
Informatica® PowerExchange for HDFS
10.2

User Guide

Informatica PowerExchange for HDFS User Guide
10.2
September 2017

© Copyright Informatica LLC 2012, 2018

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

Informatica, the Informatica logo, PowerExchange, and Big Data Management are trademarks or registered trademarks of Informatica LLC in the United States and
many jurisdictions throughout the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other
company and product names may be trade names or trademarks of their respective owners.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © OSS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright © University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright© MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/

Consortium/Legal/2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http://forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/faq.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/
EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://
jdbc.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/lz4/; https://github.com/jedisct1/libsodium/blob/master/
LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe WaInes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, please report them to us in writing at
Informatica LLC 2100 Seaport Blvd. Redwood City, CA 94063.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2018-09-27

https://www.informatica.com/legal/patents.html

Table of Contents

Preface . 6
Informatica Resources. 6

Informatica Network. 6

Informatica Knowledge Base. 6

Informatica Documentation. 6

Informatica Product Availability Matrixes. 7

Informatica Velocity. 7

Informatica Marketplace. 7

Informatica Global Customer Support. 7

Chapter 1: Introduction to PowerExchange for HDFS. 8
PowerExchange for HDFS Overview. 8

Chapter 2: PowerExchange for HDFS Configuration. 9
PowerExchange for HDFS Configuration Overview. 9

Prerequisites. 9

MapR Prerequisites. 10

Chapter 3: HDFS Connections. 11
HDFS Connections Overview. 11

HDFS Connection Properties. 11

Creating an HDFS Connection. 13

Chapter 4: HDFS Data Objects. 14
HDFS Data Objects Overview. 14

Generate the Source File Name for HDFS Data Objects. 14

Flat File Data Objects. 15

Compression and Decompression for Flat File Sources and Targets. 15

Rules and Guidelines for Flat File Data Objects. 16

Configuring a Flat File Data Object with an HDFS Connection. 16

Complex File Data Objects. 17

Complex File Data Object Overview Properties. 17

Compression and Decompression for Complex File Sources and Targets. 18

Parameterization of Complex File Data Objects. 19

Creating a Complex File Data Object. 19

Complex File Data Object Output Parsing. 20

Custom Formats. 21

Custom Formats Configuration. 21

4 Table of Contents

Chapter 5: HDFS Data Extraction. 22
HDFS Data Extraction Overview. 22

Flat File Data Object Read Properties. 22

Complex Files Partitioning. 23

Complex File Data Object Read Properties. 23

General Properties. 24

Ports Properties. 24

Sources Properties. 24

Advanced Properties. 25

Column Projection Properties. 26

Chapter 6: HDFS Data Load. 27
HDFS Data Load Overview. 27

Flat File Data Object Write Properties. 27

Complex File Streaming. 28

Complex Files Output Collection Mode. 29

Complex File Data Object Write Properties. 30

General Properties. 30

Port Properties. 31

Sources Properties. 31

Advanced Properties. 31

Column Projection Properties. 33

Chapter 7: HDFS Mappings. 34
HDFS Mappings Overview. 34

Mapping Validation and Run-time Environments. 34

HDFS Data Extraction Mapping Example. 35

HDFS Data Load Mapping Example. 36

HDFS Avro Read Mapping Example. 37

Appendix A: Data Type Reference. 41
Data Type Reference Overview. 41

Flat File and Transformation Data Types. 42

Complex File and Transformation Data Types. 42

Avro Complex File Data Types and Transformation Data Types. 43

JSON Complex File Data Types and Transformation Data Types. 43

Parquet Complex File Data Types and Transformation Data Types. 44

Index. 45

Table of Contents 5

Preface
The Informatica PowerExchange® for HDFS User Guide provides information about reading data from the
Hadoop Distributed File System (HDFS) and writing data to HDFS. The guide is written for database
administrators and developers.

This book assumes you have knowledge of HDFS and Informatica Developer.

Informatica Resources

Informatica Network
Informatica Network hosts Informatica Global Customer Support, the Informatica Knowledge Base, and other
product resources. To access Informatica Network, visit https://network.informatica.com.

As a member, you can:

• Access all of your Informatica resources in one place.

• Search the Knowledge Base for product resources, including documentation, FAQs, and best practices.

• View product availability information.

• Review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to search Informatica Network for product resources such as
documentation, how-to articles, best practices, and PAMs.

To access the Knowledge Base, visit https://kb.informatica.com. If you have questions, comments, or ideas
about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
To get the latest documentation for your product, browse the Informatica Knowledge Base at
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx.

If you have questions, comments, or ideas about this documentation, contact the Informatica Documentation
team through email at infa_documentation@informatica.com.

6

HTTPS://NETWORK.INFORMATICA.COM/
http://kb.informatica.com
mailto:KB_Feedback@informatica.com
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx
mailto:infa_documentation@informatica.com

Informatica Product Availability Matrixes
Product Availability Matrixes (PAMs) indicate the versions of operating systems, databases, and other types
of data sources and targets that a product release supports. If you are an Informatica Network member, you
can access PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional
Services. Developed from the real-world experience of hundreds of data management projects, Informatica
Velocity represents the collective knowledge of our consultants who have worked with organizations from
around the world to plan, develop, deploy, and maintain successful data management solutions.

If you are an Informatica Network member, you can access Informatica Velocity resources at
http://velocity.informatica.com.

If you have questions, comments, or ideas about Informatica Velocity, contact Informatica Professional
Services at ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that augment, extend, or enhance your
Informatica implementations. By leveraging any of the hundreds of solutions from Informatica developers
and partners, you can improve your productivity and speed up time to implementation on your projects. You
can access Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through Online Support on Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
http://www.informatica.com/us/services-and-training/support-services/global-support-centers.

If you are an Informatica Network member, you can use Online Support at http://network.informatica.com.

Preface 7

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/
http://network.informatica.com

C h a p t e r 1

Introduction to PowerExchange
for HDFS

This chapter includes the following topic:

• PowerExchange for HDFS Overview, 8

PowerExchange for HDFS Overview
PowerExchange for HDFS provides connectivity to the Hadoop Distributed File System (HDFS). You can use
PowerExchange for HDFS to read data from and write data to HDFS. You can also use PowerExchange for
HDFS to read data from and write data to the local file system.

The Data Integration Service uses the Hadoop API infrastructure to connect to HDFS. It connects to the
NameNode to read data from and write data to HDFS.

With PowerExchange for HDFS, you can read and write fixed-width and delimited file formats with a flat file
data object. You can also read and write compressed files.

You can read and write text files and binary file formats such as sequence files with a complex file data
object. You can also read and write compressed files.

You can configure custom formats to process data in input, output, and compression formats that Hadoop
supports.

8

C h a p t e r 2

PowerExchange for HDFS
Configuration

This chapter includes the following topics:

• PowerExchange for HDFS Configuration Overview, 9

• Prerequisites, 9

• MapR Prerequisites, 10

PowerExchange for HDFS Configuration Overview
PowerExchange for HDFS is installed with Informatica Data Services. You enable PowerExchange for HDFS
with a license key.
Note: To read or write data with a complex file data object, you will also need the Unstructured Data license
key.

Prerequisites
Before you use PowerExchange for HDFS to access data in HDFS, perform the following tasks:

• Install and configure Informatica Services. Verify that the domain has a Data Integration Service and a
Model Repository Service.

• Verify that a cluster configuration is created in the domain.

• Verify that the cluster configuration archive files are extracted to the following location on the Developer
tool machine:
<Informatica installation directory>\clients\DeveloperClient\hadoop\<Hadoop distribution>
\conf

• On the Developer tool machine, verify that the Hadoop Distribution Directory property in the
developerCore.ini file is set based on the Hadoop distribution that you use.
The developerCore.ini file is located in the following directory:

<Informatica installation directory>\clients\DeveloperClient\

9

The following table lists the Hadoop Distribution Directory property value that you must set for different
Hadoop distributions:

Hadoop Distribution Hadoop Distribution Directory Property Value

Amazon EMR -DINFA_HADOOP_DIST_DIR=hadoop\amazon_emr5.4.0

Azure HDInsight -DINFA_HADOOP_DIST_DIR=hadoop\HDInsight_3.6

Cloudera CDH -DINFA_HADOOP_DIST_DIR=hadoop\cloudera_cdh5u10

Hortonworks HDP -DINFA_HADOOP_DIST_DIR=hadoop\hortonworks_2.6

IBM BigInsights -DINFA_HADOOP_DIST_DIR=hadoop\biginsights_4.1

MapR -DINFA_HADOOP_DIST_DIR=hadoop\mapr_5.2.0

Note: By default, the Hadoop Distribution Directory property value is set for a Cloudera distribution.

MapR Prerequisites
If you use the MapR Hadoop distribution to access data in HDFS, complete the following steps on the
Developer tool machine:

1. In the run.bat file, set the MAPR_HOME environment variable to the following path:
<Informatica installation directory>\clients\DeveloperClient\hadoop\mapr_<version>
Note: The run.bat file is located in the following directory:

<Informatica installation directory>\clients\DeveloperClient
2. Verify the Hadoop cluster details in the mapr-clusters.conf file that is located in the following

directory:
<Informatica installation directory>\clients\DeveloperClient\hadoop\mapr_<version>\conf

3. Add the following path to the developerCore.ini file:
-Djava.library.path=hadoop\mapr_<version>\lib\native\Win64;bin;..\DT\bin

4. Double-click the run.bat file to launch the Developer tool.

10 Chapter 2: PowerExchange for HDFS Configuration

C h a p t e r 3

HDFS Connections
This chapter includes the following topics:

• HDFS Connections Overview, 11

• HDFS Connection Properties, 11

• Creating an HDFS Connection, 13

HDFS Connections Overview
Create an HDFS connection to read data from or write data to HDFS.

HDFS Connection Properties
Use a Hadoop File System (HDFS) connection to access data in the Hadoop cluster. The HDFS connection is
a file system type connection. You can create and manage an HDFS connection in the Administrator tool,
Analyst tool, or the Developer tool. HDFS connection properties are case sensitive unless otherwise noted.

Note: The order of the connection properties might vary depending on the tool where you view them.

The following table describes HDFS connection properties:

Property Description

Name Name of the connection. The name is not case sensitive and must be unique within the domain.
The name cannot exceed 128 characters, contain spaces, or contain the following special
characters:
~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is not case
sensitive. It must be 255 characters or less and must be unique in the domain. You cannot
change this property after you create the connection. Default value is the connection name.

Description The description of the connection. The description cannot exceed 765 characters.

Location The domain where you want to create the connection. Not valid for the Analyst tool.

11

Property Description

Type The connection type. Default is Hadoop File System.

User Name User name to access HDFS.

NameNode URI The URI to access the storage system.
You can find the value for fs.defaultFS in the core-site.xml configuration set of the cluster
configuration.
Note: If you create connections when you import the cluster configuration, the NameNode URI
property is populated by default, and it is updated each time you refresh the cluster configuration.
If you manually set this property or override the value, the refresh operation does not update this
property.

Cluster
Configuration

The name of the cluster configuration associated with the Hadoop environment.

Accessing Multiple Storage Types

Use the NameNode URI property in the connection parameters to connect to various storage types. The
following table lists the storage type and the NameNode URI format for the storage type:

Storage NameNode URI Format

HDFS hdfs://<namenode>:<port>
where:
- <namenode> is the host name or IP address of the NameNode.
- <port> is the port that the NameNode listens for remote procedure calls (RPC).
hdfs://<nameservice> in case of NameNode high availability.

MapR-FS maprfs:///

WASB in
HDInsight

wasb://<container_name>@<account_name>.blob.core.windows.net/<path>
where:
- <container_name> identifies a specific Azure Storage Blob container.

Note: <container_name> is optional.
- <account_name> identifies the Azure Storage Blob object.
Example:

wasb://infabdmoffering1storage.blob.core.windows.net/
infabdmoffering1cluster/mr-history

ADLS in
HDInsight

adl://home

When you create a cluster configuration from an Azure HDInsight cluster, the cluster configuration uses
either ADLS or WASB as the primary storage. You can edit the NameNode URI property in the HDFS
connection to connect to a local HDFS location.

12 Chapter 3: HDFS Connections

Creating an HDFS Connection
Create an HDFS connection before you import physical data objects.

1. Click Window > Preferences.

2. Select Informatica > Connections.

3. Expand the domain.

4. Select the connection type File Systems > Hadoop File System, and click Add.

5. Enter a connection name.

6. Optionally, enter a connection description.

7. Click Next.

8. Enter the user name to access HDFS.

9. Enter the NameNode URI to access HDFS based on the Hadoop distribution that you use.

10. Select the cluster configuration associated with the Hadoop environment.

11. Click Test Connection to verify the connection to HDFS.

12. Click Finish.

Related Topics:
• “HDFS Connection Properties” on page 11

Creating an HDFS Connection 13

C h a p t e r 4

HDFS Data Objects
This chapter includes the following topics:

• HDFS Data Objects Overview, 14

• Generate the Source File Name for HDFS Data Objects, 14

• Flat File Data Objects, 15

• Complex File Data Objects, 17

• Custom Formats, 21

HDFS Data Objects Overview
After you configure an HDFS connection, create a physical data object to read data from or write data to
HDFS.

Depending on the file format, you can configure the following types of physical data objects:

• Flat file data object. Create or import a flat file data object and configure an HDFS connection for the data
object. Use the flat file data object to read or write unstructured data in fixed-width or delimited text files.

• Complex file data object. Import a complex file data object with an HDFS connection. Use the complex file
data object to read or write semi-structured data in text, XML, JSON, sequence files, or binary files such as
PDF, Microsoft Word, and Microsoft Excel.

Generate the Source File Name for HDFS Data
Objects

You can add a file name column to the flat file data object. The file name column helps you to identify the
source file that contains a particular record of data. You can configure the mapping with the file name
column for both flat file and complex file data objects. When you read data from HDFS, you can extract the
fully qualified path of the source file.

You can configure the mapping to write the source file name to each source row when you add a File Name
Column port in the Overview view. The File Name Column port contains the name and the fully qualified path
for each source file. The File Name Column port is a string port with a default precision of 256 characters.

If the file or directory is in HDFS, enter the path without the node URI. For example,/user/lib/testdir
specifies the location of a directory in HDFS. The path must not contain more than 512 characters.

14

When you use a file name column in a Read transformation, the file name column returns the value in the
following format for HDFS:

hdfs://<host name>:<port>/<file name path>

For example, the file name column returns hdfs://irldv:5008/hive/warehouse/ff.txt, where the host name is
irldv and the port is 5008.

Flat File Data Objects
You can read data from and write data to HDFS through a fixed-width or delimited flat file data object that
does not contain binary data.

You can create or import a flat file data object. The data object properties that you specify in the Developer
tool must match the properties of the source file.

After you create a flat file data object, you can edit the following file properties:

• HDFS connection properties

• Compression formats

You can compress and decompress files in formats such as Gzip and Bzip2. To read large volumes of data,
you can connect a flat file source to read data from a directory of flat files.

You can use the flat file data objects as a source, target, or lookup transformation in mappings and mapplets.
You can select the mapping environment and run the mappings in a native or Hive run-time environment. You
can create and run profiles against flat file data objects.

When you configure a mapping that contains flat file data objects to run in the native environment, you can
enable the mapping for partitioning. The Data Integration Service can use multiple partitions to read data
from flat file sources with an HDFS connection. The Data Integration Service can also use multiple partitions
to write data to flat file targets with an HDFS connection. When the Data Integration Service adds partitions, it
increases the number of processing threads, which can increase mapping performance.

Compression and Decompression for Flat File Sources and
Targets

File compression can increase data transfer rates and reduce space for data storage.

You can read and write compressed flat files, specify compression formats, and decompress files. You can
compress and decompress files in compression formats such as Bzip2 and Lzo, or specify a custom
compression format.

You can specify a file or a directory of files. When the Data Integration Service reads from a directory, it reads
the files of the specified format only and ignores files of other formats.

Compressed files that you read in a Hive run-time environment cannot be split.

For information about how Hadoop processes compressed and uncompressed files, see the Hadoop
documentation.

Flat File Data Objects 15

The following table describes the compression options:

Compression
Options

Description

None The file is not compressed.

Auto The Data Integration Service detects the compression format of the file based on the file
extension.

Gzip The GNU zip compression format that uses the DEFLATE algorithm.

Bzip2 The Bzip2 compression format that uses the Burrows–Wheeler algorithm.

Lzo The Lzo compression format that uses the Lempel-Ziv-Oberhumer algorithm.
Note: The JAR files for LZO compression are not available with the default Hadoop installation.
You must place the JAR files for the LZO compression format in the lib folder of the
distribution directory and verify the distribution directory properties.

Custom Custom compression format. If you select this option, you must specify the fully qualified class
name implementing the Hadoop CompressionCodec interface in the Compression Codec field.

Related Topics:
• “Custom Formats Configuration” on page 21

Rules and Guidelines for Flat File Data Objects
Use the following rules and guidelines when you use flat file sources with an HDFS connection:

• You cannot use a command to generate or transform flat file data and send the output to the flat file
source at run time.

• You cannot use an indirect source type.

Use the following rules and guidelines when you use flat file targets with an HDFS connection:

• You cannot append output data to target files and reject files. The Data Integration Service truncates the
target files and reject files before writing the data.

• You cannot use the command output type.

• When the flat file target is in a partitioned mapping, you cannot write to a merge file that contains the
target output for all partitions. The Data Integration Service concurrently writes the target output to a
separate file for each partition.

Configuring a Flat File Data Object with an HDFS Connection
Configure a flat file data object with an HDFS connection to read data from or write data to HDFS.

If you create an empty flat file, the file properties must match that of the file in HDFS. If you import a flat file
data object, the file must reside in your local file system.

1. Click the Advanced tab of the flat file data object.

2. Navigate to the runtime properties for the flat file source in the Runtime: Read properties or the flat file
target in the Runtime: Write properties.

3. Configure the HDFS connection properties.

4. Optionally, you can configure the compression properties.

16 Chapter 4: HDFS Data Objects

Related Topics:
• “Flat File Data Object Read Properties” on page 22

• “Flat File Data Object Write Properties” on page 27

Complex File Data Objects
A complex file data object is a representation of a file in the Hadoop file system. Create a complex file data
object to read or write semi-structured data to HDFS.

You can read files from the local system or HDFS. Similarly, you can write files to the local system or HDFS.
To read large volumes of data, you can connect a complex file source to read data from a directory of files
that have the same format and properties. You can read and write compressed binary files.

You can use an Avro or Parquet format complex file data object as a source or target without using Data
Processor transformation. The Data Integration Service can directly read and write Avro and Parquet
resources to HDFS or local file system.

Note: When you import a Parquet complex file data object that contains a int96 data type field, the data for
the int96 data type field must contain 12 characters. The data preview fails if a row contains more or less
than 12 characters and such rows are rejected.

When you use a binary complex file data object as a source, you must use a Data Processor transformation
to parse the file. The output of the binary complex file data object is a binary stream. Similarly, when you
write binary data to a complex file, you must use a Data Processor transformation to convert the source data
into a binary format. You can then use the binary stream to write data to the binary complex file.

When you create a complex file data object, a read and write operation is created. You can use the complex
file data object read operation as a source in mappings and mapplets. You can use the complex file data
object write operation as a target in mappings and mapplets. You can select the mapping environment and
run the mappings in a native or Hadoop run-time environment.

Complex File Data Object Overview Properties
The Data Integration Service uses overview properties when it reads data from or writes data to a complex
file.

Overview properties include general properties that apply to the complex file data object. They also include
object properties that apply to the resources in the complex file data object. The Developer tool displays
overview properties for complex files in the Overview view.

General Properties

The following table describes the general properties that you configure for complex files:

Property Description

Name The name of the complex file data object.

Description The description of the complex file data object.

Complex File Data Objects 17

Property Description

Access Method The access method for the resource.
- Connection. Select Connection to specify an HDFS connection.
- File. Select File to browse for a file on your local system.

Connection The name of the HDFS connection.

Objects Properties

The following table describes the objects properties that you configure for complex files:

Property Description

Name The name of the resource.

Type The native data type of the resource.

Description The description of the resource.

Access Type Indicates that you can perform read and write operations on the complex file data
object. You cannot edit this property.

Compression and Decompression for Complex File Sources and
Targets

You can read and write compressed complex files, specify compression formats, and decompress files. You
can use compression formats such as Bzip2 and Lzo, or specify a custom compression format. The
compressed files must be of the binary format.

You can compress sequence files at a record level or at a block level.

For information about how Hadoop processes compressed and uncompressed files, see the Hadoop
documentation.

The following table describes the complex file compression formats for binary files:

Compression Options Description

None The file is not compressed.

Auto The Data Integration Service detects the compression format of the
file based on the file extension.

DEFLATE The DEFLATE compression format that uses a combination of the
LZ77 algorithm and Huffman coding.

Gzip The GNU zip compression format that uses the DEFLATE algorithm.

Bzip2 The Bzip2 compression format that uses the Burrows–Wheeler
algorithm.

Lzo The Lzo compression format that uses the Lempel-Ziv-Oberhumer
algorithm.

18 Chapter 4: HDFS Data Objects

Compression Options Description

Snappy The LZ77-type compression format with a fixed, byte-oriented
encoding.

Custom Custom compression format. If you select this option, you must
specify the fully qualified class name implementing the
CompressionCodec interface in the Custom Compression Codec
field.

Related Topics:
• “Custom Formats Configuration” on page 21

Parameterization of Complex File Data Objects
You can parameterize the complex file connection and the complex file data object operation properties.

You can parameterize the following data object read operation properties for complex data objects:

• Connection in the run-time properties

• File Format, Input Format, Compression Format, and Custom Compression Codec in the advanced
properties.

You can parameterize the following data object write operation properties for complex file data objects:

• Connection in the run-time properties.

• File Name, Output Format, Output Key Class, Output Value Class, Compression Format, Custom
Compression Codec, and Sequence File Compression Type in the advanced properties.

The following attributes support full and partial parameterization for complex file data objects:

• File Path in the advanced properties of the data object read operation.
For example, to parameterize a part of the attribute value where the file path in the advanced property is /
user/adpqa/dynschema.txt, create a parameter as $str="/user/adpqa", and then edit the file path as
$str/dynschema.txt. You can also parameterize the value of the entire file path.

• File Directory in the advanced properties of the data object write operation.
For example, to parameterize a part of the attribute value where the file directory in the advanced property
is /export/home/qamercury/source, create a parameter as $param="/export/home", and then edit the file
directory as $param/qamercury/source. You can also parameterize the value of the entire directory.

Creating a Complex File Data Object
Create a complex file data object to read data from or write data to HDFS.

1. Select a project or folder in the Object Explorer view.

2. Click File > New > Data Object.

3. Select Complex File Data Object and click Next.

The New Complex File Data Object dialog box appears.

4. Optionally, enter a name for the data object.

5. Click Browse next to the Location option and select the target project or folder.

Complex File Data Objects 19

6. In the Resource Format list, select any of the following formats:

• Binary: to read any resource format.

• Avro: to read an Avro resource.

• Parquet: to read a Parquet resource.

7. In the Access Type list, select Connection or File.

• Select Connection to access a file on HDFS. Click Browse next to the Connection option and select
an HDFS connection. Click Add next to the Selected Resource option to add a resource to the data
object. The Add Resource dialog box appears. Navigate or search for the resources to add to the data
object and click OK.

• Select File to access a file on your local system. Click Browse next to the Resource Location option
and select the file that you want to add. Click Fetch. The selected file is added to the Selected
Resources list.

8. Click Finish.

The data object appears under the Physical Data Objects category in the project or folder in the Object
Explorer view. A read and write operation is created for the data object. Depending on whether you want
to use the complex file data object as a source or target, you can edit the read or write operation
properties. You can also create multiple read and write operations for a complex file data object.

Note: The complex file data object write operation goes through and the mapping runs successfully even
if you have unconnected ports for required fields in the Parquet resource type. The NULL values are
inserted in the target object when such a mapping runs. The complex file data object read operation
results in an error while reading NULL values from the Parquet resource as Parquet Example Object
Model does not support NULL read.

Complex File Data Object Output Parsing
You can use an Avro or Parquet format complex file data object as a source or target without using Data
Processor transformation. The Data Integration Service can directly read and write Avro and Parquet
resources to HDFS or local file system.

When you use a binary complex file data object as a source, you must use a Data Processor transformation
to parse the binary output of the complex file.

Configure the Data Processor transformation as follows:

• Set an input port to buffer input and binary data type. Specify the port size. The port size that you specify
in the complex file properties and the Data Processor transformation must be the same.

• Set an output port to buffer output or set it for relational output. If you set the ports for relational output,
specify the ports based on the number of relational groups of ports you want in the output. Specify the
port size for the ports. You can use an XML schema reference that describes the XML hierarchy.

• Set a Streamer object as a startup component.

When you use a complex file data object as a target, you must use a Data Processor transformation to
convert the source data into a binary format. Set the Data Processor transformation port to binary. You can
then use the binary stream as an input to the complex file data object.

20 Chapter 4: HDFS Data Objects

Custom Formats
Custom formats provide flexibility with the input, output, and compression formats that you can use with
PowerExchange for HDFS.

Apart from the input, output, and compression formats that PowerExchange for HDFS supports, you can use
custom formats to read, write, and compress files. You can use the custom formats that Hadoop supports.

You can specify the following custom formats:

• Custom input format for complex file data objects

• Custom output format for complex file data objects

• Custom compression format for flat file and complex file data objects

Custom Formats Configuration
Before you use custom formats, you must complete configuration tasks in the Informatica environment.

To use custom formats in the native environment, copy the JAR files that implement the custom formats to
the following location:

<Informatica installation directory>/services/shared/hadoop/<hadoop distribution name>/
infaLib

To use custom formats in the Hadoop environment, see the Hadoop documentation for information on the
prerequisite tasks.

If the custom compression includes native libraries, depending on the run-time environment, add the path of
the native libraries in the environment variable $LD_LIBRARY_PATH or in the hadoopEnv.properties file.

The hadoopEnv.properties file is located in the following directory:

<Informatica installation directory>\clients\DeveloperClient\hadoop\Hadoop
distribution_<version>\infaConf

The following table describes how you must set the native libraries path based on the run-time environment:

Run-time Environment Add the Path to

Native $LD_LIBRARY_PATH

Hadoop hadoopEnv.properties

The Java library path in the hadoopEnv.properties file must include the native library path. For example, the
following property in the hadoopEnv.properties file specifies a native library path for a Cloudera distribution:

infapdo.java.opts=-Djava.library.path=$HADOOP_NODE_INFA_HOME/services/shared/bin:
$HADOOP_NODE_INFA_HOME/services/shared/hadoop/cloudera_cdh5u4/lib/native

Note: If you use Hortonworks or MapR distributions, change the native library path based on the distribution.

Custom Formats 21

C h a p t e r 5

HDFS Data Extraction
This chapter includes the following topics:

• HDFS Data Extraction Overview, 22

• Flat File Data Object Read Properties, 22

• Complex Files Partitioning, 23

• Complex File Data Object Read Properties, 23

HDFS Data Extraction Overview
You can use a flat file data object or a complex file data object to read data from HDFS.

Complete the following tasks to read data from HDFS by using PowerExchange for HDFS:

1. Create an HDFS connection.

2. Create a flat file data object or a complex file data object. Specify the data object properties such as the
file location, compression format, and input format.

3. Create a mapping and use the flat file data object or the complex file data object read operation as a
source.

4. Configure a Data Processor transformation to parse the complex file.

5. Configure the validation and run-time environment type.

6. Run the mapping to read data from HDFS.

Flat File Data Object Read Properties
The Data Integration Service uses read properties when it reads data from a flat file. You can edit the format
and runtime read properties on the Advanced tab.

22

The following table describes the HDFS connection and compression run-time properties that you configure
for flat file sources:

Property Description

Connection Type The type of connection. Select from the following options:
- None. The source file does not require a connection.
- Hadoop File System. The source file resides in HDFS.
Default is None.

Connection Name The name of the connection. Select an HDFS connection or assign a mapping parameter that
defines the connection details.

Compression Format Optional. Specifies the compression format. Select from the following options:
- None
- Auto
- Gzip
- Bzip2
- Lzo
- Custom

Compression Codec Required for custom compression. Specify the fully qualified class name implementing the
Hadoop CompressionCodec interface.

Complex Files Partitioning
When you run a mapping in a Hadoop environment to read data from sequence files and custom input format
files that are splittable, the Data Integration Service uses multiple partitions to read data from the source.
The Data Integration Service creates multiple Map jobs to read data in parallel, thereby resulting in high
performance.

To read text files in parallel, specify the following input format in the complex file read properties:

com.informatica.adapter.hdfs.hadoop.io.InfaTextInputFormat

You can also specify the following input format to read text files in batches:

com.informatica.adapter.hdfs.hadoop.io.InfaBatchTextInputFormat

Typically, when you read complex files, the Data Processor transformation has a Streamer component and a
Parser component. By default, the Data Integration Service calls the Data Transformation Engine for every
record. You can modify this behavior by using the count property in the Streamer component. Set the count
property to define the number of records that the Data Integration Service must treat as a batch. When you
set the count property, the Data Integration Service calls the Data Transformation Engine for each batch of
records instead of calling the Data Transformation Engine for every record. Since the Data Integration Service
processes the text files in batches, the performance increases.

Complex File Data Object Read Properties
The Data Integration Service uses read properties when it reads data from a complex file. Select the Output
transformation to edit the general, ports, sources, and run-time properties.

Complex Files Partitioning 23

Note: The FileName port is displayed by default when you create a data object read operation. You can
remove the FileName port if you do not want to read the FileName data.

General Properties
The Developer tool displays general properties for complex file sources in the Read view.

The following table describes the general properties that you configure for complex file sources:

Property Description

Name The name of the complex file.
This property is read-only. You can edit the name in the Overview view. When you use
the complex file as a source in a mapping, you can edit the name in the mapping.

Description The description of the complex file.

Ports Properties
Ports properties for a physical data object include port names and port attributes such as data type and
precision.

Note: The port size specified in the source transformation and Output transformation must be the same.

The following table describes the ports properties that you configure for complex file sources:

Property Description

Name The name of the resource.

Type The native data type of the resource.

Precision The maximum number of significant digits for numeric data types, or the maximum
number of characters for string data types.

Description The description of the resource.

Sources Properties
The Developer tool displays the sources properties for complex file sources in the Output transformation in
the Read view.

The sources properties list the resources of the complex file data object. You can add or remove resources in
the data object.

24 Chapter 5: HDFS Data Extraction

Advanced Properties
The Developer tool displays the advanced properties for complex file sources in the Output transformation in
the Read view.

The following table describes the advanced properties that you configure for complex file sources:

Property Description

File path The location of the file or directory. If the path is a directory, all the files in the directory
must have the same file format.
If the file or directory is in HDFS, enter the path without the node URI. For example, /
user/lib/testdir specifies the location of a directory in HDFS. The path must not
contain more than 512 characters.
If the file or directory is in the local system, enter the fully qualified path. For
example, /user/testdir specifies the location of a directory in the local system.
Note: The Data Integration Service ignores any subdirectories and their contents.

File Format The file format. Select one of the following file formats:
- Binary. Select Binary to read any file format.
- Sequence. Select Sequence File Format for source files of a Hadoop-specific binary

format that contain key and value pairs.
- Custom Input. Select Input File Format to specify a custom input format. You must

specify the class name implementing the InputFormat interface in the Input Format
field.

Default is Binary.

Input Format The class name for files of the input file format. If you select Input File Format in the
File Format field, you must specify the fully qualified class name implementing the
InputFormat interface.
To read files that use the Avro format, use the following input format:
com.informatica.avro.AvroToXML
To read files that use the Parquet format, use the following input format:
com.informatica.parquet.ParquetToXML
You can use any class derived from
org.apache.hadoop.mapreduce.InputFormat.

Compression Format Optional. The compression format for binary files. Select one of the following options:
- None
- Auto
- DEFLATE
- gzip
- bzip2
- Lzo
- Snappy
- Custom
Not applicable to Avro and Parquet formats.

Custom Compression
Codec

Required for custom compression. Specify the fully qualified class name implementing
the CompressionCodec interface.

Complex File Data Object Read Properties 25

Column Projection Properties
The Developer tool displays the column projection properties for Avro, JSON, and Parquet complex file
sources in the Properties view of the Read operation.

The following table describes the column projection properties that you configure for the complex file
sources:

Property Description

Enable Column Projection Displays the column details of the complex files sources.

Schema Format Displays the schema format that you selected while creating the complex file data
object. You can change the schema format and provide respective schema.

Schema Displays the schema associated with the complex file. You can select a different
schema.
Note: If you disable the column projection, the schema associated with the complex file
is removed. If you want to associate schema again with the complex file, enable the
column projection and click Select Schema.

Column Mapping Displays the mapping between input and output ports.
Note: If you disable the column projection, the mapping between input and output ports
is removed. If you want to map the input and output ports, enable the column projection
and click Select Schema to associate a schema to the complex file.

Project Column as Complex
Data Type

Displays columns with hierarchical data as a complex data type, such as, array, map, or
struct. Select this property when you want to process hierarchical data on the Spark
engine.
Note: If you disable the column projection, the data type of the column is displayed as
binary type.

26 Chapter 5: HDFS Data Extraction

C h a p t e r 6

HDFS Data Load
This chapter includes the following topics:

• HDFS Data Load Overview, 27

• Flat File Data Object Write Properties, 27

• Complex File Streaming, 28

• Complex Files Output Collection Mode, 29

• Complex File Data Object Write Properties, 30

HDFS Data Load Overview
You can use a flat file data object or a complex file data object to write data to HDFS.

Complete the following tasks to write data to HDFS by using PowerExchange for HDFS:

1. Create an HDFS connection.

2. Create a flat file data object or a complex file data object. Specify the data object properties such as the
file location and compression format.

3. Create a mapping and use the flat file data object or the complex file data object write operation as a
target.

4. Configure the validation and run-time environment type.

5. Run the mapping to write data to HDFS.

Flat File Data Object Write Properties
The Data Integration Service uses write properties when it writes data to a flat file. You can edit the format
and runtime write properties on the Advanced tab.

27

The following table describes the HDFS connection and compression properties that you configure for flat
file targets:

Property Description

Connection Type The type of connection. Select from the following options:
- None. The target file does not require a connection. The target file location is specified by

the output file directory.
- Hadoop File System. The target file is in HDFS.
Default is None.

Connection Name The name of the connection. Select an HDFS connection or assign a mapping parameter that
defines the connection details.

Compression
Format

Optional. Specifies the compression format. Select from the following options:
- None
- Gzip
- Bzip2
- Lzo
- Custom

Compression Codec Required for custom compression. Specify the fully qualified class name implementing the
Hadoop CompressionCodec interface.

Complex File Streaming
To write data to a complex file, include a Data Processor transformation in the mapping to convert the source
data into a binary format. You can use the binary stream to write data to the complex file.

The Data Processor transformation continually streams and sends input to the complex file target. It sends
end of file information after it fully streams a file. It sends end of streaming information when it streams the
entire input fully.

When the Data Processor transformation sends portions of the input to the complex file target,
PowerExchange for HDFS appends unique identifier information to the file name. The Data Integration
Service uses the unique identifiers to recognize that the streaming is in progress and not complete.
Therefore, the file name that you specify in the complex file write properties is not the same as the output file
in HDFS. The output file name in HDFS contains the unique identifier information as well.

The unique identifier format depends on the run-time environment that you select for the mapping and on
whether the file is not compressed or not.

The following table describes the unique identifier format based on the run-time environment and on whether
the file is not compressed or not:

Run-time Environment Type File Type Unique Identifier Format

Native Uncompressed File <filename>_<unique
identifier>_<seq>.<ext>

Native Compressed File <filename>_<unique
identifier>_<seq>.<compressio
n format extension>

28 Chapter 6: HDFS Data Load

Run-time Environment Type File Type Unique Identifier Format

Hive Uncompressed File <filename>-<reducer
ID>_<unique
identifier>_<seq>.<ext>

Hive Compressed File <filename>_<reducer
ID>_<unique
identifier>_<seq>.<compressio
n format extension>

If you do not include the compression format extension as part of the file name in the complex file write
properties, PowerExchange for HDFS appends extensions based on the compression format.

The following table describes the extensions that PowerExchange for HDFS appends based on the
compression format that you use:

Compression Format File Name Extension that PowerExchange for HDFS Appends

DEFLATE .deflate

Gzip .gz

Bzip2 .bz2

Lzo .lzo

Snappy .snz

Complex Files Output Collection Mode
When you write data to complex files, you can choose to collect the input rows and write the output to a
single file, or create an output row for each input row.

You can specify the output collection mode in the Data Processor transformation based on the complex file
type.

To specify the output collection mode in the Data Processor transformation, open the Data Processor
transformation and click the Settings view. In the Binary output collection mode section, specify the output
collection mode.

Complex Files Output Collection Mode 29

The following table describes the options that you can select for the output collection mode:

Property Name Property Description

Collect input rows to a single
output

Select this option if you want to collect all input rows and write the output to a
single file.

Split output when size exceeds When you write the output to a single file, you can choose to split the output file
when it exceeds a particular size.
Enter the size in MB exceeding which the file must be split.
Default is 100 MB.

Output row for each input row
(do not collect)

Select this option if you want to write an output row for each input row.

Output Collection Mode for Binary Files

When you write to binary files in a native or Hadoop environment, you can specify the output collection mode
in the Data Processor transformation.

Output Collection Mode for Sequence Files and Custom Output Format Files

When you write to sequence files or custom output format files in a native environment, PowerExchange for
HDFS writes all the key-value pairs into one output file. The number of key-value pairs that PowerExchange
for HDFS writes depends on the output collection mode that you specified in the Data Processor
transformation.

Complex File Data Object Write Properties
The Data Integration Service uses write properties when it writes data to a complex file. Select the Input
transformation to edit the general, ports, sources, and advanced properties.
Note: Though the FileName port is displayed by default when you create a data object write operation, the
FileName port is not supported for the data object write operation.

General Properties
The Developer tool displays general properties for complex file targets in the Write view.

The following table describes the general properties that you configure for complex file targets:

Property Description

Name The name of the complex file.
This property is read-only. You can edit the name in the Overview view. When you use
the complex file as a target in a mapping, you can edit the name in the mapping.

Description The description of the complex file.

30 Chapter 6: HDFS Data Load

Port Properties
Port properties for a physical data object include port names and port attributes such as data type and
precision.

Note: The port size specified in the target transformation and Input transformation must be the same.

The following table describes the ports properties that you configure for complex file targets:

Property Description

Name The name of the resource.

Type The native data type of the resource.

Precision The maximum number of significant digits for numeric data types, or the maximum
number of characters for string data types.

Description The description of the resource.

Sources Properties
The Developer tool displays the sources properties for complex file targets in the Input transformation in the
Write view.

The sources properties list the resources of the complex file data object. You can add or remove resources in
the data object.

Advanced Properties
The Developer tool displays the advanced properties for complex file targets in the Input transformation in
the Write view.

The following table describes the advanced properties that you configure for complex file targets:

Property Description

File Directory The directory location of the complex file target.
If the directory is in HDFS, enter the path without the node URI. For example, /
user/lib/testdir specifies the location of a directory in HDFS. The path must not
contain more than 512 characters.
If the directory is in the local system, enter the fully qualified path. For example, /
user/testdir specifies the location of a directory in the local system.
Note: The Data Integration Service ignores any subdirectories and their contents.

File Name The name of the output file. PowerExchange for HDFS appends the file name with a
unique identifier before it writes the file to HDFS.

Complex File Data Object Write Properties 31

Property Description

File Format The file format. Select one of the following file formats:
- Binary. Select Binary to write any file format.
- Sequence. Select Sequence File Format for target files of a Hadoop-specific binary

format that contain key and value pairs.
- Custom Output. Select Output Format to specify a custom output format. You must

specify the class name implementing the OutputFormat interface in the Output
Format field.

Default is Binary.

Output Format The class name for files of the output format. If you select Output Format in the File
Format field, you must specify the fully qualified class name implementing the
OutputFormat interface.

Output Key Class The class name for the output key. If you select Output Format in the File Format field,
you must specify the fully qualified class name for the output key.
You can specify one of the following output key classes:
- BytesWritable
- Text
- LongWritable
- IntWritable
Note: PowerExchange for HDFS generates the key in ascending order.

Output Value Class The class name for the output value. If you select Output Format in the File Format
field, you must specify the fully qualified class name for the output value.
You can use any custom writable class that Hadoop supports. Determine the output
value class based on the type of data that you want to write.
Note: When you use custom output formats, the value part of the data that is streamed
to the complex file data object write operation must be in a serialized form.

Compression Format Optional. The compression format for binary files. Select one of the following options:
- None
- Auto
- DEFLATE
- gzip
- bzip2
- LZO
- Snappy
- Custom

Custom Compression
Codec

Required for custom compression. Specify the fully qualified class name implementing
the CompressionCodec interface.

Sequence File Compression
Type

Optional. The compression format for sequence files. Select one of the following
options:
- None
- Record
- Block

32 Chapter 6: HDFS Data Load

Column Projection Properties
The Developer tool displays the column projection properties for Avro, JSON, and Parquet complex file
targets in the Properties view of the Write operation.

The following table describes the advanced properties that you configure for Avro, JSON, and Parquet
complex file targets:

Property Description

Enable Column Projection Displays the column details of the complex files sources.

Schema Format Displays the schema format that you selected while creating the complex file data
object. You can change the schema format and provide respective schema.

Schema Displays the schema associated with the complex file. You can select a different
schema.
Note: If you disable the column projection, the schema associated with the complex file
is removed. If you want to associate schema again with the complex file, enable the
column projection and click Select Schema.

Column Mapping Displays the mapping between input and output ports.
Note: If you disable the column projection, the mapping between input and output ports
is removed. If you want to map the input and output ports, enable the column projection
and click Select Schema to associate a schema to the complex file.

Project Column as Complex
Data Type

Displays columns with hierarchical data as a complex data type, such as, array, map, or
struct. Select this property when you want to process hierarchical data on the Spark
engine.
Note: If you disable the column projection, the data type of the column is displayed as
binary type.

Complex File Data Object Write Properties 33

C h a p t e r 7

HDFS Mappings
This chapter includes the following topics:

• HDFS Mappings Overview, 34

• Mapping Validation and Run-time Environments, 34

• HDFS Data Extraction Mapping Example, 35

• HDFS Data Load Mapping Example, 36

• HDFS Avro Read Mapping Example, 37

HDFS Mappings Overview
After you create a flat file or a complex file data object operation, you can create an HDFS mapping.

You can define the following objects in an HDFS mapping:

• A flat file data object or a complex file data object read operation as the input to read data from HDFS

• Transformations

• A flat file data object or a complex file data object write operation as the output to write data to HDFS

If you use a complex file data object as a source, you must use a Data Processor transformation to parse the
file. Similarly, when you use a complex file data object as a target, you must use a Data Processor
transformation to convert the source data into a binary format. You can then use the binary stream to write
data to the complex file.

Validate and run the mapping. You can deploy the mapping and run it or add the mapping to a Mapping task
in a workflow and run the workflow. You can also run the mapping in a Hadoop run-time environment.

Mapping Validation and Run-time Environments
You can use flat file and complex file data objects in a Hive run-time environment.

You can configure the mappings to run in native or Hadoop run-time environments. When you run a mapping
in the native environment, the Data Integration Service processes the mapping. When you run a mapping in a
Hadoop environment, the Data Integration Service can push mappings to a Hadoop cluster.

For more information about the Hive run-time and validation environment, see Big Data Management User
Guide.

34

HDFS Data Extraction Mapping Example
Your organization needs to analyze purchase order details such as customer ID, item codes, and item
quantity. The purchase order details are stored in a semi-structured compressed XML file in HDFS. The
hierarchical data includes a purchase order parent hierarchy level and a customer contact details child
hierarchy level. Create a mapping that reads all the purchase records from the file in HDFS. The mapping
must convert the hierarchical data to relational data and write it to a relational target.

You can use the extracted data for business analytics.

The following figure shows the example mapping:

You can use the following objects in the HDFS mapping:
HDFS Input

The input object, Read_Complex_File, is a Read transformation that represents a compressed XML file
stored in HDFS.

Data Processor Transformation

The Data Processor transformation, Data_Processor_XML_to_Relational, parses the XML file and
provides a relational output.

Relational Output

The output object, Write_Relational_Data_Object, is a Write transformation that represents a table in an
Oracle database.

When you run the mapping, the Data Integration Service reads the file in a binary stream and passes it to the
Data Processor transformation. The Data Processor transformation parses the specified file and provides a
relational output. The output is written to the relational target.

You can configure the mapping to run in a native or Hadoop run-time environment.

Complete the following tasks to configure the mapping:

1. Create an HDFS connection to read files from the Hadoop cluster.

2. Create a complex file data object read operation. Specify the following parameters:

• The file as the resource in the data object.

• The file compression format.

• The HDFS file location.

3. Optionally, you can specify the input format that the Mapper uses to read the file.

4. Drag and drop the complex file data object read operation into a mapping.

5. Create a Data Processor transformation. Configure the following properties in the Data Processor
transformation:

• An input port set to buffer input and binary data type.

• Relational output ports depending on the number of columns you want in the relational output.
Specify the port size for the ports. Use an XML schema reference that describes the XML hierarchy.

HDFS Data Extraction Mapping Example 35

Specify the normalized output that you want. For example, you can specify
PurchaseOrderNumber_Key as a generated key that relates the Purchase Orders output group to a
Customer Details group.

• Create a Streamer object and specify Streamer as a startup component.

6. Create a relational connection to an Oracle database.

7. Import a relational data object.

8. Create a write transformation for the relational data object and add it to the mapping.

HDFS Data Load Mapping Example
Your organization needs to denormalize employee ID, name, and address details. The employee ID, name, and
address details are stored in flat files in HDFS. Create a mapping that reads all the employee ID, name, and
address details from the flat files in HDFS. The mapping must convert the denormalized data to hierarchical
data and write it to a complex file target in HDFS.

You can use the target data for business analytics.

The following figure shows the example mapping:

You can use the following objects in the HDFS mapping:
HDFS Inputs

The inputs, Read_Address_Flat_File and Read_Name_Flat_File, are flat files stored in HDFS.

Data Processor Transformation

The Data Processor transformation, JSON_R2H_Denormalize_NameAndAddress, reads the flat files,
denormalizes the data, and provides a binary, hierarchical output.

HDFS Output

The output, Write_Complex_File, is a complex file stored in HDFS.

When you run the mapping, the Data Integration Service reads the input flat files and passes the employee ID,
name, and address data to the Data Processor transformation. The Data Processor transformation

36 Chapter 7: HDFS Mappings

denormalizes the employee ID, name, and address data, and provides a hierarchical output in a binary stream.
The binary and hierarchical output is written to the HDFS complex file target.

You can configure the mapping to run in a native or Hive run-time environment.

Complete the following tasks to configure the mapping:

1. Create an HDFS connection to read flat files from the Hadoop cluster.

2. Specify the read properties for the flat files.

3. Drag and drop the flat files into a mapping.

4. Create a Data Processor transformation. Set the Data Processor transformation port to binary.

5. Create an HDFS connection to write data to the complex file target.

6. Create a complex file data object write operation. Specify the following parameters:

• The file as the resource in the data object.

• The HDFS file location.

7. Drag and drop the complex file data object write operation into the mapping.

HDFS Avro Read Mapping Example
Your organization needs to denormalize customer key, name, address, and other details. The customer
details are stored in Avro files in HDFS. Import the Avro file object as a source. Create a mapping that reads
all the customer details from the avro files in HDFS, and writes the customers details to an Oracle target.

You can use the target data for business analytics.

You can use the following objects in the HDFS mapping:
HDFS Inputs

The Customer_Details_Avro file is an Avro files stored in HDFS.

HDFS Output

The Customer_Oracle_Target file is an Oracle object.

Create a Complex File Data Object

HDFS Avro Read Mapping Example 37

Create a complex file data object to read data from an Avro file. Verify that you select Avro as Resource
Format. The following image shows the sample selection:

38 Chapter 7: HDFS Mappings

When you create the complex file data object, the read and write operations are created by default. You can
view the columns present in the Avro file. The following image shows the sample data object read operation:

The Enable Column Projection is selected by default. You can view or update the associated schema and
column mapping.

HDFS Avro Read Mapping Example 39

The following image shows the sample mapping:

When you run the mapping, the Data Integration Service reads the input Avro files and writes the hierarchical
output directly to the Oracle target.

You can configure the mapping to run in a native or Hive run-time environment.

Perform the following tasks to configure the mapping:

1. Create an HDFS connection to read Avro file from the Hadoop cluster.

2. Create a complex file data object to import the Avro file. You must select Avro as Resource Format.
Configure the read operation properties.

3. Create an Oracle database connection to write data to the Oracle target.

4. Create an Oracle data object and configure the write operation properties.

5. Drag the complex file data object read operation and Oracle data object write operation into the
mapping.

6. Map ports and run the mapping.

40 Chapter 7: HDFS Mappings

A p p e n d i x A

Data Type Reference
This appendix includes the following topics:

• Data Type Reference Overview, 41

• Flat File and Transformation Data Types, 42

• Complex File and Transformation Data Types, 42

• Avro Complex File Data Types and Transformation Data Types, 43

• JSON Complex File Data Types and Transformation Data Types, 43

• Parquet Complex File Data Types and Transformation Data Types, 44

Data Type Reference Overview
Informatica Developer uses the following data types for HDFS data objects:

• Flat file data types. Flat file data types appear in the physical data object column properties.

• Complex file data types. Complex file data types appear in the physical data object column properties.

• Transformation data types. Set of data types that appear in the transformations. They are internal data
types based on ANSI SQL-92 generic data types, which the Data Integration Service uses to move data
across platforms. Transformation data types appear in all transformations in a mapping.

When the Data Integration Service reads source data, it converts the native data types to the comparable
transformation data types before transforming the data. When the Data Integration Service writes to a target,
it converts the transformation data types to the comparable native data types.

41

Flat File and Transformation Data Types
The following table lists the flat file data types that the Data Integration Service supports and the
corresponding transformation data types:

Flat File Data
type

Transformation Data
type

Range

Bigint Bigint Precision of 19 digits, scale of 0

Datetime Date/Time Jan 1, 0001 A.D. to Dec 31, 9999 A.D. (precision to the nanosecond)

Double Double Precision of 15 digits

Int Integer -2,147,483,648 to 2,147,483,647

Nstring String 1 to 104,857,600 characters

Number Decimal For transformations that support precision up to 38 digits, the
precision is 1 to 38 digits, and the scale is 0 to 38.
For transformations that support precision up to 28 digits, the
precision is 1 to 28 digits, and the scale is 0 to 28.
If you specify the precision greater than the maximum number of
digits, the Data Integration Service converts decimal values to
double in high precision mode.

String String 1 to 104,857,600 characters

When the Data Integration Service reads non-numeric data in a numeric column from a flat file, it drops the
row and writes a message in the log. Also, when the Data Integration Service reads non-datetime data in a
datetime column from a flat file, it drops the row and writes a message in the log.

Complex File and Transformation Data Types
Complex file data types map to transformation data types that the Data Integration Service uses to move
data across platforms.

The following table lists the complex file data types that the Data Integration Service supports and the
corresponding transformation data types:

Complex File
Data Type

Transformation Data
Type

Range and Description

Binary Binary 1 to 104,857,600 bytes. You can read and write data of Binary data type
in a Hadoop environment. You can use the user-defined functions to
transform the binary data.

42 Appendix A: Data Type Reference

Avro Complex File Data Types and Transformation
Data Types

Avro complex file data types map to transformation data types that the Data Integration Service uses to
move data across platforms.

The following table lists the Avro complex file data types that the Data Integration Service supports and the
corresponding transformation data types:

Complex File Data Type Transformation Data Type Range and Description

Boolean Integer TRUE (1) or FALSE (0)

Bytes Binary Precision 4000

Double Double Precision 15

Float Double Precision 15

Int Integer -2,147,483,648 to 2,147,483,647 Precision 10, scale 0

Long Bigint -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Precision 19, scale 0

Null Integer -2,147,483,648 to 2,147,483,647
Precision 10, scale 0

String String -1 to 104,857,600 characters

JSON Complex File Data Types and Transformation
Data Types

JSON complex file data types map to transformation data types that the Data Integration Service uses to
move data across platforms.

The following table lists the JSON complex file data types that the Data Integration Service supports and the
corresponding transformation data types:

JSON Transformation Description

Array Array Unlimited number of characters.

Double Double Precision of 15 digits

Integer Integer -2,147,483,648 to 2,147,483,647
Precision of 10, scale of 0

Avro Complex File Data Types and Transformation Data Types 43

JSON Transformation Description

Object Struct Unlimited number of characters.

String String 1 to 104,857,600 characters

Unsupported JSON Data Types

The Developer tool does not support the following JSON data types:

• date/timestamp

• enum

• union

Parquet Complex File Data Types and
Transformation Data Types

Complex file data types map to transformation data types that the Data Integration Service uses to move
data across platforms.

The following table lists the complex file data types that the Data Integration Service supports and the
corresponding transformation data types:

Complex File Data Type Transformation Data Type Range and Description

Boolean Integer TRUE (1) or FALSE (0)

Byte_Array Binary Arbitrarily long byte array

Double Binary Precision 15

Float Binary Precision 15

Int32 Integer -2,147,483,648 to +2,147,483,647

Int64 Bigint -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
8-byte signed integer

Int96 Binary 12-byte signed integer

The Parquet schema that you specify to read or write a Parquet file must be in smaller case. Parquet does
not support case-sensitive schema.

44 Appendix A: Data Type Reference

I n d e x

C
complex file data objects

creating 19
general properties 17
objects properties 17
overview 17

complex file format
JSON 43

complex file output
parsing 20

complex file read properties
advanced properties 25
column projection properties 26
general properties 24
overview 23
ports properties 24
sources properties 24

complex file write properties
advanced properties 31
column projection properties 33
general properties 30
overview 30
ports properties 31
sources properties 31

complex files
compression 18
decompression 18
input formats for text files 23
output collection mode 29
partitioning 23
streaming 28

custom formats
configuration 21
overview 21

D
Data Processor transformation

configuration 20
data type reference

avro complex files 43
complex files 42
flat files 42
parquet complex files 44

data Type reference
overview 41

F
flat file data objects

compression 15
configuring an HDFS connection 16
decompression 15
partitioning 15
read properties 22
rules and guidelines for using 16
write properties 27

H
HDFS connections

creating 13
overview 11
properties 11

HDFS data objects
complex file data objects 17
flat file data objects 15
overview 14

HDFS mappings
avro data read example 37
data extraction example 35
data load example 36
overview 34

M
mapping run-time environment

Hadoop 34
mapping validation environment

Hive 34

P
PowerExchange for HDFS

data extraction 22
data load 27
overview 8

PowerExchange for HDFS configuration
MapR prerequisites 10
overview 9
prerequisites 9

45

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrixes
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction to PowerExchange for HDFS
	PowerExchange for HDFS Overview

	Chapter 2: PowerExchange for HDFS Configuration
	PowerExchange for HDFS Configuration Overview
	Prerequisites
	MapR Prerequisites

	Chapter 3: HDFS Connections
	HDFS Connections Overview
	HDFS Connection Properties
	Creating an HDFS Connection

	Chapter 4: HDFS Data Objects
	HDFS Data Objects Overview
	Generate the Source File Name for HDFS Data Objects
	Flat File Data Objects
	Compression and Decompression for Flat File Sources and Targets
	Rules and Guidelines for Flat File Data Objects
	Configuring a Flat File Data Object with an HDFS Connection

	Complex File Data Objects
	Complex File Data Object Overview Properties
	Compression and Decompression for Complex File Sources and Targets
	Parameterization of Complex File Data Objects
	Creating a Complex File Data Object
	Complex File Data Object Output Parsing

	Custom Formats
	Custom Formats Configuration

	Chapter 5: HDFS Data Extraction
	HDFS Data Extraction Overview
	Flat File Data Object Read Properties
	Complex Files Partitioning
	Complex File Data Object Read Properties
	General Properties
	Ports Properties
	Sources Properties
	Advanced Properties
	Column Projection Properties

	Chapter 6: HDFS Data Load
	HDFS Data Load Overview
	Flat File Data Object Write Properties
	Complex File Streaming
	Complex Files Output Collection Mode
	Complex File Data Object Write Properties
	General Properties
	Port Properties
	Sources Properties
	Advanced Properties
	Column Projection Properties

	Chapter 7: HDFS Mappings
	HDFS Mappings Overview
	Mapping Validation and Run-time Environments
	HDFS Data Extraction Mapping Example
	HDFS Data Load Mapping Example
	HDFS Avro Read Mapping Example

	Appendix A: Data Type Reference
	Data Type Reference Overview
	Flat File and Transformation Data Types
	Complex File and Transformation Data Types
	Avro Complex File Data Types and Transformation Data Types
	JSON Complex File Data Types and Transformation Data Types
	Parquet Complex File Data Types and Transformation Data Types

	Index

