4;» Informatica

Informatica® Vibe Data Stream for Machine
Data

2.3.0

Developer Guide

Informatica Vibe Data Stream for Machine Data Developer Guide
2.3.0
December 2015

© Copyright Informatica LLC 2014, 2018

This software and documentation contain proprietary information of Informatica LLC and are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright law. Reverse engineering of the software is prohibited. No part of this document may be reproduced or transmitted in any
form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC. This Software may be protected by U.S. and/or
international Patents and other Patents Pending.

Use, duplication, or disclosure of the Software by the U.S. Government is subject to the restrictions set forth in the applicable software license agreement and as
provided in DFARS 227.7202-1(a) and 227.7702-3(a) (1995), DFARS 252.227-7013©(1)(ii) (OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14 (ALT IlI),
as applicable.

The information in this product or documentation is subject to change without notice. If you find any problems in this product or documentation, please report them to
us in writing.

Informatica, Informatica Platform, Informatica Data Services, PowerCenter, PowerCenterRT, PowerCenter Connect, PowerCenter Data Analyzer, PowerExchange,
PowerMart, Metadata Manager, Informatica Data Quality, Informatica Data Explorer, Informatica B2B Data Transformation, Informatica B2B Data Exchange Informatica
On Demand, Informatica Identity Resolution, Informatica Application Information Lifecycle Management, Informatica Complex Event Processing, Ultra Messaging and
Informatica Master Data Management are trademarks or registered trademarks of Informatica LLC in the United States and in jurisdictions throughout the world. All
other company and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © 0SS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright (c) University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright® MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/Igpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (®) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edI-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antir.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http:/jotm.objectweb.org/bsd_license.html; . http://www.w3.org/
Consortium/Legal/2002/copyright-software-20021231; http://www.slIf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http://forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/fag.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/
EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http:/jsoncpp.sourceforge.net/LICENSE; http://
jdbe.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/1z4/; https://github.com/jedisct1/libsodium/blob/master/
LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cdd|1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsgl.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe Walnes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1.THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2.IN'NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

Publication Date: 2018-07-20

https://www.informatica.com/legal/patents.html

Table of Contents

4

Prefaceo e 8
Informatica Resources. 8
Informatica My Support Portal. 8
Informatica Documentation. 8
Informatica Product Availability Matrixes. 8
Informatica Web Site. 9
Informatica How-To Library. e 9
Informatica Knowledge Base. 9
Informatica Support YouTube Channel. 9
Informatica Marketplace. 9
Informatica Velocity. 9
Informatica Global Customer Support. 9

Chapter 1: Introduction to Vibe Data Stream Custom Entity Types............ 11

Vibe Data Stream Custom Entity Types Overview. 11
Vibe Data Stream APL. L 12
Vibe Data Stream APl Installation Package. 13
Vibe Data Stream Interfaces. 13
Vibe Data Stream Helper Classes. 14
Chapter 2: Managing Custom Entity Types.........cccoiiiiiiiiiiieninn... 15
Managing Custom Entity Types Overview. e 15
Components of a Custom Entity Type. 15
Creating a Custom Entity Type. 16
Creating the Vibe Data Stream Plug-in XML Document. 16
Creating the VDS Plug-in JAR File. e 31
Adding Dependent Libraries. 31
Creating a Package for the Custom Entity Type., 32
Using a Custom Entity Type. e 32
Stopping the Administrator Daemon. 32
Registering or Unregisteringa VDS Plug-in. 33
Starting the Administrator Daemon. e 33
Versioning a Custom Entity Type. 34
Editing the Custom Entity Implementation. 34
Incrementing the Version Number. 34
Preparing a Custom Entity. 35
Editingthe CSV File. 35
Upgrading a Custom Entity Type. e 35
Custom Source Service Type Example. e 36
Step 1: Create the Vibe Data Stream Plug-in XML Document. 36

Table of Contents

Step 2: Create the Java Source File. 37

Step 3: Create the VDS Plug-in JARFile. 37
Step 4: Create a Package for the Custom Entity Type. 37
Step 5: Registerthe VDS Plug-in. e 38
Step 6: Use the Plug-ininaDataFlow. i 38
Troubleshooting Custom Entity Types. 38
Chapter 3: Custom Entities from Maven Archetypes........................l 40
Custom Entities from Maven Archetypes Overview. 40
Create an Entity Based on an Archetype in the Internal Catalog. 41
Step 1: Verify the Prerequisites. e 41
Step 2: Copy the API JAR File and the Archetypes to the Local Repository. 41
Step 3: Copy the Archetype Descriptor to the Home Directory. 41
Step 4: Add the Local Archetype DescriptorFile. 42
Step 5: Create a Maven Project. L 43
Step 6: Install the Maven Project. 46
Create an Entity Based on an Archetype ina Remote Catalog. 48
Step 1: Verify the Prerequisites. 49
Step 2: Add the Remote Archetype Descriptor File. 49
Step 3: Create a Maven Project. 50
Step 6: Install the Maven Project. 53

Chapter 4: REST APIS.cciiiiiiiiiiiiii ittt iiiiiieeeeeeaeacacncncncenen.. D6

REST APIS OVerVIEW. o e e e e e e e e e e 56
Header and Body Configuration. 57
Request Header. e 57
Request Body. 57
REST API ReSpONSES. e 58
Error Object. 58
REST APl Guidelines. 59

Chapter 5: HTTP Request and Response Parameters......................... 60

HTTP Request and Response Parameters Overview. 60
Common Request and Response Parameters. 60
Data Flow Parameters. 61
Source Service Parameters. 61
Target Service Parameters. e 67
Transformation Parameters. 71
Aggregator Parameters. e 72
Connection Parameters. e 72
Link Parameters. e 74
Node Group Parameters. e 74
Node Parameters. 74

Table of Contents

5

VDS Parameter Parameters. 75

Chapter 6: Sample JSON Requests and Responses........................... 76

Data Flows. 76
Create Data Flows. 76
Retrieve Data FIOWS. 77
Retrieve All Data Flows. 79
Update Data flows. e 79
Deploy Data FIows. 81
Deploy All Data Flows. e 82
Undeploy Data Flows. e 82
Undeploy All Data Flows. 83
Delete Data Flows. e 84
Redeploy Data FIOWS. e 84

SOUrce SErviCes. 85
Create SOUICES. o o e 85
GetSource by ID. e 87
Retrieve All Sources. 89
Update SoUrce ServiCes. e 90
Delete Source Services. 92
Associate Source Services with Node Groups. 93
Retrieve Source Service and Node Group Associations. 94
Deploy SOUICE SEIVICES. . . . o v vt e 95
Undeploy Source Services. e 96
Redeploy Source Services. e e 97

Target Services. e 97
Create Target Services. e 98
Get Target Services by ID. e 99
Retrieve All Target Services. e 100
Update Target Services. e 102
Delete Target ServiCes. 103
Associate Target Services with Node Groups. i 104
Retrieve Target Service and Node Group Associations. 105
Deploy Target Services. e 106
Undeploy Target Services. e 107
Redeploy Target Services. 108

Data Connections. 108
Create Data Connections. 109
Retrieve Data Connections. 111
Retrieve All Data Connections. 112
Update Data ConNNections. 113
Delete Data Connections. 115

LiNKS. . o 116

6 Table of Contents

Create Links. e 116

Retrieve Links. 117
Retrieve Al Links. 118
Update Links. 119
Delete Links.o o 121
Transformations. 121
Create Transformations. 122
Retrieve Transformation by ID. e 123
Retrieve All Transformations. 125
Update Transformation. e 126
Delete Transformations. 128
NOde GroUPS. o ot e 129
Create Node GroUPS. o oot e e 129
Retrieve Node Groups. e e 131
Retrieve All Node Groups. o oot e 132
Update Node Groups. it e 132
Delete NOde GroUPS. it e e e 134
Nodes. . . . 134
Create NOdes. 135
Retrieve Nodes. 136
Retrieve All Nodes. 137
Update Nodes. e 138
Delete Nodes. 140
Parameters. 140
Create Parameters. 141
Retrieve Parameters. 142
Retrieve All Parameters. 143
Update Parameters. 144
Delete Parameters. 145
PIUG-INS. . . e 146
Retrieve PIUGINS. e 146
Retrieve All Plugins. e 147
AQgregators. 149
Create Aggregators. 149
Retrieve Aggregators. e 151
Retrieve All Aggregators. e 152
Update Aggregator. e 154
Delete Aggregators. e 155
Authentication. 156
Chapter 7: GloSSary........covuiiniiiiiiiiiiiii it it it eiieiiiaaeanes 157

3T =) AR L1

Table of Contents

7

Preface

The Informatica Vibe Data Stream for Machine Data Developer Guide is written for developers who want to
develop custom entities for Vibe Data Stream for Machine Data. The Developer Guide provides information
about the APIs available and how to use them to develop custom entities.

The Developer Guide assumes that you are familiar with the Java programming language and APIs.

Informatica Resources

Informatica My Support Portal

As an Informatica customer, the first step in reaching out to Informatica is through the Informatica My
Support Portal at https://mysupport.informatica.com. The My Support Portal is the largest online data
integration collaboration platform with over 100,000 Informatica customers and partners worldwide.

As a member, you can:

Access all of your Informatica resources in one place.

e Review your support cases.

e Search the Knowledge Base, find product documentation, access how-to documents, and watch support
videos.

e Find your local Informatica User Group Network and collaborate with your peers.

Informatica Documentation

The Informatica Documentation team makes every effort to create accurate, usable documentation. If you
have questions, comments, or ideas about this documentation, contact the Informatica Documentation team
through email at infa_documentation@informatica.com. We will use your feedback to improve our
documentation. Let us know if we can contact you regarding your comments.

The Documentation team updates documentation as needed. To get the latest documentation for your
product, navigate to Product Documentation from https://mysupport.informatica.com.

Informatica Product Availability Matrixes

Product Availability Matrixes (PAMs) indicate the versions of operating systems, databases, and other types
of data sources and targets that a product release supports. You can access the PAMs on the Informatica My
Support Portal at https://mysupport.informatica.com.

http://mysupport.informatica.com
mailto:infa_documentation@informatica.com
http://mysupport.informatica.com
https://mysupport.informatica.com

Informatica Web Site

You can access the Informatica corporate web site at https://www.informatica.com. The site contains
information about Informatica, its background, upcoming events, and sales offices. You will also find product
and partner information. The services area of the site includes important information about technical
support, training and education, and implementation services.

Informatica How-To Library

As an Informatica customer, you can access the Informatica How-To Library at
https://mysupport.informatica.com. The How-To Library is a collection of resources to help you learn more
about Informatica products and features. It includes articles and interactive demonstrations that provide
solutions to common problems, compare features and behaviors, and guide you through performing specific
real-world tasks.

Informatica Knowledge Base

As an Informatica customer, you can access the Informatica Knowledge Base at
https://mysupport.informatica.com. Use the Knowledge Base to search for documented solutions to known
technical issues about Informatica products. You can also find answers to frequently asked questions,
technical white papers, and technical tips. If you have questions, comments, or ideas about the Knowledge
Base, contact the Informatica Knowledge Base team through email at KB_Feedback@informatica.com.

Informatica Support YouTube Channel

You can access the Informatica Support YouTube channel at http://www.youtube.com/user/INFASupport.
The Informatica Support YouTube channel includes videos about solutions that guide you through performing
specific tasks. If you have questions, comments, or ideas about the Informatica Support YouTube channel,
contact the Support YouTube team through email at supportvideos@informatica.com or send a tweet to
@INFASupport.

Informatica Marketplace

The Informatica Marketplace is a forum where developers and partners can share solutions that augment,
extend, or enhance data integration implementations. By leveraging any of the hundreds of solutions
available on the Marketplace, you can improve your productivity and speed up time to implementation on
your projects. You can access Informatica Marketplace at http://www.informaticamarketplace.com.

Informatica Velocity

You can access Informatica Velocity at https://mysupport.informatica.com. Developed from the real-world
experience of hundreds of data management projects, Informatica Velocity represents the collective
knowledge of our consultants who have worked with organizations from around the world to plan, develop,
deploy, and maintain successful data management solutions. If you have questions, comments, or ideas
about Informatica Velocity, contact Informatica Professional Services at ips@informatica.com.

Informatica Global Customer Support

You can contact a Customer Support Center by telephone or through the Online Support.

Online Support requires a user name and password. You can request a user name and password at
http://mysupport.informatica.com.

Preface 9

http://www.informatica.com
http://mysupport.informatica.com
http://mysupport.informatica.com
mailto:KB_Feedback@informatica.com
http://www.youtube.com/user/INFASupport
mailto:supportvideos@informatica.com
http://www.informaticamarketplace.com
https://mysupport.informatica.com
mailto:ips@informatica.com
http://mysupport.informatica.com

The telephone numbers for Informatica Global Customer Support are available from the Informatica web site
at http://www.informatica.com/us/services-and-training/support-services/global-support-centers/.

10 Preface

http://www.informatica.com/us/services-and-training/support-services/global-support-centers/

CHAPTER 1

Introduction to Vibe Data Stream
Custom Entity Types

This chapter includes the following topics:

e Vibe Data Stream Custom Entity Types Overview, 11

e Vibe Data Stream API, 12

Vibe Data Stream Custom Entity Types Overview

Informatica Vibe Data Stream for Machine Data (VDS) is a distributed, extensible, and scalable data
aggregation solution. You can use VDS to move large volumes of high-velocity data from multiple points of
generation to one or more data targets in real time.

To transfer data, you use source services and target services. Source services read and publish data in the
form of messages on a particular topic. Target services that subscribe to the topic receive the messages and
write the messages to the target. Source services and target services run on VDS nodes.

You create the nodes on the data source hosts and data target hosts. You can also create the nodes on hosts
that have access to the data sources and data targets. In Informatica Administrator (the Administrator tool),
you create a data flow design by adding source services and target services to a data flow. You connect the
two services, and you add any transformations that you want to apply.

You map the source service and target service to the VDS nodes on which they must run. When you deploy
the data flow design, the VDS node to which you mapped the source service starts the source service. The
VDS node to which you mapped the target service starts the target service. The source service collects data
from the data source in real time. The target service receives and writes the data to the data target.

You can add multiple source services, multiple target services, and multiple transformations to a data flow.

11

The following image shows the flow of messages from a source service to multiple target services through
transformations:

Data Targets

|

TEE TN

Vibe Data Stream VDS Node :
|
|

Target Service 1] iy o HDFS Gluster
(Topic: logs)

e
—_——
VDS Node VDS Node

Target Service y Cassandra
(Topic: logs) —Wite—» Daahase

Data Source

Subscribe

|
|
|
| —
| ———
[VDS Node
! (-
|
| Target Service Informatica
| s
|
|
~
|

In the Administrator tool, you add source services, target services, or transformations to a data flow by
adding appropriate entity types. For example, to receive and write messages to a Hadoop Distributed File
System (HDFS) cluster, you use the built-in HDFS target service type.

Use built-in entity types for common use cases. Use built-in source service types for aggregating data from
flat files, TCP sources, UDP sources, Syslog sources, and MQTT brokers. Use built-in target service types for
writing data to HDFS, Apache Cassandra, Informatica PowerCenter, Informatica RulePoint, and Informatica
Ultra Messaging. Use a built-in regular expression filter and JavaScript and string insert transformation types
to transform data.

If an entity type that you want is not available in VDS, create a custom entity type by using the VDS
application programming interfaces (APIs). Use the APIs to create custom source service types, custom
target service types, and custom transformation types.

Vibe Data Stream API

12

You can use the VDS Java APIs to develop custom source service types, custom target service types, and
custom transformation types. The VDS Java API consists of interfaces that you implement to create the
custom entity types. The API package includes helper classes that you can use to perform common
operations in the interface implementation.

You can use also the Maven archetypes to develop custom source service types, custom target service types,
and custom transformation types. The Maven archetypes are packaged with the VDS APls. You can use these
archetypes to create custom service types in an Eclipse environment.

Informatica recommends that you use the Maven archetypes to create entities.

You can use the Representational State Transfer (REST) API to create, retrieve, update, or delete VDS entities
directly over HTTP. You can also deploy, redeploy, and undeploy VDS entities.The HTTP request methods
supported are GET and POST. The sample rest calls show you how to use the REST API with application/json

type.

Chapter 1: Introduction to Vibe Data Stream Custom Entity Types

Vibe Data Stream API Installation Package
The VDS APIs are available in the vDs-api-reference.zip ZIP file that is available with the VDS installation

package. Download and extract the ZIP file to a directory on your machine.

The vDS-api-reference.zip ZIP file contains the following folders:
archetypes

The archetypes folder contains the following Maven archetypes you can use to create entities:

e vds-template-source-archetype. The archetype for the source service.

e vds-template-target-archetype. The archetype for the target service.

e vds-template-transform-archetype. The archetype for the transformation.
catalog

The catalog folder contains the archetype-catalog.xml file which stores the archetype information.
docs

The docs folder contains the API reference documentation. To view the API reference documentation,
open the file index.html file.

lib
The 1ib folder contains the vdsapi-2.3.0.jar VDS Java API JAR file.

schema
The schema folder contains the vds_plugin.xsd VDS plug-in schema definition that describes the format
of the VDS plug-in XML file.

scripts

The scripts folder contains the following API installer files:

e install-vds-api.bat. The Windows installer file.

e install-vds-api.sh. The Linux installer file.

Vibe Data Stream Interfaces

VDS includes four interfaces, one each to create a custom source service type, custom target service type,
custom transformation service type, and statistics. All the VDS interfaces except the VDSPluginStatistics
interface and the VDSConsumptionSourceextend interface extend the Closeable Java interface.

You can use the following five VDS interfaces:
VDSSource

The VDS interface that you implement to create a source service type. The interface includes methods to
initialize the source, read data from the data source, and close the source.

VDSConsumptionSource

The VDS interface that you implement to create a source service type that requires acknowledgment
from the target service after the message has been consumed. The interface includes methods to
initialize the source, read data from the data source, and close the source.

VDSTarget

The VDS interface that you implement to create a target service type. The interface includes methods to
initialize the target, write data to the target, and close the target.

Vibe Data Stream API 13

14

VDSTransform

The VDS interface that you implement to create a transformation type. The interface includes methods
to initialize the transformation, transform the data, and close the transformation.

VDSPluginStatistics

The VDS interface that you implement to create entity statistics. The interface includes the method to
get statistics.

Vibe Data Stream Helper Classes

VDS includes a collection of helper classes for common operations that you need to perform in your VDS
interface implementation.

VDS includes the following helper classes:
VDSConfiguration

A vDSConfiguration object stores the configuration of an entity as a set of key-value pairs. The
vDSConfiguration helper class includes methods to retrieve the value of a key and a method to check
for the presence of a key.

VDSErrorCode
The VDSErrorCode class contains all the error codes that VDS uses.
VDSEvent

A vDSEvent object is an event and contains a block of data that VDS is transferring from the source
location to the target location. An event is a message.

VDSEventList

The VDSEventList class represents a list of events in VDS. You can add events that sources and
transformations generate to a VDSEventList object.

VDSException

The vDSException class includes details about an exception in VDS.

Chapter 1: Introduction to Vibe Data Stream Custom Entity Types

CHAPTER 2

Managing Custom Entity Types

This chapter includes the following topics:

e Managing Custom Entity Types Overview, 15

e Components of a Custom Entity Type, 15

e Creating a Custom Entity Type, 16

e Using a Custom Entity Type, 32

e Versioning a Custom Entity Type, 34

e Custom Source Service Type Example, 36

e Troubleshooting Custom Entity Types, 38

Managing Custom Entity Types Overview

Create the components that a custom entity type requires and add the components to a ZIP file that you can
use in VDS. Version the entity type so that you can upgrade or downgrade the entity type.

You can use also the Maven archetypes to develop custom source service types, custom target service types,
and custom transformation types. The Maven archetypes are packaged with the VDS APls. You can use these
archetypes to create custom service types in an Eclipse environment.

Informatica recommends that you use the Maven archetypes to create entities.

Components of a Custom Entity Type

Organize the components of the custom entity type by using a particular directory structure.

A custom entity type consists of the following components:
VDS Plug-in XML File (Required)

An XML file called vdsplugin.xml. The XML file describes configuration and plug-in details for the
custom entity type.

VDS Plug-in JAR File (Required)
The VDS plug-in JAR file contains the implementation of a VDS interface.

15

Plug-in Dependant Java Class Libraries (Optional)

The Java class libraries are libraries on which the implementation of the custom entity type depends.
Store the Java class libraries in a directory called 1ib. The lib directory can contain multiple JAR files.

Plug-in Dependant Native Libraries (Optional)

Native libraries are shared objects (. so files) for Linux and dynamically loaded library (DLL files) for
Windows. Native libraries are required if the Java libraries have native dependencies. Store the native
libraries in a directory called native. The native directory can contain multiple .so or DLL files.

Create all the components in the same directory. For example, to create the components in a directory called
plugin, use the following directory structure:

plugin
|- vdsplugin.xml VDS plug-in XML file
|- <MyVDSPlugin>.jar VDS plug-in JAR file
+- 1lib Directory that contains Java class libraries

| |- <JavaClassLibraryl>.jar

| |- <JavaClassLibrary2>.jar

+- native Directory that contains native libraries
| |- <SharedObjectl>.so

| |- <SharedObject2>.so

Note: The angle brackets (< and >) indicate that you can replace the name in the example with a name of your
choice.

Creating a Custom Entity Type

16

To create a custom entity type, perform the following tasks:
e Create the VDS plug-in XML document.
e Create the VDS plug-in JAR file.

e Add dependent libraries. Place the Java class libraries on which your implementation depends in a
directory called 1ib. Place native libraries in a directory called native.

e Create a package for the custom entity type. Package the VDS plug-in XML document, the VDS plug-in JAR
file, and the 1ib and native directories in a ZIP file.

Creating the Vibe Data Stream Plug-in XML Document

Create an XML document called vdsplugin.xml. In the XML document, describe the configuration of the
custom entity type.

You can create the XML document in the following ways:
Create the VDS Plug-in XML Document Manually

Manually edit an XML file to include all the required XML elements.
Generate a Sample XML Document from the VDS Plug-in Schema and Modify the XML Document

Use a tool of your choice to generate an XML document from the schema definition.

Chapter 2: Managing Custom Entity Types

Perform the following tasks:

e Create a copy of the field element for each field that you want the entity to contain, and then provide
values for the XML elements for each field. For example, in the version element, specify a version number.

Note: Specify a unique plug-in ID in the XML document. The plug-in ID must not contain spaces. If two or
more VDS plug-in JAR files have the same plug-in ID, VDS loads only one of those plug-in JAR files, and
only that plug-in JAR file is visible as a custom entity type in the Administrator tool. For the plug-in JAR
files that VDS does not load, VDS logs an error.

o Edit the values of the XML elements that the vdsP1ugin XML element encloses.

After you create the VDS plug-in XML document, validate the document against the schema definition.

Format of the Vibe Data Stream Plug-in XML Document

The VDS plug-in XML document consists of a set of XML elements that describe a custom entity type. The
file is vdsplugin.xml.

The following XML document shows a VDS plug-in XML document with fields that you use:

<tns:vdsPlugin>
<tns:id>AllSrc</tns:id>
<tns:displayName>All Source Types</tns:displayName>
<tns:version>3.0</tns:version>
<tns:type>SOURCE</tns:type>
<tns:configuration>
<tns:fields>
<tns:field>
<tns:textControl>
<tns:name>txt</tns:name>
<tns:displayName>Text Field</tns:displayName>
<tns:description>Enter value for text field</tns:description>
<tns:mandatory>true</tns:mandatory>
<tns:stringTextField>
<tns:pattern>"[A-Z]*$</tns:pattern>
<tns:maxLength>30</tns:maxLength>
<tns:secure>false</tns:secure>
<tns:default>ABCD</tns:default>
<tns:placeholder>A-7Z</tns:placeholder>
</tns:stringTextField>
</tns:textControl>
</tns:field>
<tns:field>
<tns:textControl>
<tns:name>pwd</tns:name>
<tns:displayName>Password</tns:displayName>
<tns:description>Enter value for password</tns:description>
<tns:mandatory>true</tns:mandatory>
<tns:stringTextField>
<tns:maxLength>10</tns:maxLength>
<tns:secure>true</tns:secure>
</tns:stringTextField>
</tns:textControl>
</tns:field>
<tns:field>
<tns:textControl>
<tns:name>int</tns:name>
<tns:displayName>Int Field</tns:displayName>
<tns:description>Enter value for int field</tns:description>
<tns:mandatory>true</tns:mandatory>
<tns:integerTextField>
<tns:minValue>10</tns:minValue>
<tns:maxValue>90</tns:maxValue>
<tns:default>30</tns:default>
</tns:integerTextField>
</tns:textControl>
</tns:field>
<tns:field>

Creating a Custom Entity Type 17

18

<tns:textControl>
<tns:name>dou</tns:name>
<tns:displayName>Double Field</tns:displayName>
<tns:description>Enter value for double field</tns:description>
<tns:mandatory>false</tns:mandatory>
<tns:doubleTextField>
<tns:minValue>11.11</tns:minValue>
<tns:maxValue>99.99</tns:maxValue>
<tns:default>33.33</tns:default>
</tns:doubleTextField>
</tns:textControl>
</tns:field>
<tns:field>
<tns:radioGroupControl>
<tns:name>radio</tns:name>
<tns:displayName>Mother Tongue</tns:displayName>
<tns:description>Enter value for mother tongue</tns:description>
<tns:items>
<tns:item>
<tns:displayName>English</tns:displayName>
<tns:id>1</tns:id>
</tns:item>
<tns:item>
<tns:displayName>Hindi</tns:displayName>
<tns:id>2</tns:id>
<tns:textFields>
<tns:textControl>
<tns:name>txtScript</tns:name>
<tns:displayName>Script</tns:displayName>
<tns:mandatory/>
<tns:stringTextField>
<tns:secure/>
</tns:stringTextField>
</tns:textControl>
<tns:textControl>
<tns:name>txtUnicode</tns:name>
<tns:displayName>Unicode</tns:displayName>
<tns:mandatory/>
<tns:stringTextField>
<tns:secure/>
</tns:stringTextField>
</tns:textControl>
</tns:textFields>
<tns:subListBoxField>
<tns:listControl>
<tns:name>variant</tns:name>
<tns:displayName>Variant</tns:displayName>
<tns:items>
<tns:item>
<tns:displayName>Bihar</tns:displayName>
<tns:id>1</tns:id>
</tns:item>
<tns:item>
<tns:displayName>Rajasthan</
tns:displayName>
<tns:id>2</tns:id>
</tns:item>
<tns:item>
<tns:displayName>U.P.</tns:displayName>
<tns:id>3</tns:id>
</tns:item>
</tns:items>
<tns:default>2</tns:default>
</tns:listControl>
</tns:subListBoxField>
</tns:item>
</tns:items>
<tns:default>1</tns:default>
</tns:radioGroupControl>
</tns:field>
<tns:field>

Chapter 2: Managing Custom Entity Types

<tns:listControl>
<tns:name>list</tns:name>
<tns:displayName>Qualifications</tns:displayName>

<tns:description>Enter value for qualifications</tns:description>

<tns:items>
<tns:item>
<tns:displayName>Degree</tns:displayName>
<tns:id>1</tns:id>
</tns:item>
<tns:item>
<tns:displayName>Masters</tns:displayName>
<tns:id>2</tns:id>
<tns:textFields>
<tns:textControl>
<tns:name>txtFieldl</tns:name>
<tns:displayName>College</tns:displayName>
<tns:mandatory>false</tns:mandatory>
<tns:stringTextField>
<tns:secure/>
</tns:stringTextField>
</tns:textControl>
</tns:textFields>
<tns:subListBoxField>
<tns:listControl>
<tns:name>division</tns:name>
<tns:displayName>Division</tns:displayName>
<tns:items>
<tns:item>
<tns:displayName>Al</tns:displayName>
<tns:id>1</tns:id>
</tns:item>
<tns:item>
<tns:displayName>A2</tns:displayName>
<tns:id>2</tns:id>
</tns:item>
<tns:item>
<tns:displayName>A3</tns:displayName>
<tns:id>3</tns:id>
</tns:item>
</tns:items>
<tns:default>3</tns:default>
</tns:listControl>
</tns:subListBoxField>
</tns:item>
<tns:item>
<tns:displayName>Ph.D</tns:displayName>
<tns:id>3</tns:id>
</tns:item>
</tns:items>
<tns:default>3</tns:default>
</tns:listControl>
</tns:field>
<tns:field>
<tns:checkBoxControl>
<tns:name>chkBox</tns:name>
<tns:displayName>Married</tns:displayName>
<tns:description>Marital Status</tns:description>
<tns:default/>
<tns:checkedFields>
<tns:textControl>
<tns:name>txtFieldM1</tns:name>
<tns:displayName>Spouse</
tns:displayName>
<tns:mandatory/>
<tns:stringTextField>
<tns:secure/>
</tns:stringTextField>
</tns:textControl>
</tns:checkedFields>
<tns:uncheckedFields>
<tns:textControl>

Creating a Custom Entity Type

19

<tns:name>txtFieldM2</tns:name>
<tns:displayName>Mother</
tns:displayName>
<tns:mandatory/>
<tns:stringTextField>
<tns:secure/>
</tns:stringTextField>
</tns:textControl>
</tns:uncheckedFields>
</tns:checkBoxControl>
</tns:field>
<tns:field>
<tns:textAreaControl>
<tns:name>txtArea</tns:name>
<tns:displayName>Comments</tns:displayName>
<tns:description>Your comments</tns:description>
<tns:mandatory>true</tns:mandatory>
<tns:maxLength>30</tns:maxLength>
<tns:default></tns:default>
<tns:placeholder>Place Src holder</tns:placeholder>
</tns:textAreaControl>
</tns:field>
</tns:fields>
</tns:configuration>
<tns:pluginStatistics>
<tns:statistic>
<tns:id>1</tns:id>
<tns:displayName>Statisticl</tns:displayName>
<tns:type>CUMULATIVE</tns:type>
</tns:statistic>
<tns:statistic>
<tns:id>2</tns:id>
<tns:displayName>Statistic2</tns:displayName>
<tns:type>CUMULATIVE</tns:type>
</tns:statistic>
</tns:pluginStatistics>
<tns:runTime>
<tns:plugindar>AllSource.jar</tns:pluginJar>
<tns:pluginClass>com.informatica.vds.plugin.custom.AllTypeSource</
tns:pluginClass>
</tns:runTime>
<tns:helpKey></tns:helpKey>
</tns:vdsPlugin>

The XML document consists of the following XML elements:
vdsPlugin

Encloses all the XML elements that describe the custom entity type.

id
The VDS plug-in ID. The value must be unique across the plug-ins that you use in the VDS deployment.
The value must not contain spaces and can have a maximum length of 32 characters.

displayName
A name for the entity. VDS displays the entity type with the specified name in the Entity Types pane of
the Administrator tool. vds_entity name is a reserved word and must not be used as the name of any
field.
For example, if you use the preceding XML document, VDS displays the entity type with the name
MyCustomSource.

version

A string used to version the entity type.

For example, if you use the preceding XML document, VDS creates an entity type with the version
number 1.0.

20 Chapter 2: Managing Custom Entity Types

type
The type of entity that you want VDS to create. The type can be SOURCE, TARGET, Or TRANSFORMATION.
For example, if you use the preceding XML document, VDS creates a source service.

configuration

Describes the properties of the fields in the dialog box that a user uses to configure the entity in the
Administrator tool. The configuration element encloses the following element:
fields

Describes the fields in the dialog box. The fields element encloses the following element:
field

Encloses the XML elements that describe the field. You can create multiple field elements
within the fields element, each with its own set of properties.

The field element encloses the following element:

textControl
Encloses the XML elements that describe the field type and properties.
The textControl element encloses the following elements:
name

Specifies an internal name for the field. Use the internal name to reference the entity
in your implementation of a VDS interface. VDS ENTITY NAME is a reserved word and
must not be used as the name of any field.

displayName

Specifies the name with which the field must appear when a user adds the entity to a
data flow.

For example, if the field accepts a directory path for the source file, use the name
directory.

description
An internal description for the field.
mandatory

Makes the field required or optional. The setting true indicates that the field is
required. The setting false indicates that the field is optional.

stringTextField

Specifies that the field is a string. The stringTextField element encloses the
following elements:

e pattern. Specifies the pattern that text field can hold.
e maxLength. Specifies the maximum length of the text field.
e secure. Specifies that the field is secure.

Note: If you have installed VDS in secure mode, the field is securely communicated
using encryption over UM or HTTPS, and then encrypted and stored in the
database. If you have installed VDS in a normal mode, the value in the field appears
masked in the Administrator tool, and is not encrypted.

e default. Specifies the default value of the field

Creating a Custom Entity Type 21

e placeholder. Specifies the placeholder text that must appear when a user adds
the entity to a data flow.

integerTextField

Specifies that the field is an integer. The integerTextField element encloses the
following elements:

e minValue. Specifies the minimum value that the field can hold.

* maxValue. Specifies the maximum value that the field can hold.

e default. Specifies the default value of the field.
doubleTextField

Specifies that the field is a double text field. The doubleTextField element encloses
the following elements:

* minValue. Specifies the minimum value that the field can hold.

* maxValue. Specifies the maximum value that the field can hold.

e default. Specifies the default value of the field.
radioGroupControl

Specifies that the field is an option button.

The radioGroupControl element encloses the following elements:

name

Specifies the name of the option button.
displayName

Specifies the name with which the option button must appear when you add the
entity to the data flow.

description
Specifies the description of the option button.
items

Specifies the options that are part of the option button. This element encloses the
item element. If you require to specify the conditional fields you can specify them
within the item element. Each item element encloses the textControl and the
listControl elements. You can add multiple item elements.

default
Specifies the option that should be selected the default.
listControl
Specifies that the field is a drop-down list field.
The 1istControl element encloses the following elements:
name

Specifies the name of the drop-down list field.

22 Chapter 2: Managing Custom Entity Types

displayName

Specifies the name with which the drop-down list field must appear when you add
the entity to the data flow.

description
Specifies the description of the drop-down list field.
items

Specifies the options that are part of the option button. This element encloses the
item element. If you require to specify the conditional fields you can specify them
within the item element. Each item element encloses the textControl and the
listControl elements. You can add multiple item elements.

default

Specifies the option that should be selected the default.

checkBoxControl

Specifies that the field is a checkbox field.
The checkBoxControl element encloses the following elements:
name
Specifies the name of the checkbox field.
displayName

Specifies the name with which the checkbox field must appear when you add the
entity to the data flow.

description

Specifies the description of the checkbox field.
default

Specifies the field that is select by default.
checkedFields

Specifies the list of fields that are selected. If you require to specify the
conditional fields you can specify them within the checkedFields element. This
element encloses the textControl element.

uncheckedFields

Specifies the list of fields that are not selected. This element encloses the
textControl and the 1istControl elements.

textAreaControl

Specifies that the field is a text area field.
The textAreaControl element encloses the following elements:
name

Specifies the name of the text area.

Creating a Custom Entity Type 23

displayName

Specifies the name with which the text area must appear when you add the entity
to the data flow.

description
Specifies the description of the text area.
mandatory

The setting true indicates that the field is required. The setting false indicates
that the field is optional.

maxLength

Specifies the maximum length of the text area.
default

Specifies the default value of the text area.
placeholder

Specifics the placeholder text that must appear when you add the text area to the
data flow.

pluginStatistics

Encloses information about the statistics that you want to create. The pluginStatistics element
encloses the following element:
statistic

Encloses information that describe the statistics that you create. The statistic encloses the
following elements:
id

The statistic ID. The value must be unique across the plug-ins that you use in the VDS
deployment. The value must not contain spaces and can have a maximum length of 32
characters.

displayName
Specifies the name with which the statistic must appear when a user adds it to the entity.
type
The type of statistic that you want VDS to create. The type can be CUMULATIVE.
runTime

Encloses information that VDS needs to run the entity at run time. The runTime element encloses the
following elements:
pluginJar

The name of the JAR file that contains the implementation of a VDS interface.

For example, if you use the preceding XML document, VDS creates the entity by using the plug-in
mySourcePlugin.jar
pluginClass

The fully qualified name of the class that implements a VDS interface. For example, if you name the
class that implements a VDS interface myClass, and you add the class to the package
com.myOrg.myPackage, enter com.myOrg.myPackage.myClass.

24 Chapter 2: Managing Custom Entity Types

Sample Implementations of Vibe Data Stream Interfaces

Create a Java source file that implements the vDSSource, VDSTarget, or VDSTransform interface. For
information about the VDS API, see the VDS API reference documentation that the VDS Java APl includes.
The following code samples show how to implement the VDS interfaces.

Implementing the VDSSource Interface
Implement the vDSSource interface to create a custom source service type.

The following sample code shows how to implement the vDSSource interface:

package ...;

import java.io.IOException;

import com.informatica.vds.api.VDSConfiguration;
import com.informatica.vds.api.VDSEventList;
import com.informatica.vds.api.VDSSource;

public class CustomSource implements VDSSource {

/* Initialize the VDSSource object. */

@Override

public void open (VDSConfiguration vdsconfiguration) throws Exception {
/* The internal name of the key. */
String fieldName = "SourceURLFromUI";

/* The default value of the key. */
String defaultValue = "SourceURLDefault";

/* Retrieve the value of the key SourceURLFromUI. */
String SourceURL = vdsconfiguration.optString("SourceURLFromUI",
"SourceURLDefault");

/* Similarly, retrieve other keys. */
}

/* Read the data from the data source. */

@Override

public void read(VDSEventList vdsevents) throws Exception {
/* Collect data into a byte array called data. */

/* Add the generated data to the VDSEventList object. */
vdsevents.addEvent (data, data.length);
}

@Override
public void close() throws IOException {
/* Clean up. */
}
@Override

public void setRetryPolicyHandler (IPluginRetryPolicy arg0) {
// TODO Auto-generated method stub

}
The following sample code shows how to implement the vDSSource interface to shard events:

package ...;
import java.io.IOException;

import com.informatica.vds.api.VDSConfiguration;
import com.informatica.vds.api.VDSEventList;

Creating a Custom Entity Type

import com.informatica.vds.api.VDSSource;
public class CustomSource implements VDSSource {

/* Initialize the VDSSource object. */

@Override

public void open (VDSConfiguration vdsconfiguration) throws Exception {
/* The internal name of the key. */
String fieldName = "SourceURLFromUI";

/* The default value of the key. */
String defaultValue = "SourceURLDefault";

/* Retrieve the value of the key SourceURLFromUI. */
String SourceURL = vdsconfiguration.optString("SourceURLFromUI",
"SourceURLDefault");

/* Similarly, retrieve other keys. */

}

/* Read the data from the data source. */
@Override
public void read(VDSEventList arg0) throws Exception {
System.out.println("Reading source...");
Thread.sleep(10);
String message = (String) queue.poll();
if (message == null) {
return;
}
count++;
Map<String, String> map = new HashMap();

if (count % 2 == 0) {
map.put ("transportTopic", "TwoTopic");
} else if (count % 3 == 0) {
map.put ("transportTopic", "ThreeTopic");

} else {
map.put ("transportTopic", "OtherTopic");
}

arg0.addEvent (message.getBytes (), message.getBytes().length, map);

if (count % 2 == 0) {
statValues.put ((short)2, ++twos);
}
if (count % 3 == 0) {
statValues.put ((short)3, ++threes);
}

System.out.println("Data " + message.getBytes() + " " +
message.getBytes().length);
}
@Override
public void close() throws IOException {
/* Clean up. */

}
@Override
public void setRetryPolicyHandler (IPluginRetryPolicy arg0) {
// TODO Auto-generated method stub

}

26 Chapter 2: Managing Custom Entity Types

Implementing the VDSConsumptionSource Interface

Implement the vDsConsumptionSource interface to create a custom source service type.

The following sample code shows how to implement the vDSConsumptionSource interface:

package

import
import
import

import

public

java.ilo.IOException;
com.informatica.vds.api.VDSConfiguration;
com.informatica.vds.api.VDSConsumptionSource;

com.informatica.vds.api.VDSEventList;

class SampleConsumptionSource implements VDSSource, VDSConsumptionSource {

@Override
public void open(VDSConfiguration ctx) throws Exception {

}

// TODO Auto-generated method stub

@Override
public void read(VDSEventList readEvents) throws Exception {

}

// TODO Auto-generated method stub

@Override
public void close() throws IOException {

}

// TODO Auto-generated method stub

@Override
public void onVDSEventConsume (Object obj) throws Exception {

// TODO Auto-generated method stub

Implementing the VDSTarget Interface

Implement the vDSTarget interface to create a custom target service type.

The following sample code shows how to implement the vDSTarget interface:

package

import
import
import
import
import

public

.7

java.io.IOException;

java.nio.ByteBuffer;
com.informatica.vds.api.VDSConfiguration;
com.informatica.vds.api.VDSEvent;
com.informatica.vds.api.VDSTarget;

class CustomTarget implements VDSTarget ({

@Override
public void close() throws IOException {
/* Close the connection to the target and clean up. */

}...

/*

Initialize the VDSTarget object. */

@Override
public void open (VDSConfiguration vdsconfiguration) throws Exception {

/* The internal name of the key. */
String fieldName = "TargetURLFromUI";

Creating a Custom Entity Type

27

/* The default value for the key. */
String defaultValue = "TargetURLDefault";

/* Retrieve the value of the key TargetURLFromUI. */
String TargetURL = vdsconfiguration.optString(fieldName, defaultValue);

/* Similarly, retrieve other keys. */

/* Create or initialize the target by using the configuration
* information.
*/

}

/* Get data and write the data to the target. */

@Override

public void write (VDSEvent vdsevent) throws Exception {
/* Get data and collect it in a byte array. */
ByteBuffer bytebuff = vdsevent.getBuffer();
byte[] bytearr = new byte[vdsevent.getBufferLen()];
bytebuff.get (bytearr);

/* Write the data to the target. */

@Override

public void setRetryPolicyHandler (IPluginRetryPolicy arg0) {
// TODO Auto-generated method stub

}

Implementing the VDSTransform Interface

Implement the vDSTransform interface to create a custom transformation type.

The following sample code shows how to implement the vDSTransform interface:
package ...;

import java.io.IOException;

import java.nio.ByteBuffer;

import com.informatica.vds.api.VDSConfiguration;
import com.informatica.vds.api.VDSEvent;

import com.informatica.vds.api.VDSEventList;
import com.informatica.vds.api.VDSTransform;

public class CustomTransform implements VDSTransform {

@Override
public void close() throws IOException {
/* Clean up. */

}

/* Apply a transformation to the data. */
@Override
public void apply(VDSEvent vdsevent, VDSEventList vdsevents) throws Exception {
/* Get data from the VDSEvent object. */
ByteBuffer bytebuff = vdsevent.getBuffer();
byte[] totdata = new byte[vdsevent.getBufferlLen()];
bytebuff.get (totdata);

/* Transform the data. */

/* Assume that the transformation returns a byte[] that is stored in a
* variable named transformedData. Add transformedData to the event
* list.

28 Chapter 2: Managing Custom Entity Types

*/
vdsevents.addEvent (transformedData,

}

/* Initialize the VDSTarget object. */
@Override

public void open (VDSConfiguration vdsconfiguration)

/* The
String

internal name of the key. */
exprVal = "ExpressionFromUI";

/* The
String

default value of the key. */
exprDefault = "Defaultvalue"

transformedData.length);

throws Exception {

/* Retrieve the value of the key ExpressionFromUI. */

String Expr =

/* Similarly, retrieve other keys. */

vdsconfiguration.optString(exprval,

exprDefault) ;

/* Create or initialize the transformation by using

* the configuration.

*/

}

The following sample code shows how to implement the vDSTransform interface to shard events:

package ...;

import
import
import
import
import
import

java.io.IOException;
java.nio.ByteBuffer;
com
com.
com.
com.

informatica.vds.api.VDSEvent;
informatica.vds.api.VDSEventList;
informatica.vds.api.VDSTransform;

public
@Override
public void close()

/* Clean up. */

}

.informatica.vds.api.VDSConfiguration;

class CustomTransform implements VDSTransform {

throws IOException {

/* Apply a transformation to the data. */

@Override

public void apply (VDSEvent vdsevent, VDSEventList vdsevents)

System.out.println("Applying transform...");

ByteBuffer byteBuffer =
byte[] event =
byteBuffer.get (event);

ByteArrayOutputStream outputStream =

outputStream.write (event);

vdsevent.getBuffer();
new byte[vdsevent.getBufferLen()];

new ByteArrayOutputStream();

outputStream.write (txtField.getBytes());
System.out.println("Transformed data " + outputStream.toString());

Map<String, String> map = new HashMap();

String str = new String(event);

if (str.contains("secure")) {

map.put ("transportTopic", "SecureTopic");
} else {
map.put ("transportTopic", "NonsecureTopic");

}

vdsevents.addEvent (outputStream.toByteArray(),

outputStream.toByteArray () .length, map);

Creating a Custom Entity Type

throws Exception

29

}
@override
public void open(VDSConfiguration vdsconfiguration)

/* The internal name of the key. */
String exprVal = "ExpressionFromUI";

/* The default value of the key. */
String exprDefault = "DefaultValue"

/* Retrieve the value of the key ExpressionFromUI. */
String Expr = vdsconfiguration.optString(exprVal, exprDefault);

/* Similarly, retrieve other keys. */

/* Create or initialize the transformation by using
* the configuration.

*/
i..

Implementing the VDSPluginStatistics Interface
Implement the vDSPluginStatistics interface to create statistics for entities.

The following sample code shows how to implement the vDsPluginStatistics interface:
package ...;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;

import org.json.JSONArray;
import org.json.JSONObject;

import com.informatica.vds.api.VDSConfiguration;
import com.informatica.vds.api.VDSEventList;

import com.informatica.vds.api.VDSPluginStatistics;
import com.informatica.vds.api.VDSSource;

public class CustomSource implements VDSSource, VDSPluginStatistics {

private String txtField;

private BlockingQueue queue;

private Map<Short, Long> statValues = new HashMap<Short, Long>();
private long count;

private long statisticl;

private long statistic2;

@Override
public void close() throws IOException {
System.out.println("Closing custom source...");

}

@Override
public void open (VDSConfiguration arg0) throws Exception {
System.out.println("Opening custom source...");
txtField = arg0.getString("newField");
String pluginStats = arg0.getString("statistic");
JSONArray pluginStatsJsonArray = new
JSONObject (pluginStats) .getJSONArray ("statistic");

for (int i = 0; i < pluginStatsJsonArray.length(); i++) {

30 Chapter 2: Managing Custom Entity Types

throws

Exception

JSONObject stat = pluginStatsJsonArray.getJSONObject (i);
short pluginStatKey = Short.parseShort (stat.getString("id"));
statValues.put (new Short (pluginStatKey), (long) 0);

}

queue = new LinkedBlockingQueue (100);

for (int 1 = 0; 1 < 100; i++) {
queue.offer (txtField + 1i);
}
}

@Override

public void read(VDSEventList arg() throws Exception {
System.out.println("Reading source...");
Thread.sleep(10);

String message = (String) queue.poll();
if (message == null) {
return;
}
count++;

arg0.addEvent (message.getBytes (), message.getBytes().length);
if (count % 2 == 0) {
statValues.put ((short)2, ++statisticl);
}
if (count % 3 == 0) {
statValues.put ((short)3, ++statistic2);
}

System.out.println("Data " + message.getBytes() + " " +
message.getBytes () .length);
}

@Override
public long[] getStatistics(short[] arg0l) {
long[] statistics = new long[arg0.length];
for (int 1 = 0; 1 arg(0.length; i++) {
statistics[i] statValues.get (arg0[i]);

A

}

return statistics;

@Override

public void setRetryPolicyHandler (IPluginRetryPolicy arg0) {
// TODO Auto-generated method stub

}

Creating the VDS Plug-in JAR File

Use the jar command to create a JAR file that contains your implementation of the VDS interface.

Adding Dependent Libraries

Add the Java class libraries and native libraries on which your plug-in depends.

1. Navigate to the directory that contains the plug-in file and the XML file.
Create a directory with the name 1ib.

In the 1ib directory, add the Java classes on which your plug-in depends.

»> wn

Create a directory with the name native.

Creating a Custom Entity Type

31

5. Inthe native directory, add any native libraries that your implementation requires.

Note: To include all dependencies that your implementation requires, you can use the Apache Maven
Shade Plugin. For more information about the Apache Maven Shade Plugin, see
http://maven.apache.org/plugins/maven-shade-plugin/.

Creating a Package for the Custom Entity Type

Create a ZIP file that contains the VDS plug-in XML document, the VDS plug-in JAR file, and the 1ib and
native directories.

Using a Custom Entity Type

32

To use a custom entity type, register the VDS plug-in with the Administrator Daemon. To stop using a custom

entity type, delete the entity from the data flow and unregister the VDS plug-in with the Administrator
Daemon.

To register or unregister a plug-in, perform the following tasks:

e Stop the Administrator Daemon.
e Register or unregister the VDS plug-in.

e Start the Administrator Daemon.

Stopping the Administrator Daemon

To stop the Administrator Daemon, you use a script that the VDS installer saves to the <vDs installation
directory>/bin/ directory.

Stopping the Administrator Daemon on Linux

On a Linux machine, use the command-line interface to stop the Administrator Daemon.

1. At the command prompt, navigate to the following directory: <vDS installation directory>\bin\
2. To stop the Administrator Daemon, run the following command:

./admind.sh stop admind

Stopping the Administrator Daemon on Windows

Use the Services window in the Control Panel to stop the Administrator Daemon service.
1. Open the Windows Control Panel.

2. Select Administrative Tools.

3. Select Services.

4. Right-click the ADMIND service.

5

To stop the service, click Stop.

Chapter 2: Managing Custom Entity Types

http://maven.apache.org/plugins/maven-shade-plugin/

Registering or Unregistering a VDS Plug-in

Save the VDS plug-in to any directory on the Administrator Daemon host. Stop the Administrator Daemon. To
register the VDS plug-in, use a script that the installer creates in the Administrator Daemon installation
directory.

Ensure that Apache ZooKeeper is running when you register the plug-in as ZooKeeper contains the database
details required to register the plug-in.

Registering or Unregistering a VDS Plug-in on Linux
To register or unregister a VDS plug-in on a Linux machine, use the plugin.sh script.
1. At the command prompt, navigate to the following directory:
<VDS installation directory>/admind/bin
2. Toregister the VDS plug-in with the Administrator Daemon, run the following command:

./plugin.sh register <zipFile>
where <zipFile> is the full path to the VDS plug-in that you want to register.

3. To unregister the VDS plug-in with the Administrator Daemon, run the following command:

./plugin.sh unregister <pluginID>
where <pluginID> is the ID of the VDS plug-in that you want to unregister.

Registering or Unregistering a VDS Plugin on Windows

To register or unregister a VDS plug-in on a Windows machine, use the plugin.bat script. Run the script from
the Windows command line.

1. Atthe Windows command prompt, navigate to the following folder: <vDS installation directory>
\admind\bin

2. Toregister the VDS plug-in with the Administrator Daemon, run the following command:

plugin.bat register <zipFile>
where <zipFile> is the full path to the VDS plug-in that you want to register.

3. To unregister the VDS plug-in with the Administrator Daemon, run the following command:

plugin.bat unregister <pluginID>
where <pluginID> is the ID of the VDS plug-in that you want to unregister.

Starting the Administrator Daemon

To start the Administrator Daemon, you use a script that the VDS installer saves to the <vDS installation
directory>/admind/bin directory.

Starting the Administrator Daemon on Linux
On a Linux machine, use the command-line interface to start the Administrator Daemon.

1. At the command prompt, navigate to the following directory: <vDS installation directory>/

admind/bin

2. To start the Administrator Daemon, run the following command: ./admind.sh start admind

Using a Custom Entity Type 33

Starting the Administrator Daemon on Windows
Use the Services window in the Control Panel to start the Administrator Daemon service.

1. Open the Windows Control Panel.

Select Administrative Tools.

2

3. Select Services.

4. Right-click the ADMIND service.
5

To start the service, click Start.

Versioning a Custom Entity Type

34

To make changes to a custom entity type that you added to VDS, upgrade the entity type with a newer
version.

To upgrade or downgrade a custom entity type, perform the following tasks:

e Edit the implementation of the custom entity.
¢ Increment or decrease the version number in the VDS plug-in XML file.
e Stop the Administrator Daemon.

e Optionally, prepare the custom entity if you make changes to the VDS plug-in XML file. In the CSV file, add
the rows for the newly added fields.

e Upgrade the entity type.

e Start the Administrator Daemon. When you start the Administrator Daemon, the Administrator Daemon
deploys the data flows that were undeployed during the upgrade.

o Verify if the changes to the custom entity appear in the Administrator tool.

For information about undeploying and deploying the data flow and stopping and starting the Administrator
Daemon see Informatica Vibe Data Stream for Machine Data User Guide.

Editing the Custom Entity Implementation

Edit the VDS plug-in XML file and the VDS plug-in JAR file. Increment or decrease the version number in the
VDS plug-in XML file.

Create a ZIP file that contains the modified VDS plug-in JAR file, the VDS plug-in XML file with the
incremented version number, and any libraries on which the plug-in depends.

Incrementing the Version Number

To upgrade the custom entity type, increment the version number in the VDS plug-in XML file.

Open the VDS plug-in XML file that the custom entity type uses, increment the integer value in the version
XML element, and then save and close the file.

Chapter 2: Managing Custom Entity Types

Preparing a Custom Entity

Prepare the custom entity if you make changes to the VDS plug-in XML file.

1.

At the command prompt, navigate to the following directory:
<VDS installation directory>/admind/bin
Run the following command to prepare the custom entity:

On Linux:
plugin.sh prepare <pluginid> <directory where the CSV will be written>

On Windows:
plugin.bat prepare <pluginid> <directory where the CSV will be written>

The CSV file is created.

Editing the CSV File

Edit the CSV file that is created when you run the prepare command. Add the new values that you define for
the fields you changed or added in the VDS plug-in XML file.

1.
2.

Navigate to the directory where you generated the CSV file.
Use a text editor to edit the CSV file.
Note: Do not edit the ENTITY DESIGN IDand VDS ENTITY NAME fields.

Add, change or delete columns and the corresponding values in the CSV file. Enclose the values in
double quotes.

Note: You must specify the values for fields that you add even if you specify the default values while
describing the fields in the Plug-in XML file.

Save and close the CSV file.

Upgrading a Custom Entity Type

To upgrade a custom entity type, replace the existing ZIP file with a ZIP file that contains the modified
implementation of the entity type.

Log in to the host on which you installed the Administrator Daemon and stop the Administrator Daemon.
Back up the existing version of the ZIP file, and then replace it with the new version.

To upgrade the custom entity only if you have made changes to the VDS plug-in JAR file, run the
following command:

On Linux:
plugin.sh upgrade <ZIP file>

On Windows:
plugin.bat upgrade <ZIP file>
where z1P file is the full path to the VDS plug-in ZIP file

To upgrade the custom entity if you have made changes to the VDS plug-in XML file, run the following
command:

On Linux:
plugin.sh upgrade <ZIP file> <CSV file>

On Windows:

Versioning a Custom Entity Type 35

plugin.bat upgrade <ZIP file> <CSV file>
where z1P file is the full path to the VDS plug-in ZIP file and csv file is the full path to the CSV file.

5. Start the Administrator Daemon. When you start the Administrator Daemon, the Administrator Daemon
deploys the data flows that were undeployed during registration or unregistration.

6. Verify if the changes to the custom entity appear in the Administrator tool.

Note: To downgrade a custom entity, replace the existing ZIP file with the earlier ZIP file version.

RELATED ToOPICS:

e “Creating a Package for the Custom Entity Type” on page 32
e “Creating the VDS Plug-in JAR File” on page 31

e “Stopping the Administrator Daemon” on page 32

Custom Source Service Type Example

This example shows how you can create a custom source service type and use it in your data flow.

Step 1: Create the Vibe Data Stream Plug-in XML Document

Create an XML document called vdsplugin.xml. In the XML document, describe the configuration of the
custom entity type.

You can use the following sample configuration in the XML document:

<?xml version="1.0" encoding="UTF-8"?>
<tns:vdsPlugin xmlns:tns="http://www.informatica.com/VdsPlugin"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.informatica.com/VdsPlugin ../XSD/vds plugin.xsd ">
<tns:id>SimpleSrc</tns:id> a
<tns:displayName>Simple Source</tns:displayName>
<tns:version>1.0</tns:version>
<tns:type>SOURCE</tns:type>
<tns:configuration>
<tns:fields>
<tns:field>
<tns:textControl>
<tns:name>message</tns:name>
<tns:displayName>Message</tns:displayName>
<tns:description>Message to be sent</tns:description>
<tns:mandatory>true</tns:mandatory>
<tns:stringTextField>
<tns:secure/>
</tns:stringTextField>
</tns:textControl>
</tns:field>
</tns:fields>
</tns:configuration>
<tns:runTime>
<tns:pluginJdar>SimpleSource.jar</tns:pluginJar>
<tns:pluginClass>com.informatica.vds.plugin.custom.SimpleSource</tns:pluginClass>
</tns:runTime>
<tns:helpKey></tns:helpKey>
</tns:vdsPlugin>

36 Chapter 2: Managing Custom Entity Types

Step 2: Create the Java Source File

Create a Java source file called simpleSource.java.

You can use the following sample Java source file:
package com.informatica.vds.plugin.custom;

import java.io.IOException;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;

import com.informatica.vds.api.VDSConfiguration;
import com.informatica.vds.api.VDSEventList;
import com.informatica.vds.api.VDSSource;

public class SimpleSource implements VDSSource {

private String message;
private BlockingQueue queue;
private long count;

@Override

public void close() throws IOException {
System.out.println("Closing custom source...");

}

@Override

public void open(VDSConfiguration arg0) throws Exception {
System.out.println("Opening custom source...");
message = arg0.getString("message");

queue = new LinkedBlockingQueue (100);

for (int 1 = 0; 1 < 100; i++) {
queue.offer (message + 1);
}
}

@Override

public void read(VDSEventList arg0) throws Exception {
System.out.println("Reading source...");
Thread.sleep(100);

String message = (String) queue.poll();
if (message == null) {
return;

}
arg0.addEvent (message.getBytes (), message.getBytes().length);

Step 3: Create the VDS Plug-in JAR File

Use the jar command to create a SimpleSource.jar JAR file that contains your implementation of the VDS

interface.

Add the vds-api-<version>.jar to the Java build path so that the simple source can be compiled.

Step 4: Create a Package for the Custom Entity Type

Create a folder named simplesource. Place the SimpleSource.jar and vdsplugin.xml files in this folder and

create a ZIP file called simplesource.zip.

Custom Source Service Type Example

37

Step 5: Register the VDS Plug-in

Save the simplesource.zip plug-in to any directory on the Administrator Daemon host. Stop the
Administrator Daemon. To register the VDS plug-in, use a script that the installer creates in the Administrator
Daemon installation directory.

Navigate to the following directory:
<VDS installation directory>/admind/bin

To register the simplesource.zip plug-in with the Administrator Daemon on a Linux machine, run the
following command:

./plugin.sh register <full path to simplesource.zip>

To register the VDS plug-in with the Administrator Daemon on a Windows machine, run the following
command:

plugin.bat register <full path to simplesource.zip>

After you register the simplesource.zip plug-in, start the Administrator Daemon.

Step 6: Use the Plug-in in a Data Flow

To use the simple Source plug-in a data flow, log in to the Administrator tool.
Navigate to the Vibe Data Stream tab.
Verify that you can view Simple Source listed under the sources in the Entity Types panel.

You can use the Simple Source source service in your data flows.

Troubleshooting Custom Entity Types

38

The custom entity does not appear in the Administrator tool:

This error occurs if the plug-in is not registered correctly. Check the <vDS Installation Directory>/
admind/logs/register.log file for errors and correct them.

| get an error when | register a custom entity.

This error occurs if you are using the Send to > Compressed (zipped) folder option in Windows to create the
custom entity ZIP file. Use a different ZIP utility to create the custom entity ZIP file. For example, you can use
the Windows WinZip utility.

| get an error when | upgrade a custom entity.

This error can occur if ZooKeeper is down when you upgrade the custom entity. A ZooKeeper connectivity
exception occurs in the <vDS Installation Directory>/admind/logs/upgrade.log file.

Navigate to the following directory:
<VDS installation directory>/admind/bin
To verify the status, run the following command:

./admind.sh status

Chapter 2: Managing Custom Entity Types

If you have installed a version of ZooKeeper that is not part of the VDS installation package, navigate to the
following directory:

<VDS installation directory>/zookeeper/bin

To verify the status, run the following command:

./zkServer.sh status

If ZooKeeper is not running, use the following command to start it:

./zkServer.sh start

The custom entity that | created does not behave as expected.
To identify the cause for the unexpected behavior, you can attach a debugger to the VDS Node.
To attach a debugger, perform the following steps:

1. Navigate to the following directory:
<VDS installation directory>/node/bin

2. Edit the node.bat file on Windows and edit the node. sh file on Linux.
Include the following line in the Java_oPTS configuration:

-Xdebug; -Xrunjdwp:transport=dt socket, server=y, suspend=n, address=9699

For example, SET "JAVA OPTS=-Xms256m;-Xmx2G; -XX:+UseCompressedOops; -XX:
+UseConcMarkSweepGC; -XX:CMSInitiatingOccupancyFraction=70;-XX:MaxDirectMemorySize=512m; -
Dio.netty.leakDetectionLevel=disabled;-DINFA HOME=%PRODUCT HOME%;-Dnodename=%NODENAMES; -
Dhostname=%HOSTNAMES; -D1ogdir=%L0OGS_DIR%;-Dlog4j.configuration=%PRODUCT HOMES/config/
log4j.properties -Xdebug;-Xrunjdwp:transport=dt_socket,server=y, suspend=n,address=9699"

3. Save and close the file.
On Windows, additionally perform the following steps:

1. Run the following command to uninstall the VDS Node:
Node.bat uninstall <hostname>

2. Run the following command to install the VDS Node:
Node.bat install <hostname>

You can attach the VDS Node to a remote debugger with the port 9699.

When | run the Maven install command to create a custom entity using the Maven archetypes, |
get the following warnings in the Eclipse console:

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

These warnings occur if you are using the Eclipse version Kepler or earlier versions. Upgrade the Eclipse
version to Luna or a newer version.

Troubleshooting Custom Entity Types 39

CHAPTER 3

Custom Entities from Maven
Archetypes

This chapter includes the following topics:

e Custom Entities from Maven Archetypes Overview, 40

e Create an Entity Based on an Archetype in the Internal Catalog, 41

e Create an Entity Based on an Archetype in a Remote Catalog, 48

Custom Entities from Maven Archetypes Overview

You can use the Maven archetypes to create entities, such as source services, target services, and
transformations. The Maven archetypes are packaged with the VDS APIs. You can use these archetypes to
create custom entity types in an Eclipse environment.

An Apache Maven archetype is a model or pattern that contains the prototypes of the entities that you want
to create. You can use the archetype plug-in to create a Maven project from a template in Eclipse. Eclipse is a
multi-language software development environment that includes a base workspace and an extensible plug-in
system for customizing the environment.

The archetype information is stored in catalogs, which are XML files. The archetype plug-in contains an
internal catalog that is used by default. You can also use catalogs from remote repositories.

VDS includes the following Maven archetypes:
e vds-template-source-archetype. The archetype for the source service.
e vds-template-target-archetype. The archetype for the target service.

e vds-template-transform-archetype. The archetype for the transformation.

40

Create an Entity Based on an Archetype in the
Internal Catalog

The archetype plug-in can use an internal catalog.

To create entities based on archetypes in the internal catalog, perform the following steps:

1.
2.

o o &~ ®

Verify the prerequisites.

Copy the VDS API JAR file and the archetypes from the vDS-api-reference.zip ZIP file and to the local

Maven repository.

Copy the archetype-catalog.xml file to the root of the Maven directory.
Add the local archetype catalog to Eclipse.

Create a Maven project with the archetypes you copy.

Install the project.

Step 1: Verify the Prerequisites

Before you begin, perform the following tasks:

o Verify that the Eclipse environment uses JDK 1.7.

Install Apache Maven 3.x or a later version.

o Verify that you have extracted the contents of vDS-api-reference.zip file.

Step 2: Copy the API JAR File and the Archetypes to the Local
Repository

Copy the extracted vds-api.jar and the archetypes to the local Maven repository. The local Maven
repository stores the plugin jar files and other files that are downloaded by Maven.

The archetypes are located in the following directory:

VDS-api-referencel\archetypes

1.

N o o s~ 0D

Set the M2 _HOME environment variable to the Maven installation directory.

Set the PATH to the M2 _HOME/bin directory.

Verify that the Java HOME is set to the directory where the JDK is installed.

Open a command prompt in Windows or a terminal in Linux.

Navigate to the folder where you extracted the files from the vDs-api-reference.zip file.
Navigate to the scripts folder.

To copy the API JAR file and the archetypes to the local repository, run the following command:
¢ install-vds-api.bat. Run this command on Windows.

¢ /install-vds-api.sh. Run this command on Linux.

Step 3: Copy the Archetype Descriptor to the Home Directory

To copy the archetype descriptor file to the home directory, perform the following steps:

1.

Go to the directory where you extracted the VDS API package.

Create an Entity Based on an Archetype in the Internal Catalog

41

Note: If the archetype-catalog.xml file already exists, copy the code in the <archetypes> element of the

Navigate to the catalog folder.

Copy the archetype-catalog.xml file to the <USER_HOME>\.m2 directory.
The following example shows a Windows path:

C:\Users\<user name>\.m2

The following example shows a Linux path:

/home/<user ID>/.m2/

archetype-catalog.xml file in the VDS API package to the existing file.

Step 4: Add the Local Archetype Descriptor File

To use the local archetype descriptor, add it to Eclipse.

1.
2.

5.

Start Eclipse.

Go to Window > Preferences > Maven > Archetypes

Click Add Local Catalog.

The Local Archetype Catalog window opens.

Browse to the location of the archetype-catalog.xml file and click Open.

The following image shows the Local Archetype Catalog window:

[»

[»

[»

[»

> Install/Update

> Java

> Java EE

> Java Persistence

» JavaScript

4 Maven
Archetypes
Discovery
Errors/\Warnings
Installations
Java EE Integration
Lifecycle Mappings
Temnplates
User Interface
User Settings

Mylyn

Plug-in Develepment

Remote Systems

Run/Debug

Server

@

m

] Preferences [E=REET)
type filter text Archetypes =10 4 v w
G |
Ae:era i Add, remove or edit Maven Archetype catalogs:
n
Data Management Nexus Indexer Add Local Catalog...
Help

Internal
Default Local Add Remaote Catalog...

Edit...
Remaove
E Local Archetype Catalog
Local Archetype Catalog
Catalog File: C\Users\rtomi\.m2\archetype-catalogxml -
Description:
[QK] ’ Cancel l

ok ||

Cancel_| [

L

Click OK, Apply, and OK to add the catalog.

42 Chapter 3: Custom Entities from Maven Archetypes

Step 5: Create a Maven Project

Create a Maven project to use the archetypes.

1. Onthe Eclipse Workbench window, click File and select New > Maven Project.

The Select project name and location page of the New Maven Project wizard appears.
The following image shows the New Maven Project wizard:

r N
Eﬂ MNew Maven Project I. 5] |

New Maven project

Select project name and location

[7] Create a simple project (skip archetype selection)

Use default Workspace location

[T Add project(s) to working set

» Advanced

™

e

N

Browse...

More...

'\?/' < Back Mext > Finish

.

Note: Do not select Create a simple project (skip archetype selection).
2. Click Next.
The Select an Archetype page appears.
Select Local <USER_HOME>/.m2/archetype-catalog.xml from the Catalog list.

4. Filter the archetypes using keyword vds because the Artifact ID of the VDS archetypes begin with vds.

Select the archetype from the list.

The following image shows the vds-template-source-archetype archetype selection:

Create an Entity Based on an Archetype in the Internal Catalog

43

E MNew Maven Project E‘E‘g
New Maven project =
Select an Archetype M

Catalog: | Local C:h\Users\rtomit.m2\archetype-cataleg.xml vl [Qonfigure...l

Filter: wds b4
Group Id Artifact Id Wersion

: com.informatica.binge.vds.archetype vds-template-source-archetype ML-SNAPSHOT i
com.nformatica.bingewvds.archetype vds-template-target-archetype ML-SMNAPSHOT

com.informatica.bingewvds.archetype vds-template-transform-archetype ML-SMAPSHOT

wds-template-source-archetype

Show the last version of Archetype only Include snapshot archetypes Add Archetype...

b Advanced

@ | <Back || Nea> | Finish

6. Click Next.
The Specify Archetype parameters page appears.

7. Enter the following values:

Field Value

Group Id Group ID that identifies the project.

Example: com.mycompany.vds.sources

Artifact Id | Name of the jar file without the version.
Example: sample-vds-source

Version Version number of the artifact.
Example: 1.0

Package Name of Java package where the source service, target service, and transformation classes are
created.

Example: com.mycompany.vds.sources

44 Chapter 3: Custom Entities from Maven Archetypes

The following image shows the Archetype parameters:

-
@] New Maven Project E‘M

New Maven project = :
|
Specify Archetype parameters
GroupId: com.mycompany.vds.sources -
Artifact Id: sample-vds-source -
Version: 1.0 -

5T T R C oM. my company . vds.sources -

Properties available from archetype:

Mame Value Add...
Remaove

b Advanced

@ <Back | Nei> || Enish || Cancel

Create an Entity Based on an Archetype in the Internal Catalog 45

8. Click Finish.
To view the progress of the background operations, click Progress view.
The sample-vds-source project is created under your current workspace.

The following image shows the sample project:

i

[\r_h, Project Explorer I3 =]

a 2 sample-vds-source
4 (B src¢/main/java
4 8 com.mycompany.vds.sources
» [J) SampleSourcejava
4 [src/test/java
4 8 com.mycompany.vds.sources
. [J] SampleSourceTestjava
» B4 Maven Dependencies
» B JRE System Library [JavaSE-1.7]
4 = src
= main
4 [resources
\X| vdsplugin.xml
b (= test
= target
|X| assembly.xml
i pomuaxml

Step 6: Install the Maven Project

After you create the Maven project, install the project to create the custom plug-in.

Before you install the Maven project, remove files generated in the project directory when you created a
project previously by running the Maven Clean command. In the Project Explorer, right click the project.
Select Run As > Maven clean

1. Select the project in the project explorer.

46 Chapter 3: Custom Entities from Maven Archetypes

Right-click and select Run As > Maven install

The following image shows the Maven install command:

& ke - tipe Tl o e
Fie Edt Neoge Sewch Project Pum Window Help
- 8oy HIEEROYRT GO e AT ST Queck Acce = |)

Pregec Explerer
o T sample-vdiesource

5 c/manea
4 {8 commycompany s sources

D SimpieSouceiovs
o 8 wpeaioa
“H M v
iy Sowh AW
mE Open n
elw Opmwen 5
dB conr Qe
Copy Crunified Hame
4 Pue cutey
Bt ol Dot [
Bp o Pement - e Al St
i Pt f
Move.
Raname. "

in mpon.

Ls Gpon.

&) Refren "
Vabdse
e i Famte Systems view
Profe A3 B
Debug &s
o s ’
Team
Replace Weh '
Maven
P Took f

Compare With v EMaven e

Source »

[pemami Properties AxeErter

~
Vi
-
-

A cusine i net wvaisble.

O Comete +@-0[-=

Jotesto dinplay ot th iene

1 Meven buid AeShitteX, M
2 Maven busd.
3Maven clean

A Maven generstesources

Ruum Confrguration.

e

The following image shows the target directory after the Maven command has run successfully:

Create an Entity Based on an Archetype in the Internal Catalog

47

III

'y
-<1
0

1

[Project Explorer 52

M|

4 =7 sample-vds-source

a [src/main/java
a4 f} com.mycompany.vds.sources
» [J] SampleSource.java
4 [sroftest/java
4 f} com.mycompany.vds.sources
» [J] SampleSourceTestjava
- B, Maven Dependencies
I- = JRE Systern Library [JavaSE-1.7]
4 [src
= main
4 = resources
|%] vdspluginxml
2 [test
4 (= target
(= archive-tmp

4 [maven-archiver
[E pom.properties
4 [surefire-reports
[E com.mycompany.vds.sources.SampleSourceTest bt
Jul TEST-com.mycompany.vds.sources.SampleSourceTestaml
|i&] sample-vds-source-ML-SNAPSHOT-shaded jar
|i&/] sample-vds-source-ML-5MAPSHOT jar
E samnple-vds-source-ML-SMNAPSHOT zip
|%| assembly.zml

E.-j] p;:lm..it;ril

Create an Entity Based on an Archetype in a Remote
Catalog

The archetype plug-in can use catalogs that are located in remote locations.
To create entities from catalogs in remote locations, perform the following steps:

1. Verify the prerequisites.

2. Add the remote archetype descriptor file in Eclipse.
3. Create a Maven project with the archetypes.
4

Install the project.

48 Chapter 3: Custom Entities from Maven Archetypes

Step 1: Verify the Prerequisites

Before you begin, perform the following tasks:

e Verify that the Eclipse environment uses JDK 1.7.

¢ |Install Apache Maven 3.x or a higher version.

e Copy the archetypes to the remote Maven repository.

o Verify that the settings.xml file has the path to the remote catalog.

Step 2: Add the Remote Archetype Descriptor File

To use the remote archetype descriptor, add it in Eclipse.

1. Open Eclipse.

2. Go to Window > Preferences > Maven > Archetypes

3. Select Add Remote Catalog.

The Remote Archetype Catalog dialog box opens.

4. Specify the location of the archetype-catalog.xnl file.

The following image shows the Remote Archetype Catalog dialog box:

Errors/Warnings
Installations
Java EE Integration
Lifecycle Mappings
Templates
User Interface
User Settings
Mylyn
Plug-in Development
Remote Systems
Run/Debug
Server

v v v T v

rﬂ Preferences l =l = |} = 0
type filter text Archetypes =R T v
> General ol Add, remowve or edit Maven Archetype catalogs:
> Ant
> Data Management Nexus Indexer Add Local Cataleg...
> Help Internal
> Install/Update Default Local
> Java Ealit -
> lava EE @ Remote Archetype Catalog ﬁ
- lava Persistence
> JavaScript Remote Archetype Catalog
a Maven =
Archetypes
Discovery

Catalog File: http://infamvn:8081/ nexus/content/groups/UM.Linw64//archetype-catalog «

Description:

Cancel

]

Apply

@

Cancel]

.

5. Click OK, Apply, and OK to add the catalog.

Create an Entity Based on an Archetype in a Remote Catalog

49

Step 3: Create a Maven Project

Create a Maven project to use the archetypes.

1. InEclipse, click File and select New > Maven Project.

The Select project name and location page of the New Maven Project wizard appears.

The following image shows the New Maven Project wizard:

-
E MNew Maven Project

New Maven project

Select project name and location

[7] Create a simple project (skip archetype selection)

Use default Workspace location

[T Add project(s) to working set

» Advanced

@ < Back Next > Fneh

Browse...

More...

Cancel

.

Note: Do not select Create a simple project (skip archetype selection).
2. Click Next.

The Select an Archetype page appears.

Select the remote catalog from the list.
4. Filter the archetypes using keyword vds.

Select the archetype from the list.

The following image shows the archetype catalog selection:

50 Chapter 3: Custom Entities from Maven Archetypes

@ New Maven Project

New Maven project
Select an Archetype

Catalog: | Remote http://infamvn:8081 /nexus/content/groups/UM.Linux.64/archetype-catalog.xml v”Conﬁgure...]

Filter:
GroupId Artifact Id Version ol
coem.googlecode jannocessor jannocessor-sample-archetype 068 E‘
com.informatica. messaging.vds.archetype vds-template-source-archetype 2.2.0 3
coem.informatica.messaging.vds.archetype vds-temnplate-target-archetype 220
cem.informatica. messaging.vds.archetype vds-template-transform-archetype 2.2.0
com.informatica products.adminconsole.archetype infa-ac-archetype-dis-sub-service 1203
com.informatica.products.adminconsole.archetype infa-ac-archetype-jsf-service 1203
com.informatica products.adminconsole.archetype infa-ac-archetype-webapp-service 1203 -

Show the last version of Archetype only

http:/finfamvn:8081/nexus/content/groups/UM.Linux.64

[T1nclude snapshot archetypes

Add Archetype...

b Advanced
? <Back | Net> | Finish
6. Click Next.

The Specify Archetype parameters page appears.

7. Enter the following values:

Field Value
Group Id Group ID that identifies the project.
Example: com.mycompany.vds.sources
Artifact Id | Name of the jar file without the version.
Example: sample-vds-source
Version Version number of the artifact.
Example: 1.0
Package Name of Java package under which the source service, target service, and transformation classes
are created.
Example: com.mycompany.vds.sources

Create an Entity Based on an Archetype in a Remote Catalog

51

52

The following image shows the Archetype parameters:

E Mew Maven Project

New Maven project
Specify Archetype parameters

GroupId: com.mycompany.vds.sources -
Artifact Id: sample-vds-source -
Version: 1.0 -
5T T R C oM. my company . vds.sources -
Properties available from archetype:

Mame Value Add..

Remove

b Advanced

@ <Back | Mec> [Fnish |[Cancel

Chapter 3: Custom Entities from Maven Archetypes

8. Click Finish.
To view the progress of the background operations, click Progress view.
The sample-vds-source project is created under your current workspace.

The following image shows the sample project:

[\r_h, Project Explorer I3 =]

a 2 sample-vds-source
4 (B src¢/main/java
4 8 com.mycompany.vds.sources
» [J) SampleSourcejava
4 [src/test/java
4 8 com.mycompany.vds.sources
. [J] SampleSourceTestjava
» B4 Maven Dependencies
» B JRE System Library [JavaSE-1.7]
4 = src
= main
4 [resources
\X| vdsplugin.xml
b (= test
= target
|X| assembly.xml
i pomuaxml

&
a

4

0

i

Step 6: Install the Maven Project

After you create the Maven project, install the project to create the custom plug-in.

Before you install the Maven project, remove files generated in the project directory when you created a
project previously by running the Maven Clean command. In the Project Explorer, right click the project.

Select Run As > Maven clean

1. Select the project in the project explorer.

Create an Entity Based on an Archetype in a Remote Catalog

53

2. Right-click and select Run As > Maven install

The following image shows the Maven install command:

B et o T=lolas
Fie Edt Neoge Sewch Project Pum Window Help

- By - SRRSO AV GO MO ST T S Queck deccess || 50 | [Ima)

Preject Explenes .| ¥ o o I

o T sample-vdiesource

o 8 ssmainviave An ouline s et svadable.
4 i commycompany s sources
7 SamgleSouce s
+ @ serenion
S MNew '
N Sowh Aok
mE Open n
cw Opemwen B
‘ Copy Qe
Copy Cuskified Name
G pae ey
eu
K Odete Datete s 4 B-D- =
(] 2 | Mo - Tt Joles 1o diiplay ottt beme
st Pt ,
Move.
Faname.]
in lmpon
Ly Bpon.
£ Refren L]
Vabdate
Show im Famate Systerms view
Profile &5 ,
Dabug As

R s B

1 Mrven buid A ShtteX, M
2Maven bus.
3Maven dean

Team
Replace With '
Maven
A Took f
Compare With v EMaven e
Source ,

~
Vi
-
-

A Maven generstesources

Ruum Confrguration.

= e e [

The following image shows the target directory after the Maven command has run successfully:

54 Chapter 3: Custom Entities from Maven Archetypes

[Project Explorer 52 Clhaa & == 0O

M|

4 = sample-vds-source

a [src/main/java
a4 f} com.mycompany.vds.sources
» [J] SampleSource.java
4 [sroftest/java
4 f} com.mycompany.vds.sources
» [J] SampleSourceTestjava
- B, Maven Dependencies
I- = JRE Systern Library [JavaSE-1.7]
4 [src
= main
4 = resources
|%] vdspluginxml
2 [test

4 (= target
(= archive-tmp
4 [maven-archiver
[E pom.properties
4 [surefire-reports
[E com.mycompany.vds.sources.SampleSourceTest bt
Jul TEST-com.mycompany.vds.sources.SampleSourceTestaml
|i&] sample-vds-source-ML-SNAPSHOT-shaded jar
|i&/] sample-vds-source-ML-5MAPSHOT jar
E samnple-vds-source-ML-SMNAPSHOT zip

|%| assembly.zml
| pem.xml

Create an Entity Based on an Archetype in a Remote Catalog 55

CHAPTER 4

REST APIs

This chapter includes the following topics:

o REST APIs Overview, 56

e Header and Body Configuration, 57
e REST API Guidelines, 59

REST APIs Overview

The REST API is a Representational State Transfer (REST) API.
The VDS REST API allows you to use API calls to perform the following tasks in VDS:

e Create, update, retrieve, delete, deploy, and undeploy specific and all data flows.

e Create, update, retrieve, delete, deploy, and undeploy source services and target services.
e Create, update, retrieve, and delete connections and links.

o Create, update, retrieve, and delete aggregators and transformations.

e Create, update, retrieve, and delete VDS Nodes and node groups.

e Create, update, retrieve, and delete parameters.

e Retrieve plug-ins.

You can access the REST APIs through the following base URL:

http://<hostname>:<port>/administrator/api

where, hostname is the machine name on which the Administrator tool is running and port is the port on
which it listens.

When you use the REST API to configure a request, use the appropriate resource, method, the applicable date
and time values, object ID, along with the applicable headers. Use the applicable format for the request
header and body component. VDS supports the JSON formats for passing the attributes. VDS performs the
requested task and returns the http response, or returns an error object and related messages.

For more information on the request and response format for specific VDS resources, see the sample JSON
requests and responses.

56

Header and Body Configuration

A REST operation combines an HTTP method with the full URL to the resource. For a complete request,

combine the REST operation with the HTTP headers and required data. A REST request has a header and a
body component. You can use the JSON format to define a request.

Request Header

Use a request header to define the operating parameters or the metadata of the REST operation. The header

consists of a series of field-value pairs. The API request line contains the method and the URL. Specify the

header fields after the request line.

To construct a REST API request header, use the following format:

<METHOD> <Server URL>/api/<URI>
Content-Type: application/json
Accept: application/json

Cookie: $Version=1; JSESSIONID=<Valid_session_ID>

The following table includes the request components:

most
resources

Request Required/ Description

Component Optional

METHOD Required Method you want to use, such as GET, POST, PUT, or DELETE.

Server URL Required Base URL for all resources, which include the hostname and port.

URI Required for The resource URI. The format of a resource URI is one of the following:

<BASE URL>/dataflows. Use this URI to access dataflows,source services,
target services,connections, aggregator, links, and transformations.

- <BASE URL>/nodes. Use this URI to access nodes.

- <BASE_URI>/nodegroups. Use this URI to access node groups.

- <BASE_URI>/parameters. Use this URI to access parameters.

The Base URL is http://<hostname>:<port>/administrator/api

The following table includes the request headers:

Header Required/ Description
Optional

Content- Required for Format of the request. Use the following option:

Type POST requests - application/json. Reads request as JSON.

Accept Optional Request format that you want. Use the following option:
- application/json. Sends response as JSON.

Cookie Required Sets the valid session ID as a cookie while a client makes a REST call to any of the
resources of VDS. Make the /dtlogin REST call to obtain the session ID. The
session ID is set as the JSESSIONID cookie.

Request Body

Use the request body to pass additional attributes for the resource. When you pass attributes in a request
body, you pass the attributes as part of an object. You can use the JSON format to pass the attributes.

Header and Body Configuration 57

Return Lists

When the REST API returns a series of objects in JSON, it encloses the list in square brackets.

{
"total": <total number of items>,
"count": <items fetched in this call>,
"items": [
{
"id": "<ID of the object>",
"name": "<name of the object>",
"self": {
"relll: "self",
"href": "URI of the object"
I

"actions": [
{
"rel": "<action>",
"href": "<URI for the action>",

"type": "http method"

I

"description": "object DESCRIPTION"

REST API Responses

The following table describes the responses to REST API requests:

REST API Successful Response Failure Response

Request

GET Returns the requested object, along with the response code 200. | HTTP 404 or 500 error.

POST Returns the requested object that you created, with a response HTTP 400, 404, or 500 error.
code 201.

Error Object

When the REST API encounters an error, it returns HTTP 400, 404, or 500 error.

For example, an error object might have the following structure:

{

"errors":

[

"errorType": "NON RECOVERABLE",
"code": "400 Bad Request",

"messageId": "from-below-list",
"parameters": ["zero-or-more-depending-on-messageId"],
"errorMessage": "from-below-list"

58 Chapter 4: REST APIs

REST API Guidelines

Use the following guidelines when working with VDS REST APIs:
e Use the JSON format to construct a request.

o Specify the format of the request and response in the header. Use the Content-Type attribute to specify
the request format and the Accept attribute to specify the response format.

e Use a placeholder for the JSESSIONID in request headers for all resources. Replace the placeholder with
the JSESSIONID data returned when you log in to a session.

e For all resources, use a placeholder for the base URL. Replace the placeholder with the Server URL data
returned by the login resource.

e All resources and attributes are case sensitive.

e Use the type attribute to define an object in JSON.

REST API Guidelines 59

CHAPTER 5

HTTP Request and Response
Parameters

This chapter includes the following topic:

e HTTP Request and Response Parameters Overview, 60

HTTP Request and Response Parameters Overview

The VDS REST API supports requests and responses in JSON.

Common Request and Response Parameters

The following table describes the common HTTP request and response parameters of the REST calls:

Parameters Description

id Unique identifier of the object.
name The name of the object

valid The current status of the object.
self URI reference of the object.
description Description of the object

type The object type.

lastModifiedDate | The timestamp when the object was last modified.

createDate The timestamp when the object was created.
createdBy The user who created the object.
deployable Specifies whether the object can be deployed.

deploymentState | The current state of the object, for example, DEPLOYED, NEEDS_DEPLOYMENT, or DRAFT state.

60

Parameters Description

force Force saves an invalid rule or template. If you set the value to true, if the rule or template
compilation fails, that rule or template is force saved as an invalid rule or template.

connection A link to the connection that is referred by the source or target.

Data Flow Parameters

The following table describes the parameters you can use for data flows in the request:

Parameters | Description
name Name of the data flow.
forceClean Indicates whether to force clean all data flow configuration from ZooKeeper, for example true or false.

Source Service Parameters

The following table describes the common HTTP request parameters for a source services:

Parameters | Description

name Name of the source service.

pluginid Identifier of the source service plug-in. For example, _"VDS_SRC_FLAT_FILE, _-VDS_SRC_HTTP,
_VDS_SRC_JMS, _VDS_SRC_MQTT, _VDS_SRC_STATIC_FILE, _VDS_SRC_SYSLOG_TCP,
_VDS_SRC_SYSLOG_UDP, _VDS_SRC_SYSLOG_UDS, _VDS_SRC_TCP, _VDS_SRC_UDP, _VDS_SRC_UDS,
_VDS_SRC_SYSLOG_TCP, _VDS_SRC_SYSLOG_UDP, _VDS_SRC_UM, or _VDS_SRC_WS.

config Configuration for the source service.

stats Statistics for the source service.

File Source Service

The following table describes the HTTP request parameters for a File source service:

Parameters

Description

directory

Full path to the directory that contains the source files.

fileNameRegex

Exact file name or Java regular expression that matches the active source file name.

isRegexFileName Indicates that the file name is a regular expression

moveCompletedFilesTo | Location to where the files should be moved after they are processed.

delimiter

End-of-line character sequence that marks the end of a line in the source file. For example,
LF, CRLF, or CUSTOM. Default is LF.

HTTP Request and Response Parameters Overview 61

62

Parameters

Description

customDelimiter

Custom character sequence that you want to specify as delimiter for the file source
services.

eventSize

Maximum length of data that the source service can read at a time, in bytes. Default is
8192. Minimum is 1.

Static File Source Service

The following table describes the HTTP request parameters for a Static File source service:

Parameters

Description

directory

Full path to the directory that contains the source files.

fileNameRegex

Exact file name or Java regular expression that matches the active source file name.

isRegexFileName

Indicates that the file name is a regular expression

noOfThreads

The number of threads used to process the files in parallel. Default is 5. Minimum is 1.

coolingTime

The time in seconds from file modification after which the file should be processed. Specify
a waiting time that is greater than the time taken by the application to write to the active
file. Default is 5.

moveCompletedFilesTo

Location to where the files should be moved after they are processed.

delimiter

End-of-line character sequence that marks the end of a line in the source file. For example,
LF, CRLF, or CUSTOM. Default is LF.

customDelimiter

Custom character sequence that you want to specify as delimiter for the file source service.

eventSize

Maximum length of data that the source service can read at a time, in bytes. Default value is
8192. Minimum value is 1.

HTTP Source Service

The following table describes the HTTP request parameters for a HTTP or HTTPS source service:

Parameters

Description

connectionType

Connection type. For example, HTTP or HTTPS.

httpPostPath Path of the HTTP POST requests that you want the HTTP service to receive.

httpsPostPath Path of the HTTPS POST requests that you want the HTTP service to receive.

keystorePath Directory that contains the keystore file. Specify the absolute path to file if you select the
HTTPS connection type.

keystorePassword Password for the keystore file. Specify the password if you select the HTTPS connection type.

isPartialPath

Indicate that the path is a prefix.

Chapter 5:

HTTP Request and Response Parameters

Parameters Description

healthCheckUrl Path to which an HTTP GET request is sent to verify if the server is running.

port Port on which to listen for incoming connections.

idleTimeout Time after which the connection is closed when there is no incoming data. Specify a value of 0
to disable timeout.

syncOption Type of synchronous response. For example, NO_SYNC_RESPONSE,

TARGET_ACK_BASED_SYNC_RESPONSE, or HTTP_RESPONSE_BASED_SYNC_RESPONSE.
Default is NO_SYNC_RESPONSE.

responseExpiryTime | Time in milliseconds for which the source waits for a POST at the response URL.

eventSize

Maximum length of data that the source service can read at a time, in bytes. Default value is
8192. Minimum value is 1.

JMS Source Service

The following table describes the HTTP request parameters for a Syslog TCP source service:

Parameters | Description

ctxFactory The JMS provider specific initial JNDI context factory implementation for connecting to the JNDI
service. This value is a fully qualified class name of the Initial Context Factory. Add the JMS Client jar
files to the VDS server.

connFactory | The name of the object in the JNDI server that enables the JMS Client to create JMS connections.

providerURL | The location and port of the JMS provider on which to connect.

username User name to the connection factory.

password The password of the user account that you use to connect to the connection factory.

destType The type of destination on which the source service receives JMS messages. For example, TOPIC or
QUEUE. Default is TOPIC.

dSubName Durable subscriptions can receive messages sent while the subscribers are not active. Durable
subscriptions provide the flexibility and reliability of queues, but still allow clients to send messages to
many recipients. Specify the subscription name if the destination type is TOPIC.

destname Name of the queue or topic on the JMS Provider as defined in the JMS Connection Factory created by
the JMS Administrator. The source service receives JMS messages from this queue or topic.

msgType Type of source. For example, BYTE, TEXT, or MAP.

ackMode Acknowledgment mode for non-transacted sessions.
You can select one of the following acknowledgment modes:
- Auto. The session automatically acknowledges a message when a client receives it.
- Client. A client acknowledges a message by calling the message's acknowledge method.
Specify AUTO_ACK or CLIENT_ACK. Default is AUTO_ACK

HTTP Request and Response Parameters Overview 63

64

Parameters | Description

clientld Client identifier to identify the connection and set up a durable connections. To ensure that a publish-
subscribe application receives all published messages, use PERSISTENT delivery mode for the
publishers. In addition, use durable subscriptions for the subscribers.

selector Criteria for filtering message header or message properties, to limit which JMS messages the source
service receives.

eventSize Maximum length of data that the source service can read at a time, in bytes. Default value is 8192.
Minimum value is 1.

MQTT Source Service Type

The following table describes the HTTP request parameters for an MQTT source service:

Parameters Description

url URL of the MQTT broker or server to which to connect to receive messages. The URL is of the
form tcp://<IP_address>:<port>

mqttTopics Names of the topics to which to subscribe. The MQTT source service supports the topic
wildcards that the MQTT specification describes. Specify a comma-separated list of topic
names.

clientld Unique identifier that identifies the connection between the MQTT source service and MQTT

broker, and the file-based persistence store that the MQTT source service uses to store
messages when they are being processed.

maxEnqueuedMsg | Maximum number of messages that can be stored in the persistence store.

maxMsgPerBatch | Maximum number of messages that are sent by the persistence store in a batch, to a target

service.

retryCount

Number of times that the MQTT source service tries to add messages to the internal queue if the
internal queue is full.

retrylnterval

The time in milliseconds between retries.

eventSize Maximum length of data that the source service can read at a time, in bytes. Default value is
8192. Minimum value is 1.
Syslog TCP Source Service

The following table describes the HTTP request parameters for a Syslog TCP source service:

Parameters | Description
portTCP TCP port that the source application uses to connect to the Syslog TCP source service.
delimiter Line feed character sequence that marks the end of a message in the TCP data stream.
eventSize Maximum length of data that the source service can read at a time, in bytes. Default value is 8192.
Minimum value is 1.
Chapter 5: HTTP Request and Response Parameters

Syslog UDP Source Service

The following table describes the HTTP request parameters for a Syslog UDP source service:

Parameters | Description

portUDP UDP port that the source application uses to connect to the Syslog UDP source service.

eventSize Maximum length of data that the source service can read at a time, in bytes. Default value is 8192.
Minimum value is 1.

Syslog UDS Source Service

The following table describes the HTTP request parameters for a Syslog UDS source service:

Parameters | Description

sockAddress | The socket address that the source writes to. The Syslog UDS source service should have write access
to the folder that contains the socket file. The socket file is used for communication between the
Syslog client and server. For example, /dev/log

eventSize Maximum length of data that the source service can read at a time, in bytes. Default value is 8192.
Minimum value is 1.

TCP Source Service

The following table describes the HTTP request parameters for a TCP source service:

Parameters Description

portTCP TCP port that the source application uses to connect to the Syslog TCP source service.
delimiter Line feed character sequence that marks the end of a message in the TCP data stream.
msgLen Length of each record that is read, in bytes. Specify the length when the source data stream

consists of records of a fixed length. The maximum value is 51200.

customDelimiter | Custom character sequence that you want to specify as delimiter for the file source services.

eventSize Maximum length of data that the source service can read at a time, in bytes. Default value is 8192.
Minimum value is 1.

UDP Source Service

The following table describes the HTTP request parameters for a UDP source service:

Parameters | Description

portUDP UDP port that the source application uses to connect to the Syslog UDP source service.

eventSize Maximum length of data that the source service can read at a time, in bytes. Default value is 8192.
Minimum value is 1.

HTTP Request and Response Parameters Overview 65

66

Ultra Messaging Source Service

The following table describes the HTTP request parameters for an Ultra Messaging source service:

Parameter

Description

UMRcv_TopicName

Topic on which the UM sending application publishes messages.

UMRcv_XMLConfig

UM configurations in XML format that the service uses.

UMRcv_AppName

UM sending application name that the source service uses to get the configuration.

ctxName Context name that the source service uses to get the configuration. If you do not specify a
name, the source service gets the configuration from a context with no name.
eventSize Maximum length of data that the source service can read at a time, in bytes. Default value is

8192. Minimum value is 1.

WebSocket Source Service

The following table describes the HTTP request parameters for a WebSocket source service:

Parameters

Description

connectionType

Connection type. For example, WS or WSS.

websocketPath Path of the WebSocket requests that you want the source service to receive.

websocketSecurePath | Path of the WebSocket secure requests that you want the source service to receive.

keystorePath Directory that contains the keystore file. Specify the absolute path to file if you select the
HTTPS connection type.

keystorePassword Password for the keystore file. Specify the password if you select the WSS connection type.

isPartialPath

Indicate that the path is a prefix.

healthCheckUrl Path to which an HTTP GET request is sent to verify if the server is running.

port Port on which to listen for incoming connections.

idleTimeout Time after which the connection is closed when there is no incoming data. Specify a value of
0 to disable timeout.

eventSize Maximum length of data that the source service can read at a time, in bytes. Default value is

8192. Minimum value is 1.

Chapter 5: HTTP Request and Response Parameters

Target Service Parameters

The following table describe the common HTTP request parameters for target services:

Parameters | Description

name Name of the target service.

pluginid Identifier of the target service plug-in. For example, _-VDS_TGT_CASSANDRA, _VDS_TGT_FILE,
_VDS_TGT_HDFS, _VDS_TGT_HTTP, _VDS_TGT_JMS, _VDS_TGT_KAFKA, _VDS_TGT_KINESIS,
_VDS_TGT_WS, _VDS_TGT_UM, _VDS_TGT_CEP, or _VDS_TGT_PC

config Configuration for the target service.

stats Statistics for the target service.

Cassandra Target Service

The following table describes the HTTP request parameters for a Cassandra target service:

Parameters Description

contactpoints URI of the Cassandra database. Use the following URI format: <hostname(s)>:<port>
keyspace Keyspace to use when writing to the database.

tablename Table name to use when writing to the database.

username User name of the Cassandra database.

password The password of the user account that you use to connect to the Cassandra keyspace.

File Target Service

The following table describes the HTTP request parameters for a File target service:

Parameters Description
path Full path to the directory that contains the target files.
fileName Name of the target file. The following special characters are not allowed:

*:2"<>|/\

Maximum length is 200 characters.

appendTimestamp | Indicate whether the timestamp must be appended to the file name.

dateFormat Date and time format to append to the rollover file name. The following special characters are
not allowed:

*:2"<>|/\

For example, the following date string represents 3:00 pm on December 07, 2014 if you specify
the format as <yyyy>-<MM>-<dd>-<HH>-<mm>-<ss>:

2014-12-07-15-00-00

HTTP Request and Response Parameters Overview 67

68

Parameters

Description

rolloverSize Target file size, in megabytes (MB), at which to trigger rollover. A value of zero (0) means that
the target service does not roll the file over based on size. Default is 10.

rolloverTime Length of time, in hours, to keep a target file active. After the time period has elapsed, the target
service rolls the file over. A value of zero (0) means that the target service does not roll the file
over based on time. Default is 0.

bufferSize The size of the output stream buffer.

receiveldleEvents

Indicate whether the target service should flush the data to the file system if the size of the data
is less than the buffer size.

idleEventTimeOut

Time in seconds after which the target service flushes the data to the file system.

HDFS Target Service

The following table describes the HTTP request parameters for an HDFS target service:

Parameters

Description

destination

URI of the target file to which the target service writes data.

The HDFS target service type supports the following URI formats:

HDFS URI format. For example, hdfs://<namenode-name>[:<port>]/<path>/<file-name>
MapR URI format. For example, maprfs:///<path>/<file-name>

securityModeList

Indicates if HDFS has Kerberos authentication enabled. For example, NON_SECURE, SECURE.
Default is NON_SECURE.

userPrincipal

User principal to log in to the HDFS super user account. Specify a user principal in the following
format:

user@DOMAIN.COM

keytabPath Location of the keytab files that HDFS uses. Specify this when the security mode is SECURE.

dateFormat The time stamp that is appended to the name of the file written to the target. Specify this when
the security mode is SECURE.

rolloverSize Target file size, in gigabytes (GB), at which to trigger rollover. Default is 1.

rolloverTime Length of time, in hours, to keep a target file active. After the time period has elapsed, the target
service rolls the file over. A value of zero (0) means that the HDFS target service does not roll the
file over based on time. Default is 0.

sync Flush the client's buffer to the disk device once every second. If you enable forceful

synchronization, the data written by the target service is visible to other readers immediately.

receiveldleEvents

Indicate whether the target service should flush the data to the file system if the size of the data
is less than the buffer size.

idleEventTimeOut

Time in seconds after which the target service flushes the data to the file system.

Chapter 5:

HTTP Request and Response Parameters

HTTP Target Service

The following table describes the HTTP request parameters for an HTTP target service:

Parameters

Description

connectionType

Connection type. For example, HTTP, HTTPS_ALLOW_ALL_CERTIFICATES, or
HTTPS_ALLOW_CERTS_IN_TRUSTSTORE. Default is HTTP

targetUrl

URL of the HTTP server. Specify this URL when the connection type is HTTP. Enter the path
in the following format:

http://<server>:<port>/myapp/path

targetUrlHttpsTrustall

URL of the HTTP server. Specify this URL when the connection type is
HTTPS_ALLOW_ALL_CERTIFICATES. Enter the path in the following format:

http://<server>:<port>/myapp/path

targetUrlHttpsTruststore

URL of the HTTP server. Specify this URL when the connection type is
HTTPS_ALLOW_CERTS_IN_TRUSTSTORE. Enter the path in the following format:

http://<server>:<port>/myapp/path

trustStorePath Path and file name of the Java truststore file. Specify the path if connection type is
HTTPS_ALLOW_CERTS_IN_TRUSTSTORE.
trustStorePassword Password for the truststore file. Specify the password if connection type is
HTTPS_ALLOW_CERTS_IN_TRUSTSTORE.
JMS Target Service

The following table describes the HTTP request parameters for a JMS target service:

Parameters | Description

ctxFactory The JMS provider specific initial JNDI context factory implementation for connecting to the JNDI

service. This value is a fully qualified class name of the Initial Context Factory. Add the JMS Client jar
files to the VDS server.

connFactory | The name of the object in the JNDI server that enables the JMS Client to create JMS connections.

providerURL | The location and port of the JMS provider on which to connect.

username User name to the connection factory.

password The password of the user account that you use to connect to the connection factory.

Kafka Target Service

The following table describes the HTTP request parameters for a JMS target service:

Parameters Description
kafkaDestination The IP address and port combination of the Kafka messaging system broker.
topic Topic on which the Kafka target service sends messages.

HTTP Request and Response Parameters Overview 69

70

Kinesis Target Service

The following table describes the HTTP request parameters for a Kinesis target service:

Parameters Description

accessKey Access key ID that the AWS IAM service generates when you create a user.
secretKey Secret access key that the AWS IAM service generates when you create a user.
streamName Name of the Kinesis stream to which to write data.

parallelRequests

Number of threads in the thread pool. Default is 5.

queueLength

Length of the queue that the target service uses. Default is 10000.

partitionKeyName

Name of the partition key in the message header. For example, IP_ADDRESS,
CUSTOM_PARTITION_KEY, or DYNAMIC_PARTITION_KEY. Default is
DYNAMIC_PARTITION_KEY.

userDefinedPartitionKey

Name of the custom message header to use as the partition key. Specify this if you use a
custom IP address message header as the partition key.

WebSocket Target Service

The following table describes the HTTP request parameters for a WebSocket target service:

Parameters

Description

connectionType

Connection type. For example, WS, WSS_ALLOW_ALL_CERTIFICATES, or
WSS_ALLOW_CERTS_IN_TRUSTSTORE. Default is WS.

targetUrl

URL of the WebSocket server. Specify the URL if the connection type is WS. Enter the path in
the following format:

ws://<server>:<port>/myapp/path

targetUrlWssTrustall

URL of the WebSocket server. Specify the URL if the connection type is
WSS_ALLOW_ALL_CERTIFICATES. Enter the path in the following format:

wss://<server>:<port>/myapp/path

targetUrlWssTruststore

URL of the WebSocket server. Specify the URL if the connection type is
WSS_ALLOW_CERTS_IN_TRUSTSTORE. Enter the path in the following format:

wss://<server>:<port>/myapp/path

trustStorePath Path and file name of the Java truststore file. Specify the path and name if the connection
type is WSS_ALLOW_CERTS_IN_TRUSTSTORE.
trustStorePassword Password for the truststore file. Specify the password if the connection type is

WSS_ALLOW_CERTS_IN_TRUSTSTORE.

Chapter 5: HTTP Request and Response Parameters

Transformation Parameters

The following table describes the common HTTP request parameters for transformations and marshallers:

Parameters | Description

name Name of the transformation.

pluginid Identifier of the transformation. For example, _-VDS_TRX_COMPRESS, _VDS_TRX_DECOMPRESS,
_VDS_TRX_INSERT_STR, _VDS_TRX_JS, _VDS_TRX_REGEX, or _VDS_TRX_UDPARSER.

runMode Indicates whether the transformation runs on the previous entity or the next entity in the data flow. You
can specify one the following modes:
- WITH_PREVIOUS
- WITH_NEXT

config Configuration for the transformation.

stats Statistics for the transformation.

Compress Data Transformation

The following table describes the HTTP request parameters for a Compress Data transformation:

Parameters

Description

compressionTechniqueldx | Compression technique that the transformation type uses to compress data. For

example, 0, 1, or 2. Default is 0.

Insert String Transformation

The following table describes the HTTP request parameters for a Insert String transformation:

Parameters

Description

stringExpression Token expression that describes how to transform each record.

JavaScript Transformation

The following table describes the HTTP request parameters for a JavaScript transformation:

Parameters

Description

is

JavaScript transformation program to transform records and insert delimiters. The program must
include the filter function that applies the transformations. Maximum length is 4000 characters.

HTTP Request and Response Parameters Overview

71

Regex Filter Transformation

The following table describes the HTTP request parameters for a Regex Filter transformation:

Parameters | Description

regex Java regular expression to apply to the line of text. For example, you can use the following regular
expression:

AR\[R\]*$

Unstructured Data Parser Transformation

The following table describes the HTTP request parameters for an Unstructured Data Parser transformation:

Parameters | Description

inputPattern | Pattern that describes how to parse the data. The format must match the pattern defined in the Grok
pattern file or the regular expression you specify in Custom Regex.

userRegexes | Regular expression that applies to any part of the input that is not defined in the input pattern.

Aggregator Parameters

The following table describes the parameters in the HTTP request and response content for aggregators:

Parameters Description

name Name of the aggregator.

pluginid Identifier of the aggregator plug-in. Specify _-VDS_AGGREGATOR
config Configuration for the aggregator.

eventQueueSize | Maximum number of events that the aggregator stores in an in-memory queue until the events are
consumed by the target.

stats Statistics for the aggregator.

Connection Parameters

The following table describes the parameters in the HTTP request and response content for connections:

Parameters Description
name Name of the connection.
type Type of entity. For example, "VDS_UM_TRANSPORT or _VDS_WS_TRANSPORT.

72 Chapter 5: HTTP Request and Response Parameters

Ultra Messaging Transport

The following table describes the parameters in the HTTP request content for the Ultra Messaging transport:

Parameters Description
resolution Type of connection. Specify unicast or multicast topic resolution type.
umMode Mode in which the source service distributes data to the target service. For example, ULB,

UMS, or, UMP.

umConnectionType

Indicates if the connection is secure or nonsecure.

certificate

Certificate file name. Provide the file name if the connection is secure.

certificateKey

Key file name. Provide the file name if the connection is secure.

certificateKeyPassword

Password to the key file. Provide the password if the connection is secure.

trustedCertificates

Truststore file name. Provide the file name if the connection is secure.

daemon Address of the topic resolution daemon. Provide the daemon address if the topic resolution
is unicast.
address Multicast address that you want to use. Provide the address if the topic resolution is

multicast.

resolverPort

The unicast or multicast UDP port.

requestTcpPort The port on which to listen for responses from requests.

transportTcpPort The preferred TCP port for the topic that the UM application publishes on.

umConfig The UM configuration that the data connection uses.
WebSocket Transport
The following table describes the parameters in the HTTP request and response content for the WebSocket
transport:

Parameters Description

messagingMode

Mode in which the source service distributes data to the target service. For example,
ACKNOWLEDGEMENT or STREAMING

wsConnectionType

Indicates if the connection is secure or nonsecure. For example, WS (for WebSocket), or WSS
(for WebSocket Secure). Default is WS.

keystorePath Keystore file name. Provide the file name if the connection is secure.
keystorePassword Password to the keystore file name. Provide the file name if the connection is secure.
truststorePath Truststore file name. Provide the password if the connection is secure.
truststorePassword | Password to the truststore file name. Provide the file name if the connection is secure.

HTTP Request and Response Parameters Overview 73

Parameters Description
port Port on which the target service listens for incoming connections.
healthCheckUrl Path to which an HTTP GET request is sent to verify if the server is running.

Link Parameters

The following table describes the parameters in the HTTP request and response content for links:

Parameters Description
fromld Identifier of the entity which you are linking from.
tolds Identifier or entities to which you are linking to. If there is only one entity, the link is a point-to-point

link. If there are many entities, the link is a publish-subscribe link.

connectionID

Identifier of the connection.

transportTopic

Topic name of the transport on which the source service publishes data. This topic is known as well-
known topic.

topiclds

List of topic identifiers.

reponselds

List of response identifiers.

Node Group Parameters

The following table describes the HTTP request parameters for a node group:

Attributes Description

name Name of the node group.

type Type of node group. For example, DYNAMIC or STATIC.
pattern Regular expression pattern for the dynamic node group.
nodes List of node identifiers associated with the node group.

Node Parameters

The following table describes the parameters in the HTTP request content for node groups:

Parameters Description
name Name of the node.
nodeGroups List of node group identifiers associated with the node if the node group is static.

74 Chapter 5: HTTP Request and Response Parameters

VDS Parameter Parameters

The following table describes the parameters you can use for VDS parameters in the request:

Parameters Description

key Name of the parameter.

value Value for the parameter.

secure Indicates if the parameter is secure.

HTTP Request and Response Parameters Overview

75

CHAPTER 6

Sample JSON Requests and
Responses

This chapter includes the following topics:

e Data Flows, 76

e Source Services, 85

e Target Services, 97

e Data Connections, 108
e Links, 116

e Transformations, 121

e Node Groups, 129
e Nodes, 134

e Parameters, 140
e Plug-ins, 146

e Aggregators, 149
e Authentication, 156

Data Flows

You can use API calls to perform various operations with data flows.

Create Data Flows

Use the POST method to create a data flow in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request creates a data flow:
POST /api/dataflows

Content-Type: application/json
Accept: application/json

76

POST Body in JSON Format
{

"name": "Test Dataflow",
"description":"new dataflow"
}

POST Response in JSON Format
The following is a sample response for the 201 Created code:

{
"id": {dataflow-id},
"name": "Test Dataflow",
"description":"new dataflow"
"success": true,
"deploymentState": "DRAFT"

}

The following are sample responses for the 400 Bad Request code:

{
"success": false,
"errors":
[

{
"code": INVALID DATAFLOW NAME,
"parameters": null,
"errorMessage": "Dataflow name not valid.

}

}
{

"success": false,
"errors":
[

{
"code": DATAFLOW NAME ALREADY EXISTS,

"parameters": null,
"errorMessage": "Dataflow name already exists."

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[

{
"code": INTERNAL SERVER ERROR,

"parameters": [{error-message}],
"errorMessage": "Failed to create the dataflow. Exception

}

Retrieve Data Flows

Use the GET method to retrieve data flows in VDS.

GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves a data flow:

GET /api/dataflows/{dataflow-id}

{error-message}"

Data Flows

77

Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following is a sample response for the 200 OK code:

{
"success": true,
"id": {dataflow-id},
"name": "Dataflow 1",
"deploymentState": "DRAFT",
"entities": {
"count": 3,
"total": 3,
"items": [
{
"id": 1,
"name": "TCP",
"type": "SOURCE",
"pluginId": " VDS SRC_TCP",
"deploymentState": "DRAFT"
}I

nidn:. 2 ,

"name": "Ultra Messaging",

"type": "TARGET",

"pluginId": " VDS TGT UM",

"deploymentState": "DRAFT"
b A

"id": 3,

"name " . Ylum" ,

"type": "connection",

"pluginId": " VDS_UM TRANSPORT",

"deploymentState": "DRAFT"

}
The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[

{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}],

"errorMessage": "Dataflow with Id: {dataflow-id}

}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL_SERVER_ERROR,
"parameters": [{error-messagel}],

"errorMessage": "Failed to get dataflow.

}

78 Chapter 6: Sample JSON Requests and Responses

Exception:

not found"

{error-message}"

Retrieve All Data Flows

Use the GET method to retrieve all data flows in VDS.
GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves all data flows:

GET /api/dataflows
Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following is the sample response for the 200 OK code when there are no data flows:

{
"success": true,
"total": O,
"count": 0,
"items": []
}

The following is the sample response for the 200 OK code when there are three data flows:

{

"success": true,

"total": 3,
"count": 3,
"items": [

{ "id": 1, "name": "Dataflow 1", "deploymentState": "DRAFT" },
{ "id": 2, "name": "My second Dataflow", "deploymentState": "DEPLOYED" 1},
{ "id": 3, "name": "DF3", "deploymentState": "NEEDS REDEPLOYMENT" }

}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-messagel}],
"errorMessage": "Failed to get all dataflows. Exception: {error-message}"

}

Update Data flows

Use the POST method to update a data flow in VDS.
POST Request in JSON Format
Generate a POST request. For example, the following POST request updates a data flow:
POST /api/dataflows/{dataflow-id}
Content-Type: application/json
Accept: application/json
x-http-method-override: PUT
POST Body in JSON Format
The following a sample POST body in JSON format:

{
"name": "Test Dataflow Updated",

Data Flows 79

"description":"name updated"
}

PUT Response in JSON Format
The following is a sample response for the 200 OK code:

{
"id" : {dataflow-id}
"name": {updated-dataflow-name}
"description":"name updated",
"success": true,
"deploymentState": "DRAFT"
}

The following is the sample response for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}
}

The following are sample responses for the 400 Bad Request code:

{
"success": false,
"errors":
[

{
"code": INVALID DATAFLOW NAME,
"parameters": null,
"errorMessage": "Dataflow name not valid."

}

success": false,
"errors":
[
{
"code": DATAFLOW NAME ALREADY EXISTS,
"parameters": null,
"errorMessage": "Dataflow name already exists."

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL_SERVER_ERROR,
"parameters": [{error-messagel}],

"errorMessage": "Failed to update dataflow. Exception : {error-message}."

}

80 Chapter 6: Sample JSON Requests and Responses

Deploy Data Flows

Use the POST method to deploy a data flow in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request deploys a data flow:

POST /api/dataflows/{dataflow-id}/deploy

Content-Type: application/json
Accept: application/json

POST Response in JSON Format
The following is a sample response for the 200 OK code:

{
"success": true,
"name" : {dataflow-name},
"id": {dataflow-id},
"deploymentState": "DEPLOYED"
}

The following is the sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[

{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"
}

The following is a sample response for the 400 Bad Request code:

{
"success": false,
"errors":
[
{
"code": NO CONNECTION BETWEEN ENTITIES,
"parameters": null,
"errorMessage": "The deploy action failed because there is no connection
between entities. Connect source and target entities using connection.",
}
]
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],
errorMessage": "Failed to deploy dataflow. Exception : {error-message}."

}

Data Flows

81

Deploy All Data Flows

Use the POST method to deploy all data flows in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request deploys a data flow:

POST /api/dataflows/deployAll

Content-Type: application/json
Accept: application/json

POST Response in JSON Format
The following is a sample response for the 200 OK code:

{

"success": true

}

The following is a sample response for the 500 Internal Server Error code

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}l],

"errorMessage": "Failed to deploy all dataflows.

message}.",
}
]

Undeploy Data Flows

Use the POST method to undeploy a data flow in VDS.
POST Request in JSON Format

Exception:

{error-

Generate a POST request. For example, the following POST request undeploys a data flow:

POST /api/dataflows/{dataflow-id}/undeploy

Content-Type: application/json
Accept: application/json

POST Response in JSON Format
The following is a sample response for the 200 OK code:

{
"name" : {dataflow-name},
"success": true,
"id": {dataflow-id},
"deploymentState": "DRAFT"
}

The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[

{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}],

"errorMessage": "Dataflow with Id: {dataflow-id} not found"

82 Chapter 6: Sample JSON Requests and Responses

}

The following is a sample response for the 500 Internal Server Error code:

{
success": false,
errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],

"errorMessage": "Failed to undeploy dataflow. Exception :

}

Undeploy All Data Flows

Use the POST method to undeploy all data flows in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request deploys a data flow:

POST /api/dataflows/undeployAll

Content-Type: application/json
Accept: application/json

POST body in JSON format
The body can be one of the following:

{
"forceClean": true

}

or

{

"forceClean": false

}
POST Response in JSON Format

The following is a sample response for the 200 OK code:

{

"success": true

}

The following is a sample response for the 500 Internal Server Error code:

{

"success": false,

"errors":
[
{
"code": INTERNAL SERVER ERRCR,,
"parameters": [{error-message}l],
"errorMessage": "Failed to undeploy all dataflows.
message}."

}
]

Exception:

{error-message}."

{error-

Data Flows

83

Delete Data Flows

Use the POST method to delete a data flow in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request deletes a data flow:

POST /api/dataflows/{dataflow-id}

Content-Type: application/json
Accept: application/json
x-http-method-override: DELETE

POST Response in JSON Format
The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors": [

{
"code": DATAFLOW_NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-messagel}],
"errorMessage": "Failed to update dataflow. Exception : {error-message}."

}

Redeploy Data Flows

Use the POST method to redeploy a data flow in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request redeploys a data flow:

POST /api/dataflows/redeploy

Content-Type: application/json
Accept: application/json

POST Response in JSON Format
The following is a sample response for the 200 OK code:

{
"name" : {dataflow-name},
"success": true,
"id": {dataflow-id},
"deploymentState": "DEPLOYED"

84 Chapter 6: Sample JSON Requests and Responses

The following is a sample response for the 404 Not Found code:

{

"success": false,
"errors":
[

{

"code": DATAFLOW NOT FOUND,

"parameters": [{dataflow-id}],

"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}

}
The following is a sample response for the 500 Internal Server Error code:

{

"success": false,
"errors":
[

{
"code": INTERNAL SERVER ERROR,

"parameters": [{error-message}l],
"errorMessage": "Failed to redeploy dataflow. Exception: {error-message}.",

}

Source Services

You can use API calls to perform various operations with source services.

Create Sources
Use the POST method to create a source in VDS.

POST Request in JSON Format
Generate a POST request. For example, the following POST request creates a source:

POST /api/dataflows/{dataflow-id}/sources

Content-Type: application/json
Accept: application/json

POST Body in JSON Format

{
"name":"TestSysLogTCP",

"pluginId":" VDS SRC_SYSLOG TCP",
"config":

{

"portTCP":"7896","delimiter":"LF", "eventSize":"8192", "persistEvents":"false",
"persistOptions":"# --\n# The interval in milliseconds after which the writes
\n# are flushed to disk.\n# --\n#flushInterval=5000\n\n# --\n# The maximum number of db
files to keep\n# --\n#maxDataFiles=10\n\n# --\n# Size of individual db file in bytes
after which the files are rolled over\n# --\n#maxDataFileSize=1073741824\n\n# --\n# The
max size of unsent data in bytes. If 0, it is unbounded\n# --
\n#maxQueueSizeInBytes=0\n\n# --\n# The batch size in bytes up to which the data is
buffered before writing to the disk.\n# --\n#batchSizeInBytes=262144"

}I
"stats":

[
{"name": "Bytes Sent","value": 10001,"type": 101}, {"name": "Events
Sent","value": 10003,"type": 101}, {"name": "Events to be Sent","value": 10006, "type":

Source Services 85

86

101},

{"name": "Events not Delivered","value": 10002,"type": 101}, {"name": "Send
Rate (Per Sec)","value": 10005,"type": 101}, {"name":"Events Dropped","value":1,"type":
103},

{"name":"Concurrent Connections","value":2,"type":103}, {"name":"Maximum
Concurrent Clients","value":3,"type":103}

1

}

POST Response in JSON Format

The following is a sample response for the 201 Created code:

{

"id": {source-entity-id},

"name": "TestSysLogTCP",
"type": "SOURCE",
"self": {

"rel": "Self",

"href": "api/dataflows/{dataflow-id}/sources/{source-entity-id}",
"title": "TestSysLogTCP",
"id": {source-entity-id}

}

’
"dataflow": {

"rel": "dataflow",
"href": "api/dataflows/{dataflow-id}",
"title": "TestDataflow",

"id": {dataflow-id}
}l
"success": true,
"valid": true,
"createDate": "2015-07-06T12:49:47+05:30",
"createdBy": "Administrator",
"predefined": false,
"deployable": true,
"deploymentState": "DRAFT",
"force": false,

"pluginId": " VDS SRC SYSLOG TCP",
"schedulable": false,
"config":

{

"portTCP": "7896",

"delimiter":"0",

"eventSize": "8192",

"persistEvents": "false",

"persistOptions":"# --\n# The interval in milliseconds after which the writes
\n# are flushed to disk.\n# --\n#flushInterval=5000\n\n# --\n# The maximum number of db
files to keep\n# --\n#maxDataFiles=10\n\n# --\n# Size of individual db file in bytes
after which the files are rolled over\n# --\n#maxDataFileSize=1073741824\n\n# --\n# The
max size of unsent data in bytes. If 0, it is unbounded\n# --\nffmaxQueueSizeInBytes=0\n
\n# --\n# The batch size in bytes up to which the data is buffered before writing to the
disk.\n# --\n#batchSizeInBytes=262144"

}I
"stats":
[

{"name": "Bytes Sent","value": 10001,"type": 101}, {"name": "Events
Sent","value": 10003,"type": 101}, {"name": "Events to be Sent","value": 10006, "type":
101},

{"name": "Events not Delivered","value": 10002, "type": 101}, {"name": "Send
Rate (Per Sec)","value": 10005,"type": 101}, {"name":"Events Dropped","value":1,"type":
103},

{"name":"Concurrent Connections","value":2,"type":103}, {"name":"Maximum
Concurrent Clients","value":3,"type":103}

]
}

The following is a sample response for the 404 Not Found code:

{

"success": false,

Chapter 6: Sample JSON Requests and Responses

"errors":
[
{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}
}

The following is a sample response for the 400 Bad Request code:

{
"success": false,
"errors":
[
{
"code": NAME FIELD MISSING,
"parameters": null,
"errorMessage": "'name' field is missing in request"

}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-messagel}],
"errorMessage": "Failed to create source. Exception: {error-message}"

}

Get Source by ID

Use the GET method to retrieve sources based on ID in VDS.

GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves a source based on the ID:

GET /api/dataflows/{dataflow-id}/sources/{source-entity-id}

Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following is a sample response for the 200 OK code:

{
"id": {source-entity-id},
"name": "TestSysLogTCP",
"type": "SOURCE",
"pluginId": " VDS SRC_SYSLOG TCP",
"self": {
"rel": "self",
"href": "api/dataflows/{dataflow-id}/sources/{source-entity-id}",
"title": "TestSysLogTCP",
"id": {source-entity-id}
b
"dataflow": {
"rel": "dataflow",
"href": "api/dataflows/{dataflow-id}",

Source Services

87

"title": "TestDataflow",
"id": {dataflow-id}
}I
"success": true,
"valid": true,
"createDate": "2015-07-06T14:55:48+05:30",
"createdBy": "Administrator",
"predefined": false,
"deployable": true,
"deploymentState": "DRAFT",
"force": false,
"schedulable": false,

"config":
{
"delimiter": "0O",
"eventSize": "8192",
"persistEvents": "false",
"persistOptions": "# --\n# The interval in milliseconds after which the writes

\n# are flushed to disk.\n# --\n#flushInterval=5000\n\n# --\n# The maximum number of db
files to keep\n# --\n#maxDataFiles=10\n\n# --\n# Size of individual db file in bytes
after which the files are rolled over\n# --\n#maxDataFileSize=1073741824\n\n# --\n# The
max size of unsent data in bytes. If 0, it is unbounded\n# --\nfmaxQueueSizeInBytes=0\n
\n# --\n# The batch size in bytes up to which the data is buffered before writing to the
disk.\n# --\n#batchSizeInBytes=262144"
}I
"stats":
[
{"name": "Bytes Sent","value": 10001,"type": 101}, {"name": "Events
Sent","value": 10003,"type": 101}, {"name": "Events to be Sent","value": 10006, "type":

101},

{"name": "Events not Delivered","value": 10002, "type": 101}, {"name": "Send
Rate (Per Sec)","value": 10005,"type": 101}, {"name":"Events Dropped","value":1,"type":
103},

{"name":"Concurrent Connections","value":2,"type":103}, {"name":"Maximum
Concurrent Clients","value":3,"type":103}
]
}

The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}]
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}

"success": false,
"errors":
[
{
"code": SOURCE ENTITY NOT FOUND,
"parameters": [{source-entity-id}],
"errorMessage": "Source entity with Id: {source-entity-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{

88 Chapter 6: Sample JSON Requests and Responses

"code": INTERNAL SERVER ERROR,

"parameters": [{error-messagel}],

"errorMessage": "Failed to get source. Exception: {error-message}"
}

Retrieve All Sources

Use the GET method to retrieve all sources in VDS.
GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves all sources:

GET /api/dataflows/{dataflow-id}/sources
Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following is the sample response for the 200 OK code when there are no sources:

{
"success": true,
"total": 0
"count": 0
"items": [

}
The following is a sample response when there is one source in the data flow:

{

"total": 1,
"count": 1,
"success": true,
"items": [

{
"id": {source-entity-id},
"name": "TestSysLogTCP",
"type": "SOURCE",
"pluginId": " VDS _SRC_SYSLOG TCP",
"self": {
"relll: "self",
"href": "api/dataflows/{dataflow-id}/sources/{source-entity-id}",
"title": "TestSysLogTCP",
"id": {source-entity-id}
}l
"dataflow": {
"rel": "dataflow",
"href": "api/dataflows/{dataflow-id}",
"title": "TestDataflow",
"id": {dataflow-id}
}l
"valid": true,
"createDate": "2015-07-06T14:55:48+05:30",
"createdBy": "Administrator",
"predefined": false,
"deployable": true,
"deploymentState": "DRAFT",
"force": false,
"schedulable": false,

"config":
{
"delimiter": "0",
"eventSize": "8192",
"persistEvents": "false",
"persistOptions": "# --\n# The interval in milliseconds after which the

writes \n# are flushed to disk.\n# --\n#flushInterval=5000\n\n# --\n# The maximum number

Source Services 89

90

of db files to keep\n# --\n#maxDataFiles=10\n\n# --\n# Size of individual db file in
bytes after which the files are rolled over\n# --\n#maxDataFileSize=1073741824\n\n¥ --
\n# The max size of unsent data in bytes. If 0, it is unbounded\n# --
\n#maxQueueSizeInBytes=0\n\n# --\n# The batch size in bytes up to which the data is
buffered before writing to the disk.\n# --\n#batchSizeInBytes=262144"
I
"stats":
[
{"name": "Bytes Sent","value": 10001,"type": 101}, {"name": "Events
Sent","value": 10003, "type": 101}, {"name": "Events to be Sent","value": 10006, "type":
101},
{"name": "Events not Delivered","value": 10002,"type": 101}, {"name":
"Send Rate (Per Sec)","value": 10005,"type": 101}, {"name":"Events Dropped","value":
1,"type":103},
{"name":"Concurrent Connections","value":2,"type":103}, {"name":"Maximum
Concurrent Clients","value":3,"type":103}
1
}

}

The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROCR,
"parameters": [{error-message}l],
"errorMessage": "Failed to get all sources. Exception: {error-message}"

}

Update Source Services
Use the POST method to update a source service in VDS.

POST Request in JSON Format
Generate a POST request. For example, the following POST request updates a source service:
POST /api/dataflows/{dataflow-id}/sources/{source-entity-id}
Content-Type: application/json
Accept: application/json
x-http-method-override: PUT
POST Body in JSON Format
The following a sample POST body in JSON format:
{

"name":"TestSysLogTCPChanged",
"pluginId":" VDS SRC_SYSLOG TCP",

Chapter 6: Sample JSON Requests and Responses

"config":
{
"portTCP":"8989","delimiter":"LF", "eventSize":"8192", "persistEvents":"false",
"persistOptions":"# --\n# The interval in milliseconds after which the writes
\n# are flushed to disk.\n# --\n#flushInterval=5000\n\n# --\n# The maximum number of db
files to keep\n# --\n#maxDataFiles=10\n\n# --\n# Size of individual db file in bytes
after which the files are rolled over\n# --\n#maxDataFileSize=1073741824\n\n# --\n# The
max size of unsent data in bytes. If 0, it is unbounded\n# --
\n#maxQueueSizeInBytes=0\n\n# --\n# The batch size in bytes up to which the data is
buffered before writing to the disk.\n# --\n#batchSizeInBytes=262144"
}l
"stats":
[
{"name": "Bytes Sent","value": 10001,"type": 101}, {"name": "Events
Sent","value": 10003,"type": 101}, {"name": "Events to be Sent","value": 10006, "type":

101},

{"name": "Events not Delivered","value": 10002,"type": 101}, {"name": "Send
Rate (Per Sec)","value": 10005,"type": 101}, {"name":"Events Dropped","value":1,"type":
103},

{"name":"Concurrent Connections","value":2,"type":103}, {"name":"Maximum
Concurrent Clients","value":3,"type":103}
1
}

POST Response in JSON Format
The following is a sample response for the 200 OK code:

{
"id": {source-entity-id},
"name": "TestSysLogTCPChanged",
"type": "SOURCE",
"self": {
"rel": "self",
"href": "api/dataflows/{dataflow-id}/sources/{source-entity-id}",
"title": "TestSysLogTCP",
"id": {source-entity-id}
}l
"dataflow": {
"rel": "dataflow",
"href": "api/dataflows/{dataflow-id}",
"title": "TestDataflow",
"id": {dataflow-id}
b
"success": true,
"valid": true,
"createDate": "2015-07-06T12:49:47+05:30",
"createdBy": "Administrator",
"predefined": false,
"deployable": true,
"deploymentState": "DRAFT",
"force": false,

"pluginId": " VDS SRC SYSLOG TCP",
"schedulable": false,
"config":

{
"OortTCP": "8989",

"delimiter":"Q",
"eventSize": "8192",
"persistEvents": "false",
"persistOptions":"# --\n# The interval in milliseconds after which the writes
\n# are flushed to disk.\n# --\n#flushInterval=5000\n\n# --\n# The maximum number of db
files to keep\n# --\n#maxDataFiles=10\n\n# --\n# Size of individual db file in bytes
after which the files are rolled over\n# --\n#maxDataFileSize=1073741824\n\n# --\n# The
max size of unsent data in bytes. If 0, it is unbounded\n# --\n#maxQueueSizeInBytes=0\n
\n# --\n# The batch size in bytes up to which the data is buffered before writing to the
disk.\n# --\n#batchSizeInBytes=262144"
b
"stats":

[
{"name": "Bytes Sent","value": 10001,"type": 101}, {"name": "Events

Source Services 91

Sent","value": 10003,"type": 101}, {"name": "Events to be Sent","value": 10006, "type":

101},

{"name": "Events not Delivered","value": 10002, "type": 101}, {"name": "Send
Rate (Per Sec)","value": 10005,"type": 101}, {"name":"Events Dropped","value":1,"type":
103},

{"name":"Concurrent Connections","value":2,"type":103}, {"name":"Maximum
Concurrent Clients","value":3,"type":103}
]
}

The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}
}

The following is sample response for the 400 Bad Request code:

{
"success": false,
"errors":
[
{
"code": NAME FIELD MISSING,
"parameters": null,
"errorMessage": "'name' field is missing in request"

}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-messagel}],
"errorMessage": "Failed to update source. Exception: {error-message}

}

Delete Source Services

Use the POST method to delete a source service in VDS.

POST Request in JSON Format

Generate a POST request. For example, the following POST request deletes a source service:
POST /api/dataflows/{dataflow-id}/sources/{source-entity-id}
Content-Type: application/json

Accept: application/json
x-http-method-override: DELETE

92 Chapter 6: Sample JSON Requests and Responses

POST Response in JSON Format
The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors": [
{
"code": DATAFLOW NOT_ FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

"success": false,
"errors":
[
{
"code": SOURCE ENTITY NOT FOUND,
"parameters": [{source-entity-id}],
"errorMessage": "Source Entity with Id: {source-entity-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-messagel}],
"errorMessage": "Failed to update dataflow. Exception : {error-message}."

}

Associate Source Services with Node Groups

Use the POST method to associate a source service with node groups in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request associates source services with node
groups:

POST /api/dataflows/<dataflow-id>/sources/<source-id>/associatenodegroups

Content-Type: application/json
Accept: application/json

POST Body in JSON Format
{

"nodeGroups": [nodegroupld]

}

{
"nodeGroups": [107]

}
POST Response in JSON Format

The following is a sample response:

"success": true,
"total": 1,

Source Services

93

"count": 1,

"items": [
{
"id": 107,
"name": "nodegroupl",

"success": true,
"type": "STATIC",

"nodes": [
{
"id": 106,
"name": "nodel"

Retrieve Source Service and Node Group Associations

Use the GET method to retrieve source service and node group associations in VDS.

GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves a source service and node group
association:

GET /api/dataflows/{dataflow-id}/sources/{source-entity-id}/associatenodegroups

Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following is a sample response:

{ "success": true,

"total": 1,
"count": 1,
"items": [
{ llid": l, llnamell: "ngl"[
"nodes": [
{ "id": 1, "name": "nodelQO" 1},
{ "id": 2, "name": "node20" }

]
}
]
}

The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[

{
"code": DATAFLOW NOT FOUND,

"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}

"success": false,
"errors":
[

{
"code": SOURCE ENTITY NOT FOUND,

"parameters": [{source-entity-id}],

94 Chapter 6: Sample JSON Requests and Responses

"errorMessage": "Source Entity with Id: {source-entity-id} not found"
}

}
The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL_SERVER_ERROR,
"parameters": [{error-messagel}],

"errorMessage": "Failed to get nodegroups associated with source. Exception:

{error-message}"
}
]

Deploy Source Services

Use the POST method to deploy a source service in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request deploys a source service:
POST /api/dataflows/{dataflow-id}/sources/{source-entity-id}/deploy

Content-Type: application/json
Accept: application/json

POST Response in JSON Format
The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[

{
"code": DATAFLOW NOT_ FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"
}

"success": false,
"errors":
[
{
"code": SOURCE ENTITY NOT FOUND,
"parameters": [{source-entity-id}],
"errorMessage": "Source Entity with Id: {source-entity-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}l],

Source Services

95

"errorMessage": "Failed to deploy entity. Exception: {error-message}"
}

Undeploy Source Services

Use the POST method to undeploy a source service in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request undeploys a source service:

POST /api/dataflows/{dataflow-id}/sources/{source-entity-id}/undeploy

Content-Type: application/json
Accept: application/json

POST Response in JSON Format
The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}

"success": false,
"errors":
[
{
"code": SOURCE ENTITY NOT FOUND,
"parameters": [{source-entity-id}],
"errorMessage": "Source Entity with Id: {source-entity-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}l],
"errorMessage": "Failed to undeploy entity. Exception: {error-message}"

}

96 Chapter 6: Sample JSON Requests and Responses

Redeploy Source Services

Use the POST method to redeploy a source service in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request redeploys a source service:
POST /api/dataflows/{dataflow-id}/sources/{source-entity-id}/redeploy

Content-Type: application/json
Accept: application/json

POST Response in JSON Format
The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[

{
"code": DATAFLOW_NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"
}

"success": false,
"errors":
[
{
"code": SOURCE_ENTITY NOT FOUND,
"parameters": [{source-entity-id}],
"errorMessage": "Source Entity with Id: {source-entity-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-messagel}],
"errorMessage": "Failed to redeploy entity. Exception: {error-message}"

}

Target Services

You can use API calls to perform various operations with target services.

Target Services

97

Create Target Services

Use the POST method to create a target service in VDS.

POST Request in JSON Format

Generate a POST request. For example, the following POST request creates a target service:
POST /api/dataflows/{dataflow-id}/targets

Content-Type: application/json
Accept: application/json

POST Body in JSON Format

Content-Type: application/json
Accept: application/json

{

"name": "TestUMTarget",
"pluginId": " VDS TGT UM",
"config": {},

"stats": []

}
POST Response in JSON Format

The following is a sample response for the 201 Created code:

{
"id": {target-entity-id},
"name": "TestUMTarget",
"type": "TARGET",
"pluginId": " VDS TGT_UM",
"self": {
"rel": "self",
"href": "api/dataflows/{dataflow-id}/targets/{target-entity-id}",
"title": "TestUMTarget",
"id": {target-entity-id}
b
"dataflow": {
"rel": "dataflow",
"href": "api/dataflows/{dataflow-id}",
"title": "Data flow",
"id": {dataflow-id}
b
"success": true,
"valid": true,
"createDate": "2015-07-07T03:21:39-07:00",
"createdBy": "Administrator",
"predefined": false,
"deployable": true,
"deploymentState": "DRAFT",
"force": false,
"schedulable": false,
"config": {},
"stats": []

The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[

{
"code": DATAFLOW _NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"
}

98 Chapter 6: Sample JSON Requests and Responses

}
The following is a sample response for the 400 Bad Request code:

{
"success": false,
"errors":
[
{
"code": NAME FIELD MISSING,
"parameters": null,
"errorMessage": "'name' field is missing in request"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],
"errorMessage": "Failed to create target. Exception: {error-message}"

}

Get Target Services by ID

Use the GET method to retrieve target services based on ID in VDS.

GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves a target service based on the ID:
GET /api/dataflows/{dataflow-id}/targets/{target-entity-id}

Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following is a sample response for the 200 OK code:

{
"id": {target-entity-id},

"name": "TestUMTarget",
"type": "TARGET",
"self": {

"rel": "self",

"href": "api/dataflows/{dataflow-id}/targets/{target-entity-id}",
"title": "TestUMTarget",
"id": {target-entity-id}

}

’
"dataflow": {

"rel": "dataflow",
"href": "api/dataflows/{dataflow-id}",
"title": "Data flow",

"id": {dataflow-id}
}I
"success": true,
"valid": true,
"createDate": "2015-07-07T03:21:39-07:00",
"createdBy": "Administrator",
"predefined": false,
"deployable": true,

Target Services

99

"deploymentState": "DRAFT",
"force": false,
"pluginId": " VDS TGT UM",
"schedulable": false,
"config": {},
"stats": []

}

The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}

"success": false,
"errors":
[
{
"code": TARGET ENTITY NOT FOUND,
"parameters": [{target-entity-id}],

"errorMessage": "Target entity with Id: {target-entity-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
(
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}l],
"errorMessage": "Failed to get target. Exception: {error-message}"

}

Retrieve All Target Services

Use the GET method to retrieve all target services in VDS.

GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves all target services:
GET /api/dataflows/{dataflow-id}/targets

Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following is the sample response for the 200 OK code when there are no targets:

{ "success": true,

"total": O,
"count": O,
"items": []

100 Chapter 6: Sample JSON Requests and Responses

The following is a sample response when there is one UM target in the data flow:

{
"total": 1,
"count": 1,
"success": true,
"items": [
{
"id": {target-entity-id},
"name": "um-target",
"type": "TARGET",
"pluginId": " VDS TGT UM",
"self": {
"rel": "self",
"href": "api/dataflows/{dataflow-id}/targets/{target-entity-id}",
"title": "um-target",
"id": {target-entity-id}
}l
"dataflow": {
"rel": "dataflow",
"href": "api/dataflows/{dataflow-id}",
"title": "Data flow",
"id": {dataflow-id}
} 4
"valid": true,
"createDate": "2015-07-07T02:31:41-07:00",
"createdBy": "Administrator",
"predefined": false,
"deployable": true,
"deploymentState": "DRAFT",
"force": false,
"schedulable": false,
"config": {},
"stats": []

}
The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROCR,
"parameters": [{error-message}],
"errorMessage": "Failed to get all targets. Exception: {error-message}"

}

Target Services

101

Update Target Services

Use the POST method to update a target service in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request updates a target service:

POST /api/dataflows/{dataflow-id}/targets/{target-entity-id}

Content-Type: application/json
Accept: application/json
x-http-method-override: PUT

POST Body in JSON Format
The following a sample POST body in JSON format:
{

"config": {},
"stats": [],
"name": "TestUMTargetUpdated",
"typell . "target",
"pluginId": " VDS TGT UM"
}

POST Response in JSON Format
The following is a sample response for the 200 OK code:

{
"id": {target-entity-id},
"name": "TestUMTargetUpdated",
"type": "TARGET",
"self": {
"rel": "self",
"href": "api/dataflows/{dataflow-id}/targets/{target-entity-id}",
"title": "TestUMTargetUpdatedAgain",
"id": {target-entity-id}
}l
"dataflow": {
"rel": "dataflow",
"href": "api/dataflows/{dataflow-id}",
"title": "Data flow",
"id": {dataflow-id}
b
"success": true,
"valid": true,
"createDate": "2015-07-07T03:21:39-07:00",
"createdBy": "Administrator",
"predefined": false,
"deployable": true,
"deploymentState": "DRAFT",
"force": false,
"pluginId": " VDS TGT UM",
"schedulable": false,
"config": {},
"stats": []

The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT_ FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

102 Chapter 6: Sample JSON Requests and Responses

The following is sample response for the 400 Bad Request code:

{
"success": false,
"errors":
[
{
"code": NAME FIELD MISSING,
"parameters"? null,
"errorMessage": "'name' field is missing in request"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],
"errorMessage": "Failed to update target. Exception: {error-message}"

}

Delete Target Services

Use the POST method to delete a target service in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request deletes a target service:

POST /api/dataflows/{dataflow-id}/targets/{target-entity-id}

Content-Type: application/json
Accept: application/json
x-http-method-override: DELETE

POST Response in JSON Format
The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT_ FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}

"success": false,
"errors":
[
{
"code": TARGET ENTITY NOT FOUND,
"parameters": [{target-entity-id}],

Target Services

103

"errorMessage": "Target Entity with Id: {target-entity-id} not found"
}

}
The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[

{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-messagel}],
"errorMessage": "Failed to delete target. Exception: {error-message}"
}

Associate Target Services with Node Groups

Use the POST method to update a target service and node group associations or to associate target services
with node groups in VDS.

POST Request in JSON Format

Generate a POST request. For example, the following POST request associates a target service with a node
group:
POST /api/dataflows/{dataflow-id}/targets/{target-entity-id}/associatenodegroups

Content-Type: application/json
Accept: application/json

POST Body in JSON Format
{

"nodeGroups": [1]

}
POST Response in JSON Format
The following is a sample response:

{ "success": true,

"total": 1,
"count": 1,
"items": [
{ llid": l’ llnamell: "ngl"’
"nodes": [
{ "id": 1, "name": "nodelQO" 1},
{ "id": 2, "name": "node20" }

]
}
]
}

The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT_ FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}

104 Chapter 6: Sample JSON Requests and Responses

"success": false,
"errors":
[
{
"code": TARGET ENTITY NOT FOUND,
"parameters": [{target-entity-id}],
"errorMessage": "Target Entity with Id: {target-entity-id} not found"
}

}
The following is a sample response for the 500 Internal Server Error code:

{

"success": false,

"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],
"errorMessage": "Failed to associate nodegroup to target. Exception: {error-
message}"

}
]

Retrieve Target Service and Node Group Associations

Use the GET method to retrieve target service and node group associations in VDS.

GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves a target service and node group
association:

GET /api/dataflows/{dataflow-id}/targets/{target-entity-id}/associatenodegroups

Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following is a sample response:

{ "success": true,

"total": 1,
"count": 1,
"items": [
{ llid": l’ llname": "ngl",
"nodes": [
{ "id": 1, "name": "nodelQO" 1},
{ "id": 2, "name": "node20" }

]
}
]
}

The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[

{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}],

Target Services 105

"errorMessage": "Dataflow with Id: {dataflow-id} not found"
}

"success": false,
"errors":
[
{
"code": TARGET ENTITY NOT FOUND,
"parameters": [{target-entity-id}],
"errorMessage": "Target Entity with Id: {target-entity-id} not found"
}

}
The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-messagel}],
"errorMessage": "Failed to get nodegroups associated with target. Exception:
{error-message}"
}
]

Deploy Target Services

Use the POST method to deploy a target service in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request deploys a target service:
POST /api/dataflows/{dataflow-id}/targets/{target-entity-id}/deploy

Content-Type: application/json
Accept: application/json

POST Response in JSON Format
The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT_ FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}

"success": false,
"errors":
[
{
"code": TARGET ENTITY NOT FOUND,
"parameters": [{target-entity-id}],
"errorMessage": "Target Entity with Id: {target-entity-id} not found"
}

106 Chapter 6: Sample JSON Requests and Responses

}
The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],
"errorMessage": "Failed to deploy entity. Exception: {error-message}"

}

Undeploy Target Services

Use the POST method to undeploy a target service in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request undeploys a target service:
POST /api/dataflows/{dataflow-id}/targets/{target-entity-id}/undeploy

Content-Type: application/json
Accept: application/json

POST Response in JSON Format
The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}

"success": false,
"errors":
[
{
"code": TARGET ENTITY NOT FOUND,
"parameters": [{target-entity-id}],
"errorMessage": "Target Entity with Id: {target-entity-id} not found"
}

}
The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROCR,
"parameters": [{error-message}],
"errorMessage": "Failed to undeploy entity. Exception: {error-message}"

}

Target Services

107

Redeploy Target Services

Use the POST method to redeploy a target service in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request redeploys a target service:
POST /api/dataflows/{dataflow-id}/targets/{target-entity-id}/redeploy

Content-Type: application/json
Accept: application/json

POST Response in JSON Format
The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[

{
"code": DATAFLOW_NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"
}

"success": false,
"errors":
[
{
"code": TARGET ENTITY NOT FOUND,
"parameters": [{target-entity-id}],
"errorMessage": "Target Entity with Id: {target-entity-id} not found"
}

}
The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],

"errorMessage": "Failed to redeploy entity. Exception: {error-message}"

}

Data Connections

You can use API calls to perform various operations with data connections.

108 Chapter 6: Sample JSON Requests and Responses

Create Data Connections

Use the POST method to create a data connection in VDS.

POST Request in JSON Format

Generate a POST request. For example, the following POST request creates a data connection:

POST /api/dataflows/{dataflow-id}/connections
Content-Type: application/json
Accept: application/json

POST Body in JSON Format

The following is the sample POST body for a nonsecure Ultra Messaging connection:

{
"name": "SimpleUMConnection",
"resolution": "UNICAST",
"addressll: ll",
"daemon": "127.0.0.1:15380",
"umMode": "ULB",
"umConnectionType": "UM",
"umpStoreName": "",
"resolverPort": "",
"requestTcpPort": "",
"transportTcpPort": "",
"umConfig": "",
"type": " VDS UM TRANSPORT"
}

The following is the sample POST body for a secure Ultra Messaging connection:

{

"name": "SecureUMConnection",

"resolution": "UNICAST",

"address": "",

"daemon": "127.0.0.1:15380",

"umMode": "ULB",

"umConnectionType": "UMSECURE",

"cipherSuites": "",

"certificate": "/datal/certs/cert.crt",
"certificateKey": "/datal/certs/cert.key",
"certificateKeyPassword": "${certKeyPassword}",
"trustedCertificates": "/datal/certs/cert.crt",
"umpStoreName": "",

"resolverPort": "",

"requestTcpPort": "",

"transportTcpPort": "",

"umConfig": "",

"type": " VDS UM TRANSPORT"

}
The following is the sample POST body for a WebSocket connection:

{

"name": "SampleWSConnection",
"messagingMode": "ACKNOWLEDGEMENT",
"wsConnectionType": "WS",
"keystorePath": "",
"keystorePassword": "",
"truststorePath": "",
"truststorePassword": "",

"port": n1234u,
"healthCheckUrl": "status",

"Server": "Yl’
"advancedConfig": "",
"type": " VDS WS_TRANSPORT"

Data Connections

109

POST Response in JSON Format
The following are sample responses for the 201 Created code:

{{
"id": {connection-id},
"name": "Sample UM Connection",
"success": true,
"type": " VDS UM TRANSPORT",
"resolution": "UNICAST",
"address": "",
"daemon": "127.0.0.1:15380",
"umMode": "ULB",
"umpStoreName": "",
"resolverPort": "",
"requestTcpPort": "",
"transportTcpPort": "",
"umConfig": ""

"id": {connection-id},,

"name": "SampleWSConnection",
"success": true,
"type": " VDS WS TRANSPORT",

"wsMode": "ACKNOWLEDGEMENT",
"secure": false,
"keystorePath": "",
"keystore password": "",
"truststorePath": "",
"truststorePassword": "",
"port": "1234",
"healthCheckUrl": "status",
"server": ""
"advancedConfig": ""

}
The following are sample responses for the 400 Bad Request code:

{
"success": false,
"errors":
[
{
"code": NAME FIELD MISSING,
"parameters": null,
"errorMessage": "'name' field is missing in request"

}

"success": false,
"errors":
(
{
"code": CONNECTION ALREADY EXISTS,
"parameters": null,
"errorMessage": "Connection name already exists."

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],

110 Chapter 6: Sample JSON Requests and Responses

"errorMessage": "Failed to create connection. Exception: {error-message}"
}

Retrieve Data Connections

Use the GET method to retrieve data connections in VDS.
GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves a data connection:

GET /api/dataflows/{dataflow-id}/connections/{connection-id}

Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following is a sample response for the 200 OK code:

{
"id": {connection-id},
"name": "UM_transport 1",
"type": " VDS UM TRANSPORT",
"resolution": "UNICAST",
"addressll: ll"’
"daemon": "127.0.0.1:15380",
"umMode": "ULB",

"umpStoreName": "",
"resolverPort": "",
"requestTcpPort": "",
"transportTcpPort": "",
"umConfig": ""

}
The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": CONNECTION NOT FOUND,
"parameters": [{connection-id}],
"errorMessage": "Connection with Id: {connection-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],
"errorMessage": "Failed to get connection. Exception : {error-message}."

}

Data Connections

111

112

Retrieve All Data Connections

Use the GET method to retrieve all data connections in VDS.

GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves all data connections:

GET /api/dataflows/{dataflow-id}/connections
Content-Type: application/json
Accept: application/json

GET Response in JSON Format

The following are sample responses for the 200 OK code when there are no data flows:

{
"success": true,
"total": 0
"count": 0
"items": [

"total": 2,
"count": 2,
"success": true,
"items": [

{

"id": {connection-id-1},

"name": "UM transport 1",
"type": " VDS UM TRANSPORT",
"resolution": "UNICAST",
"address": "",

"daemon": "127.0.0.1:15380",
"umMode": "UMS",
"umpStoreName": "",
"resolverPort": "",
"requestTcpPort": "",
"transportTcpPort": "",
"umConfig": ""

"id": {connection-id-2},,
"name": "WS transport 1",
"type": " VDS WS TRANSPORT",
"wsMode": "ACKNOWLEDGEMENT",
"secure": false,
"keystorePath": "",
"keystore password": "",
"truststorePath": "",
"truststorePassword": "",
Hport": |I1234"’
"healthCheckUrl": "status",
"SerVEI"Z Il",
"advancedConfig":

}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL_SERVER_ERROR,
"parameters": [{error-messagel}],

"errorMessage": "Failed to get all connections. Exception

}

Chapter 6: Sample JSON Requests and Responses

{error-message}."

Update Data Connections

Use the POST method to update data connections in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request updates a data connection:

POST /api/dataflows/{dataflow-id}/connections/{connection-id}

Content-Type: application/json
Accept: application/json
x-http-method-override: PUT

POST Body in JSON Format
The following is a sample POST body in JSON format for an Ultra Messaging connection:

{
"name":"um connectionl updated",
"type":" VDS UM TRANSPORT",
"resolution":"UNICAST",
"daemon":"127.0.0.1:15380",
"umMode" : "ULB"

"name":"um connectionl updated",
"type":" VDS UM TRANSPORT",
"resolution":"MULTICAST",
"address":"224.9.10.11",
"umMode" : "UMP",
"umpStoreName":"testUMPStore"

"name":"um connectionl",
"type":" VDS UM TRANSPORT",
"resolution":"MULTICAST",
"address":"224.9.10.11",
"umMode" : "UMP",
"umpStoreName":"testUMPStore",
"resolverPort":"5489",
"requestTcpPort":"5479",
"transportTcpPort":"4568",
"umConfig":"Advanced UM configuration"
}

The following is a sample POST body in JSON format for a WebSocket connection:
{

"name":"ws connectionl updated",
"type":" VDS WS TRANSPORT",
"wsMode" : "ACKNOWLEDGEMENT",
"secure": fasle,

"port":"8956",
"healthCheckUrl":"status"

"name":"ws connectionl updated",

"type":" VDS WS TRANSPORT",
"messagingMode" : "STREAMING",
"wsConnectionType":"WSS",
"keystorePath":"/datal/crt/keystorepath",
"keystore password":"test keystore password",
"truststorePath":"/datal/crt/truststorepath",
"truststorePassword":"test truststorePassword",
"port":"8956",

Data Connections

113

"healthCheckUrl":"status"

"name":"ws connectionl updated",
"type":" VDS WS TRANSPORT",

"messagingMode": "STREAMING",
"wsConnectionType":"WSS",
"keystorePath":"/datal/crt/keystorepath",
"keystore password":"test keystore password",
"truststorePath":"/datal/crt/truststorepath",
"truststorePassword":"test truststorePassword",
"port":"8956",

"healthCheckUrl":"status",
"server":"10.25.45.55",
"advancedConfig":"Advanced WS configuration"

}
POST Response in JSON Format

The following is a sample response for the 200 OK code for an Ultra Messaging connection:

{
"id": {connection-id},
"success": true,
"name":"um connectionl updated",
"type":" VDS_UM TRANSPORT",
"resolution":"MULTICAST",
"daemon":"127.0.0.1:15380",
"umMode" : "ULB"

The following is a sample response for the 200 OK code for an WebSocket connection:

{
"id": {connection-id},
"success": true,
"name":"ws connectionl updated",
"type":" VDS WS TRANSPORT",
"wsMode" : "ACKNOWLEDGEMENT",
"secure":false,
"port":"8956ll,
"healthCheckUrl":"status"

}

The following is the sample response for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": CONNECTION NOT FOUND,
"parameters": [{connection-id}],
"errorMessage": "Connection with Id: {connection-id} not found"

}
}

The following are sample responses for the 400 Bad Request code:

{
"success": false,
"errors":
[
{
"code": NAME FIELD MISSING,
"parameters": null,
"errorMessage": "'name' field is missing in request"

}

114 Chapter 6: Sample JSON Requests and Responses

"success": false,
"errors":
[

{
"code": CONNECTION ALREADY EXISTS,
"parameters": [{error-message}],

"errorMessage": "Connection name already exists. Exception: {error-message}"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],
"errorMessage": "Failed to update connection. Exception: {error-message}"

}

Delete Data Connections

Use the POST method to delete a data connection in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request deletes a data connection:

POST /api/dataflows/{dataflow-id}/connections/{connection-id}

Content-Type: application/json
Accept: application/json
x-http-method-override: DELETE

POST Response in JSON Format
The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": CONNECTION NOT FOUND,
"parameters": [{connection-id}],
"errorMessage": "Connection with Id: {connection-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-messagel}],
"errorMessage": "Failed to update dataflow. Exception : {error-message}."

}

Data Connections

115

Links

You can use API calls to perform various operations with links.

Links connect entities in VDS. VDS includes the following types of links:
Link with connection ID

Use this link in one or all of the following scenarios:

e To connect a source service or a transformation on the source service to a target service or a
transformation on the target service.

e To connect a source service or a transformation on the source service to an aggregator or a
transformation on the aggregator.

¢ To connect an aggregator or a transformation on the aggregator to a target service or a
transformation on the target service.

Link without connection ID
Use this link in one or all of the following scenarios:

¢ To connect an entity and a transformation on the entity. For example, between an aggregator and a
transformation associated with the aggregator.

e To connect two transformations associated with an entity. For example, between two
transformations on a source service.

Create Links

Use the POST method to create a link in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request creates a link:
POST /api/dataflows/{dataflow-id}/links

Content-Type: application/json
Accept: application/json

POST Body in JSON Format
The following is a sample body for a link with connection ID:

{
"fromId": 1,
"toIds": [2],
"connectionId": 3

}

The following is a sample body for a link without connection ID:
{

"fromId": 1,
"toIds": [2],

116 Chapter 6: Sample JSON Requests and Responses

POST Response in JSON Format

The following is a sample response for the 201 Created code:

{
"id": {link-id},
"success": true,
"fromId": {from-entity-id},
"toIds": [{to-entity-id} 1,
"connectionId": {connection-entity-id}

}
The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": ENTITY NOT FOUND,
"parameters": [{from-entity-id}],
"errorMessage": "Entity with Id: {from-entity-id} not found"

}
}
The following is a sample response for the 400 Bad Request code:

{

"success": false,

"errors":
[
{
"code": LINK _ALREADY EXISTS,
"parameters": [{from-entity-id}, {to-entity-id}],
"errorMessage": "Link already exists between from: {from-entity-id} to: {to-
entity-id}"
}
]
}
The following is a sample response for the 500 Internal Server Error code:
{
"success": false,
"errors":
[
{
"code": INTERNAL_SERVER_ERROR,
"parameters": [{link-id}, {error-message}],
"errorMessage": "Failed to create link Id: {link-id}. Exception : {error-
message}."

}
]

Retrieve Links

Use the GET method to retrieve links based on ID in VDS.
GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves a link based on the ID:

GET /api/dataflows/{dataflow-id}/links/{link-id}

Content-Type: application/json
Accept: application/json

Links

117

GET Response in JSON Format
The following is a sample response for the 200 OK code:

{
"id": {link-id},
"success": true,
"fromId": {from-entity-id},
"toIds": [{to-entity-id} 1,
"connectionId": {connection-entity-id}

}
The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}

"success": false,
"errors":
[
{
"code": LINK NOT FOUND,
"parameters": [{link-id}],
"errorMessage": "Link with Id: {link-id} not found"

}
}
The following is a sample response for the 500 Internal Server Error code:

{

"success": false,

"errors":
(
{
"code": INTERNAL SERVER ERROR,
"parameters": [{link-id}, {error-message}],
"errorMessage": "Failed to update link Id: {link-id}. Exception :
message}."

}
]

Retrieve All Links

Use the GET method to retrieve all links in VDS.

GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves all links:
GET /api/dataflows/{dataflow-id}/links

Content-Type: application/json
Accept: application/json

118 Chapter 6: Sample JSON Requests and Responses

{error-

GET Response in JSON Format
The following is the sample response for the 200 OK code when there are no links in the data flow:

{
"success": true,
"total": O
"count": 0
"items": [

}

The following is a sample response when there are two links in the data flow:

{
"total": 2,
"count": 2,
"success": true,
"items": [
{ "id": 46, "fromId": 47, "tolIds": [44], "connectionId": 45, "transportTopic":
"FROM 47", "isTransportTopicGenerated": true },
{ "id": 48, "fromId": 43, "tolIds": [47] }
]
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[

{
"code": INTERNAL SERVER ERROR,

"parameters": [{error-message}],
"errorMessage": "Failed to get all links. Exception : {error-message}."

}

Update Links

Use the POST method to update a link in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request updates a link:

POST /api/dataflows/{dataflow-id}/links/{link-id}

Content-Type: application/json
Accept: application/json
x-http-method-override: PUT

POST Body in JSON Format
The following a sample POST body in JSON format:

{
"fromId": 1,
"toIds": [3],
"connectionId": 3

}
POST Response in JSON Format
The following is a sample response for the 200 OK code:
{
"id": {link-id},

"success": true,
"fromId": {from-entity-id},

Links 119

"toId": {to-entity-id},
"connectionId": {connection-entity-id}

}
The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW_NOT_FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}

"success": false,
"errors":
[
{
"code": ENTITY NOT FOUND,
"parameters": [{from-entity-id}],
"errorMessage": "Entity with Id: {from-entity-id} not found"

}
}

The following are sample responses for the 400 Bad Request code:

{
"success": false,
"errors":
[
{
"code": FROMID FIELD MISSING,
"parameters": null,
"errorMessage": "'fromId' field is missing in request"

}

"success": false,
"errors":
[
{
"code": LINK ALREADY EXISTS,
"parameters": [{link-id}],
"errorMessage": "Link with Id: {link-id} alreday exists"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],
"errorMessage": "Failed to update source. Exception: {error-message}"

}

120 Chapter 6: Sample JSON Requests and Responses

Delete Links

Use the POST method to delete a link in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request deletes a link:

POST /api/dataflows/{dataflow-id}/links/{link-id}

Content-Type: application/json
Accept: application/json
x-http-method-override: DELETE

POST Response in JSON Format
The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW _NOT_ FOUND,

"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found."

}

"success": false,
"errors":

[
{
"code": LINK NOT FOUND,
"parameters": [{link-id}],
"errorMessage": "Link with Id: {link-id} not found"

}
}
The following is a sample response for the 500 Internal Server Error code:

{

"success": false,

"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{link-id}, {error-message}],
"errorMessage": "Failed to delete link Id: {link-id}. Exception : {error-
message}."

}
]

Transformations

You can use API calls to perform various operations with transformations.

Transformations 121

Create Transformations

Use the POST method to create a transformation in VDS.

POST Request in JSON Format

Generate a POST request. For example, the following POST request creates a transformation:

POST /api/dataflows/{dataflow-id}/transforms

Content-Type: application/json
Accept: application/json

POST Body in JSON Format
{

"name": "TestInsertTransform",
"pluginId": " VDS TRX INSERT STR",
"runMode": "WITH PREVIOUS",
"config":
{
"stringExpression": "#HOSTNAME#DATA"
} I
"stats":
[

{"name": "Events Received", "value": 10301, "type": 102}, {"name": "Bytes
Received", "value": 10300, "type": 102 }, {"name": "Events Generated", "value": 10303,
"type": 102 1},

{"name": "Bytes Sent", "value": 10302, "type": 102 }, {"name": "Time Taken for
Transformation (Milli Sec)", "value": 10304, "type": 102}

1
}

POST Response in JSON Format
The following is a sample response for the 201 Created code:

{

"id": {transform-entity-id},

"name": "TestInsertTransform",

"type": "TRANSFORM",

"pluginId": " VDS TRX INSERT STR",

"runMode" : "WITH_PREVIOUS",

"self":

{
"rel": "Self"’
"href": "api/dataflows/{dataflow-id}/transforms/{transform-entity-id}",
"title": "TestInsertTransform",

"id": {transform-entity-id}
}I
"dataflow":
{
"rel": "dataflow",
"href": "api/dataflows/{dataflow-id}",
"title": "TestDataflow",
"id": {dataflow-id}
b
"success": true,
"valid": true,
"createDate": "2015-07-07T15:38:48+05:30",
"createdBy": "Administrator",
"predefined": false,
"deployable": true,
"deploymentState": "DRAFT",
"force": false,
"schedulable": false,
"config":
{
"stringExpression": "#HOSTNAME#DATA"
b
"stats":

[

122 Chapter 6: Sample JSON Requests and Responses

{"name": "Events Received", "value": 10301, "type": 102}, {"name": "Bytes
Received", "value": 10300, "type": 102 }, {"name": "Events Generated", "value": 10303,
"type": 102 },

{"name": "Bytes Sent", "value": 10302, "type": 102 }, {"name": "Time Taken for
Transformation (Milli Sec)", "value": 10304, "type": 102}

]
}

The following is a sample responses for the 400 Bad Request code:

{
"success": false,
"errors":
[
{
"code": NAME FIELD MISSING,
"parameters": null,
"errorMessage": "'name' field is missing in request"

}
}

The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
(
{
"code": DATAFLOW _NOT_ FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
(
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}l],
"errorMessage": "Failed to create transform. Exception: {error-message}"

}

Retrieve Transformation by ID

Use the GET method to retrieve transformations based on ID in VDS.

GET Request in JSON Format
Generate a GET request. For example, the following GET request retrieves a transformation based on the ID:
GET /api/dataflows/{dataflow-id}/transforms/{transform-entity-id}

Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following is a sample response for the 200 OK code:
{

"id": {transform-entity-id},
"name": "TestInsertTransform",

Transformations 123

"type": "TRANSFORM",

"pluginId": " VDS TRX INSERT STR",

"runMode" : "WITH_PREVIOUS",

"self":

{
"rel": "Self"’
"href": "api/dataflows/{dataflow-id}/transforms/{transform-entity-id}",
"title": "TestInsertTransform",

"id": {transform-entity-id}
}l
"dataflow":
{
"rel": "dataflow",
"href": "api/dataflows/{dataflow-id}",
"title": "TestDataflow",
"id": {dataflow-id}
b
"success": true,
"valid": true,
"createDate": "2015-07-07T15:38:48+05:30",
"createdBy": "Administrator",
"predefined": false,
"deployable": true,
"deploymentState": "DRAFT",
"force": false,
"schedulable": false,

"config":
{
"stringExpression": "#HOSTNAME#DATA"
b
"stats":
[

{"name": "Events Received", "value": 10301, "type": 102}, {"name": "Bytes
Received", "value": 10300, "type": 102 }, {"name": "Events Generated", "value": 10303,
"type": 102 },

{"name": "Bytes Sent", "value": 10302, "type": 102 }, {"name": "Time Taken for

Transformation (Milli Sec)", "value": 10304, "type": 102}
]
}

The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT_ FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}

"success": false,
"errors":
[
{
"code": TRANSFORM ENTITY NOT FOUND,
"parameters": [{transform-entity-id}],
"errorMessage": "Transform Entity with Id: {transform-entity-id} not found"

}
}
The following is a sample response for the 500 Internal Server Error code:
{

"success": false,
"errors":

124 Chapter 6: Sample JSON Requests and Responses

{
"code": INTERNAL SERVER ERROR,
"parameters": [{transform-entity-id}, {error-message}],
"errorMessage": "Failed to get transform with Id: {transform-entity-id}.
Exception: {error-message}"
}
]

Retrieve All Transformations

Use the GET method to retrieve all transformations in VDS.
GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves all transformations:

GET /api/dataflows/{dataflow-id}/transforms

Content-Type: application/json
Accept: application/json

GET Response in JSON Format

The following is the sample response for the 200 OK code when there are no transformations in the data
flow:

{
"success": true,
"total": 0,
"count": 0,
"items": []
}

The following is the sample response for when there is a transformation in the data flow:

{
"total": 1,
"count": 1,
"success": true,
"items": [
{

"id": {transform-entity-id},

"name": "TestInsertTransform",

"type": "TRANSFORM",

"pluginId": " VDS TRX INSERT STR",

"runMode": "WITH PREVIOUS",

"self": {
"rel": "Self",
"href": "api/dataflows/{dataflow-id}/transforms/{transform-entity-id}",
"title": "TestInsertTransform",

"id": {transform-entity-id}
I
"dataflow": {
"rel": "dataflow",
"href": "api/dataflows/{dataflow-id}",
"title": "TestDataflow",
"id": {dataflow-id}
}l
"valid": true,
"createDate": "2015-07-07T15:38:48+05:30",
"createdBy": "Administrator",
"predefined": false,
"deployable": true,
"deploymentState": "DRAFT",
"force": false,
"schedulable": false,
"config":

Transformations 125

{
"stringExpression": "#HOSTNAME#DATA"

} r

"stats":
[
{"name": "Events Received", "value": 10301, "type": 102}, {"name":
"Bytes Received", "value": 10300, "type": 102 }, {"name": "Events Generated", "value":

10303, "type": 102 },
{"name": "Bytes Sent", "value": 10302, "type": 102 }, {"name": "Time
Taken for Transformation (Milli Sec)", "value": 10304, "type": 102}
1
}

}
The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERRCR,
"parameters": [{error-message}],
"errorMessage": "Failed to get all transforms. Exception: {error-message}"

}

Update Transformation

Use the POST method to update a transformation in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request updates a transformation:
POST /api/dataflows/{dataflow-id}/transforms/{transform-entity-id}

Content-Type: application/json
Accept: application/json
x-http-method-override: PUT

POST Body in JSON Format
The following a sample POST body in JSON format:
{

"name": "TestInsertTransformChanged",
"type": "TRANSFORM",
"pluginId": " VDS TRX_ INSERT STR",
"runMode": "WITH NEXT",
"config":
{
"stringExpression": "#HOSTNAME#DATA#TIMESTAMP"
}I

126 Chapter 6: Sample JSON Requests and Responses

"stats":
[

{"name": "Events Received", "value": 10301, "type": 102}, {"name": "Bytes
Received", "value": 10300, "type": 102 }, {"name": "Events Generated", "value": 10303,
"type": 102 1},

{"name": "Bytes Sent", "value": 10302, "type": 102 }, {"name": "Time Taken for
Transformation (Milli Sec)", "value": 10304, "type": 102}

]
}

POST Response in JSON Format
The following is a sample response for the 200 OK code:

{

"id": {transform-entity-id},

"name": "TestInsertTransformChanged",

"type": "TRANSFORM",

"pluginId": " VDS TRX INSERT STR",

"runMode": "WITH NEXT",

"self":

{
"rel": "self",
"href": "api/dataflows/{dataflow-id}/transforms/{transform-entity-id}",
"title": "TestInsertTransformChanged",

"id": {transform-entity-id}
}I
"dataflow":

{

"rel": "dataflow",

"href": "api/dataflows/{dataflow-id}",

"title": "TestDataflow",

"id": {dataflow-id}

}I
"success": true,
"valid": true,
"createDate": "2015-07-07T15:38:48+05:30",
"createdBy": "Administrator",
"predefined": false,
"deployable": true,
"deploymentState": "DRAFT",
"force": false,
"schedulable": false,
"config":
{
"stringExpression": "#HOSTNAME#DATA#TIMESTAMP"
}I
"stats":
[

{"name": "Events Received", "value": 10301, "type": 102}, {"name": "Bytes
Received", "value": 10300, "type": 102 }, {"name": "Events Generated", "value": 10303,
"type": 102 },

{"name": "Bytes Sent", "value": 10302, "type": 102 }, {"name": "Time Taken for
Transformation (Milli Sec)", "value": 10304, "type": 102}

]
}

The following are a sample responses for the 404 Not Found code:

{

"success": false,

"errors":
[
{
"code": DATAFLOW_NOT_FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"
}

Transformations 127

"success": false,
"errors":
[
{
"code": TRANSFORM ENTITY NOT FOUND,
"parameters": [{transform-entity-id}],

"errorMessage": "Transform Entity with Id: {transform-entity-id} not found"

}
}

The following is sample response for the 400 Bad Request code:

{
"success": false,
"errors":
[
{
"code": NAME FIELD MISSING,
"parameters": null,
"errorMessage": "'name' field is missing in request"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROCR,
"parameters": [{error-message}],
"errorMessage": "Failed to update transform. Exception: {error-message}"

}

Delete Transformations

Use the POST method to delete a transformation in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request deletes a transformation:

POST /api/dataflows/{dataflow-id}/transforms/{transform-entity-id}

Content-Type: application/json
Accept: application/json
x-http-method-override: DELETE

POST Response in JSON Format

The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": DATAFLOW NOT FOUND,
"parameters": [{dataflow-id}],
"errorMessage": "Dataflow with Id: {dataflow-id} not found"

}

128 Chapter 6: Sample JSON Requests and Responses

"success": false,
"errors":
[

{
"code": TRANSFORM ENTITY NOT FOUND,
"parameters": [{transform-entity-id}],

"errorMessage": "Transform Entity with Id: {transform-entity-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],
"errorMessage": "Failed to delete transform. Exception:

}

Node Groups

You can use API calls to perform various operations with node groups.

Create Node Groups

Use the POST method to create a node group in VDS.
POST Request in JSON Format

{error-message}"

Generate a POST request. For example, the following POST request creates a node group:

POST /api/nodegroups

Content-Type: application/json
Accept: application/json

POST Body in JSON Format
{

"name": "TestNodeGroup",
"type": "STATIC",
"nodes": [1, 2, 3]

}

POST Response in JSON Format
The following is a sample response for the 201 Created code:

{
"id": 322,
"name": "NodeGroup2",
"success": true,
"type": "STATIC",
"nodes": [

{

Node Groups

129

"id": 253

]
}

The following is a sample response for the 400 Bad Request code:

{
"success": false,
"errors":
[
{
"code": NAME FIELD MISSING,
"parameters"? null,
"errorMessage": "'name' field is missing in request"

}

"success": false,
"errors":
[
{
"code": UNSUPPORTED NODEGROUP_TYPE,
"parameters": [{invalid-nodegroup-type}],
"errorMessage": "Unsupported node group type: {invalid-nodegroup-type}.
Valid node group types (static, dynamic)"

]

"success": false,
"errors":
[
{
"code": PATTERN FIELD MISSING,
"parameters": null,
"errorMessage": "'pattern' (regex) field is missing request. It is required
for 'dynamic' Node group"
}
]

"success": false,
"errors":
[
{
"code": NODE NOT FOUND,
"parameters": [{node-id}],
"errorMessage": "Node not found with Id: {node-id}"

}

"success": false,
"errors":
[
{
"code": NODEGROUP ALREADY EXISTS,
"parameters": null,
"errorMessage": "Node group name already exists."

}
}

The following is a sample response for the 500 Internal Server Error code:

{

"success": false,

130 Chapter 6: Sample JSON Requests and Responses

"errors":
[
{
"code": INTERNAL SERVER ERROCR,
"parameters": [{error-message}l],
"errorMessage": ""Failed to create Node. Error: {error-message}"

}

Retrieve Node Groups

Use the GET method to retrieve node groups based on ID in VDS.
GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves a node group based on the ID:

GET /api/nodegroups/{nodegroup-id}

Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following are sample responses for the 200 OK code:
{
"id": 322,
"name": "NodeGroup2",

"success": true,
"type": "STATIC",

"nodes": [
{
"id": 253,
"name": "ndl"

}
]
}

The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[

{

"code": NODEGROUP_NOT_ FOUND,

"parameters": [{nodegroup-id}],

"errorMessage": "Nodegroup with Id: {nodegroup-id} not found"
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
(
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],
"errorMessage": "Failed to get node group. Exception : {error-message}."

}

Node Groups

131

132

Retrieve All Node Groups

Use the GET method to retrieve all node groups in VDS.
GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves all node groups:

GET /api/nodegroups
Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following is the sample response for the 200 OK code:

{
"success": true,
"total": 0
"count": 0
"items": [

]

"success": true,

"total": 2,
"count": 2,
"items":

[

{"id":1, "name":"TestStaticNodeGroup", "type":"static",

"name":"inw00004192"}, {"id":2, "name":"TestNodel"}]},
"id":3, "name":"DynamicNodeGroupl", "type":"dynamic",
"nodes": [{"id":9, "name":"nodel"}]}

]
}

The following is a sample response for the 500 Internal Server Error code:

{

"nodes": [{"id":1,

nen

"pattern":"node*",

"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-messagel}],
"errorMessage": "Failed to get all node groups. Exception : {error-message}."

}

Update Node Groups

Use the POST method to update a node group in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request updates a node group:

POST /api/nodegroups/{nodegroup-id}
Content-Type: application/json
Accept: application/json
x-http-method-override: PUT

POST Body in JSON Format

The following is a sample POST body in JSON format:

{

"name": "TestNodeGroupChnaed",

Chapter 6: Sample JSON Requests and Responses

"type": "STATIC",
"nodes": [3, 8]
}

POST Response in JSON Format
The following are sample responses for the 200 OK code:

{
"id": {nodegroup-id},
"name": {nodegroup-name},
"success": true,
"type": "STATIC",
"nodes": [{"id": {node-id}, "name": {node-name}}]

"id": {nodegroup-id},

"name": {nodegroup-name},

"success": true,

"type": "dynamic",

"pattern": {node-pattern-regex},

"nodes": [{"id": {node-id}, "name": {node-name}}]

}
The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": NODEGROUP NOT FOUND,
"parameters": [{nodegroup-id}],
"errorMessage": "Nodegroup with Id: {nodegroup-id} not found"

}

"success": false,
"errors":
[
{
"code": NODE NOT FOUND,
"parameters": [{node-id}],
"errorMessage": "Node with Id: {node-id} not found"

}
}

The following are sample responses for the 400 Bad Request code:

{
"success": false,
"errors":
[
{
"code": NAME FIELD MISSING,
"parameters": null,
"errorMessage": "'name' field is missing in request"

}

"success": false,
"errors":
[
{
"code": CANNOT CHANGE NODEGROUP_TYPE,
"parameters": null,

Node Groups

133

"errorMessage": "Cannot change nodegroup type"
}

}
The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[

{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-messagel}],
"errorMessage": "Failed to update node group. Exception : {error-message}."
}

Delete Node Groups

Use the POST method to delete a node group in VDS.

POST Request in JSON Format

Generate a POST request. For example, the following POST request deletes a node group:
POST /api/nodegroups/{nodegroup-id}

Content-Type: application/json
Accept: application/json
x-http-method-override: DELETE

POST Response in JSON Format
The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": NODEGROUP_NOT FOUND,,
"parameters": [{nodegroup-id}],
"errorMessage": "Nodegroup with Id: {nodegroup-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],
"errorMessage": "Failed to delete node group. Exception : {error-message}."

}

Nodes

You can use API calls to perform various operations with nodes.

134 Chapter 6: Sample JSON Requests and Responses

Create Nodes

Use the POST method to create a node in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request creates a node:

POST /api/nodes

Content-Type: application/json
Accept: application/json

POST Body in JSON Format
{

"nodes":

[
{"name": "MyNodel"},
{"name": "MyNode2", "nodeGroups": [1]},

}
POST Response in JSON Format

The following is a sample response for the 201 Created code:

{
"total": 1,
"count": 1,
"success": true,

"items":
[
{
"id": {node-id},
"name": {node-name},
"nodeGroups": [{"id": {nodegroup-id}, "name": {nodegroup-name}, "type":
"static"}]
}
]
}
{
"total": 1,

"count": 1,
"success": true,
"items":
[
{
"id": {node-id},
"name": {node-name},
"nodeGroups": [{"id": {nodegroup-id}, "name": {nodegroup-name}, "type":
"dynamic", "pattern": {node-pattern-regex}}]
}
]
}

The following are sample responses for the 400 Bad Request code:

{
"success": false,
"errors":
[
{
"code": NAME FIELD MISSING,
"parameters"? null,
"errorMessage": "'name' field is missing in request"

}

Nodes

135

"success": false,
"errors":
[
{
"code": NODE NAME ALREADY EXISTS,
"parameters": null,
"errorMessage": "Node name already exists."

}
}

The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[

{

"code": NODEGROUP NOT FOUND,

"parameters": [{nodegroup-id}],

"errorMessage": "Nodegroup not found with Id: {nodegroup-id}"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],
"errorMessage": "Failed to create node. Exception: {error-message}"

}

Retrieve Nodes

Use the GET method to retrieve nodes in VDS.

GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves a node:
GET /api/nodes/{node-id}

Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following are sample responses for the 200 OK code:

{
"id": {node-id},
"name": {node-name},
"success": true,

"nodeGroups": [{"id": {nodegroup-id}, "name": {nodegroup-name}, "type": "static"}
}
{

"id": {node-id},

"name": {node-name},

136 Chapter 6: Sample JSON Requests and Responses

"success": true,

"nodeGroups":
[
{"id": {nodegroup-id}, "name": {nodegroup-name}, "type": "dynamic",
"pattern": {node-pattern-regex}},
{"id": {nodegroup-id}, "name": {nodegroup-name}, "type": "dynamic",

"pattern": {node-pattern-regex}}
]
}

The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": NODE NOT FOUND,
"parameters": [{node-id}],
"errorMessage": "Node with Id: {node-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROCR,
"parameters": [{error-message}l],
"errorMessage": "Failed to get node. Exception : {error-message}."

}

Retrieve All Nodes

Use the GET method to retrieve all nodes in VDS.
GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves all nodes:

GET /api/nodes

Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following are sample responses for the 200 OK code:

{
"success": true,
"total": O
"count": 0
"items": [

]

"success": true,

"total":3,
"count":3,
"items": [

{"id": {node-id}, "name": {node-name}, "nodeGroups":[{"id": {nodegroup-id},
"name": {nodegroup-name}, "type":"static"},
’

{"id": {node-id}, "name": {node-name}, "nodeGroups":[{"id": {nodegroup-id},

Nodes

137

"name": {nodegroup-name}, "type":"dynamic", "pattern": {node-pattern-regex}}]l},

{"id": {node-id}, "name": {node-name}, "nodeGroups":[]}
]
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[

{
"code": INTERNAL SERVER ERROR,

"parameters": [{error-messagel}],

"errorMessage": "Failed to get all nodes. Exception : {error-message}."

}

Update Nodes

Use the POST method to update a node in VDS.

POST Request in JSON Format

Generate a POST request. For example, the following POST request updates a node:
POST /api/nodes/{node-id}

Content-Type: application/json
Accept: application/json
x-http-method-override: PUT

POST Body in JSON Format
The following is a sample POST body in JSON format:
{

"nodes":
[
"id": 1, "name": "MyNodelChnaged"},
{"id": 2, "name": "MyNode2Changed", "nodeGroups": [5, 8]},

}
POST Response in JSON Format

The following are sample responses for the 200 OK code:

{
"total": 1,
"count": 1,
"success": true,
"items":
[
{
"id": {node-id},
"name": {node-name},
"nodeGroups": [{"id": {nodegroup-id}, "name":
"dynamic", "pattern": {node-pattern-regex}}]
}
]

"total": 2,
"count": 2,
"success": true,
"items":

[

Chapter 6: Sample JSON Requests and Responses

{nodegroup-name},

"type™:

"id": {node-id},
"name": {node-name},
"nodeGroups": [{"id": {nodegroup-id}, "name": {nodegroup-name}, "type":
"dynamic", "pattern": {node-pattern-regex}}]
by
{
"id": {node-id},
"name": {node-name},
"nodeGroups": [{"id": {nodegroup-id}, "name": {nodegroup-name}, "type":
"static"}]
}
]
}

The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": NODE NOT FOUND,
"parameters": [{node-id}],
"errorMessage": "Node with Id: {node-id} not found"

}
}

The following are sample responses for the 400 Bad Request code:

{
"success": false,
"errors":
[
{
"code": NAME FIELD MISSING,
"parameters": null,
"errorMessage": "'name' field is missing in request"

}

"success": false,
"errors":
[
{
"code": NODEGROUP_NOT_ FOUND,
"parameters": [{nodegroup-id}],
"errorMessage": "Nodegroup not found with Id: {nodegroup-id}"

}

"success": false,
"errors":
[
{
"code": NODE NAME ALREADY EXISTS,
"parameters": null,
"errorMessage": "Node name already exists."

}
}
The following is a sample response for the 500 Internal Server Error code:
{

"success": false,
"errors":

Nodes

139

{

"code": INTERNAL SERVER ERROR,

"parameters": [{error-messagel}],

"errorMessage": "Failed to update Node. Exception: {error-message}"

}

Delete Nodes

Use the POST method to delete a node in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request deletes a node:

POST /api/nodes/{node-id}

Content-Type: application/json
Accept: application/json
x-http-method-override: DELETE

POST Response in JSON Format
The following is a sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": NODE NOT FOUND,
"parameters": [{node-id}],
"errorMessage": "Node with Id: {node-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],
"errorMessage": "Failed to delete node. Exception : {error-message}."

}

Parameters

You can use API calls to perform various operations with parameters.

140 Chapter 6: Sample JSON Requests and Responses

Create Parameters

Use the POST method to create a parameter in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request creates a parameter:

POST /api/parameters

Content-Type: application/json
Accept: application/json

POST Body in JSON Format
{

"parameters":
[
{"key": "TestKey", "value": "TestValue"},
{"key": "Key2", "value": "Value2", "secure": true},

}
POST Response in JSON Format

The following are sample responses for the 201 Created code:

{

"total": 1,

"count": 1,

"success": true,

"items":

[

{"parameterId": {parameter-id}, "key": {parameter-key}, "success": true,

"value": {parameter-value-masked}, "secure": false, "timestamp": {timestamp}} }

1
}

{
"total": 2,
"count": 2,
"success": true,
"items":
[
{"parameterId": {parameter-id}, "key": {parameter-key}, "success": true,
"value": {parameter-value-masked}, "secure": true, "timestamp": {timestamp}},
{"parameterId": {parameter-id}, "key": {parameter-key}, "success": true,
"value": {parameter-value}, "secure": false, "timestamp": {timestamp}}
]
}

The following are sample responses for the 400 Bad Request code:

{
"success": false,
"errors":
[
{
"code": PARAMETER KEY FIELD NOT FOUND,
"parameters": null,
"errorMessage": "'key' field is missing in request"

}

"success": false,
"errors":
[
{
"code": PARAMETER NAME ALREADY EXISTS,
"parameters": null,

Parameters

141

"errorMessage": "Parameter name already exists."

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[

{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-messagel}],
"errorMessage": "Failed to create parameter. Exception: {error-message}"
}

Retrieve Parameters

Use the GET method to retrieve parameters in VDS.
GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves a node:

GET /api/parameters/{parameter-id}

Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following are sample responses for the 200 OK code:

{
"parameterId": {parameter-id},
"key": {parameter-key},
"success": true,
"value": {parameter-value-masked},
"secure": false,
"timestamp": {timestamp}

"parameterId": {parameter-id},
"key": {parameter-key},
"success": false,

"value": {parameter-value},
"secure": true,
"timestamp": {timestamp}

}
The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": PARAMETER NOT_ FOUND,
"parameters": [{parameter-id}],
"errorMessage": "Parameter with Id: {parameter-id} not found"

}

142 Chapter 6: Sample JSON Requests and Responses

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROCR,
"parameters": [{error-message}],
"errorMessage": "Failed to get parameter. Exception : {error-message}."

}

Retrieve All Parameters

Use the GET method to retrieve all parameters in VDS.
GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves all parameters:

GET /api/parameters
Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following are the sample responses for the 200 OK code:

{

"success": true,
"total": 0
"count": 0
"items": [

]

"success": true,

"total":3,
"count":3,
"items":

(

{"key": "keyl", "value": "x***x" Ugecyure": true, "timestamp": 1435911720961,
"parameterId": 1},

{"key": "key2", "value": "value2", "secure": false, "timestamp": 1435911720924,
"parameterId": 2},

{"key": "TestKey", "value": "TestValue", "secure": false, "timestamp":
1435911720785, "parameterId": 3}

]

}

The following is a sample response for the 500 Internal Server Error code:

{

"success": false,
"errors":
[

{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-messagel}],

"errorMessage": "Failed to get all parameters. Exception : {error-message}.

}

Parameters

143

Update Parameters

Use the POST method to update a parameter in VDS.
POST Request in JSON Format
Generate a POST request. For example, the following POST request updates a parameter:
POST /api/parameters
Content-Type: application/json
Accept: application/json
x-http-method-override: PUT
POST Body in JSON Format
The following a sample POST body in JSON format:

{

"parameters":
[
{"parameterId": 1, "key": "TestKeyChnaged", "value": "TestValue"},
{"parameterId": 2, "key": "Key2Changed", "value": "Value2Updated", "secure":
true},

]
POST Response in JSON Format

The following are sample responses for the 200 OK code:

{

"total": 1,

"count": 1,

"success": true,

"items":

[

{"parameterId": {parameter-id}, "key": {parameter-key}, "success": true,

"value": {parameter-value}, "secure": false, "timestamp": {timestamp}} }

]
}

{
"total": 2,
"count": 2,
"success": true,
"items":
[
{"parameterId": {parameter-id}, "key": {parameter-key}, "success": true,
"value": {parameter-value-masked}, "secure": true, "timestamp": {timestamp}},
{"parameterId": {parameter-id}, "key": {parameter-key}, "success": true,
"value": {parameter-value}, "secure": false, "timestamp": {timestamp}}
]
}

The following are sample responses for the 404 Not Found code:

{
"success": false,
"errors":
[
{
"code": PARAMETER_NOT_FOUND ,
"parameters": [{parameter-id}],
"errorMessage": "Parameter with Id: {parameter-id} not found"

}
}

The following are sample responses for the 400 Bad Request code:

{

"success": false,

144 Chapter 6: Sample JSON Requests and Responses

"errors":
[

{
"code": PARAMETER ID FIELD NOT FOUND,

"parameters": null,
"errorMessage": "'parameterId' field is missing in request"

}

"success": false,
"errors":
[

{
"code": PARAMETER KEY FIELD NOT_ FOUND,

"parameters": null,
"errorMessage": "'key' field is missing in request"

}

"success": false,
"errors":
[

{
"code": PARAMETER NAME ALREADY EXISTS,

"parameters": null,
"errorMessage": "Parameter name already exists."

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROCR,
"parameters": [{error-message}],
"errorMessage": "Failed to update parameter. Exception : {error-message}"

}

Delete Parameters

Use the POST method to delete a parameter in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request deletes a parameter:
POST /api/parameters/{parameter-id}
Content-Type: application/json
Accept: application/json
x-http-method-override: DELETE
POST Response in JSON Format
The following are sample responses for the 404 Not Found code:
{
"success": false,

"errors":

[

Parameters

145

{

"code": PARAMETER NOT FOUND,

"parameters": [{parameter-id}],

"errorMessage": "Parameter with Id: {parameter-id} not found"

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{parameter-id}, {error-message}],
"errorMessage": "Failed to delete parameter with Id:{parameter-id}.
Exception: {error-message}"
}
]

Plug-ins

You can use API calls to perform various operations with plug-ins.

Retrieve Plugins

Use the GET method to retrieve plugins in VDS.
GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves a plugin:

GET /api/plugins/{plugin-id}
Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following is a sample response for the 200 OK code:

{
"name": "Syslog TCP",
"success": true,
"pluginId": " VDS _SRC_SYSLOG_TCP",

"zipName": "C:\\Informatica\\vds\\6.5\\admind\\plugins\\infa\\syslog-tcp-2.3.0.zip",
"fieldsInfo": {"helpKey":"syslogTCP source properties","sourceSystemProperties":
[{"textControl":{"integerTextField":{"default":8192, "minValue":1},"description":"Size of

the source data (bytes) to be sent in an event. An event consists of one or more
complete records.","name":"eventSize", "mandatory":true,"displayName":"Maximum Event
Size"},"segNum":4}, {"segNum": 6, "checkBoxControl":{"default":false,"description":"Persist
the data from source locally so that source can continue processing even if the target
is down.","name":"persistEvents", "displayName":"Persist Data"}}, {"segqNum":
7,"textAreaControl": {"default":"# --\\n# The interval in milliseconds after which the
writes \\n# are flushed to disk.\\n# --\\n#flushInterval=5000\\n\\n# --\\n# The maximum
number of db files to keep\\n# --\\n#maxDataFiles=10\\n\\n# --\\n# Size of individual db
file in bytes after which the files are rolled over\\n# --\\n#maxDataFileSize=1073741824\
\n\\n# --\\n# The max size of unsent data in bytes. If 0, it is unbounded\\n# --\
\n#maxQueueSizeInBytes=0\\n\\n# --\\n# The batch size in bytes up to which the data is
buffered before writing to the disk.\\n# --\\n#batchSizeInBytes=262144\\n\
\n","description":"Advanced options; only valid if persist data option is

selected", "name" :"persistOptions","displayName":"Persistence

146 Chapter 6: Sample JSON Requests and Responses

options"}}],"displayName":"Syslog TCP","version":"2.3.0 1435821164","fields":
[{"textControl":{"description":"Name of the entity. Maximum number of characters is
32.","name" :"name", "mandatory":true, "stringTextField": {"maxLength":32, "pattern":"" ([_a-
zA-7][a-zA-Z0-9]1*)$","secure":false},"displayName":"Entity Name"},"segNum":1},
{"textControl":{"integerTextField": {"minValue":1, "maxValue":
65536}, "name" :"portTCP", "mandatory":true, "displayName":"Port"}, "segNum":2}, {"seqgNum":
3,"listControl":{"default":0,"items": [{"id":
0,"displayName":"LF"}],"name":"delimiter","displayName":"Delimiter"}}]},

"runTime":
{"helpKey":"syslogTCP source properties","pluginClass":"com.informatica.binge.sources.sys
log tcp.SyslogTcpReader","pluginId":" VDS SRC SYSLOG TCP","name":"Syslog
TCP","pluginJar":"syslog-tcp.jar","version":"2.3.0 1435821164"},

"statistics": {"statistic":[{"id":"1","displayName":"Events
Dropped", "type" :"CUMULATIVE"}, {"id":"2","displayName":"Concurrent
Connections","type":"CUMULATIVE"}, {"id":"3","displayName": "Maximum Concurrent
Clients","type":"CUMULATIVE"}]},

"type": "SOURCE"
}

The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
(
{
"code": PLUGIN NOT FOUND,
"parameters": [{plugin-id}],
"errorMessage": "Plugin with id {plugin-id} not found."

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[

{

"code": INTERNAL SERVER ERROR,

"parameters": [{error-message}],

"errorMessage": "Failed to get plugin. Exception : {error-message}."

}

Retrieve All Plugins

Use the GET method to retrieve all plugins in VDS.
GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves all plugins:
GET /api/plugins
Content-Type: application/json
Accept: application/json

GET Response in JSON Format

The following is a sample response for the 200 OK code:

{

"success": true,

"total": 35,
"count": 35,
"items":
[
{ "pluginId": " VDS SRC FLAT FILE", "name": "File",

Plug-ins 147

"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":
"type":

"type":

"SOURCE" },
{ "pluginId":
"SOURCE" },
{ "pluginId":
"SOURCE" },
{ "pluginId":
"SOURCE" },
{ "pluginId":
"SOURCE" 1},
{ "pluginId":
"SOURCE" 1},
{ "pluginId":
"SOURCE" },
{ "pluginId":
"SOURCE" },
{ "pluginId":
"SOURCE" 1},
{ "pluginId":
"SOURCE" 1},
{ "pluginId":
"SOURCE" 1},
{ "pluginId":
"SOURCE" 1},
{ "pluginId":
"SOURCE" },
{ "pluginId":
"SOURCE" },
{ "pluginId":
"TARGET" },
{ "pluginId":
"TARGET" },
{ "pluginId":
"TARGET" },
{ "pluginId":
"TARGET" },
{ "pluginId":
"TARGET" },
{ "pluginId":
"TARGET" },
{ "pluginId":
"TARGET" },
{ "pluginId":
"TARGET" },
{ "pluginId":
"TARGET" },
{ "pluginId":

"TRANSFORM" 1},

{ "pluginId":

"TRANSFORM" 1},

{ "pluginId":

"TRANSFORM" },

{ "pluginId":

"TRANSFORM" },

{ "pluginId":

"TRANSFORM" },

{ "pluginId":

"TRANSFORM" },

{ "pluginId":

"TRANSFORM" 1},

{ "pluginId":
"TRANSFORM" }
{ "pluginId":
"TRANSFORM" }
{ "pluginId":
"TRANSFORM" }
{ "pluginId":
"AGGREGATOR"

{ "pluginId":
"RULESET" },

{ "pluginId":

’
’

’

}

" VDS _SRC_HTTP",

" VDS SRC_JMS",

" VDS SRC_MQTT",

" VDS SRC_SQL",

" VDS SRC_STATIC FILE",
" VDS _SRC_SYSLOG_TCP",
" VDS_SRC_SYSLOG_UDP",
" VDS SRC_SYSLOG_UDS",
" VDS SRC_TCP",

" VDS_SRC_UDP",

" VDS _SRC_UM",

" VDS_SRC_WS",

" VDS _SRC_XMPP",

" VDS TGT CASSANDRA",
" VDS TGT FILE",

" VDS TGT HDFS",

" VDS _TGT HTTP",

" VDS TGT JMS",

" VDS _TGT KINESIS",

" VDS TGT SQL",

" VDS_TGT WS",

" VDS _TGT XMPP",

" VDS _TRX COMPRESS",

" VDS_TRX_ DECOMPRESS",
" VDS _TRX INSERT STR",
" VDS TRX JS",

" VDS_TRX RECORD PARSER",
" VDS TRX REGEX",

" VDS TRX UDPARSER",

" VDS _CSV_MARSHALLER",
" VDS _JSON MARSHALLER",
" VDS XML MARSHALLER",
" VDS _AGGREGATOR",
L_VDS_RPP",

" VDS UM TRANSPORT",

148 Chapter 6: Sample JSON Requests and Responses

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"name":

"HTTP(S)",
"JguMs",

"MQTT",

"SQL",

"Static File",
"Syslog TCP",
"Syslog UDP",
"Syslog UDS",
"TCP",

"UDP",

"Ultra Messaging",
"WebSocket (S)",
"XMPP",
"Cassandra",
"File",

"HDFS",
"HTTP (S) ",
"JguMs",
"Kinesis",
"SQL",
"WebSocket (S)",
"XMPP",
"Compress Data",
"Decompress Data",
"Insert String",

"JavaScript",

"record-parser-transform",

"Regex Filter",
"Unstructured Data
"CSV Marshaller",
"JSON Marshaller",
"XML Marshaller",
"Aggregator",
"Ruleset",

"Ultra Messaging",

Parser",

"type": "TRANSPORT" },
{ "pluginId": " VDS WS TRANSPORT", "name": "WebSocket(S)",
"type": "TRANSPORT" }
]
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
(
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],
"errorMessage": "Failed to get all plugins. Exception : {error-message}."

}

Aggregators

You can use API calls to perform various operations with aggregators.

Create Aggregators

Use the POST method to create an aggregator in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request creates an aggregator:

POST /api/dataflows

Content-Type: application/json
Accept: application/json

POST Body in JSON Format
{

"config": {

"description": "",
"eventQueueSize": 100000,
"topicName": "",
"topicDescription": "",

"topicExpiresIn": "600000",
"topicResponderAccess": "NAMED PROPERTIES"
}I

"stats": [{ "name": "Bytes Received", "value": 10501, "type": 101 },
{ "name": "Events Received", "value": 10503, "type": 101 1},
{ "name": "Receive Rate(Per Sec)", "value": 10504, "type": 101 },
{ "name": "Bytes Sent", "value": 10001, "type": 101 },
{ "name": "Events Sent", "value": 10003, "type": 101 },
{ "name": "Send Rate(Per Sec)", "value": 10005, "type": 101 },
{ "name": "Events Reassigned", "value": 10505, "type": 101 },
{ "name": "Events to be Processed", "value": 10601, "type": 101 }],
"name": "aggregator2",
"pluginId": " VDS AGGREGATOR",
"topics": [],
"topicProperties": []

Aggregators 149

150

POST Response in JSON Format

The following is a sample response for the 201 Created code:

{

"id": 4,
"name":
"self":

"rel":
"href":
"title":

"aggregator2",

{

"id": 4

}

"dataflow": {
"rel":

"self",
"api/dataflows/l/aggregator/4",

aggregator2",

"dataflow",

"href": "api/dataflows/1",

"title":

"id": 1

}

"valid":

true,

"createDate":

"createdBy":

"predefined":
"deployable": true,
"deploymentState": "DRAFT",
false,
"pluginId": " VDS _AGGREGATOR",
"schedulable": false,
"config": {
"topicExpiresIn": "600000",
"topicDescription": "",

"force":

"description":

"Data flow",

’
"type": "AGGREGATOR",

"2015-07-22T02:17:02-07:00",

"Administrator",

false,

nn
’

"topicResponderAccess": "NAMED PROPERTIES",
"eventQueueSize": "100000",

"topicName": "",
} 4
"stats": [{ "name": "Bytes Received", "value": 10501, "type": 101 },
{ "name": "Events Received", "value": 10503, "type": 101 1},
{ "name": "Receive Rate(Per Sec)", "value": 10504, "type":
{ "name": "Bytes Sent", "value": 10001, "type": 101 },
{ "name": "Events Sent", "value": 10003, "type": 101 },
{ "name": "Send Rate(Per Sec)", "value": 10005, "type": 101
{ "name": "Events Reassigned", "value": 10505, "type": 101
{ "name": "Events to be Processed", "value": 10601, "type":
"topics": [],
"topicProperties": []
}
}
The following are sample responses for the 400 Bad Request code:
{
"success": false,
"errors":
[
{
"code": AGGREGATOR NAME FIELD NOT FOUND,
"parameters": null,
"errorMessage": "'name' field is missing in request"
}
]
}
{
"success": false,
"errors":
[
{
"code": AGGREGATOR NAME ALREADY EXISTS,

Chapter 6: Sample JSON Requests and Responses

101

b
}I
101

} r

o

"parameters": null,
"errorMessage": "Aggregator name already exists."

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],

"errorMessage": "Failed to create aggregator. Exception: {error-message}"

}

Retrieve Aggregators

Use the GET method to retrieve aggregators in VDS.

GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves an aggregator:
GET /api/dataflows/{dataflowId:\\d+}/aggregators/{aggregator-id}

Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following is a sample response for the 200 OK code:

{

"id": 3,
"name": "Aggregatorl",
"self": {

"rel": "self",

"href": "api/dataflows/l/aggregator/3",
"title": "Aggregatorl",
"id": 3

}l

"dataflow": {
"rel": "dataflow",
"href": "api/dataflows/1",
"title": "Data flow",
llid": l

)l

"type": "AGGREGATOR",

"valid": true,

"createDate": "2015-07-21T23:47:20-07:00",

"createdBy": "Administrator",

"predefined": false,

"deployable": false,

"force": false,

"pluginId": " VDS_AGGREGATOR",

"schedulable": false,

"config": {
"topicExpiresIn": "600000",
"topicDescription": "",
"description": "",
"topicResponderAccess": "NAMED PROPERTIES",
"topicName": "",
"eventQueueSize": "100000"

151

"stats": [

"name": "Bytes Received", "value": 10501, "type": 101 },
"name": "Events Received", "value": 10503, "type": 101 1},
"name": "Receive Rate(Per Sec)", "value": 10504, "type": 101 },
"name": "Bytes Sent", "value": 10001, "type": 101 },

"name": "Events Sent", "value": 10003, "type": 101 },

"name": "Send Rate(Per Sec)", "value": 10005, "type": 101 },
"name": "Events Reassigned", "value": 10505, "type": 101 },
"name": "Events to be Processed", "value": 10601, "type": 101 }

U UV VI U

]l

"topics": [],

"topicProperties": []
}

The following is a sample response for the 404 Not Found code:

{
"success": false,
"errors":
[

{

"code": AGGREGATOR NOT FOUND,

"parameters": [{aggregator-id}],

"errorMessage": "Aggregator with Id: {aggregator-id} not found."

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[

{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],

"errorMessage": "Failed to get aggregator. Exception : {error-message}."

}

Retrieve All Aggregators

Use the GET method to retrieve all aggregators in VDS.
GET Request in JSON Format

Generate a GET request. For example, the following GET request retrieves all aggregators:

GET /api/dataflows/{dataflowId:\\d+}/aggregators

Content-Type: application/json
Accept: application/json

GET Response in JSON Format
The following are sample responses for the 200 OK code:

{
"success": true,
"total": 0O
"count": 0
"items": [

]

"success": true,
"total": 1,
"count": 1,

152 Chapter 6: Sample JSON Requests and Responses

"items":

{

[

"id": 3,
"name": "Aggregatorl",
"self": {

"rel": "self",

"href": "api/dataflows/l/aggregator/3",

"title": "Aggregatorl",
"id": 3

}l

"dataflow": {
"rel": "dataflow",
"href": "api/dataflows/1",
"title": "Data flow",
"id": l

}l

"type": "AGGREGATOR",

"valid": true,

"createDate": "2015-07-21T23:47:20-07:00",

"createdBy": "Administrator",
"predefined": false,
"deployable": false,
"force": false,
"pluginId": " VDS AGGREGATOR",
"schedulable": false,
"config": {

"topicExpiresIn": "600000",

"topicDescription": "",
"description": "",
"topicResponderAccess": "NAMED PROPERTIES",
"topicName": "",
"eventQueueSize": "100000"
} 4
"stats": [
{ "name": "Bytes Received", "value": 10501, "type": 101 },
{ "name": "Events Received", "value": 10503, "type": 101 },
{ "name": "Receive Rate(Per Sec)", "value": 10504, "type": 101 },
{ "name": "Bytes Sent", "value": 10001, "type": 101 },
{ "name": "Events Sent", "value": 10003, "type": 101 },
{ "name": "Send Rate(Per Sec)", "value": 10005, "type": 101 },
{ "name": "Events Reassigned", "value": 10505, "type": 101 },
{ "name": "Events to be Processed", "value": 10601, "type": 101 }
1,
"topics": [],
"topicProperties": []
}
]
}
The following is a sample response for the 500 Internal Server Error code:
{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}l],
"errorMessage": "Failed to get all aggregator. Exception {error-message}."
}

Aggregators

153

Update Aggregator

Use the POST method to update an aggregator in VDS.
POST Request in JSON Format
Generate a POST request. For example, the following POST request updates an aggregator:
POST /api/dataflows/{dataflowId:\\d+}/aggregators
Content-Type: application/json
Accept: application/json
x-http-method-override: PUT
POST Body in JSON Format
{

"config": {

"description": "",
"eventQueueSize": "100000",
"topicName": "",
"topicDescription": "",
"topicExpiresIn": "",

"topicResponderAccess": "NAMED PROPERTIES"
}I
"stats": [{ "name": "Bytes Received", "value": 10501, "type": 101 },
"name": "Events Received", "value": 10503, "type": 101 1},
"name": "Receive Rate(Per Sec)", "value": 10504, "type": 101 },
"name": "Bytes Sent", "value": 10001, "type": 101 },
"name": "Events Sent", "value": 10003, "type": 101 },
"name": "Send Rate(Per Sec)", "value": 10005, "type": 101 },

D U U U U

"name": "Events Reassigned", "value": 10505, "type": 101 },
{ "name": "Events to be Processed", "value": 10601, "type": 101 }],
"name": "aggregator updated",
"pluginId": " VDS AGGREGATOR",
"topics": [],
"topicProperties": []

}
POST Response in JSON Format
The following is a sample response for the 200 OK code:

{

"id": 4,
"name": "aggregator updated",
"self": {
"rel": "self",
"href": "api/dataflows/1l/aggregator/4",
"title": "aggregator updated",
"id": 4 B
}I
"dataflow": {

"rel": "dataflow",
"href": "api/dataflows/1",
"title": "Data flow",
"id": 1

}l

"type": "AGGREGATOR",

"valid": true,

"createDate": "2015-07-22T02:17:02-07:00",

"createdBy": "Administrator",

"predefined": false,

"deployable": false,

"force": false,

"pluginId": " VDS AGGREGATOR",

"schedulable": false,

"config": {
"topicExpiresIn":
"topicDescription":
"description": "",

nn
7

nn
’

154 Chapter 6: Sample JSON Requests and Responses

"topicResponderAccess": "NAMED PROPERTIES",
"topicName": "",
"eventQueueSize": "100000"

}

"stats": [{ "name": "Bytes Received", "value": 10501, "type": 101 },
"name": "Events Received", "value": 10503, "type": 101 1},
"name": "Receive Rate(Per Sec)", "value": 10504, "type": 101 },

"name": "Bytes Sent", "value": 10001, "type": 101 },
"name": "Events Sent", "value": 10003, "type": 101 },

RN U U U U

"name": "Send Rate(Per Sec)", "value": 10005, "type": 101 },
"name": "Events Reassigned", "value": 10505, "type": 101 },
"name": "Events to be Processed", "value": 10601, "type": 101 }],
"topics": [],
"topicProperties": []

}
The following is the sample response for the 404 Not Found code:

{
"success": false,
"errors":
[

{

"code": AGGREGATOR NOT FOUND,

"parameters": [{aggregator-id}],

"errorMessage": "Aggregator with Id: {aggregator-id} not found"

}
}

The following is a sample response for the 400 Bad Request code:

{
"success": false,
"errors":
[

{
"code": AGGREGATOR NAME ALREADY EXISTS,
"parameters": null,
"errorMessage": "Aggregator name already exists."

}
}

The following is a sample response for the 500 Internal Server Error code:

{
"success": false,
"errors":
[
{
"code": INTERNAL SERVER ERROR,
"parameters": [{error-message}],
"errorMessage": "Failed to update aggregator. Exception : {error-message}"

}

Delete Aggregators

Use the POST method to delete an aggregator in VDS.
POST Request in JSON Format

Generate a POST request. For example, the following POST request deletes an aggregator:

POST /api/dataflows/{dataflowId:\\d+}/aggregators/{aggregator-id}

Content-Type: application/json

Aggregators 155

Accept: application/json
x-http-method-override: DELETE

POST Response in JSON Format
The following is a sample response for the 404 Not Found code:

{

"success": false,
"errors":
[

{
"code": AGGREGATOR NOT_ FOUND,

"parameters": [{aggregator-id}],
"errorMessage": "Aggregator with Id: {aggregator-id} not found"

}
]

500 Internal Server Error

"success": false,
"errors":
[

{

"code": INTERNAL SERVER ERROR,

"parameters": [{aggregator-id}, {error-message}],

"errorMessage": "Failed to delete aggregator with Id:{aggregator-id}.
Exception: {error-message}"

}
]

Authentication

Perform user authentication in the Administrator tool before you perform REST calls.

1. Send a POST request to the following URL:
http://<hostname>:<port>/administrator/Login.do
Specify the username and password in x-www-form-urlencoded format.
VDS creates a cookie that it uses to authenticate your username in the Administrator tool.
2. After VDS creates the cookie, use the following base URL to access the REST APls:

http://<hostname>:<port>/administrator/api

156 Chapter 6: Sample JSON Requests and Responses

CHAPTER 7/

Glossary

Administrator Daemon

Daemon process that facilitates the creation, management, deployment, and undeployment of data flows
through the Administrator tool. The Administrator Daemon also aggregates statistics and state information
from Vibe Data Stream Nodes in the deployment, and send the information to the Administrator tool.

data flow

Defines the path of data from source services to target services through zero or more transformations. You
can create, design, deploy, and undeploy data flows in the Administrator tool. Data flows can be simple data
flows, such as one-to-one, or complex data flows, such as, one-to-many, many-to-one, and many-to-many.

Informatica Administrator
Informatica Administrator (Administrator tool) is a web application that you can use to manage, monitor,

deploy, and undeploy data flows.
receiver type ID

A 32-bit value that uniquely identifies the Ultra Messaging receiver.

source service
A VDS Node contains one or more specialized threads that work together to transfer data from an application

host to a target data store or data engine. Source services are threads that consume and publish events
generated by a source application. Source services publish data in the form of Ultra Messaging or WebSocket
messages.

target service

Target services are the threads that subscribe to data published by source services and write the data to the
target. Target services run on hosts that have access to the target.

topic resolution domain

The domain of UDP multicast or unicast connectivity that allows Ultra Messaging topic resolution to occur.
Topic resolution enables receivers to discover sources.

unicast topic resolution daemon (LBMRD)

A daemon process that performs the same topic resolution activities as those performed by multicast topic
resolution. By default, Ultra Messaging expects multicast connectivity between sources and targets. When
only unicast connectivity is available, you must run one or more unicast topic resolution daemons (LBMRD).

157

VDS Node
A VDS Node is a Java program within which source services and target services run. You can run multiple

source services and target services on a single node. You can also configure multiple nodes to run on a host
machine.

158 Chapter 7: Glossary

INDEX

A

Add
dependent libraries 31
Java class libraries 31
native libraries 31
authentication 156

C

Create
custom entity packages 32
VDS plug-in files 31
VDS plug-in XML documents 16
creating entities 41
custom entities
components 15
directory structure 15
managing 15
upgrading 35
versioning 34
custom entity creation
task outline 16
custom entity packages
creating 32

D

dependent libraries
adding 31

H

HTTP request and response
aggregator parameters 72
common parameters 60
connection parameters 72
data flow parameters 61
link parameters 74
node parameters 74
VDS parameter parameters 75

HTTP request and response parameters
marshaller parameters 71
node group parameters 74
overview 60
source service parameters 61
target service parameters 67
transformation parameters 71

Implement
VDS interfaces 25
VDSConsumptionSource interface 27
VDSPIuginStatistics interface 30
VDSSource interface 25
VDSTarget interface 27
VDSTransform interface 28
Increment
version number 34
interfaces 13

J

Java class libraries
adding 31

M

Manage
custom entities 15
Maven archetypes
creating custom entity types 40

N

native libraries
adding 31

R

Register
VDS plug-in 33
request body
REST API 57
request header
elements 57
format 57
REST API
calls 56
overview 56
requests and responses 58
URL 56
REST APIs
error objects 58
guidelines 59
return lists in JSON 58
return lists in XML 58
return list
REST API 58

159

T

Troubleshooting
component connectivity 38

U

Unregister

VDS plug-in 33
Upgrade

custom entities 35

Vv

VDS APl installation package 13
VDS interfaces
sample implementations 25
VDS plug-in
registering 33
unregistering 33
VDS plug-in files
creating 31
VDS plug-in XML documents
creating 16

160 Index

VDS plug-in XML documents (continued)

format 17
VDS plug-in XML files

generating from the VDS plug-in schema definition 16
VDS plugin XML files

incrementing version number 34
VDSConsumptionSource

implementing 27

sample implementation 27
VDSPluginStatistics

implementing 30

sample implementation 30
VDSSource

implementing 25

sample implementation 25
VDSTarget

implementing 27

sample implementation 27
VDSTransform

implementing 28

sample implementation 28
version

incrementing 34
Version

custom entities 34

	Table of Contents
	Preface
	Informatica Resources
	Informatica My Support Portal
	Informatica Documentation
	Informatica Product Availability Matrixes
	Informatica Web Site
	Informatica How-To Library
	Informatica Knowledge Base
	Informatica Support YouTube Channel
	Informatica Marketplace
	Informatica Velocity
	Informatica Global Customer Support

	Chapter 1: Introduction to Vibe Data Stream Custom Entity Types
	Vibe Data Stream Custom Entity Types Overview
	Vibe Data Stream API
	Vibe Data Stream API Installation Package
	Vibe Data Stream Interfaces
	Vibe Data Stream Helper Classes

	Chapter 2: Managing Custom Entity Types
	Managing Custom Entity Types Overview
	Components of a Custom Entity Type
	Creating a Custom Entity Type
	Creating the Vibe Data Stream Plug-in XML Document
	Creating the VDS Plug-in JAR File
	Adding Dependent Libraries
	Creating a Package for the Custom Entity Type

	Using a Custom Entity Type
	Stopping the Administrator Daemon
	Registering or Unregistering a VDS Plug-in
	Starting the Administrator Daemon

	Versioning a Custom Entity Type
	Editing the Custom Entity Implementation
	Incrementing the Version Number
	Preparing a Custom Entity
	Editing the CSV File
	Upgrading a Custom Entity Type

	Custom Source Service Type Example
	Step 1: Create the Vibe Data Stream Plug-in XML Document
	Step 2: Create the Java Source File
	Step 3: Create the VDS Plug-in JAR File
	Step 4: Create a Package for the Custom Entity Type
	Step 5: Register the VDS Plug-in
	Step 6: Use the Plug-in in a Data Flow

	Troubleshooting Custom Entity Types

	Chapter 3: Custom Entities from Maven Archetypes
	Custom Entities from Maven Archetypes Overview
	Create an Entity Based on an Archetype in the Internal Catalog
	Step 1: Verify the Prerequisites
	Step 2: Copy the API JAR File and the Archetypes to the Local Repository
	Step 3: Copy the Archetype Descriptor to the Home Directory
	Step 4: Add the Local Archetype Descriptor File
	Step 5: Create a Maven Project
	Step 6: Install the Maven Project

	Create an Entity Based on an Archetype in a Remote Catalog
	Step 1: Verify the Prerequisites
	Step 2: Add the Remote Archetype Descriptor File
	Step 3: Create a Maven Project
	Step 6: Install the Maven Project

	Chapter 4: REST APIs
	REST APIs Overview
	Header and Body Configuration
	Request Header
	Request Body
	REST API Responses
	Error Object

	REST API Guidelines

	Chapter 5: HTTP Request and Response Parameters
	HTTP Request and Response Parameters Overview
	Common Request and Response Parameters
	Data Flow Parameters
	Source Service Parameters
	Target Service Parameters
	Transformation Parameters
	Aggregator Parameters
	Connection Parameters
	Link Parameters
	Node Group Parameters
	Node Parameters
	VDS Parameter Parameters

	Chapter 6: Sample JSON Requests and Responses
	Data Flows
	Create Data Flows
	Retrieve Data Flows
	Retrieve All Data Flows
	Update Data flows
	Deploy Data Flows
	Deploy All Data Flows
	Undeploy Data Flows
	Undeploy All Data Flows
	Delete Data Flows
	Redeploy Data Flows

	Source Services
	Create Sources
	Get Source by ID
	Retrieve All Sources
	Update Source Services
	Delete Source Services
	Associate Source Services with Node Groups
	Retrieve Source Service and Node Group Associations
	Deploy Source Services
	Undeploy Source Services
	Redeploy Source Services

	Target Services
	Create Target Services
	Get Target Services by ID
	Retrieve All Target Services
	Update Target Services
	Delete Target Services
	Associate Target Services with Node Groups
	Retrieve Target Service and Node Group Associations
	Deploy Target Services
	Undeploy Target Services
	Redeploy Target Services

	Data Connections
	Create Data Connections
	Retrieve Data Connections
	Retrieve All Data Connections
	Update Data Connections
	Delete Data Connections

	Links
	Create Links
	Retrieve Links
	Retrieve All Links
	Update Links
	Delete Links

	Transformations
	Create Transformations
	Retrieve Transformation by ID
	Retrieve All Transformations
	Update Transformation
	Delete Transformations

	Node Groups
	Create Node Groups
	Retrieve Node Groups
	Retrieve All Node Groups
	Update Node Groups
	Delete Node Groups

	Nodes
	Create Nodes
	Retrieve Nodes
	Retrieve All Nodes
	Update Nodes
	Delete Nodes

	Parameters
	Create Parameters
	Retrieve Parameters
	Retrieve All Parameters
	Update Parameters
	Delete Parameters

	Plug-ins
	Retrieve Plugins
	Retrieve All Plugins

	Aggregators
	Create Aggregators
	Retrieve Aggregators
	Retrieve All Aggregators
	Update Aggregator
	Delete Aggregators

	Authentication

	Chapter 7: Glossary
	Index

