
Stateful Computing on the
Spark Engine for Big Data
Management 10.2

© Copyright Informatica LLC 2017, 2019. Informatica, the Informatica logo, and Big Data Management are
trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the
world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/
trademarks.html.

Abstract
You can use window functions to perform stateful calculations on the Spark engine. Window functions operate on a
partition or "window" of data, and return a value for every row in that window. This article describes the steps to
configure a transformation for windowing and define window functions in an Expression transformation. This article
assumes that you are familiar with mappings and know how to develop and run a mapping.

Supported Versions
• Big Data Management® 10.2

Table of Contents
Overview. 2

Use Case: Compare Current and Previous Records. 2

Mapping. 3

Step 1. Access the Previous Row for Every Record. 3

Step 2. Determine When a Station Changes. 4

Step 3. Assign a Unique Value to the Rows Pertaining to Each Station. 5

Step 4. Aggregate the Data to Calculate Departure and Arrival Times. 6

Mapping Output. 7

Overview
Stateful computation uses the information about past or future rows to affect the processing of the current row. The
data from these rows is used to modify the state of the current row, returning a value that has a new state. You can use
window functions to perform stateful calculations. Window functions operate on a group of rows and calculate a return
value for every input row. When you want to retrieve data from upstream or downstream rows and perform cumulative
calculations, use windowing to access the data and operate on different groups of rows.

Use Case: Compare Current and Previous Records
You are a developer working for a commuter rail line. Multiple trains run on the rail line and stop at different stations
throughout the day. The location of each train is recorded at 10-second intervals.

The train location and timestamp are recorded in the following format:

Train ID Station Date Timestamp

1 AMS 17/30/09 10:00:00

1 AMS 17/30/09 10:00:10

1 AMS 17/30/09 10:00:20

1 HVS 17/30/09 10:15:20

1 HVS 17/30/09 10:15:30

2

Train ID Station Date Timestamp

1 HVS 17/30/09 10:15:40

1 AMF 17/30/09 10:33:10

You need to determine the arrival and departure times of a train at each station. To calculate what time a train departs
from a station, you must determine if the stations in the previous record and the current record differ. If the stations
differ, the current record is considered a new stop. The previous timestamp is the departure time from the previous
station, and the current timestamp is the arrival time at the next station. If the stations do not differ, the current record
is not considered a new stop.

For example, the stations in the third and fourth record above are different. One station is AMS and the next station is
HVS. Because these records differ, you determine that the train departs from AMS station at 10:00:20 and arrives at
HVS station at 10:15:20.

Mapping
To create the mapping, perform the following high-level steps:

1. Define a window function to access the previous row for every record.

2. Configure an Expression transformation to identify when a train changes stations.

3. Define an aggregate window function to assign a unique value to the rows corresponding to each station.

4. Configure an Aggregator transformation to aggregate by the unique station value. Define aggregate
expressions to calculate the arrival and departure times at each station.

The following image shows the mapping:

Step 1. Access the Previous Row for Every Record
The LAG window function returns the value that is an offset number of rows before the current row. You need to get the
state of the previous row for each record so that you can use it to identify when a station changes. Configure an
Expression transformation called GetPrevStation. Configure a port called PrevStation with a LAG function to access the
previous station for every record.

Define the following function on the Ports tab of the Expression transformation:

LAG (Station, 1)

Where:

• Station is the target column that the function operates on.

• 1 is the offset. This value accesses the row immediately before the current row.

The following image shows the window function:

3

When you include a window function in an Expression transformation, you configure the windowing properties
associated with the function. Windowing properties define the partitioning, ordering, and frame boundaries associated
with a particular input row.

Create a partition to process the rows by train ID. Order the data by date and time.

Define the following windowing properties on the Windowing tab:

Property Value

Order key Date, Time. Displays the data chronologically.

Partition key TrainID. Processes the rows according to train ID.

The following image shows the windowing configuration:

Step 2. Determine When a Station Changes
Configure an Expression transformation called FindStationTransitions that determines when a train travels from one
station to the next. Define a port called IsNewStation that compares the station in the current record with the station in
the previous record.

Define the following function to check if the current record identifies a different station:

IIF (Station != PrevStation, 1, 0)

The value of the IsNewStation port is 1 when the station changes. The value is 0 when the station does not change.

The following image shows the function in the Expression Editor:

4

Step 3. Assign a Unique Value to the Rows Pertaining to Each
Station
You can use aggregate functions as window functions to perform cumulative calculations on a set of data. An
aggregate function acts as a window function when you configure the transformation for windowing.

Configure an Expression transformation called CalcRunID. Configure a port called RunID with a SUM function to
calculate the sum of the IsNewStation port. When you configure the transformation for windowing, the SUM function
calculates a cumulative sum for every row.

IsNewStation is 1 every time a station changes. So as the cumulative sum processes each row chronologically, the
RunID port increments at each station and stays the same until the station changes again. This assigns a unique value
to the rows pertaining to each station.

Define the following aggregate function in the Expression Editor:

SUM (IsNewStation)

The following image shows the aggregate function:

5

Define the following windowing properties on the Windowing tab:

Property Value

Start offset All Rows Preceding. Includes all previous records within the partition in the calculation, producing a
cumulative sum.

End offset 0

Order key Date, Time. Displays the data chronologically.

Partition key TrainID. Processes the data according to train ID.

The following image shows the windowing configuration:

Step 4. Aggregate the Data to Calculate Departure and Arrival
Times
Configure an Aggregator transformation to aggregate by the unique station value assigned in Step 3. Define aggregate
expressions to calculate the departure and arrival times at each station.

Define the following Group By ports in the Aggregator transformation:

• TrainID
• Station

6

• RunID

Define the following aggregate expressions in the output ports of the Aggregator transformation:

• MIN (Time). Calculates the departure time.

• MAX (Time). Calculates the arrival time.

• MIN (Date). Calculates the departure date. If the departure date is different than the arrival date, the
mapping uses the departure date in the final output.

The following image shows the Group By ports and aggregate expressions in the Aggregator transformation:

Mapping Output
The mapping produces data in the following format:

Train ID Station Date Arrival Time Departure Time

1 AMS 17/30/09 10:00:00 10:00:20

1 HVS 17/30/09 10:15:20 10:15:40

1 AMF 17/30/09 10:33:10 10:33:30

2 AMS 17/30/09 12:00:00 12:00:20

2 HVS 17/30/09 12:20:10 12:20:30

2 AMF 17/30/09 12:32:30 12:32:50

7

Author
Elizabeth Snyder

8

	Abstract
	Supported Versions
	Table of Contents
	Overview
	Use Case: Compare Current and Previous Records
	Mapping
	Step 1. Access the Previous Row for Every Record
	Step 2. Determine When a Station Changes
	Step 3. Assign a Unique Value to the Rows Pertaining to Each Station
	Step 4. Aggregate the Data to Calculate Departure and Arrival Times
	Mapping Output
	Author

