit the project ID here, the Secure Agent runs query and extract jobs in the Google Cloud
project corresponding to the Project ID value specified in the Google BigQuery V2 connection.

Retry Options¹ Comma-separated list to specify the following retry options:
- Retry Count. The number of retry attempts to read data from Google BigQuery.
- Retry Interval. The time in seconds to wait between each retry attempt.
- Retry Exceptions. The list of exceptions separated by pipe (|) character for which the retries are

made.
Use the following format to specify the retry options:
For example,
RetryCount:5,RetryInterval:1,RetryExceptions:java.net.ConnectException|
java.io.IOException
Note: The retry options are available for preview. Preview functionality is supported for evaluation
purposes but is unwarranted and is not production-ready. Informatica recommends that you use in
non-production environments only. Informatica intends to include the preview functionality in an
upcoming release for production use, but might choose not to in accordance with changing market
or technical circumstances. For more information, contact Informatica Global Customer Support. To
use the functionality, your organization must have the appropriate licenses.

Number of
Spark
Partitions²

Specifies the maximum number of partitions that the Spark engine splits the data into.
Default is 1.

Lookup Data
Filter¹

Limits the number of lookups that the mapping performs on the cache of the lookup source table
based on the value you specify in the filter condition.
This property is applicable when you select object as the source type and enable lookup cache on
the Advanced tab for the Lookup transformation.
Maximum length is 32768 characters.
For more information about this property, see Transformations in the Data Integration
documentation.

¹ Doesn't apply to mappings in advanced mode.
² Applies only to mappings in advanced mode.

Unconnected lookup transformation
You can configure an unconnected Lookup transformation for the Google BigQuery source in a mapping. Use
the Lookup transformation to retrieve data from Google BigQuery based on a specified lookup condition.

An unconnected Lookup transformation is a Lookup transformation that is not connected to any source,
target, or transformation in the pipeline.

An unconnected Lookup transformation receives input values from the result of a :LKP expression in another
transformation. The Integration Service queries the lookup source based on the lookup ports and condition in
the Lookup transformation and passes the returned value to the port that contains the :LKP expression.
The :LKP expression can pass lookup results to an expression in another transformation.

Google BigQuery V2 lookups in mappings 59

Note: You cannot configure a uncached unconnected Lookup transformation for the Google BigQuery source
in a mapping.

For more information about the Lookup transformation, see Transformations.

Configuring an unconnected lookup transformation
To configure an unconnected Lookup transformation, select the Unconnected Lookup option, add incoming
fields, configure the lookup condition, and designate a return value. Then configure a lookup expression in a
different transformation.

1. Add a Lookup transformation in a mapping.

2. On the General tab of the Lookup transformation, enable the Unconnected Lookup option.

3. On the Incoming Fields tab of the Lookup transformation, create an incoming field for each argument in
the :LKP expression.

60 Chapter 6: Mappings for Google BigQuery V2

For each lookup condition you create, add an incoming field to the Lookup transformation.

4. In the Lookup Object tab, import the lookup object.

The Multiple Matches property value Return all rows in an unconnected lookup is not supported.

5. Designate a return value.

You can pass multiple input values into a Lookup transformation and return one column of data. Data
Integration returns one value from the lookup query. Use the return field to specify the return value.

6. Configure a lookup expression in another transformation.

Google BigQuery V2 lookups in mappings 61

Provide input values for an unconnected Lookup transformation from a :LKP expression in a
transformation that uses an Expression transformation. The arguments are local input fields that match
the Lookup transformation input fields used in the lookup condition.

7. Map the fields with the target.

Enabling lookup caching
When you configure a Lookup transformation in a mapping, you can cache the lookup data during the runtime
session.

When you select Lookup Caching Enabled, Data Integration queries the lookup source once and caches the
values for use during the session, which can improve performance. You can specify the directory to store the
cached lookup.

Lookup Cache Persistent

Use lookup cache persistent to save the lookup cache file to reuse it the next time Data Integration
processes a Lookup transformation configured to use the cache.

You can specify the file name prefix to use with persistent lookup cache files in the Cache File Name
Prefix field.

If the lookup table changes occasionally, you can enable the Re-cache from Lookup Source property to
rebuild the lookup cache.

When you enable lookup cache persistent, the mappings don't show messages related to staging
optimization.

Dynamic Lookup Cache

Use a dynamic lookup cache to keep the lookup cache synchronized with the target. By default, the
dynamic lookup cache is disabled and represents static cache.

If the cache is static, the data in the lookup cache does not change as the mapping task runs.

If the task uses the cache multiple times, the task uses the same data. If the cache is dynamic, the task
updates the cache based on the actions in the task, so if the task uses the lookup multiple times,
downstream transformations can use the updated data.

For information about lookup caching, see Transformations in the Data Integration documentation.

62 Chapter 6: Mappings for Google BigQuery V2

Optimize lookup performance in staging mode
You can configure Data Integration to optimize the staging performance of a lookup operation.

You can enhance the lookup operation performance by setting a staging property,
INFA_DTM_LKP_STAGING_ENABLED_CONNECTORS, for the Secure Agent. Data Integration first copies the data
from Google BigQuery source into a flat file located in the local staging file directory. When the staging file
contains all the data, Data Integration processes this data read.

Consider the following rules when you enable the staging property:

• You can optimize the staging performance when you use connected and cached lookup operation.

• If you run a mapping enabled for SQL ELT optimization, the mapping does not consider the staging
property and runs without staging optimization.

• When you read data of the byte data type from the Google BigQuery source, ensure that the size or
precision of the binary data does not exceed 62,914,560 bytes.

• Ensure that the total size or precision of all the columns in the Google BigQuery source does not exceed
125,829,120 bytes.

• If the format of the staging file is CSV and you read from a single Google BigQuery table with multiple
objects as the source type, the mapping runs without staging optimization.

• If you do not specify a valid path for the local staging file directory, the mapping fails and the session logs
do not display a meaningful error message.

• When you parameterize both the Google BigQuery object type and the advanced fields, and select the
Allow Parameter to be overridden at run time option while configuring the input parameters, the mapping
does not consider the staging property and runs without staging optimization.

Enabling Google BigQuery V2 Connector to optimize the lookup performance

Perform the following steps to set the staging property for the Tomcat in the Secure Agent properties:

1. In Administrator, click Runtime Environments. The Runtime Environments page appears.

2. Select the Secure Agent for which you want to set the custom configuration property.

3. Click Edit Secure Agent icon corresponding to the Secure Agent you want to edit in Actions. The Edit
Secure Agent page appears.

4. In the System Configuration Details section, select the Service as Data Integration Server and the type
as Tomcat.

5. Set the value of the Tomcat property INFA_DTM_LKP_STAGING_ENABLED_CONNECTORS to the plugin ID
of the Google BigQuery V2 Connector.
You can find the plugin ID in the manifest file located in the following directory:

<Secure Agent installation directory>/downloads/<GoogleBigQueryV2 package>/CCIManifest
6. Click Save.

7. Restart the Data Integration Service.

8. In the Google BigQuery V2 connection, set the UseRFC4180CSVParser:true custom property in the
Provide Optional Properties connection property.

You can check the session logs. If the flat file is created successfully, Data Integration logs the following
message in the session log:

The reader is configured to run in [DTM_STAGING_CSV] mode.

In the Google BigQuery advanced source properties, set the lookup mode as staging and set the Data Format
of the staging file property to CSV.

When you enable the staging mode to lookup source data, you can see the following message in the logs:

Google BigQuery V2 lookups in mappings 63

LKPDP_1:READER_1_1> SDKS_38636 [2023-04-21 15:07:23.020] Plug-in #601601: DTM Staging is
enabled for connector for Source Instance [Source].

When you disable the staging mode to lookup source data, you can see the following message in the logs:

LKPDP_1:READER_1_1> SDKS_38637 [2023-04-21 15:42:45.538] Plug-in #601601: DTM Staging is
disabled for connector for Source Instance [Source].

Setting default column value for the lookup and output ports
In cached and connected Lookup transformation, you can set the default column value for the lookup and
output ports. When no matching field is found for the lookup query, the default column value is inserted to
the output table.

To set the default column value, select the Use Lookup Field Default Value option in the Lookup advanced
properties.

Consider the following rules and guidelines when you set the default column value:

• If you do not set the value, the lookup query inserts NULL when no matching field is found.

• When you use the string data type, enclose the string within single quotes.

• When you use an expression function as the default column value, do not enclose the function within
single quotes.

• When you use the byte data type, specify the value in BASE64 encoded format using the DEC_BASE64
function.

• When you use the datetime data type, specify the value in MM/DD/YYYY HH24:MI:SS.US format. If you use
any other format, provide the value using the TO_DATE function.

• You cannot use standard or legacy SQL custom queries as the default column value.

• When a mapping writes to an existing target table in hybrid connection mode, you cannot use the record
data type as the default column value.

Rules and guidelines for Lookup transformation
Certain rules and guidelines apply when you configure a Lookup transformation.

When you configure a Google BigQuery lookup, adhere to the following guidelines:

• If you specify an SQL override query in a Lookup transformation and configure the Multiple Matches
property to Return first row or Return last row, the mapping fails. If you configure the Multiple Matches
property to Return any row, Return all rows, or Report error, the Secure Agent displays an error message.

• When you use a Google BigQuery V2 connection in hybrid mode in a Lookup transformation, you cannot
configure a lookup condition for fields of bytes, boolean, record, or repeated data types.

• When you specify a custom query to import a lookup table, you cannot configure an uncached lookup.

• When you use a Google BigQuery V2 connection in simple mode in a Lookup transformation, you cannot
configure a lookup condition for fields of numeric, date, or datetime data types.

• You must set the On Multiple Matches property to Report Error when you use a dynamic lookup cache. To
reset the property, change the dynamic lookup to a static lookup, change the property, and then change
the static lookup to a dynamic lookup.

• When you configure a lookup transformation to read data from a column DataTime data type from a
Google BigQuery source, ensure that the year value is lesser than 2200. Otherwise, the lookup returns null
value.

64 Chapter 6: Mappings for Google BigQuery V2

• When you configure a Lookup transformation and you specify a column of Float data type in the lookup
condition, the Secure Agent fails to match and return the NaN values.

• If you configure an uncached Lookup transformation to look up data from a Google BigQuery source and
the source contains a column of DateTime or Timestamp data type, the mapping fails for certain values
with the following error:
java.lang.RuntimeException: Invalid expression string for filter condition.

• If you configure an uncached Lookup transformation to look up data from a Google BigQuery source,
ensure that the lookup table name does not begin with a number.

• If you configure an uncached Lookup transformation to look up data from a Google BigQuery source,
ensure that the lookup condition does not contain a field of the byte data type. Otherwise, the mapping
fails with the following error:
[ERROR] com.informatica.cci.cloud.client.impl.CCIClientExceptionImpl: Invalid expression
string for filter condition.

• If you configure an uncached Lookup transformation to look up data from a Google BigQuery source,
ensure that the lookup condition does not contain a field of the numeric data type. Otherwise, the
mapping fails with the following error:
[ERROR] java.lang.NumberFormatException

• When you configure an uncached lookup transformation to read BigNumeric data from a Google BigQuery
source and use a Google BigQuery V2 connection in hybrid mode, ensure that all the following conditions
are not true:

- You have configured staging mode to read data from the lookup object.

- You have configured CSV or JSON as the data format of the staging file.

- You have configured an advanced lookup filter on the column of BigNumeric data type.

Otherwise, the mapping fails.

• When you configure an uncached Lookup transformation, map the lookup ports to the target. Otherwise,
the mapping fails with the following error:

[ERROR] No ports are mapped from lookup transformation. Please map a port for uncached
lookup to work.

• When you configure a mapping with the following scenarios, you need to enable the -
DENABLE_NULL_FLAG_FOR_UNCACHED_LOOKUP=true property in the JVM options of the Secure Agent to
fetch the correct data in the first row of the table:

- Configured an uncached Lookup transformation to read from Google BigQuery.

- The source table contains null data in the first row.

• To enhance the lookup performance in a cached Lookup transformation, configure the following settings:

- Set the -DENABLE_SORTED_INPUT_FOR_LKP=true property as a JVM option under the DTM type in the
Secure Agent properties.

- Set the Read Mode property to Staging in the lookup advanced properties.

- Enable the Sorted Input and Use EXPORT DATA Statement to stage properties in the lookup advanced
properties.

Google BigQuery V2 lookups in mappings 65

Process SQL queries using an SQL transformation
You can configure an SQL transformation to process SQL queries and stored procedures midstream in a
Google BigQuery V2 mapping.

When you add an SQL transformation to the mapping, on the SQL tab, you define the database connection
and the type of SQL that the transformation processes.

When you call a stored procedure in an SQL transformation, you can use a connected SQL transformation.
The transformation is connected to the mapping pipeline.

The SQL transformation can process the following types of SQL statements:
Stored procedure

You can configure an SQL transformation to call a stored procedure in Google BigQuery. The stored
procedure must exist in the Google BigQuery database before you create the SQL transformation. When
the SQL transformation processes a stored procedure, it passes input parameters to the stored
procedure. The stored procedure passes the return value to the output fields of the transformation. You
can also configure the SQL transformation to generate one output row for each input row.

SQL Query

You must use a standard SQL to define the entered SQL query. The SQL transformation processes the
query and returns the rows. The SQL transformation also returns any errors that occur from the
underlying database or if there is an error in the user syntax to the SQLError output field.

Define multiple entered queries in an SQL transformation separated by a semicolon (;).

66 Chapter 6: Mappings for Google BigQuery V2

Note: Saved query type is not applicable.

For more information about SQL queries and stored procedures, see Transformations in the Data Integration
help.

When you specify an SQL query in a mapping, you can set the billing project ID for the Google Cloud project
that is linked to an active Google Cloud Billing account where the Secure Agent runs the query jobs. If you
omit the project ID here, the Secure Agent runs the query jobs in the Google Cloud project corresponding to
the Project ID value specified in the Google BigQuery V2 connection.

When you configure an SQL query in a mapping, you can assign a label to the SQL transformation. Use the
label to organize and filter the associated jobs in the Google Cloud Platform Log Explorer.

For more information about labels and their usage requirements, see “Assign a label to the
transformations” on page 74.

Configuring an SQL transformation
You can configure a SQL transformation to process a stored procedure on the SQL tab of the SQL
transformation.

This example lists the tasks required to configure an SQL transformation that calls a stored procedure in
Google BigQuery.
Your mapping includes user IDs in the data flow. You want to include user names in addition to user IDs. You
have a stored procedure that matches user IDs with user names in the database. You add an SQL
transformation to your mapping, select the stored procedure, and map the userId incoming field with the
userId input field in the stored procedure. Add a SQL transformation in a Google BigQuery mapping.

You check the Output Fields tab for the SQL transformation to confirm that it includes the username field.
When you run the mapping, the username value is returned with the user ID.

Perform the following tasks in the SQL transformation:

1. Enter a name and description for the SQL transformation.

2. In the Incoming Fields tab, define field rules that determine the data to include in the transformation.

3. In the Properties panel of the SQL transformation, click the SQL tab.

4. In the SQL tab, perform the following tasks:

a. Select the connection to the database.

You can select the connection or use a parameter.

b. Set the SQL type to Stored Procedure.

Process SQL queries using an SQL transformation 67

c. Click Select to select the stored procedure from the database, or enter the exact name of the stored
procedure to call.

The stored procedure name is case-sensitive.

Note: If you add a new stored procedure to the database while you have the mapping open, the new
stored procedure does not appear in the list of available stored procedures. To refresh the list, close
and reopen the mapping.

The following image shows the configured SQL transformation properties:

5. In the Field Mapping tab, specify how to map incoming fields to the input fields of the selected stored
procedure.

6. Define advanced properties for the transformation according to your requirement.

To configure an SQL transformation using the SQL type as SQL entered query , see Transformations in the
Data Integration help.

Using a parameterized connection in an SQL transformation
You can parameterize a Google BigQuery V2 connection in an SQL transformation.

To parameterize an entered SQL query or a stored procedure in an SQL transformation midstream in a Google
BigQuery V2 mapping, perform the following steps:

1. On the SQL tab, select a Google BigQuery V2 connection without a parameter.

2. Select Stored Procedure or SQL Query as the SQL Type.

3. Select a stored procedure in Google BigQuery or define an entered query in the SQL editor.

4. Change the connection for the SQL transformation to a parameterized Google BigQuery V2 connection.

Rules and guidelines for SQL transformation
Consider the following rules and guidelines when you configure an SQL transformation in mappings:

• You can only configure a connected SQL transformation with Google BigQuery V2 Connector.

• When you configure an SQL transformation and configure an output field, record data type is not
applicable for Google BigQuery V2 Connector.

• When you configure a SQL transformation to call stored procedures or entered query, columns of Record
data type and repeated columns are not applicable.

• You cannot call a stored procedure from an entered query.

68 Chapter 6: Mappings for Google BigQuery V2

• When you configure an SQL transformation to process an entered query, the following properties are not
applicable:

- Inout and input parameters

- Auto commit

- Transformation scope

- Stop on error

- Continue on SQL Error within Row

• When you provide the billing project ID in the SQL transformation advanced properties, you must specify
the project ID in the SQL query.

Pre-SQL and post-SQL commands
You can specify pre SQL and post SQL advanced properties for Google BigQuery sources and targets. When
you create a task in Data Integration, you can specify SQL commands in the advanced properties of the
Source and Target transformations.

You can perform select, update, or delete operations with pre SQL and post SQL commands and cannot
perform more than one operation with a pre SQL or post SQL command.

You can configure the options in Google BigQuery with a pre SQL or post SQL statement in the pre SQL
Configuration or post SQL Configuration advanced properties for Google BigQuery sources and targets.

Use the following format to specify a pre SQL configuration or a post SQL configuration:

<Option1:Value1,Option2:Value2,...OptionN:ValueN>

When you perform an update or delete operation with a pre SQL or post SQL command, specify the following
parameter in the pre SQL configuration or post SQL configuration:

UseLegacySQL:False

The following table shows the configuration options and the values that you can specify in a pre SQL
configuration or post SQL configuration:

Options Values

DestinationDataset Dataset ID in Google BigQuery

DestinationTable Table name in Google BigQuery

FlattenResults True and False

UseLegacySQL True and False

WriteDisposition WRITE_TRUNCATE, WRITE_APPEND, and WRITE_EMPTY

Pre-SQL and post-SQL commands 69

Data filters
You can create simple or advanced data filters. You can also create a set of data filters for each object
included in a mapping task. Each set of data filters act independently of the other sets.

You can create simple or advanced data filters for the following data types:

• Integer

• Float

• Numeric (only if you use a Google BigQuery connection in hybrid mode)

• String

• Timestamp

Note: When you create simple or advanced data filters for columns of Numeric data type, ensure that you use
a Google BigQuery V2 connection in hybrid connection mode.

You can only configure simple filters for mappings in advanced mode.

Simple data filters

You can create one or more simple data filters. When you create multiple simple data filters, the associated
task creates an AND operator between the filters and loads rows that apply to all simple data filters.

Advanced data filters

You can create an advanced data filter to create complex expressions that use AND, OR, or nested
conditions. The expression that you enter becomes the WHERE clause in the query used to retrieve records
from the source.

Use the following formats to define a filter field in an advanced data filter:

• <fieldName>
• <projectName>.<datasetName>.<tableName>.<fieldName>

If the Google BigQuery dataset name begins with a number, use the following format to define a filter field in
an advanced data filter:

<projectName>.'<datasetName>'.<tableName>.<fieldName>

Handling dynamic schemas
You can choose how Data Integration handles changes that you make to the data object schemas. To refresh
the schema every time the mapping task runs, you can enable dynamic schema handling in the task.

A schema change includes one or more of the following changes to the data object:

• Fields added, deleted, or renamed.

• Fields updated for data type, precision, or scale.

Configure schema change handling on the Runtime Options page when you configure the task.

70 Chapter 6: Mappings for Google BigQuery V2

The following table describes the schema change handling options:

Option Description

Asynchronous Default. Data Integration refreshes the schema when you edit the mapping or mapping task, and
when Informatica Intelligent Cloud Services is upgraded.

Dynamic Data Integration refreshes the schema every time the task runs.
You can choose from the following options to refresh the schema:
- Alter and apply changes. Data Integration applies the following changes from the source schema

to the target schema:
- New fields: Alters the target schema and adds the new fields from the source.
- Renamed fields: Adds renamed fields as new columns in the target.
- Data type and precision updates. Not applicable for Google BigQuery V2 Connector.
- Deleted fields: Not applicable for Google BigQuery V2 Connector.

- Don't apply DDL changes. Data Integration does not apply the schema changes to the target.
- Drop current and recreate. Drops the existing target table and then recreates the target table at

runtime using all the incoming metadata fields from the source.

For more information, see the "Schema change handling" topic in Tasks in the Data Integration help.

Rules and guidelines for dynamic schema handling
Consider the following rules and guidelines when you enable dynamic schema change handling for
mappings:

• When you select the Alter and apply changes option on a Google BigQuery table, ensure that the table
does not contain a column of record data type or repeated column.

• Schema updates that involve a decrease in the precision of the Varchar data type is not supported.

Configure unique staging object names for
concurrent mappings

When you run concurrent mappings to read data from or write data to Google BigQuery using staging mode,
you can configure the mapping to create staging objects with unique names.

Google BigQuery V2 Connector creates the following staging objects based on how you configure the
mapping:

• Staging tables

• Staging files

• Staging views

To create staging objects with unique names for concurrent mappings, configure the following property in the
Google BigQuery V2 connection:

Connection Property Value

Provide Optional Properties RandomizeStagingObjectNames:true

Configure unique staging object names for concurrent mappings 71

Google BigQuery V2 Connector uses the following naming conventions to create unique names for the
staging objects based on how you configure the mapping:

Mapping Configuration Staging Object Type Staging Object Name Format

Custom Query and SQL Override Temporary staging
view for metadata
import

<Informatica_Prefix>_temp_view_for_metadata_
<TimestampUptoMilliseconds>_<UUID>

Custom Query and SQL Override Staging view for
runtime

<Informatica_Prefix>_View_
<TimestampUptoMilliseconds>_<UUID>

Staging Read Mode Staging table <Informatica_Prefix>_<SourceTableName>_
<PartitionID¹>_E_<TimestampUptoMilliseconds>_
<UUID>

Staging Read Mode with Custom Query
and SQL Override

Staging view <Informatica_Prefix>_View_Table_Name_
<PartitionID¹>_E_<TimestampUptoMilliseconds>_
<UUID>

Staging Read Mode with Staging File
Name for CSV, JSON, Avro, or Parquet
format

Staging File <StagingFileName>_<PartitionID¹>

Staging Read Mode with CSV, JSON,
Avro, or Parquet format without
specifying the Staging File Name
property

Staging File <Informatica_Prefix>_StgF_
<TimestampUptoMilliseconds>_ <UUID>
<PartitionID¹>.<FileExtension>

Update, Upsert, Delete, or Data Driven
operations on a Google BigQuery target

Staging table <Informatica_Prefix>_<TargetTableName>_
<PartitionID¹>_T_<TimestampUptoMilliseconds>_
<UUID>

Lookup Staging table <Informatica_Prefix>_LKP_<SourceTableName>_
E<TimestampUptoMilliseconds>_
<UUID>_<TableIDIncrement>

Lookup with CSV, JSON, Avro, or Parquet
staging file format without specifying the
Staging File Name property

Staging file <Informatica_Prefix>_StgF_
<TimestampUptoMilliseconds>_ <UUID>
<StagingFileIncrement>.<FileExtension>

SQL ELT optimization with Google Cloud
Storage source and Google BigQuery
target

Staging table <Informatica_Prefix>_<TargetTableName>_
PDO_<TimestampUptoMilliseconds>_
<UUID>

SQL ELT optimization with Google
BigQuery source and target

Staging table <Informatica_Prefix>_<TargetTableName>_
PDO_<TimestampUptoMilliseconds>_
<UUID>

72 Chapter 6: Mappings for Google BigQuery V2

Mapping Configuration Staging Object Type Staging Object Name Format

SQL ELT optimization with Google
BigQuery source and target

Temporary views for
custom query and
SQL override

<Informatica_Prefix>_View_PDO_
<TimestampUptoMilliseconds>_<UUID>

¹Applies only when you configure partitions.
UUID represents an Unique Universal Identifier string.

If you select the Persist Extract Staging File After Download source advanced property or the Persist Staging
File After Loading target advanced property, Google BigQuery V2 Connector appends "P" to the end of the
<Informatica_Prefix>.

For example when you use Staging Read Mode and select the Persist Extract Staging File After Download
source advanced property, Google BigQuery V2 Connector uses the following format for the staging table
name:

<Informatica_Prefix>P_<SourceTableName>_<PartitionID¹>_E_<TimestampUptoMilliseconds>_<UUID>

If you cancel a job, Google BigQuery V2 Connector deletes the staging object for the following mapping
configurations:

• Staging or direct read mode

• Bulk write mode

• Staging read mode and bulk write Mode with staging file name for CSV, JSON, Avro, or Parquet format

• Custom query

• SQL override

• Update, upsert, delete, or data driven operations on a Google BigQuery target

Hierarchy Parser transformation in mappings
To preserve the hierarchical structure when you read data from Google BigQuery and write data to relational
targets, you must use a Hierarchy Parser transformation.

The transformation processes JSON input from the source transformation and provides relational output to
the target transformation. The Hierarchy Parser transformation converts hierarchical input based on the
sample schema of the Google BigQuery table that you associate with the transformation and the way that you
map the data.

Hierarchy Builder transformation in mappings
When you read data from relational sources and write data to a Google BigQuery target, you must use a
Hierarchy Builder transformation.

The transformation processes relational input from the upstream transformation and provides JSON output
to the downstream transformation. The Hierarchy Builder transformation produces JSON output based on the

Hierarchy Parser transformation in mappings 73

sample schema of the Google BigQuery table that you associate with the transformation and the way that you
map the data.

Assign a label to the transformations
The labels are associated with load, extract, and query jobs, and you can attach a label for each
transformation. You can use labels to organize and filter the associated jobs in the Google Cloud Platform
Log Explorer.

The label name can contain only lowercase letters, numeric characters, underscores, and dashes. If the label
name includes any other characters, the mapping fails.

You can apply only one label for each transformation. When you create a transformation in a mapping, the
label is optional.

You can parameterize the label. To use the current task name as the label, set the label to $CurrentTaskName.

In a mapping enabled with source SQL ELT optimization and multiple sources, the label is assigned to all
sources. However, the label value from the first source is only used.

Rules and guidelines for mapping and mapping tasks
Certain rules and guidelines apply when you configure a mapping and mapping tasks.

When you configure a Google BigQuery source or Google BigQuery target, adhere to the following guidelines:

• When you enable cross-region replication in Google BigQuery, even though you can select regions from
multiple continents while creating the dataset replicas in Google BigQuery, you are restricted to select
regions within the same geographical area to stage data in Google Cloud Storage.

• When you create a target at runtime, and the field name in the mapping contains special characters or
spaces, the mapping fails.

• When you read from Amazon S3 or Google Cloud Storage and use the update target operation to write to
Google BigQuery, ensure that all the columns specified in the update columns field are mapped to the
target.

• When you write large datasets to a Google BigQuery target, increase the Java heap size in the JVM
options for type DTM. Set JVMOption3 to -Xms1024m and JVMOption4 to -Xmx4096m in the System
Configuration Details section of the Secure Agent and restart the Secure Agent.

• When you use the Hosted Agent as the runtime environment in a mapping task and use a Hierarchy
Builder or Hierarchy Parser transformation in a mapping, you must specify a storage path in Google Cloud
Storage in the Schema Definition File Path field under the connection properties. You can then download
the sample schema definition file for the Google BigQuery table from the specified storage path in Google
Cloud Storage to a local machine.

• Ensure that there is no blank space before you specify the staging directory for the Local Stage File
Directory property for Google BigQuery source or target. Otherwise, the mapping fails.

• If a Google BigQuery source contains the DATE, DATETIME, TIME, or TIMESTAMP data types and you
create a Google BigQuery target at run time, the Secure Agent writes TIMESTAMP data to the target.

74 Chapter 6: Mappings for Google BigQuery V2

• When you read JSON data from a MongoDB source table and write data to a column of Record data type
in a Google BigQuery target table, you must specify a explicit value for columns that contain _id in the
column name. Otherwise, the task fails with the following error:
[ERROR] The [LOAD] job failed with the error - [JSON parsing error in row starting at
position 0:

• When you use a Google BigQuery V2 connection in simple mode and enable the Use Legacy SQL For SQL
Override advanced source property, you can only map a single field of repeated data type.

• When you use a Google BigQuery V2 connection in simple mode and configure an advanced data filter
condition, ensure that you specify only the column name for the WHERE clause.
For example, use the following format for the WHERE clause:

SELECT <col1>, <col2> FROM `<projectID>.<datasetID>.<tableName>` WHERE <col2>='<value>'
• When you use a Google BigQuery V2 connection in hybrid mode or complex mode, you must not specify a

legacy SQL query for the SQL Override Query property. You must clear the Use Legacy SQL For SQL
Override advanced source property. Otherwise, the mapping fails.

• When you use a Google BigQuery V2 connection in simple mode and enable the Use Legacy SQL For
Custom Query connection property to define a custom query to read data from a Google BigQuery
materialized view, the Secure Agent fails to read the materialized view.

• When you use a Google BigQuery V2 connection in simple mode and read data from a Google BigQuery
materialized view as a single source object, you must clear the Use Legacy SQL For Custom Query option
in the Google BigQuery V2 connection. Otherwise, the Secure Agent fails to read the materialized view.

• When you specify a custom query to read data from Google BigQuery and the source table contains
functions as columns, you must specify the alias name for the function.

• If you specify an SQL override query and configure data filters, the mapping runs successfully but the
Secure Agent does not consider the filter conditions.

• When you select a Google BigQuery partitioned table as a source or target in a mapping, you cannot
preview data.

• When you select a Google BigQuery partitioned table as a source or target in a mapping, you must select
the Use Legacy SQL For Custom Query connection property.

• When you use month and time partitioned tables in a mapping in simple mode, you must unselect the Use
Legacy SQL For Custom Query connection property.

• You cannot configure a partitioned table with a partitioned filter in a mapping.

• When you use Create New at Runtime to write data to Google BigQuery, the mapping task creates the
physical target based on the fields from the upstream transformation in the initial run. But later if you
delete the created target table and re-run the mapping task, the Secure Agent fails to create the target
table.

• When you use Create New at Runtime to write data to Google BigQuery and the source column name
contains special characters, the task fails to create the target table.

• When you perform an update, upsert, or delete operation on a Google BigQuery target without using Merge
query and the dataset name, table name, or both starts with a number, the mapping fails. To run the
mapping successfully, set the AllowQuotedIdentifier:true custom property in the Provide Optional
Properties connection property.

• When you read null and blank values from a Google BigQuery source in CSV format and perform update
operation on a Google BigQuery target, the null values are written as empty strings without quotes and the
blank values are written as empty strings with quotes. To treat null values from the Google BigQuery
source as null values in the Google BigQuery target, set the ReadNullAsNullCSVStaging:true custom
property in the Provide Optional Properties connection property.

Rules and guidelines for mapping and mapping tasks 75

• When you specify a project name, dataset name, or table name in a Google BigQuery V2 mapping, ensure
that you do not use reserved keywords.

• When you configure a Google BigQuery target and set the Data Format of the staging file to Avro, ensure
that you do not map fields of DateTime data type.

• When you configure a Google BigQuery target and set the Data Format of the staging file to Parquet,
ensure that you do not map fields of Time and DateTime data type.

• When you configure a Google BigQuery target and provide DestinationTable as any existing table in the
pre SQL Configuration and post SQL Configuration, use Write Disposition as Write append or Write
truncate. Otherwise, the mapping fails.

• When you run a mapping to read data of timestamp data type from a Google BigQuery source object,
incorrect values are written to the target for certain timestamp values.

• When you configure a mapping to read or write data of Record data type with nested fields, ensure that
the nested fields do not have the same names.

• When you set the Data Format of the staging file to Parquet and specify a Google BigQuery dataset name
in the Source Staging Dataset source advanced property or Target Staging Dataset target advanced
property to override the Staging Dataset Name connection property, ensure that you have the required
Google Cloud Storage bucket permission to read data from or write data to Google BigQuery successfully
from the staging file in Google Cloud Storage.

• When you configure the Staging Dataset connection property and create a new target at runtime, ensure
that the Google BigQuery dataset where you want to create the target table has the required permission to
create the target successfully.

• When a Google BigQuery source contains columns with the REQUIRED constraint and you use Create New
at Runtime to write data, the columns are created with the NULLABLE constraint in the target table.

• When you read data from a column of BigNumeric data type, ensure that you do not select the Avro
staging file format. When you write data to a column of BigNumeric data type, ensure that you do not
select the Avro or Parquet staging file format.

• When you read data from a column of BigNumeric data type, you cannot specify data filters when you use
a Google BigQuery connection in simple or complex mode.

• To pass a column of BigNumeric data type from a Google BigQuery source to a Filter transformation, you
must pass the data through an Expression transformation and convert the column to Decimal data type
using the TO_DECIMAL() function and map the results to the Filter transformation. Ensure that you specify
a precision of 28 and scale of 9.

• When you configure the Billing Project ID source advanced properties and if you configure a SQL override,
pre-SQL query, or post-SQL query for the Google BigQuery source, you must specify the Project ID value
specified in the Google BigQuery V2 connection when you define the query.

• When you configure the Billing Project ID source advanced properties, you cannot read data from multiple
source objects.

• When you configure the Billing Project ID target advanced properties, you cannot write data to a Google
BigQuery target in CDC mode.

• When you specify the Billing Project ID in the source and target advanced properties and run the mapping,
few connector calls appear in the Connection project. However, billing occurs only in the Billing project.

• When you provide an incorrect value for the Billing Project ID property in a mapping, the mapping fails with
an irrelevant error message:
[ERROR] Error occured while trying to Initialize Data Source Operation |
com.informatica.cci.runtime.internal.utils.impl.CExceptionImpl: !
com.infa.adapter.bigqueryv2.runtime.adapter.BigqueryRuntimeException: Truncate Target
Failed 400 Bad Request

76 Chapter 6: Mappings for Google BigQuery V2

POST https://bigquery.googleapis.com/bigquery/v2/projects/automation-project21/jobs
{"code" : 400, "errors" : [{ "domain" : "global", "message" : "ProjectId and DatasetId
must be non-empty", "reason" : "badRequest" }], "message" : "ProjectId and DatasetId must
be non-empty", "status" : "INVALID_ARGUMENT" }

• When you use $$$SESSSTARTTIME variable in a custom query, the variable returns the session start time as
a string value. Use the following syntax to convert the string values to timestamp or datetime:

•SELECT PARSE_TIMESTAMP('%m/%d/%Y %H:%M:%E6S', '$$$SESSSTARTTIME') as timestamp
--2022-10-06 18:53:28 UTC
•SELECT cast(substr(cast('$$$SESSSTARTTIME' as string),0,19) as datetime FORMAT 'MM/DD/
YYYY HH24:MI:SS') as datetime;
•SELECT cast(substr(cast('$$$SESSSTARTTIME' as string),0,19) as timestamp FORMAT 'MM/DD/
YYYY HH24:MI:SS') as timestamp;

When you use SESSSTARTTIME variable in an Expression transformation, the variable returns the session
start time as datetime data type.

The Filter transformation uses system variable as SESSSTARTTIME.

The Expression transformation uses system variable as SESSSTARTTIME.

• When you use SESSSTARTTIME variable in a custom query without casting and if the source data type for
SESSSTARTTIME is string, you might see difference in data format when you compare a mapping that runs
with full SQL ELT optimization and a mapping that runs without SQL ELT optimization.
For example, SESSSTARTTIME returns DateTime value in the MM/DD/YYYY HH24:MI:SS format when a
mapping runs with full SQL ELT optimization. When you run the same mapping without SQL ELT
optimization, SESSSTARTTIME appends additional zeroes to the return value, MM/DD/YYYY
HH24:MI:SS.000000.

• When you run a mapping without SQL ELT optimization, you must use only the columns which are mapped
in the Update Column field.

• You must select the is expression variable in-out parameter to read a parameter value as an expression in
a Filter transformation when you run a mapping without SQL ELT optimization.

• The session log doesn't record the staging optimization error messages in the following scenarios:

- A mapping with a cached lookup transformation and the staging optimization at source enabled runs
without staging optimization.

- A mapping runs without enabling staging optimization at target.

• When you map a string data type in the source to a time data type in the target, and the data is in the
format HH24:MI:SS.US, the mapping fails with the following error:
ERROR: Invalid Data Type Conversion

• When an IN function includes a null value in the list of values in an Expression transformation, the
mapping fails with the following error:
TE_7002 Transformation stopped due to a fatal error in the mapping. The expression
[In(col1_string,null,'1','2','3','6',0)] contains the following errors [Function
validation for [In] failed: [The arguments must be of the same datatype.]. <<PM Parse
Error>> [In]: : invalid function reference ...
>>>>In(col1_string,null,'1','2','3','6',0)<<<<].
To run the mapping successfully, you can use TO_CHAR(null) function for the string data type and
TO_DATE(null) function for the date/time data type.

The mapping runs successfully if SQL ELT optimization is enabled.

Rules and guidelines for mapping and mapping tasks 77

• When you use the IN function in an Expression transformation that includes a column with a null value in
the list of values and there is no match, the function returns False instead of NULL.
If the mapping is enabled with SQL ELT optimization, the function returns NULL.

• If the source field name contains Unicode characters and you use the Create Target option to write to a
Google BigQuery target, the mapping fails.

• When you run a mapping to write data of the BigNumeric data type to a new target created at runtime, the
scale is not honored in the data. The mapping processes the values up to 28 digits regardless of the
scale.

• When you map a BigNumeric data type to the Decimal data type with a precision greater than 28 digits,
data truncation occurs at the target.

• When you write data of the BigNumeric data type to a target created at runtime, BigNumeric defaults to
Numeric data type in the target. You can use the edit metadata option to change the native data type from
Numeric to BigNumeric.

• When you configure an update, delete, or data driven operation to write data and if the metadata in the
target does not match the source, the mapping behavior is not deterministic.

• When you configure the REG_REPLACE(<column_name>, '.* ', <value_to_replace>) function in a
mapping, the function replaces zero or more characters in the <column_name> argument with the value
provided in the <value_to_replace> argument. However, in this scenario, the replaced value is applied
twice in the column instead of a single entry when the criteria is met.
However, a mapping enabled for SQL ELT optimization with the REG_REPLACE() function correctly
replaces the value with a single entry.

• When the arguments are null in the REG_REPLACE() function, the mapping fails with the following error:
Transformation stopped due to a fatal error in the mapping. The expression
[Reg_Replace(null,null,null)] contains the following errors [Function validation for
[Reg_Replace] failed: [The subject and pattern arguments must be of the char datatype.].
However, a mapping enabled for SQL ELT optimization with the REG_REPLACE() function runs
successfully and returns a null value.

• When you configure a mapping, you cannot use view or materialized view as a target object.

• When you run an existing mapping to write a view as the target object, override the target object with the
Target Table Name advanced property, and set the optional property DisableMappingDeployment:true at
the Google BigQuery V2 connection, the mapping fails with the following error:
Operation failed: Internal Error Occurred. Contact Support : [Cannot create write
operation. The node supports read operation only.].
To run the mapping successfully, remove the optional property DisableMappingDeployment:true at the
Google BigQuery V2 connection.

• You can perform the following operations with views in a mapping:

- Read the data from Google BigQuery views in a Source transformation with staging optimization
enabled.

- Lookup the data from Google BigQuery views in a Lookup transformation.

• You cannot enable staging optimization in a mapping if the Enable BigQuery Storage API option is
selected in the Google BigQuery V2 connection. A mapping with this configuration fails with the following
error:
READER_1_1_1> _38644 [2024-02-21 11:56:54.700] Plug-in #601601:Log Message from CCI : [DTM
staging is not supported when [Enable BigQuery Storage API] is checked].

• When you configure Simple as the connection mode in the Google BigQuery V2 connection and Staging as
the read mode, you cannot use views as a source or lookup object if the input data contains the Record
data type.

78 Chapter 6: Mappings for Google BigQuery V2

If you run a mapping with this configuration, the mapping fails with the following error:

[ERROR] You cannot use [Standard] SQL view as it is not compatible with the Use Legacy SQL
for Custom Query parameter selection in the Google BigQuery connection. Ensure that the
view type matches with the selected SQL language in the connection.
To run the mapping successfully, you can configure Hybrid as the connection mode in the Google
BigQuery V2 connection or Direct as the read mode.

• When you configure a Lookup transformation to return either the first or last row and the incoming fields
contain columns with the Record data type, the mapping fails with the following error:
The [QUERY] job failed with the following error: 'ORDER BY' does not support expressions
of type 'STRUCT<...>'
This issue occurs when the configured connection mode is hybrid.

• You cannot configure a partitioned table with a filter as a single object source and in the target
operations. If you configure a mapping with these scenarios, the mapping fails with the following error:
[ERROR] The [QUERY] job failed with the following error: [Cannot query over table <table
name> without a filter over column(s) <column name>, <column name>, <column name> that can
be used for partition elimination]

• When you read columns with the Record data type, where the connection uses simple mode and the
mapping uses staging as the read mode, you need to set the Use Legacy SQL for Custom Query property
in the Google BigQuery V2 connection to run the mapping successfully. Otherwise, the mapping fails with
the following error:
[ERROR] The [QUERY] job failed with the following error: [Invalid schema update. Cannot
add fields (field: DateTime)]

• To read the source data that contains Repeated data type columns with the simple connection mode,
enable the Use Legacy SQL for Custom Query option in the connection properties. If you want to use the
hybrid connection mode, clear the option so that the mapping uses the standard SQL instead of the legacy
SQL to read Repeated data type columns.

• When you use the Byte data type in a mapping, you cannot configure Is Null and Is Not Null operators in
the simple filter at the source.

• To enable the sort operation for the source query, set the Read Mode property to Staging and enable the
Use EXPORT DATA Statement to stage property in the source advanced properties.

• A mapping fails when all of the following conditions apply:

- The Google BigQuery V2 connection uses the simple connection mode.

- The Use EXPORT DATA statement to stage property is enabled in the source advanced properties.

- The transformation includes fields with the Record or Repeat data type from the source table.

To run the mapping successfully, remove the fields with the Record or Repeat data type from the
transformation.

• When a few source fields from the imported object are deleted from the Fields tab and the object is then
overridden at runtime, the mapping fails.

Rules and guidelines for mappings in advanced mode
Consider the following guidelines when you create a mapping in advanced mode:

• Use a Google BigQuery V2 connection in hybrid mode.

Rules and guidelines for mappings in advanced mode 79

• You cannot configure key range and pass-through partitioning in a mapping that reads from a Google
BigQuery source.

• When you perform an update, upsert, or delete operation on a Google BigQuery target table that resides in
a region other than the US regions, you must specify the Region ID connection property in the Google
BigQuery V2 connection.

• When you configure a simple filter condition on a column of Date, Time, Timestamp, or DateTime data
type in the source table, ensure that you specify the following DateTime format:
YYYY-MM-DD-HH24:MM:SS:MS

• When you read data from a column of String data type in a Google BigQuery source and write data to a
column of Date, DateTime, Time, or Timestamp data type in a Google BigQuery target, ensure that the
string data in the source must be of the following DateTime format:
YYYY-MM-DD-HH24:MM:SS

• When you read data from or write data to a partitioned table in Google BigQuery, ensure that you unselect
the Use Legacy SQL for Custom Query option in the Google BigQuery V2 connection. Otherwise, data
preview fails.

• You cannot edit the metadata of the fields of hierarchical data type in a mapping in advanced mode.

• When you import a Google BigQuery source or target table that contains a column of Byte data type, data
preview displays blank value for the column of Byte data type.

• When you perform an update operation on a Google BigQuery target, ensure that the update column does
not contain NULL values. Otherwise, the Secure Agent fails to update the rows.

• When you perform an upsert operation on a Google BigQuery target, ensure that the update column does
not contain NULL values. Otherwise, the Secure Agent performs insert operation instead of update
operation.

• When you perform a delete operation on a Google BigQuery target, ensure that the update column does
not contain NULL values. Otherwise, the Secure Agent fails to delete the rows.

• When you parameterize the source object, the Input Parameters tab in the mapping task displays the
source object name as Default.

• When you write data to a Google BigQuery target and specify the staging file name and persist the staging
file in Google Cloud Storage, you must delete the staging file after you run the mapping. Otherwise, when
you re-run the mapping, the mapping fails with the following error:
java.lang.RuntimeException: The object path already exists

• To achieve maximum throughput when you read data from a large dataset, the value of the Number of
Spark Partitions must be equal to the number of Spark executors defined for the Google Cloud Platform
advanced cluster.

• When you use a parameterized Google BigQuery V2 connection in the Target transformation, the Update
Column field does not display in the target properties. In the Target transformation, select a valid
connection and object that display in the list and then select the operation.

• When the Google BigQuery target object is parameterized and the selected operation is data driven or
upsert in the mapping, the Update Column field does not display in the dynamic mapping task target
properties.

• Do not configure an override to the update strategy from the task properties. The agent does not honor
the order of precedence and considers the update strategy value specified in the mapping.

• When you read data from and write data to a Google BigQuery column of the Record data type that
contains data of the Numeric data type, the precision of the Numeric data must not exceed 15 digits.

• If an existing mapping is set with a precision of 28 digits for the Numeric data type, you can refresh the
mapping to set the default precision of 38 digits. However, for hierarchical data types, only up to a
precision of 28 digits is applicable.

80 Chapter 6: Mappings for Google BigQuery V2

• When you use Create New at Runtime to write data to Google BigQuery, the mapping task creates the
physical target based on the fields from the upstream transformation in the initial run. But later if you
delete the created target table and re-run the mapping task, the Secure Agent fails to create the target
table.

• You cannot read Integer data in a column of Array or Struct data type from a Google Cloud Storage Avro,
JSON, or Parquet file and write the data to a Google BigQuery target.

• You cannot read complex data types that contain multidimensional array from a Google Cloud Storage
source and write the data to a Google BigQuery target.

• When you read data from a column of the DateTime data type in a Google BigQuery source, ensure that
the column does not contain DateTime values earlier than 1970-01-01. Otherwise, the mapping fails with
the following error:
java.lang.RuntimeException

• When you run a mapping to read DateTime data from a Google BigQuery source column of the Record
data type with the YYYY-MM-DD HH24:MI:SS.US format and write data to a Google BigQuery target column
of the Record data type that contains data of the DateTime data type, the Secure Agent truncates the
microsecond values and writes the DateTime values in the YYYY-MM-DD HH24:MI:SS.MS format.

• When you read data from or write data to a Google BigQuery table, ensure that the Google BigQuery
source or target does not contain more that 2000 columns. Otherwise, the mapping fails with the
following error:
HTTP POST request failed due to IO error.

• In advanced mode, you cannot write data Null values from an Array data type to a Google BigQuery target.
If you do, the mapping fails with a runtime exception.

• The date/time data types in local time zone is converted into UTC when loading data to the Google
BigQuery target, resulting in a mismatch in the data between the source and target. Data conversion from
String data type to date/time datatypes results in data mismatch for the date/time data types between the
source and target.

• When you switch mapping to advanced mode and the mapping uses hierarchical data types, you must
manually reimport the Google BigQuery object and create the mapping again.

• When you read or write hierarchical data types in a mapping, the time zone defaults to the Secure Agent
host machine time zone. You must change the time zone to UTC time zone to run the mapping
successfully. To change to the UTC time zone, you can set the Spark session properties for a specific task
from the task properties.
To set the properties for a specific task, navigate to the Spark session properties in the task properties,
and perform the following steps:

•Select the session property name as spark.driver.extraJavaOptions and set the value to -
Duser.timezone=UTC.

•Select spark.executor.extraJavaOptions and set the value to -Duser.timezone=UTC.

• When you configure a mapping in advanced mode that writes the data of more than 10 MB to a row, the
mapping fails.

• When you configure a mapping to write Date, Datetime, and Timestamp values, 0001-01-01 00:00:00 or
0001-01-02 into a Timestamp column in the target, the mapping fails. Also, data corruption might occur
when you write Date, Datetime, and Timestamp values less than 1910-01-01 00:00:00.

Rules and guidelines for mappings in advanced mode 81

Troubleshooting a mapping task
Error occurs even though the task runs successfully.

When you parameterize a mapping task and select a Google BigQuery connection in hybrid mode or
complex mode, the following error message appears even though the task runs successfully:

Internal Error: Adapter InitDataSession failed.

Workaround: Ignore the error message.

Job fails when you configure an advanced filter condition.

When you configure an advanced filter condition and run a mapping, the mapping fails with the following
error:

[ERROR] The [QUERY] job failed with the following error: [Field 'TableName.FldName' not
found in table 'DatasetName.TableName'.]

Workaround: Remove the table name prefix from the field name in the filter condition and run the
mapping.

Job fails when you specify a custom query usng legacy SQL and the field names of a record data type and a primitive
data type.

When you configure a Google BigQuery V2 connection in simple mode and enable Use Legacy SQL For
Custom Query, the mapping fails if the field names of a record data type and a primitive data type are
same.

Workaround: Unselect Use Legacy SQL For Custom Query and run the mapping.

Troubleshooting a mapping in advanced mode
Mapping configured to write Date and Int96 data types for Parquet file fails

A mapping configured to read from Google BigQuery source and write to a Parquet file in Google Cloud
Storage target fails in the following cases:

• Data is of the Date data type and the date is less than 1582-10-15.

• Data is of the Int96 data type and the timestamp is less than 1900-01-01T00:00:00Z.

To resolve this issue, specify the following spark session properties in the mapping task or in the custom
properties file for the Secure Agent:

• spark.sql.parquet.int96RebaseModeInWrite=LEGACY
• spark.sql.parquet.datetimeRebaseModeInWrite=LEGACY
• spark.sql.parquet.int96RebaseModeInRead=LEGACY
• spark.sql.parquet.datetimeRebaseModeInRead=LEGACY
• spark.sql.avro.datetimeRebaseModeInWrite=LEGACY
• spark.sql.avro.datetimeRebaseModeInRead=LEGACY

Time zone for the Date and Timestamp data type fields defaults to the Secure Agent host machine time zone.  

When you run a mapping in advanced mode to read from or write to fields of the Date and Timestamp
data types, the time zone defaults to the Secure Agent host machine time zone.

82 Chapter 6: Mappings for Google BigQuery V2

To change the Date and Timestamp to the UTC time zone, you can either set the Spark properties
globally in the Secure Agent directory for all the tasks in the organization that use this Secure Agent, or
you can set the Spark session properties for a specific task from the task properties:  

To set the properties globally, perform the following tasks:

1. Add the following properties to the <Secure Agent installation directory>/apps/
At_Scale_Server/41.0.2.1/spark/custom.properties directory:

• infacco.job.spark.driver.extraJavaOptions=-Duser.timezone=UTC

• infacco.job.spark.executor.extraJavaOptions=-Duser.timezone=UTC

2. Restart the Secure Agent.

To set the properties for a specific task, navigate to the Spark session properties in the task properties,
and perform the following steps:

• Select the session property name as spark.driver.extraJavaOptions and set the value to -
Duser.timezone=UTC .

• Select spark.executor.extraJavaOptions and set the value to -Duser.timezone=UTC.

Troubleshooting a mapping in advanced mode 83

C h a p t e r 7

Migrating a mapping
You can configure a connection and mapping in one environment and then migrate and run the mapping in
another environment.

You can also migrate mappings configured in advanced mode. After the migration, you can change the
connection properties from the Administrator service, but you do not need to modify the mapping. Data
Integration uses the configured runtime attributes from the earlier environment to run the mapping
successfully in the new environment.

Consider a scenario where you develop a mapping in the development organization (Org 1) and you then
migrate and run the mapping in the production organization (Org 2). After you migrate, you might want to use
the same or a different connection endpoint or object path in Org 2. Based on your requirement, follow the
guidelines in this section before you plan the migration.

Use the same object path for the migrated mapping
If you want the migrated mapping in Org 2 to use the same object path as in Org 1, you must maintain the
same dataset name and table name in the Google BigQuery account for Org 2.

For example, if you have two different accounts, Account1 used for Org 1 and Account2 used for Org 2, the
object path for the dataset name and table name must be the same in both the accounts:

Account1: DatasetName1/TableName1

Account2: DatasetName1/TableName1

In this scenario, you do not need to override the dataset and table name in the advanced properties and the
mapping runs successfully.

Use a different object path for the migrated mapping
After you migrate the mapping, you can use a different object path to run the mapping from the new
environment.

In this scenario, before you migrate the mapping, you can change the object metadata, runtime attributes, or
the connection attributes to reflect the object path in the migrated environment. You do not have to edit or
update the mapping in the new environment.

84

As a rule, when you specify the dataset name and table name in the advanced properties, connection, or
object properties, Data Integration honors the attributes in the following order of precedence:

1. Runtime advanced attributes. The advanced properties such as dataset name and table name in the
Source or Target transformation in a mapping.

2. Object metadata. The object selected in the Source or Target transformation in a mapping.

Migration options
When you migrate, you can choose from one of the following options to update the object path:

Option 1. Override the properties from the advanced properties

Before the migration, specify the required dataset and table name for the object from Org 2 in the advanced
properties of the Org 1 mapping.

After the migration, when you run the mapping, the Secure Agent uses the configured advanced parameters
to override the object specified in the mapping imported from Org 1.

Option 2. Parameterize the properties in the mapping

You can choose to parameterize the advanced attributes, such as the dataset and table name before the
migration. You can configure input parameters, in-out parameters, and parameter files in the mapping. When
you use a parameter file, you can save the parameter file on a local machine or in a cloud-hosted directory.

After you migrate the mapping, do not edit or update the mapping. If you have used in-out parameters, you
can change the dataset and table attributes using the parameter file so that the changes are applied when
the task runs.

Parameterizing only the advanced properties, but not the object in the mapping

If you want to parameterize only the advanced properties and use them at runtime, select a placeholder
object in the object properties in the mapping and then specify an override to this placeholder object
from the advanced properties. Ensure that the placeholder object contains the same metadata as the
corresponding table that you specify as an override. When you run the mapping, the value specified in
the advanced property overrides the placeholder object.

Parameterizing both the object and the advanced properties

If you want to keep both the Google BigQuery object type and the advanced fields parameterized, you
must leave the Allow parameter to be overridden at runtime option unselected in the input parameter
window while adding the parameters, and then select the required object at the task level. When you run
the task, the values specified in the advanced properties take precedence.

Use a different object path for the migrated mapping 85

Rules and guidelines for migrating a mapping
Consider the following rules and guidelines when you use the same or a different object path for the migrated
mapping:

• The following table lists the transformation, object type, and the fields in the advanced properties of a
mapping that you can retain when you migrate to the new environment:

Transformations Object Type Advanced Fields

Source Single object, multiple objects Dataset and table name

Lookup Single object
Note: Applicable for unconnected, and connected cached and
uncached.

Dataset and table name

Target Single object Dataset and table name

• Before you migrate a mapping to the new environment, map the connection from the earlier environment
to the migrated environment that has access to the dataset and table name configured in the advanced
properties in the earlier environment.

• Ensure that the table that you specify as an override contains the same schema as the corresponding
table selected during design time.

• When you specify a custom query as a source object and override the source dataset and source table
name, the Secure Agent does not consider the dataset name or table name to import the metadata.

• After you migrate the mapping to Org2, you must not edit the mapping.

• When you override the dataset and table name in a mapping, the mapping fails with an error if the dataset
used in the connection in Org2 is not valid. The mapping fails with the following error:
Operation failed: error [The following exception occurred: [404 Not Found]

• Before you migrate a mapping that contains an override to the parameterized object using the parameter
file, you need to disable the "Allow parameter to be overridden at run time" option. If you enable the option
and you run the mapping after the migration, the following error occurs:
Mapping is failing with error -Unable to start Mapping Task because schema fetch failed.

86 Chapter 7: Migrating a mapping

C h a p t e r 8

Upgrading to Google BigQuery V2
Connector

If you are accessing Google BigQuery using the Google BigQuery connection or the Google BigQuery ODBC
connection, you can upgrade to the newer Google BigQuery V2 Connector. You can replace the source or
target connection type in existing mappings and mapping tasks that use the Google BigQuery connection or
the Google BigQuery ODBC connection with the Google BigQuery V2 connection.

After you replace the connection in an existing mapping, reimport the Google BigQuery object and remap the
fields in the mapping. The configured advanced source, target, and lookup properties in the fields that are
common between the two connectors are retained in the new connector. You can run the mapping
successfully using the configured values from the old connector. You can additionally configure features that
the enhanced Google BigQuery V2 Connector offers.

Note: If you are using the Google BigQuery ODBC connection or the Google BigQuery connection in mappings
to read from or write data to Google BigQuery, Informatica recommends you to use the Google BigQuery V2
connection to make use of the features that the enhanced connector offers. To get the license for Google
BigQuery V2 Connector, contact Global Customer support.

87

Connection switching example
You want to upgrade your existing Google BigQuery V1 mapping that uses the Google BigQuery connection to
the Google BigQuery V2 connection.

1. Open the existing Google BigQuery V1 mapping that you want to upgrade to Google BigQuery V2.

The following image shows an existing mapping that uses the Google BigQuery connection and contains
the configured advanced properties in the Target transformation:

The configured target object in this example is: MasterData_PreSQLSource
2. To retain the mapped fields from the field mapping when you switch the connection, on the Field

Mapping tab, choose from the following Field Map Options menu in the Google BigQuery V1 mapping:

• To retain the fields automatically mapped after the switch, select Automatic.

• To manually map the retained fields after the switch, select Manual.

Note: When you select manual, after switching the connection, you have the option to automap the
retained fields using the previous mapping.

3. To switch the connection, in the Connection field, change the connection from Google BigQuery V1 to
Google BigQuery V2.

4. In the Change Connection dialog box, select the following properties, and click Yes:

• Connection switch. Switches to the connection that you select.

• Retain field mapping. Retains the configured field mappings from Google BigQuery V1.

88 Chapter 8: Upgrading to Google BigQuery V2 Connector

The following image shows the options that you must select:

5. Use the same object path in the mapping as Google BigQuery V1.

The following image shows the switched connection with the same object=: MasterData_PreSQLSource

The configured target advanced properties from the Google BigQuery V1 mapping reflect in the Target
transformation.

6. If you had selected Manual on the Field Mapping tab in the Google BigQuery V1 mapping and you want
to reflect the field mappings in Google BigQuery V2, on the Field Mapping tab, select Automap, and then
select Previous Mapping.

Note: If you had selected Automatic in Google BigQuery V1, you do not have to perform this task.

Connection switching example 89

In the following image, the configured mapped fields from the Google BigQuery V1 mapping reflects in
the Google BigQuery V2 mapping:

7. Click Save.

Advanced properties retained after the switch
The following table lists the configured advanced source and target properties from Google BigQuery ODBC
that are retained in Google BigQuery V2 mappings:

Properties Google BigQuery ODBC properties retained in Google BigQuery V2

Source - Pre SQL
- Post SQL
- SQL Override

Target - Pre SQL
- Post SQL
- Update Override

90 Chapter 8: Upgrading to Google BigQuery V2 Connector

The following table lists the configured advanced source, lookup, and target properties from Google BigQuery
V1 mappings that are retained in Google BigQuery V2 mappings:

Properties Google BigQuery V1 properties retained in Google BigQuery V2

Source and Lookup - Source Dataset ID
- Source Table Name
- Number of Rows to Read
- Allow Large Results
- Query Results Table Name
- Job Poll Interval In Seconds
- Read Mode
- Number of Threads for Downloading Staging Files
- Data format of the staging file
- Local Stage File Directory
- Staging File Name
- Enable Staging File Compression
- Persist Destination Table
- pre SQL
- post SQL
- pre SQL Configuration
- post SQL Configuration

Target - Target Dataset ID
- Target Table Name
- Create Disposition
- Write Disposition
- Write Mode
- Streaming Template Table Suffix
- Rows per Streaming Request
- Staging File Name
- Data format of the staging file
- Persist Staging File After Loading
- Enable Staging File Compression
- Job Poll Interval In Seconds
- Number of Threads for Uploading Staging File
- Local Stage File Directory
- Allow Quoted Newlines
- Field Delimiter
- Allow Jagged Rows
- pre SQL
- post SQL
- pre SQL Configuration
- post SQL Configuration
- Quote Char

Rules and guidelines
Consider the following rules before you replace the Google BigQuery ODBC connection or Google BigQuery V1
connection in an existing mapping with the Google BigQuery V2 connection:

• When you specify the pre-SQL, post-SQL, and SQL query commands in the source and target properties for
Google BigQuery and upgrade the connection to Google BigQuery V2, ensure that the number of
characters in the queries in the Google BigQuery ODBC connection or Google BigQuery V1 connection
must not exceed 65535. Otherwise, the queries are truncated.

Rules and guidelines 91

• Even after you replace the connection with the Google BigQuery V2 connection, the object field displays
the object that you selected in the earlier connection. You need to re-import the Google BigQuery object
and remap the fields in the mapping.

92 Chapter 8: Upgrading to Google BigQuery V2 Connector

C h a p t e r 9

SQL ELT with Google BigQuery V2
Connector

You can enhance the mapping performance with SQL ELT.

You can read data from a cloud data warehouse and write it to the same cloud data warehouse. You can also
read data from a data lake in your cloud ecosystem and write it to a cloud data warehouse in the same
ecosystem. Data Integration translates the transformation logic into ecosystem-specific commands and SQL
statements that run in the underlying cloud infrastructure. This increases the data processing speed because
the data is not moved out of the cloud infrastructure for processing.

Example

You work for healthcare solutions and your organization provides healthcare technology to pharmacies and
pharmacy chains. You enable pharmacies to process prescriptions, store and provide access to healthcare
records, and improve patient outcomes. Your organization stores its data in Amazon S3.

The management wants to create a patient-centric pharmacy management system. The organization plans to
leverage the warehouse infrastructure of Google BigQuery and load all its data to Google BigQuery so that
they can make operational, financial, and clinical decisions with ease.

To load data from an Amazon S3 object to Google BigQuery, you must use SQL ELT with the required
transformations that support the data warehouse model. Use an Amazon S3 V2 connection to read data from
the Amazon S3 source and a Google BigQuery V2 connection to write to a Google BigQuery target. You can
enhance the performance of the task and reduce the costs involved by configuring SQL mappings.

SQL ELT configuration options
You can configure SQL ELT when you want the mapping logic to be processed by your cloud ecosystem.

Configure SQL ELT in one of the following ways:
Create a mapping in SQL ELT mode

In a mapping in SQL ELT mode, you don't have to specify an optimization type. Data Integration pushes
the transformation logic by default to the target database. You can also preview data for individual
transformations to validate the mapping logic.

When you run a mapping in SQL ELT mode, you can load data from the following data sources to Google
BigQuery:

• Amazon S3

93

• Google Cloud Storage

• Google BigQuery

For more information on mappings in SQL ELT mode, see “Mappings in SQL ELT mode for Google
BigQuery” on page 94.

Create a mapping

If you want to push some or all the transformation logic, you can add the mapping to a mapping task,
and enable SQL ELT optimization in the mapping task. Data Integration pushes the transformation logic
to the source or target database and processes any transformation logic that is not pushed to the
sources and targets.

When you create mappings and enable SQL ELT optimization in a mapping task, you can load data from
the following data sources to Google BigQuery:

• Amazon S3

• Google Cloud Storage

• Google BigQuery

For more information on SQL ELT optimization, see “SQL ELT optimization for mapping tasks” on page
100.

SQL ELT query preview
Before you run a mapping that is configured for SQL ELT optimization or a mapping in SQL ELT mode, you
can preview SQL queries in the SQL ELT Query panel in the Mapping Designer.

After you configure a mapping and run the preview, Data Integration creates and runs a temporary SQL ELT
preview mapping task. When the job completes, Data Integration displays the SQL queries to be executed and
any warnings in the SQL ELT Query panel. The warning messages help you understand which
transformations in the configured mapping are not applicable for SQL ELT optimization. If SQL ELT query
preview fails, Data Integration lists any queries generated up to the point of failure. You can edit the mapping
and fix the required transformations before you run the mapping for SQL ELT optimization.

You can also view the temporary job created under My Jobs and download the session log to view the
queries generated.

For more information about how to preview SQL ELT query, see "SQL ELT query preview" in Mappings in the
Data Integration documentation.

Mappings in SQL ELT mode for Google BigQuery
You can create mappings in SQL ELT mode to read data from Google BigQuery, Google Cloud Storage, or
Amazon S3, load it to Google BigQuery, and perform all of the data transformation within Google BigQuery.

To create a mapping in SQL ELT mode, you create a mapping, and then select Mapping - SQL ELT as the
mapping type. You are then prompted to choose a Google BigQuery target connection. If your organization
doesn't have any Google BigQuery V2 connection, you are prompted to create one. After you choose the
target connection, the Mapping Designer opens. When you create a mapping, a Source transformation and a
Target transformation are already on the canvas for you to configure.

94 Chapter 9: SQL ELT with Google BigQuery V2 Connector

Sources in mappings in SQL ELT mode
When you configure the source connection in the Source transformation, you can choose only an Amazon S3
V2, Google BigQuery V2, or Google Cloud Storage V2 connection.

Google BigQuery V2 source properties

You can configure the following advanced properties for a Google BigQuery V2 source:

• Source Dataset ID

• Source Table Name

• SQL Override Query

Google Cloud Storage V2 source properties

You can configure the following advanced properties for a Google Cloud Storage V2 source:

• Google Cloud Storage Path

• Source File Name

• Is Directory

For more information on how to configure the supported properties, see the Google Cloud Storage V2
Connector documentation.

Amazon S3 V2 source properties

You can configure the following advanced properties for an Amazon S3 V2 source:

• Source Type

• Folder Path

• File Name

For more information on how to configure the supported properties, see the Amazon S3 V2 Connector
documentation.

For more information on how the sources in mappings in SQL ELT mode behave differently from the sources
in other types of mappings, see the Sources in mappings in SQL ELT mode topic in Mappings in the Data
Integration help.

Targets in mappings in SQL ELT mode
When you configure a Target transformation in a mapping in SQL ELT mode, you need to use only a Google
BigQuery V2 connection.

You can configure the following advanced properties in a Google BigQuery target transformation in a
mapping in SQL ELT mode:

• UpdateMode

• Target Dataset ID

• Target Table Name

• pre SQL

• post SQL

• Truncate target table

• Billing Project ID

Mappings in SQL ELT mode for Google BigQuery 95

For more information on how the targets in mappings in SQL ELT mode behaves differently from the targets
in other types of mappings, see the Targets in mappings in SQL ELT mode topic in Mappings in the Data
Integration help.

Transformations in mappings in SQL ELT mode
A mapping in SQL ELT mode includes transformations that Google BigQuery can process.

You can use the following transformations in a mapping in SQL ELT mode:

• Aggregator

• Expression

• Filter

• Joiner

• Lookup

• Rank

• Router

• Sorter

• Source

• Target

• Union

Functions in mappings in SQL ELT mode
When you create expressions within a mapping in SQL ELT mode, you must use the functions and expression
syntax of Google BigQuery and not Informatica functions and expression syntax.

You can use the following functions in a mapping in SQL ELT mode:

Date and time functions

CURRENT_TIMESTAMP() TIMESTAMP_MILLIS()

FORMAT_TIMESTAMP() TIMESTAMP_SECONDS()

PARSE_TIMESTAMP() UNIX_MICROS()

STRING() UNIX_MILLIS()

TIMESTAMP() UNIX_SECONDS()

TIMESTAMP_MICROS()

Hash functions

FARM_FINGERPRINT() SHA256()

MD5() SHA512()

SHA1()

96 Chapter 9: SQL ELT with Google BigQuery V2 Connector

String, conversion, and utility functions

ASCII() LENGTH() RIGHT()

BYTE_LENGTH() LOWER() RPAD()

CHAR_LENGTH() LPAD() RTRIM()

CHARACTER_LENGTH() LTRIM() SAFE_CONVERT_BYTES_TO_STRING(
)

CHR() NORMALIZE() SOUNDEX()

COLLATE() NORMALIZE_AND_CASEFOLD() STRPOS()

CONCAT() OCTET_LENGTH() SUBSTR()

FROM_BASE32() PARSE_NUMERIC() SUBSTRING()

FROM_BASE64() REGEXP_EXTRACT() TO_BASE32()

FROM_HEX() REGEXP_INSTR() TO_BASE64()

GENERATE_UUID() REGEXP_REPLACE() TO_HEX()

IF() REGEXP_SUBSTR() TRANSLATE()

INITCAP() REPEAT() TRIM()

INSTR() REPLACE() UNICODE()

LEFT() REVERSE() UPPER()

Mathematical functions

ABS() CSC() ROUND()

ACOS() CSCH() SAFE_ADD()

ACOSH() DIV() SAFE_DIVIDE()

ASIN() EXP() SAFE_MULTIPLY()

ASINH() FLOOR() SAFE_NEGATE()

ATAN() GREATEST() SAFE_SUBTRACT()

ATAN2() IEEE_DIVIDE() SEC()

ATANH() LEAST() SECH()

CBRT() LN() SIGN()

CEIL() LOG() SIN()

Mappings in SQL ELT mode for Google BigQuery 97

CEILING() LOG10() SINH()

COS() MOD() SQRT()

COSH() POW() TAN()

COT() POWER() TANH()

COTH() RAND() TRUNC()

Net functions

NET_HOST() NET_IPV4_FROM_INT64()

NET_IP_FROM_STRING() NET_IPV4_TO_INT64()

NET_IP_NET_MASK() NET_PUBLIC_SUFFIX()

NET_IP_TO_STRING() NET_REG_DOMAIN()

NET_IP_TRUNC() NET_SAFE_IP_FROM_STRING()

Authenticated Encryption with Associated Data (AEAD) functions

AEAD_DECRYPT_BYTES() KEYS_KEYSET_FROM_JSON()

AEAD_DECRYPT_STRING() KEYS_KEYSET_LENGTH()

AEAD_ENCRYPT() KEYS_KEYSET_TO_JSON()

DETERMINISTIC_DECRYPT_BYTES() KEYS_NEW_KEYSET()

DETERMINISTIC_DECRYPT_STRING() KEYS_NEW_WRAPPED_KEYSET()

DETERMINISTIC_ENCRYPT() KEYS_ROTATE_KEYSET()

KEYS_ADD_KEY_FROM_RAW_BYTES()

Window functions

ANY_VALUE() LAST_VALUE() PERCENTILE_CONT()

AVG() LEAD() PERCENTILE_DISC()

COUNT() MAX() RANK()

CUME_DIST() MIN() ROW_NUMBER()

DENSE_RANK() NTH_VALUE() STRING_AGG()

98 Chapter 9: SQL ELT with Google BigQuery V2 Connector

FIRST_VALUE() NTILE() SUM()

LAG() PERCENT_RANK()

For more information on functions and their expression syntax, see SQL function reference in the Google
BigQuery documentation.

Operators in mappings in SQL ELT mode
When you use mappings in SQL ELT mode, Data Integration converts the expression in the transformation by
determining equivalent operators in the database. If there is no equivalent operator, Data Integration
processes the transformation logic.

The table lists the operators that you can push to Google BigQuery:

Operator Operator Operator

+ > <=

- < !=

* = AND

/ <> OR

% >= NOT

Rules and guidelines in mappings in SQL ELT mode
Consider the following rules and guidelines when you run mappings in SQL ELT mode:
General guidelines

• You can use different connections for the Source and Lookup transformations. The Source
transformation can use a Google BigQuery V2, Google Cloud Storage V2, or Amazon S3 V2
connection, while the Lookup transformation can use a Google BigQuery V2 connection.

Sources

• When you parameterize the source in a mapping, you cannot set Query as the source type.

Data types

• When you read from and write to Google BigQuery, ensure that the source data doesn't contain
BigNumeric, Boolean, Date, DateTime, Record, Repeat, and Time data types.

• When you configure the expression output to return the decimal data type, the SQL ELT query adds
the TRUNC function to provide the output.

Functions

• You cannot use the function name as the expression output field name, source field name, or target
field name.

• You cannot configure nested Window functions in a mapping.

• When you use the REGEXP_EXTRACT function in an Expression or Aggregator transformation, the
mapping fails if the argument uses the Byte data type and the return type is the String data type.

Mappings in SQL ELT mode for Google BigQuery 99

https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators#functions

To run the mapping successfully, update the data types in the argument and return type of the
REGEXP_EXTRACT function to compatible formats.

• To configure the Window functions in an Expression transformation, you need to select the Enable
window properties check box on the Window tab.

SQL ELT optimization for mapping tasks
You can use SQL ELT optimization to push the transformation logic to the Google BigQuery database.

SQL ELT optimization
When you run a task configured for SQL ELT optimization, Data Integration converts the transformation logic
to an SQL query. Data Integration sends the query to the database, and the database runs the query. The
amount of transformation logic that Data Integration pushes to the database depends on the database, the
transformation logic, and the mapping configuration. Data Integration processes all transformation logic that
it cannot push to a database.

Configure SQL ELT optimization for a mapping in the tasks properties. You cannot configure SQL ELT
optimization for a mapping in advanced mode.

SQL ELT optimization types
When you apply SQL ELT optimization, the task pushes transformation logic to the source or target database
based on the optimization type you specify in the task properties. Data Integration translates the
transformation logic into SQL queries or Google BigQuery commands to the Google BigQuery database. The
database runs the SQL queries or Google BigQuery commands to process the transformations.

You can configure the following types of SQL ELT optimization in a mapping:
Full

Data Integration first pushes as much of the transformation logic as possible to process in the target
database. If the target database cannot process some of the transformation logic, it pushes that logic
for processing to the source database. Data Integration processes all the remaining transformation logic
that it cannot push to the target or source database. This is applicable for mappings that read from or
write to Google BigQuery.

When you select full SQL ELT optimization for mappings that read from Google Cloud Storage and write
to Google BigQuery, Data Integration pushes as much of the transformation logic as possible to process
in the target database. Data Integration processes all the transformation logic that it cannot push to the
target database.

Source

Data Integration pushes down as much as the transformation logic as possible to process in the source
database.

When you select source SQL ELT optimization, Data Integration pushes the transformation logic for all
the supported transformations downstream in the mapping, but excludes the target transformation.

SQL ELT optimization scenarios
You can configure SQL ELT optimization for the following scenarios in mappings:

100 Chapter 9: SQL ELT with Google BigQuery V2 Connector

Important: To configure SQL ELT optimization using the Google BigQuery V2 Connector, verify that your
organization has the Mappings-Advanced SQL ELT Optimization license. To get the license, contact Global
Customer Support.

Source and target endpoints Supported SQL ELT optimization scenarios in
mappings

SQL ELT optimization
type

Google BigQuery source
Google BigQuery target

Reads from and writes to Google BigQuery using the
Google BigQuery V2 connection.

Full, Source

Google Cloud Storage source
Google BigQuery target

Reads from Google Cloud Storage using a Google
Cloud Storage V2 connection and writes to Google
BigQuery using a Google BigQuery V2 connection.

Full

Amazon S3 source
Google BigQuery target

Reads from Amazon S3 using an Amazon S3 V2
connection and writes to Google BigQuery using a
Google BigQuery V2 connection.

Full

Note: You can use the Secure Agent or the Hosted Agent to run mappings enabled with SQL ELT optimization.

SQL ELT optimization preview
Before you can run a mapping task configured for SQL ELT optimization, you can preview if SQL ELT
optimization is possible when you create the mapping. You can preview SQL ELT optimization from the SQL
ELT Optimization panel in the Mapping Designer.

After you select the required SQL ELT optimization options and run the preview, Data Integration creates and
runs a temporary SQL ELT optimization preview mapping task. When the job completes, Data Integration
displays the SQL queries to be executed and any warnings in the SQL ELT Optimization panel. The warning
messages help you understand which transformations in the configured mapping are not applicable for SQL
ELT optimization. If SQL ELT optimization fails, Data Integration lists any queries generated up to the point of
failure. You can edit the mapping and fix the required transformations before you run the mapping for SQL
ELT optimization.

You can also view the temporary job created under My Jobs and download the session log to view the
queries generated.

For more information about how to preview SQL ELT optimization, see the topic "SQL ELT optimization
preview" in Mappings in the Data Integration help.

Configuring SQL ELT optimization
To optimize a mapping, add the mapping to a task, and then configure SQL ELT optimization in the mapping
task.

1. Create a mapping task.

2. In the SQL ELT Optimization section on the Runtime Options tab, set the SQL ELT optimization value to
Full or To Source.

3. If full SQL ELT optimization is not available, select how Data Integration handles SQL ELT optimization in
the SQL ELT Optimization Fallback Option menu:

• Partial SQL ELT. Default. Data Integration pushes as much transformation logic as possible to the
source database. The task processes any transformation logic that it can't push to a database. You
can use Partial SQL ELT only when you read from and write to Google BigQuery.

SQL ELT optimization for mapping tasks 101

• Non SQL ELT. The task runs without SQL ELT optimization.

• Fail Task. Data Integration fails the task.

Note: The fallback options are not applicable to mappings in advanced mode.

When you run the mapping task, the transformation logic is pushed to the Google BigQuery database.

Configuring a custom query or an SQL override for the Google BigQuery
source object
You can push down a custom query or an SQL override to Google BigQuery.

Before you run a task that contains a custom query as the source object or you configure an SQL override,
you must set the Create Temporary View session property in the mapping task properties.

Note: If you do not set the Create Temporary View property, the mapping runs without SQL ELT optimization.

Perform the following task to set the property:

1. In the mapping task, navigate to the SQL ELT Optimization section on the Runtime Options tab.

2. Select Create Temporary View.

3. Click Finish.

Context based optimization for multiple targets
When you configure a mapping to write to multiple Google BigQuery targets or write to the same Google
target table in two Target transformations, you can further optimize the write operation when you configure
full SQL ELT optimization.

To optimize, you can choose to configure an insert, update, upsert, delete, or data driven operation for
multiple targets individually. You can select the same Google BigQuery target table in multiple Target
transformations and perform different operations for each of the Target transformations to run independent
of each other.

When you configure a mapping enabled for full SQL ELT optimization to write to the same Google BigQuery
target table in two target transformations, you can specify the optimization context for slowly changing
dimension type 2 merge scenario.

You can enable the SCD Type 2 merge when you write to same Google BigQuery table in two Target
transformations and perform different operations for each of the Target transformations, where you use one
target to insert data and the other target to update data. Data Integration combines the queries for both the
targets and issues a Merge query.

Note: Multi-insert mode is not applicable for Google BigQuery targets.

102 Chapter 9: SQL ELT with Google BigQuery V2 Connector

Understanding an SCD type 2 merge mapping
The SCD Type 2 merge mapping uses a BigQuery source and two target transformations that write to the
same Google BigQuery table. One target transformation updates the table while the other transformation
inserts data to the Google BigQuery table.

The following image shows a mapping that writes slowly changing dimension data to a Google BigQuery
target table:

Add expression and lookup transformations to compare source data against the existing target data. You
enter the lookup conditions and source columns that you want the Data Integration to compare against the
existing target.

For each source row without a matching row in the target, the Expression transformation marks the new row.
For each source row with a matching row in the target, the Expression transformation compares existing
source and target columns with the MD5() function. If those columns do not match, the Expression marks the
existing target row as an inactive row and inserts a new target row as an active row. The mapping then splits
into two data groups using the Router transformation.

You must generate an UUID value through the Expression transformation and add it as a unique ID column
and also as the first column in the target. Additionally, you can add an active status flag, MD5() hash value,
start timestamp, and end timestamp columns to write to the target through the Expression.

The first data flow from the Router transformation passes only new rows to the Expression transformation.
The Expression transformation inserts new rows to the target. The Expression transformation also assigns
an UUID value and updates the start timestamp, MD5() function hash value, and the active status as 1 for
each new row.

In the second data flow, the Router transformation passes only changed rows to pass to the Expression
transformation. The Expression transformation inserts changed rows to the target. The Expression
transformation updates the active status as 0 and adds the end timestamp for the existing row in the target.

Clean stop a SQL ELT optimization job
When a task enabled for SQL ELT optimization is running, you can clean stop the job to terminate all the
issued statements and processes spawned by the job.

You can use this option for mappings enabled for SQL ELT optimization that use the Google BigQuery V2
connection either in the source or target transformation, or both.

Use the Clean Stop option on the My Jobs page in Data Integration and the All Jobs and Running Jobs page
in Monitor.

See the following exceptions before you clean stop a SQL ELT optimization task:

• When you clean stop a task enabled for source SQL ELT optimization that reads from or writes to Google
BigQuery and the target or source properties in the mapping contains pre-SQL or post-SQL statements,
even if the select query is terminated, the job continues to run the target post-SQL query.

• When you start a job enabled for full SQL ELT optimization and clean stop it immediately, and if the
mapping is configured to create a new target at runtime, the table is created even if the job is terminated.

SQL ELT optimization for mapping tasks 103

SQL ELT optimization using a Google BigQuery V2 connection
You can configure SQL ELT optimization for a mapping that contains a Google BigQuery V2 connection. SQL
ELT optimization enhances the mapping performance. You can configure full SQL ELT optimization when you
read data from an Google Cloud Storage source and write to a Google BigQuery target.

You can configure SQL ELT optimization for a mapping task to read from or write data to Google BigQuery
objects associated with different projects in different Google service accounts within the same region.

SQL ELT optimization compatibility
You can configure the task to push transformations, variables, functions, and operators to the database.

When you use SQL ELT optimization, the Secure Agent converts the expression in the transformation by
determining equivalent operators, variables, and functions in the database. If there is no equivalent operator,
variable, and function, the Secure Agent processes the transformation logic.

Functions with Google BigQuery V2
The following table lists the functions that can be pushed to the Google BigQuery database by using full SQL
ELT optimization:

Function Function Function Function

ABS() IN() MOD() SYSDATE()

ADD_TO_DATE() INSTR() POWER() SYSTIMESTAMP()

AVG() IS_DATE() REG_REPLACE() TAN()

CEIL() IS_NUMBER() REPLACECHR() TANH()

CHR() IS_SPACES() REPLACESTR() TO_BIGINT

CONCAT() ISNULL() ROUND(DATE) TO_CHAR(DATE)

COS() LAST_DAY() ROUND(NUMBER) TO_CHAR(NUMBER)

COSH() LENGTH() RPAD() TO_CHAR(STRING)

COUNT() LN() RTRIM() TO_DATE()

DATE_COMPARE() LOG() SIGN() TO_DECIMAL()

DATE_DIFF() LOWER() SIN() TO_FLOAT()

DECODE() LPAD() SINH() TO_INTEGER()

EXP() LTRIM() SQRT() TRUNC(DATE)

FLOOR() MAX() STDDEV() TRUNC(NUMBER)

104 Chapter 9: SQL ELT with Google BigQuery V2 Connector

Function Function Function Function

GET_DATE_PART() MD5() SUBSTR() UPPER()

IIF() MIN() SUM() VARIANCE()

Rules and guidelines

When you push functions to Google BigQuery, adhere to the following guidelines:

• To push IS_DATE() function to Google BigQuery, you must configure the output field in the expression
transformation to a column of string data type.

• When you push the IS_DATE() function to Google BigQuery and use the SS.US format argument and
specify values with the SS.MS or SS format, the IS_DATE() returns true.

• When you push the IS_DATE() function to Google BigQuery and use the MON format argument and specify
values with the MONTH format, the IS_DATE() returns true.

• When you push the IS_DATE() function to Google BigQuery and use the MONTH format argument and
specify values with the MON format, the IS_DATE() returns true.

• When you use Is_Number(), Is_Spaces(), and Is_Date() in an Expression transformation, the output field
type supports only integer and string data types.

• When you push a function to Google BigQuery and the mapping runs without SQL ELT optimization, the
IS_DATE() returns Boolean values of 0 or 1 to the Google BigQuery target table. If the mappings run with
SQL ELT optimization, the IS_DATE() returns Boolean values of true or false to the Google BigQuery target
table.

• When you specify Is_Number(), Is_Spaces(), or Is_Date() functions in an Expression transformation, the
output field type supports only integer and string data types.

• To push the TO_CHAR(DATE) function to Google BigQuery, you must use the following string and format
arguments:

- YYYY

- YY

- RR

- Q

- MM

- MON

- MONTH

- DD

- DDD

- DY

- DAY

- HH12

- HH24

- MI

- SS

- SS.MS

SQL ELT optimization for mapping tasks 105

- SS.US

- am

- AM

- pm

- PM

• To push the TO_DATE(string, format) function to Google BigQuery, you must use the following format
arguments:

- YYYY

- YY

- RR

- MM

- MON

- MONTH

- DD

- HH12

- HH24

- MI

- SS

- SS.MS

- SS.US

- am

- AM

- pm

- PM

• To push the ADD_TO_DATE(date, format, amount) or TRUNC(date, format) function to Google BigQuery,
you must use the following format arguments:

- YYYY

- YY

- YYY

- Y

- MM

- MON

- MONTH

- D

- DD

- DDD

- DY

- DAY

- HH

- HH12

106 Chapter 9: SQL ELT with Google BigQuery V2 Connector

- HH24

- MI

- SS

- MS

- US

• To push the GET_DATE_PART(date, format) function to Google BigQuery, you must use the following
format arguments:

- YYYY

- YY

- YYY

- Y

- MM

- MON

- MONTH

- DD

- DDD

- DY

- DAY

- HH

- HH12

- HH24

- MI

- SS

- MS

- US

• When you push the GET_DATE_PART() function to the Google BigQuery database and specify null in the
format argument, the mapping runs without SQL ELT optimization.

• When you push the LAST_DAY() function to the Google BigQuery database and specify Date/Time or
Timestamp value in the date argument, the LAST_DAY() function pushes only the date values to the
Google BigQuery target. You might encounter a data mismatch when you compare a mapping that runs
with full SQL ELT optimization and a mapping that runs without SQL ELT optimization.

• To push the ROUND(DATE) function to Google BigQuery, you must use the following format arguments:

- DD

- DDD

- DY

- DAY

- HH

- HH12

- HH24

- MI

SQL ELT optimization for mapping tasks 107

- SS

- MS

• When you push the ROUND(DATE) function to the Google BigQuery database and use NS (nanoseconds)
in the format argument, the mapping runs without SQL ELT optimization or with source SQL ELT
optimization.

• To push the ROUND(NUMBER) function to Google BigQuery, you must use a numeric value of the following
data types:

- Decimal

- Numeric

- NULL

• To push the INSTR() function to Google BigQuery, you must only define the input_field and string
arguments.

• When you push the SYSTIMESTAMP() function to the Google BigQuery database, do not specify any
format arguments. If you do not specify any format arguments, the Google BigQuery database returns the
complete timestamp.

• If you use a % operator in an expression transformation, the mapping converts the % operator to the
MOD() function and pushes the MOD() function to Google BigQuery.
The MOD() function supports arguments of Int64 and Numeric data types. When you push the MOD()
function to the Google BigQuery database, ensure that the format arguments are of the same data type.
You can specify the arguments in the following formats:

•MOD(Int64, Int64)

•MOD(Numeric, Numeric)

• When you push the TRUNC(DATE) function to the Google BigQuery database and specify a NULL value in
the format argument, the mapping runs without SQL ELT optimization.

• When you push the SYSDATE() function to the Google BigQuery database and the mapping runs with SQL
ELT optimization, the function returns the current date and time based on the time zone associated with
the Google BigQuery database.
When you push the SYSDATE() function to the Google BigQuery database and the mapping runs without
SQL ELT optimization, the function returns the current date and time based on the time zone associated
with the machine where the Secure Agent runs.

• When you push the SUBSTR() function to the Google BigQuery database, you must specify a value of the
String data type in the string argument. If you pass a numeric value, the mapping runs without SQL ELT
optimization.

• When you push the SUBSTR() function to the Google BigQuery database, the value of the length argument
must be an integer greater than 0. If you specify a negative integer value for the length argument, the
mapping runs without SQL ELT optimization.

• When you push the EXP() function to the Google BigQuery database and specify a value of the Numeric or
Double data type for the exponent argument, you might encounter a data mismatch in the decimal values
when you compare a mapping that runs with full SQL ELT optimization and a mapping that runs without
SQL ELT optimization.

• When you push the RPAD() or LPAD() function to the Google BigQuery database, you must specify a value
of the String data type in the first_string argument. If you specify a value other than the String data type in
the first_string argument, the mapping runs without SQL ELT optimization.

• When you push the RPAD() or LPAD() function to the Google BigQuery database and specify an empty
string in the second_string or third_string argument, the mapping runs without full SQL ELT optimization.

108 Chapter 9: SQL ELT with Google BigQuery V2 Connector

• When you push the REPLACECHR() function to the Google BigQuery database to write Numeric data to the
Google BigQuery target, you can see a data mismatch between the results when you compare a mapping
that runs with full SQL ELT optimization against a mapping disabled for SQL ELT optimization.
If the mapping runs with full SQL ELT optimization, the trailing zeroes after decimal is not considered
while casting. However, if you run a mapping with disabled SQL ELT optimization, the Secure Agent casts
the trailing zeroes after the decimal while casting from NUMERIC to String data types.

• When you push the REPLACECHR() or REPLACESTR() function to the Google BigQuery database, the
microseconds available in the timestamp data is considered in the casted string for a mapping that runs
with full SQL ELT optimization.
You might encounter a data mismatch when you compare a mapping that runs with full SQL ELT
optimization and a mapping that runs without SQL ELT optimization. The microseconds are not
considered in the mapping that runs without SQL ELT optimization.

• When you push the REPLACESTR() or REPLACECHR() function to the Google BigQuery database and
specify special characters in the format arguments in a nested function, ensure that the nested function
does not contain a single backslash. You can use a double backslash in the nested function.
You might encounter a data mismatch when you compare a mapping that runs with full SQL ELT
optimization and a mapping that runs without SQL ELT optimization when you use a double backslash in
the nested function.

• When you push the REPLACESTR() or REPLACECHR() function using an Expression transformation with
the data/time data types to Google BigQuery using full SQL ELT optimization, the default date format of
the data/time data types returned for a mapping with SQL ELT optimization is YYYY-MM-DD
HH24:MI:SS.US, whereas for a mapping without SQL ELT optimization is MM/DD/YYYY HH24:MI:SS.US.
To fix the issue in a mapping without SQL ELT optimization, use the TO_CHAR function to return the string
date in the MM/DD/YYYY HH24:MI:SS.US format. For example, to get a similar result, use replacechr(1,
TO_CHAR(col6_date), '09','1').

• When you push down the Is_Number() function for Float data types with NaN, -inf, and +inf values, the
Is_Number() function returns true.

• When you push the Is_Date() function using an Expression transformation with the YYYY-MM-DD format
and data contains data types with the YYYY-MM-DD and YYYY/MM/DD formats , the Is_Date() function
returns true only for YYYYY-MM-DD. When you push the Is_Date() function with the YYYY/MM/DD format
and data contains data types with the YYYY-MM-DD and YYYY/MM/DD formats , the Is_Date() function
returns true only for YYYY/MM/DD.

• When you push the Is_Number() function to process in Google BigQuery from a Secure Agent machine on
Windows, the Is_Number() function returns false for the following format: '45.45d-2'

• When you use the TO_CHAR(String) function, the string value must not contain a backslash (\). Else, the
mapping fails.

• When you configure an IN function that returns a value of string data type in an Expression transformation
and writes the value to an integer data type in full SQL ELT optimization, the mapping fails with the
following error:
The Secure Agent failed to run the full SQL ELT query due to the following error: [Bad
int64 value: false]

• When you configure an IN function that returns a value of integer data type in an Expression
transformation and writes the value to an integer data type in full SQL ELT optimization, the mapping fails
with the following error:
The Secure Agent failed to run the full SQL ELT query due to the following error: [Query
column 1 has type BOOL which cannot be inserted into column COL_INT, which has type INT64
at [3:4]]

SQL ELT optimization for mapping tasks 109

• When you configure an IN function that returns a value of integer data type in an Expression
transformation and writes the value to any data type in the target in source SQL ELT optimization, the
mapping fails with the following error:
The following error occurred: [For input string: "true"]

• When you run a mapping enabled with full SQL ELT optimization and if the arguments are null in the
DATE_COMPARE function, the mapping runs without SQL ELT optimization.

• When you configure a mapping enabled with full SQL ELT optimization, the mapping switches to source
SQL ELT optimization or runs without SQL ELT optimization if the operands of +, -, *, or / operators
contain NULL in the expression, aggregator, or filter transformations.

• When you push the REG_REPLACE() function to the Google BigQuery database and specify a backslash (\)
in the column name or a nested function, the mapping fails with the following error:
[ERROR] The Secure Agent failed to run the full SQL ELT query due to the following error:
[Cannot parse regular expression: invalid escape sequence: \o]

• When you push the REG_REPLACE() function to the Google BigQuery database, ensure that the column
name or nested function does not contain a single backslash. The function only supports single
backslashes that are followed by a digit or another backslash.
You might encounter a data mismatch when you compare a mapping that runs with full SQL ELT
optimization and a mapping that runs without SQL ELT optimization when you use a double backslash in
the nested function.

• You cannot use the following escape sequences with the regular expression in the REG_REPLACE()
function:

Escape sequence Description

\1 Back reference

\b Backspace (use \010)

\cK Control char ^K (For example, use \001)

\e Escape (use \033)

\g1 Back reference

\g{1} Back reference

\g{+1} Back reference

\g{-1} Back reference

\g{name} Named back reference

\g<name> Subroutine call

\g'name' Subroutine call

\k<name> Named back reference

\k'name' Named back reference

\lX Lowercase X

110 Chapter 9: SQL ELT with Google BigQuery V2 Connector

Escape sequence Description

\ux Uppercase x

\L...\E Lowercase text ...

\K Reset beginning of $0

\N{name} Named Unicode character

\R Line break

\U...\E Upper case text ...

\X Extended Unicode sequence

\%d123 Decimal character 123

\%xFF Hex character FF

\%o123 Octal character 123

\%u1234 Unicode character 0x1234

\%U12345678 Unicode character 0x12345678

• You cannot use the following empty strings with the regular expression in the REG_REPLACE() function:

Empty string Description

\g At beginning of subtext being searched

\G At end of last match

\Z At end of text, or before newline at end of text

(?=re) Before text matching re

(?!re) Before text not matching re

(?<=re) After text matching re

(?<!re) After text not matching re

re& Before text matching re

re@= Before text matching re

re@! Before text not matching re

re@<= After text matching re

re@<! After text not matching re

SQL ELT optimization for mapping tasks 111

Empty string Description

\zs Sets start of match (= \K)

\ze Sets end of match

\%^ Beginning of file

\%$ End of file

\%V On screen

\%# Cursor position

\%'m Mark m position

\%23l In line 23

\%23c In column 23

\%23v In virtual column 23

• When you configure the DATE_DIFF function in an Expression transformation and the transformation
output is set to double or decimal data type in a mapping enabled with SQL ELT optimization, the function
returns an integer value. However, when you run the mapping without SQL ELT optimization, the function
returns a double value. Also, you might encounter a data mismatch when the transformation output is set
to integer data type.

• When you set the optional property OptimizeCastsInPDO in the Google BigQuery connection, you can
compare the following data types in the DATE_DIFF function:

Date1 argument Date2 argument Format argument

Date Date Year, Month, and Day

Date Datetime Year, Month, Day, Hour, Minute, Second, Millisecond, and Microsecond

Datetime Date Year, Month, Day, Hour, Minute, Second, Millisecond, and Microsecond

Datetime Datetime Year, Month, Day, Hour, Minute, Second, Millisecond, and Microsecond

Time Time Hour, Minute, Second, Millisecond, and Microsecond

Timestamp Timestamp Day, Hour, Minute, Second, Millisecond, and Microsecond

• When you set the format argument to year, month, nanosecond, or null in the DATE_DIFF function, the
mapping runs with source SQL ELT optimization or without SQL ELT optimization.

• When you configure DECODE or IFF functions along with AND, OR, or NOT IN operators in a mapping
enabled with SQL ELT optimization, the mapping might fail.

MD5() function

When you push the MD5 function to Google BigQuery, adhere to the following guidelines:

• You can use only the string data type as the return type.

112 Chapter 9: SQL ELT with Google BigQuery V2 Connector

• The MD5 function in a mapping enabled with SQL ELT optimization uses BASE64 semantics as the
string format by default. To use BASE16 semantics as the string format, set the optional property
UseBase16ForMd5 in the Google BigQuery V2 connection. However, when you run the mapping without
SQL ELT optimization, it uses BASE16 semantics as the string format.

• When you configure the MD5 function with BASE16 semantics, the function output differs in a
mapping enabled with or without SQL ELT optimization.

Operators with Google BigQuery V2
When you use SQL ELT optimization, the Secure Agent converts the expression in the transformation by
determining equivalent operators in the database. If there is no equivalent operator, the Secure Agent
processes the transformation logic.

The following table lists the SQL ELT optimization operators that you can push to the Google BigQuery
database by using full SQL ELT optimization:

Operator Operator

+ =

- >=

* <=

/ !=

% AND

|| OR

> NOT

<

Rules and guidelines

When the argument in the NOT operator is a null value, the mapping runs with source SQL ELT optimization
or without SQL ELT optimization.

Transformations with Google BigQuery V2
When you configure SQL ELT optimization, the Secure Agent tries to push the configured transformation to
Google BigQuery.

The following list summarizes the availability of transformations that you can push down to Google BigQuery:

• Aggregator

• Expression

• Filter

• Joiner

• Lookup

• Rank

SQL ELT optimization for mapping tasks 113

• Router

• Sorter

• SQL

• Union

Aggregator transformation

You can configure full SQL ELT optimization to push an Aggregator transformation to process in Google
BigQuery.

You can perform the following aggregate calculations:

• AVG

• COUNT

• MAX

• MIN

• SUM

• STDDEV

• VARIANCE

When you configure an Aggregator transformation, you must use each of the incoming ports either in an
aggregate function or in a group by field to define how to group data for aggregate expressions.

Lookup transformation

You can configure full SQL ELT optimization to push a Lookup transformation to process in Google BigQuery.
This applies to both connected and unconnected lookups.

You can add the following lookups:

• Cached

• Uncached

• Unconnected with cached

When you look up data and the lookup condition finds multiple matches, the lookup returns all rows. In a
mapping with Google BigQuery as target, you must set the Multiple Matches option for the lookup object to
Return all rows. If you enabled Multiple Matches to any option other than Return all rows, the agent ignores
it.

When you configure a Lookup transformation based on a Google BigQuery source, adhere to the following
guidelines:

• If there are null values in a lookup column, the mapping does not push the rows with null values to the
Google BigQuery target. However, if you run the mapping without full SQL ELT optimization, the rows with
null values are written to the target.

• When you specify multiple lookup conditions, ensure at least one of the lookup condition uses the Equals
operator.

• Ensure that you specify the same Google BigQuery region ID for the source, lookup, and target connection.

• When you use a Lookup transformation, ensure that you select the Lookup caching enabled property in
the lookup advanced properties.

• When you use an unconnected lookup and use an Expression transformation to assign the unconnected
Lookup transformation output to a variable port, the mapping runs without SQL ELT optimization.

114 Chapter 9: SQL ELT with Google BigQuery V2 Connector

• When you use a completely parameterized lookup condition where the input parameter holds the default
value and you specify an override from the task using the parameter file, the task does not honor the
override and runs with the default value.

When you configure an unconnected Lookup transformation, consider the following rules:

• You must select the Multiple Matches property value as Report error in the unconnected lookup
properties for SQL ELT optimization to work.

• You can only configure an Expression transformation for an output received from an unconnected lookup.

SQL transformation

You can use an SQL transformation to push supported scalar functions to Google BigQuery. When you
configure SQL ELT optimization for a mapping, you can use Java or SQL user-defined functions (UDFs) in a
SQL transformation and run queries with the Google BigQuery target endpoint.

You can use only the SELECT clause SQL statement to push down a function. The following snippet
demonstrates the syntax of a simple SELECT SQL query:

SELECT <function_name1>(~Arg~), <function_name2> (~Arg~)...
You can push a SQL transformation with the following restrictions:

• You can configure only a SQL query in the SQL transformation. You cannot enable a stored procedure
when you push down to Google BigQuery.

• The SQL query must be a simple SELECT statement without 'FROM' and 'WHERE' arguments. The SQL
transformation only supports functions with simple SELECT statement.

• You can only use a SQL transformation when the SELECT statement is present in the query property. Even
if an entire query containing the SELECT statement comes from a parameterized input port, the SQL ELT
optimization fails.

• If any SQL error occurs, the error is added to the SQLError field by default. However, when you run a
mapping enabled with SQL ELT optimization, the SQLError field remains as Null.

• The NumRowsAffected field records the number of rows affected while computing the output buffer.
However, for SQL transformation, the NumRowsAffected is 0, as the query runs for all the records at the
same time.

• Google BigQuery offers only passive behavior of SQL transformations where the support for dynamic
queries are limited.

• User defined functions containing special characters in its function name are supported. You need to
enclose the Full UDF function name with backtick (`) character if it contains special characters.

• You cannot specify the user defined functions in a legacy SQL query.

• You cannot use sub-query and join condition in the SQL transformation.

• You cannot use temporary UDF in the SQL transformation.

• You cannot use the following parameterization scenarios:

- Entire query as a parameter

- Field names in a query as a parameter

- In-out and input parameters in a query

SQL ELT optimization for mapping tasks 115

Variables with Google BigQuery V2
When you use SQL ELT optimization, the Secure Agent converts the expression in the transformation by
determining equivalent variables in the database. If there is no equivalent variable, the Secure Agent
processes the transformation logic.

The following table lists the SQL ELT optimization variables that can be used in an Google BigQuery
database. Columns marked with an X indicate that the variable can be pushed to the Google BigQuery
database by using full SQL ELT optimization.

Variable SQL ELT optimization

SESSSTARTTIME X

SYSDATE -

WORKFLOWSTARTTIME -

Data types with Google BigQuery V2
The following table lists the Google Cloud Storage data types based on the file format type that can be
pushed to the Google BigQuery database:

File format type Google Cloud Storage data type

Delimited BigInt, Number, String

Avro Binary, Byte, Double, Float, Int, Long, String

Parquet Binary, Date, Decimal, Double, Float, Int32, Int64, Int96, String

JSON Double, Int, Long, String

The following table lists the Google BigQuery native data types that can be mapped to the comparable
transformation data types in a mapping configured with SQL ELT optimization:

Google BigQuery data type Transformation data type

Boolean String

Date Date/Time

DateTime Date/Time

Float Double

Integer BigInt

Numeric Decimal
Default precision 28, scale 9.

String String

116 Chapter 9: SQL ELT with Google BigQuery V2 Connector

Google BigQuery data type Transformation data type

Byte Byte

Time Date/Time

Timestamp Date/Time

When you set the custom property OptimizeCastsInPDO:true in Google BigQuery V2 connection optional
properties, you can map the following date time data types in Google BigQuery source to a target in a
mapping enabled with SQL ELT optimization:

Source data type Supported target data type

Date Date, Date/Time

Time Time

Date/Time Date, Time, Date/Time

Timestamp Time, Timestamp

Read from and write to Google BigQuery
You can configure SQL ELT optimization in a mapping to read from and write to Google BigQuery using a
Google BigQuery V2 connection.

Example

You work in a motorbike retail company with more than 30,000 dealerships and 2000 inspection centers
globally. The company stores millions of records in Google BigQuery hosted on GCP. You want to use Data
Integration to perform some transformations on the data before you write back to Google BigQuery.

Use a Google BigQuery V2 connection in the mapping to read from the Google BigQuery source and write the
processed data to the Google BigQuery target. Configure full SQL ELT optimization in the mapping to
enhance the performance.

Supported features
You must configure a Google BigQuery V2 connection with simple or hybrid mode when you enable SQL ELT
optimization in a mapping task.

Note: If you configure a Google BigQuery V2 connection with complex mode, the Secure Agent logs an SQL
ELT optimization validation error in the session logs file and the mappings run in the Informatica runtime
environment without full SQL ELT optimization.

When you configure SQL ELT optimization, the mappings support the following advance properties for a
Google BigQuery V2 source:

• Source Type - Single, Query, Multiple Objects, and Parameter

• Query options - Filter. Supports both simple and advanced filter conditions. You can use both the source
filter in conjunction with the Filter transformation in the mapping.

• Source Dataset ID

SQL ELT optimization for mapping tasks 117

• Source Table Name

• Number of Rows to Read

• Job Poll Interval In Seconds

• pre SQL - using standard SQL query

• post SQL - using standard SQL query

• pre SQL Configuration

• post SQL Configuration

• SQL Override Query - using standard SQL query

• Billing Project ID

When you configure SQL ELT optimization, the mappings support the following advance properties for a
Google BigQuery V2 connected and unconnected lookup:

• Source type - Single

• Source type - Query

• Source type - Standard and materialized views

• Source Object Type - Parameter

• Source Dataset ID

• Source Table Name

• Job Poll Interval In Seconds

• pre SQL - using standard SQL query

• post SQL - using standard SQL query

• pre SQL Configuration

• post SQL Configuration

• SQL Override Query - using standard SQL query

• Billing Project ID

When you configure SQL ELT optimization, the mappings support the following properties for an Google
BigQuery V2 target:

• Target Object Type - Single, Parameter

• Operation

- Insert

- Update

- Upsert

- Delete

- Data Driven

Note: You can implement the Update Strategy through target operations.

• Data Driven Condition

• UpdateMode

• Enable Merge

• Target Dataset ID

• Target Table Name

118 Chapter 9: SQL ELT with Google BigQuery V2 Connector

• Create Disposition for Insert operation. Supports only Create if never option.

• Write Disposition for Insert operation. Supports only Write append option.

• Write Mode. Use Bulk mode to push data into Google BigQuery.

• Truncate target table

• Job Poll Interval In Seconds

• pre SQL - using standard SQL query

• post SQL - using standard SQL query

• pre SQL Configuration

• post SQL Configuration

• Billing Project ID

Note: If you configure target advanced properties that are not supported, the Secure Agent logs an validation
error in the session logs and the mappings run in the Informatica runtime environment without full SQL ELT
optimization.

Rules and guidelines for mappings that read from and write to Google
BigQuery
When you configure SQL ELT optimization in a mapping that reads from and writes to Google BigQuery,
consider the following guidelines:

• When you perform an upsert operation, you must select the Enable Merge option in the target advanced
properties.

• You cannot use system variables in filters.

• If a mapping contains a Filter transformation and also a filter in the Source transformation, the mapping
consolidates the filter conditions from both these transformations to filter the records. However, it is
recommended that you use only one of these filters at a time in a mapping.

• You cannot apply a filter for query and multiple source objects.

• A native filter cannot contain a sub-query.

• When you select the source type as Query, ensure that you do not select the Retain existing fields at
runtime option on the Fields tab. Otherwise, the mapping fails with the following error:
Error: The Secure Agent failed to run the full SQL ELT query due to the following error:
[Field not found inside table]

• When you configure a Target transformation in a mapping with a delete operation and the source type
uses a query that contains Union ALL, the mapping fails. To avoid this error, before you run the mapping,
you need to select the Enable Merge property in the target advanced properties. The mapping issues a
merge query and runs successfully.

• If the source data that the mapping read contains the Binary data types, data preview for SQL ELT
optimization fails.

SQL ELT optimization for mapping tasks 119

Read from Google Cloud Storage and write to Google BigQuery
You can configure SQL ELT optimization for a mapping that uses a Google Cloud Storage connection in the
Source transformation to read from Google Cloud Storage and a Google BigQuery V2 connection in the
Target transformation to write to Google BigQuery.

Example

You work for a rapidly growing data science organization. Your organization develops software products to
analyze financials, building financial graphs connecting people profiles, companies, jobs, advertisers, and
publishers. The organization uses infrastructure based on Google Cloud Platform and stores its data in
Google Cloud Storage files. The organization plans to implement a business intelligence service to build
visualization and perform real-time analysis. You can load data from Google Cloud Storage to Google
BigQuery by configuring the transformations to support the adequate data warehouse model and the
consuming requirements.

Create an Google Cloud Storage V2 connection to read data form the Google Cloud Storage source. Create an
Google BigQuery V2 connection and use SQL ELT optimization to write data to the Google BigQuery target to
enhance the performance and reduce the cost involved.

Supported features
When you configure SQL ELT optimization, the Google Cloud Storage V2 connection supports the following
properties:

• Service Account ID

• Service Account Key

• Project ID

When you configure SQL ELT optimization, the mappings support the following properties for a Google Cloud
Storage V2 source:

• Source connection, connection parameter

• Source Type - Single, parameter

• Parameter

• Format - Delimited, Avro, Parquet, and JSON. ORC is not applicable.

Note: None is not supported.

• Delimited file formatting options

- Delimiter

- Qualifier

- Header Line Number

- First Data Row

• Google Cloud Storage Path

• Source File Name

• Is Directory

120 Chapter 9: SQL ELT with Google BigQuery V2 Connector

Rules and guidelines for mappings that read from Google Cloud Storage V2
source
Use the following rules and guidelines when you configure SQL ELT optimization in a mapping that reads
from a Google Cloud Storage V2 source and writes to a Google BigQuery target:

• The source fields must start with a letter or an underscore and can contain letters, numbers, and
underscores up to a maximum of 300 characters. You cannot read source fields with special characters.

• When you read a boolean integer column and write to a boolean string column in a mapping, the mapping
fails.

• When you write data with the Numeric data types to a Google BigQuery target created at runtime, where
the source column has precision greater than 28, the mapping runs without SQL ELT optimization.

• When you set the JVM option system property for the DTM type to -DHonorInfaDateFormat=true for the
Secure Agent and configure a mapping with SQL ELT optimization, the mapping fails with the following
error if it reads the date data type that is not in the YYYY-MM-DD format:
The Secure Agent failed to run the full SQL ELT query due to the following error: [Failed
to parse input string "1972-12-31"]

• When you map a string data type in the source to a time data type in the target, and the data is in the
format HH24:MI:SS.US, the mapping fails with the following error:
[Invalid timestamp: '00:00:00.000001']

Read from Amazon S3 and write to Google BigQuery
You can configure SQL ELT optimization for a mapping that uses an Amazon S3 V2 connection in the Source
transformation to read from Amazon S3 and a Google BigQuery connection in the Target transformation to
write to Google BigQuery.

Example

You work for a healthcare organization. Your organization offers a suite of services to manage electronic
medical records, patient engagement, telephonic health services, and care coordination services. The
organization uses infrastructure based on Amazon Web Services and stores its data on Amazon S3. The
management plans to load data to a data warehouse to perform healthcare analytics and create data points
to improve operational efficiency. To load data from an Amazon S3 based storage object to Google BigQuery,
you must use ETL and ELT with the required transformations that support the data warehouse model.

Use an Amazon S3 V2 connection to read data from a file object in an Amazon S3 source and a Google
BigQuery connection to write to a Google BigQuery target. Configure full SQL ELT optimization in the mapping
to optimize the performance.

Amazon S3 prerequisites
You need to complete the following prerequisites in Amazon S3 before you can read data from an Amazon S3
source and write to Google BigQuery:

• To load data from an Amazon S3 data source, you must:

- Specify the URI for the Amazon S3 source.

- Provide your access key ID and secret access key to access the Amazon S3 bucket.

- Set the minimum required policy AmazonS3ReadOnlyAccess on your Amazon S3 source data.

• Enable the BigQuery Data Transfer Service for your project. To enable the BigQuery Data Transfer Service,
you must be granted the owner role for your project.

For more information on configuring these prerequisites in Amazon S3, see the Amazon S3 documentation.

SQL ELT optimization for mapping tasks 121

Supported features
When you configure SQL ELT optimization, the following connection properties of Amazon S3 V2 source are
supported:

• Access Key

• Secret Key

• Folder Path

When you configure SQL ELT optimization, the mappings support the following properties for an Amazon S3
V2 source:

• Source connection parameter

• Source Type - Single, Parameter

• Object

• Parameter

• Format - Flat, Avro, Parquet, and JSON. ORC and None are not applicable.

• Flat file formatting options:

- Delimiter

- First Data Row

• Source Type

• Folder Path

• File Name

When you configure SQL ELT optimization, the mapping supports the following transformations:

• Expression

• Filter

Note: You can run a mapping that reads from an Amazon S3 source and writes to a Google BigQuery target,
both belonging to different regions.

For information about the configurations for the listed options, see the help for the Amazon S3 V2 Connector.

Rules and guidelines for mappings that read from Amazon S3 source
Use the following rules and guidelines when you configure SQL ELT optimization in a mapping that reads
from an Amazon S3 source and writes to a Google BigQuery target:

• Do not map the boolean data type in Amazon S3 to the boolean data type in Google BigQuery. Else, the
mapping fails.

• When you edit the metadata in the mapping, you cannot add or remove source fields or change the scale
and precision of data types. However, you can edit the field data types.

• When you read data in AVRO, JSON, or CSV format, ensure that the date is in YYYY-MM-DD format and
time is in hh:mm:ss format in the DATE, TIME, DATETIME, and TIMESTAMP columns.

• The source fields must start with a letter or an underscore and can contain letters, numbers, and
underscores up to a maximum of 300 characters. You cannot read source fields with special characters.

• When you write data with the Numeric data types to a Google BigQuery target created at runtime, where
the source column has precision greater than 28, the mapping runs without SQL ELT optimization.

• When you write the DATE, TIME, or DATETIME data types to a Google BigQuery target, you must match the
agent time zone with the time zone of the Google BigQuery application.

122 Chapter 9: SQL ELT with Google BigQuery V2 Connector

• In a mapping enabled with SQL ELT optimization, you cannot read a single directory from multiple
subdirectories. When you select the source type as Directory in the advanced source properties to read
objects stored in subdirectories from an Amazon S3 source, you must select the Enable Recursive Read
option. Otherwise, the mapping runs without SQL ELT optimization.

• When you write data from Avro or Parquet file formats in an Amazon S3 source to a Google BigQuery
target created at run time, you must delete the Filename field in the mapping.

• When you configure a lookup from an Amazon S3 or a Google Cloud Storage V2 object in a mapping, the
mapping runs without SQL ELT optimization.

• When you read data from a smaller dataset such as Transaction Processing Council Ad-hoc/decision
support benchmark (TPC-H) scale factor 1 or below and run a mapping enabled with SQL ELT
optimization, the mapping takes 30% more time to process the data as compared to the mapping that
runs without SQL ELT optimization.

• When you read from an Amazon S3 source and write to a Google BigQuery target, the time taken to load
data to the Google BigQuery staging in the first and subsequent mapping runs for the same dataset and
resources is inconsistent.

• When you configure a mapping enabled with SQL ELT optimization to read a boolean integer column and
write to a boolean string column, the mapping fails.

• When you read data from an Amazon S3 source and write to a Google BigQuery target, it takes a few
minutes to initialize the transfer to the Google BigQuery target.

• When you upload a file in an Amazon S3 bucket and then immediately run a data transfer task, the source
file is not detected. Wait for at least five minutes and then run the mapping again.

• When you run a mapping enabled with SQL ELT optimization to read data with wildcard characters from
an Amazon S3 source and write to Google BigQuery, the mapping runs without SQL ELT optimization and
fails with the following error:
Wild card character option is not valid in the native mode of execution

• When you set the JVM option system property for the DTM type to -DHonorInfaDateFormat=true for the
Secure Agent and configure a mapping with SQL ELT optimization, the mapping fails with the following
error if it reads the date data type that is not in the YYYY-MM-DD format:
The Secure Agent failed to run the full SQL ELT query due to the following error: [Failed
to parse input string "1972-12-31"]

• When you map a string data type in the source to a time data type in the target, and the data is in the
format HH24:MI:SS.US, the mapping fails with the following error:
[Invalid timestamp: '00:00:00.000001']

Rules and guidelines for SQL ELT optimization
Certain rules and guidelines apply when you enable a mapping for SQL ELT optimization to a Google BigQuery
database.

When you configure a Google BigQuery source, Google Cloud Storage source, or Google BigQuery target,
adhere to the following guidelines:

• The Service Account ID associated with the Google BigQuery V2 connection must have permissions to
access Google Cloud Storage buckets and files.

• You cannot enable full SQL ELT optimization for a mapping task when the target table contains columns
of record data type or repeated columns.

• You cannot enable full SQL ELT optimization for a mapping task when the task contains a mapping with a
single transformation connected to multiple transformations downstream or multiple transformations
connected to a single transformation.

SQL ELT optimization for mapping tasks 123

• You must ensure that the column header names in the Google Cloud Storage source file does not contain
unicode characters. Otherwise, the mapping fails.

• When you enable SQL ELT optimization for a mapping with multiple pipelines to write to the same Google
BigQuery target and the Truncate target table option is enabled in each pipeline, the target table is
truncated for each pipeline when data is inserted into the target.
For example, if there are two pipelines, in pipeline 1 the target table is truncated and then the data is
inserted. Similarly, in Pipeline 2 the target table is truncated and the data is inserted into the target table.
Hence, the target table contains only the data from pipeline 2.

When you run a mapping without SQL ELT optimization and the mapping contains multiple pipelines, the
target tables are truncated at once for all pipelines and then the data is inserted.

• When you configure a Filter transformation or specify a filter condition, you must ensure that you do not
specify special characters. Use the ASCII value for the special character in the filter condition.

• When you parameterize the Google BigQuery V2 connection, source, target and provide values in the
mapping task using a parameter file, the default values for the parameter are not overridden with the
values in the parameter file.

• If the Google Cloud Storage source file contains a column of Boolean data type, SQL ELT optimization
query fails.

• You must ensure that the Google BigQuery source object does not contain any partitions.

• When you read from a Google BigQuery source and edit the metadata for the source fields, the Secure
Agent ignores the changes to the metadata.

• If the Google BigQuery source and target object resides in the same region other than US, do not specify
the Region ID explicitly in the connection.

• You must not specify a legacy SQL query in the pre SQL and post SQL advanced source or target
properties.

• A mapping run without SQL ELT optimization fails if any of the Pre-SQL and Post-SQL commands fail in a
multi-statement query. Previously mappings were successful.

• When you specify custom query as a source object and specify a dataset name in the Source Dataset ID
source advanced property, the mapping runs without full SQL ELT optimization.

• When you specify custom query as a source object and specify an SQL override query, you must specify a
dataset name in the Source Dataset ID source advanced property.

• When you specify custom query as a source object and specify an SQL override query with different
column names, ensure that the data types and the order of the columns that appear in the SQL override
query matches the data types and order in which they appear in the custom query.

• When you select a view as a source object that contain columns of the Record data type or repeated
columns and create a new target at runtime, a validation error appears in the session logs and the
mapping runs without full SQL ELT optimization.

• To load data into columns of date, time, datetime, or timestamp in a Google BigQuery target, you must
pass the data through the TO_DATE() function as an expression and map the results to the target column.

• When you set SCD Type 2 merge optimization context for a mapping, you cannot use filter, joiner, and
custom SQL query.

• If the mapping contains a Router transformation output connected to a Sequence Generator
transformation, the mapping does not push down the mapping logic to the point where the transformation
is supported and runs without SQL ELT optimization.

• When you push down a Router transformation with IIF and IS_SPACE() functions in mapping that reads
from and writes to Google BigQuery, and the Boolean values are 0 and 1, the mapping fails. When the
Boolean values are true and false, the mapping runs successfully.

124 Chapter 9: SQL ELT with Google BigQuery V2 Connector

• When you use multiple functions within a transformation and one of the functions cannot be pushed to
Google BigQuery, the mapping runs without SQL ELT optimization.

• When the mapping contains multiple pipelines and a function within one of transformations cannot be
pushed to Google BigQuery, the mapping does not push down the mapping logic to the point where the
transformation is supported and the mapping runs without SQL ELT optimization.

• When you read from or write data to Google BigQuery objects associated with different projects in
different Google service accounts that resides in different regions, the mapping runs without SQL ELT
optimization.

• When you use the data driven operation to write data to a Google BigQuery target and enable the Disable
Duplicate Update Rows target advanced property, the Secure Agent ignores the Disable Duplicate Update
Rows property.

• When you read data from a Google BigQuery source that contains duplicate update keys and enable the
Disable Duplicate Update Rows target advanced property, the Secure Agent ignores the Disable Duplicate
Update Rows property.

• When you configure a mapping that includes any of the following datetime scenarios, the mapping runs
without SQL ELT optimization:

- Map data from the TIME data type to any other date/time data type

- Map data from the DATE data type to the TIME data type

- Compare data of the TIME and TIMESTAMP data types with the DATE or DATETIME data types

• When you use $$$SESSSTARTTIME variable in a custom query, the variable returns the session start time as
a string value. Use the following syntax to convert the string values to timestamp or datetime:

•SELECT PARSE_DATETIME('%m/%d/%Y %H:%M:%E6S', '$$$SESSSTARTTIME') as t1;
•SELECT cast(substr(cast('$$$SESSSTARTTIME' as string),0,19) as datetime FORMAT 'MM/DD/
YYYY HH24:MI:SS') as datetime;

Ensure that the time zones of the Google BigQuery project and the agent machine are the same.

• When you set the OptimizeCastsInPDO:true custom property in the advanced settings for a Google
BigQuery V2 connection, the SESSSTARTTIME, SYSDATE, SYSTIMESTAMP, and TO_DATE functions return
data of DATETIME data type.

• When you configure a native filter in the Source transformation, ensure that you do not prefix the field
name with the table name and dataset name in the filter expression. Otherwise, the mapping fails.

• When you configure an insert operation and set the Write Disposition property as Write Truncate in the
target transformation properties, the mapping appends the records to the target table instead of
truncating the target table before loading data. To configure a truncation when you insert records, you
need to select the Truncate target table option in the target advanced properties.

• When you create a target table at runtime and perform DML operations, the mapping might fail if the
expression port returns a null value of a non-integer data type.

Troubleshooting a SQL ELT optimization task
Mapping fails when configured to read date, timestamp, or datetime information and write to default date/time format

When you configure a mapping to read date, timestamp, or datetime information from a string column
and process the data with the default date/time format to write to Google BigQuery target, the mapping
fails with the following error:

[ERROR] The Secure Agent failed to run the full SQL ELT query due to the following error:
[Invalid timestamp: '12/31/1972 00:00:00.000001']

To resolve this issue, set the JVM option -DHonorInfaDateFormat=true for the Secure Agent.

SQL ELT optimization for mapping tasks 125

Perform the following steps to configure the JVM option in Administrator:

1. Select Administrator > Runtime Environments.

2. On the Runtime Environments page, select the Secure Agent machine that runs the mapping.

3. Click Edit.

4. In the System Configuration Details section, select Data Integration Server as the Service and DTM
as the Type.

5. Edit the JVMOption system property and set the value to -DHonorInfaDateFormat=true.

6. Click Save.

Mapping fails when configured to read time data in string data type and write to date/time data type

When you set the JVM option system property for the DTM type to -DHonorInfaDateFormat=false for
the Secure Agent and also set the optional property OptimizeCastsInPDO=true in the Google BigQuery
connection and run a mapping to read the time data in string data type from an Amazon S3 or Google
Cloud Storage source and write to date/time data type, the mapping fails with the following error:

The Secure Agent failed to run the full SQL ELT query due to the following error:
[Invalid timestamp: '12/31/1972 00:00:00.000001']

To resolve this issue, set the JVM option -DHonorInfaDateFormat=true for the Secure Agent and also
provide the source data with the format provided in the DateTime Format String advanced session
property in the mapping task.

Perform the following steps to configure the JVM option in Administrator:

1. Select Administrator > Runtime Environments.

2. On the Runtime Environments page, select the Secure Agent machine that runs the mapping.

3. Click Edit.

4. In the System Configuration Details section, select Data Integration Server as the Service and DTM
as the Type.

5. Edit the JVMOption system property and set the value to -DHonorInfaDateFormat=true.

6. Click Save.

126 Chapter 9: SQL ELT with Google BigQuery V2 Connector

C h a p t e r 1 0

Data type reference
Data Integration uses the following data types in mappings and mapping tasks with Google BigQuery:
Google BigQuery native data types

Google BigQuery data types appear in the Fields tab for Source and Target transformations when you
choose to edit metadata for the fields.

Transformation data types

Set of data types that appear in the transformations. They are internal data types based on ANSI SQL-92
generic data types, which the Secure Agent uses to move data across platforms. Transformation data
types appear in all transformations in a mapping.

When Data Integration reads source data, it converts the native data types to the comparable
transformation data types before transforming the data. When Data Integration writes to a target, it
converts the transformation data types to the comparable native data types.

Google BigQuery V2 and transformation data types
The following table describes the data types that Data Integration supports for Google BigQuery sources and
targets:

Google BigQuery
Data Type

Transformation
Data Type

Range and Description for the Transformation Data Type

BOOLEAN String Boolean True or False values.
Default precision is 5.

BIGNUMERIC String or Decimal The BigNumeric data type by default maps to the String data type. You
can use edit metadata option to map the BigNumeric data type to
Decimal data type in the Source and Target transformations.
For String data type:
- 1 to 104,857,600 characters.
- Default precision is 255.
- You can increase the value up to 104,857,600 characters.
For Decimal data type:
- Precision 28 and scale 9 for the source.
- Precision 29 and scale 9 for the target.

127

Google BigQuery
Data Type

Transformation
Data Type

Range and Description for the Transformation Data Type

DATE¹ Date/Time Date values. Google BigQuery Connector uses the following format:
YYYY-[M]M-[D]D
Minimum value: 0001-01-01
Maximum value: 9999-12-31
Precision 29, scale 9

DATETIME¹ Date/Time Google BigQuery Connector uses the following format:
YYYY-[M]M-[D]D[(|T)[H]H:[M]M:[S]S[.DDDDDD]]
Minimum value: 0001-01-01 00:00:00
Maximum value: 9999-12-31 23:59:59.999999
Default precision 29, scale 9

FLOAT Double Precision 15, scale 0

INTEGER BigInt -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Precision 19, scale 0

RECORD String 1 to 104,857,600 characters
Default precision is 255. You can increase the value up to 104857600
characters.

NUMERIC Decimal - For mappings:
Default precision 28, scale 9.
Maximum precision of 29.
Range: -9.9999999999999999999999999999999999999E+29 to
9.9999999999999999999999999999999999999E+29

- For mappings in advanced mode:
Default precision 38, scale 9. For hierarchical data types, only up to a
precision of 28 digits is applicable.
Note: You cannot use the decimal data type for hierarchical data in
advanced mode.
Range: -9.9999999999999999999999999999999999999E+28 to
9.9999999999999999999999999999999999999E+28

STRING String 1 to 104,857,600 characters
Default precision is 255. You can increase the value up to 104,857,600
characters.
Note: If you configure the optional connection property
SupportParameterisedDatatype, you can use the string column precision
that is defined in Google BigQuery when you import the metadata.
However, if the precision defined in Google BigQuery is higher than
104,857,600 characters, then the precision is updated to 104,857,600
characters.

BYTE Bytes 1 to 104,857,600 bytes

128 Chapter 10: Data type reference

Google BigQuery
Data Type

Transformation
Data Type

Range and Description for the Transformation Data Type

TIME¹ Date/Time Time values. Google BigQuery Connector uses the following format:
[H]H:[M]M:[S]S[.DDDDDD]
Minimum value: 00:00:00
Maximum value: 23:59:59.999999
Precision 29, scale 9

TIMESTAMP¹ Date/Time Google BigQuery Connector uses the following format:
YYYY-[M]M-[D]D[(|T)[H]H:[M]M:[S]S[.DDDDDD]][time zone]
Minimum value: 0001-01-01 00:00:00
Maximum value: 9999-12-31 23:59:59.999999 UTC
Precision 29, scale 9

INT64² BigInt -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Precision 19, scale 0

FLOAT64² Double Precision 15, scale 0

BOOL² String Boolean True or False values.
Default precision is 5.

¹where
- YYYY represents four-digit year
- [M]M represents one or two digit month
- [D]D represents one or two digit day
- (|T) represents a space or a T separator
- [H]H represents one or two digit hour (valid values from 00 to 23)
- [M]M represents one or two digit minutes (valid values from 00 to 59)
- [S]S represents one or two digit seconds (valid values from 00 to 59)
- [.DDDDDD]: represents microseconds up to six fractional digits.
- [time zone] represents the time zone. Default time zone is UTC. Other time zones are not applicable.
²Applies only to SQL transformation.

Google BigQuery V2 and transformation data types 129

Part III: Data Integration with
Google BigQuery Connector

This part contains the following chapters:

• Introduction to Google BigQuery Connector, 131

• Google BigQuery connections, 135

• Synchronization Tasks with Google BigQuery Connector, 145

• Mappings and mapping tasks with Google BigQuery, 155

• Data type reference , 165

130

C h a p t e r 1 1

Introduction to Google BigQuery
Connector

You can use Google BigQuery Connector to connect to Google BigQuery from Data Integration. Use Google
BigQuery Connector to read data from and write data to Google BigQuery. You can use a Google BigQuery
object as a source and as a target in synchronization tasks, mapping tasks, and mappings.

You can switch mappings to advanced mode to include transformations and functions that enable advanced
functionality.

When you run a task or mapping, the Secure Agent uses the JAVA client libraries of the Google APIs to
integrate with Google BigQuery.

Data Integration Hosted Agent
You can use the Data Integration Hosted Agent (Hosted Agent) as a runtime environment for a Google
BigQuery connection if you have the Cloud Runtime license.

Data Integration Secure Agents are installed locally. As an alternative to installing a Secure Agent, you can
use a Hosted Agent. Hosted Agents are hosted at Data Integration hosting facility. The Data Integration
hosting facility manages the Hosted Agent runtime environment and the agents that run in it. You cannot add,
delete, or configure a Hosted Agent runtime environment. Because you do not install a Hosted Agent, you do
not have access to files normally stored in the Secure Agent directory, such as configuration, success, and
reject files.

Google BigQuery Connector assets
Create assets in Data Integration to integrate data using Google BigQuery Connector.

You can perform insert, update, upsert, and delete operations on a Google BigQuery target.

When you use Google BigQuery Connector, you can include the following Data Integration assets:

• Mapping

• Mapping task

• Synchronization task

131

For more information about configuring assets and transformations, see Mappings, Transformations, and
Tasks in the Data Integration documentation.

Google BigQuery example
Your organization is an open source log data collector, which collects log data from multiple sources and
unifies them.

Logs help you understand how systems and applications perform. As the scale and complexity of the system
increases, it is difficult to manage multiple logs from different sources.

To overcome this problem, you can use Google BigQuery Connector to write data to a Google BigQuery target
and query terabytes of logs in seconds. You can then use the data to fix and improve the system
performance in near real time.

Administration of Google BigQuery Connector
Google BigQuery is a RESTful web service that the Google Cloud Platform provides.

Before you use Google BigQuery Connector, you must complete the following prerequisite tasks:

• Create a Google account to access Google BigQuery.

• On the Credentials page, navigate to the APIs and auth section, and create a service account. After you
create the service account, you can download a JSON file that contains the client_email, project_id, and
private_key values. You will need to enter these details when you create a Google BigQuery connection in
Data Integration.
The following image shows the Credentials page where you can create the service account and key:

132 Chapter 11: Introduction to Google BigQuery Connector

• On the Dashboards page of the Google API Console, https://console.developers.google.com/, enable the
BigQuery API and Google Cloud Storage JSON API. Google BigQuery Connector uses the Google APIs to
integrate with Google BigQuery and Google Cloud Storage.
The following image shows the Dashboard page where you can enable the APIs:

• Create a project and dataset in Google BigQuery. Verify that the dataset contains the source table and the
target table. You will need to enter the project ID, dataset ID, source table name, and target table name
when you create tasks and mappings in Data Integration.
The following image shows a project:

• Verify that you have read and write access to the Google BigQuery dataset that contains the source table
and target table.

• When you read data from or write data to a Google BigQuery table, you must have the following
permissions:

- bigquery.datasets.create

- bigquery.datasets.get

- bigquery.datasets.getIamPolicy

- bigquery.datasets.updateTag

- bigquery.models.*

- bigquery.routines.*

- bigquery.tables.create

- bigquery.tables.delete

- bigquery.tables.export

- bigquery.tables.get

- bigquery.tables.getData

- bigquery.tables.list

- bigquery.tables.update

- bigquery.tables.updateData

- bigquery.tables.updateTag

Administration of Google BigQuery Connector 133

https://console.developers.google.com/

- resourcemanager.projects.get

- resourcemanager.projects.list

- bigquery.jobs.create

• When you only read data from a Google BigQuery table, you must have the following permissions:

- bigquery.datasets.get

- bigquery.datasets.getIamPolicy

- bigquery.models.getData

- bigquery.models.getMetadata

- bigquery.models.list

- bigquery.routines.get

- bigquery.routines.list

- bigquery.tables.export

- bigquery.tables.get

- bigquery.tables.getData

- bigquery.tables.list

- resourcemanager.projects.get

- resourcemanager.projects.list

- bigquery.jobs.create

- bigquery.tables.create

• If your organization passes data through a proxy or protective firewall, you must configure your firewall to
allow the www.googleapis.com URI for Google BigQuery Connector to transfer data through a proxy or
firewall.

• If you use bulk mode, verify that you have write access to the Google Cloud Storage path where the Secure
Agent creates the staging file.

• If you use staging mode, verify that you have read access to the Google Cloud Storage path where the
Secure Agent creates the staging file to store the data from the Google BigQuery source.

134 Chapter 11: Introduction to Google BigQuery Connector

C h a p t e r 1 2

Google BigQuery connections
Create a Google BigQuery connection to read data from a Google BigQuery source and write data to a Google
BigQuery target. You must create a connection for each dataset that you want to connect to. You can use
Google BigQuery connections in synchronization tasks, mapping tasks, and mappings. When you create a
Google BigQuery connection, you can configure a connection mode based on how you want to read and write
the data.

Connection modes
You can configure a Google BigQuery connection to use one of the following connection modes:
Simple mode

If you use simple mode, Google BigQuery Connector flattens each field within the Record data type field
as a separate field in the field mapping.

Hybrid mode

If you use hybrid mode, Google BigQuery Connector displays all the top-level fields in the Google
BigQuery table including Record data type fields. Google BigQuery Connector displays the top-level
Record data type field as a single field of the String data type in the field mapping.

Complex mode

If you use complex mode, Google BigQuery displays all the columns in the Google BigQuery table as a
single field of the String data type in the field mapping.

Connection mode example
Google BigQuery Connector reads and writes the Google BigQuery data based on the connection mode that
you configure for the Google BigQuery connection.

You have a Customers table in Google BigQuery that contains primitive fields and the Address field of the
Record data type. The Address field contains two primitive sub-fields, City and State, of the String data type.

The following image shows the schema of the Customers table in Google BigQuery:

135

The following table shows the Customers table data in Google BigQuery:

ID Name Address.City Address.State Mobile Totalpayments

14 John LOS ANGELES CALIFORNIA +1-9744884744 18433.90

+1-8267389993

29 Jane BOSTON MANHATTAN +1-8789390309 28397.33

+1-9876553784

+1-8456437848

Simple mode

If you use simple connection mode, Google BigQuery Connector flattens each field within the Record data
type field as a separate field in the Field Mapping tab.

136 Chapter 12: Google BigQuery connections

The following table shows two separate fields, Address_City and Address_State, for the respective sub-fields
within the Address Record field in the Customers table:

ID Name Address_City Address_State Mobile Totalpayments

14 John LOS ANGELES CALIFORNIA +1-9744884744 18433.90

14 John LOS ANGELES CALIFORNIA +1-8267389993 18433.90

29 Jane BOSTON MANHATTAN +1-8789390309 28397.33

29 Jane BOSTON MANHATTAN +1-9876553784 28397.33

29 Jane BOSTON MANHATTAN +1-8456437848 28397.33

The following image shows the fields in the Field Mapping tab of a synchronization task:

Hybrid mode

If you use hybrid connection mode, Google BigQuery Connector displays all the top-level fields in the Google
BigQuery table including Record data type fields. Google BigQuery Connector displays the top-level Record
data type field as a single field of the String data type in the Field Mapping tab.

The following image shows the Field Mapping tab of a synchronization task:

Connection modes 137

Complex mode

If you use complex connection mode, Google BigQuery Connector displays all the columns in the Google
BigQuery table as a single field of the String data type in the Field Mapping tab.

The following image shows the STRING_DATA field in the Field Mapping tab of a synchronization task:

138 Chapter 12: Google BigQuery connections

Rules and guidelines for Google BigQuery connection modes
Simple mode

Consider the following rules and guidelines when you configure a Google BigQuery connection to use simple
connection mode:

• You cannot create a Google BigQuery target table that contains repeated columns using the Create Target
option.

• If the Google BigQuery source table contains repeated columns, you cannot configure data filters for
these columns.

• If the Google BigQuery table contains more than one repeated column, you cannot preview data.

• If the Google BigQuery target table contains repeated columns, you cannot configure update and delete
operations for these columns.

• You cannot configure upsert operations for columns of the Record data type and repeated columns.

• When you read data from a Google BigQuery source, you must not map more than one repeated column in
a single mapping. You must create multiple mappings for each repeated column.

Hybrid mode

Consider the following rules and guidelines when you configure a Google BigQuery connection to use hybrid
connection mode:

• You cannot preview data.

• You cannot create a Google BigQuery target table using the Create Target option.

• If the Google BigQuery source table contains columns of the Record data type and repeated columns, you
cannot configure data filters for these columns.

• You cannot configure update, upsert, and delete operations for columns of the Record data type and
repeated columns.

• You must select JSON (Newline Delimited) format as the data format of the staging file under the
advanced target properties. You can use CSV format as the data format of the staging file unless the
Google BigQuery table contains columns of the Record data type or repeated columns.

• The following CSV formatting options in the advanced target properties are not applicable:

- Allow Quoted Newlines

- Field Delimiter

- Allow Jagged Rows

Complex mode

Consider the following rules and guidelines when you configure a Google BigQuery connection to use
complex connection mode:

• You cannot preview data.

• You cannot create a Google BigQuery target table using the Create Target option.

• When you configure a Google BigQuery source connection to use complex connection mode, you cannot
configure data filters for the source.

• You cannot configure update, upsert, and delete operations.

• You must select JSON (Newline Delimited) format as the data format of the staging file under the
advanced target properties.

Connection modes 139

• You cannot use CSV format as the data format of the staging file. The following CSV formatting options in
the advanced target properties are not applicable:

- Allow Quoted Newlines

- Field Delimiter

- Allow Jagged Rows

• You cannot use key range partitioning for Google BigQuery sources.

Google BigQuery connection properties
When you create a Google BigQuery connection, you must configure the connection properties.

The following table describes the Google BigQuery connection properties:

Property Description

Connection
Name

The name of the connection. The name is not case sensitive and must be unique within the
domain. You can change this property after you create the connection. The name cannot exceed
128 characters, contain spaces, or contain the following special characters:~ ` ! $ % ^ & * () - + =
{ [}] | \ : ; " ' < , > . ? /

Description Optional. The description of the connection. The description cannot exceed 4,000 characters.

Type The Google BigQuery connection type.

Runtime
Environment

Name of the runtime environment where you want to run the tasks.

Service Account
ID

Specifies the client_email value present in the JSON file that you download after you create a
service account.

Service Account
Key

Specifies the private_key value present in the JSON file that you download after you create a
service account.

Connection
mode

The mode that you want to use to read data from or write data to Google BigQuery.
Select one of the following connection modes:
- Simple. Flattens each field within the Record data type field as a separate field in the mapping.
- Hybrid. Displays all the top-level fields in the Google BigQuery table including Record data type

fields. Google BigQuery Connector displays the top-level Record data type field as a single field
of the String data type in the mapping.

- Complex. Displays all the columns in the Google BigQuery table as a single field of the String
data type in the mapping.

Default is Simple.

140 Chapter 12: Google BigQuery connections

Property Description

Schema
Definition File
Path

Specifies a directory on the Secure Agent machine where the Secure Agent must create a JSON
file with the sample schema of the Google BigQuery table. The JSON file name is the same as the
Google BigQuery table name.
Alternatively, you can specify a storage path in Google Cloud Storage where the Secure Agent
must create a JSON file with the sample schema of the Google BigQuery table. You can download
the JSON file from the specified storage path in Google Cloud Storage to a local machine.
The schema definition file is required if you configure complex connection mode in the following
scenarios:
- You add a Hierarchy Builder transformation in a mapping to read data from relational sources

and write data to a Google BigQuery target.
- You add a Hierarchy Parser transformation in a mapping to read data from a Google BigQuery

source and write data to relational targets.

Project ID Specifies the project_id value present in the JSON file that you download after you create a service
account.
If you have created multiple projects with the same service account, enter the ID of the project that
contains the dataset that you want to connect to.

Dataset ID Name of the dataset that contains the source table and target table that you want to connect to.
Note: Google BigQuery supports the datasets that reside only in the US region.

Storage Path This property applies when you read or write large volumes of data. Required if you read data in
staging mode or write data in bulk mode.
Path in Google Cloud Storage where the Secure Agent creates a local stage file to store the data
temporarily.
You can either enter the bucket name or the bucket name and folder name.
For example, enter gs://<bucket_name> or gs://<bucket_name>/<folder_name>

Note: Ensure that you specify valid credentials in the connection properties. The test connection is
successful even if you specify incorrect credentials in the connection properties.

Configuring the proxy settings on Windows
To configure the proxy server settings for the Secure Agent on a Windows machine, you must configure the
proxy server settings through the Secure Agent Manager and the JVM options of the Secure Agent.

Contact your network administrator for the correct proxy settings.

1. Click Start > All Programs > Informatica Cloud Secure Agent > Informatica Cloud Secure Agent to
launch the Secure Agent Manager.

The Secure Agent Manager displays the Secure Agent status.

2. Click Proxy in the Secure Agent Manager page.

3. Click Use a Proxy Server to enter proxy server settings.

Configuring the proxy settings on Windows 141

4. Configure the following proxy server details:

Field Description

Proxy Host Host name of the outgoing proxy server that the Secure Agent uses.

Proxy Port Port number of the outgoing proxy server.

User Name User name to connect to the outgoing proxy server.

Password Password to connect to the outgoing proxy server.

5. Click OK.

6. Log in to Informatica Intelligent Cloud Services.

7. Open Administrator and select Runtime Environments.

8. Select the Secure Agent for which you want to configure a proxy server.

9. On the upper-right corner of the page, click Edit.

10. In the System Configuration Details section, select the Type as DTM for the Data Integration Service.

11. To use a proxy server, add the following parameters in any JVMOption field and specify appropriate
values for each parameter:

Parameter Description

-Dproxy.host= Host name of the outgoing HTTPS proxy server.

-Dproxy.port= Port number of the outgoing HTTPS proxy server.

-Dproxy.user= User name for the HTTPS proxy server.

-Dproxy.password= Password for the HTTPS proxy server.

Note: You must specify the parameter and the value for the parameter enclosed in single quotation
marks.

For example,

JVMOption1='-Dproxy.host=INPQ8583WI29'
JVMOption2='-Dproxy.port=8081'
JVMOption3='-Dproxy.user=adminuser'
JVMOption4='-Dproxy.password=password'
Note: You can configure only five JVMOption fields in the System Configuration Details section. To
configure the remaining parameters, you must add the JVMOption fields in the Custom Configuration
Details section. In the Custom Configuration Details section, select the Type as DTM for the Data
Integration Service, add the JVMOption fields, and specify the remaining parameters and appropriate
values for each parameter.

12. Click Save.

The Secure Agent restarts to apply the settings.

Note: The session log does not log the proxy server details even if you have configured a proxy server.

142 Chapter 12: Google BigQuery connections

Configuring the proxy settings on Linux
You can update the proxy server settings defined for the Secure Agent from the command line. To configure
the proxy server settings for the Secure Agent on a Linux machine, you must update the proxy.ini file and
configure the JVM options of the Secure Agent.

Contact your network administrator for the correct proxy settings.

1. Navigate to the following directory:

<Secure Agent installation directory>/apps/agentcore/conf
2. To update the proxy.ini file, add the following parameters and specify appropriate values for each

parameter:

InfaAgent.ProxyHost=<proxy_server_hostname>
 InfaAgent.ProxyPort=<proxy_server_port>
 InfaAgent.ProxyUser=<user_name>
 InfaAgent.ProxyPassword=<password>
 InfaAgent.ProxyPasswordEncrypted=false

For example,

InfaAgent.ProxyHost=INW2PF0MT01V
 InfaAgent.ProxyPort=808
 InfaAgent.ProxyUser=user06
 InfaAgent.ProxyPassword=user06
 InfaAgent.ProxyPasswordEncrypted=false

3. Log in to Informatica Intelligent Cloud Services.

4. Open Administrator and select Runtime Environments.

5. Select the Secure Agent for which you want to configure a proxy server.

6. On the upper-right corner of the page, click Edit.

7. In the System Configuration Details section, select the Type as DTM for the Data Integration Service.

8. To use a proxy server, add the following parameters in any JVMOption field and specify appropriate
values for each parameter:

Parameter Description

-Dproxy.host= Host name of the outgoing HTTPS proxy server.

-Dproxy.port= Port number of the outgoing HTTPS proxy server.

-Dproxy.user= User name for the HTTPS proxy server.

-Dproxy.password= Password for the HTTPS proxy server.

Note: You must specify the parameter and the value for the parameter enclosed in single quotation
marks.

For example,

JVMOption1='-Dproxy.host=INPQ8583WI29'
JVMOption2='-Dproxy.port=8081'
JVMOption3='-Dproxy.user=adminuser'
JVMOption4='-Dproxy.password=password'

Configuring the proxy settings on Linux 143

Note: You can configure only five JVMOption fields in the System Configuration Details section. To
configure the remaining parameters, you must add the JVMOption fields in the Custom Configuration
Details section. In the Custom Configuration Details section, select the Type as DTM for the Data
Integration Service, add the JVMOption fields, and specify the remaining parameters and appropriate
values for each parameter.

9. Click Save.

The Secure Agent restarts to apply the settings.

Note: The session log does not log the proxy server details even if you have configured a proxy server.

144 Chapter 12: Google BigQuery connections

C h a p t e r 1 3

Synchronization Tasks with
Google BigQuery Connector

Use the Synchronization task to synchronize data between a source and target.

You can configure a synchronization task using the Synchronization Task wizard.

When you create a task, you can associate it with a schedule to run it at specified times or on regular
intervals. Or, you can run it manually. You can monitor tasks that are currently running in the activity monitor
and view logs about completed tasks in the activity log.

Pre SQL and post SQL commands
You can specify pre SQL and post SQL advanced properties for Google BigQuery sources and targets. When
you create a task in Data Integration, you can specify SQL commands in the advanced properties for a source
and target.

You can perform the following operations by using pre SQL and post SQL commands:

• SELECT

• UPDATE

• DELETE

Note: You cannot perform more than one operation with a pre SQL or post SQL command.

You can configure the options in Google BigQuery with a pre SQL or post SQL statement in the pre SQL
Configuration or post SQL Configuration advanced properties for Google BigQuery sources and targets.

You must use the following format to specify a pre SQL configuration or a post SQL configuration:

<Option1:Value1,Option2:Value2,...OptionN:ValueN>

The following table shows the configuration options and supported values that you can specify in a pre SQL
configuration or post SQL configuration:

Options Supported Values

DestinationDataset Dataset ID in Google BigQuery

DestinationTable Table name in Google BigQuery

145

Options Supported Values

FlattenResults True and False

UseLegacySQL True and False

WriteDisposition WRITE_TRUNCATE, WRITE_APPEND, and WRITE_EMPTY

Note: If you perform an UPDATE or DELETE operation with a pre SQL or post SQL command, you must specify
the following parameter in the pre SQL configuration or post SQL configuration: UseLegacySQL:False

Google BigQuery sources in synchronization tasks
You can use a single object in a synchronization task.

You can configure the Google BigQuery source properties on the Source page of the Synchronization Task
wizard.

The following table describes the Google BigQuery source properties:

Property Description

Connection Name of the active Google BigQuery source connection.

Source Type Type of the Google BigQuery source objects available. You can read data from a
single Google BigQuery source object.

Source Object Name of the Google BigQuery source object.

Display technical names
instead of labels

This property is not applicable for Google BigQuery Connector because both the
technical names and labels are the same for Google.

Display source fields in
alphabetical order

Displays source fields in alphabetical order. By default, fields appear in the order
returned by the source system.

Read modes
When you use Google BigQuery Connector, you can read data by using direct mode or staging mode. Before
you choose a mode, see the Google documentation to understand the cost implications and trade-offs for
each mode.

You can read data from a Google BigQuery source by using one of the following modes:
Direct mode

Use direct mode when the volume of data that you want to read is small. In direct mode, Google
BigQuery Connector directly reads data from a Google BigQuery source. You can configure the number
of rows that you want Google BigQuery Connector to read in one request.

146 Chapter 13: Synchronization Tasks with Google BigQuery Connector

Staging mode

Use staging mode when you want to read large volumes of data in a cost-efficient manner.

In staging mode, Google BigQuery Connector first exports the data from the Google BigQuery source into
Google Cloud Storage. After the export is complete, Google BigQuery Connector downloads the data
from Google Cloud Storage into a local stage file. You can configure the local stage file directory in the
advanced source properties. Google BigQuery Connector then reads the data from the local stage file.

When you enable staging file compression, Google BigQuery Connector compresses the size of the
staging file in Google Cloud Storage. Google BigQuery Connector then downloads the staging file and
decompresses the staging file before it reads the file. To improve the performance and download data in
parallel, you can configure the number of threads for downloading the staging file.

Advanced Properties for Google BigQuery sources
You can configure advanced source properties on the Schedule page of the Synchronization Task wizard.

The following table describes the advanced properties that you can configure for a Google BigQuery source:

Property Description

Source
Dataset ID

Optional. Overrides the Google BigQuery dataset name that you specified in the connection.

Number of
Rows to Read

Specifies the number of rows to read from the Google BigQuery source table.

Allow Large
Results

Determines whether Google BigQuery Connector must produce arbitrarily large result tables to query
large source tables.
If you select this option, you must specify a destination table to store the query results.

Query Results
Table Name

Required if you select the Allow Large Results option.
Specifies the destination table name to store the query results. If the table is not present in the
dataset, Google BigQuery Connector creates the destination table with the name that you specify.

Job Poll
Interval in
Seconds

The number of seconds after which Google BigQuery Connector polls the status of the read job
operation.
Default is 10.

Read Mode Specifies the read mode to read data from the Google BigQuery source.
You can select one the following read modes:
- Direct. In direct mode, Google BigQuery Connector reads data directly from the Google BigQuery

source table.
Note: When you use hybrid and complex connection mode, you cannot use direct mode to read
data from the Google BigQuery source.

- Staging. In staging mode, Google BigQuery Connector exports data from the Google BigQuery
source into Google Cloud Storage. After the export is complete, Google BigQuery Connector
downloads the data from Google Cloud Storage into the local stage file and then reads data from
the local stage file.

Default is Direct mode.

Advanced Properties for Google BigQuery sources 147

Property Description

Number of
Threads for
Downloading
Staging Files

Specifies the number of files that Google BigQuery Connector downloads at a time to enable parallel
download.
This property applies to staging mode.

Data Format
of the staging
file

Specifies the data format of the staging file. You can select one of the following data formats:
- JSON (Newline Delimited). Supports flat and record data with nested and repeated fields.
- CSV. Supports flat data.

Note: In a .csv file, columns of the Timestamp data type are represented as floating point numbers
that cause the milliseconds value to differ.

Note: Avro format is not applicable for Google BigQuery Connector.

Local Stage
File Directory

Specifies the directory on your local machine where Google BigQuery Connector stores the Google
BigQuery source data temporarily before it reads the data.
This property applies to staging mode.

Staging File
Name

Name of the staging file where data from the Google BigQuery source table is exported to Google
Cloud Storage.
This property applies to staging mode.

Enable
Staging File
Compression

Indicates whether to compress the size of the staging file in Google Cloud Storage before Google
BigQuery Connector reads data from the staging file.
You can enable staging file compression to reduce cost and transfer time.
This property applies to staging mode.

Persist
Destination
Table

Indicates whether Google BigQuery Connector must persist the query results table after it reads data
from the query results table.
By default, Google BigQuery Connector deletes the query results table.

pre SQL SQL statement that you want to run before reading data from the source.
For example, if you want to select records in the database before you read the records from the
table, specify the following pre SQL statement:
SELECT * FROM [api-project-80697026669:EMPLOYEE.DEPARTMENT] LIMIT 1000;

pre SQL
Configuration

Specify a pre SQL configuration.
For example,
DestinationTable:PRESQL_SRC,DestinationDataset:EMPLOYEE,
FlattenResults:False,WriteDisposition:WRITE_TRUNCATE,UseLegacySql:False

post SQL SQL statement that you want to run after reading data from the source.
For example, if you want to update records in a table after you read the records from a source table,
specify the following post SQL statement:
UPDATE [api-project-80697026669.EMPLOYEE.PERSONS_TGT_DEL]
SET phoneNumber.number=1000011, phoneNumber.areaCode=100 where
fullname='John Doe'

post SQL
Configuration

Specify a post SQL configuration.
For example,
DestinationTable:POSTSQL_SRC,DestinationDataset:EMPLOYEE,
FlattenResults:True,WriteDisposition:WRITE_TRUNCATE,UseLegacySql:False

148 Chapter 13: Synchronization Tasks with Google BigQuery Connector

Data filters
You can create simple or advanced data filters. You can also create a set of data filters for each object
included in a synchronization task. Each set of data filters act independently of the other sets.

You can create simple or advanced data filters for the following data types:

• Integer

• Float

• Numeric (only if you use a Google BigQuery connection in hybrid mode)

• String

• Timestamp

Simple Data Filters
You can create one or more simple data filters. When you create multiple simple data filters, the associated
task creates an AND operator between the filters and loads rows that apply to all simple data filters.

Advanced Data Filters
You can create an advanced data filter to create complex expressions that use AND, OR, or nested
conditions. The expression that you enter becomes the WHERE clause in the query used to retrieve records
from the source.

Note: Google BigQuery Connector does not support the $LastRunDate variable under advanced data filters.

Google BigQuery targets in synchronization tasks
You can use a single Google BigQuery object as a target in a synchronization task.

The following table describes the Google BigQuery target properties:

Property Description

Connection Name of the active Google BigQuery target connection that is associated with a
dataset.

Target Object You can select an existing object from the list or create a target at run time.

Child Object This property is not applicable for Google BigQuery Connector.

Display technical names
instead of labels

This property is not applicable for Google BigQuery Connector because both the
technical names and labels are the same for Google.

Display target fields in
alphabetical order

Displays target fields in alphabetical order. By default, fields appear in the order
returned by the target system.

Data filters 149

Write modes
When you use Google BigQuery Connector, you can write data by using bulk mode or streaming mode. Before
you choose a mode, see the Google documentation to understand the cost implications and trade-offs for
each mode.

You can write data to a Google BigQuery target by using one of the following modes:

Bulk mode

Use bulk mode when you want to write large volumes of data in a cost-efficient manner.

In bulk mode, Google BigQuery Connector first writes the data to a staging file in Google Cloud Storage.
When the staging file contains all the data, Google BigQuery Connector loads the data from the staging
file to the BigQuery target.

When you enable staging file compression, Google BigQuery Connector compresses the size of the
staging file before it writes data to Google Cloud Storage. Google BigQuery Connector writes the
compressed file to Google Cloud Storage and then submits a load job to the BigQuery target.

Note: Enabling compression reduces the time that Google BigQuery Connector takes to write data to
Google Cloud Storage. However, there will be a performance degradation when Google BigQuery
Connector writes data from Google Cloud Storage to the BigQuery target.

Google BigQuery Connector deletes the staging file unless you configure the task or mapping to persist
the staging file. You can choose to persist the staging file if you want to archive the data for future
reference.

Streaming mode

Use streaming mode when you want the Google BigQuery target data to be immediately available for
querying and real-time analysis. Evaluate Google's streaming quota policies and billing policies before
you use streaming mode.

In streaming mode, Google BigQuery Connector directly writes data to the BigQuery target. Google
BigQuery Connector appends the data into the BigQuery target.

You can configure the number of rows that you want Google BigQuery Connector to stream in one
request. If you want to stream a larger number of rows than the maximum permissible limit prescribed
by Google, you can write the data to multiple smaller target tables instead of one large target table. You
can create a template table based on which Google BigQuery must create multiple tables. You can define
a unique suffix for each table. Google BigQuery creates each table based on the template table and adds
the suffix to uniquely identify each table.

Advanced synchronization task options for Google
BigQuery targets

You can configure advanced task options for a Google BigQuery target on the Schedule page of the
Synchronization Task wizard.

150 Chapter 13: Synchronization Tasks with Google BigQuery Connector

The following table describes the advanced task options that you can configure for a Google BigQuery target:

Advanced Option Description

Parameter File
Name

Name of the file that contains the definitions and values of user-defined parameters used in the
task.

Maximum Number
of Log Files

Number of session log files, error log files, and import log files to retain.
By default, Data Integration stores each type of log file for 10 runs before it overwrites the log
files for new runs.

Update Columns Specifies the temporary primary key columns to update, upsert, or delete target data. If the
Google BigQuery target does not include a primary key column, and the task performs an
update, upsert, or delete task operation, click Add to add a temporary key.
You can select multiple columns. By default, no columns are specified.

Advanced properties for Google BigQuery targets
You can configure advanced target properties on the Schedule page of the Synchronization Task wizard.

The following table describes the advanced properties that you can configure for a Google BigQuery target:

Property Description

Target
Dataset ID

Optional. Overrides the Google BigQuery dataset name that you specified in the connection.

Target Table
Name

Optional. Overrides the Google BigQuery target table name that you specified in the Target page of
the synchronization task.

Create
Disposition

Specifies whether Google BigQuery Connector must create the target table if it does not exist.
You can select one of the following values:
- Create if needed. If the table does not exist, Google BigQuery Connector creates the table.
- Create never. If the table does not exist, Google BigQuery Connector does not create the table and

displays an error message.

Write
Disposition

Specifies how Google BigQuery Connector must write data in bulk mode if the target table already
exists.
You can select one of the following values:
- Write append. If the target table exists, Google BigQuery Connector appends the data to the

existing data in the table.
- Write truncate. If the target table exists, Google BigQuery Connector overwrites the existing data in

the table.
- Write empty. If the target table exists and contains data, Google BigQuery Connector displays an

error and does not write the data to the target. Google BigQuery Connector writes the data to the
target only if the target table does not contain any data.

Note: Write disposition is applicable for bulk mode.
Note: Write disposition is applicable only when you perform an insert operation on a Google BigQuery
target.

Advanced properties for Google BigQuery targets 151

Property Description

Write Mode Specifies the mode to write data to the Google BigQuery target.
You can select one of the following modes:
- Bulk. In bulk mode, Google BigQuery Connector first writes the data to a staging file in Google

Cloud Storage. When the staging file contains all the data, Google BigQuery Connector loads the
data from the staging file to the BigQuery target. Google BigQuery Connector then deletes the
staging file unless you configure the task to persist the staging file.

- Streaming. In streaming mode, Google BigQuery Connector directly writes data to the BigQuery
target. Google BigQuery Connector writes the data into the target row by row.

Default is Bulk mode.

Streaming
Template
Table Suffix

Specify the suffix to add to the individual target tables that Google BigQuery Connector creates
based on the template target table.
This property applies to streaming mode.

Rows per
Streaming
Request

Specifies the number of rows that Google BigQuery Connector streams to the BigQuery target for
each request.
Default is 500 rows.
The maximum row size that Google BigQuery Connector can stream to the Google BigQuery target for
each request is 10 MB.
This property applies to streaming mode.

Staging file
name

Name of the staging file that Google BigQuery Connector creates in the Google Cloud Storage before
it loads the data to the Google BigQuery target.
This property applies to bulk mode.

Data Format
of the staging
file

Specifies the data format of the staging file. You can select one of the following data formats:
- JSON (Newline Delimited). Supports flat and record data with nested and repeated fields.
- CSV. Supports flat data.

Note: In a .csv file, columns of the Timestamp data type are represented as floating point numbers
that cause the milliseconds value to differ.

Persist
Staging File
After Loading

Indicates whether Google BigQuery Connector must persist the staging file in the Google Cloud
Storage after it writes the data to the Google BigQuery target. You can persist the staging file if you
want to archive the data for future reference.
By default, Google BigQuery Connector deletes the staging file in Google Cloud Storage.
This property applies to bulk mode.

Enable
Staging File
Compression

Select this option to compress the size of the staging file before Google BigQuery writes the data to
the Google Cloud Storage and decompress the staging file before it loads the data to the Google
BigQuery target.
You can enable staging file compression to reduce cost and transfer time.

Job Poll
Interval in
Seconds

The number of seconds after which Google BigQuery Connector polls the status of the write job
operation.
Default is 10.

Number of
Threads for
Uploading
Staging file

The number of files that Google BigQuery Connector must create to upload the staging file in bulk
mode.

152 Chapter 13: Synchronization Tasks with Google BigQuery Connector

Property Description

Local Stage
File Directory

Specifies the directory on your local machine where Google BigQuery Connector stores the files
temporarily before writing the data to the staging file in Google Cloud Storage.
This property applies to bulk mode.

Allow Quoted
Newlines

Indicates whether Google BigQuery Connector must allow the quoted data sections with newline
character in a .csv file.

Field
Delimiter

Delimiter character for the fields in a .csv file.

Allow Jagged
Rows

Indicates whether Google BigQuery Connector must accept the rows without trailing columns in
a .csv file.

Pre SQL SQL statement that you want to run before writing data to the target.
For example, if you want to select records from the database before you write the records into the
table, specify the following pre SQL statement:
SELECT * FROM `api-project-80697026669.EMPLOYEE.RegionNation` LIMIT 1000

Pre SQL
Configuration

Specify a pre SQL configuration.
For example,
DestinationTable:PRESQL_TGT2,DestinationDataset:EMPLOYEE,
FlattenResults:False,WriteDisposition:WRITE_TRUNCATE,UseLegacySql:False

Post SQL SQL statement that you want to run after writing the data into the target.
For example, if you want to update records in a table after you write the records into the target table,
specify the following post SQL statement:
UPDATE [api-project-80697026669.EMPLOYEE.PERSONS_TGT_DEL]
SET phoneNumber.number =1000011, phoneNumber.areaCode=100 where
fullname='John Doe'

Post SQL
Configuration

Specify a post SQL configuration.
For example,
DestinationTable:POSTSQL_SRC,DestinationDataset:EMPLOYEE,
FlattenResults:True,UseLegacySQL:False

Success File
Directory

Not applicable for Google BigQuery Connector.

Error File
Directory

Not applicable for Google BigQuery Connector.

Upsert task operation
When you perform an upsert operation on a Google BigQuery target, you must configure the upsert fields for
the target table. You can use an ID field for standard objects. Ensure that you include the upsert field in the
field mappings for the task.

Upsert task operation 153

Rules and Guidelines

Consider the following rules and guidelines when you perform an upsert operation on a Google BigQuery
target:

• You cannot use streaming mode to write data to a Google BigQuery target.

• When you configure a Google BigQuery connection to use simple or hybrid connection mode, you cannot
configure upsert operations for columns of the Record data type and repeated columns.

• When you configure a Google BigQuery connection to use complex connection mode, you cannot
configure an upsert operation.

154 Chapter 13: Synchronization Tasks with Google BigQuery Connector

C h a p t e r 1 4

Mappings and mapping tasks
with Google BigQuery

When you configure a mapping, you describe the flow of data from the source to the target.

A mapping defines reusable data flow logic that you can use in mapping tasks.

When you create a mapping, you define the Source and Target transformations to represent a Google
BigQuery object. Use the Mapping Designer in Data Integration to add the Source and Target transformations
in the mapping canvas and configure the Google BigQuery Source and Target properties. In advanced mode,
the Mapping Designer updates the mapping canvas to include transformations and functions that enable
advanced functionality.

You can use Monitor to monitor the jobs.

Pre SQL and post SQL commands
You can specify pre SQL and post SQL advanced properties for Google BigQuery sources and targets. When
you create a task in Data Integration, you can specify SQL commands in the advanced properties for a source
and target.

You can perform the following operations by using pre SQL and post SQL commands:

• SELECT

• UPDATE

• DELETE

Note: You cannot perform more than one operation with a pre SQL or post SQL command.

You can configure the options in Google BigQuery with a pre SQL or post SQL statement in the pre SQL
Configuration or post SQL Configuration advanced properties for Google BigQuery sources and targets.

You must use the following format to specify a pre SQL configuration or a post SQL configuration:

<Option1:Value1,Option2:Value2,...OptionN:ValueN>

155

The following table shows the configuration options and supported values that you can specify in a pre SQL
configuration or post SQL configuration:

Options Supported Values

DestinationDataset Dataset ID in Google BigQuery

DestinationTable Table name in Google BigQuery

FlattenResults True and False

UseLegacySQL True and False

WriteDisposition WRITE_TRUNCATE, WRITE_APPEND, and WRITE_EMPTY

Note: If you perform an UPDATE or DELETE operation with a pre SQL or post SQL command, you must specify
the following parameter in the pre SQL configuration or post SQL configuration: UseLegacySQL:False

Google BigQuery sources in mappings
To read data from Google BigQuery, configure a Google BigQuery object as the Source transformation in a
mapping.

Specify the name and description of the Google BigQuery source. Configure the source, query options, and
advanced properties for the source object.

The following table describes the source properties that you can configure for a Google BigQuery source:

Property Description

Connection Name of the active Google BigQuery source connection.

Source Type Type of the Google BigQuery source objects available.
You can read data from a single Google BigQuery source object or parameterize the object. You cannot
read data from multiple objects.

Object Name of the Google BigQuery source object based on the source type selected.

Filter Configure a simple filter or an advanced filter to remove rows at the source. You can improve
efficiency by filtering early in the data flow.
A simple filter includes a field name, operator, and value. Use an advanced filter to define a more
complex filter condition, which can include multiple conditions using the AND or OR logical operators.

156 Chapter 14: Mappings and mapping tasks with Google BigQuery

The following table describes the advanced properties that you can configure for a Google BigQuery source:

Property Description

Source
Dataset ID

Optional. Overrides the Google BigQuery dataset name that you specified in the connection.

Number of
Rows to Read

Specifies the number of rows to read from the Google BigQuery source table.

Allow Large
Results

Determines whether Google BigQuery Connector must produce arbitrarily large result tables to query
large source tables.
If you select this option, you must specify a destination table to store the query results.

Query Results
Table Name

Required if you select the Allow Large Results option.
Specifies the destination table name to store the query results. If the table is not present in the
dataset, Google BigQuery Connector creates the destination table with the name that you specify.

Job Poll
Interval in
Seconds

The number of seconds after which Google BigQuery Connector polls the status of the read job
operation.
Default is 10.

Read Mode Specifies the read mode to read data from the Google BigQuery source.
You can select one the following read modes:
- Direct. In direct mode, Google BigQuery Connector reads data directly from the Google BigQuery

source table.
Note: When you use hybrid and complex connection mode, you cannot use direct mode to read
data from the Google BigQuery source.

- Staging. In staging mode, Google BigQuery Connector exports data from the Google BigQuery
source into Google Cloud Storage. After the export is complete, Google BigQuery Connector
downloads the data from Google Cloud Storage into the local stage file and then reads data from
the local stage file.

Default is Direct mode.

Number of
Threads for
Downloading
Staging Files

Specifies the number of files that Google BigQuery Connector downloads at a time to enable parallel
download.
This property applies to staging mode.

Data Format
of the staging
file

Specifies the data format of the staging file. You can select one of the following data formats:
- JSON (Newline Delimited). Supports flat and record data with nested and repeated fields.
- CSV. Supports flat data.

Note: In a .csv file, columns of the Timestamp data type are represented as floating point numbers
that cause the milliseconds value to differ.

Note: Avro format is not applicable for Google BigQuery Connector.

Local Stage
File Directory

Specifies the directory on your local machine where Google BigQuery Connector stores the Google
BigQuery source data temporarily before it reads the data.
This property applies to staging mode.

Staging File
Name

Name of the staging file where data from the Google BigQuery source table is exported to Google
Cloud Storage.
This property applies to staging mode.

Google BigQuery sources in mappings 157

Property Description

Enable
Staging File
Compression

Indicates whether to compress the size of the staging file in Google Cloud Storage before Google
BigQuery Connector reads data from the staging file.
You can enable staging file compression to reduce cost and transfer time.
This property applies to staging mode.

Persist
Destination
Table

Indicates whether Google BigQuery Connector must persist the query results table after it reads data
from the query results table.
By default, Google BigQuery Connector deletes the query results table.

pre SQL SQL statement that you want to run before reading data from the source.
For example, if you want to select records in the database before you read the records from the
table, specify the following pre SQL statement:
SELECT * FROM [api-project-80697026669:EMPLOYEE.DEPARTMENT] LIMIT 1000;

pre SQL
Configuration

Specify a pre SQL configuration.
For example,
DestinationTable:PRESQL_SRC,DestinationDataset:EMPLOYEE,
FlattenResults:False,WriteDisposition:WRITE_TRUNCATE,UseLegacySql:False

post SQL SQL statement that you want to run after reading data from the source.
For example, if you want to update records in a table after you read the records from a source table,
specify the following post SQL statement:
UPDATE [api-project-80697026669.EMPLOYEE.PERSONS_TGT_DEL]
SET phoneNumber.number=1000011, phoneNumber.areaCode=100 where
fullname='John Doe'

post SQL
Configuration

Specify a post SQL configuration.
For example,
DestinationTable:POSTSQL_SRC,DestinationDataset:EMPLOYEE,
FlattenResults:True,WriteDisposition:WRITE_TRUNCATE,UseLegacySql:False

You can set the tracing level in the advanced properties session to determine the amount of details that logs
contain.

The following table describes the tracing levels that you can configure:

Property Description

Terse The Secure Agent logs initialization information, error messages, and notification of rejected data.

Normal The Secure Agent logs initialization and status information, errors encountered, and skipped rows
due to transformation row errors. Summarizes session results, but not at the level of individual
rows.

Verbose
Initialization

In addition to normal tracing, the Secure Agent logs additional initialization details, names of index
and data files used, and detailed transformation statistics.

Verbose Data In addition to verbose initialization tracing, the Secure Agent logs each row that passes into the
mapping. Also notes where the Secure Agent truncates string data to fit the precision of a column
and provides detailed transformation statistics.
When you configure the tracing level to verbose data, the Secure Agent writes row data for all rows
in a block when it processes a transformation.

158 Chapter 14: Mappings and mapping tasks with Google BigQuery

Google BigQuery targets in mappings
To write data to a Google BigQuery target, configure a Google BigQuery object as the Target transformation
in a mapping.

Specify the name and description of Google BigQuery target. Configure the target and advanced properties
for the target object.

The following table describes the target properties that you can configure for a Google BigQuery target:

Property Description

Connection Name of the active Google BigQuery connection that is associated with a dataset.

Target Type Type of the Google BigQuery target objects available.
You can write data to a single Google BigQuery target object or parameterize the object. You
cannot write data to multiple objects.

Object Name of the Google BigQuery target object based on the target type selected.

Create New at
Runtime

Creates a target.
Enter a name for the target object and select the source fields that you want to use. By default, all
source fields are used.
The target name can contain alphanumeric characters. You can use the following special
characters in the file name: ., _, @, $, %
Google BigQuery Connector creates a new target table in the Dataset ID specified in the Google
BigQuery connection.

Operation You can select one the following operations:
- Insert
- Update
- Upsert (Update or Insert)
- Delete
Note: If you use complex connection mode, you cannot configure update, upsert, and delete
operations.

Update
Columns

Specifies the temporary primary key columns to update, upsert or delete target data. If the Google
BigQuery target does not include a primary key column, and the mapping performs an update,
upsert, or delete task operation, click Add to add a temporary key.
You can select multiple columns. By default, no columns are specified.

The following table describes the advanced properties that you can configure for a Google BigQuery target:

Property Description

Target
Dataset ID

Optional. Overrides the Google BigQuery dataset name that you specified in the connection.

Target Table
Name

Optional. Overrides the Google BigQuery target table name that you specified in the Target page of
the synchronization task.

Google BigQuery targets in mappings 159

Property Description

Create
Disposition

Specifies whether Google BigQuery Connector must create the target table if it does not exist.
You can select one of the following values:
- Create if needed. If the table does not exist, Google BigQuery Connector creates the table.
- Create never. If the table does not exist, Google BigQuery Connector does not create the table and

displays an error message.

Write
Disposition

Specifies how Google BigQuery Connector must write data in bulk mode if the target table already
exists.
You can select one of the following values:
- Write append. If the target table exists, Google BigQuery Connector appends the data to the

existing data in the table.
- Write truncate. If the target table exists, Google BigQuery Connector overwrites the existing data in

the table.
- Write empty. If the target table exists and contains data, Google BigQuery Connector displays an

error and does not write the data to the target. Google BigQuery Connector writes the data to the
target only if the target table does not contain any data.

Note: Write disposition is applicable for bulk mode.
Note: Write disposition is applicable only when you perform an insert operation on a Google BigQuery
target.

Write Mode Specifies the mode to write data to the Google BigQuery target.
You can select one of the following modes:
- Bulk. In bulk mode, Google BigQuery Connector first writes the data to a staging file in Google

Cloud Storage. When the staging file contains all the data, Google BigQuery Connector loads the
data from the staging file to the BigQuery target. Google BigQuery Connector then deletes the
staging file unless you configure the task to persist the staging file.

- Streaming. In streaming mode, Google BigQuery Connector directly writes data to the BigQuery
target. Google BigQuery Connector writes the data into the target row by row.

Default is Bulk mode.

Streaming
Template
Table Suffix

Specify the suffix to add to the individual target tables that Google BigQuery Connector creates
based on the template target table.
This property applies to streaming mode.

Rows per
Streaming
Request

Specifies the number of rows that Google BigQuery Connector streams to the BigQuery target for
each request.
Default is 500 rows.
The maximum row size that Google BigQuery Connector can stream to the Google BigQuery target for
each request is 10 MB.
This property applies to streaming mode.

Staging file
name

Name of the staging file that Google BigQuery Connector creates in the Google Cloud Storage before
it loads the data to the Google BigQuery target.
This property applies to bulk mode.

Data Format
of the staging
file

Specifies the data format of the staging file. You can select one of the following data formats:
- JSON (Newline Delimited). Supports flat and record data with nested and repeated fields.
- CSV. Supports flat data.

Note: In a .csv file, columns of the Timestamp data type are represented as floating point numbers
that cause the milliseconds value to differ.

160 Chapter 14: Mappings and mapping tasks with Google BigQuery

Property Description

Persist
Staging File
After Loading

Indicates whether Google BigQuery Connector must persist the staging file in the Google Cloud
Storage after it writes the data to the Google BigQuery target. You can persist the staging file if you
want to archive the data for future reference.
By default, Google BigQuery Connector deletes the staging file in Google Cloud Storage.
This property applies to bulk mode.

Enable
Staging File
Compression

Select this option to compress the size of the staging file before Google BigQuery writes the data to
the Google Cloud Storage and decompress the staging file before it loads the data to the Google
BigQuery target.
You can enable staging file compression to reduce cost and transfer time.

Job Poll
Interval in
Seconds

The number of seconds after which Google BigQuery Connector polls the status of the write job
operation.
Default is 10.

Number of
Threads for
Uploading
Staging file

The number of files that Google BigQuery Connector must create to upload the staging file in bulk
mode.

Local Stage
File Directory

Specifies the directory on your local machine where Google BigQuery Connector stores the files
temporarily before writing the data to the staging file in Google Cloud Storage.
This property applies to bulk mode.

Allow Quoted
Newlines

Indicates whether Google BigQuery Connector must allow the quoted data sections with newline
character in a .csv file.

Field
Delimiter

Indicates whether Google BigQuery Connector must allow field separators for the fields in a .csv file.

Allow Jagged
Rows

Indicates whether Google BigQuery Connector must accept the rows without trailing columns in
a .csv file.

Pre SQL SQL statement that you want to run before writing data to the target.
For example, if you want to select records from the database before you write the records into the
table, specify the following pre SQL statement:
SELECT * FROM `api-project-80697026669.EMPLOYEE.RegionNation` LIMIT 1000

Pre SQL
Configuration

Specify a pre SQL configuration.
For example,
DestinationTable:PRESQL_TGT2,DestinationDataset:EMPLOYEE,
FlattenResults:False,WriteDisposition:WRITE_TRUNCATE,UseLegacySql:False

Post SQL SQL statement that you want to run after writing the data into the target.
For example, if you want to update records in a table after you write the records into the target table,
specify the following post SQL statement:
UPDATE [api-project-80697026669.EMPLOYEE.PERSONS_TGT_DEL]
SET phoneNumber.number =1000011, phoneNumber.areaCode=100 where
fullname='John Doe'

Google BigQuery targets in mappings 161

Property Description

Post SQL
Configuration

Specify a post SQL configuration.
For example,
DestinationTable:POSTSQL_SRC,DestinationDataset:EMPLOYEE,
FlattenResults:True,UseLegacySQL:False

Success File
Directory

Not applicable for Google BigQuery Connector.

Error File
Directory

Not applicable for Google BigQuery Connector.

Forward
Rejected
Rows

Not applicable for Google BigQuery Connector.

Upsert task operation
When you perform an upsert operation on a Google BigQuery target, you must configure the upsert fields for
the target table. You can use an ID field for standard objects. Ensure that you include the upsert field in the
field mappings for the task.

Rules and Guidelines

Consider the following rules and guidelines when you perform an upsert operation on a Google BigQuery
target:

• You cannot use streaming mode to write data to a Google BigQuery target.

• You cannot configure key range partitioning with more than one partition key.

• When you configure a Google BigQuery connection to use simple or hybrid connection mode, you cannot
configure upsert operations for columns of the Record data type and repeated columns.

• When you configure a Google BigQuery connection to use complex connection mode, you cannot
configure an upsert operation.

Partitioning
When you read data from a Google BigQuery source and use simple or hybrid connection mode, you can
configure key range partitioning to optimize the mapping performance at run time.

Key range partitioning
You can configure key range partitioning when you use a mapping task to read data from Google BigQuery
sources and use simple or hybrid connection mode. With key range partitioning, the Secure Agent distributes

162 Chapter 14: Mappings and mapping tasks with Google BigQuery

rows of source data based on the fields that you define as partition keys. The Secure Agent compares the
field value to the range values for each partition and sends rows to the appropriate partitions.

Use key range partitioning for columns that have an even distribution of data values. Otherwise, the partitions
might have unequal size. For example, a column might have 10 rows between key values 1 and 1000 and the
column might have 999 rows between key values 1001 and 2000. If the mapping includes multiple sources,
use the same number of key ranges for each source.

When you define key range partitioning for a column, the Secure Agent reads the rows that are within the
specified partition range. For example, if you configure two partitions for a column with the ranges as 10
through 20 and 30 through 40, the Secure Agent does not read the rows 20 through 30 because these rows
are not within the specified partition range.

You can configure a partition key for fields of the following data types:

• String

• Integer

• Numeric (only if you use a Google BigQuery connection in hybrid mode)

• Timestamp. Use the following format: YYYY-MM-DD HH24:MI:SS

Note: You cannot configure a partition key for Record data type columns and repeated columns.

You cannot use key range partitions when a mapping includes any of the following transformations:

• Web Services

• JSON to Relational

Configuring Key Range Partitioning
Perform the following steps to configure key range partitioning for Google BigQuery sources:

1. In the Source Properties, click the Partitions tab.

2. Select the required partition key from the list.

3. Click Add New Key Range to define the number of partitions and the key ranges based on which the
Secure Agent must partition data.

Use a blank value for the start range to indicate the minimum value. Use a blank value for the end range
to indicate the maximum value.

The following image displays the Partitions tab:

Partitioning 163

Hierarchy Parser transformation in mappings
To preserve the hierarchical structure when you read data from Google BigQuery and write data to relational
targets, you must use a Hierarchy Parser transformation.

The transformation processes JSON input from the source transformation and provides relational output to
the target transformation. The Hierarchy Parser transformation converts hierarchical input based on the
sample schema of the Google BigQuery table that you associate with the transformation and the way that you
map the data.

Hierarchy Builder transformation in mappings
When you read data from relational sources and write data to a Google BigQuery target, you must use a
Hierarchy Builder transformation.

The transformation processes relational input from the upstream transformation and provides JSON output
to the downstream transformation. The Hierarchy Builder transformation produces JSON output based on the
sample schema of the Google BigQuery table that you associate with the transformation and the way that you
map the data.

Rules and Guidelines for mappings and mapping
tasks

Consider the following rules and guidelines for mapping and mapping tasks:

• When you write large datasets to a Google BigQuery target, increase the Java heap size in the JVM
options for type DTM. Set JVMOption3 to -Xms1024m and JVMOption4 to -Xmx4096m in the System
Configuration Details section of the Secure Agent and restart the Secure Agent.

• When you use the Hosted Agent as the runtime environment in a mapping task and use a Hierarchy
Builder or Hierarchy Parser transformation in a mapping, you must specify a storage path in Google Cloud
Storage in the Schema Definition File Path field under the connection properties. You can then download
the sample schema definition file for the Google BigQuery table from the specified storage path in Google
Cloud Storage to a local machine.

• When you read JSON data from a MongoDB source table and write data to a column of Record data type
in a Google BigQuery target table, you must specify a explicit value for columns that contain _id in the
column name. Otherwise, the task fails with the following error:
[ERROR] The [LOAD] job failed with the error - [JSON parsing error in row starting at
position 0:

164 Chapter 14: Mappings and mapping tasks with Google BigQuery

C h a p t e r 1 5

Data type reference
Data Integration uses the following data types in mappings, synchronization tasks, and mapping tasks with
Google BigQuery:
Google BigQuery native data types

Google BigQuery data types appear in the Fields tab for Source and Target transformations when you
choose to edit metadata for the fields.

Transformation data types

Set of data types that appear in the transformations. They are internal data types based on ANSI SQL-92
generic data types, which the Secure Agent uses to move data across platforms. Transformation data
types appear in all transformations in a mapping.

When Data Integration reads source data, it converts the native data types to the comparable
transformation data types before transforming the data. When Data Integration writes to a target, it
converts the transformation data types to the comparable native data types.

Google BigQuery and transformation data types
The following table describes the data types that Data Integration supports for Google BigQuery sources and
targets:

Google
BigQuery Data
Type

Transformation
Data Type

Range and Description for the Transformation Data Type

BOOLEAN String 1 to 104,857,600 characters.
Boolean True or False values.
Default precision is 5.

DATE Date/Time Date values. Google BigQuery Connector uses the following format:
DD-MM-YYYY
Minimum value: 1/1/1970
Maximum value: 30/12/9999
Precision 29, scale 9

165

Google
BigQuery Data
Type

Transformation
Data Type

Range and Description for the Transformation Data Type

DATETIME Date/Time Jan 1, 0001 A.D. to Dec 31, 9999 A.D.
(precision to the nanosecond)
Default precision 29, scale 9
Note: Google BigQuery Connector supports YYYY format for the year.

FLOAT Double Precision 15, scale 0

INTEGER BigInt -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Precision 19, scale 0

RECORD String 1 to 104,857,600 characters
Default precision is 255. You can increase the value up to 104857600
characters.

NUMERIC Decimal Default precision 28, scale 10
Note: Though the Fields tab shows the scale as 10, Google BigQuery
supports scale upto 9.

STRING String 1 to 104,857,600 characters
Default precision is 255. You can increase the value up to 104857600
characters.

BYTE Byte 1 to 104,857,600 bytes

TIME Date/Time Time values.
(precision to the nanosecond)
Precision 29, scale 9

TIMESTAMP Date/Time Jan 1, 0001 A.D. to Dec 31, 9999 A.D.
(precision to the nanosecond)
Precision 29, scale 9
Note: Google BigQuery Connector supports YYYY format for the year.

Note: When you write data of the Timestamp data type from a Google BigQuery source object, certain
Timestamp values written to the target show a difference by a few milliseconds from the value in the source.

166 Chapter 15: Data type reference

I n d e x

A
at-scale mapping 16

B
bulk mode

staging file 48, 150

C
cache

enable lookup cache 62
CDC source

Google BigQuery V2 mapping task 51
configuring key range

partitioning 42, 163
connections

Google BigQuery 140
custom query 38

D
data filters

advanced 149
simple 149

dynamic schema handling 70

G
Google BigQuery

connection properties 140
SQL ELT optimization 104
Synchronization task 145

Google BigQuery connection
SQL ELT optimization overview 100

Google BigQuery connections
overview 135

Google BigQuery connector
administration 19, 132
overview 131
supported task and object types 131

Google BigQuery data types
mapping to transformation data types 165
overview 127, 165

Google BigQuery sources
synchronization task 146

Google BigQuery targets
advanced options for synchronization task 150
write disposition 151

Google BigQuery V2 connection
configuration 101

Google BigQuery V2 connection (continued)
SQL ELT optimization 100
SQL ELT optimization overview 100

Google BigQuery V2 connections
overview 20

Google BigQuery V2 connector
overview 18
supported task and object types 18

Google BigQuery V2 data types
mapping to transformation data types 127

Google BigQuery V2 lookups
mapping tasks 59

H
hosted agent 131

I
Informatica Global Customer Support

contact information 8

L
Linux

configuring proxy settings 143
lookup

multiple matches 56
lookup caches

dynamic 62
persistent 62

Lookup transformation
lookup caching 62

M
mapping

Google BigQuery sources 32, 156
Google BigQuery targets 42, 159
Oracle CDC Sources 15

mapping and mapping task 15
mappings

lookup overview 56
lookup properties 56

mappings in advanced mode
rules and guidelines 79

P
Partitioning

key range 41, 163

167

post SQL commands
entering 145, 155

post-SQL commands
entering 69

pre SQL and post SQL
entering 145, 155

pre SQL commands
entering 145, 155

pre-SQL and post-SQL
entering 69

pre-SQL commands
entering 69

Prerequisites
Amazon S3 source 121

proxy settings
configuring on Linux 143
configuring on Windows 141

S
SQL ELT optimization

Aggregator transformation 113
functions 104, 113, 116
Lookup transformation 113
preview 101
Rules and Guidelines 123
Rules and Guidelines for mappings with Amazon S3 122
Rules and Guidelines for mappings with Google Cloud Storage V2
121
SQL transformation 113
transformations 104, 113, 116

SQL ELT optimization preview 101
SQL transformations

configuration 66
selecting a stored procedure 67

streaming mode
creating template table 48, 150

synchronization
Google BigQuery targets 151

synchronization task 15

T
transformations

SQL ELT optimization 113
troubleshooting

mapping task 82
Troubleshooting 125

U
upsert 52, 53, 153, 162

W
Windows

configuring proxy settings 141
write modes

bulk 48, 150
streaming 48, 150

168 Index

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Part I: Introduction to Google BigQuery connectors
	Chapter 1: Google BigQuery connectors overview
	Chapter 2: Connector comparison
	Mapping functionality
	Source functionality
	Target functionality

	Chapter 3: Task examples
	Synchronization task use case
	Mapping and mapping task use case
	Mapping task with Oracle CDC sources use case
	Mapping in advanced mode use case

	Part II: Data Integration with Google BigQuery V2 Connector
	Chapter 4: Introduction to Google BigQuery V2 Connector
	Google BigQuery V2 Connector assets
	Google BigQuery example
	Administration of Google BigQuery V2 Connector

	Chapter 5: Google BigQuery V2 connections
	Connect to Google BigQuery
	Before you begin
	Connection details
	Authentication type

	Proxy server settings
	Configure proxy settings for NTLM authentication

	Chapter 6: Mappings for Google BigQuery V2
	Google BigQuery Storage API
	Mappings with different connection modes
	Rules and guidelines for Google BigQuery V2 connection modes

	Google BigQuery V2 sources in mappings
	Read modes
	Custom query source type
	Adding multiple source objects
	Partitioning

	Google BigQuery V2 targets in mappings
	Write modes
	Mapping tasks with CDC sources
	Upsert task operation
	Data driven operation for mappings
	Using Merge query for update, upsert, and delete operations
	Determine the order of processing for multiple targets
	Clustering order
	Stop on errors

	Google BigQuery V2 lookups in mappings
	Unconnected lookup transformation
	Configuring an unconnected lookup transformation
	Enabling lookup caching
	Optimize lookup performance in staging mode
	Setting default column value for the lookup and output ports
	Rules and guidelines for Lookup transformation

	Process SQL queries using an SQL transformation
	Configuring an SQL transformation
	Using a parameterized connection in an SQL transformation
	Rules and guidelines for SQL transformation

	Pre-SQL and post-SQL commands
	Data filters
	Handling dynamic schemas
	Rules and guidelines for dynamic schema handling

	Configure unique staging object names for concurrent mappings
	Hierarchy Parser transformation in mappings
	Hierarchy Builder transformation in mappings
	Assign a label to the transformations
	Rules and guidelines for mapping and mapping tasks
	Rules and guidelines for mappings in advanced mode
	Troubleshooting a mapping task
	Troubleshooting a mapping in advanced mode

	Chapter 7: Migrating a mapping
	Use the same object path for the migrated mapping
	Use a different object path for the migrated mapping
	Migration options

	Rules and guidelines for migrating a mapping

	Chapter 8: Upgrading to Google BigQuery V2 Connector
	Connection switching example
	Advanced properties retained after the switch
	Rules and guidelines

	Chapter 9: SQL ELT with Google BigQuery V2 Connector
	SQL ELT configuration options
	SQL ELT query preview
	Mappings in SQL ELT mode for Google BigQuery
	Sources in mappings in SQL ELT mode
	Targets in mappings in SQL ELT mode
	Transformations in mappings in SQL ELT mode
	Functions in mappings in SQL ELT mode
	Operators in mappings in SQL ELT mode
	Rules and guidelines in mappings in SQL ELT mode

	SQL ELT optimization for mapping tasks
	SQL ELT optimization
	SQL ELT optimization using a Google BigQuery V2 connection
	Read from and write to Google BigQuery
	Read from Google Cloud Storage and write to Google BigQuery
	Read from Amazon S3 and write to Google BigQuery
	Rules and guidelines for SQL ELT optimization
	Troubleshooting a SQL ELT optimization task

	Chapter 10: Data type reference
	Google BigQuery V2 and transformation data types

	Part III: Data Integration with Google BigQuery Connector
	Chapter 11: Introduction to Google BigQuery Connector
	Data Integration Hosted Agent
	Google BigQuery Connector assets
	Google BigQuery example
	Administration of Google BigQuery Connector

	Chapter 12: Google BigQuery connections
	Connection modes
	Connection mode example
	Rules and guidelines for Google BigQuery connection modes

	Google BigQuery connection properties
	Configuring the proxy settings on Windows
	Configuring the proxy settings on Linux

	Chapter 13: Synchronization Tasks with Google BigQuery Connector
	Pre SQL and post SQL commands
	Google BigQuery sources in synchronization tasks
	Read modes
	Advanced Properties for Google BigQuery sources
	Data filters
	Simple Data Filters
	Advanced Data Filters

	Google BigQuery targets in synchronization tasks
	Write modes
	Advanced synchronization task options for Google BigQuery targets
	Advanced properties for Google BigQuery targets
	Upsert task operation

	Chapter 14: Mappings and mapping tasks with Google BigQuery
	Pre SQL and post SQL commands
	Google BigQuery sources in mappings
	Google BigQuery targets in mappings
	Upsert task operation
	Partitioning
	Key range partitioning

	Hierarchy Parser transformation in mappings
	Hierarchy Builder transformation in mappings
	Rules and Guidelines for mappings and mapping tasks

	Chapter 15: Data type reference
	Google BigQuery and transformation data types

	Index

