
Informatica® Application Integration
April 2024

Amazon S3 Connector Guide

Informatica Application Integration Amazon S3 Connector Guide
April 2024

© Copyright Informatica LLC 1993, 2024

Publication Date: 2024-11-29

Table of Contents

Preface . 4

Chapter 1: Introduction to Amazon S3 Connector. 5
Amazon S3 Connector. 5

S3 Connector Implementation. 6

Amazon S3 Event Types. 7

Chapter 2: Amazon S3 Connections. 8
Basic connection properties. 8

Amazon S3 Connection Properties. 9

Chapter 3: Amazon S3 Event Sources. 11
Basic Event Source Properties. 11

Amazon S3 Event Source Properties. 12

File Content Properties for Monitor Event Sources. 13

Delimited and Fixed Width Content. 14

Fixed Width Files. 16

Chapter 4: Amazon S3 Event Targets. 17
Basic Event Target Properties. 17

Amazon S3 Event Target Properties. 17

Chapter 5: Amazon S3 Process Objects. 19
Monitor Event Objects. 19

Delimited Content Parser Process Objects. 20

Writing Content with Event Targets. 23

Table of Contents 3

Preface
Read the Amazon S3 Connector Guide to learn how to set up and use connections with the Amazon Simple
Storage Service (S3).

This guide assumes that you have an understanding of your Amazon S3 environment and how to create
connections and processes in Application Integration.

4

C h a p t e r 1

Introduction to Amazon S3
Connector

This chapter includes the following topics:

• Amazon S3 Connector, 5

• S3 Connector Implementation, 6

• Amazon S3 Event Types, 7

Amazon S3 Connector
Application Integration supports several types of listener-based connectors that can be used for event-based
processing of messages and files. These connectors expose a wide range of connection attributes you can
use to configure a listener-based connection.

You can configure the Amazon Simple Storage Service (S3) Connector as a file monitor that makes data
objects, service calls, and events available to the Process Designer.

Using the Amazon S3 Connector, you can work with files that reside in the S3 storage system similar to how
you handle local files using the File Connector. For example, you can:

1. Monitor an S3 bucket for new objects and generate events for processes. You can access S3 object
metadata or S3 object content as plain text, binary data, attachment or a set of process objects that are
built from parsed XML, JSON, or delimited content.

2. Write S3 objects to an S3 bucket as delimited content, arbitrary string data, binary data, attachments or
list of process objects (represented as XML or JSON).

Amazon S3 Object Store

Amazon S3 is a key-based object store. The unique object key assigned by the user can later be used to
retrieve the data. Each object is stored and retrieved using a unique key.

Each account contains one or more buckets to store data and to organize the Amazon S3 namespace. An
object is uniquely identified within a bucket by a key (unique identifier) and a version ID.

In this example:

http://mybucket.s3.amazonaws.com/myfiles/photo1.jpg

the bucket is "mybucket" and the key is "myFiles/photo1.jpg"

5

Each object in S3 has a data and metadata component. The metadata describes the object using name-value
pairs and include, for example, the date last modified and other standard HTTP metadata, such as Content-
Type. A bucket can also specify the geographical region where Amazon S3 will store it.

For more information on S3, refer to the Amazon product information, such as
http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html.

S3 Connector Implementation
S3 Connector provides configurable start events (Event Sources) and event services (Event Targets) that can
be defined in a Connection object using Process Designer.

The Event Sources (start events) and Event Targets (event service definitions) share common attributes, so a
single S3 connection can monitor several different buckets for new objects, read delimited content from
other buckets, and write to another bucket, provided that all the buckets are related to a single access/secret
key pair (the S3 account).

With this flexible implementation, you can combine a set of related tasks in one connection or split your work
into several separate connections.

Processing S3 Objects with Event Sources

After S3 Connector processes the S3 objects in a bucket, those objects are automatically deleted to ensure
that they are not processed again. As a result, S3 buckets used with the connector must be defined either as
temporary storage or as a data exchange buffer between an isolated application and a Secure Agent, from
which the objects can be processed and moved to another location.

The connector handles each object as follows:

• The start event (Event Source) you define reads the S3 object from the bucket and sends it to the
processes handling the content.

• After the content has been processed, the S3 object is removed from the bucket and the event source
reads the next object.

• If a problem is encountered during object processing, the processing terminates and an error message is
printed to the log file. An error might occur if:

- An S3 object causes an error during processing and cannot be deleted because its content was not
processed.

- An S3 object cannot be moved to the local folder and deleted from the bucket because it might cause an
unexpected result. For example, if there is an error in the configuration of the connection where the
process is running.

- The Event Source settings have an incorrect encryption algorithm or password.

Encryption Method

Amazon S3 Connector supports client-side encryption using a master key that you store within your
application.

When you upload an object to Amazon S3, you must provide a client-side master key. Amazon S3 Connector
uses the master key to encrypt the encryption data key. Then, Amazon S3 Connector uses the encryption data
key to encrypt the object.

When you download an object from Amazon S3, Amazon S3 Connector downloads the encrypted object from
Amazon S3.

For more information about using a client-side master key, see the Amazon S3 user documentation.

6 Chapter 1: Introduction to Amazon S3 Connector

http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html

Note: If you try to consume encrypted objects from Amazon S3 without enabling data encryption in the
Amazon S3 connection, the connection fails.

Encryption Algorithms

The implementation is based on the S3 client-side encryption. The S3 Connector supports several different
encryption algorithms. The encryption settings are used for the encryption of Event Sources. Before you can
read an encrypted S3 object, you must decrypt the object using a third-party tool.

For keys generated by the connection and based on the user password string, the encryption key is based on
the PBKDF2WithHmacSHA1 key derivation algorithm with 4096 iterations, using the fixed salt, "Informatica".

For a user-provided encryption key, any key is acceptable provided the key length is correct.

Also see the Client-Side Encryption Settings below.

Java Cryptography Extension (JCE)

To use the encryption algorithms, you might need to install the Java Cryptography Extension (JCE). You can
download the JCE from the Oracle website. To install it:

1. Extract the files from the JCE zip file you downloaded.

2. Copy the following jar files to $JAVA_HOME/jre/lib/security:
local_policy.jar

US_export_policy.jar

Note: If these jar files already reside in the specified directory, make a backup copy and then overwrite
them.

3. Restart your Secure Agent to begin using the new jar files.

After you perform these steps, you should be able to use all the encryption algorithms supported by S3
Connector.

Amazon S3 Event Types
After you create an S3 connection, you can define one or more Event Sources and Event Targets that are
associated with the connection.
The following event source types are available for Amazon S3:

• Monitor

• Delimited Content Parser

• Fixed Width Content Parser

The following event target types are available for Amazon S3:

• Writer

• Delimited Content Writer

Amazon S3 Event Types 7

C h a p t e r 2

Amazon S3 Connections
This chapter includes the following topics:

• Basic connection properties, 8

• Amazon S3 Connection Properties, 9

Basic connection properties
The following table describes the basic properties available on the Properties tab of the Connection page:

Property Description

Name Required. Unique name for this connection that identifies it in the Process Designer.

Location The location of the project or folder you want the connection to reside in. To select a location
for the connection, browse to the appropriate project or folder, or use the default location.

Description Optional. Description of the connection.

Type Required. The connector or service connector to use for this connection. Select the type you
want to configure.

Run On Required. The Cloud Server or the Secure Agent where this connection should run.

Connection Test If supported for the connection type, displays the results of the last connection test.

OData-Enabled If supported for the connection type, select Yes to enable OData feeds and specify the allowed
users and groups.

Allowed Roles for
OData

Optional. The roles that have access to the connection at design time. You can enter a custom
role or a system-defined role. You can enter more than one role in this field.

Along with these basic properties, depending on the connector, you also define:

• Properties applicable to the connection type

• The Event Sources and Event Targets, if available

When you publish the connection, the Metadata tab displays the generated process objects.

8

Amazon S3 Connection Properties
IAM authentication provides secured access to Amazon S3 resources. You can use the AWS IAM system to
map policies to IAM roles or external resources and to determine the list of permissions that can be assigned
to the IAM roles.

Note: The IAM role that you configure in the Amazon S3 connection properties will have access to all the
queues that you include in the Amazon S3 event source and event target properties. You must create a
separate app connection to configure an IAM role to access a different set of Amazon S3 queues.

When you select Amazon S3 as the connection type, you can configure Amazon S3 specific connection
properties. The following table defines the Amazon S3 connection properties that you must configure in the
Connection Properties section:

AWS Signature
Settings

Description

Access Key ID AWS access key ID of the requester. Alternatively, you can pass the following access key in the
AWS SDK in the Java system properties:
aws.accessKeyId
You can pass the key using the AWS_ACCESS_KEY_ID environment variable.

Secret Access Key AWS secret key of the requester. Alternatively, you can pass the following secret key in the AWS
SDK in the Java system properties:
aws.secretKey
You can pass the secret key using the AWS_SECRET_ACCESS_KEY environment variable.

Use EC2 Role to
Assume Role

Enables the EC2 role to assume another IAM role specified in the IAM Role ARN option.

IAM Role ARN The Amazon Resource Name (ARN) of the AWS Identity and Access Management (IAM) role
assumed by the user to use the dynamically generated temporary security credentials.

External Id Provides a more secure access to the Amazon S3 bucket when the Amazon S3 bucket is in a
different AWS account. You can use external ID to grant access to your AWS resources to a third
party.

The following table describes the Amazon S3 policy and region settings, which apply to all event sources and
event targets in the connection:

Amazon S3
Settings

Description

Policy Optional. The bucket policy (using the JSON-based access policy language required by Amazon)
to be applied to any new bucket created by the process.

Amazon S3
Endpoint

Optional. The region-specific website endpoint where the S3 bucket must reside if the process
creates a new bucket. For example:

s3-website-us-east-1.amazonaws.com

Region Optional. The region where a new bucket must be located. For example:

us-east1

Amazon S3 Connection Properties 9

Some regions support Amazon S3 buckets that support both Signature Version 2 and Signature Version 4
authentications. By default, the connection uses the Signature Version 2 authentication.
You must specify the target region explicitly in the Amazon S3 Endpoint field to run a process to read or write
data to an Amazon S3 bucket that requires Signature Version 4 authentication. Else, the connection uses the
Signature Version 2 authentication and the mapping fails. For more information about the Amazon S3 bucket
regions support, see Amazon S3 documentation.

The following table describes the client-side encryption settings, which apply to all event sources and event
targets in the connection:

Client-Side
Encryption
Settings

Description

Use Data
Encryption

If you select Yes, the content of the S3 objects will be decrypted and encrypted by event
sources and targets.
Default is No.

Encryption
Algorithm

Optional. Encryption algorithm that must be used to decrypt and encrypt the S3 objects.

Encryption Key Optional. Base64-encoded secret key that must be used for encryption. The length of the key
must match the required key length of the selected encryption algorithm (AES - 128, 192 or 256
bits; DES - 64 bits; 3DES - 192 bits).

Encryption
Password

Optional. Encryption password that should be used to generate an encryption key. You can
either enter the encryption key or generate the key using this parameter. If both parameters are
provided, the encryption key is used.

10 Chapter 2: Amazon S3 Connections

C h a p t e r 3

Amazon S3 Event Sources
This chapter includes the following topics:

• Basic Event Source Properties, 11

• Amazon S3 Event Source Properties, 12

• File Content Properties for Monitor Event Sources, 13

• Delimited and Fixed Width Content, 14

• Fixed Width Files, 16

Basic Event Source Properties
You can add one or more event sources for a connection. An event source serves as a start event that listens
or monitors a specified location for new files or messages. After you define an event source for a connection,
you can publish the connection only on a Secure Agent and not on the Cloud Server. You can then access the
event source in a process and deploy the process only on a Secure Agent to consume the process objects
generated by the event source downstream.

To create event sources for a connection, from the Event Sources tab, click Add Event Source, and select the
event source type from the available list.

The following table describes the event source properties that are available for all event source types:

Property Description

Name Required. Unique name for the event source.

Description Optional. Description for the event source.

Enabled Select Yes to make the event source available immediately after it is published.
Select No to disable the event source until you are ready to use it.
Default is Yes.

You can view the status of each event source in the published connection. If the status of the event source is
stopped, you can republish the connection and restart the event source. When you republish the connection,
all the event sources in the connection start by default.

For more information about starting and stopping event sources in a listener-based connection, see
Connectors for Cloud Application Integration and Monitor.

11

Amazon S3 Event Source Properties
After you define an Amazon S3 connection and deploy it in a process, you can monitor a bucket for new
objects. When the S3 Connector detects a new object, it reads the S3 object and sends it to the process that
subscribed to the Event Source, which acts as a start event.

For each connection, you can add multiple event sources.

A connection begins processing objects in the bucket immediately after it is published, even if you have not
yet defined any processes to consume or subscribe to the events. You can use the initial delay setting to
postpone processing the first bucket until you have published a process to handle events from the Event
Source.

The following table describes the file location settings applicable to all S3 event source types:

Property Description

S3 Bucket Name Required. Amazon S3 bucket name that contains the objects to be processed by the event source.
The question mark (?) character is prohibited in this field.

S3 Prefix The S3 prefix that determines which objects are processed. Event source can use this attribute to
consume only subset of S3 objects that share common prefix. If no prefix is specified, the event
source reads all objects in the bucket.

The following table describes the Object Operations Settings applicable to all S3 event source types:

Property Description

Delete S3
Objects

Required. Use this property to set whether you want to delete none, some, or all processed S3
objects from the source bucket.
Choose one of the following options:
- No: Do not delete any processed S3 object.
- Consumed: Delete all successfully processed S3 objects.
- All: Delete all, faulted or successfully processed, S3 objects.
Note: If you select No or Consumed, the connector uses the move settings to prevent an object
from being consumed twice. If you have not set a Move to Bucket name, the connector uses the
default bucket.
For example, if you select No, the connector uses the Move To Bucket and Move Prefix properties
to move processed S3 objects.
Default: No.

Move To
Bucket

Optional. Specify the bucket to which you want to move successfully processed S3 objects.
If you do not specify a Move Prefix, it is a good practice to specify a move to bucket different from
the source bucket.
Default: Source bucket.

Move Prefix Optional. Specify the prefix you want to add to the keys of successfully processed S3 objects.
If you want to move processed objects to the source bucket, it is a good practice to specify a move
prefix.
Default: .ae-done/

Move Failed to
Bucket

Optional. Specify the bucket to which you want to move failed S3 objects.
If you do not specify a Move Failed Prefix, it is a good practice to specify a move failed to bucket
that is different from the source bucket and the move to bucket.
Default: Source bucket.

12 Chapter 3: Amazon S3 Event Sources

Property Description

Move Failed
Prefix

Optional. Specify the prefix you want to add to the keys of failed S3 objects.
If you want to move failed objects to the source bucket, it is a good practice to specify a move
prefix.
Default: .ae-error/

Backup In
Folder

Optional. Specify a local directory in which you want to store a copy of successfully processed S3
objects.

Backup Failed
In Folder

Optional. Specify a local directory in which you want to store a copy of failed S3 objects.

The following table describes the Failure Handling Settings applicable to all S3 event source types:

Property Description

Max Retry
Interval

In case of a fault, specify the maximum time (in seconds) that you want an event source to wait
before making a recovery attempt.
The delay interval between retries increases exponentially until the connector reaches the maximum
retry interval.
Default maximum: 3600 seconds or 1 hour.
Minimum allowed: 1 second
Maximum allowed: 86400 seconds or 24 hours.

The following table describes the polling and other settings applicable to all S3 event source types:

Property Description

Initial Delay Seconds to wait before polling the S3 bucket.
Default: 1 second.
Set the initial delay that you need, for example, to publish the related process or take other required
steps before polling can begin.

Delay Seconds to wait before the next poll to check whether new files have arrived.
Default is 1 second.
Set a longer delay between polls to reduce the number of S3 API calls.

Max Messages
Per Poll

The maximum number of objects to retrieve in each poll.
Default: 10.
Set a value that enables you to segment the load and manage performance if you anticipate that
the monitor will find a large number of objects to process during each poll.

File Content Properties for Monitor Event Sources
You can use the Monitor event type to monitor an S3 bucket for new objects and be notified when a new
object is found.

File Content Properties for Monitor Event Sources 13

The Monitor event source includes hat allow you to configure event sources and process different content
types based on the S3 object data and the data format you need to receive:

The following table describes the content type settings applicable to all S3 monitor event source types:

Property Description

Content
Format

Required. Select the format of the content to be processed:
- Ignore: Use this option when you need only metadata that you can obtain directly from the S3 object

and not the content.
- Plain Text: Use this option to get the S3 content as plain text.
- Binary: Use this option to convert the S3 content to a Base64- encoded string for both text and

other file types.
- XML and JSON: Use this option if you need to parse and convert the S3 object content to an object

or a list of process objects of any type, and send them together with an event to your process.
- Attachment: Use this option if you do not need to obtain the S3 object content as part of an event,

which might be more efficient. The content of an S3 object will be included as an attachment in the
generated event.

Simplify
Content

Required. Select Yes if the XML or JSON content to be processed is not in a valid process object
structure and you want the event source to modify the structure of the content so it uses the process
object's format.
For example, if your XML object contains XML attributes that are normally skipped and you enable this
option, the attributes are converted to nested XML elements and processed as valid object fields.

Single
Object Mode

Required. Select Yes if you want to convert all XML content to a single process object. Use this option
only if you need to work with XML content.

Delimited and Fixed Width Content
The Amazon S3 Connector allows you to parse new S3 objects with a delimited content or fixed width event
source. You can provide the results to your process as an event.

The following properties are available for delimited and fixed width content:

Property Description

Delimiter (Delimited
Content Parser only)

Required.
Specify the character delimiter for delimited content.
If you need to use a space or a tab character as a delimiter, use the escaped character, \s or
\t.

Text Qualifier
(Delimited Content
Parser only)

Specify the text qualifier for delimited content. If you need to use a space or a tab character as
a qualifier, use the escaped character, \s or \t.

Ignore First Record
(Delimited Parser
Content only)

Determines whether the connector processes the first row of a delimited file as a data row.
You can select from the following options:
- Yes: The connector does not process the first row of a delimited file as a data row.
- No: The connector processes the first row of a delimited file as a data row. If you select No,

you must provide custom headers by using the Columns Descriptor attribute.
The default value is Yes.

14 Chapter 3: Amazon S3 Event Sources

Property Description

Split Rows Select Yes to process each row of delimited content separately, convert each row to a process
object and generate a separate event for each of them.
Select No to process the contents of the delimited content all at once and generate a single
event.

Columns Descriptor Defines the fixed width column headers to be processed. Specify the values in a comma-
separated list of names and sizes (in parentheses).
Delimited Content Parser example:

User Name, Password, Email
Fixed Width Content Parser example:

User Name(40), Password(8), Email(14)
These column headers also determine the process object header names when you use Custom
Objects, unless you specify a different set of headers (see below).

Ignore Column
Inconsistencies

For Delimited Content Parser, determines:
- Whether to ignore extra columns in data rows.
- Whether to add columns with empty string values if columns are missing.
If not enabled, the event source throws an exception when it encounters extra or missing
columns.
For Fixed Width Content Parser, determines:
- Whether to ignore extra characters in rows.
- Whether to add characters with empty spaces if defined columns have missing values.
Default: No.

Use Built-in Process
Objects

Select Yes to use built-in process objects to map S3 object records to process objects. The
event source then represents the S3 object content as a set of process objects.
This is useful when you work with S3 objects that have different contents and use a different
set of fields.
Select No to simplify representation of delimited content and provide a list of field names in
Custom Object Fields. This is suitable if you can reliably anticipate a set of fields (headers) in
each the delimited content. The event source will generate a simple process object for each
record of the delimited content.

Custom Object A comma-delimited list of process object field names (headers) to use to represent the file
contents. The names should match the headers of the delimited files. Specify values here
when Use Built-In Process Objects is set to No. Do not use "index" as a field name here. It is
reserved for row index information.
Enter a comma-delimited list of process object field names (headers) that will be used to
represent the file contents. The names should match the headers of the delimited files. When
the file is parsed, if a header you enter here does not exist, the related field of the generated
objects will be empty.
Required if you select No in Use Built-in Process Objects.
Note: You cannot use "index" as a field name here. It is reserved for row index information.
Generated custom objects will use the provided set of field names but names will be in
NCName format, to remove any prohibited characters from the delimited content header names
and ensure they are valid process object field names.

Delimited and Fixed Width Content 15

Fixed Width Files
The Fixed Width Parser allows you to handle fixed width files that have no column headers or delimiter
characters. In the event source properties, you define column descriptors that enable you to generate
process objects that represent the fixed width content.

For example, you might define the structure of your data files in the Columns Descriptor property, you might
enter a list of column names and column lengths (in parentheses):

 ID(3), User Name(100), Password(20), Nick Name(25), Email(20)
This enables the Fixed Width Parser to read the fixed width file and generate a process object that structures
the records based on these values. This is similar to the Delimited Content Parser, with the addition of
column widths. These values also define the default set of field names if you use custom process objects.

Both the built-in and custom process objects are available for this event source type.

Because the connector verifies data consistency, you might encounter an exception error if some rows in the
fixed width file are longer or shorter than the specified column descriptors. To ignore extra characters and
add trailing spaces to rows with fewer characters than expected, you can enable the Ignore Column
Inconsistencies property.

16 Chapter 3: Amazon S3 Event Sources

C h a p t e r 4

Amazon S3 Event Targets
This chapter includes the following topics:

• Basic Event Target Properties, 17

• Amazon S3 Event Target Properties, 17

Basic Event Target Properties
For each connection that you define, you can include one or more event targets that specify operations for
writing files or messages, or when the event target is called from a process. For example, you might define an
event target that reads from a process object and writes to comma-delimited files.

To set event target properties for the connection, from the Event Targets tab, click Add Event Target, and
select the event target type from the available list.

The following table describes the basic properties:

Property Description

Name Required. Unique name for the event target.

Description Optional. Description of the event target.

Amazon S3 Event Target Properties
The event target properties allow you to control object creation and create an event service that can be called
from Process Designer.

17

For each event target, you select the type (Writer or Delimited Content Writer) and specify a unique name. All
event targets also require the following properties:

Amazon S3
Settings

Description

S3 Bucket Name Required. Amazon S3 bucket name. If the provided bucket name entered here does not exist, the
event target automatically creates it using the Amazon S3 settings specified in the connection
properties.
The question mark (?) character is prohibited in this field.

Storage Class Required. The S3 storage class to set in the PUT object request. Select STANDARD or
REDUCED_REDUNDANCY. See the Amazon S3 documentation for more details.
Default is STANDARD.

Writer Properties

If you define an event target using the S3 Writer, you can write content as an S3 object to the S3 storage
bucket. No additional properties are required.

Delimited Content Writer Properties

If you define an event target using the S3 Delimited Content Writer, you can serialize custom process objects
or an S3DelimitedContent object to a delimited file format and store the result as a S3 object in a bucket.

These properties are available for the generated output:

Delimited Content
Generation Settings

Description

Delimiter Required. The character delimiter for delimited files. To specify a space or tab character
as a delimiter, use an escaped character (\s or \t).

Text Qualifier Required. The text qualifier for delimited files. To specify a space or tab character as a
text qualifier, use an escaped character (\s or \t).

Skip Headers Select Yes to store the delimited content without header names.

Line Ending Style Choose the line ending style (Windows=\r\n, Unix=\n).

18 Chapter 4: Amazon S3 Event Targets

C h a p t e r 5

Amazon S3 Process Objects
This chapter includes the following topics:

• Monitor Event Objects, 19

• Delimited Content Parser Process Objects, 20

• Writing Content with Event Targets, 23

Monitor Event Objects
When you use an S3 Monitor event source, each time a new object is added to the bucket, the connection
generates an S3MonitorEvent event object similar to the example below.

Note: Remember that S3 objects are deleted from the bucket and, unless you specify a local folder in the
event source properties, the local file information is not available.

The event includes all the available S3 object metadata. If metadata is not available, the field is empty:

<S3MonitorEvent>
 <!-- local file information, may be empty if local backup copying is not used -->
 <localFileInfo>
 <lastModified> 2015-06-23T13:04:46.281Z </lastModified>
 <dir> D:/s3_test/s3 monitor </dir>
 <name> test1 </name>
 <path> D:/s3test/s3 monitor/test1.txt </path>
 <fullName> test1.txt </fullName>
 <ext> txt </ext>
 <size> 9 </size>
 </localFileInfo>
 <!--S3 object information -->
 <s3ObjectInfo>
 <lastModified> 2015-06-22T14:27:00Z </lastModified>
 <contentControl/>
 <s3VersionId/>
 <s3Key> test1.txt </s3Key>
 <contentType> text/plain </contentType>
 <contentEncoding> UTF-8 </contentEncoding>
 <contentDisposition/>
 <contentLength> 9 </contentLength>
 <bucketName> dvilaverde </bucketName>
 <s3ETag> b3d5cf638ed2f6a94d6b3c628f946196 </s3ETag>
 </s3ObjectInfo>
 <!-- if Content Format is equal Ignore content of the object will be skipped -->
 <!-- or if Content Format is equal PlainText content will be provided as a string
field -->
 <content>S3 object content string</content>
 <!-- or if Content Format is equal Binary content will be provided as a Base64 encoded
string field -->
 <content>dGVzdCBzdHJpbmc=</content>

19

 <!-- or if Content Format is equal XML or JSON content will be provided as a list of
one or more process objects -->
 <content>
 <lastName>Smith</lastName>
 <phone>111122-222</phone>
 <firstName>Bob</firstName>
 </content>
 <content>
 <lastName>Smith2</lastName>
 <phone>111122-222</phone>
 <firstName>Bob2</firstName>
 </content>
 <!-- or if Content Format is equal Attachment content will be provided as an
attachment field -->
 <attachment>cid:29cde59c-e85b-41e0-834c-22bbed5a5b9a</attachment>
</S3MonitorEvent>

Using Single Object Mode

When processing an XML document, you can choose whether to create a list of user objects or as a single
process object.

For example, note that the following XML contains a list of user objects where the users element is a root
element for the list:

<users>
 <user>
 <firstName>Bob</firstName>
 <lastName>Smith</lastName>
 <phone>111122-222</phone>
 </user>
 <user>
 <user>
 <firstName>Bob2</firstName>
 <lastName>Smith2</lastName>
 <phone>111122-222</phone>
 </user>
</users>

In this case, if you want to convert the whole XML document to a single users process object, where user is
an object list field, enable Single Object Mode. If you want to convert the XML to a list of user objects, disable
Single Object Mode.

Delimited Content Parser Process Objects
After the event source is configured and published, it begins to monitor the specified S3 bucket for new
objects. When a new object is found, the contents are parsed and an event is generated that contains S3
object information, local copy information (if any) and a set of process objects that represent the parsed
content. The generated event is sent to the processes listening for these events.

As described above, you can handle generated objects as built-in process objects or custom process objects.

Use these factors as a guide to choose your approach:

• Use Built-in Process Objects to process S3 objects with different structures and you do not know the
content headers in advance.

• Use Custom Object Fields to process S3 objects with the same structure when you know the headers in
advance. This method enables you to extract only the required data. Generated objects are simpler and
they require less code to handle them in your processes.

Whatever method you choose, be aware of the differences in the generated process objects.

20 Chapter 5: Amazon S3 Process Objects

Built-in Process Object Output

When each S3 Delimited Content object is found and processed, it generates an event
(S3DelimitedContentParserEvent) with a single parameter (delimitedContent) to indicate whether you are
using built-in process objects (S3DelimitedContent) or custom process objects (CustomS3DelimitedContent).

For example, if you process a simple delimited content object with the following data, you might read a file
similar to this:

Country Capital Area Region
USA Washington 11111 "North America"
Ukraine Kiev 22222 Europe
Japan Tokyo 33333 "Asia Pacific"

S3 object metadata field is always added to the generated events. Based on the metadata is available in the
local file, the generated process object is similar to the following:

<S3DelimitedContent>
 <!-- S3 object information -->
 <s3ObjectInfo>
 <lastModified>2015-06-23T14:20:22Z</lastModified>
 <contentControl/>
 <s3VersionId/>
 <s3Key>test.csv</s3Key>
 <contentType>text/plain</contentType>
 <contentEncoding>UTF-8</contentEncoding>
 <contentDisposition/>
 <contentLength>130</contentLength>
 <bucketName>myBucket</bucketName>
 <s3ETag>ddfadc6de31dd30a6588bee8c01e157e</s3ETag>
 </s3ObjectInfo>

 <!-- local copy file information, will be empty if local copying is not used -->
 <localFileInfo>
 <lastModified>2015-06-23T14:20:22.086Z</lastModified>
 <dir>D:/camel_test/s3 monitor</dir>
 <name>test</name>
 <path>D:/camel_test/s3 monitor/test.csv </path>
 <fullName>test.csv</fullName>
 <ext> csv </ext>
 <size>130</size>
 </localFileInfo>

 <!-- total number of rows in the result -->
 <totalRowsCount>3</totalRowsCount>

 <!-- list of file headers with names and indexes -->
 <header>
 <name>Country</name>
 <fieldIndex>1</fieldIndex>
 </header>
 <header>
 <name>Capital</name>
 <fieldIndex>2</fieldIndex>
 </header>
 <header>
 <name>Area</name>
 <fieldIndex>3</fieldIndex>
 </header>
 <header>
 <name>Region</name>
 <fieldIndex>4</fieldIndex>
 </header>

 <!-- delimited content records -->
 <record>
 <field>
 <value>USA</value>
 </field>

Delimited Content Parser Process Objects 21

 <field>
 <value>Washington</value>
 </field>
 <field>
 <value>1111</value>
 </field>
 <field>
 <value>North America</value>
 </field>
 ...
</S3DelimitedContent>

The generated event contains an S3DelimitedContent process object. Local copy information might be empty
if the event source does not store local copies of processed S3 objects.

You can see that the generated result contains information about the source object, list of header objects, list
of records and total row count. The S3 object content is represented with the header name and value for each
field.

If you work in split rows mode for delimited content, the S3 object content is divided into separate rows and
for each row, the S3 connection produces a delimited content object with headers and one record.

Custom Object Fields Output

If you process the same S3 object, using, instead, the Custom Object Fields, you might provide the header
names, "Country, Capital, Area" (but not "Region").

In that case, the results for the same object look similar to this:

<AwsS3DelimitedContentParserContent>
 <!-- S3 object information -->
 <s3ObjectInfo>
 <lastModified>2015-06-23T14:20:22Z</lastModified>
 <contentControl/>
 <s3VersionId/>
 <s3Key>test2.csv</s3Key>
 <contentType>text/plain</contentType>
 <contentEncoding>UTF-8</contentEncoding>
 <contentDisposition/>
 <contentLength>130</contentLength>
 <bucketName>myBucket</bucketName>
 <s3ETag>ddfadc6de31dd30a6588bee8c01e157e</s3ETag>
 </s3ObjectInfo>

 <!-- local copy file information, will be empty if local copying is not used -->
 <localFileInfo>
 <lastModified>2015-06-23T14:20:22.086Z</lastModified>
 <dir>D:/camel_test/s3 monitor</dir>
 <name>test</name>
 <path>D:/camel_test/s3 monitor/test.csv </path>
 <fullName>test2.csv</fullName>
 <ext>csv</ext>
 <size>130</size>
 </localFileInfo>

 <!-- total number of rows in the result -->
 <totalRowsCount>3</totalRowsCount>

 <!-- custom delimited content records with specified by user fields -->
 <record>
 <index>1</index>
 <Area>11111</Area>
 <Capital>Washington</Capital>
 <Country>USA</Country>
 </record>
 <record>
 <index>2</index>
 <Area>22222</Area>
 <Capital>Kiev</Capital>

22 Chapter 5: Amazon S3 Process Objects

 <Country>Ukraine</Country>
 </record>
 <record>
 <index>3</index>
 <Area>33333</Area>
 <Capital>Tokyo</Capital>
 <Country>Japan</Country>
 </record>
</AwsS3DelimitedContentParserContent>

Here, the process object contains the S3 object information, local copy information, and total number of
records. "Region" data was excluded because it was not specified as a custom object field.

Notice that when you use custom object fields:

• The generated output still includes S3 object information.

• The process object name takes the format <sourceName>Content.

Note: The custom record object uses the format <sourceName>Record. If you have several delimited
content event sources, each of them uses its own custom content and record objects.

• Field names are converted to NCName format to remove any prohibited characters from the delimited
content header names and ensure they are valid process object field names.

• If the source S3 object does not contain the required header, this field is empty in the generated output. In
the above example, if "Region" had been specified as a custom object field and the source S3 object did
not contain the "Region" header, the field would appear in the process object but be empty.

• As shown above, to skip some fields, simply omit them from the list of Custom Object Fields.

Writing Content with Event Targets
When you publish a connection that includes an event target definition for S3, you create a service that you
can call from a process to generate S3 objects.

Writer Event Targets

StoreS3ObjectRequest is the process object that contains the target object parameters and contents, as
shown here. This is the input to the event target:

<StoreS3ObjectRequest>
 <!-- create S3 object metadata -->

 <s3ObjectParameters>
 <!-- object key, is required -->
 <awsS3Key>test.txt</awsS3Key>
 <!-- content type, by default text/plain type is used -->
 <contentType>text/plain</contentType>
 <!-- content control -->
 <contentControl>…</contentControl>
 <!-- content disposition which is a default file name (similar to Content-
Disposition HTTP header) -->
 <contentDisposition>…</contentDisposition>
 <!-- content encoding, by default this property is empty -->
 <contentEncoding>…</contentEncoding>
 <!-- last modified timestamp in milliseconds -->
 <lastModified>…</lastModified>
 <!-- storage class (STANDARD or REDUCED_REDUNDANCY), can be used to overwrite the
same attribute
 of the event target -->
 <storageClass>…</storageClass>
 <!-- canned acl (Private, PublicRead, PublicReadWrite, AuthenticatedRead,
LogDeliveryWrite,

Writing Content with Event Targets 23

 BucketOwnerRead, BucketOwnerFullControl). -->
 <cannedAcl>…</cannedAcl>
 <!-- a well-constructed Amazon S3 Access Control List xml string. -->
 <s3Acl>…</s3Acl>
 </s3ObjectParameters>
 <!-- content format (PlainText|Binary|Attachment|XML|JSON) depending on what format
you use the content
 should be provided differently -->
 <format>PlainText|Binary|Attachment|XML|JSON</format>

 <!-- this field can be used only if you set format to PlainText or Binary.
 if you use PlainText format this field should contain some textual information
that will be written as
 is to the bucket; if you use Binary format here you should provide a Base64
encoded string that will be
 decoded and written to the target bucket -->
 <content>Hello World</content>

 <!-- if you chose the XML or JSON format you should use either the object or objects
field to provide one or
 several process objects that should be converted to XML/JSON content -->
 <object>some process object</object>
 <objects>a list of process objects</objects>

 <!-- optionally you can provide objectName and listName attribute values, details see
below this example -->
 <objectName>user</objectName>
 <listName>users</listName>

</StoreS3ObjectRequest >
For details on the Access Control List (ACL) parameters, see the Amazon documentation on
Access Control List Overview and CannedAccessControlList.

The only required parameters are:

• AwsS3Key

• format

You can omit all other parameters. Depending on the format you select, the parameters vary.

Note:

StoreS3ObjectResponse is the process object returned by the Writer event target similar to the following:

<StoreS3ObjectResponse>

 <!-- S3 object version (if available) -->
 <awsS3VersionId/>
 <!-- S3 object ETag -->
 <awsS3ETag>b10a8db164e0754105b7a99be72e3fe5</awsS3ETag>

</StoreS3ObjectResponse>
XML/JSON Format

When you use XML/JSON format, the S3 connection expects an object (a single process object) or objects (a
list of process objects). If you pass in a single process object using the objects field, the result is a list with a
single item. If you pass in the same object using object fields, the result is a single XML/JSON object (not a
list).

You can use the optional parameters, objectName and listName, to change the generated XML and JSON
content as shown below.

XML: When you serialize a list of user process objects to XML format, the output is similar to:

<objects>
 <object>
 <firstName>Bob</firstName>

24 Chapter 5: Amazon S3 Process Objects

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/s3/model/CannedAccessControlList.html

 <lastName>Smith</lastName>
 <phone>111122-222</phone>
 </object>
 <object>
 <firstName>Bob2</firstName>
 <lastName>Smith2</lastName>
 <phone>111122-222</phone>
 </object>
</objects>

The root elements have generic names (object and objects) by default because Process Designer does not
have information about any object list or individual object names.

If you need to change the root element names, you can use the objectName and listName parameters to
specify element names.

JSON: To serialize the same objects list to JSON format, you can use the objectName and listName
parameters to add a wrapper JSON object to the generated result. Without these parameters, the output is a
valid JSON array:

[{
 "firstName": "Bob",
 "lastName": "Smith",
 "phone": "1111-222-333"
},
{
 "firstName": "Bob2",
 "lastName": "Smith",
 "phone": "1111-222-333"
}]

You can also serialize the same process objects list as a JSON object as a single array by adding the "users"
wrapper in the listName parameter:

{
 “users”: [{
 "firstName": "Bob",
 "lastName": "Smith",
 "phone": "1111-222-333"
 },
 {
 "firstName": "Bob2",
 "lastName": "Smith",
 "phone": "1111-222-333"
 }]
}

As shown above, the JSON object now contains a single JSON object wrapper with a single field that
contains the list user objects.

To wrap a single object in the same way, use the objectName parameter instead.

Attachment Format

If you use the Attachment format, the approach is different. Instead of providing content as part of the
StoreS3ObjectRequest object,, you can use a separate S3Writer service call parameter, attachment.

Delimited Content Writer Event Targets

You can serialize both built-in delimited content process objects and a list of custom process objects.

When you publish a connection that contains a delimited content event target, Process Designer creates the
following process objects:

• StoreS3DelimitedContentRequest

• StoreS3DelimitedContentResponse

Writing Content with Event Targets 25

Whether you serialize the S3DelimitedContent process object or a list of custom process objects, the request
and response are nearly identical.

For example:

You can serialize both built-in delimited content process objects and a list of custom process objects.

<StoreS3DelimitedContentRequest>
 <!-- create S3 object metadata -->
 <s3ObjectParameters>
 <!-- object key, is required -->
 <awsS3Key>test.csv</awsS3Key>
 <!-- other optional parameters (the same as S3 Writer request parameters) -->
 </s3ObjectParameters>

 <!—delimiter char; overwrites the same setting of the event target -->
 <delimiter>;</delimiter>
 <!-- text qualifier char; overwrites the same setting of the event target -->
 <textQualifier>”</textQualifier>
 <!-- whether to skip headers; overwrites the same setting of the event target -->
 <skipHeaders>false</skipHeaders>

 <!-- built-in S3DelimitedContent process object model, in this case not used -->
 <delimitedContentObject/>

 <!-- list of custom headers -->
 <header>
 <!-- header name (custom object field name) -->
 <name>name</name>
 <!-- header index (column position index) -->
 <fieldIndex>1</fieldIndex>
 </header>
 <header>
 <name>address</name>
 <fieldIndex>2</fieldIndex>
 </header>
 <header>
 <name>phone</name>
 <fieldIndex>3</fieldIndex>
 </header>

 <!-- list of custom process objects -->
 <customObjects>
 <id>1</id>
 <name>Bill</name>
 <phone>123-11-22</phone>
 <address>Lviv</address>
 </customObjects>
 <customObjects>
 <id>2</id>
 <name>Bob</name>
 <phone>222-333-222</phone>
 <address>London</address>
 </customObjects>

</StoreS3DelimitedContentRequest>
Note: The object metadata parameters are the same as those used in the S3 Writer. If needed, you can
overwrite some of the event target attributes (delimiter, text qualifier, and skip headers).

Handling Headers with Custom Process Objects

Process Designer can automatically serialize simple objects but skips complex fields (such as references
and object lists) when using the custom process objects. The generated file includes a list of headers using
the first process object's simple field names. In this case, you should leave the delimitedContentObject field

26 Chapter 5: Amazon S3 Process Objects

(see above) empty. During serialization, Process Designer generates a list of headers using the first process
object's simple field names. Sometimes this method is useful but it has several disadvantages:

• If the first object does not contain optional fields, these fields are ignored even if they are provided in all
other objects.

• The order of fields in the resulting object is not defined because the process object's fields do not rely on
any specific order.

• You cannot skip unnecessary fields.

You can eliminate these disadvantages if you provide a set of custom headers in a request object. Process
Designer then uses the headers to generate delimited records with only the specified fields in the specified
order.

If you work with the built-in process objects, when you define the request object, you can include the
S3DelimitedContent process object in the request. The generated delimited content then matches the
headers and records described by this model object.

Note: The s3ObjectInfo and localFileInfo fields in the S3DelimitedContent object are ignored during
serialization so you can leave them empty if you create a new object yourself or retain them if you received
the delimited content process object from somewhere and these fields are set

Serialization Results

Whatever approach you take, after each file is processed, the results display:

• Status of the operation.

• Optional message string.

• Two counters with the number of processed records and number of records successfully written to S3
object content.

• Object metadata for the new S3 objects.

StoreS3DelimitedContentResponse

The response process object contains:

<StoreS3DelimitedContentResponse>
 <!-- true if success, false in case of error -->
 <success>true</success>
 <!-- textual message that may contain some warnings or errors -->
 <message>…</message>
 <!-- number of processed records (number of records that are provided in request) -->
 <processedRecordsCount>3</processedRecordsCount>

 <!-- number of successfully serialized and written to S3 object content records -->
 <writtenRecordsCount>3</writtenRecordsCount>

 <!-- created S3 object information -->
 <s3ObjectInfo>
 <!-- S3 object version (if available) -->
 <awsS3VersionId/>
 <!-- S3 object ETag -->
 <awsS3ETag>ae784bc7446c154e2f802c8440a530a0</awsS3ETag>
 </s3ObjectInfo>
</StoreS3DelimitedContentResponse>

Writing Content with Event Targets 27

	Table of Contents
	Preface
	Chapter 1: Introduction to Amazon S3 Connector
	Amazon S3 Connector
	S3 Connector Implementation
	Amazon S3 Event Types

	Chapter 2: Amazon S3 Connections
	Basic connection properties
	Amazon S3 Connection Properties

	Chapter 3: Amazon S3 Event Sources
	Basic Event Source Properties
	Amazon S3 Event Source Properties
	File Content Properties for Monitor Event Sources
	Delimited and Fixed Width Content
	Fixed Width Files

	Chapter 4: Amazon S3 Event Targets
	Basic Event Target Properties
	Amazon S3 Event Target Properties

	Chapter 5: Amazon S3 Process Objects
	Monitor Event Objects
	Delimited Content Parser Process Objects
	Writing Content with Event Targets

