
Informatica®

10.2.2 HotFix 1

Developer Transformation
Guide

Informatica Developer Transformation Guide
10.2.2 HotFix 1
July 2019

© Copyright Informatica LLC 2009, 2019

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica, the Informatica logo, and PowerCenter are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout
the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be
trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2019-09-20

Table of Contents

Preface . 30
Informatica Resources. 30

Informatica Network. 30

Informatica Knowledge Base. 30

Informatica Documentation. 31

Informatica Product Availability Matrices. 31

Informatica Velocity. 31

Informatica Marketplace. 31

Informatica Global Customer Support. 31

Chapter 1: Introduction to Transformations. 32
Introduction to Transformations Overview. 32

Active Transformations. 32

Passive Transformations. 33

Unconnected Transformations. 33

Multi-Strategy Transformations. 33

Transformation Descriptions. 34

Transformations in the Native and Non-native Environments. 36

Handling Transformation Data Types. 39

Decimal Data Type. 39

Timestamp with Time Zone. 40

Timestamp with Local Time Zone. 41

Developing a Transformation. 41

Multi-Group Transformations. 41

Rules and Guidelines for Multi-Group Transformations. 42

Expressions in Transformations. 42

The Expression Editor. 43

Port Names in an Expression. 44

Adding an Expression to a Port. 44

Comments in an Expression. 44

Expression Validation. 44

Test Expressions. 44

Data Type Conversion. 45

Local Variables. 46

Temporarily Store Data and Simplify Complex Expressions. 46

Store Values Across Rows. 47

Capture Values from Stored Procedures. 48

Guidelines for Configuring Variable Ports. 48

Variable Initialization. 49

Default Values for Ports. 49

Table of Contents 3

User-Defined Default Values. 50

User-Defined Default Input Values. 51

Default Value Validation. 53

User-Defined Default Output Values . 53

General Rules for Default Values. 55

Default Value Validation. 55

Tracing Levels. 55

Reusable Transformations. 56

Reusable Transformation Instances and Inherited Changes. 56

Editing a Reusable Transformation. 57

Editor Views for a Reusable Transformation. 57

Non-Reusable Transformations. 57

Editor Views for a Non-Reusable Transformation. 57

Creating a Transformation. 58

Chapter 2: Transformation Ports. 59
Transformation Ports Overview. 59

Create Ports. 59

Configure Ports. 60

Linking Ports. 60

One to One Links. 61

One to Many Links. 61

Manually Linking Ports. 61

Automatically Linking Ports. 61

Rules and Guidelines for Linking Ports. 62

Propagating Port Attributes. 63

Dependency Types. 63

Link Path Dependencies. 63

Implicit Dependencies. 63

Propagated Port Attributes by Transformation. 64

Copying Ports from Excel. 66

Editing Transformations in Excel. 67

Copying Metadata to the Developer Tool. 67

Example: Editing a Transformation in Excel. 68

Rules and Guidelines for Copying from Excel. 68

Chapter 3: Transformation Caches. 69
Transformation Caches Overview. 69

Cache Types. 70

Cache Files. 70

Cache File Directory. 71

Cache Size. 71

Auto Cache Size. 71

4 Table of Contents

Specific Cache Size. 72

Cache Size Increase by the Data Integration Service. 73

Cache Size for Partitioned Caches. 73

Cache Size Optimization. 74

Step 1. Set the Tracing Level to Verbose Initialization. 74

Step 2. Run the Mapping in Auto Cache Mode. 74

Step 3. Analyze Caching Performance. 74

Step 4. Configure Specific Cache Sizes. 75

Chapter 4: Address Validator Transformation. 76
Address Validator Transformation Overview. 76

Address Reference Data. 77

Types of Address Reference Data. 77

Modes and Templates. 79

Port Groups and Port Selection. 79

Address Validator Transformation Input Port Groups. 80

Address Validator Transformation Output Port Groups. 80

Multiple-Instance Ports. 83

Address Validation Projects. 84

Formatted Addresses and Mail Carrier Standards. 85

Partial Address Completion . 86

Address Validator Status Ports. 87

Element Status Code Definitions. 88

Address Resolution Code Output Port Values. 90

Element Input Status Output Port Values. 90

Element Relevance Output Port Values. 91

Element Result Status Output Port Values. 92

Extended Element Result Status Output Port Values. 93

Mailability Score Output Port Values. 94

Match Code Output Port Values. 95

Geocoding Status Output Port Values. 97

Address Validator Transformation General Settings. 98

Address Validation Properties in the Preferences Window. 99

Address Validation Data Properties. 100

Address Validation License Properties. 101

Address Validation Engine Properties. 101

Address Validation Advanced Properties. 102

Alias Locality. 103

Alias Street. 103

Casing Style. 103

Country of Origin. 104

Country Type. 104

Default Country. 105

Table of Contents 5

Dual Address Priority. 106

Element Abbreviation. 106

Execution Instances. 106

Flexible Range Expansion. 107

Geocode Data Type. 108

Global Max Field Length. 108

Global Preferred Descriptor. 109

Input Format Type. 109

Input Format With Country . 109

Line Separator. 110

Matching Alternatives. 110

Matching Extended Archive. 111

Matching Scope. 111

Max Result Count. 112

Mode. 112

Optimization Level. 112

Output Format Type. 113

Output Format With Country. 113

Preferred Language. 113

Preferred Script. 119

Ranges To Expand. 120

Standardize Invalid Addresses. 121

Tracing Level. 121

Certification Reports. 121

AMAS Report Fields. 122

CASS Report Fields. 123

SendRight Report. 123

SERP Report Fields. 124

Configuring an Address Validator Transformation. 124

Adding Ports to the Address Validator Transformation. 125

Creating User-Defined Templates. 125

Defining Address Validator Models. 126

Defining a Certification Report. 126

Address Validator Transformation in a Non-native Environment. 127

Address Validator Transformation on the Blaze Engine. 127

Address Validator Transformation on the Spark Engine. 127

Chapter 5: Aggregator Transformation. 128
Aggregator Transformation Overview. 128

Aggregator Transformations in Dynamic Mappings. 129

Developing an Aggregator Transformation. 129

Aggregator Transformation Ports. 129

Aggregate Expressions. 130

6 Table of Contents

Aggregate Functions. 131

Nested Aggregate Functions. 131

Conditional Clauses in Aggregate Expressions. 132

Group By Ports. 132

Configure Group By Ports. 133

Group By Parameters. 134

Default Values of Group By Ports . 134

Non-Aggregate Expressions. 134

Aggregator Caches. 135

Sorted Input for an Aggregator Transformation. 135

Sorted Input Conditions. 135

Sorting Data in an Aggregator Transformation. 136

Aggregator Transformation Advanced Properties. 137

Creating a Reusable Aggregator Transformation. 137

Creating a Non-Reusable Aggregator Transformation. 138

Tips for Aggregator Transformations. 138

Troubleshooting Aggregator Transformations. 139

Aggregator Transformation in a Non-native Environment. 139

Aggregator Transformation on the Blaze Engine. 139

Aggregator Transformation on the Spark Engine. 140

Aggregator Transformation on the Databricks Spark Engine. 141

Chapter 6: Association Transformation. 142
Association Transformation Overview. 142

Memory Allocation. 143

Association Transformation Advanced Properties. 144

Chapter 7: Bad Record Exception Transformation. 145
Bad Record Exception Transformation Overview. 145

Bad Record Exception Output Record Types. 146

Bad Record Exception Management Process Flow. 147

Bad Record Exception Mappings. 147

Bad Record Exception Quality Issues. 148

Human Tasks. 149

Bad Record Exception Ports . 149

Bad Record Exception Transformation Input Ports. 150

Bad Record Exception Transformation Output. 150

Bad Record Exception Configuration View. 151

Generating the Bad Records Table and the Issues Table. 152

Bad Record Exception Issue Assignment . 153

Assigning Ports to Quality Issues. 153

Exception Transformation Advanced Properties. 154

Configuring a Bad Record Exception Transformation. 154

Table of Contents 7

Bad Record Exception Mapping Example. 155

Bad Record Exception Mapplet. 155

Bad Record Exception Example Input Groups. 156

Bad Record Exception Example Configuration . 157

Bad Record Exception Example Mapping Output. 158

Chapter 8: Case Converter Transformation. 160
Case Converter Transformation Overview. 160

Case Strategy Properties. 160

Configuring a Case Converter Strategy. 161

Case Converter Transformation Advanced Properties. 161

Case Converter Transformation in a Non-native Environment. 162

Chapter 9: Classifier Transformation. 163
Classifier Transformation Overview. 163

Classifier Models. 163

Classifier Algorithms. 164

Classifier Transformation Options. 164

Classifier Strategies. 165

Classifier Transformation Advanced Properties. 165

Configuring a Classifier Strategy. 165

Classifier Analysis Example. 166

Create the Classifier Mapping. 167

Input Data Sample. 168

Data Source Configuration. 168

Classifier Transformation Configuration. 168

Router Transformation Configuration. 169

Data Target Configuration. 170

Classifier Mapping Outcome. 170

Classifier Transformation in a Non-native Environment. 171

Chapter 10: Comparison Transformation. 172
Comparison Transformation Overview. 172

Field Matching Strategies. 172

Bigram. 173

Hamming Distance. 173

Edit Distance. 173

Jaro Distance. 174

Reverse Hamming Distance. 174

Identity Matching Strategies. 175

Configuring a Comparison Strategy. 175

Comparison Transformation Advanced Properties. 176

Comparison Transformation in a Non-native Environment. 176

8 Table of Contents

Chapter 11: Consolidation Transformation. 177
Consolidation Transformation Overview. 177

Consolidation Mappings. 178

Consolidation Transformation Ports. 178

Consolidation Transformation Views. 178

Consolidation Transformation Strategies View. 179

Consolidation Transformation Advanced Properties. 179

Cache File Size. 180

Simple Strategies. 181

Row-Based Strategies. 182

Advanced Strategies. 183

Simple Consolidation Functions. 183

CONSOL_AVG . 183

CONSOL_LONGEST. 184

CONSOL_MAX. 184

CONSOL_MIN. 185

CONSOL_MOSTFREQ. 185

CONSOL_MOSTFREQ_NB. 186

CONSOL_SHORTEST. 187

Row-Based Consolidation Functions. 187

CONSOL_GETROWFIELD. 187

CONSOL_MODALEXACT. 188

CONSOL_MOSTDATA. 189

CONSOL_MOSTFILLED. 190

Consolidation Mapping Example. 191

Input Data. 191

Key Generator Transformation. 191

Consolidation Transformation. 192

Consolidation Mapping Output. 192

Configuring a Consolidation Transformation. 192

Consolidation Transformation in a Non-native Environment. 193

Consolidation Transformation on the Blaze Engine. 193

Consolidation Transformation on the Spark Engine. 193

Consolidation Transformation on the Databricks Spark Engine. 193

Chapter 12: Data Masking Transformation. 194
Data Masking Transformation Overview. 194

Masking Techniques. 194

Random Masking. 195

Expression Masking. 197

Key Masking. 199

Substitution Masking. 200

Table of Contents 9

Dependent Masking. 203

Tokenization Masking. 205

Masking Rules. 205

Mask Format. 206

Source String Characters. 207

Result String Replacement Characters. 207

Range. 208

Blurring. 208

Special Mask Formats. 209

Credit Card Number Masking. 210

Email Address Masking. 210

Advanced Email Masking. 210

IP Address Masking. 211

Phone Number Masking. 212

Social Security Number Masking. 212

URL Address Masking. 212

Social Insurance Number Masking. 213

Default Value File. 213

Data Masking Transformation Configuration. 214

Configure the Data Integration Service. 214

Creating a Data Masking Transformation. 214

Defining the Ports. 215

Configuring Data Masking for Each Port. 215

Previewing the Masked Data. 215

Data Masking Transformation Runtime Properties. 216

Data Masking Example. 216

Read_Customer Data. 217

Customer Data Masking Transformation. 217

Customer Test Data Results. 218

Data Masking Transformation Advanced Properties. 218

Data Masking Transformation in a Non-native Environment. 219

Data Masking Transformation on the Blaze Engine. 219

Data Masking Transformation on the Spark Engine. 220

Chapter 13: Data Processor Transformation. 221
Data Processor Transformation Overview. 221

Data Processor Transformation Views. 222

Data Processor Transformation Ports. 223

Data Processor Transformation Input Ports. 223

Data Processor Transformation Output Ports. 224

Pass-Through Ports. 225

Startup Component. 225

References. 225

10 Table of Contents

Data Processor Transformation Settings. 226

Character Encoding. 226

Rules and Guidelines for Character Encoding. 229

Output Settings. 229

Processing Settings. 230

XMap Settings. 231

XML Output Configuration. 231

Events. 233

Event Types. 233

Data Processor Events View. 233

Logs. 234

Design-Time Event Log. 234

Run-Time Event Log. 235

Viewing an Event Log in the Data Processor Events View. 235

User Log. 235

Data Processor Transformation Development. 236

Create the Data Processor Transformation. 236

Select the Schema Objects . 237

Create Objects in a Blank Data Processor Transformation. 237

Create the Ports. 239

Testing the Transformation. 240

Data Processor Transformation Import and Export. 240

Exporting the Data Processor Transformation as a Service. 240

Importing Multiple Data Transformation Services. 241

Importing a Data Transformation Service . 241

Exporting a Mapping with a Data Processor Transformation to PowerCenter. 242

Data Processor Transformation in a Non-native Environment. 242

Data Processor Transformation on the Blaze Engine. 243

Chapter 14: Decision Transformation. 244
Decision Transformation Overview. 244

Decision Transformation Functions. 245

Decision Transformation Conditional Statements . 247

Decision Transformation Operators. 248

Decision Transformation NULL Handling. 249

Configuring a Decision Strategy . 249

Decision Transformation Advanced Properties. 249

Decision Transformation in a Non-native Environment. 250

Chapter 15: Duplicate Record Exception Transformation. 251
Duplicate Record Exception Transformation Overview. 251

Duplicate Record Exception Process Flow. 252

Duplicate Record Exceptions. 252

Table of Contents 11

Duplicate Record Exception Configuration View . 253

Generating a Duplicate Records Table. 254

Ports. 254

Duplicate Record Exception Transformation Input Ports. 255

Duplicate Record Exception Transformation Output Ports. 255

Creating Ports . 256

Duplicate Record Exception Transformation Advanced Properties. 257

Duplicate Record Exception Mapping Example. 257

Duplicate Record Exception Mapping. 258

Match Transformation. 258

Duplicate Record Exception Input Groups. 259

Duplicate Record Exception Example Configuration View. 259

Standard Output Table Records. 260

Cluster Output. 261

Creating a Duplicate Record Exception Transformation. 262

Chapter 16: Expression Transformation. 264
Expression Transformation Overview. 264

Expression Transformation Ports. 265

Test Expressions. 266

Date Format Strings for Sample Data. 267

Testing an Expression. 267

Port Selectors. 267

Port Selector Configuration. 268

Selection Rules. 268

Creating a Port Selector. 269

Windowing. 270

Windowing Configuration. 271

Dynamic Expressions. 274

Output Port Settings. 275

Creating a Dynamic Expression . 277

Expression Transformation Advanced Properties. 278

Expression Transformation in a Non-native Environment. 279

Expression Transformation on the Blaze Engine. 279

Expression Transformation on the Spark Engine. 279

Expression Transformation on the Databricks Spark Engine. 280

Chapter 17: Filter Transformation. 281
Filter Transformation Overview. 281

Filter Transformations in Dynamic Mappings. 282

Filter Condition. 283

Parameterize the Filter Condition. 283

Filtering Rows with Null Values. 285

12 Table of Contents

Filter Transformation Advanced Properties. 285

Filter Transformation Performance Tips. 285

Filter Transformation in a Non-native Environment. 285

Filter Transformation on the Blaze Engine. 286

Chapter 18: Hierarchical to Relational Transformation. 287
Hierarchical to Relational Transformation Overview. 287

Example - Hierarchical to Relational Transformation. 287

Output Relational Ports and the Overview View. 289

Hierarchical to Relational Transformation Ports. 290

Schema References. 291

Port Configuration. 291

Hierarchical to Relational Transformation Development. 291

Creating the Hierarchical to Relational Transformation . 292

Configuring the Ports and Mapping. 292

Testing the Transformation. 293

Chapter 19: Java Transformation. 294
Java Transformation Overview. 294

Reusable and Non-Reusable Java Transformations. 295

Active and Passive Java Transformations. 295

Data Type Conversion. 295

Complex Data Type Conversion on the Spark Engine. 296

Designing a Java Transformation. 298

Java Transformation Ports. 298

Creating Ports. 298

Setting Default Port Values. 298

Java Transformation Advanced Properties. 299

Configuring the Classpath for the Developer Tool Client. 301

Configuring the Classpath for the Data Integration Service. 301

Developing Java Code. 302

Creating Java Code Snippets. 303

Importing Java Packages. 304

Defining Helper Code. 305

Java Transformation Java Properties. 305

Imports Tab. 306

Helpers Tab. 306

On Input Tab. 306

At End Tab. 307

Functions Tab. 307

Full Code Tab. 308

Filter Optimization with the Java Transformation. 308

Early Selection Optimization with the Java Transformation. 308

Table of Contents 13

Push-Into Optimization with the Java Transformation. 309

Creating a Java Transformation. 310

Creating a Reusable Java Transformation. 310

Creating a Non-Reusable Java Transformation. 311

Compiling a Java Transformation. 312

Troubleshooting a Java Transformation. 312

Finding the Source of Compilation Errors. 312

Identifying the Source of Compilation Errors. 313

Converting to Struct Data Example. 314

Java Transformation in a Non-native Environment. 317

Java Transformation on the Blaze Engine. 317

Java Transformation on the Spark Engine. 317

Chapter 20: Java Transformation API Reference. 319
Java Transformation API Methods Overview. 319

defineJExpression. 320

failSession. 321

generateRow. 321

getInRowType. 322

getMetadata. 323

incrementErrorCount. 323

invokeJExpression. 324

isNull. 325

logError. 325

logInfo. 326

resetNotification. 326

setNull. 327

storeMetadata. 328

Chapter 21: Java Expressions. 329
Java Expressions Overview. 329

Expression Function Types. 330

Using the Define Function Dialog Box to Define an Expression. 330

Step 1. Configure the Function. 331

Step 2. Create and Validate the Expression. 331

Step 3. Generate Java Code for the Expression. 331

Creating an Expression and Generating Java Code by Using the Define Function Dialog Box. . 331

Java Expression Templates. 332

Working with the Simple Interface. 332

invokeJExpression. 332

Simple Interface Example. 333

Working with the Advanced Interface. 334

Invoking an Expression with the Advanced Interface. 334

14 Table of Contents

Rules and Guidelines for Working with the Advanced Interface. 334

EDataType Class. 335

JExprParamMetadata Class. 335

defineJExpression. 336

JExpression Class. 337

Advanced Interface Example. 337

JExpression Class API Reference. 338

getBytes. 338

getDouble. 338

getInt. 339

getLong. 339

getResultDataType. 339

getResultMetadata. 339

getStringBuffer. 340

invoke. 340

isResultNull. 340

Chapter 22: Joiner Transformation. 341
Joiner Transformation Overview. 341

Joiner Transformation Advanced Properties. 342

Joiner Caches. 343

Joiner Transformation Ports. 344

Joiner Transformations in Dynamic Mappings. 345

Port Selectors in a Joiner Transformation. 345

Selection Rules . 346

Creating a Port Selector. 347

Defining a Join Condition. 348

Simple Condition Type. 349

Advanced Condition Type. 349

Port Selectors in Join Conditions. 350

Dynamic Ports in Join Conditions. 351

Expression Parameter. 351

Join Types. 351

Normal Join. 352

Master Outer Join. 353

Detail Outer Join. 353

Full Outer Join. 353

Sorted Input for a Joiner Transformation. 354

Configuring the Sort Order. 354

Adding Transformations to the Mapping. 354

Rules and Guidelines for Join Conditions. 355

Example of a Join Condition and Sort Order. 356

Joining Data from the Same Source. 357

Table of Contents 15

Joining Two Branches of the Same Pipeline. 357

Joining Two Instances of the Same Source. 358

Guidelines for Joining Data from the Same Source. 359

Blocking the Source Pipelines. 359

Unsorted Joiner Transformation. 359

Sorted Joiner Transformation. 359

Joiner Transformation Performance Tips. 360

Rules and Guidelines for a Joiner Transformation. 361

Joiner Transformation in a Non-native Environment . 361

Joiner Transformation on the Blaze Engine. 361

Joiner Transformation on the Spark Engine. 361

Joiner Transformation on the Databricks Spark Engine. 362

Chapter 23: Key Generator Transformation. 363
Key Generator Transformation Overview. 363

Soundex Strategy. 364

Soundex Strategy Properties. 364

String Strategy. 364

String Strategy Properties. 365

NYSIIS Strategy. 365

Key Generator Output Ports. 365

Configuring a Grouping Strategy. 366

Key Creation Properties. 366

Key Generator Transformation Advanced Properties. 367

Key Generator Transformation in a Non-native Environment. 367

Chapter 24: Labeler Transformation. 368
Labeler Transformation Overview. 368

When to Use a Labeler Transformation. 369

Reference Data Use in the Labeler Transformation. 370

Character Sets. 370

Probabilistic Models. 371

Reference Tables. 371

Regular Expressions. 371

Token Sets. 371

Labeler Transformation Strategies. 372

Character Labeling Operations. 372

Token Labeling Operations. 372

Labeler Transformation Ports. 373

Character Labeling Properties. 373

General Properties. 373

Reference Table Properties. 374

Character Set Properties. 374

16 Table of Contents

Filter Properties. 375

Token Labeling Properties. 375

General Properties. 375

Token Set Properties. 376

Custom Label Properties. 376

Probabilistic Matching Properties. 377

Reference Table Properties. 377

Configuring a Character Labeling Strategy. 377

Configuring a Token Labeling Strategy. 378

Labeler Transformation Advanced Properties. 379

Labeler Transformation in a Non-native Environment. 379

Chapter 25: Lookup Transformation. 380
Lookup Transformation Overview. 380

Connected and Unconnected Lookups. 381

Connected Lookups. 382

Unconnected Lookups. 383

Developing a Lookup Transformation. 383

Lookup Query. 384

Default Lookup Query. 384

SQL Override for a Lookup Query. 384

Parameters in an SQL Override Query. 385

Reserved Words. 385

Guidelines for Overriding the Lookup Query. 385

Overriding the Lookup Query. 386

Lookup Source Filter. 386

Filtering Source Rows in a Lookup. 387

Lookup Condition. 387

Configure the Lookup Condition. 388

Rules and Guidelines for Lookup Transformation Conditions. 389

Lookup Cache. 390

Query Properties. 390

Lookup Transformations in Dynamic Mappings. 391

Define Dynamic Ports. 391

Change the Lookup Source. 392

Parameterize the Lookup Source. 393

Lookup Sources that Contain Parameters . 394

Configure Parameters in a Duplicate Data Object. 394

Port Selectors. 396

Port Selector Configuration. 397

Selection Rules. 398

Parameterize the Lookup Condition. 399

Creating a Port Selector. 400

Table of Contents 17

Run-time Properties. 402

Advanced Properties. 403

Creating a Reusable Lookup Transformation. 404

Creating a Non-Reusable Lookup Transformation. 405

Creating an Unconnected Lookup Transformation. 406

Unconnected Lookup Example. 407

Lookup Transformation in a Non-native Environment. 408

Lookup Transformation on the Blaze Engine. 409

Lookup Transformation on the Spark Engine. 409

Lookup Transformation on the Databricks Spark Engine. 410

Chapter 26: Lookup Caches. 412
Lookup Caches Overview. 412

Lookup Cache Types. 413

Uncached Lookup. 414

Static Lookup Cache. 414

Persistent Lookup Cache. 414

Rebuilding a Persistent Lookup Cache. 415

Dynamic Lookup Cache. 415

Shared Lookup Cache. 416

Rules and Guidelines for Sharing a Lookup Cache. 416

Cache Comparison. 417

Cache Partitioning for Lookups. 417

Chapter 27: Dynamic Lookup Cache. 419
Dynamic Lookup Cache Overview. 419

Uses for a Dynamic Lookup Cache. 420

Dynamic Lookup Cache Properties. 420

Dynamic Lookup Cache and Output Values. 422

Lookup Transformation Values. 422

Lookup Transformation Values Example. 423

SQL Override and Dynamic Lookup Cache. 425

Mapping Configuration for a Dynamic Lookup Cache. 425

Insert Else Update. 426

Update Else Insert. 426

Dynamic Lookup Cache and Target Synchronization. 427

Conditional Dynamic Lookup Cache Updates. 428

Conditional Dynamic Lookup Cache Processing. 428

Configuring a Conditional Dynamic Lookup Cache. 428

Dynamic Cache Update with Expression Results. 429

Null Expression Values. 429

Expression Processing. 429

Configuring an Expression for Dynamic Cache Updates. 429

18 Table of Contents

Dynamic Lookup Cache Example. 430

Rules and Guidelines for Dynamic Lookup Caches. 431

Chapter 28: Match Transformation. 432
Match Transformation Overview. 432

Match Analysis. 433

Column Analysis. 433

Single-Source Analysis and Dual-Source Analysis. 434

Field Match Analysis and Identity Match Analysis. 434

Groups in Match Analysis. 435

Match Pairs and Clusters. 436

Match Score Calculations. 436

Weighted Scores. 437

Null Match Scores. 437

Cluster Output Options. 437

Driver Scores and Link Scores in Cluster Analysis. 439

Master Data Analysis. 440

Mapping Reuse. 441

Identity Match Analysis and Persistent Index Data. 441

Rules and Guidelines for Persistent Index Data. 441

Match Mapping Performance. 442

Viewing Match Cluster Analysis Data. 443

Viewing Match Performance Analysis Data. 443

Match Performance in Identity Analysis. 444

Creating a Data Store for Identity Index Data. 445

Using the Index Data Store in Single-Source Analysis. 445

Match Transformation Views. 446

Match Transformation Ports. 448

Match Transformation Input Ports. 448

Match Transformation Output Ports. 449

Persistence Status Codes and Persistence Status Descriptions. 450

Output Ports and Match Output Selection. 452

Match Mapplets. 453

Creating a Match Mapplet. 453

Using a Match Mapplet. 453

Configuring a Match Analysis Operation. 454

Match Transformation in a Non-native Environment. 455

Match Transformation on the Blaze Engine. 455

Match Transformation on the Spark Engine. 455

Chapter 29: Match Transformations in Field Analysis. 456
Field Match Analysis. 456

Process Flow for Field Match Analysis. 456

Table of Contents 19

Field Match Type Options. 457

Field Match Strategies. 457

Field Match Algorithms. 457

Field Match Strategy Properties. 460

Field Match Output Options. 460

Match Output Types. 460

Match Output Properties. 461

Field Match Advanced Properties. 462

Field Match Analysis Example. 462

Create the Mapping. 463

Input Data Sample. 463

Key Generator Transformation Configuration. 464

Match Transformation Configuration. 464

Run the Data Viewer. 466

Conclusion. 467

Chapter 30: Match Transformations in Identity Analysis. 468
Identity Match Analysis. 468

Process Flow for Identity Match Analysis. 469

Identity Match Type Properties. 469

Index Directory and Cache Directory Properties. 471

Persistence Method Parameters. 472

Identity Match Strategies. 473

Identity Match Algorithms. 473

Identity Match Strategy Properties. 474

Identity Match Output Options. 475

Match Output Types. 475

Match Output Properties. 476

Identity Match Advanced Properties. 478

Persistent Index Case Study. 479

Identity Match Analysis Example. 481

Create the Mapping. 481

Input Data Sample. 482

Expression Transformation Configuration. 482

Match Transformation Configuration. 483

Run the Data Viewer. 486

Conclusion. 487

Chapter 31: Merge Transformation. 488
Merge Transformation Overview. 488

Configuring a Merge Strategy. 488

Merge Transformation Advanced Properties. 489

Merge Transformation in a Non-native Environment. 489

20 Table of Contents

Chapter 32: Normalizer Transformation. 490
Normalizer Transformation Overview. 490

Multiple-Occurring Fields. 491

Generated Column ID. 491

Multiple-Occurring Records. 492

Input Hierarchy Definition. 493

Normalizer Transformation Input Ports. 494

Merge Fields. 495

Flatten Fields. 496

Normalizer Transformation Output Groups and Ports. 501

Create an Output Group. 502

Update an Output Group. 504

Key Generation for Output Groups. 505

Normalizer Transformation Advanced Properties. 505

Generate First Level Output Groups. 506

Creating a Normalizer Transformation. 506

Creating a Normalizer Transformation from an Upstream Source. 507

Normalizer Mapping Example. 507

Normalizer Example Mapping. 507

Normalizer Example Definition. 508

Normalizer Example Input and Output Groups. 509

Normalizer Example Mapping Output. 510

Normalizer Transformation in a Non-native Environment. 511

Chapter 33: Parser Transformation. 512
Parser Transformation Overview. 512

Parser Transformation Modes. 513

When to Use a Parser Transformation. 513

Reference Data Use in the Parser Transformation. 514

Pattern Sets. 515

Probabilistic Models. 515

Reference Tables. 516

Regular Expressions. 516

Token Sets. 516

Token Parsing Operations. 516

Token Parsing Ports. 517

Token Parsing Properties. 517

General Properties. 518

Probabilistic Model Properties. 518

Reference Table Properties. 519

Token Set Properties. 519

Pattern-Based Parsing Mode. 520

Table of Contents 21

Pattern-Based Parsing Ports. 520

Configuring a Token Parsing Strategy. 521

Configuring a Pattern Parsing Strategy. 521

Parser Transformation Advanced Properties. 522

Parser Transformation in a Non-native Environment. 522

Chapter 34: Python Transformation. 523
Python Transformation Overview. 523

Data Type Conversion. 523

Data Types in Input and Output Ports. 524

Python Transformation Ports. 525

Python Transformation Advanced Properties. 525

Python Transformation Components. 525

Resource File. 526

Python Code. 526

Rules and Guidelines. 527

Creating a Python Transformation. 527

Creating a Reusable Python Transformation. 527

Creating a Non-Reusable Python Transformation. 528

Python Transformation Use Case. 528

Python Transformation in a Non-native Environment. 529

Python Transformation on the Spark Engine. 529

Chapter 35: Rank Transformation. 531
Rank Transformation Overview. 531

Ranking String Values. 532

Rank Transformation Properties. 532

Rank Transformations in Dynamic Mappings. 532

Rank Transformation Ports. 532

Rank Index. 533

Rank Port. 534

Define Group By Ports. 534

Group By Parameters. 535

Rank Caches. 535

Rank Transformation Advanced Properties. 536

Rank Transformation in a Non-native Environment. 537

Rank Transformation on the Blaze Engine . 537

Rank Transformation on the Spark Engine. 537

Rank Transformation on the Databricks Spark Engine. 538

Chapter 36: Read Transformation. 539
Read Transformation Overview. 539

Read Transformation Properties . 539

22 Table of Contents

General Properties. 540

Data Object Properties. 541

Query Properties. 541

Run-Time Properties . 541

Sources Properties . 542

Advanced Properties. 542

Synchronize Relational Data Objects. 543

Change the Source Data Object. 543

Parameterize the Read Transformation. 544

Read Transformation Parameters. 545

Constraints . 546

Create a Read Transformation. 546

Creating a Read Transformation in the Mapping Editor. 547

Chapter 37: Relational to Hierarchical Transformation. 549
Relational to Hierarchical Transformation Overview. 549

Example - Relational to Hierarchical Transformation. 550

Input Relational Ports and the Overview View. 551

Relational to Hierarchical Transformation Ports. 552

Schema References. 552

Relational to Hierarchical Transformation Development. 553

Creating the Relational to Hierarchical Transformation. 553

Creating the Ports. 553

Chapter 38: REST Web Service Consumer Transformation. 555
REST Web Service Consumer Transformation Overview. 555

REST Web Service Consumer Transformation Process. 556

REST Web Service Consumer Transformation Configuration. 557

Message Configuration. 557

Resource Identification. 557

HTTP Methods. 558

HTTP Get Method. 559

HTTP Post Method. 559

HTTP Put Method. 560

HTTP Delete Method. 561

REST Web Service Consumer Transformation Ports. 561

Input Ports. 562

Output Ports. 562

Pass-through Ports. 562

Argument Ports. 562

URL Ports. 562

HTTP Header Ports. 563

Cookie Ports. 563

Table of Contents 23

Output XML Ports. 563

Response Code Ports. 564

REST Web Service Consumer Transformation Input Mapping. 564

Rules and Guidelines to Map Input Ports to Elements. 564

Mapping Input Ports to the Method Input. 565

REST Web Service Consumer Transformation Output Mapping. 566

Rules and Guidelines to Map Elements to Output Ports. 566

Customize View Options. 567

Mapping the Method Output to Output Ports. 567

REST Web Service Consumer Transformation Advanced Properties. 568

REST Web Service Consumer Transformation Creation. 569

Creating a REST Web Service Consumer Transformation. 569

Parsing a JSON Response Message that Contains Arrays. 570

Example JSON Response Message. 570

Unnamed Arrays in a Response Message. 571

Chapter 39: Router Transformation. 572
Router Transformation Overview. 572

Router Transformations in Dynamic Mappings. 573

Working with Groups. 573

Input Group. 574

Output Groups. 574

Using Group Filter Conditions. 574

Dynamic Ports in Group Filter Conditions. 576

Parameterize the Group Filter. 576

Adding Groups. 577

Working with Ports. 577

Connecting Router Transformations in a Mapping. 578

Router Transformation Advanced Properties. 578

Router Transformation in a Non-native Environment. 578

Chapter 40: Sequence Generator Transformation. 579
Sequence Generator Transformation Overview. 579

Sequence Generator Ports. 579

Pass-Through Ports. 580

NEXTVAL Port. 580

Sequence Generator Transformation Properties. 582

Start Value. 582

End Value. 583

Increment Value. 583

Cycle Through a Range of Values. 583

Reset. 583

Maintain Row Order. 583

24 Table of Contents

Sequence Data Object. 584

Creating a Sequence Data Object. 584

Creating a Sequence Generator Transformation. 587

Frequently Asked Questions. 588

Sequence Generator Transformation in a Non-native Environment. 589

Sequence Generator Transformation on the Blaze Engine. 589

Sequence Generator Transformation on the Spark Engine. 589

Chapter 41: Sorter Transformation. 590
Sorter Transformation Overview. 590

Sorter Transformations in Dynamic Mappings. 591

Developing a Sorter Transformation. 591

Sorter Transformation Ports. 591

Sort Tab. 592

Configure Sort Keys. 592

Parameterize the Sort Keys. 593

Sorter Transformation Advanced Properties. 594

Sorter Cache. 595

Optimizing the Sorter Cache. 595

Creating a Sorter Transformation. 595

Creating a Reusable Sorter Transformation. 596

Creating a Non-Reusable Sorter Transformation. 596

Sorter Transformation Example. 596

Sorter Transformation in a Non-native Environment. 598

Sorter Transformation on the Blaze Engine. 598

Sorter Transformation on the Spark Engine. 598

Sorter Transformation on the Databricks Spark Engine. 599

Chapter 42: SQL Transformation. 601
SQL Transformation Overview. 601

SQL Transformation Ports. 602

Input Ports. 602

Output Ports. 603

Pass-through Ports . 604

SQLError Port. 605

Number of Rows Affected. 606

SQL Transformation Advanced Properties. 606

SQL Transformation Query. 608

Define the SQL Query. 609

Input Row to Output Row Cardinality. 610

Query Statement Processing. 611

Port Configuration. 611

Maximum Output Row Count. 611

Table of Contents 25

Error Rows. 612

Continue on SQL Error. 613

Filter Optimization with the SQL Transformation. 613

Early Selection Optimization with the SQL Transformation. 614

Push-Into Optimization with the SQL Transformation. 614

SQL Transformation Example with an SQL Query. 615

Logical Data Object Mapping. 615

Salary Table. 616

Employee Table . 616

SQL Transformation. 616

Output. 618

Stored Procedures. 618

SQL Transformation Ports for Stored Procedures. 619

Stored Procedure Result Sets. 620

Stored Procedure Example. 622

SQL Transformation Connection. 623

Creating a Connection Name Parameter. 623

Manually Creating an SQL Transformation. 624

Creating an SQL Transformation from a Stored Procedure. 625

Chapter 43: Standardizer Transformation. 626
Standardizer Transformation Overview. 626

Standardization Strategies. 626

Standardization Properties. 627

Configuring a Standardization Strategy. 628

Standardizer Transformation Advanced Properties. 628

Chapter 44: Union Transformation. 629
Union Transformation Overview. 629

Groups and Ports. 630

Union Transformation Advanced Properties. 630

Union Transformation Processing. 631

Creating a Union Transformation. 631

Creating a Reusable Union Transformation. 631

Creating a Non-Reusable Union Transformation. 631

Union Transformation in a Non-native Environment. 632

Union Transformation in a Streaming Mapping. 632

Union Transformation on the Databricks Spark Engine. 632

Chapter 45: Update Strategy Transformation. 633
Update Strategy Transformation Overview. 633

Setting the Update Strategy. 633

Update Strategy Transformations in Dynamic Mappings. 634

26 Table of Contents

Flagging Rows Within a Mapping. 634

Update Strategy Expressions. 635

Update Strategy Transformation Advanced Properties. 635

Aggregator and Update Strategy Transformations. 636

Specifying Update Options for Individual Targets. 636

Update Strategy Transformation in a Non-native Environment. 637

Update Strategy Transformation on the Blaze Engine. 637

Update Strategy Transformation on the Spark Engine. 638

Chapter 46: Web Service Consumer Transformation. 640
Web Service Consumer Transformation Overview. 640

SOAP Messages. 641

WSDL Files. 641

Operations. 641

Web Service Security. 642

WSDL Selection. 643

Web Service Consumer Transformation Ports. 643

HTTP Header Input Ports. 644

Other Input Ports. 644

Web Service Consumer Transformation Input Mapping. 645

Rules and Guidelines to Map Input Ports to Nodes. 646

Customize View Options. 646

Mapping Input Ports to the Operation Input. 646

Web Service Consumer Transformation Output Mapping. 648

Rules and Guidelines to Map Nodes to Output Ports. 649

Mapping the SOAP Message as XML . 649

Customize View Options. 649

Mapping the Operation Output to Output Ports. 650

Web Service Consumer Transformation Advanced Properties. 651

Web Service Error Handling. 653

Message Compression . 653

Concurrency. 654

Filter Optimizations. 655

Enabling Early Selection Optimization with the Web Service Consumer Transformation. 655

Push-Into Optimization with the Web Service Consumer Transformation. 655

Creating a Web Service Consumer Transformation. 657

Web Service Consumer Transformation Example. 658

Input File. 658

Logical Data Object Model. 659

Logical Data Object Mapping. 659

Web Service Consumer Transformation. 660

Table of Contents 27

Chapter 47: Parsing Web Service SOAP Messages. 662
Parsing Web Service SOAP Message Overview. 662

Transformation User Interface. 663

Multiple-Occurring Output Configuration. 664

Normalized Relational Output. 664

Generated Keys. 664

Denormalized Relational Output. 665

Pivoted Relational Output. 666

Parsing anyType Elements. 666

Parsing Derived Types. 667

Parsing QName Elements. 668

Parsing Substitution Groups. 668

Parsing XML Constructs in SOAP Messages. 668

Choice Element. 669

List Element. 669

Union Element. 669

Chapter 48: Generating Web Service SOAP Messages. 670
Generating Web Service SOAP Messages Overview. 670

Transformation User Interface. 671

Input Ports Area. 671

Operation Area. 672

Port and Hierarchy Level Relationships . 672

Keys. 673

Map Ports. 674

Map a Port . 675

Map a Group. 676

Map Multiple Ports. 676

Pivoting Multiple-Occurring Ports . 676

Map Denormalized Data. 678

Derived Types and Element Substitution. 679

Generating Derived Types. 679

Generating anyType Elements and Attributes. 680

Generating Substitution Groups. 680

Generating XML Constructs in SOAP Messages. 680

Choice Element. 681

List Element. 681

Union Element. 682

Chapter 49: Weighted Average Transformation. 683
Weighted Average Transformation Overview. 683

Configuring a Weighted Average Transformation. 683

28 Table of Contents

Weighted Match Scores Example. 684

Weighted Average Transformation Advanced Properties. 684

Weighted Average Transformation in a Non-native Environment. 685

Chapter 50: Write Transformation. 686
Write Transformation Overview. 686

Write Transformation Properties . 686

General Properties. 687

Data Object Properties. 688

Ports Properties. 688

Run-Time Properties. 688

Run-time Linking Properties. 689

Advanced Properties. 690

Create a Write Transformation. 692

Creating a Write Transformation from a Data Object. 692

Creating a Write Transformation from Mapping Flow. 693

Creating a Write Transformation from a Parameter. 693

Creating a Write Transformation from an Existing Transformation 694

Appendix A: Transformation Delimiters. 696
Transformation Delimiters Overview. 696

Index. 697

Table of Contents 29

Preface
The Informatica Developer Transformation Guide contains information about transformation functionality in
the Developer tool. It is written for data quality, big data, and data services developers. This guide assumes
that you have an understanding of data quality concepts, flat file and relational database concepts, and the
database engines in your environment.

Each of the run-time engines in the non-native environment can process mapping logic differently. In the non-
native environment, Informatica transformations might be fully supported, supported with restrictions, or not
supported. Similarly, in the native environment, some Informatica transformations and transformation
behavior might not be supported.

Before you validate and run a mapping in the non-native environment, refer to the Big Data Management User
Guide to learn about the transformations that are supported in the non-native environment and the
processing restrictions.

Informatica Resources
Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Network
The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:

• Search the Knowledge Base for product resources.

• View product availability information.

• Create and review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

30

https://network.informatica.com

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Product Availability Matrices
Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and
select the eSupport option.

Preface 31

http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://docs.informatica.com
mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com

C h a p t e r 1

Introduction to Transformations
This chapter includes the following topics:

• Introduction to Transformations Overview, 32

• Transformations in the Native and Non-native Environments, 36

• Handling Transformation Data Types, 39

• Developing a Transformation, 41

• Multi-Group Transformations, 41

• Expressions in Transformations, 42

• Local Variables, 46

• Default Values for Ports, 49

• Tracing Levels, 55

• Reusable Transformations, 56

• Non-Reusable Transformations, 57

• Creating a Transformation, 58

Introduction to Transformations Overview
A transformation is an object that generates, modifies, or passes data.

Informatica Developer provides a set of transformations that perform specific functions. For example, an
Aggregator transformation performs calculations on groups of data.

Transformations in a mapping represent the operations that the Data Integration Service performs on the
data. Data passes through transformation ports that you link in a mapping or mapplet.

Transformations can be active or passive. Transformations can be connected to the data flow, or they can be
unconnected.

Active Transformations
An active transformation changes the number of rows that pass through a transformation. Or, it changes the
row type.

For example, the Filter transformation is active, because it removes rows that do not meet the filter condition.
The Update Strategy transformation is active, because it flags rows for insert, delete, update, or reject.

32

You cannot connect multiple active transformations or an active and a passive transformation to the same
downstream transformation or transformation input group, because the Data Integration Service might not be
able to concatenate the rows passed by active transformations.

For example, one branch in a mapping contains an Update Strategy transformation that flags a row for
delete. Another branch contains an Update Strategy transformation that flags a row for insert. If you connect
these transformations to a single transformation input group, the Data Integration Service cannot combine
the delete and insert operations for the row.

Passive Transformations

A passive transformation does not change the number of rows that pass through the transformation,
maintains the transaction boundary, and maintains the row type.

You can connect multiple transformations to the same downstream transformation or to the same
transformation input group when all transformations in the upstream branches are passive. The
transformation that originates the branch can be active or passive.

Unconnected Transformations
Transformations can be connected to the data flow, or they can be unconnected. An unconnected
transformation is not connected to other transformations in the mapping. An unconnected transformation is
called within another transformation, and returns a value to that transformation.

Multi-Strategy Transformations
A strategy is a set of one or more operations that a transformation can perform on data. You can assign a
different set of input ports and output ports to each strategy in a transformation. The transformation stores
the strategies that you define in a single transformation object.

Use the Dependencies view to view the ports that each strategy uses.

You can define multiple transformation strategies in the following transformations:

• Case Converter

• Classifier

• Decision

• Key Generator

• Labeler

• Match

• Merge

• Parser
To use multiple strategies in a Parser transformation, configure the transformation to parse tokens.

• Standardizer

Introduction to Transformations Overview 33

Transformation Descriptions
The Developer tool contains common and data quality transformations. Common transformations are
available in Informatica Data Quality and Informatica Data Services. Data quality transformations are
available in Informatica Data Quality.

The following table describes each transformation:

Transformation Type Description

Address Validator Active or Passive/
Connected

Verifies and enhances the accuracy of postal address records, and
adds information that helps users to select the mail recipients and
to deliver the mail.

Association Active/
Connected

Creates links between the duplicate records that a Match
transformation assigns to different clusters.

Aggregator Active/
Connected

Performs aggregate calculations.

Bad Record Exception Active/
Connected

Identifies records that might contain data errors, and loads the
records to tables that an Analyst tool user can review and update.

Case Converter Passive/
Connected

Standardizes the case of strings.

Classifier Passive/
Connected

Writes labels that summarize the information in input port fields.
Use when the fields contain significant amounts of text.

Comparison Passive/
Connected

Generates numeric scores that indicate the degree of similarity
between pairs of input strings.

Consolidation Active/
Connected

Creates a consolidated record from records identified as duplicates
by the Match transformation.

Data Masking Passive/
Connected or
Unconnected

Replaces sensitive production data with realistic test data for non-
production environments.

Data Processor Active/
Connected

Processes unstructured and semi-structured file formats in a
mapping.

Decision Passive/
Connected

Evaluates conditions in input data and creates output based on the
results of those conditions.

Duplicate Record
Exception

Active/
Connected

Identifies records that might contain duplicate information, and
loads the records to tables that an Analyst tool user can review and
update.

Expression Passive/
Connected

Calculates a value.

Filter Active/
Connected

Filters data.

34 Chapter 1: Introduction to Transformations

Transformation Type Description

Hierarchical to
Relational

Active/
Connected

Processes hierarchical input and transforms it into relational
output.

Java Active or Passive/
Connected

Executes user logic coded in Java. The repository stores the byte
code for the user logic.

Joiner Active/
Connected

Joins data from different databases or flat file systems.

Key Generator Active/
Connected

Assigns records to groups based on data values in a column that
you select.

Labeler Passive/
Connected

Writes labels that describe the characters or strings in an input port
field.

Lookup Active or Passive/
Connected or
Unconnected

Look up and return data from a flat file, logical data object,
reference table, relational table, view, or synonym.

Match Active/
Connected

Generates scores that indicate the degrees of similarity between
input records.

Merge Passive/
Connected

Reads the data values from multiple input columns and creates a
single output column.

Normalizer Active/
Connected

Processes source rows that contain multiple-occurring data and
returns a target row for each instance of the multiple-occurring
data.

Output Passive/
Connected

Defines mapplet output rows.

Parser Passive/
Connected

Parses the values on an input port into separate output ports based
on the types of information that the values contain.

Rank Active/
Connected

Limits records to a top or bottom range.

Read Passive/
Connected

Reads data from a source.

Relational to
Hierarchical

Active/
Connected

Processes relational input and transforms it into hierarchical
output.

REST Web Service
Consumer

Active/
Connected

Connects to a REST web service as a web service client to access or
transform data

Router Active/
Connected

Routes data into multiple transformations based on group
conditions.

Introduction to Transformations Overview 35

Transformation Type Description

Sequence Generator Passive/
Connected

Generates a numeric sequence of values.

Sorter Active/
Connected

Sorts data based on a sort key.

SQL Active or Passive/
Connected

Executes SQL queries against a database.

Standardizer Passive/
Connected

Generates standardized versions of input strings.

Union Active/
Connected

Merges data from different databases or flat file systems.

Update Strategy Active/
Connected

Determines whether to insert, delete, update, or reject rows.

Web Service
Consumer

Active/
Connected

Connects to a web service as a web service client to access or
transform data.

Weighted Average Passive/
Connected

Reads the match scores that a Match transformation generates for
the records in a data set, and calculates an average score for each
pair of records. You can apply different weights to the scores that
the transformation generates for each pair of records.

Write Passive/
Connected

Represents a target that the mapping writes data to.

Transformations in the Native and Non-native
Environments

Mappings that run in the non-native environment can return different results than mappings that run in the
native environment.

Consider the following processing differences:

• The non-native environment uses distributed processing and processes data on different nodes. Each
node does not have access to the data that is being processed on other nodes. As a result, the runtime
engine might not be able to determine the order in which the data originated. So, when you run a mapping
in a non-native environment and you run the same mapping in the native environment, both mappings
return correct results, but the results might not be identical.

• Each of the run-time engines in the non-native environment can process mapping logic differently. In the
non-native environment, Informatica transformations might be fully supported, supported with
restrictions, or not supported. Similarly, in the native environment, some Informatica transformations and
transformation behavior might not be supported.

36 Chapter 1: Introduction to Transformations

The following table lists transformations and support for different engines in a non-native environment:

Transformation Supported Engines

Transformations not listed in this table are not supported in a non-native environment.

Address Validator - Blaze
- Spark

Aggregator - Blaze
- Spark*
- Databricks Spark

Case Converter - Blaze
- Spark

Classifier - Blaze
- Spark

Comparison - Blaze
- Spark

Consolidation - Blaze
- Spark

Data Masking - Blaze
- Spark*

Data Processor - Blaze

Decision - Blaze
- Spark

Expression - Blaze
- Spark*
- Databricks Spark

Filter - Blaze
- Spark*
- Databricks Spark

Java - Blaze
- Spark*

Joiner - Blaze
- Spark*
- Databricks Spark

Key Generator - Blaze
- Spark

Labeler - Blaze
- Spark

Lookup - Blaze
- Spark*
- Databricks Spark

Transformations in the Native and Non-native Environments 37

Transformation Supported Engines

Match - Blaze
- Spark

Merge - Blaze
- Spark

Normalizer - Blaze
- Spark*
- Databricks Spark

Parser - Blaze
- Spark

Python - Spark*

Rank - Blaze
- Spark*
- Databricks Spark

Router - Blaze
- Spark*
- Databricks Spark

Sequence Generator - Blaze
- Spark

Sorter - Blaze
- Spark*
- Databricks Spark

Standardizer - Blaze
- Spark

Union - Blaze
- Spark*
- Databricks Spark

Update Strategy - Blaze
- Spark

Weighted Average - Blaze
- Spark

Window - Spark**

* Supported for both batch and streaming mappings.
** Supported for streaming mappings only. For more information, see the Big Data Streaming User Guide.

38 Chapter 1: Introduction to Transformations

Handling Transformation Data Types
Transformations can process data type specific functions or allow pass-through of data without processing
the data. The Data Integration Service processes some data types, such as Decimal, Timestamp with
Timezone, and Timestamp with Local Timezone based on transformations.

Decimal Data Type
You can use the Decimal data type to read and write data to flat files and supported databases, such as
Oracle, Microsoft SQL Server, IBM DB2, and ODBC.

For transformations that support precision up to 38 digits, the precision is 1 to 38 digits, and the scale is 0 to
38.

Transformations that Support Decimal Data Type

The following transformations support the Decimal data type with precision up to 38 digits and can perform
calculations on the data:

• Aggregator

• Data Masking

• Expression

• Filter

• Java

• Joiner

• Lookup

• Normalizer

• Rank

• Router

• Sequence Generator

• Sorter

• Union

• Update Strategy

Transformations with Pass-Through Support for Decimal Data Type

Some transformations can only pass decimal data with precision up to 38 digits through the transformation.
The transformation cannot perform any calculations on the data. When you use a Decimal data type with
precision up to 38 digits for performing calculations on the transformations, the Data Integration Service
processes the data type as Double.

The following transformations have pass-through support for Decimal data type with precision up to 38
digits:

• Data Processor

• Hierarchical to Relational

• REST Web Service Consumer Transformation

• SQL

• Web Services Consumer

Handling Transformation Data Types 39

Transformations that do not Support Decimal Data Type

Some transformations do not support Decimal data type, such as Data Quality transformations.

The following applicable list of Data Quality transformations do not support Decimal data type with precision
up to 38 digits:

• Address Validator

• Association

• Case Converter

• Classifier

• Comparison

• Consolidation

• Decision

• Key Generator

• Labeler

• Match

• Merge

• Parser

• Standardizer

• Weighted Average

For transformations that do not support the Decimal 38 data type, when a Decimal data type has precision
greater than 28 digits, the Data Integration Service converts decimal values to double in high precision mode.

Timestamp with Time Zone
Timestamp with Time Zone is a variant of the Timestamp data type that includes a time zone offset or a time
zone region.

The following transformations support the Timestamp with Time Zone data type:

• Aggregator

• Expression

• Filter

• Java

• Joiner

• Lookup

• Normalizer

• Rank

• Router

• Sequence Generator

• Sorter

• Union

• Update Strategy

Pass-through support implies that you can pass the data through the transformations but you cannot perform
any functions on the Timestamp with Time Zone data type.

40 Chapter 1: Introduction to Transformations

The following transformations have pass-through support for the Timestamp with Time Zone data type:

• Data Masking

• Data Processor

• Hierarchical to Relational

• SQL

Timestamp with Local Time Zone
Timestamp with Local Time Zone is implicitly supported by transformations as the functionally is equivalent
to Timestamp.

Developing a Transformation
When you build a mapping, you add transformations and configure them to handle data according to a
business purpose.

Complete the following tasks to develop a transformation and incorporate it into a mapping:

1. Add a non-reusable transformation to a mapping or mapplet. Or, create a reusable transformation that
you can add to multiple mappings or mapplets.

2. Configure the transformation. Each type of transformation has a unique set of options that you can
configure.

3. If the transformation is reusable, add it to the mapping or mapplet.

4. Link the transformation to other objects in the mapping or mapplet.

You drag ports from upstream objects to the transformation input ports. You drag output ports from the
transformation to ports on downstream objects. Some transformations use predefined ports that you
can select.

Note: If you create a reusable transformation, you add the input and output ports you need before you link the
transformation to other objects. You cannot add ports to the transformation instance on the mapplet or
mapping canvas. To update the ports on a reusable transformation, open the transformation object from the
repository project and add the ports.

Multi-Group Transformations
A transformation can have multiple input and output groups. A group is a set of ports that define a row of
incoming or outgoing data.

A group is analogous to a table in a relational source or target definition. Most transformations have one
input and one output group. However, some have multiple input groups, multiple output groups, or both. A
group is the representation of a row of data entering or leaving a transformation.

All multi-group transformations are active transformations. You cannot connect multiple active
transformations or an active and a passive transformation to the same downstream transformation or
transformation input group.

Developing a Transformation 41

Some multiple input group transformations require the Integration Service to block data at an input group
while the Integration Service waits for a row from a different input group. A blocking transformation is a
multiple input group transformation that blocks incoming data. The following transformations are blocking
transformations:

• Custom transformation with the Inputs May Block property enabled

• Joiner transformation configured for unsorted input

When you save or validate a mapping, some mappings that contain active or blocking transformations might
not be valid.

Rules and Guidelines for Multi-Group Transformations
When you connect transformations in a mapping, you must consider some rules and guidelines for
connecting multi-group transformations.

Consider the following rules and guidelines for multi-group transformations:

• You can connect one group to one transformation or target.

• You can connect one or more output ports in a group to multiple transformations or targets.

• You cannot connect fields from multiple output groups in a transformation to the same input group of
another transformation.

• You cannot connect fields from multiple output groups in different transformations to the same input
group of another transformation unless each transformation between the source and the transformation
are passive transformations.

• You cannot connect fields from multiple output groups in a transformation to the same input group of
another transformation, unless the other transformation is a blocking transformation.

• You cannot connect an output field to multiple input fields in the same input group, unless the group is in
a Normalizer transformation.

Expressions in Transformations
You can enter expressions in the Expression Editor in some transformations. Expressions modify data or test
whether data matches conditions.

Create expressions that use transformation language functions. Transformation language functions are SQL-
like functions that transform data.

Enter an expression in a port that uses the value of data from an input or input/output port. For example, you
have a transformation with an input port IN_SALARY that contains the salaries of all the employees. You
might use the values from the IN_SALARY column later in the mapping. You might also use the
transformation to calculate the total and average salaries. The Developer tool requires you to create a
separate output port for each calculated value.

42 Chapter 1: Introduction to Transformations

The following table lists the transformations in which you can enter expressions:

Transformation Expression Return Value

Aggregator Performs an aggregate calculation based on all data
passed through the transformation. Alternatively, you
can specify a filter for records in the aggregate
calculation to exclude certain kinds of records. For
example, you can find the total number and average
salary of all employees in a branch office using this
transformation.

Result of an aggregate calculation for
a port.

Expression Performs a calculation based on values within a
single row. For example, based on the price and
quantity of a particular item, you can calculate the
total purchase price for that line item in an order.

Result of a row-level calculation for a
port.

Filter Specifies a condition used to filter rows passed
through this transformation. For example, if you want
to write customer data to the BAD_DEBT table for
customers with outstanding balances, you could use
the Filter transformation to filter customer data.

TRUE or FALSE, based on whether a
row meets the specified condition.
The Data Integration Service passes
rows that return TRUE through this
transformation. The transformation
applies this value to each row that
passes through it.

Joiner Specifies an advanced condition used to join unsorted
source data. For example, you can concatenate first
name and last name master ports and then match
them with the full name detail port.

TRUE or FALSE, based on whether the
row meets the specified condition.
Depending on the type of join
selected, the Data Integration Service
either adds the row to the result set or
discards the row.

Rank Sets the conditions for rows included in a rank. For
example, you can rank the top 10 salespeople who are
employed with the organization.

Result of a condition or calculation for
a port.

Router Routes data into multiple transformations based on a
group expression. For example, use this
transformation to compare the salaries of employees
at three different pay levels. You can do this by
creating three groups in the Router transformation.
For example, create one group expression for each
salary range.

TRUE or FALSE, based on whether a
row meets the specified group
expression. The Data Integration
Service passes rows that return TRUE
through each user-defined group in
this transformation. Rows that return
FALSE pass through the default group.

Update Strategy Flags a row for update, insert, delete, or reject. You
use this transformation when you want to control
updates to a target, based on some condition you
apply. For example, you might use the Update
Strategy transformation to flag all customer rows for
update when the mailing address has changed. Or,
you might flag all employee rows for reject for people
who no longer work for the organization.

Numeric code for update, insert,
delete, or reject. The transformation
applies this value to each row passed
through it.

The Expression Editor
Use the Expression Editor to build SQL-like statements.

You can enter an expression manually or use the point-and-click method. Select functions, ports, variables,
and operators from the point-and-click interface to minimize errors when you build expressions. The
maximum number of characters you can include in an expression is 32,767.

Expressions in Transformations 43

Port Names in an Expression
You can enter transformation port names in an expression.

For connected transformations, if you use port names in an expression, the Developer tool updates that
expression when you change port names in the transformation. For example, you write an expression that
determines the difference between two dates, Date_Promised and Date_Delivered. If you change the
Date_Promised port name to Due_Date, the Developer tool changes the Date_Promised port name to
Due_Date in the expression.

Note: You can propagate the name Due_Date to other non-reusable transformations that depend on this port
in the mapping.

Adding an Expression to a Port
You can add an expression to an output port.

1. In the transformation, select the port and open the Expression Editor.

2. Enter the expression. Use the Functions and Ports tabs and the operator keys.

Note: You cannot use an escape character in an expression. If you include an escape character in the
expression, the Developer tool might display a parse error.

3. Optionally, add comments to the expression.

Use comment indicators -- or //.

4. Click the Validate button to validate the expression.

5. Click OK.

6. If the expression is not valid, fix the validation errors and validate the expression again.

7. When the expression is valid, click OK to close the Expression Editor.

Comments in an Expression
You can add comments to an expression to describe the expression or to specify a valid URL to access
business documentation about the expression.

To add comments within the expression, use -- or // comment indicators.

Expression Validation
You need to validate an expression to run a mapping or preview mapplet output.

Use the Validate button in the Expression Editor to validate an expression. If you do not validate an
expression, the Developer tool validates it when you close the Expression Editor. If the expression is invalid,
the Developer tool displays a warning. You can save the invalid expression or modify it.

Test Expressions
You can test some expressions that you configure in the Expression Editor. When you test an expression, you
enter sample data and then evaluate the expression.

You can test expressions when you configure expressions in the following ways:

• In an output or variable port in the Expression transformation

44 Chapter 1: Introduction to Transformations

• In the Mapping Outputs view of an Expression transformation after adding the transformation to a
mapping

For example, after configuring an expression that concatenates the first name, a space, and the last name,
you can enter sample data for the ports, and then evaluate the expression to verify the result.

The following image shows the results of an expression that concatenates a sample first name and last
name:

Date Format Strings for Sample Data
When you test an expression that uses a port with the Date/Time or Timestamp with Time Zone data type,
you must enter sample data for the port using the required date format string.

To enter sample data for a port with the Date/Time data type, use the format MM/DD/YYYY HH24:MI:SS.
When you evaluate the expression, the Expression Editor displays the result using the format that you specify
in the expression. If you omit the format string in the expression, the Expression Editor displays the result
using the same format MM/DD/YYYY HH24:MI:SS.

To enter sample data for a port with the Timestamp with Time Zone data type, use the format MM/DD/YYYY
HH24:MI:SS TZR. When you evaluate the expression, the Expression Editor displays the result using the
format YYYY-MM-DD HH24:MI:SS.NS TZR.

Data Type Conversion
Multiple expression and aggregation functions might generate data of a data type that is different from the
input data.

For example, when you multiply two decimal numbers with a precision of 18 digits, the resulting data type
could be a decimal with a precision of 28 digits.

For input data type of Decimal with a precision of 38 digits, the result of certain operations might produce
data that may not fit into resultant data type. So the user might get an overflow exception.

The following functions might require a data type conversion to accommodate an increase in the size of the
data when compared to the input data types:

• avg

• cume

• divide

Expressions in Transformations 45

• median

• movingavg

• movingsum

• multiply

• Percentile

• Sum

For example, when the input data is of the Integer data type and you use multiplication operation, the
resulting data type could be of the bigint data type. Similarly, when the input data type is of the Decimal data
type of precision as 18 digits, the result of the multiplication operation might be large and within Decimal
data type of the precision as 28 digits.

Local Variables
Use local variables in Aggregator, Expression, and Rank transformations to improve performance. You can
reference variables in an expression or use them to temporarily store data.

You might use variables to complete the following tasks:

• Temporarily store data.

• Simplify complex expressions.

• Store values from prior rows.

• Capture multiple return values from a stored procedure.

• Compare values.

• Store the results of an unconnected Lookup transformation.

Temporarily Store Data and Simplify Complex Expressions
Variables increase performance when you enter multiple related expressions in the same transformation. You
can define components as variables instead of parsing and validating the same expression components
mulitple times in the transformation.

For example, if an Aggregator transformation uses the same filter condition before calculating sums and
averages, you can define this condition as a variable, and then reuse the condition in both aggregate
calculations.

You can simplify complex expressions. If an Aggregator includes the same calculation in multiple
expressions, you can increase performance by creating a variable to store the results of the calculation.

For example, you might create the following expressions to find both the average salary and the total salary
with the same data:

AVG(SALARY, ((JOB_STATUS = 'Full-time') AND (OFFICE_ID = 1000)))
SUM(SALARY, ((JOB_STATUS = 'Full-time') AND (OFFICE_ID = 1000)))

Instead of entering the same arguments for both calculations, you might create a variable port for each
condition in this calculation, and then change the expression to use the variables.

46 Chapter 1: Introduction to Transformations

The following table shows how to use variables to simplify complex expressions and temporarily store data:

Port Value

V_CONDITION1 JOB_STATUS = ‘Full-time’

V_CONDITION2 OFFICE_ID = 1000

AVG_SALARY AVG(SALARY, (V_CONDITION1 AND V_CONDITION2))

SUM_SALARY SUM(SALARY, (V_CONDITION1 AND V_CONDITION2))

Store Values Across Rows
You can configure variables in transformations to store data from source rows. You can use the variables in
transformation expressions.

For example, a source file contains the following rows:

California
California
California
Hawaii
Hawaii
New Mexico
New Mexico
New Mexico

Each row contains a state. You need to count the number of rows and return the row count for each state:

California,3
Hawaii ,2
New Mexico,3

You can configure an Aggregator transformation to group the source rows by state and count the number of
rows in each group. Configure a variable in the Aggregator transformation to store the row count. Define
another variable to store the state name from the previous row.

The Aggregator transformation has the following ports:

Port Port
Type

Expression Description

State Pass-
through

n/a The name of a state. The source rows are grouped
by the state name. The Aggregator transformation
returns one row for each state.

State_Count Variable IIF (PREVIOUS_STATE =
STATE, STATE_COUNT
+1, 1)

The row count for the current State. When the
value of the current State column is the same as
the Previous_State column, the Integration Service
increments State_Count. Otherwise, it resets the
State_Count to 1.

Local Variables 47

Port Port
Type

Expression Description

Previous_State Variable State The value of the State column in the previous row.
When the Integration Service processes a row, it
moves the State value to Previous_State.

State_Counter Output State_Count The number of rows the Aggregator transformation
processed for a state. The Integration Service
returns State_Counter once for each state.

Capture Values from Stored Procedures
Variables provide a way to capture multiple columns of return values from stored procedures.

Guidelines for Configuring Variable Ports
Consider the following factors when you configure variable ports in a transformation:

• Port order. The Integration Service evaluates ports by dependency. The order of the ports in a
transformation must match the order of evaluation: input ports, variable ports, output ports.

• Datatype. The datatype you choose reflects the return value of the expression you enter.

• Variable initialization. The Integration Service sets initial values in variable ports, where you can create
counters.

Port Order
The Integration Service evaluates the input ports first. The Integration Service evaluates the variable ports
next, and the output ports last.

The Integration Service evaluates ports in the following order:

1. Input ports. The Integration Service evaluates all input ports first since they do not depend on any other
ports. Therefore, you can create input ports in any order. The Integration Service does not order input
ports because input ports do not reference other ports.

2. Variable ports. Variable ports can reference input ports and variable ports, but not output ports. Because
variable ports can reference input ports, the Integration Service evaluates variable ports after input ports.
Variables can reference other variables, so the display order for variable ports is the same as the order in
which the Integration Service evaluates each variable.

For example, if you calculate the original value of a building and then adjust for depreciation, you might
create the original value calculation as a variable port. This variable port needs to appear before the port
that adjusts for depreciation.

3. Output ports. The Integration Service evaluates output ports last, because output ports can reference
input ports and variable ports. The display order for output ports does not matter beause output ports
cannot reference other output ports. Be sure output ports display at the bottom of the list of ports.

Data Type
When you configure a port as a variable, you can enter any expression or condition in it. The data type you
choose for this port reflects the return value of the expression you enter. If you specify a condition through
the variable port, any numeric data type returns the values for TRUE (non-zero) and FALSE (zero).

48 Chapter 1: Introduction to Transformations

Variable Initialization
The Integration Service does not set the initial value for variables to NULL.

The Integration Service uses the following guidelines to set initial values for variables:

• Zero for numeric ports

• Empty strings for string ports

• 01/01/0001 for Date/Time ports

Therefore, use variables as counters, which need an initial value. For example, you can create a numeric
variable with the following expression:

VAR1 + 1
This expression counts the number of rows in the VAR1 port. If the initial value of the variable were set to
NULL, the expression would always evaluate to NULL. This is why the initial value is set to zero.

Default Values for Ports
All transformations use default values that determine how the Integration Service handles input null values
and output transformation errors.

Input, output, and input/output ports have a system default value that you can sometimes override with a
user-defined default value. Default values have different functions in different types of ports:

• Input port. The system default value for null input ports is NULL. The default value appears as a blank in
the transformation. If an input value is NULL, the Integration Service leaves it as NULL.

• Output port. The system default value for output transformation errors is ERROR. The default value
appears in the transformation as ERROR(‘transformation error’). If a transformation error occurs, the
Integration Service skips the row. The Integration Service notes all input rows that the ERROR function
skips in the log file.

The following errors are transformation errors:

- Data conversion errors, such as passing a number to a date function.

- Expression evaluation errors, such as dividing by zero.

- Calls to an ERROR function.

• Pass-through port. The system default value for null input is the same as input ports, NULL. The system
default value appears as a blank in the transformation. The default value for output transformation errors
is the same as output ports. The default value for output transformation errors does not display in the
transformation.

Note: The Java Transformation converts PowerCenter® datatypes to Java datatypes, based on the Java
Transformation port type. Default values for null input differ based on the Java datatype.

Default Values for Ports 49

The following table shows the system default values for ports in connected transformations:

Port Type Default
Value

Integration Service Behavior User-Defined Default
Value Supported

Input, Pass-
through

NULL Integration Service passes all input null values as
NULL.

Input, Input/Output

Output, Pass-
through

ERROR Integration Service calls the ERROR function for
output port transformation errors. The Integration
Service skips rows with errors and writes the input
data and the error message in the log file.

Output

Variable ports do not support default values. The Integration Service initializes variable ports according to
the datatype.

You can override some of the default values to change the Integration Service behavior when it encounters
null input values and output transformation errors.

User-Defined Default Values
You can override the system default values with user-defined default values for supported input, pass-
through, and output ports within a connected transformation.

Use the following rules and guidelines to override the system default values for ports:

• Input ports. You can enter user-defined default values for input ports if you do not want the Integration
Service to treat null values as NULL. If NULL is passed to the input port, the Integration Service replaces
NULL with the default value.

• Output ports. You can enter user-defined default values for output ports if you do not want the Integration
Service to skip the row or if you want the Integration Service to write a specific message with the skipped
row to the log. If you define a default value in the output port, the Integration Service replaces the row with
the default value when the output port has a transformation error.

• Pass-through ports. You can enter user-defined default values for pass-through ports if you do not want
the Integration Service to treat null values as NULL. You cannot enter user-defined default values for
output transformation errors in a pass-through port.

Note: The Integration Service ignores user-defined default values for unconnected transformations. For
example, if you call a Lookup or Stored Procedure transformation through an expression, the Integration
Service ignores any user-defined default value and it applies the system default value.

Use the following options to enter user-defined default values:

• Constant value. Use any constant (numeric or text), including NULL.

• Constant expression. You can include a transformation function with constant parameters.

• ERROR. Generate a transformation error. Write the row and a message in the mapping log or row error log.

• ABORT. Abort the mapping.

Constant Values
You can enter any constant value as a default value. The constant value must match the port datatype.

For example, a default value for a numeric port must be a numeric constant. Some constant values include:

0
9999

50 Chapter 1: Introduction to Transformations

NULL
'Unknown Value'
'Null input data'

Constant Expressions
A constant expression is any expression that uses transformation functions (except aggregate functions) to
write constant expressions. You cannot use values from input, input/output, or variable ports in a constant
expression.

Some valid constant expressions include:

500 * 1.75
TO_DATE('January 1, 1998, 12:05 AM','MONTH DD, YYYY, HH:MI AM')
ERROR ('Null not allowed')
ABORT('Null not allowed')
SESSSTARTTIME

You cannot use values from ports within the expression because the Integration Service assigns default
values for the entire mapping when it initializes the mapping.

The following examples are not valid because they use values from ports:

AVG(IN_SALARY)
IN_PRICE * IN_QUANTITY
:LKP(LKP_DATES, DATE_SHIPPED)

Note: You cannot call a stored procedure or lookup table from a default value expression.

ERROR and ABORT Functions
Use the ERROR and ABORT functions for input and output port default values, and input values for input/
output ports. The Integration Service skips the row when it encounters the ERROR function. It aborts the
mapping when it encounters the ABORT function.

User-Defined Default Input Values
You can enter a user-defined default input value if you do not want the Integration Service to treat null values
as NULL.

To override null values, complete one of the following tasks:

• Replace the null value with a constant value or constant expression.

• Skip the null value with an ERROR function.

• Abort the mapping with the ABORT function.

The following table summarizes how the Integration Service handles null input for input and input/output
ports:

Default Value Default Value
Type

Description

NULL (displays blank) System Integration Service passes NULL.

Constant or Constant
expression

User-Defined Integration Service replaces the null value with the value of the
constant or constant expression.

Default Values for Ports 51

Default Value Default Value
Type

Description

ERROR User-Defined Integration Service treats this as a transformation error:
- Increases the transformation error count by 1.
- Skips the row, and writes the error message to the log file or row

error log.
The Integration Service does not write rows to the reject file.

ABORT User-Defined The mapping aborts when the Integration Service encounters a null
input value. The Integration Service does not increase the error count
or write rows to the reject file.

Replace Null Values
Use a constant value or expression to substitute a specified value for null values in a port.

For example, if an input string port is called DEPT_NAME and you want to replace null values with the string
‘UNKNOWN DEPT’, you could set the default value to ‘UNKNOWN DEPT’. Depending on the transformation,
the Integration Service passes ‘UNKNOWN DEPT’ to an expression or variable within the transformation or to
the next transformation in the data flow.

For example, the Integration Service replaces all null values in a port with the string ‘UNKNOWN DEPT.’

DEPT_NAME REPLACED VALUE
Housewares Housewares
NULL UNKNOWN DEPT
Produce Produce

Skip Null Records
Use the ERROR function as the default value when you do not want null values to pass into a transformation.
For example, you might want to skip a row when the input value of DEPT_NAME is NULL. You could use the
following expression as the default value:

ERROR('Error. DEPT is NULL')
When you use the ERROR function as a default value, the Integration Service skips the row with the null value.
The Integration Service writes all rows skipped by the ERROR function into the log file. It does not write these
rows to the reject file.

DEPT_NAME RETURN VALUE
Housewares Housewares
NULL 'Error. DEPT is NULL' (Row is skipped)
Produce Produce

The following log shows where the Integration Service skips the row with the null value:

TE_11019 Port [DEPT_NAME]: Default value is: ERROR(<<Transformation Error>> [error]:
Error. DEPT is NULL
... error('Error. DEPT is NULL')
).
CMN_1053 EXPTRANS: : ERROR: NULL input column DEPT_NAME: Current Input data:
CMN_1053 Input row from SRCTRANS: Rowdata: (RowType=4 Src Rowid=2 Targ Rowid=2
 DEPT_ID (DEPT_ID:Int:): "2"
 DEPT_NAME (DEPT_NAME:Char.25:): "NULL"
 MANAGER_ID (MANAGER_ID:Int:): "1"
)

52 Chapter 1: Introduction to Transformations

Abort the Mapping
Use the ABORT function to abort a mapping when the Integration Service encounters null input values.

Default Value Validation
The Developer tool validates default values as you enter them.

The Developer tool validates default values when you save a mapping. If you enter a default value that is not
valid, the Developer tool marks the mapping as not valid.

User-Defined Default Output Values
You can create user-defined default values to override the system default values for output ports.

You can enter user-defined default values for output ports if you do not want the Integration Service to skip
rows with errors or if you want the Integration Service to write a specific message with the skipped row to the
log. You can enter default values to complete the following functions when the Integration Service
encounters output transformation errors:

• Replace the error with a constant value or constant expression. The Integration Service does not skip the
row.

• Abort the mapping with the ABORT function.

• Write specific messages in the log for transformation errors.

You cannot enter user-defined default output values for input/output ports.

The following table summarizes how the Integration Service handles output port transformation errors and
default values in transformations:

Default Value Default Value
Type

Description

Transformation Error System When a transformation error occurs and you did not override the
default value, the Integration Service performs the following tasks:
- Increases the transformation error count by 1.
- Skips the row, and writes the error and input row to the session log

file or row error log, depending on session configuration.
The Integration Service does not write the row to the reject file.

Constant or Constant
Expression

User-Defined Integration Service replaces the error with the default value.
The Integration Service does not increase the error count or write a
message to the log.

ABORT User-Defined Mapping aborts and the Integration Service writes a message to the
log.
The Integration Service does not increase the error count or write rows
to the reject file.

Replace Errors
If you do not want the Integration Service to skip a row when a transformation error occurs, use a constant or
constant expression as the default value for an output port.

Default Values for Ports 53

For example, if you have a numeric output port called NET_SALARY and you want to use the constant value
‘9999’ when a transformation error occurs, assign the default value 9999 to the NET_SALARY port. If there is
any transformation error (such as dividing by zero) while computing the value of NET_SALARY, the
Integration Service uses the default value 9999.

Abort the Mapping
Use the ABORT function to abort a session when the Integration Service encounters null input values.

Write Messages in the Mapping Log
You can configure a user-defined default value in an output port if you want the Integration Service to write a
specific message in the mapping log for a skipped row. The system default is ERROR (‘transformation error’),
and the Integration Service writes the message ‘transformation error’ in the log along with the skipped row.
You can replace ‘transformation error’ if you want to write a different message.

ERROR Functions in Output Port Expressions
If you enter an expression that uses the ERROR function, the user-defined default value for the output port
might override the ERROR function in the expression.

For example, you enter the following expression that instructs the Integration Service to use the value
‘Negative Sale’ when it encounters an error:

IIF(TOTAL_SALES>0, TOTAL_SALES, ERROR ('Negative Sale'))
The following examples show how user-defined default values may override the ERROR function in the
expression:

• Constant value or expression. The constant value or expression overrides the ERROR function in the
output port expression.

For example, if you enter ‘0’ as the default value, the Integration Service overrides the ERROR function in
the output port expression. It passes the value 0 when it encounters an error. It does not skip the row or
write ‘Negative Sale’ in the log.

• ABORT. The ABORT function overrides the ERROR function in the output port expression.

If you use the ABORT function as the default value, the Integration Service aborts the when a
transformation error occurs. The ABORT function overrides the ERROR function in the output port
expression.

• ERROR. If you use the ERROR function as the default value, the Integration Service includes the following
information in the log:

- Error message from the default value

- Error message indicated in the ERROR function in the output port expression

- Skipped row

For example, you can override the default value with the following ERROR function:

ERROR('No default value')
The Integration Service skips the row, and includes both error messages in the log.

 TE_7007 Transformation Evaluation Error; current row skipped...
 TE_7007 [<<Transformation Error>> [error]: Negative Sale
... error('Negative Sale')
]
Sun Sep 20 13:57:28 1998
TE_11019 Port [OUT_SALES]: Default value is: ERROR(<<Transformation Error>> [error]:
No default value
... error('No default value')

54 Chapter 1: Introduction to Transformations

General Rules for Default Values
Use the following rules and guidelines when you create default values:

• The default value must be either a NULL, a constant value, a constant expression, an ERROR function, or
an ABORT function.

• For input/output ports, the Integration Service uses default values to handle null input values. The output
default value of input/output ports is always ERROR(‘Transformation Error’).

• Variable ports do not use default values.

• You can assign default values to group by ports in the Aggregator and Rank transformations.

• Not all port types in all transformations allow user-defined default values. If a port does not allow user-
defined default values, the default value field is disabled.

• Not all transformations allow user-defined default values.

• If a transformation is not connected to the mapping data flow, the Integration Service ignores user-
defined default values.

• If any input port is unconnected, its value is assumed to be NULL and the Integration Service uses the
default value for that input port.

• If an input port default value contains the ABORT function and the input value is NULL, the Integration
Service immediately stops the mapping. Use the ABORT function as a default value to restrict null input
values. The first null value in an input port stops the mapping

• If an output port default value contains the ABORT function and any transformation error occurs for that
port, the mapping immediately stops. Use the ABORT function as a default value to enforce strict rules for
transformation errors. The first transformation error for this port stops the mapping

• The ABORT function, constant values, and constant expressions override ERROR functions configured in
output port expressions.

Default Value Validation
The Developer tool validates default values as you enter them.

The Developer tool validates default values when you save a mapping. If you enter a default value that is not
valid, the Developer tool marks the mapping as not valid.

Tracing Levels
When you configure a transformation, you can set the amount of detail that the Data Integration Service
writes in the log.

By default, the tracing level for every transformation is Normal. Change the tracing level to a Verbose setting
when you need to troubleshoot a transformation that is not behaving as expected. Set the tracing level to
Terse when you want the minimum amount of detail to appear in the log.

Configure the following property on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for a transformation.

Tracing Levels 55

The following table describes the tracing levels:

Tracing Level Description

Terse Logs initialization information and error messages and notification of rejected
data.

Normal Logs initialization and status information, errors encountered, and skipped rows
due to transformation row errors. Summarizes mapping results, but not at the
level of individual rows.
Default is normal.

Verbose Initialization In addition to normal tracing, logs additional initialization details, names of index
and data files used, and detailed transformation statistics.

Verbose Data In addition to verbose initialization tracing, logs each row that passes into the
mapping. Also notes where string data was truncated to fit the precision of a
column and provides detailed transformation statistics.
When you configure this tracing level, row data for all rows in a block are written
to the log when a transformation is processed.

Reusable Transformations
Reusable transformations are transformations that you can use in multiple mappings or mapplets.

For example, you might create an Expression transformation that calculates value-added tax for sales in
Canada to analyze the cost of doing business in that country. Rather than perform the same work every time,
you can create a reusable transformation. When you need to incorporate this transformation into a mapping,
you add an instance of it to the mapping. If you change the definition of the transformation, all instances of it
inherit the changes.

The Developer tool stores each reusable transformation as metadata separate from any mapping or mapplet
that uses the transformation. It stores reusable transformations in a project or folder.

When you add instances of a reusable transformation to mappings, changes you make to the transformation
might invalidate the mapping or generate unexpected data.

Reusable Transformation Instances and Inherited Changes
When you add a reusable transformation to a mapping or mapplet, you add an instance of the transformation.
The definition of the transformation still exists outside the mapping or mapplet, while an instance of the
transformation appears within the mapping or mapplet.

When you change the transformation, instances of the transformation reflect these changes. Instead of
updating the same transformation in every mapping that uses it, you can update the reusable transformation
one time, and all instances of the transformation inherit the change. Instances inherit changes to ports,
expressions, properties, and the name of the transformation.

56 Chapter 1: Introduction to Transformations

Editing a Reusable Transformation
When you edit a reusable transformation, all instances of that transformation inherit the changes. Some
changes might invalidate the mappings that use the reusable transformation.

You can open the transformation in the editor to edit a reusable transformation. You cannot edit an instance
of the transformation in a mapping. However, you can edit the transformation runtime properties.

If you make any of the following changes to a reusable transformation, mappings that use instances of it
might not be valid:

• When you delete one or more ports in a transformation, you disconnect the instance from part or all of the
data flow through the mapping.

• When you change a port datatype, you make it impossible to map data from that port to another port that
uses an incompatible datatype.

• When you change a port name, expressions that refer to the port are no longer valid.

• When you enter an expression that is not valid in the reusable transformation, mappings that use the
transformation are no longer valid. The Data Integration Service cannot run mappings that are not valid.

Editor Views for a Reusable Transformation
You define properties and create Java code for a reusable Java transformation in views in the editor.

For reusable transformations, the following views are available:

Overview

Enter the name and description of the transformation, and create and configure input and output ports.

Advanced

Set advanced properties for the transformation.

Non-Reusable Transformations
A non-reusable transformation is a transformation that you create in a specific mapping. You cannot use the
transformation in any other mapping.

For example, you might create a mapping that contains multiple transformations. Each transformation
performs calculations on the source data. You create a non-reusable Aggregator transformation at the end of
the mapping to process the results. When you create a non-reusable transformation, you can drag the ports
from one transformation to another transformation in the mapping and create the input ports.

The Developer tool stores the non-reusable Aggregator transformation as metadata that it keeps with the
mapping.

Editor Views for a Non-Reusable Transformation
Define properties for a non-reusable transformation in the editor views.

The following views appear for non-reusable transformations:
General

Enter the name and description of the transformation.

Non-Reusable Transformations 57

Ports

Create and configure input and output ports.

Advanced

Set advanced properties for the transformation.

Creating a Transformation
You can create a reusable transformation to reuse in multiple mappings or mapplets. Or, you can create a
non-reusable transformation to use one time in a mapping or mapplet.

To create a reusable transformation, click File > New > Transformation and complete the wizard.

To create a non-reusable transformation in a mapping or mapplet, select a transformation from the
Transformation palette and drag the transformation to the editor.

Certain transformations require you to choose a mode or perform additional configuration when you create
the transformation. For example, when you create a Lookup transformation, you must choose a data object to
use as a lookup source.

After you create a transformation, it appears in the editor. Some transformations contain predefined ports
and groups. Other transformations are empty.

58 Chapter 1: Introduction to Transformations

C h a p t e r 2

Transformation Ports
This chapter includes the following topics:

• Transformation Ports Overview, 59

• Create Ports, 59

• Configure Ports, 60

• Linking Ports, 60

• Propagating Port Attributes, 63

• Copying Ports from Excel, 66

Transformation Ports Overview
Transformation ports are the individual columns of data that you connect in a mapping or mapplet.
Transformations receive the data from input ports and send the data out using output ports. Input/output
ports receive data and pass it unchanged.

Every input object, output object, mapplet, and transformation contains a collection of ports. Input objects
provide data, so they contain only output ports. Output objects receive data, so they contain only input ports.
Mapplets contain only input ports and output ports. Transformations contain a combination of input, output,
and input/output ports, depending on the transformation and its application.

A dynamic port can receive one or more columns from an upstream transformation. Dynamic ports can
receive new or changed columns based on the data flow.

After you create a transformation in a mapping, create the ports and define the port properties. Complete the
mapping by linking it to targets and other transformations through the ports. Propagate port attributes to
pass changed attributes to a port throughout a mapping.

Create Ports
When you create some transformations, you do not have to create all of the ports manually. For example, you
might create a Lookup transformation and reference a lookup table. If you view the transformation ports, you
can see that the transformation has an output port for each column in the table that you referenced. You do
not need to define those ports.

59

Create a port in the following ways:

• Drag a port from another transformation. When you drag a port from another transformation the Designer
creates a port with the same properties, and it links the two ports.

• Click the Add button on the Ports tab. The Designer creates an empty port you can configure.

Configure Ports
When you define the transformation ports, you define port properties. Port properties include the port name,
the data type, the port type, and the default value.

Configure the following port properties:

• Port name. The name of the port. Use the following conventions while naming ports:

- Begin with a single- or double-byte letter or single- or double-byte underscore (_).

- Port names can contain any of the following single- or double-byte characters: a letter, number,
underscore (_), $, #, or @.

• Datatype, precision, and scale. If you plan to enter an expression or condition, verify that the datatype
matches the return value of the expression.

• Port type. Transformations can contain a combination of input, output, input/output, and variable port
types.

• Default value. Assign a default value for a port that contains null values or an output transformation error.
You can override the default value in some ports.

• Description. A description of the port.

• Other properties. Some transformations have properties specific to that transformation, such as
expressions or group by properties.

Linking Ports
After you add and configure input, output, transformation, and mapplet objects in a mapping, complete the
mapping by linking ports between mapping objects.

The Developer tool creates the connection only when the connection meets link validation and concatenation
requirements.

You can leave ports unconnected. The Data Integration Service ignores unconnected ports.

When you link ports between input objects, transformations, mapplets, and output objects, you can create the
following types of link:

• One to one

• One to many

You can manually link ports or link ports automatically.

60 Chapter 2: Transformation Ports

One to One Links
Link one port in an input object or transformation to one port in an output object or transformation.

One to Many Links
When you want to use the same data for different purposes, you can link the port providing that data to
multiple ports in the mapping.

You can create a one to many link in the following ways:

• Link one port to multiple transformations or output objects.

• Link multiple ports in one transformation to multiple transformations or output objects.

For example, you want to use salary information to calculate the average salary in a bank branch through the
Aggregator transformation. You can use the same information in an Expression transformation configured to
calculate the monthly pay of each employee.

Manually Linking Ports
You can manually link one port or multiple ports.

Drag a port from an input object or transformation to the port of an output object or transformation.

Use the Ctrl or Shift key to select multiple ports to link to another transformation or output object. The
Developer tool links the ports, beginning with the top pair. It links all ports that meet the validation
requirements.

When you drag a port into an empty port, the Developer tool copies the port and creates a link.

Automatically Linking Ports
When you link ports automatically, you can link by position or by name.

When you link ports automatically by name, you can specify a prefix or suffix by which to link the ports. Use
prefixes or suffixes to indicate where ports occur in a mapping.

Linking Ports by Name
When you link ports by name, the Developer tool adds links between input and output ports that have the
same name. Link by name when you use the same port names across transformations.

You can link ports based on prefixes and suffixes that you define. Use prefixes or suffixes to indicate where
ports occur in a mapping. Link by name and prefix or suffix when you use prefixes or suffixes in port names
to distinguish where they occur in the mapping or mapplet.

Linking by name is not case sensitive.

1. Click Mapping > Auto Link.

The Auto Link dialog box appears.

2. Select an object in the From window to link from.

3. Select an object in the To window to link to.

4. Select Name.

5. Optionally, click Show Advanced to link ports based on prefixes or suffixes.

Linking Ports 61

6. Click OK.

Linking Ports by Position
When you link by position, the Developer tool links each output port to the corresponding input port. For
example, the first output port is linked to the first input port, the second output port to the second input port.
Link by position when you create transformations with related ports in the same order.

1. Click Mapping > Auto Link.

The Auto Link dialog box appears.

2. Select an object in the From window to link from.

3. Select an object in the To window to link to.

4. Select Position and click OK.

The Developer tool links each output port to the corresponding input port. For example, the first output
port is linked to the first input port, the second output port to the second input port.

Rules and Guidelines for Linking Ports
Certain rules and guidelines apply when you link ports.

Consider the following rules and guidelines when you connect mapping objects:

• If the Developer tool detects an error when you try to link ports between two mapping objects, it displays a
symbol indicating that you cannot link the ports.

• Follow the logic of data flow in the mapping. You can link the following types of port:

- The receiving port must be an input or input/output port.

- The originating port must be an output or input/output port.

- You cannot link input ports to input ports or output ports to output ports.

• You must link at least one port of an input group to an upstream transformation.

• You must link at least one port of an output group to a downstream transformation.

• You can link ports from one active transformation or one output group of an active transformation to an
input group of another transformation.

• You cannot connect an active transformation and a passive transformation to the same downstream
transformation or transformation input group.

• You cannot connect more than one active transformation to the same downstream transformation or
transformation input group.

• You can connect any number of passive transformations to the same downstream transformation,
transformation input group, or target.

• You can link ports from two output groups in the same transformation to one Joiner transformation
configured for sorted data if the data from both output groups is sorted.

• You can only link ports with compatible datatypes. The Developer tool verifies that it can map between the
two datatypes before linking them. The Data Integration Service cannot transform data between ports
with incompatible datatypes.

• The Developer tool marks some mappings as not valid if the mapping violates data flow validation.

62 Chapter 2: Transformation Ports

Propagating Port Attributes
Propagate port attributes to pass changed attributes to a port throughout a mapping.

1. In the editor, select a port in a transformation.

2. Click Mapping > Propagate Attributes.

The Propagate Attributes dialog box appears.

3. Select a direction to propagate attributes.

4. Select the attributes you want to propagate.

5. Optionally, preview the results.

6. Click Apply.

The Developer tool propagates the port attributes.

Dependency Types
When you propagate port attributes, the Developer tool updates dependencies.

The Developer tool can update the following dependencies:

• Link path dependencies

• Implicit dependencies

Link Path Dependencies
A link path dependency is a dependency between a propagated port and the ports in its link path.

When you propagate dependencies in a link path, the Developer tool updates all the input and input/output
ports in its forward link path and all the output and input/output ports in its backward link path. The
Developer tool performs the following updates:

• Updates the port name, datatype, precision, scale, and description for all ports in the link path of the
propagated port.

• Updates all expressions or conditions that reference the propagated port with the changed port name.

• Updates the associated port property in a dynamic Lookup transformation if the associated port name
changes.

Implicit Dependencies
An implicit dependency is a dependency within a transformation between two ports based on an expression
or condition.

You can propagate datatype, precision, scale, and description to ports with implicit dependencies. You can
also parse conditions and expressions to identify the implicit dependencies of the propagated port. All ports
with implicit dependencies are output or input/output ports.

When you include conditions, the Developer tool updates the following dependencies:

• Link path dependencies

• Output ports used in the same lookup condition as the propagated port

• Associated ports in dynamic Lookup transformations that are associated with the propagated port

• Master ports used in the same join condition as the detail port

Propagating Port Attributes 63

When you include expressions, the Developer tool updates the following dependencies:

• Link path dependencies

• Output ports containing an expression that uses the propagated port

The Developer tool does not propagate to implicit dependencies within the same transformation. You must
propagate the changed attributes from another transformation. For example, when you change the datatype
of a port that is used in a lookup condition and propagate that change from the Lookup transformation, the
Developer tool does not propagate the change to the other port dependent on the condition in the same
Lookup transformation.

Propagated Port Attributes by Transformation
The Developer tool propagates dependencies and attributes for each transformation.

The following table describes the dependencies and attributes the Developer tool propagates for each
transformation:

Transformation Dependency Propagated Attributes

Address Validator None. None. This transform has predefined port names
and datatypes.

Aggregator - Ports in link path
- Expression
- Implicit dependencies

- Port name, datatype, precision, scale,
description

- Port name
- Datatype, precision, scale

Association - Ports in link path - Port name, datatype, precision, scale,
description

Case Converter - Ports in link path - Port name, datatype, precision, scale,
description

Classifier - Ports in link path - Port name, datatype, precision, scale,
description

Comparison - Ports in link path - Port name, datatype, precision, scale,
description

Consolidator None. None. This transform has predefined port names
and datatypes.

Data Masking - Ports in link path - Port name, datatype, precision, scale,
description

Data Processor - Ports in link path - Port name, datatype, precision, scale,
description

Decision - Downstream ports in link path - Port name, datatype, precision, scale,
description

Expression - Ports in link path
- Expression
- Implicit dependencies

- Port name, datatype, precision, scale,
description

- Port name
- Datatype, precision, scale

64 Chapter 2: Transformation Ports

Transformation Dependency Propagated Attributes

Filter - Ports in link path
- Condition

- Port name, datatype, precision, scale,
description

- Port name

Hierarchical to
Relational

- Ports in link path - Port name, datatype, precision, scale,
description

Joiner - Ports in link path
- Condition
- Implicit Dependencies

- Port name, datatype, precision, scale,
description

- Port name
- Datatype, precision, scale

Key Generator - Ports in link path - Port name, datatype, precision, scale,
description

Labeler - Ports in link path - Port name, datatype, precision, scale,
description

Lookup - Ports in link path
- Condition
- Associated ports (dynamic lookup)
- Implicit Dependencies

- Port name, datatype, precision, scale,
description

- Port name
- Port name
- Datatype, precision, scale

Match - Ports in link path - Port name, datatype, precision, scale,
description

Merge - Ports in link path - Port name, datatype, precision, scale,
description

Normalizer - Ports in link path - Port name

Parser - Ports in link path - Port name, datatype, precision, scale,
description

Rank - Ports in link path
- Expression
- Implicit dependencies

- Port name, datatype, precision, scale,
description

- Port name
- Datatype, precision, scale

Read

REST Web Service
Consumer

- Ports in link path - Port name, datatype, precision, scale,
description

Router - Ports in link path
- Condition

- Port name, datatype, precision, scale,
description

- Port name

Sequence Generator - Ports in link path - Port name, datatype, precision, scale,
description

Sorter - Ports in link path - Port name, datatype, precision, scale,
description

Propagating Port Attributes 65

Transformation Dependency Propagated Attributes

SQL - Ports in link path - Port name, datatype, precision, scale,
description

Standardizer - Ports in link path - Port name, datatype, precision, scale,
description

Union - Ports in link path
- Implicit dependencies

- Port name, datatype, precision, scale,
description

- Datatype, precision, scale

Update Strategy - Ports in link path
- Expression
- Implicit dependencies

- Port name, datatype, precision, scale,
description

- Port name
- Datatype, precision, scale

Weighted Average - Ports in link path - Port name, datatype, precision, scale,
description

Write

Copying Ports from Excel
You can configure ports and port properties in Excel and copy them into transformation ports in the
Developer tool. Port properties include the column name, data type, precision, and scale. You might want to
do this when you need to develop or edit a transformation with many ports.

You can copy metadata to the following transformation types:

• Aggregator

• Expression

• Filter

• Java

• Joiner

• Lookup

• Normalizer

• Rank

• Read

• Router

• Sequence

• Sorter

• SQL

• Union

• Update Strategy

• Web Service Consumer

66 Chapter 2: Transformation Ports

• Window

• Write

Editing Transformations in Excel
When you need to edit a large portion of a transformation, you do not need to change every value in the
Developer tool. Instead, you can copy the transformation ports to Excel, change all the values simultaneously
using Auto Fill, and then Paste (Replace) the transformation ports back into the Developer tool.

1. In the mapping editor of the Developer tool, select the transformation that you want to copy ports from.

2. To copy the original transformation from the Developer tool, right-click within Ports and click Select All.

3. Copy the ports to an Excel spreadsheet.

4. Make changes within the Excel spreadsheet. If you are changing large portions of metadata, you can use
the Auto Fill feature in Excel. This allows you to fill in data based on adjacent cells by dragging the fill
handle. See “Example: Editing a Transformation in Excel” on page 68 for more information.

5. Copy the metadata from Excel.

6. To update the transformation with the changes, right-click within Ports and click Paste (Replace).

Copying Metadata to the Developer Tool
You can create transformation ports in Excel and then copy them to the Developer tool.

1. Create a mapping in the Developer tool with the required transformations.

2. Define metadata for a transformation in Excel.

3. Copy the metadata from Excel.

4. To move the metadata to the transformation in the Developer tool, right-click within Ports and click
Paste (Replace).

The following image shows a sample Excel table and the resulting transformation after you copy the
metadata to the Developer tool:

Note: You must confirm that the values in each cell are valid before copying the values to a transformation.
For example, a string type cannot have a scale value other than "0." Precision values cannot be words and
type values cannot be numbers. If the metadata is incorrect, an error message appears.

Copying Ports from Excel 67

Example: Editing a Transformation in Excel
You are developing a transformation and you need to change all the string data types to decimal. Instead of
changing each field individually, you make global changes in Excel and copy them to the Developer tool.

1. You right-click within Ports, click Select All, and paste the metadata into Excel.

2. You change the first data type value from "string" to "decimal" and then use the fill handle to
automatically change the remaining cells in the column.

3. To update the transformation with the changes, you copy the metadata from Excel, right-click within
Ports, and click Paste (Replace).

By using Excel, you avoid having to change each field individually.

The following image shows the process of moving a transformation to Excel, using Auto Fill to change
certain values, and then copying the transformation back to the Developer tool:

Rules and Guidelines for Copying from Excel
Consider the following rules and guidelines when you copy metadata from Excel to the Developer tool:

• You must confirm that the values in each cell are valid before copying the values to a transformation. For
example, a string type cannot have a scale value other than "0." Precision values cannot be words and
type values cannot be numbers. If the metadata is incorrect, an error message appears.

• The location that you can copy metadata to depends on the type of transformation that you are updating.
For example, the Paste (Replace) option might be unavailable when you right-click in the Properties view
of a transformation. However, the option will still be available when you right-click directly within the
transformation ports in the editor.

68 Chapter 2: Transformation Ports

C h a p t e r 3

Transformation Caches
This chapter includes the following topics:

• Transformation Caches Overview, 69

• Cache Types, 70

• Cache Files, 70

• Cache Size, 71

• Cache Size Increase by the Data Integration Service, 73

• Cache Size for Partitioned Caches, 73

• Cache Size Optimization, 74

Transformation Caches Overview
The Data Integration Service allocates cache memory for Aggregator, Joiner, Lookup, Rank, and Sorter
transformations in a mapping. The Data Integration Service creates index and data caches for the
Aggregator, Joiner, Lookup, and Rank transformations. The Data Integration Service creates one cache for
the Sorter transformation.

You can configure the cache sizes for these transformations. The cache size determines how much memory
the Data Integration Service allocates for each transformation cache at the start of a mapping run.

If the cache size is larger than the available memory on the machine, the Data Integration Service cannot
allocate enough memory and the mapping run fails.

If the cache size is smaller than the amount of memory required to run the transformation, the Data
Integration Service processes some of the transformation in memory and stores overflow data in cache files.
When the Data Integration Service pages cache files to the disk, processing time increases. For optimal
performance, configure the cache size so that the Data Integration Service can process the complete
transformation in memory.

By default, the Data Integration Service automatically calculates the memory requirements at run time, based
on the maximum amount of memory that the service can allocate. After you run a mapping in auto cache
mode, you can tune the cache sizes for the transformations. You analyze the transformation statistics in the
mapping log to determine the cache sizes required for optimal performance, and then configure specific
cache sizes for the transformations.

69

Cache Types
Aggregator, Joiner, Lookup, and Rank transformations require an index cache and a data cache. The Data
Integration Service stores key values in the index cache and output values in the data cache. Sorter
transformations require a single cache. The Data Integration Service stores sort keys and the data to be
sorted in the Sorter cache.

The following table describes the type of information that the Data Integration Service stores in each cache:

Mapping Object Cache Types and Descriptions

Aggregator - Index. Stores group values as configured in the group by ports.
- Data. Stores calculations based on the group by ports.

Joiner - Index. Stores all master rows in the join condition that have unique keys.
- Data. Stores master source rows.

Lookup - Index. Stores lookup condition information.
- Data. Stores lookup data that is not stored in the index cache.

Rank - Index. Stores group values as configured in the group by ports.
- Data. Stores ranking information based on the group by ports.

Sorter - Sorter. Stores sort keys and data.

Cache Files
When you run a mapping, the Data Integration Service creates at least one cache file for each Aggregator,
Joiner, Lookup, Rank, and Sorter transformation. If the Data Integration Service cannot run a transformation
in memory, it writes the overflow data to the cache files.

The following table describes the types of cache files that the Data Integration Service creates for different
mapping objects:

Mapping Object Cache File

Aggregator, Joiner, Lookup, and
Rank transformations

The Data Integration Service creates the following types of cache files:
- One header file for each index cache and data cache
- One data file for each index cache and data cache

Sorter transformation The Data Integration Service creates one sorter cache file.

When you run a mapping, the Data Integration Service writes a message in the mapping log indicating the
cache file name and the transformation name. When a mapping completes, the Data Integration Service
releases cache memory and usually deletes the cache files. You might find index and data cache files in the
cache directory under the following circumstances:

• You configure the Lookup transformation to use a persistent cache.

• The mapping does not complete successfully. The next time you run the mapping, the Data Integration
Service deletes the existing cache files and creates new ones.

70 Chapter 3: Transformation Caches

Because writing to cache files can slow mapping performance, configure the cache sizes to run the
transformation in memory.

Cache File Directory
For Aggregator, Joiner, Lookup, and Rank transformations, the Data Integration Service creates the cache
files in the directory specified in the Cache Directory property. For Sorter transformations, the service creates
the cache files in the directory specified in the Work Directory property.

If the Data Integration Service process does not find the directory, it fails the mapping and writes a message
to the mapping log indicating that it could not create or open the cache file. The Data Integration Service may
create multiple cache files. The number of cache files is limited by the amount of disk space available in the
cache directory.

Cache Size
Cache size determines how much memory the Data Integration Service allocates for each transformation
cache at the start of a mapping run. You can configure a transformation cache size to use auto cache mode
or to use a specific value.

Auto Cache Size
By default, a transformation cache size is set to Auto. The Data Integration Service automatically calculates
the cache memory requirements at run time. You define the maximum amount of memory that the service
can allocate.

The Data Integration Service uses the following guidelines to automatically allocate the memory:

Allocates more memory to transformations with higher processing times.

The Data Integration Service allocates more memory to transformations that typically have higher
processing times. For example, the Data Integration Service allocates more memory to the Sorter
transformation because the Sorter transformation typically takes longer to run.

Allocates more memory to the data cache than to the index cache.

Aggregator, Joiner, Lookup, and Rank transformations require an index cache and a data cache. When
the Data Integration Service divides the memory allocated for the transformation across the index and
data cache, it allocates more memory to the data cache.

Sorter transformations require a single cache. The service allocates all of the memory allocated for the
transformation to the Sorter cache.

Maximum Memory for Auto Cache Size
You define the maximum amount of memory that the Data Integration Service can allocate to transformation
caches in the Maximum Memory Per Request property for Data Integration Service modules in the
Administrator tool.

Each module runs different types of requests that have different memory requirements. For example,
mapping and profile requests typically require more cache memory than SQL service or web service requests.

Cache Size 71

You can configure the Maximum Memory Per Request property for the following Data Integration Service
modules:

• Mapping Service Module

• Profiling Service Module

• SQL Service Module

• Web Service Module

Note: Mapping Service Module requests include mappings and mappings run from Mapping tasks within a
workflow.

For the Profiling Service Module, Maximum Memory Per Request defines the maximum amount of memory
that the Data Integration Service can allocate for each mapping run for a single profile request.

For the remaining modules, the behavior of Maximum Memory Per Request depends on the Data Integration
Service configuration. The behavior depends on the Launch Job Options property and the Maximum Memory
Size property on the Data Integration Service.

The following table describes the behavior of Maximum Memory Per Request for the mapping, SQL service,
and web service modules based on the Data Integration Service configuration:

Data Integration Service
Configuration

Maximum Memory Per Request Behavior

Runs jobs in separate local or
remote system processes, or
Maximum Memory Size is 0
(default)

Maximum amount of memory, in bytes, that the Data Integration Service can
allocate for all transformations that use auto cache mode in a single request.
The value that you define for Maximum Memory Per Request affects only
transformations that use auto cache mode. The Data Integration Service allocates
memory separately to transformations for which you configure a specific cache
size. The total memory used by the request can exceed the value of Maximum
Memory Per Request.
For example, Maximum Memory Per Request is set to 800 MB. A mapping has
three transformations that require caching. You configure two transformations to
use auto cache mode and configure the third transformation to use a total of 500
MB for the cache sizes. The Data Integration Service allocates a total of 1,300 MB
of memory for all of the transformation caches.

Runs jobs in the Data Integration
Service process, and Maximum
Memory Size is greater than 0

Maximum amount of memory, in bytes, that the Data Integration Service can
allocate for a single request.
The value that you define for the Maximum Memory Per Request property affects
all transformations. The total memory used by the request cannot exceed the
value of Maximum Memory Per Request.

When you increase the maximum amount of memory used for auto cache mode, you increase the maximum
cache size that can be used for all requests to the module. You can increase the maximum amount of
memory to ensure that no cache files are paged to the disk. However, because this value is used for all
requests, the Data Integration Service might allocate more memory than is needed for some requests.

Specific Cache Size
You can configure a specific cache size for a transformation. The Data Integration Service allocates the
specified amount of memory to the transformation cache at the start of the mapping run. Configure a
specific value in bytes when you tune the cache size.

The first time that you configure a cache size, use auto cache mode. After you run the mapping, analyze
transformation statistics in the mapping log to determine the cache sizes required to run the transformations
in memory. When you configure the cache size to use the value specified in the mapping log, you can ensure

72 Chapter 3: Transformation Caches

that no allocated memory is wasted. However, the optimal cache size varies based on the size of the source
data. Review the mapping logs after subsequent mapping runs to monitor changes to the cache size. If you
configure a specific cache size for a reusable transformation, verify that the cache size is optimal for each
use of the transformation in a mapping.

To define specific cache sizes, configure the cache size values in the transformation properties in the
Developer tool.

Cache Size Increase by the Data Integration Service
The Data Integration Service creates each memory cache based on the configured cache size. In some
situations, the Data Integration Service might increase the configured cache size because it requires more
cache memory.

The Data Integration Service might increase the configured cache size for one of the following reasons:

Configured cache size is less than the minimum cache size required to process the operation.

The Data Integration Service requires a minimum amount of memory to initialize each mapping. If the
configured cache size is less than the minimum required cache size, then the Data Integration Service
increases the configured cache size to meet the minimum requirement. If the Data Integration Service
cannot allocate the minimum required memory, the mapping fails.

Configured cache size is not a multiple of the cache page size.

The Data Integration Service stores cached data in cache pages. The cached pages must fit evenly into
the cache. For example, if you configure 10 MB (1,048,576 bytes) for the cache size and the cache page
size is 10,000 bytes, then the Data Integration Service increases the configured cache size to 1,050,000
bytes to make it a multiple of the 10,000-byte page size.

When the Data Integration Service increases the configured cache size, it continues to run the mapping and
writes the following messages in the mapping log:

INFO: MAPPING, TE_7212, Increasing [Index Cache] size for transformation
<transformation name> from <configured cache size> to <new cache size>.
INFO: MAPPING, TE_7212, Increasing [Data Cache] size for transformation
<transformation name> from <configured cache size> to <new cache size>.

Cache Size for Partitioned Caches
If you have the Partitioning option, cache partitioning creates a separate cache for each partition that runs an
Aggregator, Joiner, Rank, Lookup, or Sorter transformation. During cache partitioning, each partition stores
different data in a separate cache. When the Data Integration Service uses cache partitioning for these
transformations, the service divides the allocated cache size across the partitions.

For example, you configure the transformation cache size to be 100 MB. The Data Integration Service uses
four partitions to run the transformation. The service divides the cache size value so that each partition uses
a maximum of 25 MB for the cache size.

Cache Size Increase by the Data Integration Service 73

Cache Size Optimization
For optimal mapping performance, configure the cache sizes so that the Data Integration Service can run the
complete transformation in memory.

To configure optimal cache sizes, perform the following tasks:

1. Set the tracing level to verbose initialization.

2. Run the mapping in auto cache mode.

3. Analyze caching performance in the mapping log.

4. Configure specific values for the cache sizes.

Step 1. Set the Tracing Level to Verbose Initialization
In the Developer tool, set the tracing level to verbose initialization to enable the Data Integration Service to
write transformation statistics to the mapping log. The transformation statistics list the cache sizes required
for optimal performance. By default, the tracing level is set to normal.

Set the tracing level to verbose initialization in one of the following ways:

• Modify the advanced properties for each transformation that uses a cache.

• Modify the default mapping configuration properties if you plan to run the mapping for the first time from
the Developer tool. For more information, see the Informatica Developer Tool Guide.

• Modify the advanced properties for an application that contains the mapping if you plan to run the
deployed mapping for the first time from the command line. For more information, see the Informatica
Developer Tool Guide.

Step 2. Run the Mapping in Auto Cache Mode
The first time that you run the mapping, use auto cache mode for the transformation cache sizes.

You can run the mapping from the Developer tool. Or, you can add the mapping to an application and then
deploy the application to the Data Integration Service so that you can run the mapping from the command
line.

Step 3. Analyze Caching Performance
After you run the mapping in auto cache mode, analyze the transformation statistics in the mapping log to
determine the cache sizes required for optimal mapping performance.

When an Aggregator, Joiner, Lookup, or Rank transformation pages to the disk, the mapping log specifies the
index and data cache sizes required to run the transformation in memory. For example, you run an
Aggregator transformation called AGG_TRANS. The mapping log contains the following text:

CMN_1791, The index cache size that would hold [1098] aggregate groups of input rows for
[AGG_TRANS], in memory, is [286720] bytes
CMN_1790, The data cache size that would hold [1098] aggregate groups of input rows for
[AGG_TRANS], in memory, is [1774368] bytes

The log shows that the index cache requires 286,720 bytes and the data cache requires 1,774,368 bytes to
run the transformation in memory without paging to the disk.

When a Sorter transformation pages to the disk, the mapping log states that the Data Integration Service
made multiple passes on the source data. The Data Integration Service makes multiple passes on the data
when it has to page to the disk to complete the sort. The message specifies the number of bytes required for

74 Chapter 3: Transformation Caches

a single pass, which is when the Data Integration Service reads the data once and performs the sort in
memory without paging to the disk.

For example, you run a Sorter transformation called SRT_TRANS. The mapping log contains the following
text:

SORT_40427, Sorter Transformation [SRT_TRANS] required 2-pass sort (1-pass temp I/O:
13126221824 bytes). You may try to set the cache size to 14128 MB or higher for 1-pass
in-memory sort.

The log shows that the Sorter cache requires 14,128 MB so that the Data Integration Service makes one pass
on the data.

Step 4. Configure Specific Cache Sizes
For optimal performance, configure the transformation cache sizes to use the values specified in the
mapping log. Update the index and data cache size transformation properties in the Developer tool.

1. In the Developer tool, open the reusable or non-reusable transformation.

2. Locate the cache size properties depending on the following transformation types:

Option Description

Reusable Aggregator, Joiner, Rank, or Sorter transformation Click the Advanced view.

Non-reusable Aggregator, Joiner, Rank, or Sorter transformation Click the Advanced tab in the Properties view.

Reusable Lookup transformation Click the Run-time view.

Non-reusable Lookup transformation Click the Run-time tab in the Properties view.

3. Enter the values in bytes that the mapping log recommended for the index and data cache sizes.

The following image shows a non-resuable Aggregator transformation that has specific values
configured for the index and data cache sizes:

4. Click File > Save.

Cache Size Optimization 75

C h a p t e r 4

Address Validator Transformation
This chapter includes the following topics:

• Address Validator Transformation Overview, 76

• Address Reference Data, 77

• Modes and Templates, 79

• Port Groups and Port Selection, 79

• Address Validator Transformation Input Port Groups, 80

• Address Validator Transformation Output Port Groups, 80

• Multiple-Instance Ports, 83

• Address Validation Projects, 84

• Formatted Addresses and Mail Carrier Standards, 85

• Partial Address Completion , 86

• Address Validator Status Ports, 87

• Address Validator Transformation General Settings, 98

• Address Validation Properties in the Preferences Window, 99

• Address Validation Advanced Properties, 102

• Certification Reports, 121

• Configuring an Address Validator Transformation, 124

• Adding Ports to the Address Validator Transformation, 125

• Creating User-Defined Templates, 125

• Defining Address Validator Models, 126

• Defining a Certification Report, 126

• Address Validator Transformation in a Non-native Environment, 127

Address Validator Transformation Overview
The Address Validator transformation is a multiple-group transformation that compares input address data
with address reference data. It determines the accuracy of the addresses and fixes errors in the addresses.

76

The transformation creates records that meet mail delivery standards for data content and structure. The
transformation also adds status information to each address.

The Address Validator transformation performs the following operations on address data:

• The transformation compares address records in the source data to address definitions in the address
reference data.

• It generates detailed status reports on the validity of each input address, its deliverable status, and the
nature of any errors or ambiguities it contains.

• It fixes errors and completes partial address records. To fix an address, the transformation must find a
positive match with an address in the reference data. The transformation copies the required data
elements from the address reference data to the address records.

• It adds information that does not appear in the standard address but that helps postal delivery, such as
delivery point information and geocoding information.

• It writes output addresses in the format that the data project and the mail carrier requires. You define the
format when you select the output ports on the transformation.

Address Reference Data
An address reference data set describes the addresses that a national mail carrier recognizes in a country.
Before you perform address validation with the Address Validator transformation, install the address
reference data on the Informatica services machine in the domain. You buy and download the address
reference data from Informatica.

Install an address reference data file for each country that the source address data identifies. A country that
has a large population might require multiple files. In addition, you can install data files that supplement or
enrich the address data. The mail carrier can use the data enrichments to certify the accuracy of the
addresses and to accelerate mail delivery.

When you perform address validation, the Address Validator transformation compares each input record to
the address reference data. If the transformation finds the input address in the address reference data, the
transformation can update the record with the correct and complete address data. If you purchased
additional reference data sets, the transformation can also enrich the address data.

Use the Preferences window in the Developer tool to view information about the address reference data files
on the Informatica services machine in the domain.

Types of Address Reference Data
The validation mode that you select determines how the transformation compares the input address to the
address reference data.

The Address Validator transformation can read the following types of address reference data:

Address code lookup data

Install address code lookup data to retrieve a partial address or full address from a code value on an
input port. The completeness of the address depends on the level of address code support in the country
to which the address belongs. To read the address code from an input address, select the country-
specific ports in the Discrete port group.

Address Reference Data 77

You can select ports for the following countries:

• Austria. Returns an address to building level.

• Germany. Returns an address to locality, municipality, or street level.

• Japan. Returns an address to the unique mailbox level.

• South Africa. Returns an address to street level.

• South Korea. Returns an address to the unique mailbox level.

• Serbia. Returns an address to street level.

• United Kingdom. Returns an address to the unique mailbox level.

The Address Validator transformation reads address code lookup data when you configure the
transformation to run in address code lookup mode.

Batch and interactive data

Install batch and interactive data to perform address validation on a set of address records. Use batch
and interactive data to verify that the input addresses are fully deliverable and complete based on the
current postal data from the national mail carrier.

When you configure the transformation to run in batch mode, the Address Validator transformation
returns a single address for each input address. When you configure the transformation to run in
interactive mode, the Address Validator transformation returns one or more addresses for each input
address.

CAMEO data

Install CAMEO data to add customer segmentation data to residential address records. Customer
segmentation data indicates the likely income level and lifestyle preferences of the residents at each
address.

The Address Validator transformation reads CAMEO data when you configure the transformation to run
in batch mode or certified mode.

Certified data

Install certified data to verify that address records meet the certification standards that a mail carrier
defines. An address meets a certification standard if contains data elements that can identify a unique
mailbox, such as delivery point data elements. When an address meets a certification standard, the mail
carrier charges a reduced delivery rate.

The following countries define certification standards:

• Australia. Certifies mail according to the Address Matching Approval System (AMAS) standard.

• Canada. Certifies mail according to the Software Evaluation And Recognition Program (SERP)
standard.

• France. Certifies mail according to the National Address Management Service (SNA) standard.

• New Zealand. Certifies mail according to the SendRight standard.

• United States. Certifies mail according to the Coding Accuracy Support System (CASS) standard.

The Address Validator transformation reads certified data when you configure the transformation to run
in certified mode.

Geocode data

Install geocode data to add geocodes to address records. Geocodes are latitude and longitude
coordinates.

The Address Validator transformation reads geocode data when you configure the transformation to run
in batch mode or certified mode.

78 Chapter 4: Address Validator Transformation

Suggestion list data

Install suggestion list data to find alternative valid versions of a partial address record. Use suggestion
list data when you configure an address validation mapping to process address records one by one in
real time. The Address Validator transformation uses the data elements in the partial address to perform
a duplicate check on the suggestion list data. The transformation returns any valid address that includes
the information in the partial address.

The Address Validator transformation reads suggestion list data when you configure the transformation
to run in suggestion list mode.

Supplementary data

Install supplementary data to add data to an address record that can assist the mail carrier in mail
delivery. Use the supplementary data to add detail about the geographical or postal area that contains
the address. In some countries, supplementary data can provide a unique identifier for a mailbox within
the postal system.

The Address Validator transformation reads supplementary data when you configure the transformation
to run in batch mode or certified mode.

Note: The transformation does not read address reference data in country recognition mode or in parse
mode.

Related Topics:
• “ Address Validator Transformation General Settings” on page 98

Modes and Templates
When you configure the Address Validator transformation, you can select the type of validation that the
transformation performs. The transformation defines the validation type as the mode. Select the mode on the
General Settings tab or as an advanced property of the transformation.

You can create a port template in the transformation. A template is a subset of ports from one or more port
groups. Use a template to organize the ports that you expect to use in a project.

Port Groups and Port Selection
The Address Validator transformation contains predefined port groups that contain the input and output
ports that you can use. When you configure an Address Validator transformation, you browse the groups and
select the ports that you need.

Select input ports that correspond to the structure of the address input data. Select output ports that contain
the address data that the project requires.

You can add input and output ports directly to the transformation, or you can create a default model that
contains input and output ports. When you add ports directly to the transformation, the ports you select apply
to that transformation only. When you add ports to the default model, the ports you select apply to future
Address Validator transformations that you create.

You can also add pass-through ports to the transformation for columns that you do not want the Address
Validator transformation to process.

Modes and Templates 79

Address Validator Transformation Input Port Groups
Before you can connect address data to input ports on the transformation, you browse the input groups and
select the ports that correspond to the structure and content of the input data. Browse the output groups and
select the ports that match your data requirements.

The Address Validator transformation displays the port groups in a Basic Model and Advanced Model. You
can define most addresses using a port group in the Basic Model. if your addresses are highly complex, use
the additional ports available in the Advanced Model.

Note: Select ports from one input port group only.

The transformation has the following input port groups:

Discrete

Use Discrete ports to read data columns that contain complete information on a single data element,
such as a house number, street, or post code. Find the Discrete group in the Basic and Advanced
models.

Hybrid

Use Hybrid ports to read data columns that contain information about one or more data elements. The
Hybrid group combines ports from the Discrete and Multiline groups. Use Hybrid ports to create address
records that you can submit to a mail carrier. Hybrid ports structure an address to mail carrier standards
and identify the type of data on each line. Find the Hybrid group in the Basic and Advanced models.

Multiline

Use Multiline ports to read data columns that contain multiple data elements. Each input column
corresponds to a line of an address. For best results, define the input data in the format that the mail
carrier requires. Select the Multiline ports to create a printable set of address records.

Each Multiline port represents a line in the printable address, such as the following line of street data:

123 Main Street, Apartment 2
Multiline ports do not specify the type of data that appears on each address line. Find the Multiline group
in the Basic and Advanced models.

Single-Line

Use Single-Line ports to read a single data column that contains all address elements to province level
and that does not include a separator between elements. Use the Complete Address port in the port
group to submit the address elements. The port group also includes a Country port that you can use to
read country information for the address. Find the Single-Line group in the Basic and Advanced models.

Address Validator Transformation Output Port
Groups

Before you can connect the Address Validator transformation to other transformations or data objects, you
determine the types of information you need and the structure that the output addresses will take.

Browse the output groups and select the ports that match your data requirements.

Note: You can select ports from multiple output groups, and you can select ports that have common
functionality.

80 Chapter 4: Address Validator Transformation

The transformation has the following predefined output groups:

Address Elements

Writes street data elements such as house number, apartment number, and street name to separate
ports. Find the Address Elements group in the Basic and Advanced models.

AT Supplementary

Writes data to addresses in Austria that can help postal delivery, such as building-level post code data.
Find the AT Supplementary group in the Basic model.

AU Supplementary

Writes data to addresses in Australia that identifies the geographical regions to which the Australian
Bureau of Statistics assigns the addresses. Find the AU Supplementary group in the Basic model.

Australia Specific

Writes data to addresses in Australia that enables the addresses to meet the Address Matching Approval
System (AMAS) standards of Australia Post. Find the Australia Specific group in the Basic and Advanced
models.

BE Supplementary

Writes data to addresses in Belgium that can help postal delivery. The data includes locality and
neighborhood identification codes from the statistics directorate in Belgium. Find the BE Supplementary
group in the Basic model.

BR Supplementary

Writes data to addresses in Brazil that can help postal delivery, such as district identification codes from
the Institute of Geography and Statistics (IBGE). Find the BR Supplementary group in the Basic model.

CAMEO

Generates demographic and income summary data that you can use in customer segmentation analysis.
Find the CAMEO group in the Basic model.

Canada Specific

Writes data to addresses in Canada that enables the addresses to meet the Software Evaluation and
Recognition Program (SERP) standards of Canada Post. Find the Canada Specific group in the Basic
model.

CH Supplementary

Writes data to addresses in Switzerland that can help postal delivery, such as extended post code data.
Find the CH Supplementary group in the Basic model.

CZ Supplementary

Writes data to addresses in the Czech Republic that can help postal delivery, such as extended post code
data. Find the CZ Supplementary group in the Basic model.

Contact Elements

Writes person or contact data, such as names, salutations, and job titles. Find the Contact Elements
group in the Advanced model.

Country

Writes the country name or country code defined by the International Organization for Standardization
(ISO). Find the Country group in the Basic and Advanced models.

DE Supplementary

Writes data to addresses in Germany that can help postal delivery, such as municipality and district code
data. Find the DE Supplementary group in the Basic model.

Address Validator Transformation Output Port Groups 81

ES Supplementary

Writes data to addresses in Spain that can help postal delivery. Find the ES Supplementary group in the
Basic model.

Formatted Address Line

Writes addresses that are formatted for printing and mailing. Find the Formatted Address Line group in
the Basic and Advanced models.

FR Supplementary

Writes data to addresses in France that can help postal delivery, such as identification codes from the
National Institute of Statistics and Economic Studies (INSEE). Find the FR Supplementary group in the
Basic model.

France Specific

Writes data to addresses in France that enables the addresses to meet the National Address
Management Service (SNA) standards of La Poste. Find the France Specific group in the Basic model.

Geocoding

Generates geocode data, such as latitude and longitude coordinates, for an address. Find the Geocoding
group in the Basic model.

ID Elements

Writes Record ID and Transaction Key data. Find the ID Elements group in the Advanced model.

IT Supplementary

Writes data to addresses in Italy that can help postal delivery. Find the IT Supplementary group in the
Basic model.

JP Supplementary

Writes data to addresses in Japan that can help postal delivery, such as Choumei Aza codes. Find the JP
Supplementary group in the Basic model.

KR Supplementary

Writes data to addresses in South Korea that can help postal delivery, such as unique identifiers that can
specify current and non-current versions of a given address. Find the KR Supplementary group in the
Basic model.

Last Line Elements

Writes data that can appear on the last line of a domestic address. Find the Last Line Elements group in
the Basic and Advanced models.

New Zealand Specific

Writes data to addresses in New Zealand that enables the addresses to meet the SendRight standards of
New Zealand Post. Find the New Zealand Specific group in the Basic model.

PL Supplementary

Writes data to addresses in Poland that can help postal delivery, such as Territorial Division (TERYT)
data. Find the PL Supplementary group in the Basic model.

Residue

Writes data elements that the transformation cannot parse to other ports. Find the Residue group in the
Basic and Advanced models.

82 Chapter 4: Address Validator Transformation

RS Supplementary

Writes data to addresses in Serbia that can help postal delivery, such as post code suffix data. Find the
RS Supplementary group in the Basic model.

RU Supplementary

Writes data to addresses in Russia that can help postal delivery, such as the Federal Information
Addressing System identifier for the address. Find the RU Supplementary group in the Basic model.

Status Info

Generates detailed data on the quality of each input and output address. Find the Status Info group in
the Basic model.

UK Supplementary

Writes data to addresses in the United Kingdom that can help postal delivery, such as delivery point data
and ordnance survey data. Find the UK Supplementary group in the Basic model.

US Specific

Writes data to addresses in the United States that enables the addresses to meet the Coding Accuracy
Support System (CASS) standards of the United States Postal Service. Find the US Specific group in the
Basic model.

US Supplementary

Writes geographic and demographic data such as Federal Information Processing Standard (FIPS) codes
for United States addresses. Find the US Supplementary group in the Basic model.

XML

Writes address record data in an XML structure that the Address Verification software library defines.
Find the XML group in the Advanced model.

ZA Supplementary

Writes data to addresses in South Africa that can help postal delivery, such as National Address
Database data. Find the ZA Supplementary group in the Basic model.

Multiple-Instance Ports
Many types of address data can occur more than once in an address. You can select multiple instances of a
port when the address contains multiple cases of a data element.

A multiple-instance port can contain up to six instances. Many addresses use one instance of a port for each
data element that they contain. Some addresses use a second instance of a port. A small set of addresses
use more than one port instance.

Often, the first instance of a port is the primary name or the largest area that the port identifies. You must
verify the relationship between the port instances for any port that you select.

Street Complete Ports Example

A United Kingdom address record can contain two street names when one street is part of a larger street
plan.

Multiple-Instance Ports 83

The following table contains an address that uses two Street Complete ports:

Port Data

Street Number Complete 1 1A

Street Complete 1 THE PHYGTLE

Street Complete 2 SOUTH STREET

Locality Name 1 NORFOLK

Postcode 1 NR25 7QE

In the example, the street data in Street Complete 1 is dependent on the street data in Street Complete 2. The
data in Street Number Complete 1 refers to the data in Street Complete 1.

Note: Although Street Complete 1 specifies the location of the mailbox, Street Complete 2 might be the larger
street.

Contact Ports Example

An address record can contain multiple contacts when each contact is a member of the same household.

The following table contains an address that uses two Contact Name ports:

Port Data

Contact Name 1 MR. JOHN DOE

Contact Name 2 MS. JANE DOE

Formatted Address Line 1 2 MCGRATH PLACE EAST

Formatted Address Line 2 ST. JOHN'S NL A1B 3V4

Formatted Address Line 3 CANADA

In the example, the organization can decide on the precedence to apply to Contact Name 1 or Contact Name
2. The Address Validator transformation does not prioritize the contact data.

If you format addresses for printed output, you might use multiple instances of the Formatted Address Line
ports. You can select up to 12 Formatted Address Line ports.

Address Validation Projects
You can use the Address Validator transformation in many types of project. You create an address template
with different ports for each project type.

You can define an address validation project with one or more of the following objectives:

84 Chapter 4: Address Validator Transformation

Create formatted addresses that conform to mail carrier standards

You can prepare a large address record set for a mail campaign. If you create the addresses in the
format that the mail carrier prefers, your mail costs are significantly reduced. When you prepare
addresses for mailing, select output ports that write each line of the formatted address to a single port.
You can select a different port for the contact name, the street address lines, and the locality and post
code lines.

Organize addresses by income and lifestyle indicators

You can add customer segmentation data to residential address records. Customer segmentation data
indicates the likely income level and lifestyle preferences of the residents at each address. You select
ports from the CAMEO output group to add customer segmentation data to address records. You can
use customer segmentation data in mail campaigns that target multiple consumer markets.

Create addresses that are certified by the mail carrier

When you prepare a record set for Australia Post, Canada Post, or the United States Postal Service
(USPS), you can add data that confirms the deliverability of each address.

The Address Validator transformation can generate reports to certify that the address records are
complete and accurate to the data standards of each mail carrier.

Create addresses that meet regulatory requirements

You can verify that the address records held by your organization are accurate to industry or government
regulations. Select output ports that write each address data element to a separate field. Also select the
address validation status ports that provide detailed information on the accuracy and completeness of
the output data.

Complete partial addresses

You can enter a partial address and retrieve the valid complete addresses that match the partial address
in the reference data. To complete partial addresses, configure the transformation to run in suggestion
list mode or interactive mode. You can enter the input address as a single line on the Complete Address
port.

Improve the data quality of addresses

In parallel with other data projects, you can to improve the structure and general data quality of the
address data set. For example, the data set may contain more columns that you need, or it may contain
the same type of data across multiple columns. You can reduce the number of columns in the data set,
and you can simplify the columns that you use for different types of data.

Formatted Addresses and Mail Carrier Standards
When you prepare address records for a mail campaign, you create a printable address structure that
matches the formatting standards of the mail carrier.

For example, the USPS maintains the following address format for domestic United States addresses:

Line 1 Person/Contact Data JOHN DOE

Line 2 Street Number, Street, Sub-
Building

123 MAIN ST NW STE 12

Line 3 Locality, State, ZIP Code ANYTOWN NY 12345

Formatted Addresses and Mail Carrier Standards 85

You can define a printable address format that writes each line of the address to a single port. You can use
ports that recognize the types of data on each line, or you can use ports that populate the address structure
regardless of the data on each line.

The following table shows different ways you can format a United States address for printing:

For This Address Use These Ports Or Use These Ports

JOHN DOE Recipient Line 1 Formatted Address Line 1

123 MAIN ST NW STE 12 Delivery Address Line 1 Formatted Address Line 2

ANYTOWN NY 12345 Country Specific Last Line 1 Formatted Address Line 3

Use Formatted Address Line ports when the data set contains different types of address, such as business
and residential addresses. A business address may need three address lines for contact and organization
data. The Address Validator transformation ensures that each business or residential address is correctly
formatted by using Formatted Address Line ports only when they are needed. However, Formatted Address
Line ports do not identify the type of data that they contain.

Use Recipient Line, Delivery Address Line, and Country Specific Last Line ports when all address follow one
format. The Recipient Line, Delivery Address Line, and Country Specific Last Line ports separate the address
data elements by information type and make the data set easy to understand.

Note: You can select other ports to process this address. This example focuses on ports that format the
addresses for printing and delivery.

Demographic and Geographic Data

When you create a record set for a mail campaign, you can add multiple types of data that may not otherwise
appear in the address. Use this data to review the demographic and geographic spread of the mail items.

For example, you can identify the Congressional District that a United States address belongs to. You can
also generate latitude and longitude coordinates if the destination country includes the coordinates in its
mail system reference data.

Partial Address Completion
When you use suggestion list mode or interactive mode, you can enter an incomplete address and retrieve
valid and complete addresses from the reference data.

Select suggestion list mode when you are uncertain of an address and you want to view a list of valid address
candidates. Select interactive mode when you are confident of an address and you want to validate the
complete form. In each case, the Address Validator transformation searches the address reference data and
returns all addresses that contain the input data.

Consider the following rules and guidelines when you configure the transformation to run in suggestion list
mode or interactive mode:

• You can define an input address on multiple ports, or you can enter all address elements on the Complete
Address input port.

• When you configure the transformation in suggestion list mode, select ports from the Discrete input
group. Alternatively, select a Complete Address port and optionally select a Country Name port from the
Multiline group.

86 Chapter 4: Address Validator Transformation

• Suggestion list mode and interactive mode can return multiple addresses for each input address. The Max
Result Count property specifies an upper limit for the number of addresses returned. If the number of
matching address is greater than the Max Result Count value, the Count Overflow port returns the number
of additional addresses.

• Informatica Address Verification refers to suggestion list mode as fast completion mode.

Address Validator Status Ports
The Address Validator transformation writes status information on the address elements that it reads and
writes on input and output ports. Use the Status Info ports to view the status information.

You can select the following status ports:

Address Resolution Code

Describes the non-valid address elements in the address. Select the port from the Status Info port group
in the Basic Model.

Address Type

Indicates the address type in cases where the mail carrier recognizes more than one form of an address.
Select the port from the Status Info port group in the Basic Model.

Element Input Status

Describes the levels of similarity between the input address elements and the reference data. Select the
port from the Status Info port group in the Basic Model.

Element Relevance

Identifies the address elements that the mail carrier requires to identify a mailbox for the address. Select
the port from the Status Info port group in the Basic Model.

Element Result Status

Describes any update that address validation makes to the to the input address. Select the port from the
Status Info port group in the Basic Model.

Extended Element Result Status

Indicates the presence of additional data for an address in the reference data. The port can contain
detailed information about the updates that address validation makes to an address. Select the port
from the Status Info port group in the Basic Model.

Geocoding Status

Describes the type of geocoding data that address validation returns for an address. Select the port from
the Geocoding port group in the Basic Model.

Mailability Score

Indicates the likelihood that the mail carrier can deliver a mail item to the address. Select the port from
the Status Info port group in the Basic Model.

Match Code

Describes the results of address validation and address correction operations on an input address.
Select the port from the Status Info port group in the Basic Model.

Address Validator Status Ports 87

Result Percentage

Represents the degree of similarity between an input address and the corresponding output address as a
percentage value. Select the port from the Status Info port group in the Basic Model.

Element Status Code Definitions
The Element Input Status, Element Relevance, Element Result Status, and Extended Element Result Status
ports provides status information about the validity of input and output data elements. Select the element
ports to review the outcomes of an address validation operation.

The codes contain the following information:

• Element Input Status codes represent the quality of the match found between the input address data and
the reference data.

• Element Relevance codes identify the address elements that are necessary for address delivery in the
destination country.

• Element Result Status codes describe any change made to the input data during processing.

• Extended Element Result Status codes indicate that the address reference data contains additional
information about the address element.

Each port returns a 20-character code in which each character refers to a different address data element.
When you read the output codes on element ports, you must know the element that each character refers to.
The 20 characters consist of 10 pairs. The two codes in each pair represent a type of address information.
For example, the first position in the return code represents basic postal code information.

Note: The Address Resolution Code port returns a 20-character string based on the same address elements
as the Element Status ports.

The following table describes the address elements that the values at each position identify:

Position Address Element Description Address Element Example

1 Postal code level 0 Basic postal code information,
such as a five-digit ZIP Code.

The five-digit ZIP Code 10118

2 Postal code level 1 Additional postal code
information, such as the final
four digits of a ZIP+4 Code.

0110, in the ZIP+4 Code 10118-0110

3 Locality level 0 Primary location, such as city
or town.

London, in England

4 Locality level 1 Dependent locality, suburb,
village.

Islington, in London

5 Province level 0 Primary region within a
country, such as a United
States state name, Canadian
province name, Swiss canton.

New York State

6 Province level 1 United States county name. Queens County, in New York State

7 Street level 0 Primary street information. South Great George's Street

8 Street level 1 Dependent street information. George's Arcade, on South Great
George's Street

88 Chapter 4: Address Validator Transformation

Position Address Element Description Address Element Example

9 Number level 0 Building or house number
related to the primary street.

460, on South Great George's Street

10 Number level 1 Building or house number
related to the dependent street.

81, on George's Arcade

11 Delivery service level 0 Case postale or post box
descriptor and number.

PO Box 111

12 Delivery service level 1 Code of the post office that is
responsible for delivery.

MAIN STN

13 Building level 0 Building name or number.
Does not identify a house
number.

Alice Tully Hall

14 Building level 1 Additional building name or
number.

Starr Theater, at Alice Tully Hall

15 Sub-building level 0 Apartment, suite, or floor name
or number.

80, in 350 5th Avenue, Floor 80

16 Sub-building level 1 Apartment, suite, or floor
information, when paired with
Sub-building level 0
information.

80-18, where 18 is the suite number
and 80 is the floor number

17 Organization level 0 Company name. AddressDoctor® GmbH

18 Organization level 1 Additional corporate
information, such as a parent
company.

Informatica Corporation

19 Country level 0 Country name. United States of America

20 Country level 1 Territory. United States Virgin Islands

When a port name has a number suffix, level 0 refers to data on port number 1 and level 1 refers to data on
port numbers 2 through 6.

Level 0 information can precede or follow level 1 information in a printed address. For example, Postal code
level 1 follows Postal code level 0, and Locality level 1 precedes Locality level 0.

Address Validator Status Ports 89

Address Resolution Code Output Port Values
Address Resolution Code is a 20-character string in which each character in the string represents a different
input address element. The value for a character describes any non-valid address element at the
corresponding position in the address.

The following table describes the Address Resolution Code port values:

Code Description

2 The address element is required for delivery but is not present in the input address.
The address reference data contains the missing address element.
An output of 2 indicates that address is not valid for delivery without the address
element.

3 The address element is a house number or street number that is outside the valid
range for the address. For example, the address element contains a house number
that does not exist on the specified street. Suggestion list mode returns alternative
addresses.

4 Address validation cannot verify or correct the address element because the input
address contains more than one instance of the element.

5 The address element is ambiguous in the current address, and the address reference
data contains alternatives. Address validation copies the input element to the output
address.
For example, the address element is a valid post code that does not match a valid
locality in the address.

6 The address element contradicts another element in the address. Address validation
cannot determine the correct element for the address. The output address copies the
input address.

7 The address element cannot be corrected without multiple changes to the address.
Address validation can correct the address, but the number of changes indicate that
the address is not reliable.

8 The data does not conform to mail carrier validation rules.

Element Input Status Output Port Values
Element Input Status is a 20-character string in which each character represents a different input address
element. The value for each character represents the type of processing performed on the address element.

Find the port in the Status Info port group.

The following table describes the codes that Element Input Status can return in each position on the output
string in batch, certified, or suggestion list mode:

Code Description

0 The input address contains no data at the current position.

1 The reference data does not contain the data at the current position.

2 Cannot check the data because the reference data is missing.

90 Chapter 4: Address Validator Transformation

Code Description

3 The data at the current position is incorrect. The reference database suggests that the
number or delivery service value is outside the range that the reference data expects.
In batch and certified modes, the transformation passes the input data at the current
position uncorrected as output.

4 The data at the current position matches the reference data but contains errors.

5 The data at the current position matches the reference data, but the transformation
corrected or standardized the data.

6 The data at the current position matches the reference data without any error.

The following table describes the codes that Element Input Status can return in each position on the output
string in parse mode:

Code Description

0 The input address contains no data at the current position.

1 The transformation moved the element at the current position to another position in
the output address.

2 The element at the current position matched the reference data value, but the
transformation normalized the element in the output address.

3 The data at the current position is correct.

Element Relevance Output Port Values
Element Relevance values indicates if an address element is required for postal delivery. Find the port in the
Status Info port group.

The Element Relevance value is a 20-character string in which each character can represent a different type
of address data. After you run the address validation mapping, review the port output to identify the address
elements that are necessary for each address. Use the results to verify that you selected the right output
ports for the address data. If you do not select an output port for a relevant address data element, the output
for that address will not be valid.

The following table describes the codes that Element Relevance can return in each position on the output
string:

Code Description

0 Not relevant to delivery to the address.

1 Relevant to delivery to the address.
The national postal carrier cannot deliver to the address without the data at this
position in the output string.

Note: Element Relevance values are available for addresses with a Match Code value of Cx or Vx in batch
mode or Cx, Vx, I3, or I4 in interactive mode. Other assessment codes such as Element Input Status, Element

Address Validator Status Ports 91

Result Status, Extended Element Result Status, and Address Resolution Code return values regardless of the
Match Code value.

Element Result Status Output Port Values
Element Result Status is a 20-character string in which each character represents a different input address
element. The value for each character describes any update that the validation process makes to the address
element.

Find the port in the Status Info port group.

The following table describes the Element Result Status port values:

Code Description

0 The output address contains no data at the current position.

1 The transformation cannot find the data at the current position in the reference data.
The transformation copies the input data to the output data.

2 Data at the current position is not checked but is standardized.

3 Data at the current position is checked but does not match the reference data. The
reference data suggests that the number data is not in the valid range. The
transformation copies the input data to the output port.
Applies in batch mode.

4 The transformation copies the input data to the output data because the reference
data is missing.

5 Data at the current position is validated but not changed because multiple matches
exist in the reference data.
Applies in batch mode.

6 Data validation deleted the input value at the current position.

7 Data at the current position is validated but the input data contained a spelling error.
Validation corrected the error with a value from the reference data.

8 Data at the current position is validated and updated with a value from the reference
data.
A value of 8 can also mean that the reference database contains additional data for
the input element. For example, validation can add a building number or sub-building
number if it finds a perfect match for the street name or building name.

9 Data at the current position is validated but not changed, and the delivery status is not
clear. For example, the DPV value is wrong.

C Data at the current position is validated and verified, but the name data is out of date.
Validation changed the name data.

D Data at the current position is validated and verified but changed from an exonym to
an official name.

92 Chapter 4: Address Validator Transformation

Code Description

E Data at the current position is validated and verified. However, address validation
standardized the character case or the language.
Address validation can change the language if the value fully matches a language
alternative. For example, address validation can change "Brussels" to "Bruxelles" in a
Belgian address.

F Data at the current position is validated, verified, and not changed, due to a perfect
match with the reference data.

Positions 19 and 20 in the output string relate to country data.

The following table describes the values that validation may return for positions 19 and 20:

Code Description

0 The output address contains no data at the current position.

1 Address validation does not recognize the country data.

4 Address validation identifies the country from the Default Country value in the
Address Validator transformation.

5 Address validation cannot determine the country because the reference data contains
multiple matches.

6 Address validation identifies the country from a script.

7 Address validation identifies the country from the address format.

8 Address validation identifies the country from major town data.

9 Address validation identifies the country from province data.

C Address validation identifies the country from territory data.

D Address validation identifies the country from the country name, but the name
contains errors.

E Address validation identifies the country from the address data, for example from an
ISO code or a country name.

F Address validation identifies the country from the Force Country value set in the
Address Validator transformation.

Extended Element Result Status Output Port Values
Extended Element Result Status is a 20-character string in which each character represents a different input
address element. The port output codes supplement the status data on the Element Input Status port and
Element Result Status port. The port output code can also indicate the presence of additional information
about an address element in the reference data.

Find the port in the Status Info port group.

Address Validator Status Ports 93

The following table describes the Extended Element Result Status port values:

Code Description

1 Address reference data contains additional information about the address element.
Address validation does not require the additional information.

2 Address validation updated the address element to resolve a data error or format
error. Address validation did not verify the address element.

3 Address validation updated the address element to resolve a data error or format
error. Address validation verified the number data in the address element.

4 Address validation moved the address element to another field to resolve a format
error.

5 Address reference data contains an alternative version of the address element, such
as a preferred locality name.

6 Address validation did not verify all parts of the address element. The element
includes data that address validation cannot validate.

7 Address validation found a valid address element in the wrong position in an address.
Address validation moved the address element to the correct position.

8 Address validation found a valid address element in the wrong data field. Address
validation moved the address element to the correct field.

9 Address validation generated the output element according to mail carrier validation
rules.

A Address validation found address elements from different address types that are
eligible for the current position. Address validation selected the output address
element that conforms the mail carrier rules in the destination country.

B Address validation cannot determine the element relevance. Address validation
returns the default value for the country that the address specifies.

C Suggestion list mode. Address validation can return additional address suggestions
for the address element. To return the additional suggestions, update the Max Result
Count property for the Address Validator transformation.

D Address validation interpolated the numeric data in the address element.

E Address validation cannot return the address element in the preferred language.
Address validation returns the element in the default language.

F Address code lookup mode. The input address is out of date.

Mailability Score Output Port Values
The Mailability Score value represents an estimate of the deliverability of the output address. Use the
mailability score as a general indicator of the deliverability of the address. Find the port in the Status Info
port group.

The Address Validator transformation considers multiple factors when it calculates the mailability score. The
transformation bases the calculations principally on the Match Code value and the Element Result Status

94 Chapter 4: Address Validator Transformation

value for the address. Other factors that influence the mailability score include the postal relevance of the
address values and the granularity of the reference data for the country.

The Mailability Score port value provides an estimate of the deliverability of the address. The score is not a
precise or definitive indicator of the deliverability of the address.

The following table describes the Mailability Score output codes:

Value Summary Description

5 Completely Confident Indicates that address validation checked and verified all relevant elements of the
input address.

4 Almost Certain Indicates either of the following scenarios:
- One or more relevant address elements cannot be checked due to absent

reference data. Other address elements are verified.
- Address validation corrected one or more relevant elements with a very high

degree of confidence. This occurs when address validation finds a single match
between the input address and the reference data and the degree of variation is
very low.

3 Should Be Fine Indicates that address validation corrected one or more relevant elements in the
input address. Address validation found a single match between the input address
and the reference data, and the degree of variation is acceptable.

2 Fair Chance Indicates that address validation cannot correct or verify the address for one of
the following reasons:
- Address validation cannot identify a candidate match in the reference data with

sufficient confidence.
- Address validation found multiple candidate matches with similar confidence

levels.
The mail carrier might be able to deliver to the address.

1 Risky Indicates that address validation can find partial reference data matches only for
the input address.

0 Undeliverable Indicates that address validation cannot find a match for the address in the
reference data. The input address is missing too many elements, or address
validation cannot verify a majority of the elements in the address.

Match Code Output Port Values
The Match Code value summarizes the results of the comparison of the input address to the reference data.
The code also summarizes any correction that the transformation made to the address. Find the port in the
Status Info port group.

The following table describes the Match Code output port values:

Code Description

A1 Address code lookup found a partial address or a complete address for the input
code.

A0 Address code lookup found no address for the input code.

C4 Corrected. All postally relevant elements are checked.

Address Validator Status Ports 95

Code Description

C3 Corrected. Some elements cannot be checked.

C2 Corrected, but the delivery status is unclear due to absent reference data.

C1 Corrected, but the delivery status is unclear because user standardization introduced
errors.

I4 Data cannot be corrected completely, but there is a single match with an address in
the reference data.

I3 Data cannot be corrected completely, and there are multiple matches with addresses
in the reference data.

I2 Data cannot be corrected. Batch mode returns partial suggested addresses.

I1 Data cannot be corrected. Batch mode cannot suggest an address.

N7 Validation error. Validation did not take place because single-line validation is not
unlocked.

N6 Validation error. Validation did not take place because single-line validation is not
supported for the destination country.

N5 Validation error. Validation did not take place because the reference database is out
of date.

N4 Validation error. Validation did not take place because the reference data is corrupt or
badly formatted.

N3 Validation error. Validation did not take place because the country data cannot be
unlocked.

N2 Validation error. Validation did not take place because the required reference
database is not available.

N1 Validation error. Validation did not take place because the country is not recognized
or not supported.

Q3 Suggestion List mode. Address validation can retrieve one or more complete
addresses from the address reference data that correspond to the input address.

Q2 Suggestion List mode. Address validation can combine the input address elements
and elements from the address reference data to create a complete address.

Q1 Suggestion List mode. Address validation cannot suggest a complete address. To
generate a complete address suggestion, add data to the input address.

Q0 Suggestion List mode. There is insufficient input data to generate a suggestion.

RB Country recognized from abbreviation. Recognizes ISO two-character and ISO three-
character country codes. Can also recognize common abbreviations such as "GER" for
Germany.

RA Country recognized from the Force Country setting in the transformation.

96 Chapter 4: Address Validator Transformation

Code Description

R9 Country recognized from the Default Country setting in the transformation.

R8 Country recognized from the country name.

R7 Country recognized from the country name, but the transformation identified errors in
the country data.

R6 Country recognized from territory data.

R5 Country recognized from province data.

R4 Country recognized from major town data.

R3 Country recognized from the address format.

R2 Country recognized from a script.

R1 Country not recognized because multiple matches are available.

R0 Country not recognized.

S4 Parse mode. The address was parsed perfectly.

S3 Parse mode. The address was parsed with multiple results.

S1 Parse mode. There was a parsing error due to an input format mismatch.

V4 Verified. The input data is correct. Address validation checked all postally relevant
elements, and inputs matched perfectly.

V3 Verified. The input data is correct, but some or all elements were standardized, or the
input contains outdated names or exonyms.

V2 Verified. The input data is correct, but some elements cannot be verified because of
incomplete reference data.

V1 Verified. The input data is correct, but user standardization has negatively impacted
deliverability. For example, the post code length is too short.

Geocoding Status Output Port Values
The following table describes the Geocoding Status output port values. Find this port in the Geocoding port
group.

Select this port if you have installed geocoding reference data for an input address country.

Value Description

EGC0 Cannot append geocodes to the input address because geocodes are not available for
the address.

EGC1-3 Reserved for future use.

Address Validator Status Ports 97

Value Description

EGC4 Geocodes are partially accurate to the postal code level.

EGC5 Geocodes are accurate to the postal code level.

EGC6 Geocodes are accurate to the locality level.

EGC7 Geocodes are accurate to the street level.

EGC8 Geocodes are accurate to the house number level. The geocodes estimate the house
number location and include an offset to the side of the street that contains the
mailbox.

EGC9 Geocodes are accurate to the arrival point or rooftop.

EGCA Geocodes are accurate to the center of the parcel of land.

EGCC The geocode database is corrupted.

EGCN Cannot find the geocode database.

EGCU The geocode database is not unlocked.

Note: Informatica no longer issues reference data for parcel centroid and rooftop geocoding.

Address Validator Transformation General Settings
Configure the general settings to set up parameters required for address validation.

You can configure the following properties on the General Settings view:

Default Country

Specifies the address reference data set that the transformation uses if it cannot identify a country
destination in the input address. Select None if your data includes country information.

You can also set the default country as an advanced property on the transformation.

Force Country

Optional property. Replaces the country name or abbreviation in the input address with the name or
abbreviation of the default country. If the input address does not identify a country, the transformation
appends the default country data to the address.

Line Separator

Specifies the delimiter symbol that separates data fields within a single-line address.

You can also specify a line separator as an advanced property on the transformation.

Casing Style

Sets the character case style for output data. Select the Mixed option to follow the address reference
data standard for initial capital letters. Select the Preserved option to write the address in the casing
style that the address reference data uses.

98 Chapter 4: Address Validator Transformation

You can also set the casing style as an advanced property on the transformation.

Mode

Determines the type of validation that the transformation performs.

Select one of the following options:

Mode Type Description

Address code
lookup

Returns a partial address or a complete address from the reference data when you provide an
address code as an input. Several countries support address codes that represent the locality,
street, building, or unique mailbox for an address.

Batch Performs address validation on the records in a data set. Batch validation focuses on address
completeness and deliverability. Batch mode does not return suggestions for poor-quality
addresses. Batch is the default mode.

Certified Performs address validation on the records in a data set to the certification standards of the
specified country. The certification standards require that each address identifies a unique
mailbox. You can perform certified address validation on addresses in Australia, France, New
Zealand, the United Kingdom, and the United States.

Country
recognition

Determines a destination country for the postal address. The transformation does not perform
address validation in country recognition mode.

Interactive Completes an incomplete valid address. When an incomplete input address matches more than
one address in the reference data, the transformation returns all valid addresses up to the limit
that the Max Result Count specifies.

Parse Parses data into address fields. The transformation does not perform address validation in
parse mode.

Suggestion list Returns a list of valid addresses from the reference data when an input address contains
fragmentary information. When an address fragment matches more than one address in the
reference data, the transformation returns all valid addresses up to the limit that the Max
Result Count specifies.

You can also set the mode as an advanced property on the transformation.

Address Validation Properties in the Preferences
Window

You can view the properties of the address validation engine and the address reference data files that the
engine reads in the Developer tool. The Developer tool exposes the properties of the engine that the Data
Integration Service uses to run address validation mappings. The Developer tool lists the properties for the
Content Management Service that governs the address validation operations.

Use the Preferences window in the Developer tool to review the properties. Select the Content Status option
on the Preferences window to identify the Content Management Service that the current Data Integration
Service uses. To view the properties, select the local Content Management Service.

You can view the following properties:

Address Validation Properties in the Preferences Window 99

Address Validation Data

The address validation data properties list the types of reference data that the current Content
Management Service can provide to the Data Integration Service. The properties also indicate the
countries to which the reference data applies.

Address Validation Engine

The address validation engine properties include the current engine version, the engine in which the
certification components were most recently updated, and the data preloading method.

Address Validation License

The address validation license properties include license information for the reference data that the
current Content Management Service can provide to the Data Integration Service.

Address Validation Data Properties
The address validation data properties list the types of reference data that the current Content Management
Service can provide to the Data Integration Service. The properties also include the countries to which the
reference data applies.

The following table describes the data properties that display when you select the Content Management
Service in the Content Status view:

Property Description

Country ISO The country to which the address reference data file applies. The property shows the ISO three-
character code for the country.

Expiry Date The date on which the current file expires. Informatica releases a newer file on the expiry date. You
can use the current address reference data file after the expiry date, but the data in the file may no
longer be accurate.

Country Type The type of address validation that you can perform with the data.
You select the processing type in the Mode option on the General Settings tab. If the mode that you
select does not correspond to an address data file on the domain, the address validation mapping
will fail.

Unlock Expiry
Date

The date on which the license expires. You cannot use any version of the file after the unlock expiry
date.
The Unlock Expiry Date property and Expiration Date property on the Address Validation License
Properties view represent the same information.

Unlock Start
Date

The date on which the license becomes effective for the mode that the Country Type property
identifies and the country that the Country ISO property identifies. You cannot use any version of the
file before the unlock start date.

100 Chapter 4: Address Validator Transformation

Address Validation License Properties
The address validation license properties include license information for the reference data that the current
Content Management Service can provide to the Data Integration Service.

The following table describes the license properties that display when you select the Content Management
Service in the Content Status view:

Property Description

Unlock Code The license code that unlocks the reference data for the mode that the Code Type property
identifies. The Developer tool displays the first four characters of the code and masks the other
characters.

Code Type The mode of address validation that you can perform with the data that the license specifies.
Informatica issues a single license code for each mode. The license code can apply to one or more
countries.
You select the processing type in the Mode option on the General Settings tab. If the mode that you
select does not correspond to an address data file on the domain, the address validation mapping
will fail.

Country List The countries for which the unlock code unlocks the reference data.
The Country List property contains one or more ISO three-character codes for each country.

Status The status of the license code. The property returns OK when the license file is valid.

Expiration
Date

The date on which the license expires.
The Expiration Date property and the Unlock Expiry Date property on the Address Validation Data
Properties view represent the same information.

Address Validation Engine Properties
The address validation engine properties include the current engine version, the engine in which the
certification components were most recently updated, and the data preloading method.

The following table describes the engine properties that display when you select the Content Management
Service in the Content Status view:

Property Value

Engine Version The version of the address validation engine that the Data Integration Service runs.

CASS Version The version of the address validation engine in which Informatica most recently updated the CASS
certification components. Use the property to identify the engine version in a CASS certification
report.
The property also includes the CASS certification cycle that the engine supports. For example, the
engine might support certification cycle N.

AMAS Version The version of the address validation engine in which Informatica most recently updated the
AMAS certification components. Use the property to identify the engine version in a AMAS
certification report.

SendRight
Version

The version of the address validation engine in which Informatica most recently updated the
SendRight certification components. Use the property to identify the engine version in a SendRight
certification report.

Address Validation Properties in the Preferences Window 101

Property Value

SERP Version The version of the address validation engine in which Informatica most recently updated the SERP
certification components. Use the property to identify the engine version in a SERP certification
report.

SNA Version The version of the address validation engine in which Informatica most recently updated the SNA
certification components. Use the property to identify the engine version in a SNA certification
report.

Preloading
Method

The method that the Data Integration Service uses to preload reference database into memory.
The Content Management Service properties specify the countries for which the Data Integration
Service preloads reference data. The possible values are MAP and LOAD. The default value is
MAP.
The MAP method and the LOAD method both allocate a block of memory and then read the
reference data into the block. However, the MAP method can share reference data between
multiple processes.

Cache Size The size of the data cache that the Data Integration Service uses for reference data that the
service does not preload. The possible values are NONE, SMALL, and LARGE. The default value is
LARGE.

Maximum
Memory Usage

The number of megabytes of memory that the address validation engine can allocate. The default
value is 4096.

Maximum
Address Object
Count

The maximum number of address validation instances that the Data Integration Service can run at
the same time. The default value is 3.

Maximum Thread
Count

The maximum number of threads that address validation can use. The default value is 2.

Maximum Result
Count

The maximum number of addresses that address validation can return when you run a mapping in
suggestion list mode. The default value is 20. The upper limit on the property is 100.

Current Date The current date. The Developer tool returns the property values that apply on the current date.

Write XML BOM Indicates whether the Data Integration Service writes a byte order mark in the GetConfig.xml file.
The possible values are ALWAYS, IF_NECESSARY, and NEVER. The default value is
IF_NECESSARY.

XML Encoding Identifies the XML encoding that the address validation engine uses to read and write data.

Address Validation Advanced Properties
Configure the advanced properties to determine how the Data Integration Service processes data for the
Address Validator transformation.

102 Chapter 4: Address Validator Transformation

Alias Locality
Determines whether address validation replaces a valid locality alias with the official locality name.

A locality alias is an alternative locality name that the USPS recognizes as an element in a deliverable
address. You can use the property when you configure the Address Validator transformation to validate
United States address records in Certified mode.

The following table describes the Alias Locality options:

Option Description

Off Disables the Alias Locality property.

Official Replaces any alternative locality name or locality alias with the official locality
name. Default option.

Preserve Preserves a valid alternative locality name or locality alias. If the input locality
name is not valid, address validation replaces the name with the official name.

Alias Street
Determines whether address validation replaces a street alias with the official street name.

A street alias is an alternative street name that the USPS recognizes as an element in a deliverable address.
You can use the property when you configure the Address Validator transformation to validate United States
address records in Certified mode.

The following table describes the Alias Street options:

Option Description

Off Does not apply the property.

Official Replaces any alternative street name or street alias with the official street name.
Default option.

Preserve Preserves a valid alternative street name or street alias. If the input street name is
not valid, address validation replaces the name with the official name.

Casing Style
Specifies the character case style that the transformation applies to the output address data.

The following table describes the Casing Style options:

Option Description

Assign Parameter Uses a parameter that you define to set the casing style.

Lower Writes the output address in lowercase letters.

Mixed Uses the casing style in use in the destination country when it is possible to do
so.

Address Validation Advanced Properties 103

Option Description

Preserved Applies the casing style that the address reference data uses. Default option.

No Change Does not apply a casing style to the address.
Note: The No Change option does not guarantee that the output address will
match the case of the input address. If address validation replaces an address
element with an element from the reference data, the element follows the case
that the reference data uses.

Upper Writes the output address in uppercase letters.

You can also configure the casing style on the General Settings tab.

Parameter Usage

You can use one of the following parameters to specify the casing style:

• LOWER. Writes the output address in lowercase letters.

• MIXED. Uses the casing style in use in the destination country when it is possible to do so.

• NATIVE. Applies the casing style that the address reference data uses. Default option. Matches the
Preserved option.

• NOCHANGE. Does not apply a casing style to the address.

• UPPER. Writes the output address in uppercase letters.

Enter the parameter value in uppercase.

Country of Origin
Identifies the country in which the address records are mailed.

Select a country from the list. The property is empty by default.

Country Type
Determines the format of the country name or abbreviation in Complete Address or Formatted Address Line
port output data. The transformation writes the country name or abbreviation in the standard format of the
country you select.

The following table describes the Country Type options:

Option Country

ISO 2 ISO two-character country code

ISO 3 ISO three-character country code

ISO # ISO three-digit country code

Abbreviation (Reserved for future use)

CN Canada

104 Chapter 4: Address Validator Transformation

Option Country

DA (Reserved for future use)

DE Germany

EN Great Britain (default)

ES Spain

FI Finland

FR France

GR Greece

IT Italy

JP Japan

HU Hungary

KR Korea, Republic of

NL Netherlands

PL Poland

PT Portugal

RU Russia

SA Saudi Arabia

SE Sweden

Default Country
Specifies the address reference data set that the transformation uses when an address record does not
identify a destination country.

Select a country from the list. Use the default option if the address records include country information.
Default is None.

You can also configure the default country on the General Settings tab.

Parameter Usage

You can use a parameter to specify the default country. When you create the parameter, enter the ISO 3166-1
alpha-3 code for the country as the parameter value. When you enter a parameter value, use uppercase
characters. For example, if all address records include country information, enter NONE.

Address Validation Advanced Properties 105

Dual Address Priority
Determines the type of address to validate. Set the property when input address records contain more than
one type of valid address data.

For example, use the property when an address record contains both post office box elements and street
elements. Address validation reads the data elements that contain the type of address data that you specify.
Address validation ignores any incompatible data in the address.

The following table describes the options on the Dual Address Priority property:

Option Description

Delivery service Validates delivery service data elements in an address, such as post office box
elements.

Postal admin Validates the address elements required by the local mail carrier. Default option.

Street Validates street data elements in an address, such as building number elements
and street name elements.

Element Abbreviation
Determines if the transformation returns the abbreviated form of an address element. You can set the
transformation to return the abbreviated form if the address reference data contains abbreviations.

For example, the United States Postal Service (USPS) maintains short and long forms of many street and
locality names. The short form of HUNTSVILLE BROWNSFERRY RD is HSV BROWNS FRY RD. You can select the
Element Abbreviation property when the street or locality values exceed the maximum field length that the
USPS specifies.

The option is cleared by default. Set the property to ON to return the abbreviated address values. The
property returns the abbreviated locality name and locality code when you use the transformation in batch
mode. The property returns the abbreviated street name, locality name, and locality code when you use the
transformation in certified mode.

Execution Instances
Specifies the number of threads that the Data Integration Service tries to create for the current
transformation at run time. The Data Integration Service considers the Execution Instances value if you
override the Maximum Parallelism run-time property on the mapping that contains the transformation. The
default Execution Instances value is 1.

The Data Integration Service considers multiple factors to determine the number of threads to assign to the
transformation. The principal factors are the Execution Instances value and the values on the mapping and
on the associated application services in the domain.

The Data Integration Service reads the following values when it calculates the number of threads to use for
the transformation:

• The Maximum Parallelism value on the Data Integration Service. Default is 1.

• Any Maximum Parallelism value that you set at the mapping level. Default is Auto.

• The Execution Instances value on the transformation. Default is 1.

If you override the Maximum Parallelism value at the mapping level, the Data Integration Service attempts to
use the lowest value across the properties to determine the number of threads.

106 Chapter 4: Address Validator Transformation

If you use the default Maximum Parallelism value at the mapping level, the Data Integration Service ignores
the Execution Instances value.

The Data Integration Service also considers the Max Address Object Count property on the Content
Management Service when it calculates the number of threads to create. The Max Address Object Count
property determines the maximum number of address validation instances that can run concurrently in a
mapping. The Max Address Object Count property value must be greater than or equal to the Maximum
Parallelism value on the Data Integration Service.

Rules and Guidelines for the Execution Instances Property

Consider the following rules and guidelines when you set the number of execution instances:

• Multiple users might run concurrent mappings on a Data Integration Service. To calculate the correct
number of threads, divide the number of central processing units that the service can access by the
number of concurrent mappings.

• In PowerCenter, the AD50.cfg configuration file specifies the maximum number of address validation
instances that can run concurrently in a mapping.

• When you use the default Execution Instances value and the default Maximum Parallelism values, the
transformation operations are not partitionable.

• When you set an Execution Instances value greater than 1, you change the Address Validator
transformation from a passive transformation to an active transformation.

Flexible Range Expansion
Imposes a practical limit on the number of addresses that the Address Validator transformation returns when
you set the Ranges to Expand property. You can set the Ranges to Expand property and the Flexible Range
Expansion property when you configure the transformation to run in suggestion list mode.

The Ranges to Expand property determines how the transformation returns address suggestions when an
input address does not contain house number data. If the input address does not include contextual data,
such as a full post code, the Ranges to Expand property can generate a large number of very similar
addresses. The Flexible Range Expansion property restricts the number of addresses that the Ranges to
Expand property generates for a single address. Set the Flexible Range Expansion property to On when you
set the Ranges to Expand property to All.

The following table describes the options on the Flexible Range Expansion property:

Option Description

On Address validation limits the number of addresses that the Ranges to Expand
property adds to the suggestion list. Default option.

Off Address validation does not limit the number of addresses that the Ranges to
Expand property adds to the suggestion list.

Note: The Address Validator transformation applies the Flexible Range Expansion property in a different way
to every address that it returns to the suggestion list. The transformation does not impose a fixed limit on the
number of expanded addresses in the list. The transformation also considers the Max Result Count property
setting when it calculates the number of expanded addresses to include in the list.

Address Validation Advanced Properties 107

Geocode Data Type
Determines how the Address Validator transformation calculates geocode data for an address. Geocodes are
latitude and longitude coordinates.

The geocoding results that the transformation returns depend on the geocoding reference data that you
install. For information about geocoding reference data, contact Informatica.

You can select one of the following geocode options:

Arrival point

Returns the latitude and longitude coordinates of the entrance to a building or parcel of land. Default
option.

You can select the arrival point option for addresses in the following countries:

Australia, Austria, Canada, Croatia, Denmark, Estonia, Finland, France, Germany, Hungary, Italy, Latvia,
Liechtenstein, Lithuania, Luxembourg, Mexico, Monaco, Netherlands, Norway, Poland, Slovakia, Slovenia,
Sweden, Switzerland, and the United States.

If you specify arrival point geocodes and the Address Validator transformation cannot return the
geocodes for an address, the transformation returns interpolated geocodes.

Standard

Returns the estimated latitude and longitude coordinates of the entrance to the building or parcel of
land. An estimated geocode is also called an interpolated geocode.

The Address Validator transformation uses the nearest available geocodes in the reference data to
estimate the geocodes for the address.

Parameter Usage

You can use a parameter to specify the geocode type. Enter ARRIVAL_POINT or NONE. To return the standard
geocodes, enter NONE.

Enter the parameter value in uppercase.

Global Max Field Length
Determines the maximum number of characters on any line in the address. If the Address Validator
transformation writes an output address line that contains more characters than you specify, the
transformation abbreviates the address elements on the line.

Use the property to control the line length in the address. For example, the SNA standards require that an
address contains no more than 38 characters on any line. If you generate addresses to the SNA standard, set
the Global Max Field Length to 38.

Default is 1024.

Parameter Usage

You can use a parameter to specify the maximum number of addresses. To set the parameter value, enter an
integer from 0 through 1024.

108 Chapter 4: Address Validator Transformation

Global Preferred Descriptor
Determines the format of the building descriptor, sub-building descriptor, and street descriptor that the
Address Validator transformation writes to the output data. Select a descriptor when the address reference
data for the destination country contains a range of descriptors for one or more of the data elements.

The following table describes the options on the property:

Option Description

Database Returns the descriptor that the reference database specifies for the element in the
address. If the database does not specify a descriptor for the address, the
transformation copies the input value to the output address.
Database is the default value.

Long Returns the complete form of the descriptor, for example Street.

Preserve Input Copies the descriptor from the input address to the output address.
If the input descriptor is not a valid version of the descriptor, the transformation
returns an equivalent valid descriptor from the reference database.

Short Returns an abbreviated form of the descriptor, for example St.

Input Format Type
Describes the most common type of information contained in unfielded input data. Use the Input Format
Type property when you connect input data to the Complete Address or Formatted Address Line ports. Select
the option that best describes the information in the mapping source data.

Select one of the following options:

• All

• Address

• Organization

• Contact

• Organization/Contact
The address includes organization information and contact information.

• Organization/Dept
The address includes organization information and department information.

Default is All.

Input Format With Country
Specifies whether the input contains country data. Select the property if you connect input data to the
Complete Address or Formatted Address Line input ports and if the data contains country information.

The option is cleared by default.

Address Validation Advanced Properties 109

Line Separator
Specifies the delimiter symbol that indicates line breaks in a formatted address.

Select one of the following options:

• Assign a parameter to identify the line separator

• Carriage return (CR)

• Comma

• Line Feed (LF)

• None

• Semicolon

• Tab

• Windows New Line (CRLF)

Default is semicolon.

You can also configure the line separator on the General Settings tab.

Parameter Usage

You can use a parameter to specify the line separator. The parameter value is case-sensitive. Enter the
parameter value in uppercase characters.

Enter one of the following values:

• CR

• CRLF

• COMMA

• LF

• PIPE

• SEMICOLON

• SPACE

• TAB

Matching Alternatives
Determines whether address validation recognizes alternative place names, such as synonyms or historical
names, in an input address. The property applies to street, locality, and province data.

Note: The Matching Alternatives property does not preserve alternative names in a validated address.

The following table describes the Matching Alternatives options:

Option Description

All Recognizes all known alternative street names and place names. Default option.

Archives only Recognizes historical names only. For example, address validation validates
"Constantinople" as a historical version of "Istanbul."

110 Chapter 4: Address Validator Transformation

Option Description

None Does not recognize alternative street names or place names.

Synonyms only Recognizes synonyms and exonyms only. For example, address validation
validates "Londres" as an exonym of "London."

Matching Extended Archive
Determines whether address validation returns a unique delivery point code for an out-of-date Japanese
address.

The address reference data files for Japan include data for out-of-date or retired addresses alongside the
current addresses for the corresponding mailboxes. When you select the Matching Extended Archive
property, address validation returns the delivery point code for the current version of each address. Address
validation also writes a value to the Extended Element Result Status port to indicate that the input address is
out of date.

To retrieve the current address from the address reference data, enter the address code as an input element.

The following table describes the Matching Extended Archive options:

Option Description

Off Does not apply the property.

On Returns the address code for the current version of an out-of-date Japanese
address.

The Matching Extended Archive property uses supplementary data and address code lookup data for Japan.
To apply the property in address validation, configure the transformation to run in address code lookup
mode.

Matching Scope
Determines the amount of data that the transformation matches against the address reference data during
address validation.

The following table describes the Matching Scope options:

Option Description

All Validates all selected ports. Default option.

Delivery Point Validates building and sub-building address data in addition to data that the
Street option validates.

Locality Validates province, locality, and postcode data.

Street Validates street address data in addition to data that the Locality option
validates.

Address Validation Advanced Properties 111

Max Result Count
Determines the maximum number of addresses that address validation can return in suggestion list mode.

You can set a maximum number in the range 1 through 100. Default is 20.

Note: Suggestion list mode performs an address check against address reference data and returns a list of
addresses that are possible matches for the input address. When you verify an address in suggestion list
mode, address validation returns the best matches first.

Parameter Usage

You can use a parameter to specify the maximum number of addresses. To set the parameter value, enter an
integer from 0 through 100.

Mode
Determines the type of address analysis that the transformation performs. You can also configure the mode
on the General Settings tab of the transformation.

Related Topics:
• “ Address Validator Transformation General Settings” on page 98

Optimization Level
Determines how the transformation matches input address data and address reference data. The property
defines the type of match that the transformation must find between the input data and reference data
before it can update the address record.

The following table describes the Optimization Level options:

Option Description

Narrow The transformation parses building numbers or house numbers from street
information before it performs validation. Otherwise the transformation validates
the input address elements strictly according to the input port structure. The
narrow option performs the fastest address validation, but it can return less
accurate results than other options.

Standard The transformation parses multiple types of address information from the input
data before it performs validation. When you select the standard option, the
transformation updates an address if it can match multiple input values with the
reference data.
Default is Standard.

Wide The transformation uses the standard parsing settings and performs additional
parsing operations across the input data. When you select the wide option, the
transformation updates an address if it can match at least one input value with
the reference data. The wide option increases mapping run times.

Parameter Usage

You can use a parameter to specify the optimization level. Enter NARROW, STANDARD, or WIDE. Enter the
parameter value in uppercase.

112 Chapter 4: Address Validator Transformation

Output Format Type
Describes the most common type of information that the transformation writes on the Complete Address or
Formatted Address Line output port. Select the option that best describes the data that you expect on the
output port.

Select one of the following options:

• All

• Address

• Organization

• Contact

• Organization/Contact
The address includes organization information and contact information.

• Organization/Dept
The address includes organization information and department information.

Default is All.

Output Format With Country
Determines if the transformation writes country identification data to the Complete Address or Formatted
Address Line output ports.

The option is cleared by default.

Preferred Language
Determines the languages in which the Address Validator transformation returns address elements when the
reference data sets contain data in more than one language. You can set a preferred language for addresses
in Belgium, Canada, China, Finland, Hong Kong, Ireland, Israel, Macau, Switzerland, and Taiwan.

The Address Validator transformation can return address data in the following languages:

• The default language for the address in the address reference data. The default language is the main
spoken language in the region to which each address belongs.

• Any other language that the address reference data supports for an address. For example, the Belgium
reference data contains address elements in Flemish, French, and German.

The address reference data might contain data for a single address element or for a complete address in
multiple languages. For example, address validation can return all address elements for Ireland in the English
language and can return street, locality, and province information in the Irish language. Additionally, the
reference data might specify different default languages for addresses in different parts of a country. For
example, in the Switzerland reference data, the default language varies from region to region between French,
German, and Italian.

Address Validation Advanced Properties 113

The following table summarizes the options that you can select on the Preferred Language property:

Option Description

Database Returns each address in the language that the address reference data specifies. The address
reference data might specify different languages for addresses in different regions in a country.
Database is the default option.

Alternative 1,
Alternative 2,
Alternative 3

Returns address elements in an alternative language from the reference data. The alternative
languages depends on the country to which the address belongs.

English Returns address elements in English when the reference data contains the data in English. Returns
the other address elements in the default language of the region to which the address belongs.

Preserve Input Returns the address information in the input language. Address validation preserves the language if
the reference data contains the address information in the input language.
If address validation detects more than one supported language in the input address, it returns the
address in the database language. If Address Verification cannot return an element in the input
language, it returns the element in the database language.

Note: An address reference data set might contain some address elements in a non-default language but not
others. If the transformation cannot find an element in the language that the property specifies, the
transformation returns the element in the default language.

When you set a preferred language option, verify that the character set that the Preferred Script property
specifies is compatible with the output address data that you expect.

Multilanguage Support for Belgium Addresses

The following table describes the languages that you can specify for addresses in Belgium:

Option Description

Database Default value. Returns addresses in the main language of the region to which the address belongs.
The language might be Flemish, French, or German.

English Returns the province, locality, and street information in English if the address reference data
contains the information in English.
Returns the other address elements in the main language of the region to which the address belongs.

Alternative 1 Returns the province, locality, and street information in Flemish.

Alternative 2 Returns the province, locality, and street information in French.

Alternative 3 Returns the province, locality, and street information in German.

Preserve Input Returns the address information in the input language. Address validation preserves the language if
the reference data contains the address information in the input language.
If address validation detects more than one supported language in the input address, it returns the
address in the database language. If Address Verification cannot return an element in the input
language, it returns the element in the database language.

114 Chapter 4: Address Validator Transformation

Multilanguage Support for Canada Addresses

The following table describes the languages that you can specify for addresses in Canada:

Option Description

Database Default value. Returns addresses in English for all provinces except Quebec.
Returns Quebec addresses in French.

English Returns all addresses in English.

Alternative 1 Returns all addresses in English.

Alternative 2 Returns Quebec addresses in French.
In provinces other than Quebec, the transformation returns the street descriptors, directional
information, and province names in French and returns other address elements in English.

Preserve Input Returns the address information in the input language. Address validation preserves the language if
the reference data contains the address information in the input language.
If address validation detects more than one supported language in the input address, it returns the
address in the database language. If Address Verification cannot return an element in the input
language, it returns the element in the database language.

Multilanguage Support for China Addresses

The following table describes the languages that you can specify for addresses in China:

Option Description

Database Default value. Returns all address information in Chinese.

English Returns the English-language versions of street descriptor and street directional values. Returns all
other address information in the Chinese language.
The English address elements omit transliteration elements such as "shi."

Alternative 1 Returns all address information in the database language.

Alternative 2 Returns all address information in the database language.

Alternative 3 Returns all address information in the database language.

Preserve Input Returns the address information in the input language. Address validation preserves the language if
the reference data contains the address information in the input language.
If address validation detects more than one supported language in the input address, it returns the
address in the database language. If Address Verification cannot return an element in the input
language, it returns the element in the database language.

Consider the following rules and guidelines when you select the preferred language:

• To return the address in the Chinese language, select Database, Alternative 1, Alternative 2, or Alternative
3.

To return the address in a Chinese character set, set the Preferred Script property to Database.

• To return street descriptor and street directional information in the English language, select English.

Address Validation Advanced Properties 115

To return the address in a Latin or ASCII character set, set the Preferred Script property to a LATIN or
ASCII value.

• If you select a LATIN or ASCII value as the preferred script and Database as the preferred language,
address validation returns the address data in Pinyin.

Multilanguage Support for Finland Addresses

The following table describes the languages that you can specify for addresses in Finland:

Option Description

Database Default value. Returns all address information in Finnish.

Alternative 1 Returns all address information in the database language.

Alternative 2 Returns the street, locality, and province information in Swedish. Returns all other information in
Finnish.

Preserve Input Returns the address information in the input language. Address validation preserves the language if
the reference data contains the address information in the input language.
If address validation detects more than one supported language in the input address, it returns the
address in the database language. If Address Verification cannot return an element in the input
language, it returns the element in the database language.

Multilanguage Support for Hong Kong Addresses

The following table describes the languages that you can specify for addresses in Hong Kong:

Option Description

Database Default value. Returns all address information in Chinese.

English Returns all address information in English.

Alternative 1 Returns all address information in the database language.

Alternative 2 Returns all address information in English.

Alternative 3 Returns all address information in the database language.

Preserve Input Returns the address information in the input language. Address validation preserves the language if
the reference data contains the address information in the input language.
If address validation detects more than one supported language in the input address, it returns the
address in the database language. If Address Verification cannot return an element in the input
language, it returns the element in the database language.

Consider the following rules and guidelines when you select the preferred language for Hong Kong:

• To return the address in a Chinese character set, set the Preferred Script property to Database.

• To return the address in a Latin or ASCII character set, set the Preferred Script property to a LATIN or
ASCII value.

• The language of the input data can affect the operation of the Preserve Input option on a Hong Kong
address. Address validation identifies the input language as English when the input data uses 7-bit ASCII
characters and includes an English-language descriptor.

116 Chapter 4: Address Validator Transformation

Multilanguage Support for Ireland Addresses

The following table describes the languages that you can specify for addresses in Ireland:

Option Description

Database Default value. Returns all address information in English.

English Returns all address information in English.

Alternative 1 Returns all address information in English.

Alternative 2 Returns the street, locality, and county information in Irish. Returns all other address information in
English.

Preserve Input Returns the address information in the input language. Address validation preserves the language if
the reference data contains the address information in the input language.
If address validation detects more than one supported language in the input address, it returns the
address in the database language. If Address Verification cannot return an element in the input
language, it returns the element in the database language.

Multilanguage Support for Israel Addresses

The following table describes the languages that you can specify for addresses in Israel:

Option Description

Database Default value. Returns all address information in Hebrew.

English Returns all address information in English.

Alternative 1 Returns all address information in Hebrew.

Alternative 2 Returns all address information in English.

Preserve Input Returns the address information in the input language. Address validation preserves the language if
the reference data contains the address information in the input language.
If address validation detects more than one supported language in the input address, it returns the
address in the database language. If Address Verification cannot return an element in the input
language, it returns the element in the database language.

Consider the following rules and guidelines when you select the preferred language:

• To return the addresses in a Hebrew character set, set the Preferred Script property to Database.

• To return the addresses in a Latin or ASCII character set, set the Preferred Script property to a LATIN or
ASCII value.

• If you select a Latin character set as the preferred script and you select Hebrew as the preferred language,
address validation transliterates the Hebrew address into Latin characters. For optimal results in a Latin
character set, select English as the preferred language.

Address Validation Advanced Properties 117

Multilanguage Support for Macau Addresses

The following table describes the languages that you can specify for addresses in Macau:

Option Description

Database Default value. Returns all address information in Chinese.

Alternative 1 Returns all address information in the database language.

Alternative 2 Returns all address information in Portuguese.

Preserve Input Returns the address information in the input language. Address validation preserves the language if
the reference data contains the address information in the input language.
If address validation detects more than one supported language in the input address, it returns the
address in the database language. If Address Verification cannot return an element in the input
language, it returns the element in the database language.

• To return the address in a Chinese character set, set the Preferred Script property to Database.

• To return the address in a Latin or ASCII character set, set the Preferred Script property to a LATIN or
ASCII value.

• The language of the input data can affect the operation of the Preserve Input option on a Macau address.
Address validation identifies the input language as Portuguese when the input data uses 7-bit ASCII
characters and includes a Portuguese-language descriptor.

Multilanguage Support for Switzerland

The following table describes the languages that you can specify for addresses in Switzerland:

Option Description

Database Default value. Returns addresses in the main language of the region to which the address belongs.
For example, address validation returns a Zurich address in German and a Geneva address in French.

English Returns the locality and province information in English if the reference address database contains
the information in English.
Returns the other address elements in the main language of the region to which the address belongs.
Address validation returns the locality information in English for some localities, for example Geneva
and Zurich.

Alternative 1 Returns the province and locality information in German.

Alternative 2 Returns the province and locality information in French.

Alternative 3 Returns the province and locality information in Italian.

Preserve Input Returns the address information in the input language. Address validation preserves the language if
the reference data contains the address information in the input language.
If address validation detects more than one supported language in the input address, it returns the
address in the database language. If Address Verification cannot return an element in the input
language, it returns the element in the database language.

Note: Address validation also returns street information for addresses in Biel/Bienne in the alternative
language that you configure.

118 Chapter 4: Address Validator Transformation

Multilanguage Support for Taiwan

The following table describes the languages that you can specify for addresses in Taiwan:

Option Description

Database Default value. Returns all address information in Chinese.

English Returns all address information in English.

Preserve Input Returns the address information in the input language. Address validation preserves the language if
the reference data contains the address information in the input language.
If address validation detects more than one supported language in the input address, it returns the
address in the database language. If Address Verification cannot return an element in the input
language, it returns the element in the database language.

Consider the following rules and guidelines when you select the preferred language:

• To return the address in a Chinese character set, set the Preferred Script parameter to Database.

• To return the address in a Latin or ASCII character set, set the Preferred Script parameter to a LATIN or
ASCII value.

• The language of the input data can affect the operation of the Preserve Input option on a Taiwan address.
Address validation identifies the input language as English when the input data uses 7-bit ASCII
characters and includes an English-language descriptor.

Preferred Script
Determines the character set that the Address Validator transformation uses for output data.

The following table describes the options on the property:

Option Description

ASCII (Simplified) Returns an address in ASCII characters.

ASCII (Extended) Returns an address in ASCII characters and expands any special character in an
address. For example, Ö transliterates to OE.

Database Returns an address in the character set that the address reference data uses for
the default language.
Database is the default value.

Latin Returns an address in the Latin character set.

Latin (Alt) Returns an address in an alternative Latin character set.
For example, specify Latin to return a South Korea address in the Revised
Romanization transliteration. Specify Latin (Alt) to return a South Korea address
in the older, ISO/TR 11941 transliteration.

Postal Admin Returns an address in the script that the postal service local to the address
prefers.

Address Validation Advanced Properties 119

Option Description

Postal Admin (Alt) Returns an address in a script that the postal service local to the address
approves as an alternative script.

Preserve Input Returns address data in the character set that the input address uses.

The transformation can process a data source that contains data in multiple languages and character sets.
The transformation converts all input data to the Unicode UCS-2 character set and processes the data in the
UCS-2 format. After the transformation processes the data, it converts the data in each address record to the
character set that you specify in the property. The process is called transliteration.

Transliteration can use the numeric representations of each character in a character set when it converts
characters for processing. Transliteration can also convert characters phonetically when there is no
equivalent numeric representation of a character. If the Address Validator transformation cannot map a
character to UCS-2, it converts the character to a space.

Note: If you update the preferred language or the preferred script on the transformation, verify that the
language and the character code that you select are compatible.

Ranges To Expand
Determines how the Address Validator transformation returns suggested addresses for a street address that
does not specify a house number. Use the property when the transformation runs in suggestion list mode.

The Address Validator transformation reads a partial or incomplete street address in suggestion list mode.
The transformation compares the address to the address reference data, and it returns all similar addresses
to the end user. If the input address does not contain a house number, the transformation can return one or
more house number suggestions for the street. The Ranges to Expand property determines how the
transformation returns the addresses.

The transformation can return the range of valid house numbers in a single address, or it can return a
separate address for each valid house number. The transformation can also return an address for each
number in the range from the lowest to the highest house number on the street.

The following table describes the options on the property:

Option Description

All Address validation returns a suggested address for every house number in the
range of possible house numbers on the street.

None Address validation returns a single address that identifies the lowest and highest
house numbers in the valid range for the street.

Only with valid items Address validation returns a suggested address for every house number that the
address reference data recognizes as a deliverable address.

Note: Suggestion list mode can use other elements in the address to specify the valid range of street
numbers. For example, a ZIP Code might identify the city block that contains the address mailbox. The
Address Validator transformation can use the ZIP Code to identify the lowest and highest valid house
numbers on the block.

If the transformation cannot determine a house number range within practical limits, the number of
suggested addresses can grow to an unusable size. To restrict the number of addresses that the Ranges to
Expand property generates, set the Flexible Range Expansion property to On.

120 Chapter 4: Address Validator Transformation

Standardize Invalid Addresses
Determines if the address validation process standardizes the data values in an undeliverable address. The
property applies to address records that return a Match Code status in the range I1 through I4.

When you standardize the data, you increase the likelihood that a downstream data process returns accurate
results. For example, a duplicate analysis mapping might return a higher match score for two address
records that present common address elements in the same format.

Address validation can standardize the following address elements:

• Street suffix elements, such as road and boulevard.

• Predirectional and postdirectional elements, such as north, south, east, and west.

• Delivery service elements, such as Post Office Box.

• Sub-building elements, such as apartment, floor, and suite.

• State or province names. Standardization returns the abbreviated forms of the names.

The following table describes the options on the property:

Option Description

Off Address validation does not correct data errors. Default option.

On Address validation corrects data errors.

Parameter Usage

You can assign a parameter to specify the standardization policy for data errors. Enter OFF or ON as the
parameter value. Enter the value in uppercase.

Tracing Level
Sets the amount of detail that is included in the log.

You can configure tracing levels for logs.

Configure the following property on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Certification Reports
You can generate a report that describes the status of the addresses that you submit for validation in
certified mode. The report verifies that the address set meets the certification standards that the mail carrier
defines.

The Address Validator transformation generates reports for the following standards:

Address Machine Approval System (AMAS)

Australia Post defines the AMAS certification standard.

Certification Reports 121

Coding Accuracy Support System (CASS)

The USPS defines the CASS certification standard.

SendRight

New Zealand Post defines the SendRight certification standard.

Software Evaluation and Recognition Program (SERP)

Canada Post defines the SERP certification standard.

Note: You can use the Address Validator transformation to certify French address records to the National
Address Management Service (SNA) certification standard. However, you do not generate a report for SNA
address certification in the Address Validator transformation.

When you provide the mail items that meet the certification standards to the mail carrier, you submit the
certification report with the address set. The report includes data about the organization. You can enter the
data when you configure the Address Validator transformation. The transformation adds the organization
data to the report file.

AMAS Report Fields
When you configure an AMAS report, you provide information about the organization that submits the
certified address record set to Australia Post. Save or print the report, and include the report with the address
records that you submit to Australia Post.

Use the Reports view to enter the information.

The following table describes the information that you enter:

Field Description

Report File Name Name and location of the report that address validation creates. By default, the Address
Validator creates the report in the bin directory of the Data Integration Service machine.
To write the report file to another location on the Data Integration Service machine, enter the
file path and file name. You can enter a fully qualified path or a relative path. The relative path
uses the bin directory as a root directory.
The directory that you specify must exist before you run the address validation mapping.

Name of Address
List

Name of the address record set that you submit to Australia Post.

List Processor Name Name of the organization that submits the address record set.

Name of List
Manager/Owner

Name of the manager or owner of the address data in the organization.

Phone Number Contact telephone number of the organization that submits the address record set.

Address Address of the organization that submits the address record set.

122 Chapter 4: Address Validator Transformation

Related Topics:
• “Defining a Certification Report” on page 126

CASS Report Fields
When you configure a CASS report, you provide information about the organization that submits the certified
address record set to the USPS. Save or print the report, and include the report with the address records that
you submit to the USPS.

Use the Reports view to enter the information.

The following table describes the information that you enter:

Field Description

Report File Name Name and location of the report that address validation creates. By default, the Address
Validator creates the report in the bin directory of the Data Integration Service machine.
To write the report file to another location on the Data Integration Service machine, enter the file
path and file name. You can enter a fully qualified path or a relative path. The relative path uses
the bin directory as a root directory.
The directory that you specify must exist before you run the address validation mapping.

List Name/ID Name or identification number of the address list that you submit to the mail carrier.

List Processor
Name

Name of the organization that performs the address validation.

Name/Address Postal name and address of the organization that performs the address validation.

Note: The Address Validator transformation reads metadata about the CASS reference data files from the
batch and interactive reference data file for the United States. To generate a CASS report, the transformation
must read the current CASS reference data files and the current batch and interactive reference data file.

Related Topics:
• “Defining a Certification Report” on page 126

SendRight Report
When you configure a SendRight report, you provide information about the organization that submits the
certified address record set to New Zealand Post. Save or print the report, and include the report with the
address records that you submit to New Zealand Post.

Use the Reports view to enter the information.

The following table describes the information that you enter:

Field Description

Customer Name The name of the organization that submits the address record set.

Customer NZP
Number

The New Zealand Post account number of the organization that submits the address record set.
If a mailhouse submits the records on behalf of the organization, enter the mailhouse transport
identification (TPID) number.

Certification Reports 123

Field Description

Customer
Database

The name of the file that contains the address record set.
The Address Validator transformation creates the report in the location that you specify on the
Content Management Service. Use the Administrator tool to set the location.

Customer
Address

The address of the organization that submits the address record set.

Related Topics:
• “Defining a Certification Report” on page 126

SERP Report Fields
When you configure a SERP report, you provide information about the organization that submits the certified
address record set to Canada Post. Save or print the report, and include the report with the address records
that you submit to Canada Post.

Use the Reports view to enter the information.

The following table describes the information that you enter:

Field Description

Report File Name Name and location of the report that address validation creates. By default, the Address Validator
creates the report in the bin directory of the Data Integration Service machine.
To write the report file to another location on the Data Integration Service machine, enter the file
path and file name. You can enter a fully qualified path or a relative path. The relative path uses
the bin directory as a root directory.
The directory that you specify must exist before you run the address validation mapping.

Customer CPC
Number

Customer number issued by the Canada Post Corporation to the organization that performs the
address validation.

Customer Name/
Address

Name and address of the organization that performs the address validation.

Related Topics:
• “Defining a Certification Report” on page 126

Configuring an Address Validator Transformation
Use an Address Validator transformation to validate and improve your postal address data quality.

The Address Validator transformation reads address reference data. Verify that the Developer tool can
access the address reference data files you need.

1. Open the transformation.

2. Click the General Settings view and configure the general properties.

124 Chapter 4: Address Validator Transformation

3. Click the Templates view to add input and output ports.

4. Click the Reports view to generate reports for postal service address certification.

5. Click the Advanced view to configure advanced address validation properties.

6. Connect the input and output ports.

Note: Connect input ports that you do not want the Address Transformation to validate to the
Passthrough input port group.

Adding Ports to the Address Validator
Transformation

Use the Templates view to add ports to the Address Validator transformation.

1. Click the Templates view.

2. Expand a template.

• Choose the Basic Model template to add common address fields.

• Choose the Advanced Model template to add specialized address fields.

3. Expand the input port group that corresponds to the format of your input data. The input port groups are
Discrete, Multiline, and Hybrid.

4. Select input ports.

Tip: Click the CTRL key to select multiple ports.

5. Right-click the ports and select Add port to transformation.

6. Expand the output port group that contains the fields you require.

7. Right-click the ports and select Add port to transformation.

8. To add passthrough ports for columns you do not want to validate, click the Ports tab, select the
Passthrough input port group, and click New.

Creating User-Defined Templates
Create templates to group the address ports that you plan to reuse.

You create custom templates by selecting ports from the Basic and Advanced templates. You can select the
custom templates when you create subsequent Address Validator transformations.

Note: Templates are not repository objects. Templates reside on the machine you use to create them.

1. Select the Templates view.

2. Click New.

3. Type a name for the template.

4. Expand the Basic Model or Advanced Model template and select the ports you require.

5. Click OK.

Adding Ports to the Address Validator Transformation 125

Defining Address Validator Models
Address Validator models define the default input and output ports for Address Validator transformations.

Address Validator transformations do not contain default input and output ports. However, you can define a
model to specify the input and output ports that Address Validator transformations use.

Note: Models are not repository objects. Models reside on the machine you use to create them.

To define an Address Validator model, you perform the following steps:

1. Select the Templates view.

2. Expand the Basic Model or Advanced Model template and select the ports you require.

3. Select Create default AV model using selected ports.

4. To reset the model and remove all ports, select Clear default AV model.

Defining a Certification Report
When you define a certification report in the Address Validator transformation, you configure options on the
General Settings and Reports views.

1. On the General Settings view, set the Mode option to Certified.
2. On the Reports view, select the type of reports to generate. You can select the following types of report:

Option Description

AMAS Report Contains information that Australia Post requires to process record set.

CASS Report Contains information that the USPS requires to process the record set.

SendRight Report Contains information that New Zealand Post requires to process the record set.

SERP Report Contains information that Canada Post requires to process the record set.

3. For each report type that you select, enter the report details.

Submit the report file to the mail carrier with the list of address records that you validated with the Address
Validator transformation.

Related Topics:
• “AMAS Report Fields” on page 122

• “CASS Report Fields” on page 123

• “SendRight Report” on page 123

• “SERP Report Fields” on page 124

126 Chapter 4: Address Validator Transformation

Address Validator Transformation in a Non-native
Environment

The Address Validator transformation processing in a non-native environment depends on the engine that
runs the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Not supported.

Address Validator Transformation on the Blaze Engine
The Address Validator transformation is supported with the following restrictions:

• The Address Validator transformation cannot generate a certification report.

• The Address Validator transformation fails validation when it is configured to run in Interactive mode or
Suggestion List mode.

Address Validator Transformation on the Spark Engine
The Address Validator transformation is supported with the following restrictions:

• The Address Validator transformation cannot generate a certification report.

• The Address Validator transformation fails validation when it is configured to run in Interactive mode or
Suggestion List mode.

Address Validator Transformation in a Non-native Environment 127

C h a p t e r 5

Aggregator Transformation
This chapter includes the following topics:

• Aggregator Transformation Overview, 128

• Aggregator Transformations in Dynamic Mappings, 129

• Developing an Aggregator Transformation, 129

• Aggregator Transformation Ports, 129

• Aggregate Expressions, 130

• Group By Ports, 132

• Aggregator Caches, 135

• Sorted Input for an Aggregator Transformation, 135

• Aggregator Transformation Advanced Properties, 137

• Creating a Reusable Aggregator Transformation, 137

• Creating a Non-Reusable Aggregator Transformation, 138

• Tips for Aggregator Transformations, 138

• Troubleshooting Aggregator Transformations, 139

• Aggregator Transformation in a Non-native Environment, 139

Aggregator Transformation Overview
Configure an Aggregator transformation to perform aggregate calculations, such as averages and sums,
against groups of data. You can use an Aggregator transformation to remove duplicate rows. The Aggregator
transformation is an active transformation.

The Aggregator transformation is different from the Expression transformation because you can configure
the Aggregator transformation to perform calculations on groups of data. An Expression transformation
returns a result on a row by row basis.

For example, you can calculate the average salary for employees in each department of a organization.
Configure a group by department number. Configure an expression to calculate the average salary and to
return the result for each unique department number.

Use the transformation language to create aggregate expressions.

The Data Integration Service performs aggregate calculations as it reads data and stores the data in an
aggregate cache. You can sort the input data to increase performance. The Data Integration Service does not
create the cache if you sort the input data.

128

Aggregator Transformations in Dynamic Mappings
You can use an Aggregator transformation in a dynamic mapping. You can configure dynamic ports in the
transformation and reference the generated ports.

You can perform the following tasks to configure an Aggregator transformation in a dynamic mapping:

Reference a dynamic port or a generated port as a Group By column.

You can include dynamic ports or generated ports as Group By columns. If you specify a dynamic port as
a Group By column, you are specifying that all generated ports in the dynamic port are Group By
columns. For this reason, you cannot specify a generated port as a Group By column if you specified the
parent dynamic port as a Group By column. If you reference a generated port, and the generated port
does not exist at run time, the mapping fails. You can parameterize the Group By columns to indicate
which columns to group at run time.

Reference a generated port in the aggregate expression.

You can include a generated port in the aggregate expression. If the port does not exist at run time, the
mapping fails. You cannot reference a dynamic port in the aggregate expression.

Create the aggregate expression in an output port.

You cannot create an aggregate expression in a generated port or a dynamic port. The aggregate
expression cannot be a dynamic expression.

Parameterize values in the aggregate expression.

You can include parameters in the aggregate expresson. However, You cannot use an expression
parameter or a port parameter in the aggregate expression.

Developing an Aggregator Transformation
When you create an Aggregator transformation, define the expression to run against each row. Define a
group by port list to return results by.

To create an Aggregator transformation, perform the following steps:

1. Define the transformation and create the ports.

2. Configure an aggregate expression on a variable or output port.

3. Define a group of ports to return aggregate results by.

Aggregator Transformation Ports
An Aggregator transformation has multiple port types that you can use to configure groups and to aggregate
expressions.

An Aggregator transformation Ports view has the following fields:
Name

Name of the port.

Aggregator Transformations in Dynamic Mappings 129

Type

The port data type.

Precision

Length of the field.

Scale

The number of positions to the right of the decimal for numeric data.

Input

Indicates that data is from an upstream transformation.

Output

Indicates that the port returns the value of an expression. The expression can include non-aggregate
expressions and conditional clauses. You can create multiple aggregate output ports.

Pass-Through

Indicates that the port is an input-output port that returns the data unchanged.

Variable

Indicates that the port can store values or calculations to use in an expression. Variable ports cannot be
input or output ports. They pass data within the transformation only.

Expression

The expression to aggregate the rows or groups of rows.

Default value

The default value for a port with invalid or null values.

Input Rules

A set of rules that filter the ports to include or exclude in the transformation based on port names or
data type. Configure input rules when you define dynamic ports.

Aggregate Expressions
Configure aggregate expressions in the variable ports or the output ports of an Aggregator transformation.
You cannot enter an expression if the port is an input port, a pass-through port, or a dynamic port.

An aggregate expression can include conditional clauses and functions that are not aggregate functions. The
aggregate function can also include an aggregate function nested within another aggregate function, such
as:

MAX(COUNT(ITEM))
The aggregate expression result varies based on the group by ports in the transformation. For example, the
following aggregate expression finds the total quantity of items sold:

SUM(QUANTITY)
However, if you use the same expression, and you group by the ITEM port, the Data Integration Service
returns the total quantity by item.

You can create an aggregate expression in any output port and use multiple aggregate ports in a
transformation.

130 Chapter 5: Aggregator Transformation

Aggregate Functions
Configure aggregate functions within an Aggregator transformation. You can nest one aggregate function
within another aggregate function.

The transformation language includes the following aggregate functions:

• AVG

• COUNT

• FIRST

• LAST

• MAX

• MEDIAN

• MIN

• PERCENTILE

• STDDEV

• SUM

• VARIANCE

If you use a port in an expression in the Aggregator transformation but you do not use the port within an
aggregate function, the Data Integration Service uses the last row in the port to process the expression.

For example, you create an Aggregator transformation that contains the ports COMMISSIONS and SALARY. The
port SALARY is a group-by port.

You might use the following expression in an output port:

SUM(COMMISSIONS)
The Data Integration Service processes the Aggregator function and returns the sum of the values in the port
COMMISSIONS in the output port.

You might modify the expression to the following expression:

SUM(COMMISSIONS) + COMMISSIONS
To process the expression, the Data Integration Service returns the sum of the values in the port COMMISSIONS
and adds the value of the last row in the port COMMISSIONS to the return value in the output port.

For a different output port, you might use the following expression:

SUM(COMMISSIONS) + SALARY
To process the expression, the Data Integration Service returns the sum of the values in the port COMMISSIONS
and adds the value in the last row of the port SALARY to the return value in the output port. Note that the
values in each row of the port SALARY are the same because the SALARY port is a group-by port.

Nested Aggregate Functions
You can include multiple single-level or multiple nested functions in different output ports in an Aggregator
transformation.

You cannot include both single-level and nested functions in an Aggregator transformation. Therefore, if an
Aggregator transformation contains a single-level function in any output port, you cannot use a nested
function in any other port in that transformation. When you include single-level and nested functions in the
same Aggregator transformation, the Developer tool marks the mapping or mapplet invalid. If you need to
create both single-level and nested functions, create separate Aggregator transformations.

Aggregate Expressions 131

Conditional Clauses in Aggregate Expressions
Use conditional clauses in the aggregate expression to reduce the number of rows used in the aggregation.
The conditional clause can be any clause that evaluates to TRUE or FALSE.

For example, use the following expression to calculate the total commissions of employees who exceeded
their quarterly quota:

SUM(COMMISSION, COMMISSION > QUOTA)

Group By Ports
You can define groups of rows to aggregate instead of running an aggregation across all the input data. For
example, you can calculate the total company sales or you can find the total sales grouped by region.

To define a group for the aggregate expression, select the appropriate input, input/output, output, and
variable ports in the Aggregator transformation. You can select multiple group by ports to create a new group
for each unique combination. The Data Integration Service then performs the defined aggregation for each
group.

When you group values, the Data Integration Service produces one row for each group. If you do not group
values, the Data Integration Service returns one row for all input rows. The Data Integration Service returns
the last row of each group with the result of the aggregation. You can specify to return a specific row. For
example, if you use the FIRST aggregator function, the Data Integration Service returns the first row.

When you select multiple group by ports in the Aggregator transformation, the Data Integration Service uses
a port order to determine the order by which it groups. The group order can affect the results. Order the group
by ports to ensure the appropriate grouping. You can change the port order after you select the ports in the
group/

For example, you might create an output port called Price_Out. The expression for Price_Out is SUM (Qty *
Price). You define Store_ID and Item as the group by ports. The transformation returns the total price for each
item by store.

The input rows might contain the following data:

Store_ID Item Qty Price
101 battery 3 2.99
101 battery 1 3.19
101 battery 2 2.59
101 AAA 2 2.45
201 battery 1 1.99
201 battery 4 1.59
301 battery 1 2.45

The Data Integration Service performs the aggregate calculation on the following unique groups:

Store_Id Item
101 battery
101 AAA
201 battery
301 battery

132 Chapter 5: Aggregator Transformation

The Data Integration Service returns the Store_ID, Item, Qty, and Price from the last row with the sum of
(Price * Qty) for each item by store :

Store_ID Item Qty Price Price_Out
101 battery 2 2.59 17.34
101 AAA 2 2.45 4.90
201 battery 4 1.59 8.35
301 battery 1 2.45 2.45

Configure Group By Ports
Define the group by ports on the Group By tab of the transformation Properties view.

The following image shows the Group By tab:

The Group By tab contains the following options:

Specify by

Select Value or Parameter. Select Value to use port names. Choose Parameter to use a port list
parameter.

Add

Accepts a port name that you type in manually. You must type a valid port name before you click Add.

Choose

Click Choose to select ports to add to the group. The Developer tool provides a list of ports from the
transformation to choose from.

Move Up and Move Down

You can change the order of the ports in the group. Select the port name and then click one of the move
buttons to move it up or down in the sort order.

Group By Ports 133

Group By Parameters
You can configure a port list parameter that contains one or more ports to include in the group. Create a port
list parameter by selecting ports from a list of the ports in the transformation.

The following image shows the Group By tab when you use a parameter to identify the ports in the group:

You can browse for a port list parameter or click New to create a port list parameter. If you choose to create
a port list parameter, you can select the ports from a list of the ports in the transformation.

Default Values of Group By Ports
The Data Integration Service does not create a group when a group by port contains null values. You can
define a default value for each port in the group to replace any null input value. Then, the Data Integration
Service can include the rows in the aggregation totals.

Non-Aggregate Expressions
Use non-aggregate expressions in group by ports to modify or replace groups.

For example, if you want to replace ‘AAA battery’ before grouping, you can create a group by output port,
named CORRECTED_ITEM, using the following expression:

IIF(ITEM = 'AAA battery', battery, ITEM)

134 Chapter 5: Aggregator Transformation

Aggregator Caches
When you run a mapping that uses an Aggregator transformation, the Data Integration Service creates an
index cache and data cache in memory to run the transformation. If the Data Integration Service requires
more space than available in the memory cache, it stores overflow data in cache files.

The Data Integration Service creates the following caches for the Aggregator transformation:

• Index cache that stores group values as configured in the group by ports.

• Data cache that stores calculations based on the group by ports.

The Data Integration Service does not use cache memory to run an Aggregator transformation with sorted
ports. You do not need to configure cache memory for Aggregator transformations that use sorted ports.

Sorted Input for an Aggregator Transformation
You can increase Aggregator transformation performance with the sorted input option.

When you use sorted input, the Data Integration Service assumes all data is sorted by group and it performs
aggregate calculations as it reads rows for a group. When required, the Data Integration Service stores group
information in memory. To use the Sorted Input option, you must pass sorted data to the Aggregator
transformation. If you use sorted input, the Aggregator transformation provides sorted output.

When you do not use sorted input, the Data Integration Service performs aggregate calculations as it reads.
Because the data is not sorted, the Data Integration Service stores data for each group until it reads the
entire source to ensure that all aggregate calculations are accurate.

For example, one Aggregator transformation has the STORE_ID and ITEM group by ports, with the sorted
input option selected. When you pass the following data through the Aggregator, the Data Integration Service
performs an aggregation for the three rows in the 101/battery group when it finds the group 201/battery:

STORE_ID ITEM QTY PRICE

101 'battery' 3 2.99

101 'battery' 1 3.19

101 'battery' 2 2.59

201 'battery' 4 1.59

201 'battery' 1 1.99

If you use sorted input and do not presort data correctly, the Data Integration Service fails the mapping run.

Sorted Input Conditions
Certain conditions might prevent you from using sorted input.

You cannot use sorted input if either of the following conditions are true:

• The aggregate expression contains nested aggregate functions.

• Source data is data driven.

Aggregator Caches 135

When either of these conditions are true, the Data Integration Service processes the transformation as if you
do not use sorted input.

Sorting Data in an Aggregator Transformation
To use sorted input, you pass sorted data through an Aggregator transformation.

You must sort data by the Aggregator group by ports in the order they appear in the Aggregator
transformation.

For relational and flat file input, use the Sorter transformation to sort data in the mapping before passing it to
the Aggregator transformation. You can place the Sorter transformation anywhere in the mapping before the
Aggregator if no transformation changes the order of the sorted data. Group by columns in the Aggregator
transformation must be in the same order as they appear in the Sorter transformation.

The following mapping shows a Sorter transformation configured to sort the source data in ascending order
by ITEM_NO:

The Sorter transformation sorts the data as follows:

ITEM_NO ITEM_NAME QTY PRICE

345 Soup 4 2.95

345 Soup 1 2.95

345 Soup 2 3.25

546 Cereal 1 4.49

546 Cereal 2 5.25

With sorted input, the Aggregator transformation returns the following results:

ITEM_NAME QTY PRICE INCOME_PER_ITEM

Cereal 2 5.25 14.99

Soup 2 3.25 21.25

136 Chapter 5: Aggregator Transformation

Aggregator Transformation Advanced Properties
Configure properties that help determine how the Data Integration Service processes data for the Aggregator
transformation.

Configure the following advanced properties for an Aggregator transformation:

Cache Directory

Directory where the Data Integration Service creates the index cache files and data cache files. Verify
that the directory exists and contains enough disk space for the cache files.

Enter multiple directories separated by semicolons to increase performance during cache partitioning.
Cache partitioning creates a separate cache for each partition that processes the transformation.

Default is the CacheDir system parameter. You can configure another system parameter or user-defined
parameter for this property.

Data Cache Size

Amount of memory that the Data Integration Service allocates to the data cache for the transformation
at the start of the mapping run. Select Auto to have the Data Integration Service automatically calculate
the memory requirements at run time. Enter a specific value in bytes when you tune the cache size.
Default is Auto.

Index Cache Size

Amount of memory that the Data Integration Service allocates to the index cache for the transformation
at the start of the mapping run. Select Auto to have the Data Integration Service automatically calculate
the memory requirements at run time. Enter a specific value in bytes when you tune the cache size.
Default is Auto.

Sorted Input

Indicates that input data is presorted by groups. Select this option only if the mapping passes sorted
data to the Aggregator transformation.

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Related Topics:
• “Cache Size” on page 71

Creating a Reusable Aggregator Transformation
Create a reusable Aggregator transformation to use in multiple mappings or mapplets.

1. Select a project or folder in the Object Explorer view.

2. Click File > New > Transformation.

The New dialog box appears.

3. Select the Aggregator transformation.

4. Click Next.

Aggregator Transformation Advanced Properties 137

5. Enter a name for the transformation.

6. Click Finish.

The transformation appears in the editor.

7. Click the New button to add a port to the transformation.

8. Edit the port to set the name, datatype, and precision.

9. Determine the type of each port: input, output, passthrough, or variable.

10. Click the Expression field to configure aggregate expressions for output ports. You can select ports and
parameters to define the aggregate expression.

11. Click the Advanced view and edit the transformation properties.

Creating a Non-Reusable Aggregator Transformation
Create a non-reusable Aggregator transformation in a mapping or mapplet.

1. In a mapping or mapplet, drag an Aggregator transformation from the Transformation pallette to the
editor.

The transformation appears in the editor.

2. In the Properties view, edit the transformation name and the description.

3. On the Ports tab, click the New button to add ports to the transformation.

4. Edit the ports to set the name, datatype, and precision.

5. Determine the type of each port: input, output, passthrough, or variable.

6. Configure aggregate expressions for output ports.

7. In the Advanced view, edit transformation properties.

Tips for Aggregator Transformations
You can use tips to use Aggregator transformations more effectively.

Use sorted input to decrease the use of aggregate caches.

Sorted input reduces the amount of data cached during mapping run and improves performance. Use
this option with the Sorter transformation to pass sorted data to the Aggregator transformation.

Limit connected input/output or output ports.

Limit the number of connected input/output or output ports to reduce the amount of data the Aggregator
transformation stores in the data cache.

Filter the data before aggregating it.

If you use a Filter transformation in the mapping, place the transformation before the Aggregator
transformation to reduce unnecessary aggregation.

Only a sorted Aggregator transformation provides sorted output.

If you use unsorted input and you want to produce sorted output, use a Sorter transformation after the
Aggregator transformation.

138 Chapter 5: Aggregator Transformation

Troubleshooting Aggregator Transformations
You can troubleshoot Aggregator transformations.

I selected sorted input but the mapping takes the same amount of time as before.
You cannot use sorted input if either of the following conditions are true:

• The aggregate expression contains nested aggregate functions.

• Source data is data driven.

When either of these conditions are true, the Data Integration Service processes the transformation as if you
do not use sorted input.

A mapping with an Aggregator transformation causes slow performance.
The Data Integration Service may be paging to disk. You can increase performance by increasing the index
and data cache sizes in the transformation properties.

Aggregator Transformation in a Non-native
Environment

The Aggregator transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported with restrictions.

Aggregator Transformation on the Blaze Engine
Some processing rules for the Blaze engine differ from the processing rules for the Data Integration Service.

Mapping Validation

Mapping validation fails in the following situations:

• The transformation contains stateful variable ports.

• The transformation contains unsupported functions in an expression.

Aggregate Functions

If you use a port in an expression in the Aggregator transformation but you do not use the port within an
aggregate function, the run-time engine might use any row in the port to process the expression.

The row that the run-time engine uses might not be the last row in the port. Processing is distributed, and
thus the run-time engine might not be able to determine the last row in the port.

Troubleshooting Aggregator Transformations 139

Data Cache Optimization

The data cache for the Aggregator transformation is optimized to use variable length to store binary and
string data types that pass through the Aggregator transformation. The optimization is enabled for record
sizes up to 8 MB. If the record size is greater than 8 MB, variable length optimization is disabled.

When variable length is used to store data that passes through the Aggregator transformation in the data
cache, the Aggregator transformation is optimized to use sorted input and a pass-through Sorter
transformation is inserted before the Aggregator transformation in the run-time mapping.

To view the Sorter transformation, view the optimized mapping or view the execution plan in the Blaze
validation environment.

During data cache optimization, the data cache and the index cache for the Aggregator transformation are
set to Auto. The sorter cache for the Sorter transformation is set to the same size as the data cache for the
Aggregator transformation. To configure the sorter cache, you must configure the size of the data cache for
the Aggregator transformation.

Aggregator Transformation on the Spark Engine
Some processing rules for the Spark engine differ from the processing rules for the Data Integration Service.

Mapping Validation

Mapping validation fails in the following situations:

• The transformation contains stateful variable ports.

• The transformation contains unsupported functions in an expression.

Aggregate Functions

If you use a port in an expression in the Aggregator transformation but you do not use the port within an
aggregate function, the run-time engine might use any row in the port to process the expression.

The row that the run-time engine uses might not be the last row in the port. Processing is distributed, and
thus the run-time engine might not be able to determine the last row in the port.

Data Cache Optimization

You cannot optimize the data cache for the transformation to store data using variable length.

Aggregator Transformation in a Streaming Mapping
Streaming mappings have additional processing rules that do not apply to batch mappings.

Mapping Validation

Mapping validation fails in the following situations:

• A streaming pipeline contains more than one Aggregator transformation.

• A streaming pipeline contains an Aggregator transformation and a Rank transformation.

• An Aggregator transformation is upstream from a Lookup transformation.

• An Aggregator transformation is in the same streaming pipeline as a passive Lookup transformation
configured with an inequality lookup condition.

140 Chapter 5: Aggregator Transformation

Aggregator Transformation on the Databricks Spark Engine
Some processing rules for the Databricks Spark engine differ from the processing rules for the Data
Integration Service.

Mapping Validation

Mapping validation fails in the following situations:

• The transformation contains stateful variable ports.

• The transformation contains unsupported functions in an expression.

Aggregate Functions

If you use a port in an expression in the Aggregator transformation but you do not use the port within an
aggregate function, the run-time engine might use any row in the port to process the expression.

The row that the run-time engine uses might not be the last row in the port. Processing is distributed, and
thus the run-time engine might not be able to determine the last row in the port.

Data Cache Optimization

You cannot optimize the data cache for the transformation to store data using variable length.

Aggregator Transformation in a Non-native Environment 141

C h a p t e r 6

Association Transformation
This chapter includes the following topics:

• Association Transformation Overview, 142

• Memory Allocation, 143

• Association Transformation Advanced Properties, 144

Association Transformation Overview
The Association transformation processes output data from a Match transformation. It creates links between
duplicate records that are assigned to different match clusters, so that these records can be associated
together in data consolidation and master data management operations.

The Association transformation generates an AssociationID value for each row in a group of associated
records and writes the ID values to an output port.

The Consolidation transformation reads the output from the Association transformation. Use a Consolidation
transformation to create a master record based on records with common association ID values.

The Association transformation accepts string and numerical data values on input ports. If you add an input
port of another data type, the transformation converts the port data values to strings.

The AssociationID output port writes integer data. The transformation can write string data on an
AssociationID port if the transformation was configured in an earlier version of Informatica Data Quality.

Example: Associating Match Transformation Outputs

The following table contains three records that could identify the same individual:

ID Name Address City State ZIP SSN

1 David Jones 100 Admiral Ave. New York NY 10547 987-65-4321

2 Dennis Jones 1000 Alberta Ave. New Jersey NY - 987-65-4321

3 D. Jones Admiral Ave. New York NY 10547-1521 -

A duplicate analysis operation defined in a Match transformation does not identify all three records as
duplicates of each other, for the following reasons:

• If you define a duplicate search on name and address data, records 1 and 3 are identified as duplicates
but record 2 is omitted.

142

• If you define a duplicate search on name and Social Security number data, records 1 and 2 are identified
as duplicates but record 3 is omitted.

• If you define a duplicate search on all three attributes (name, address, and Social Security number), the
Match transformation may identify none of the records as matches.

The Association transformation links data from different match clusters, so that records that share a cluster
ID are given a common AssociationID value. In this example, all three records are given the same
AssociationID, as shown in the following table:

ID Name Address City State Zip SSN Name
and
Address
Cluster
ID

Name
and
SSN
Cluster
ID

Association
ID

1 David
Jones

100
Admiral
Ave.

New
York

NY 10547 987-65-4320 1 1 1

2 Dennis
Jones

1000
Alberta
Ave.

New
Jersey

NY - 987-65-4320 2 1 1

3 D.
Jones

Alberta
Ave.

New
York

NY 10547-1521 - 1 2 1

You can consolidate the duplicate record data in the Consolidation transformation.

Memory Allocation
You can set the minimum amount of cache memory that the Association transformation uses. The default
setting is 400,000 bytes.

Set the value in the Cache File Size property on the Advanced tab.

The default value represents the minimum amount of memory that the transformation uses. The Association
transformation tries to obtain a multiple of the default value, depending on the number of ports you associate
on. The transformation uses this formula to obtain cache memory:

(Number of association ports + 1) x default cache memory

For example, if you configure seven association ports, the transformation attempts to allocate 3.2 million
bytes, or 3.05 MB, to cache memory.

If you change the default setting, the transformation does not try to obtain additional memory.

Note: If you enter a cache memory value that is lower than 65536, the Association transformation reads the
value in megabytes.

Memory Allocation 143

Association Transformation Advanced Properties
The Association transformation contains advanced properties that determine the cache memory behavior
and the tracing level.

You can configure the following advanced properties:

Cache File Directory

Specifies the directory to which the Data Integration Service writes temporary data for the current
transformation. The Data Integration Service writes temporary files to the directory when the volume of
input data is greater than the available system memory. The Data Integration Service deletes the
temporary files after the mapping runs.

You can enter a directory path on the property, or you can use a parameter to identify the directory.
Specify a local path on the Data Integration Service machine. The Data Integration Service must be able
to write to the directory. The default value is the CacheDir system parameter.

Cache File Size

Determines the amount of system memory that the Data Integration Service uses to sort the input data
on the transformation. The default value is 400,000 bytes. You can use a parameter to specify the cache
file size.

Before it sorts the data, the Data Integration Service allocates the amount of memory that you specify. If
the sort operation generates a greater amount of data, the Data Integration Service writes the excess
data to the cache file directory. If the sort operation requires more memory than the system memory and
the file storage can provide, the mapping fails.

Note: If you enter a value of 65536 or higher, the transformation reads the value in bytes. If you enter a
lower value, the transformation reads the value in megabytes.

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

144 Chapter 6: Association Transformation

C h a p t e r 7

Bad Record Exception
Transformation

This chapter includes the following topics:

• Bad Record Exception Transformation Overview, 145

• Bad Record Exception Output Record Types, 146

• Bad Record Exception Management Process Flow, 147

• Bad Record Exception Mappings, 147

• Bad Record Exception Ports , 149

• Bad Record Exception Configuration View, 151

• Bad Record Exception Issue Assignment , 153

• Exception Transformation Advanced Properties, 154

• Configuring a Bad Record Exception Transformation, 154

• Bad Record Exception Mapping Example, 155

Bad Record Exception Transformation Overview
The Bad Record Exception transformation is an active transformation that reads the output of a data quality
process and identifies records that require manual review. The Bad Record Exception transformation is a
multiple-group transformation.

Configure a Bad Record Exception transformation to analyze the output of a process that identifies data
quality issues in records. A record that has a data quality issue that needs further review is an exception.

The Bad Record Exception transformation receives input from another transformation or from a data object
in another mapping. The input to the Bad Record transformation must contain one or more quality issue ports
that receive text descriptions of data quality problems. The input to the Bad Record Exception transformation
can also contain a numeric record score that the transformation can use to determine the data quality of
each record. Set an upper and lower score threshold in the Exception transformation to classify records as
good and bad quality based on the record score. The Bad Record Exception transformation writes exceptions
and associated quality issue text to a Bad Records table.

For example, an organization needs to validate customer addresses before sending out some mail to the
customers. A developer creates a mapping that validates customer city, state, and ZIP code against
reference tables with a Labeler transformation. The Labeler transformation validates the fields and adds a
record score to each row based on the results. The Labeler transformation also adds text that describes the
quality issues for each record that has an error. The Labeler transformation adds quality issue text such as

145

city not valid, or ZIP code blank to each exception. The Bad Record Exception transformation writes
customer records that need manual review to the Bad Records table. Data analysts review and correct the
bad records in the Analyst tool.

Bad Record Exception Output Record Types
The Bad Record Exception examines input record scores to determine record quality. It returns records to
different output groups

The Exception transformation identifies the following types of records based on each record score:

Good records

Records with scores greater than or equal to the upper threshold. Good records are valid and do not
require review. For example, if configure the upper threshold as 90, any record with a 90 or higher does
not need review.

Bad records

Records with scores less than the upper threshold and scores greater than or equal to the lower
threshold. Bad records are the exceptions that you need to review in the Analyst tool. For example, when
the lower threshold is 40, any record with a score from 40 to 90 needs manual review.

Rejected records

Records with scores less than the lower threshold. Rejected records are not valid. By default, the
Exception transformation drops rejected records from the data flow. For this example, any record with a
score 40 or less is a rejected record.

Note: If the quality issues fields are NULL, the record is not an exception. When any quality issue contains
text or it contains an empty string, the record is an exception. Verify that a quality issue port contains null
values when a field has no error. If the quality issue ports contain blanks instead of null values then the
Exception transformation flags every record as an exception. When a user needs to correct the issues in the
Analyst tool, the user cannot filter the exceptions by data quality issue.

When a record has a score less than zero or greater than 100, the row is not valid. The Data Integration
Service logs an error message that the row is not valid and it skips processing the record.

If you do not connect a record score as input to the Exception transformation, the transformation writes all
records that contain quality issues to the bad records table.

When you include the Bad Record Exception transformation in a Mapping task, you can configure a Human
task in the same workflow to include a manual review of the exceptions. The Human task starts when a
Mapping task ends in the workflow. The Human task requires users to access the Analyst tool to resolve the
quality issues. A user can update the data and change the quality status of each record in the bad records
table.

146 Chapter 7: Bad Record Exception Transformation

Bad Record Exception Management Process Flow
The Exception transformation receives record scores from data quality transformations and creates tables
that contain records with different levels of data quality. You must configure the data quality transformations
to find quality issues and provide a record score for each row.

You can configure the data quality transformations in a single mapping, or you can create mappings for
different stages of the data quality process.

Complete the following bad record exception management tasks:

1. In the Developer tool, define transformations that generate score values for source data based on data
quality issues that you define. Define transformations that return text to describe the quality of the
source data. For example, you can configure a Labeler transformation to check source data against
reference tables and then write a descriptive label for each comparison. You can define an IF/THEN rule
in a Decision transformation to examine a data field. You can define multiple transformations and
mapplets that perform different data quality operations.

2. Configure an Exception transformation to analyze the record scores that it receives from the data quality
operations. Configure the transformation to write records to database tables based on score values in
the records. You can create separate tables for good records, bad records, quality issues, and rejected
records.

3. Assign a quality issue port to each input port that might contain bad data.

4. Optionally, configure target data objects for good and bad records. Connect the Exception
transformation output ports to the target data objects in the mapping.

5. Create the target data object for bad records. Choose to generate a bad records table and add it to the
mapping. When you generate a bad records table, the Developer tool also generates a quality issues
table. Add the quality issues table to the mapping.

6. Add the mapping to a workflow.

7. Configure a Human task to assign manual review of bad records to users. Users can review and update
the bad records in the Analyst tool.

Bad Record Exception Mappings
When you create a mapping that identifies bad record exceptions, you configure the mapping to write records
to one or more database targets based on the quality of the data in the records.

The following figure shows an example Bad Record Exception mapping:

Bad Record Exception Management Process Flow 147

The mapping contains the following objects:

Data source

An Employees data source that contains the records to analyze for data quality.

Mapplet

The Bad_Records_Mapplet contains transformations that check for and add quality issues and record
scores to source records. Rules are transformations that analyze the data and find the quality issues.
For example, you can include a Labeler transformation to compare input data to reference tables.
Depending on the results, you can configure the Labeler transformation to return quality issues as
additional columns in the rows. You can configure a Decision transformation that uses IF, THEN, ELSE
statements to examine the data and apply quality issues and record scores to the input data.

Exception transformation

The Exception transformation determines which records to write to the data targets including the bad
records table and the issues table.

Good record table

The Exception transformation writes all good-quality records to the target_Employees table.

Bad Record table

The Exception transformation writes all bad-quality records to the target_EmployeeBadRecords table.
Bad records require manual review.

Issues table

The Exception transformation writes quality issues to the target_EmployeeBadRecords_ISSUES table.
When you view the bad records in the Analyst tool, the user interface links the quality issues to the bad
records.

Optionally, the Exception transformation can write rejected records to a rejected records table. You must
choose to create a separate output group for rejected records on the Configuration view of the
transformation.

Bad Record Exception Quality Issues
Quality issues are text strings that describe the type of data quality problem that caused a low record score.
The Bad Record Exception transformation receives quality issues associated with each source row that

148 Chapter 7: Bad Record Exception Transformation

contains a low record score. You can configure different types of transformations that determine quality
issues and record scores.

For example, you might create a Decision transformation that examines the phone number. The Decision
transformation generates the record score and the quality issues for phone number.

The following decision strategy identifies phone numbers of incorrect length in a Decision transformation:

IF LENGTH(Phone_Number) > 10 THEN
 Score:=50
 Phone_Quality_Issue:='Phone num too long'
ELSEIF LENGTH(Phone_Number) < 10 THEN
 Score:=50
 Phone_Quality_Issue:=' Phone num too short’
ELSE
 Score:=90
ENDIF

When you configure the Exception transformation, you must associate Phone_Quality_Issue with the
Phone_Number port. The ports are from different input groups.

The Exception transformation reads the scores generated by the Decision transformation and assigns
records with a score of "50" to the bad records group of output ports. It writes the Phone_Quality_Issue to the
Issues group of output ports.

Human Tasks
When you configure a workflow that contains an Exception transformation, you include the mapping in a
Mapping task. You add a Human task to the same workflow. The Human task requires one or more users to
correct the exception records in the Analyst tool.

The Mapping task identifies the records in the source data that contain unresolved data quality issues. Data
analysts use the Analyst tool to resolve the issues and to update the data quality status of each record.

When you configure a Human task, you create one or more task instances and one or more task steps. A task
instance represents the data set that a user must work on. A task step represents the type of work that a user
performs on the records in his or her task instance. You can create multiple task instances so that different
users work on different parts of the data in the Analyst tool.

A user can update the status of the bad records in the Analyst tool in one of the following ways:

• If a record is valid, the user updates the table metadata to confirm the record for persistent storage in the
database.

• If a record is not valid, the user updates the table metadata to remove the record from the database at a
later stage in the workflow.

• If the record status is not confirmed, the user updates the table metadata so that the record returns to the
workflow for further processing in a Mapping task.

For more information about Human tasks, see the Informatica Developer Workflow Guide.

Bad Record Exception Ports
Configure the input and output ports on the Ports tab of the Bad Record Exception transformation.

The Bad Record Exception transformation contains groups of input and output ports.

The following figure shows the Ports tab:

Bad Record Exception Ports 149

Bad Record Exception Transformation Input Ports
A Bad Record Exception transformation has separate input groups for the data, the quality issues, and the
record score.

The Bad Record Exception transformation has the following input groups:

Data

The source data fields.

Quality Issues

Contains ports that describe record quality problems. Quality issue ports contain strings such as
"Excess_Characters" or "Bad_Data_Format." You can have multiple quality issues in each record. The
transformation does not associate ports in the Quality Issues group to source data fields until you
assign the issues to data ports in the Issue Assignment view.

Control

The record score. The Exception transformation analyzes the record score to determine if input rows are
exceptions. If you do not connect the Score port, the Exception transformation identifies a row as an
exception if a Quality Issues port contains data.

Bad Record Exception Transformation Output
A Bad Record Exception transformation has multiple output groups.

The Bad Record Exception transformation has the following output groups:

Standard Output

The good quality records that you do not need to examine for data quality issues.

Each record in the Standard Output group contains a Score port that represents the data quality of the
record.

150 Chapter 7: Bad Record Exception Transformation

Bad Records

The exceptions that you need to examine for data quality issues.

Each record in the Bad Records group contains a workflow ID, a row identifier, and a record status port.

Issues

The quality issues for records in the Bad Records group. The quality issues are metadata elements that
the Analyst tool displays when you review the bad records.

Each record in the Issues group contains a workflow ID and a row identifier port that identifies which bad
record row that the issues belong to.

Rejected Records

Optional group that contains records that you might remove from the database. Each record in the
Rejected Records group contains a low record score in the Score port.

Bad Record Exception Configuration View
The Configuration view specifies the upper and lower thresholds that the transformation uses to identify
good records and bad records. The Configuration view also identifies the target tables for the records with
scores that are above or below the thresholds.

The following figure shows the Exception transformation Configuration view:

You can configure the following properties in the Configuration view:

Lower Threshold

The lower limit for the bad record score range. The transformation identifies records with scores that are
below the lower threshold as rejected records.

Bad Record Exception Configuration View 151

Upper Threshold

The upper limit for the bad record score range. The transformation identifies records with scores that
are greater than or equal to the upper threshold as good records.

Data Routing Options

The types of output records. In the default configuration, the transformation writes good records to the
Standard Output and writes bad records to the Bad Records table. By default, the transformation does
not write the rejected records to a database table.

Standard Output

The types of record that the transformation writes to the standard output ports. Default is Good Records.

Bad Record Table

The types of record that the transformation writes to the bad record output ports. Default is Bad
Records.

Create separate output group for rejected records

Creates a separate output group for the rejected records. The option is clear by default.

Generate bad records table

Creates a database table to contain the bad record data. When you select the option, the Exception
transformation creates the database table, adds a data object to the Model repository, and adds an
instance of the object to the mapping canvas. You can generate the bad records table for an Exception
transformation instance in a mapping. When you generate the bad records table, the Developer tool also
creates an issues table to store descriptive metadata about the records.

Note: The Developer tool adds a 12-character suffix to each column name in the bad record tables. If you
use an Oracle database, the source column name can contain no more than 18 characters.

Generating the Bad Records Table and the Issues Table
When you add the transformation to a mapping, you can generate the Bad Records table and the Issues table.
The Developer tool adds the tables to the Model repository.

1. Click Generate bad records table to generate the table.

The Create Relational Data Object dialog box appears.

2. Browse the database connections. Select a connection to the database to contain the table.

3. Enter a name for the Bad Records table. The Developer tool applies the name that you enter to the Bad
Records table and to the Issues table.

The Developer tool appends the following string to the Issues table name:

_ISSUE
If you connect to an Oracle database, the Bad Records table name must contain no more than 24
characters.

4. Enter a name for the Bad Records data object in the Model repository.

5. Click Finish.

The Developer tool adds the tables to the mapping canvas and to the Model repository.

152 Chapter 7: Bad Record Exception Transformation

Bad Record Exception Issue Assignment
You must assign ports and priorities to data quality issues.

The following figure shows the Issue Assignment view:

The Issue Assignment view contains the following fields:

Quality Issue

Each quality issue port that you defined in the Quality Issues input group appears in the Quality Issue
column.

Input

The Input column contains the data ports that you assign to quality issues in the Issue Assignment view.
Associate an input port with each quality issue port. Each input port that contains bad quality data must
have at least one corresponding quality issue port that indicates a type of issue. You might select the
Phone_Number port for the Phone_Quality_Issue, for example. You can assign a port to more than one
quality issue.

Issue Priority

Issue priorities determine which quality issues are the most important when you assign the same input
port to multiple quality issues. If more than one quality issue occurs for an input field, the Data
Integration Service applies the highest priority quality issue. If more than one quality issue exists for an
input port and the issues have the same priority, the Data Integration Service applies the topmost quality
issue in the list. Enter a priority from 1 to 99, where 1 represents the highest priority.

Define issue priorities to filter the records in the Analyst tool.

Assigning Ports to Quality Issues
Assign a port to associate with each quality issue. The Developer tool creates ports in the Issues output
group for each association that you add in the Issue Assignment view.

1. For each quality issue, click the Input field to display a list of input ports.

2. Select an input port to associate with the quality issue.

You can choose the same port for more than one issue.

3. Click the Issue column and select a priority for the quality issue.

Bad Record Exception Issue Assignment 153

Exception Transformation Advanced Properties
Configure properties that determine how the Data Integration Service processes data for the Exception
transformation.

You can configure tracing levels for logs.

Configure the following property on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Configuring a Bad Record Exception Transformation
When you configure a Bad Record Exception transformation, configure the input ports and the quality issues
that can occur in each port. Define the upper and lower thresholds for determining data quality. Configure
where to write the exceptions and the reject records.

1. Create a reusable or a nonreusable Bad Record Exception transformation.

• To create a reusable transformation, select File > New > Transformation and select a Bad Record
Exception transformation.

• To create a nonreusable transformation, open a mapping and add an Exception transformation to the
mapping canvas. Select a Bad Record Exception transformation from the wizard.

2. Click Next, or click Finish.

If you click Next, you can update the default threshold values and the data routing options before you
create the transformation.

3. Configure the input ports.

• If you create a reusable transformation, select the Ports tab, and add ports for the data you want to
connect to the transformation.

• If you create a nonreusable transformation, add other objects to the mapping canvas and drag input
ports to the transformation.

4. Select the Configuration view.

5. Configure the upper and lower score thresholds.

6. In the Data Routing Options section, configure the standard output and exception table properties to set
where the transformation writes each type of record.

Configure where to write the Good Records, Bad Records, and Rejected Records. You can write them to
standard output or to the Bad Records table.

7. Open the Issue Assignment view. Assign data quality issues to the data ports.

Assign a priority to each issue. If a port contains values with multiple issues, the transformation displays
the top priority issue.

8. Select the option to generate a bad records table. Enter the database connection and table name
information. The table must come from the default schema.

154 Chapter 7: Bad Record Exception Transformation

• When you generate a bad records table, you generate a table for the records and an additional table
for the data quality issues that relate to the records. The transformation creates a database object in
the Model repository.

9. Connect the transformation output ports to one or more data targets. Connect the output ports to the
data objects that correspond to the output options you set on the Configuration view.

• If you create a reusable transformation, add the transformation to a mapping and connect the output
ports.

• If you create a nonreusable transformation, the transformation connects the ports to the bad record
table. You connect output ports to any other data target.

Bad Record Exception Mapping Example
An organization conducts a data project to review new customer data. The organization needs to verify that
customer contact data is valid. The following example shows how to define a Bad Record Exception
transformation that receives records from a mapplet that does a data quality analysis of customer records.

Create a mapplet with data quality transformations that evaluate the format and the accuracy of the
customer data. The mapplet includes transformations that generate a record score based on the results of
the data quality analysis. The transformations also define the quality issues for the data based on the results
of the analysis.

Bad Record Exception Mapplet
Create a mapplet that contains data quality transformations to check the values of certain fields. The
transformations check reference tables and content sets to determine if the fields in the records are valid.
The transformations apply a record score to each record based on the results. The Exception transformation
receives the records from the mapplet and routes each record to the appropriate output based on the record
score.

The mapplet consists of Labeler transformations, Decision transformations, and Expression transformations.

The following figure shows the objects in the mapplet:

Bad Record Exception Mapping Example 155

The mapplet performs the following tasks:

• A Labeler transformation verifies the locality, the state, the country code, the zip code, and the postal code
data that it receives in the input ports. The transformation contains a strategy for each port. The
strategies compares the source data to reference tables and identifies values that are not valid.

• An Expression transformation mapplet verifies that the phone number is numeric and verifies that the
number contains 10 digits.

• A Labeler transformation and an Expression transformation mapplet verifies that the email address is
valid. The Expression transformation verifies the structure of the email string. The Labeler transformation
checks the IP address against a reference table of international IP address suffixes.

• A Decision transformation receives the output from the transformation and the mapplets. It calculates an
overall record score for the customer contact record.

Create a bad record exception mapping that includes the mapplet. The bad record exception mapping
includes an Exception transformation that writes the exceptions to a bad records database table. A data
analyst researches and updates exception records in the bad record table with the Analyst tool.

Bad Record Exception Example Input Groups
The Exception transformation has three input groups. The transformation has a Data group that receives the
source data. It has the Quality Issues group, which receives data quality issues found by data quality
transformations. It also has a Control group that contains the record score for the row.

The following figure shows the input groups in the Exception transformation:

156 Chapter 7: Bad Record Exception Transformation

Bad Record Exception Example Configuration
Define the upper and lower thresholds on the Configuration view. Identify where the transformation writes
good records, bad records, and rejected records.

Accept the default configuration for routing the good records, bad records, and issues.

The following figure shows the Exception transformation Configuration view:

The following table describes the configuration settings:

Option Setting

Lower threshold 10

Upper threshold 90

Good records Standard output

Bad Records Bad record table

Rejected Records -

Click Generate bad records tables to create the Bad Records and Issues tables.

Bad Record Exception Mapping Example 157

Bad Record Exception Example Mapping Output
Add a Write transformation to the mapping and connect the standard output ports to the data object. The
mapping also contains the bad record database object and the issues database object you created on the
Configuration view.

Bad Records Table
The Bad Records table contains the exceptions with record scores between the lower and upper thresholds.

The following figure shows the bad records that the Exception transformation returns:

The Bad Records table includes all of the fields in the source record. A bad record also includes the following
fields:

Workflow_ID

The name of the workflow that included the Exception transformation. The workflow contains the
Exception transformation Mapping task and the Human task to review the issues. The Workflow_ID
contains DummyWorkflowID if the Exception transformation is not in a workflow .

Row_Identifier

A unique number that identifies each row.

Record_Status

A record status for the Analyst tool. Each record in the Bad Records table receives an Invalid status.
You can maintain the record status when you update records in the Analyst tool.

Issues Table
The Issues table contains one row for each row in the Bad Records table. Each row contains the issues that
the data quality analysis found for the source record.

The following figure shows the columns in the Issues table:

The Issues table contains the following columns:

158 Chapter 7: Bad Record Exception Transformation

Workflow_ID

Identifies the workflow that created the record. The workflow contains the Exception transformation
Mapping task and the Human task to review the issue.

Row_Identifier

Identifies the record row in the database table. The row identifier identifies which row in the Bad Records
table corresponds to the row in the Issues table.

Issue Field Name

The field name is the name of the field that might quality issues. When the field contains an error the
column value is the quality issue text. In the figure above, the ADDR2 field name contains the
invalid_locality quality issue.

DQAPriority

The issue priority. When multiple issues occur for the same field, the issue with the highest priority
appears in the Issue Field Name.

Good Records Table
Each record in the Good Records table has a record score greater than the upper threshold. In this example,
the upper threshold is 90.

The following figure shows the good records that the Exception transformation returns:

The Good Records table records contain the record score and the source data fields.

Bad Record Exception Mapping Example 159

C h a p t e r 8

Case Converter Transformation
This chapter includes the following topics:

• Case Converter Transformation Overview, 160

• Case Strategy Properties, 160

• Configuring a Case Converter Strategy, 161

• Case Converter Transformation Advanced Properties, 161

• Case Converter Transformation in a Non-native Environment, 162

Case Converter Transformation Overview
The Case Converter transformation is a passive transformation that standardizes the case of the alphabetic
characters in input strings.

You can select a case conversion format, such as uppercase, lowercase, title case, and sentence case. You
can also reverse the current case of each character in the input data.

The Case Converter transformation can use the values in the Valid column of a reference table to define the
case of the input characters. When the transformation finds a match between an input value and a valid
value, the transformation applies the case of the valid value to the input value. You can use reference tables
when the case conversion type is Title Case or Sentence case.

You can create multiple case conversion strategies in a Case Converter transformation. Each strategy uses a
single conversion type.

Case Strategy Properties
You can configure properties for case conversion strategies.

On the Strategies view, you can configure the following case conversion properties:
Conversion Type

Defines the case conversion method that a strategy uses. You can apply the following case conversion
types:

• Uppercase. Converts all letters to uppercase.

• Sentence Case. Capitalizes the first letter of the field data string.

160

• Toggle Case. Converts lowercase letters to uppercase and uppercase letters to lowercase.

• Title Case. Capitalizes the first letter in each substring.

• Lowercase. Converts all letters to lowercase.

The default case conversion method is uppercase.

Leave Uppercase Words Unchanged

Overrides the chosen capitalization for uppercase strings.

Delimiters

Defines how capitalization functions for title case conversion. For example, choose a dash as a delimiter
to transform "smith-jones" to "Smith-Jones." The default delimiter is the space character.

Reference Table

Applies the capitalization format specified by a reference table. Applies only if the case conversion
option is Title Case or Sentence case. Click New to add a reference table to the strategy.

Note: If a reference table match occurs at the start of a token, the next character in the token changes to
uppercase. For example, if the input string is mcdonald and the reference table has an entry for Mc, the
output string is McDonald.

Configuring a Case Converter Strategy
To change the case of input strings, configure the settings in the Strategies view of a Case Converter
transformation.

1. Select the Strategies view.

2. Click New.

The New Strategy wizard opens.

3. Optionally, edit the strategy name and description.

4. Click the Inputs and Outputs fields to select ports for the strategy.

5. Configure the strategy properties. The default conversion strategy is Uppercase.

6. Click Next.

7. Optionally, add reference tables to customize the case options for input data that matches reference
table entries. Reference table case customization only applies to title case and sentence case
strategies.

8. Click Finish.

Case Converter Transformation Advanced Properties
Configure properties that help determine how the Data Integration Service processes data for the Case
Converter transformation.

You can configure tracing levels for logs.

Configure the following property on the Advanced tab:

Configuring a Case Converter Strategy 161

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Case Converter Transformation in a Non-native
Environment

The Case Converter transformation processing in a non-native environment depends on the engine that runs
the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Not supported.

162 Chapter 8: Case Converter Transformation

C h a p t e r 9

Classifier Transformation
This chapter includes the following topics:

• Classifier Transformation Overview, 163

• Classifier Models, 163

• Classifier Algorithms, 164

• Classifier Transformation Options, 164

• Classifier Strategies, 165

• Classifier Transformation Advanced Properties, 165

• Configuring a Classifier Strategy, 165

• Classifier Analysis Example, 166

• Classifier Transformation in a Non-native Environment, 171

Classifier Transformation Overview
The Classifier transformation is a passive transformation that analyzes input fields and identifies the type of
information in each field. Use a Classifier transformation when input fields contain multiple text values.

When you configure the Classifier transformation, you select a classifier model and a classifier algorithm. A
classifier model is a type of reference data object. A classifier algorithm is a set of rules that calculates the
number of similar words in a string and the relative positions of the words. The transformation compares the
algorithm analysis with the content of the classifier model. The transformation returns the model
classification that identifies the dominant type of information in the string.

The Classifier transformation can analyze strings of significant length. For example, you can use the
transformation to classify the contents of email messages, social media messages, and document text. You
pass the contents of each document or message to a field in a data source column, and you connect the
column to a Classifier transformation. In each case, you prepare the data source so that each field contains
the complete contents of a document or string you want to analyze.

Classifier Models
The Classifier transformation uses a reference data object called a classifier model to analyze input data.
You select the classifier model when you configure a Classifier transformation. The transformation compares

163

a column of input data with the classifier model data and returns a label that describes the type of
information in each input field.

A classifier model contains reference data rows and label values. The rows represent the input data on the
port that you might connect to the Classifier transformation. The label values describe the types of
information that the data rows contain. When you configure a classifier model, you assign a label to each
reference data row in the model.

To link the reference data rows to the labels in a classifier model, you compile the model. The compilation
process generates a series of logical associations between the data rows and the label values. When you run
a mapping that reads the model, the Data Integration Service applies the model logic to the Classifier
transformation input data. The Data Integration Service returns the labels that most accurately describe the
information in each input data field.

You create a classifier model in the Developer tool. The Model repository stores the classifier model object.
The Developer tool writes the data rows, the labels, and the compilation data to a file in the Informatica
directory structure.

Classifier Algorithms
When you add a classifier model to a transformation strategy, you also select a classifier algorithm. The
algorithm determines how the transformation compares the classifier model data to the input data.

You can select the Naive Bayes algorithm or the Maximum entropy algorithm.

Consider the following factors when you select an algorithm:

• The Maximum entropy algorithm performs a more thorough analysis than the Naive Bayes algorithm.

• A mapping that uses the Naive Bayes algorithm runs faster than a mapping that uses the Maximum
entropy algorithm on the same data.

• Select the Maximum entropy algorithm with the classifier model that Informatica includes in the Core
Accelerator.

Classifier Transformation Options
The Classifier transformation displays configurable options on a series of tabs or views in the Developer tool.

When you open a reusable transformation, the options appear on a series of tabs in the transformation
editor. When you open a nonreusable transformation in a mapping, the options appear on a series of views in
the mapping editor. Select the mapping properties tab to see the views on a nonreusable transformation.

You can select the following views:

General

View and update the transformation name and description.

Ports

View the input and output ports on the transformation.

Note: In a reusable Classifier transformation, the General and Ports views are combined in the Overview
tab.

164 Chapter 9: Classifier Transformation

Strategies

Add, remove, or edit a strategy.

Dependencies

View the input and output ports on each strategy.

Advanced

Set the level of detail that the transformation writes to log files.

Classifier Strategies
A strategy is a set of data analysis operations that a transformation performs on input data. You create at
least one strategy in the Classifier transformation. A Classifier strategy reads a single input port.

You define one or more operations in a strategy. A classifier operation identifies a classifier model and
classifier algorithm to apply to the input port data. Each operation writes to a different output port. Create
multiple operations in a strategy when you want to analyze an input port in different ways.

Note: When you want to identify the languages used in source data, select the Maximum entropy algorithm in
the classifier operation.

Classifier Transformation Advanced Properties
Configure properties that help determine how the Data Integration Service processes data for the Classifier
transformation.

You can configure tracing levels for logs.

Configure the following property on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Configuring a Classifier Strategy
You configure a strategy to identify the types of information in the data. Each strategy analyzes an input port.

In a nonreusable transformation, connect input ports to the transformation before you configure the strategy.

1. Open the transformation and select the Strategies view.

2. Click New Strategy.

The strategy creation wizard opens.

3. Enter a name and optional description for the strategy.

4. Select an input port from the Inputs field.

Classifier Strategies 165

5. Verify that the input port precision value is high enough to read all fields on the input port. The port
truncates the input data when it reaches the precision limit.

6. Select or clear the option to add score data to the strategy output.

7. Click Next.

8. Confirm the type of classifier operation, and click Next.

9. Select a classifier algorithm. You can select the following algorithms:

• Naive Bayes

• Maximum entropy

Note: To identify the language used in the source data, select the maximum entropy algorithm.

10. Verify the output port.

The transformation creates a single output port for each operation in a strategy. You can edit the port
name and precision.

11. Select a classifier model.

The wizard lists the classifier model objects in the Model repository.

12. Click Next to add another operation to the strategy. Otherwise, click Finish.

Classifier Analysis Example
You are a data steward at a software company that released a new smartphone application. The company
wants to understand the public response to the application and the media coverage it receives. The company
asks you and your team to analyze social media comments about the application.

You decide to capture data from twitter feeds that discuss smartphones. You use the twitter application
programming interface to filter the twitter data stream. You create a data source that contains the twitter
data you want to analyze.

Because the twitter feeds contain messages in multiple languages, you must identify the language used in
each message. You decide to use a Classifier transformation to analyze the languages. You create a
mapping that identifies the languages in the source data and writes the twitter messages to English and non-
English data targets.

166 Chapter 9: Classifier Transformation

Create the Classifier Mapping
You create a mapping that reads a data source, classifies the languages in the data, and writes the data to
targets based on the languages they contain.

The following image shows the mapping in the Developer tool:

The mapping you create contains the following objects:

Object Name Description

Read_tweet_user_lang Data source.
Contains the twitter messages

Classifier Classifier transformation.
Identifies the languages used in the twitter messages.

Router Router transformation.
Routes the twitter messages to data target objects according to the languages they contain.

Write_en_tweets_out Data target.
Contains twitter messages in English.

Write_other_tweets_out Data target.
Contains non-English-language twitter messages.

Classifier Analysis Example 167

Input Data Sample
The following data fragment shows a sample of the twitter data that you analyze in the mapping:

Twitter Message

RT @GanaphoneS3: Faltan 10 minutos para la gran rifa de un iPhone 5...
RT @Clarified: How to Downgrade Your iPhone 4 From iOS 6.x to iOS 5.x (Mac)...
RT @jerseyjazz: The razor was the iPhone of the early 2000s
RT @KrissiDevine: Apple Pie that I made for Thanksgiving. http://t.com/s9ImzFxO
RT @sophieHz: Dan yang punya 2 kupon undian. Masuk dalam kotak undian yang berhadiah Samsung
RT @IsabelFreitas: o galaxy tem isso isso isso e a bateria Ã melhor que do iPhone
RT @PremiusIpad: Faltan 15 minutos para la gran rifa de un iPhone 5...
RT @payyton3: I want apple cider
RT @wiesteronder: Retweet als je iets van Apple, Nike, Adidas of microsoft hebt!

Data Source Configuration
The data source contains a single port. Each row on the port contains a single twitter message.

The following table describes the configuration of the data source:

Port Name Port Type Precision

text n/a 200

Classifier Transformation Configuration
The Classifier transformation uses a single input port and output port. The transformation input port reads
the text field from the data source. The output port contains the language identified for each twitter message
in the text field. The Classifier transformation uses ISO country codes to identify the language.

The following table describes the configuration of the Classifier transformation:

Port Name Port Type Precision Strategy

text_input Input 200 Classifier1

Classifier_Output Output 2 Classifier1

168 Chapter 9: Classifier Transformation

Router Transformation Configuration
The Router transformation uses two input ports. It reads the twitter messages from the data source and the
ISO country codes from the Classifier transformation. The Router transformation routes the data on the input
ports to different output ports based on a condition that you specify.

The following image shows the Router transformation port groups and port connections:

The following table describes the configuration of the Router transformation:

Port Name Port Type Port Group Precision

Classifier_Output Input Input 2

text Input Input 200

Classifier_Output Input Default 2

text Input Default 200

Classifier_Output Input En_Group 2

text Input En_Group 200

You configure the transformation to create data streams for English-language messages and for messages
in other languages. To create a data stream, add an output port group to the transformation. Use the Groups
options on the transformation to add the port group.

To determine how the transformation routes data to each data stream, you define a condition on a port
group. The condition identifies a port and specifies a possible value on the port. When the transformation
finds an input port value that matches the condition, it routes the input data to the port group that applies the
condition.

Define the following condition on the En_Group:

ClassifierOutput='en'
Note: The Router transformation reads data from two objects in the mapping. The transformation can
combine the data in each output group because it does not alter the row sequence defined in the data
objects.

Classifier Analysis Example 169

Data Target Configuration
The mapping contains a data target for English-language twitter messages and a target for messages in
other languages. You connect the ports from a Router transformation output group to a data target.

The following table describes the configuration of the data targets:

Port Name Port Type Precision

text n/a 200

Classifier_Output n/a 2

Classifier Mapping Outcome
When you run the mapping, the Classifier transformation identifies the language of each twitter message.
The Router transformation writes the message text to data targets based on the language classifications.

The following data fragment shows a sample of the English-language target data:

ISO Country CodeTwitter Message

en RT @Clarified: How to Downgrade Your iPhone 4 From iOS 6.x to iOS 5.x
(Mac)...

en RT @jerseyjazz: The razor was the iPhone of the early 2000s

en RT @KrissiDevine: Apple Pie that I made for Thanksgiving. http://t.com/
s9ImzFxO

en RT @payyton3: I want apple cider

The following data fragment shows a sample of the target data identified for other languages:

ISO Country
Code

Twitter Message

es RT @GanaphoneS3: Faltan 10 minutos para la gran rifa de un iPhone 5...

id RT @sophieHz: Dan yang punya 2 kupon undian. Masuk dalam kotak undian yang
berhadiah Samsung Champ.

pt RT @IsabelFreitas: o galaxy tem isso isso isso e a bateria Ã melhor que do
iPhone

es RT @PremiusIpad: Faltan 15 minutos para la gran rifa de un iPhone 5...

nl RT @wiesteronder: Retweet als je iets van Apple, Nike, Adidas of microsoft
hebt! http://t.co/Je6Ts00H

170 Chapter 9: Classifier Transformation

Classifier Transformation in a Non-native
Environment

The Classifier transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Not supported.

Classifier Transformation in a Non-native Environment 171

C h a p t e r 1 0

Comparison Transformation
This chapter includes the following topics:

• Comparison Transformation Overview, 172

• Field Matching Strategies, 172

• Identity Matching Strategies, 175

• Configuring a Comparison Strategy, 175

• Comparison Transformation Advanced Properties, 176

• Comparison Transformation in a Non-native Environment, 176

Comparison Transformation Overview
The Comparison transformation is a passive transformation that evaluates the similarity between pairs of
input strings and calculates the degree of similarity for each pair as a numerical score.

When you configure the transformation, you select a pair of input columns and assign a matching strategy to
them.

The Comparison transformation outputs match scores in a range from 0 to 1, where 1 indicates a perfect
match.

Note: The strategies available in the Comparison transformation are also available in the Match
transformation. Use the Comparison transformation to define match comparison operations that you will add
to a matching mapplet. You can add multiple Comparison transformations to the mapplet. Use the Match
transformation to define match comparisons in a single transformation. You can embed a matching mapplet
in a Match transformation.

Field Matching Strategies
The Comparison transformation includes predefined field matching strategies that compare pairs of input
data fields.

172

Bigram
Use the Bigram algorithm to compare long text strings, such as postal addresses entered in a single field.

The Bigram algorithm calculates a match score for two data strings based on the occurrence of consecutive
characters in both strings. The algorithm looks for pairs of consecutive characters that are common to both
strings. It divides the number of pairs that match in both strings by the total number of character pairs.

Bigram Example

Consider the following strings:

• larder
• lerder
These strings yield the following Bigram groups:

l a, a r, r d, d e, e r
l e, e r, r d, d e, e r

Note that the second occurrence of the string "e r" within the string "lerder" is not matched, as there is no
corresponding second occurrence of "e r" in the string "larder".

To calculate the Bigram match score, the transformation divides the number of matching pairs (6) by the
total number of pairs in both strings (10). In this example, the strings are 60% similar and the match score is
0.60.

Hamming Distance
Use the Hamming Distance algorithm when the position of the data characters is a critical factor, for example
in numeric or code fields such as telephone numbers, ZIP Codes, or product codes.

The Hamming Distance algorithm calculates a match score for two data strings by computing the number of
positions in which characters differ between the data strings. For strings of different length, each additional
character in the longest string is counted as a difference between the strings.

Hamming Distance Example

Consider the following strings:

• Morlow
• Marlowes
The highlighted characters indicate the positions that the Hamming algorithm identifies as different.

To calculate the Hamming match score, the transformation divides the number of matching characters (5) by
the length of the longest string (8). In this example, the strings are 62.5% similar and the match score is
0.625.

Edit Distance
Use the Edit Distance algorithm to compare words or short text strings, such as names.

The Edit Distance algorithm calculates the minimum “cost” of transforming one string to another by inserting,
deleting, or replacing characters.

Edit Distance Example

Consider the following strings:

• Levenston

Field Matching Strategies 173

• Levenshtein
The highlighted characters indicate the operations required to transform one string into the other.

The Edit Distance algorithm divides the number of unchanged characters (8) by the length of the longest
string (11). In this example, the strings are 72.7% similar and the match score is 0.727.

Jaro Distance
Use the Jaro Distance algorithm to compare two strings when the similarity of the initial characters in the
strings is a priority.

The Jaro Distance match score reflects the degree of similarity between the first four characters of both
strings and the number of identified character transpositions. The transformation weights the importance of
the match between the first four characters by using the value that you enter in the Penalty property.

Jaro Distance Properties

When you configure a Jaro Distance algorithm, you can configure the following properties:

Penalty

Determines the match score penalty if the first four characters in two compared strings are not identical.
The transformation subtracts the full penalty value for a first-character mismatch. The transformation
subtracts fractions of the penalty based on the position of the other mismatched characters. The default
penalty value is 0.20.

Case Sensitive

Determines whether the Jaro Distance algorithm considers character case when it compares characters.

Jaro Distance Example

Consider the following strings:

• 391859
• 813995
If you use the default Penalty value of 0.20 to analyze these strings, the Jaro Distance algorithm returns a
match score of 0.513. This match score indicates that the strings are 51.3% similar.

Reverse Hamming Distance
Use the Reverse Hamming Distance algorithm to calculate the percentage of character positions that differ
between two strings, reading from right to left.

The Hamming Distance algorithm calculates a match score for two data strings by computing the number of
positions in which characters differ between the data strings. For strings of different length, the algorithm
counts each additional character in the longest string as a difference between the strings.

Reverse Hamming Distance Example

Consider the following strings, which use right-to-left alignment to mimic the Reverse Hamming algorithm:

• 1-999-9999

• 011-01-999-9991

The highlighted characters indicate the positions that the Reverse Hamming Distance algorithm identifies as
different.

174 Chapter 10: Comparison Transformation

To calculate the Reverse Hamming match score, the transformation divides the number of matching
characters (9) by the length of the longest string (15). In this example, the match score is 0.6, indicating that
the strings are 60% similar.

Identity Matching Strategies
The Comparison transformation includes predefined identity matching strategies that you can use to find
matches for individuals, addresses, or corporate entities.

The following table describes the match operation that each identity matching strategy performs:

Identity Matching Strategy Match Operation

Address Identifies an address match.

Contact Identifies a contact within an organization at a single location.

Corp Entity Identifies an organization by its legal corporate name.

Division Identifies an organization at an address.

Family Identifies a family by a family name and address or telephone number.

Fields Identifies custom fields that you select.

Household Identifies members of the same family at the same residence.

Individual Identifies an individual by name and either ID or date of birth.

Organization Identifies an organization by name.

Person Name Identifies a person by name.

Resident Identifies a person at an address.

Wide Contact Identifies a contact within an organization regardless of location.

Wide Household Identifies members of the same family at regardless of location.

Note: Identity matching strategies read reference data files called populations. Contact your Informatica
Administrator user for information about population data files installed on your system.

Configuring a Comparison Strategy
To configure a comparison strategy, edit the settings in the Strategies view of a Comparison transformation.

1. Select the Strategies view.

2. Select a comparison strategy from the Strategies section.

Identity Matching Strategies 175

3. In the Fields section, double-click a cell in the Available Fields column to select an input.

Note: You must select an input for each row that displays a bolded input name in the Input Fields
column.

Comparison Transformation Advanced Properties
Configure properties that help determine how the Data Integration Service processes data for the
Comparison transformation.

You can configure tracing levels for logs.

Configure the following property on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Comparison Transformation in a Non-native
Environment

The Comparison transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Not supported.

176 Chapter 10: Comparison Transformation

C h a p t e r 1 1

Consolidation Transformation
This chapter includes the following topics:

• Consolidation Transformation Overview, 177

• Consolidation Mappings, 178

• Consolidation Transformation Ports, 178

• Consolidation Transformation Views, 178

• Simple Strategies, 181

• Row-Based Strategies, 182

• Advanced Strategies, 183

• Simple Consolidation Functions, 183

• Row-Based Consolidation Functions, 187

• Consolidation Mapping Example, 191

• Configuring a Consolidation Transformation, 192

• Consolidation Transformation in a Non-native Environment, 193

Consolidation Transformation Overview
The Consolidation transformation is an active transformation that analyzes groups of related records and
creates a consolidated record for each group. Use the Consolidation transformation to consolidate record
groups generated by transformations such as the Key Generator, Match, and Association transformations.

The Consolidation transformation generates consolidated records by applying strategies to groups of related
records. The transformation contains an output port that indicates which record is the consolidated record.
You can choose to limit the transformation output to include only consolidated records.

For example, you can consolidate groups of duplicate employee records that the Match transformation
generates. The Consolidation transformation can create a consolidated record that contains merged data
from all records in the group.

You can configure the Consolidation transformation to use different types of strategies based on your
consolidation requirements. Use simple strategies to create a consolidated record from multiple records.
When you use simple strategies, you specify a strategy for each port. Use a row-based strategy to analyze
rows in the record group and create a consolidated record with the values from one of the rows. Use an
advanced strategy to create a consolidated record by applying an expression that you create.

177

Consolidation Mappings
To consolidate records, create a mapping that creates groups of related records. Add a Consolidation
transformation to a mapping, and configure the transformation to consolidate each record group into a single
master record.

Connect a Consolidation transformation to other transformations according to the business objectives and
the data requirements. To consolidate matched records, you can connect the Consolidation transformation
to a Match transformation. To consolidate records as part of exception record management, connect the
Consolidation transformation to an Exception transformation. If you use a Key Generator transformation to
group records, you can connect a Consolidation transformation directly to the Key Generator transformation.
The Consolidation transformation creates a consolidated record for each group that the Key Generator
transformation creates.

Mapping Output in Native and Hadoop Environments

When you run a consolidation mapping in a native environment and in a Hadoop environment, the
Consolidation transformation can generate different results. Because the mapping runs on multiple nodes in
Hadoop, the input records can enter the Consolidation transformation in a different order than in the native
environment. As a result, the transformation can generate different sets of survivor records in each
environment for the same input data set. The transformation calculations and the consolidated results are
accurate for the input row order in each case.

To generate the same survivor records in native and Hadoop environments, configure the Consolidation
transformation to sort the records in the following order:

• First, sort the records on the Group By port.

• Then, sort the records in the order in which the input ports appear in the transformation.

Consolidation Transformation Ports
The Developer tool creates an output port for each input port that you add. You cannot manually add output
ports to the transformation. The Consolidation transformation also includes an IsSurvivor output port that
indicates the consolidated records.

One of the input ports that you add to the Consolidation transformation must contain group keys. The
Consolidation transformation requires group key information because consolidation strategies process
record groups rather than entire datasets.

When you add an input port, the Developer tool creates an output port name by adding the suffix "1" to the
input port name. The transformation also includes the IsSurvivor output port, which indicates whether a
record is the consolidated record. For consolidated records, the Consolidation transformation writes the
string "Y" to the IsSurvivor port. For input records, the Consolidation transformation writes the string "N" to
the IsSurvivor port.

Consolidation Transformation Views
The Consolidation transformation contains views for ports, strategies, and advanced properties.

178 Chapter 11: Consolidation Transformation

Consolidation Transformation Strategies View
The Strategies view contains properties for simple, row-based, and advanced strategies.

The following list describes the types of consolidation strategies:

Simple Strategy

A simple strategy analyzes all the values of a port in a record group and selects one value. You specify a
simple strategy for each port. The Consolidation transformation uses the port values selected by all
simple strategies to create a consolidated record. Examples of simple strategies include the most
frequent value in a port, the longest value in a port, or the most frequent non-blank value in a port.

Row-Based Strategy

A row-based strategy analyzes rows in the record group and selects one row. The Consolidation
transformation uses the port values from that row to create a consolidated record. Examples of row-
based strategies include the highest character count, the lowest number of blank fields, or the highest
count of the most frequent fields.

Advanced Strategy

An advanced strategy analyzes a record group using strategies that you define. You build advanced
strategies by using consolidation functions in an expression. The Consolidation transformation creates a
consolidated record based on the output of the expression. The expression that you create can also use
all of the functions available in the Decision transformation.

Consolidation Transformation Advanced Properties
The Consolidation transformation contains advanced properties that determine the sort behavior, the output
mode, the cache memory behavior, and the tracing level.

You can configure the following advanced properties:

Sort

Determines whether the transformation sorts the input rows on the Group By port data. The property is
enabled by default.

Select the property if the input rows are not presorted.

Case Sensitive Sort

Determines whether the sort operation is case-sensitive. The property is enabled by default.

Output Mode

Determines whether the transformation writes all records as output or writes the consolidated records
as output. The default value is All.

Cache File Directory

Specifies the directory to which the Data Integration Service writes temporary data for the current
transformation. The Data Integration Service writes temporary files to the directory when the volume of
input data is greater than the available system memory. The Data Integration Service deletes the
temporary files after the mapping runs.

You can enter a directory path on the property, or you can use a parameter to identify the directory.
Specify a local path on the Data Integration Service machine. The Data Integration Service must be able
to write to the directory. The default value is the CacheDir system parameter.

Consolidation Transformation Views 179

Cache File Size

Determines the amount of system memory that the Data Integration Service uses to sort the input data
on the transformation. The default value is 400,000 bytes. You can use a parameter to specify the cache
file size.

Before it sorts the data, the Data Integration Service allocates the amount of memory that you specify. If
the sort operation generates a greater amount of data, the Data Integration Service writes the excess
data to the cache file directory. If the sort operation requires more memory than the system memory and
the file storage can provide, the mapping fails.

Note: If you enter a value of 65536 or higher, the transformation reads the value in bytes. If you enter a
lower value, the transformation reads the value in megabytes.

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Cache File Size
The cache file size property determines the amount of system memory that the Data Integration Service
assigns to the Consolidation transformation for sort operations. Configure the property with a value that is
less than or equal to the amount of RAM on the Data Integration Service host machine.

For best performance, specify a cache file size of at least 16 MB.

Before it begins a sort operation, the Data Integration Service allocates the memory that the cache file size
property specifies. The Data Integration Service passes all input data into the Consolidation transformation
before it performs a sort operation.

If the volume of input data is greater than the cache file size, the Data Integration Service writes data to the
cache file directory. When it writes data to the cache file directory, the Data Integration Service consumes
disk space that represents at least twice the input data volume.

Use the following formula to determine the size of incoming data:

[number_of_input_rows *(Sum (column_size) + 16]

The following table lists the possible data types and the column size values to apply in cache file data
calculations:

Data Type Column Size

Binary Precision + 8.
Round to nearest multiple of 8.

Date/Time 29

Decimal, high precision off (all precision) 16

Decimal, high precision on (precision <=18) 24

Decimal, high precision on (precision >18, <=28) 32

Decimal, high precision on (precision >28) 16

Decimal, high precision on (negative scale) 16

180 Chapter 11: Consolidation Transformation

Data Type Column Size

Double 16

Real 16

Integer 16

String, Text Unicode mode: 2*(precision + 5)
ASCII mode: precision + 9

Simple Strategies
A simple strategy analyzes a port in a record group and returns one value. You specify a simple strategy for
each port. The Consolidation transformation uses the port values selected by all simple strategies to create a
consolidated record.

When you configure a strategy in the Strategies view of the transformation, the strategy displays the
following text as the consolidation method:

Use default.

The default strategy is "Highest row ID."

You can choose from the following simple strategies:

Average

Analyzes a port in the record group and returns the average of all values.

For String and Date/time datatypes, the strategy returns the most frequently occurring value.

Longest

Analyzes a port in the record group and returns the value with the highest character count. If the highest
character count is shared by two or more values, the strategy returns the first qualifying value.

Maximum

Analyzes a port in the record group and returns the highest value.

For the String datatype, the strategy returns the longest string. For the Date/time datatype, the strategy
returns the most recent date.

Minimum

Analyzes a port in the record group and returns the lowest value.

For the String datatype, the strategy returns the shortest string. For the Date/time datatype, the strategy
returns the earliest date.

Most frequent

Analyzes a port in the record group and returns the most frequently occurring value, including blank or
null values. If the highest number of occurrences is shared by two or more values, the strategy returns
the first qualifying value.

Simple Strategies 181

Most frequent non-blank

Analyzes a port in the record group and returns the most frequently occurring value, excluding blank or
null values. If the highest number of non-blank occurrences is shared by two or more values, the strategy
returns the first qualifying value.

Shortest

Analyzes a port in the record group and returns the value with the lowest character count. If the lowest
character count is shared by two or more values, the strategy returns the first qualifying value.

Highest row ID

Analyzes a port in the record group and returns the value with the highest row ID.

Row-Based Strategies
A row-based strategy analyzes rows in the record group and selects one row. The Consolidation
transformation uses the port values from that row to create a consolidated record. The default strategy is
"most data."

Choose one of the following row-based strategies:

Most data

Selects the row with the highest character count. If the highest character count is shared by two or more
rows, the strategy returns the last qualifying value.

Most filled

Selects the row with the highest number of non-blank columns. If the highest number of non-blank
columns is shared by two or more rows, the strategy returns the last qualifying value.

Modal exact

Selects the row with the highest count of the most frequent non-blank values. For example, consider a
row that has three ports that contain the most frequent values in the record group. The count of the
most frequent values for that row is "3."

If the highest count of the most frequent non-blank values is shared by two or more rows, the strategy
returns the last qualifying value.

Row-Based Strategy Example

The following table displays a sample record group. The last column describes the reasons why specific row-
based strategies select different rows in this record group.

Product
ID

First Name Last
Name

ZIP
Code

Strategy Selection

2106 Bartholomew 28516 The Most Data strategy selects this row because the row
contains more characters than the other rows.

2236 Bart Smith 28579 The Most Filled strategy selects this row because the row
has more non-blank columns than the other rows.

2236 <Blank> Smith 28516 The Modal Exact strategy selects this row because the row
contains the highest count of the most frequent values.

182 Chapter 11: Consolidation Transformation

Advanced Strategies
You can use advanced strategies to create consolidation strategies from predefined functions. You can use
consolidation functions and other Informatica functions.

You can create expressions that contain simple consolidation functions or row-based consolidation
functions. You use the simple consolidation functions to build a consolidated record based on port values in
the record group. You use the row-based consolidation functions to select a row from the record group.

Consolidation expressions must populate all of the output ports in the Consolidation transformation. If
consolidation expressions do not use all output ports, the transformation causes mappings to fail.

You can use a simple or row-based strategy as a template for an advanced strategy. Configure a simple or
row-based strategy and then select Advanced. The Consolidation transformation generates an expression
with functions that perform the strategy. You can add more functions to implement additional requirements.

Simple Consolidation Functions
Simple consolidation functions select a value from all the port values in a record group. When you use a
simple consolidation function, you provide the function with a port and the group by port.

CONSOL_AVG
Analyzes a port in the record group and returns the average of all values.

Syntax
CONSOL_AVG(string, group by)

The following table describes the arguments for this command:

Argument Required/Optional Description

string Required Input port name.

group by Required Name of the input port that contains the group identifier.

Return Value

The average of all values in a port.

For String and Date/time datatypes, the function returns the most frequently occuring value.

Example

The following expression uses the CONSOL_AVG function to find the average value of the SalesTotal input port:

SalesTotal1:= CONSOL_AVG(SalesTotal, GroupKey)
In this expression, the CONSOL_AVG function uses the GroupKey port to identify a record group. Within that
record group, the function analyzes the SalesTotal port and returns the average value. The expression writes
the average value to the SalesTotal1 output port.

Advanced Strategies 183

CONSOL_LONGEST
Analyzes a port in the record group and returns the value with the highest character count.

Syntax
CONSOL_LONGEST(string, group by)

The following table describes the arguments for this command:

Argument Required/Optional Description

string Required Input port name.

group by Required Name of the input port that contains the group identifier.

Return Value

The port value with the highest character count.

If the highest character count is shared by two or more values, the strategy returns the first qualifying value.

Example

The following expression uses the CONSOL_LONGEST function to analyze the FirstName input port and find the
value with the highest character count:

FirstName1:= CONSOL_LONGEST(FirstName, GroupKey)
In this expression, the CONSOL_LONGEST function uses the GroupKey port to identify a record group. Within
that record group, the function analyzes the FirstName port and returns the longest value. The expression
writes this value to the FirstName1 output port.

CONSOL_MAX
Analyzes a port in the record group and returns the highest value.

Syntax
CONSOL_MAX(string, group by)

The following table describes the arguments for this command:

Argument Required/Optional Description

string Required Input port name.

group by Required Name of the input port that contains the group identifier.

Return Value

The highest port value.

For the String datatype, the function returns the longest string. For the Date/time datatype, the function
returns the most recent date.

184 Chapter 11: Consolidation Transformation

Example

The following expression uses the CONSOL_MAX function to analyze the SalesTotal input port and find the
highest value:

SalesTotal1:= CONSOL_MAX(SalesTotal, GroupKey)
In this expression, the CONSOL_MAX function uses the GroupKey port to identify a record group. Within that
record group, the function analyzes the SalesTotal port and returns the highest value. The expression writes
this value to the SalesTotal1 output port.

CONSOL_MIN
Analyzes a port in the record group and returns the lowest value.

Syntax
CONSOL_MIN(string, group by)

The following table describes the arguments for this command:

Argument Required/Optional Description

string Required Input port name.

group by Required Name of the input port that contains the group identifier.

Return Value

The lowest port value.

For the String datatype, the function returns the shortest string. For the Date/time datatype, the function
returns the earliest date.

Example

The following expression uses the CONSOL_MIN function to analyze the SalesTotal input port and find the
lowest value:

SalesTotal1:= CONSOL_MIN(SalesTotal, GroupKey)
In this expression, the CONSOL_MIN function uses the GroupKey port to identify a record group. Within that
record group, the function analyzes the SalesTotal port and returns the lowest value. The expression writes
this value to the SalesTotal1 output port.

CONSOL_MOSTFREQ
Analyzes a port in the record group and returns the most frequently occurring value, including blank or null
values.

Syntax
CONSOL_MOSTFREQ(string, group by)

Simple Consolidation Functions 185

The following table describes the arguments for this command:

Argument Required/Optional Description

string Required Input port name.

group by Required Name of the input port that contains the group identifier.

Return Value

The most frequently occurring value, including blank or null values.

If the highest number of occurences is shared by two or more values, the strategy returns the first qualifying
value.

Example

The following expression uses the CONSOL_MOSTFREQ function to analyze the Company input port and find the
most frequently occurring value:

Company1:= CONSOL_MOSTFREQ(Company, GroupKey)
In this expression, the CONSOL_MOSTFREQ function uses the GroupKey port to identify a record group. Within
that record group, the function analyzes the Company port and returns the most frequently occurring value.
The expression writes this value to the Company1 output port.

CONSOL_MOSTFREQ_NB
Analyzes a port in the record group and returns the most frequently occurring value, excluding blank or null
values.

Syntax
CONSOL_MOSTFREQ_NB(string, group by)

The following table describes the arguments for this command:

Argument Required/Optional Description

string Required Input port name.

group by Required Name of the input port that contains the group identifier.

Return Value

The most frequently occurring value, excluding blank or null values.

If the highest number of occurences is shared by two or more values, the strategy returns the first qualifying
value.

Example

The following expression uses the CONSOL_MOSTFREQ_NB function to analyze the Company input port and find
the most frequently occurring value:

Company1:= CONSOL_MOSTFREQ_NB(Company, GroupKey)
In this expression, the CONSOL_MOSTFREQ_NB function uses the GroupKey port to identify a record group.
Within that record group, the function analyzes the Company port and returns the most frequently occurring
value. The expression writes this value to the Company1 output port.

186 Chapter 11: Consolidation Transformation

CONSOL_SHORTEST
Analyzes a port in the record group and returns the value with the lowest character count.

Syntax
CONSOL_SHORTEST(string, group by)

The following table describes the arguments for this command:

Argument Required/Optional Description

string Required Input port name.

group by Required Name of the input port that contains the group identifier.

Return Value

The port value with the lowest character count.

If the lowest character count is shared by two or more values, the strategy returns the first qualifying value.

Example

The following expression uses the CONSOL_SHORTEST function to analyze the FirstName input port and find
the value with the lowest character count:

FirstName1:= CONSOL_SHORTEST(FirstName, GroupKey)
In this expression, the CONSOL_SHORTEST function uses the GroupKey port to identify a record group. Within
that record group, the function analyzes the FirstName port and returns the shortest value. The expression
writes this value to the FirstName1 output port.

Row-Based Consolidation Functions
Use row-based consolidation functions to select a record in a record group. You must use row-based
consolidation functions within IF-THEN-ELSE statements.

CONSOL_GETROWFIELD
Reads the row identified by a row-based consolidation function and returns the value for the port you specify.
You use a numeric argument to specify a port.

You must use the CONSOL_GETROWFIELD function in conjunction with one of the following row-based
consolidation functions:

• CONSOL_MODALEXACT
• CONSOL_MOSTDATA
• CONSOL_MOSTFILLED
For each input port in a row-based consolidation function, you must use one instance of the
CONSOL_GETROWFIELD function .

Syntax
CONSOL_GETROWFIELD(value)

Row-Based Consolidation Functions 187

The following table describes the arguments for this command:

Argument Required/
Optional

Description

value Required Number that indicates an input port in the row-based consolidation function. Use "0"
to specify the leftmost port in the function. Use subsequent numbers to indicate other
ports.

Return Value

The value of the port you specify. The function reads this value from a row identified by a row-based
consolidation function.

Example

The following expression uses the CONSOL_GETROWFIELD function in conjunction with the CONSOL_MOSTDATA
function:

IF (CONSOL_MOSTDATA(First_Name,Last_Name,GroupKey,GroupKey))
THEN
First_Name1 := CONSOL_GETROWFIELD(0)
Last_Name1 := CONSOL_GETROWFIELD(1)
GroupKey1 := CONSOL_GETROWFIELD(2)
ELSE
First_Name1 := First_Name
Last_Name1 := Last_Name
GroupKey1 := GroupKey
ENDIF

In this expression, the CONSOL_MOSTDATA function analyzes rows in a record group and identifies a single row.
The CONSOL_GETROWFIELD functions use consecutive numbers to read the port values for that row and write
the values to the output ports.

CONSOL_MODALEXACT
Identifies the row with the highest count of the most frequent values.

For example, consider a row that has three ports that contain the most frequent values in the record group.
The count of the most frequent values for that row is "3."

You must use this function in conjunction with the CONSOL_GETROWFIELD function. The CONSOL_GETROWFIELD
returns the values from the row that the CONSOL_MODALEXACT function identifies.

Syntax
CONSOL_MODALEXACT(string1, [string2, ..., stringN,]
 group by)

The following table describes the arguments for this command:

Argument Required/Optional Description

string Required Input port name.

group by Required Name of the input port that contains the group identifier.

Return Value

TRUE for the row that scores the highest count of the most frequent fields, FALSE for all other rows.

188 Chapter 11: Consolidation Transformation

Example

The following expression uses the CONSOL_MODALEXACT function to find the row that contains the highest
count of the most frequent fields:

IF (CONSOL_MODALEXACT(First_Name,Last_Name,GroupKey,GroupKey))
THEN
First_Name1 := CONSOL_GETROWFIELD(0)
Last_Name1 := CONSOL_GETROWFIELD(1)
GroupKey1 := CONSOL_GETROWFIELD(2)
ELSE
First_Name1 := First_Name
Last_Name1 := Last_Name
GroupKey1 := GroupKey
ENDIF

In this expression, the CONSOL_MODALEXACT function analyzes rows in a record group and identifies a single
row. The CONSOL_GETROWFIELD functions use consecutive numbers to read the port values for that row and
write the values to the output ports.

CONSOL_MOSTDATA
Identifies the row that contains the most characters across all ports

You must use this function in conjunction with the CONSOL_GETROWFIELD function. The CONSOL_GETROWFIELD
returns the values from the row that the CONSOL_MOSTDATA function identifies.

Syntax
CONSOL_MOSTDATA(string1, [string2, ..., stringN,]
 group by)

The following table describes the arguments for this command:

Argument Required/Optional Description

string Required Input port name.

group by Required Name of the input port that contains the group identifier.

Return Value

TRUE for the row that contains the most characters across all ports, FALSE for all other rows.

Example

The following expression uses the CONSOL_MOSTDATA function to find the row that contains the most
characters:

IF (CONSOL_MOSTDATA(First_Name,Last_Name,GroupKey,GroupKey))
THEN
First_Name1 := CONSOL_GETROWFIELD(0)
Last_Name1 := CONSOL_GETROWFIELD(1)
GroupKey1 := CONSOL_GETROWFIELD(2)
ELSE
First_Name1 := First_Name
Last_Name1 := Last_Name
GroupKey1 := GroupKey
ENDIF

In this expression, the CONSOL_MOSTDATA function analyzes rows in a record group and identifies a single row.
The CONSOL_GETROWFIELD functions use consecutive numbers to read the port values for that row and write
the values to the output ports.

Row-Based Consolidation Functions 189

CONSOL_MOSTFILLED
Identifies the row that contains the highest number of non-blank fields.

You must use this function in conjunction with the CONSOL_GETROWFIELD function. The CONSOL_GETROWFIELD
returns the values from the row that the CONSOL_MOSTFILLED function identifies.

Syntax
CONSOL_MOSTFILLED(string1, [string2, ..., stringN,]
 group by)

The following table describes the arguments for this command:

Argument Required/Optional Description

string Required Input port name.

group by Required Name of the input port that contains the group identifier.

Return Value

TRUE for the row that contains the highest number of non-blank fields, FALSE for all other rows.

Example

The following expression uses the CONSOL_MOSTFILLED function to find the row that contains the most
characters:

IF (CONSOL_MOSTFILLED(First_Name,Last_Name,GroupKey,GroupKey))
THEN
First_Name1 := CONSOL_GETROWFIELD(0)
Last_Name1 := CONSOL_GETROWFIELD(1)
GroupKey1 := CONSOL_GETROWFIELD(2)
ELSE
First_Name1 := First_Name
Last_Name1 := Last_Name
GroupKey1 := GroupKey
ENDIF

In this expression, the CONSOL_MOSTFILLED function analyzes rows in a record group and identifies a single
row. The CONSOL_GETROWFIELD functions use consecutive numbers to read the port values for that row and
write the values to the output ports.

190 Chapter 11: Consolidation Transformation

Consolidation Mapping Example
Your organization needs to consolidate duplicate customer records. To consolidate the customer records,
you group the data with a Key Generator transformation and use the Consolidation transformation to
consolidate the records.

You create a mapping with a data source containing customer records, a Key Generator transformation, a
Consolidation transformation, and a data target. The mapping groups customer records, consolidates the
groups, and writes a single consolidated record.

The following figure shows the mapping:

Input Data
The input data that you want to analyze contains customer information.

The following table contains the input data for this example:

Name Address City State Zip SSN
Dennis Jones 100 All Saints Ave New York NY 10547 987-65-4320
Dennis Jones 1000 Alberta Rd New York NY 10547 987-65-4320
D Jones 100 All Saints Ave New York NY 10547-1521

Key Generator Transformation
Use the Key Generator transformation to group the input data based on the ZIP code port.

The transformation returns the following data:

SequenceId GroupKey Name Address City State ZIP Code SSN
1 10547 Dennis Jones 100 All Saints Ave New York NY 10547 987-65-4320
2 10547 Dennis Jones 1000 Alberta Rd New York NY 10547
3 10547 D Jones 100 All Saints Ave New York NY 10547-1521 987-65-4320

Consolidation Mapping Example 191

Consolidation Transformation
Use the Consolidation transformation to generate the consolidated record.

Configure the Consolidation transformation to use the row-based strategy type. Select the Modal Exact
strategy to choose the row with the highest count of the most frequent values. The Modal Exact strategy
uses the values from that row to generate a consolidated record. The consolidated record is the record with
the "Y" value in the IsSurvivor port.

The transformation returns the following data:

GroupKey Name Address City State ZIP Code SSN IsSurvivor
10547 Dennis Jones 100 All Saints Ave New York NY 10547 987-65-4320 N
10547 Dennis Jones 1000 Alberta Rd New York NY 10547 N
10547 D Jones 100 All Saints Ave New York NY 10547-1521 987-65-4320 N
10547 D Jones 100 All Saints Ave New York NY 10547-1521 987-65-4320 Y

Consolidation Mapping Output
Configure the Consolidation transformation so that the mapping output contains only consolidated records.

In this example, you are reasonably confident that the most frequent values selected by the Modal Exact
strategy are the correct port values. To write only consolidated records to the mapping target, you select the
Advanced view and set the output mode to "Survivor Only."

When you run the mapping, the mapping output only contains consolidated records.

Configuring a Consolidation Transformation
When you configure the Consolidation transformation, you choose strategy types, choose strategies or write
expressions, select a grouping port, and configure advanced options.

1. Select the Consolidation view.

2. Choose a strategy type.

3. Configure the strategy.

• For the simple strategy type, select a strategy for each port.

• For the row-based strategy type, select a strategy.

• For the advanced strategy type, create an expression that uses consolidation functions.

4. In the Group By field, select the port that contains the group identifier.

5. Enable sorting on the Advanced view if the input data is not sorted.

6. Configure the output to contain consolidated records or all records.

192 Chapter 11: Consolidation Transformation

Consolidation Transformation in a Non-native
Environment

The Address Validator transformation processing in a non-native environment depends on the engine that
runs the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Not supported.

Consolidation Transformation on the Blaze Engine
The Consolidation transformation is supported with the following restrictions:

• The transformation might process records in a different order in each environment.

• The transformation might identify a different record as the survivor in each environment.

Consolidation Transformation on the Spark Engine
The Consolidation transformation is supported with the following restrictions:

• The transformation might process records in a different order in each environment.

• The transformation might identify a different record as the survivor in each environment.

Consolidation Transformation on the Databricks Spark Engine
The Consolidation transformation in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Databricks Spark engine. Not supported.

Consolidation Transformation in a Non-native Environment 193

C h a p t e r 1 2

Data Masking Transformation
This chapter includes the following topics:

• Data Masking Transformation Overview, 194

• Masking Techniques, 194

• Masking Rules, 205

• Special Mask Formats, 209

• Default Value File, 213

• Data Masking Transformation Configuration, 214

• Data Masking Transformation Runtime Properties, 216

• Data Masking Example, 216

• Data Masking Transformation Advanced Properties, 218

• Data Masking Transformation in a Non-native Environment, 219

Data Masking Transformation Overview
The Data Masking transformation changes sensitive production data to realistic test data for non-production
environments. The Data Masking transformation modifies source data based on masking techniques that you
configure for each column.

Create masked data for software development, testing, training, and data mining. You can maintain data
relationships in the masked data and maintain referential integrity between database tables.

The Data Masking transformation provides masking rules based on the source datatype and masking
technique that you configure for a column. For strings, you can restrict which characters in a string to
replace. You can restrict which characters to apply in a mask. For numbers and dates, you can provide a
range of numbers for the masked data. You can configure a range that is a fixed or percentage variance from
the original number. The Data Integration Service replaces characters based on the locale that you configure
for the transformation.

Masking Techniques
The masking technique is the type of data masking to apply to the selected column.

You can select one of the following masking techniques for an input column:

194

Random

Produces random, non-repeatable results for the same source data and masking rules. You can mask
date, numeric, and string datatypes. Random masking does not require a seed value. The results of
random masking are non-deterministic.

Expression

Applies an expression to a source column to create or mask data. You can mask all datatypes.

Key

Replaces source data with repeatable values. The Data Masking transformation produces deterministic
results for the same source data, masking rules, and seed value. You can mask date, numeric, and string
datatypes.

Substitution

Replaces a column of data with similar but unrelated data from a dictionary. You can mask the string
datatype.

Dependent

Replaces the values of one source column based on the values of another source column. You can mask
the string datatype.

Tokenization

Replaces source data with data generated based on customized masking criteria. The Data Masking
transformation applies rules specified in a customized algorithm. You can mask the string datatype.

Special Mask Formats

Credit card number, email address, IP address, phone number, SSN, SIN, or URL. The Data Masking
transformation applies built-in rules to intelligently mask these common types of sensitive data.

No Masking

The Data Masking transformation does not change the source data.

Default is No Masking.

Random Masking

Random masking generates random nondeterministic masked data. The Data Masking transformation
returns different values when the same source value occurs in different rows. You can define masking rules
that affect the format of data that the Data Masking transformation returns. Mask numeric, string, and date
values with random masking.

Masking String Values

Configure random masking to generate random output for string columns. To configure limitations for each
character in the output string, configure a mask format. Configure filter characters to define which source
characters to mask and the characters to mask them with.

You can apply the following masking rules for a string port:

Range

Configure the minimum and maximum string length. The Data Masking transformation returns a string of
random characters between the minimum and maximum string length.

Masking Techniques 195

Mask Format

Define the type of character to substitute for each character in the input data. You can limit each
character to an alphabetic, numeric, or alphanumeric character type.

Source String Characters

Define the characters in the source string that you want to mask. For example, mask the number sign (#)
character whenever it occurs in the input data. The Data Masking transformation masks all the input
characters when Source String Characters is blank.

Result String Replacement Characters

Substitute the characters in the target string with the characters you define in Result String Characters.
For example, enter the following characters to configure each mask to contain uppercase alphabetic
characters A - Z:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Masking Numeric Values

When you mask numeric data, you can configure a range of output values for a column. The Data Masking
transformation returns a value between the minimum and maximum values of the range depending on port
precision. To define the range, configure the minimum and maximum ranges or configure a blurring range
based on a variance from the original source value.

You can configure the following masking parameters for numeric data:

Range

Define a range of output values. The Data Masking transformation returns numeric data between the
minimum and maximum values.

Blurring Range

Define a range of output values that are within a fixed variance or a percentage variance of the source
data. The Data Masking transformation returns numeric data that is close to the value of the source
data. You can configure a range and a blurring range.

Masking Date Values

To mask date values with random masking, either configure a range of output dates or choose a variance.
When you configure a variance, choose a part of the date to blur. Choose the year, month, day, hour, minute,
or second. The Data Masking transformation returns a date that is within the range you configure.

You can configure the following masking rules when you mask a datetime value:

Range

Sets the minimum and maximum values to return for the selected datetime value.

Blurring

Masks a date based on a variance that you apply to a unit of the date. The Data Masking transformation
returns a date that is within the variance. You can blur the year, month, day, hour, minute, or second.
Choose a low and high variance to apply.

196 Chapter 12: Data Masking Transformation

Expression Masking
Expression masking applies an expression to a port to change the data or create new data. When you
configure expression masking, create an expression in the Expression Editor. Select input and output ports,
functions, variables, and operators to build expressions.

You can concatenate data from multiple ports to create a value for another port. For example, you need to
create a login name. The source has first name and last name columns. Mask the first and last name from
lookup files. In the Data Masking transformation, create another port called Login. For the Login port,
configure an expression to concatenate the first letter of the first name with the last name:

SUBSTR(FIRSTNM,1,1)||LASTNM
Select functions, ports, variables, and operators from the point-and-click interface to minimize errors when
you build expressions.

The Expression Editor displays the output ports which are not configured for expression masking. You cannot
use the output from an expression as input to another expression. If you manually add the output port name
to the expression, you might get unexpected results.

When you create an expression, verify that the expression returns a value that matches the port datatype. The
Data Masking transformation returns zero if the data type of the expression port is numeric and the data type
of the expression is not the same. The Data Masking transformation returns null values if the data type of the
expression port is a string and the data type of the expression is not the same.

Repeatable Expression Masking
Configure repeatable expression masking when a source column occurs in more than one table and you need
to mask the column from each table with the same value.

When you configure repeatable expression masking, the Data Masking transformation saves the results of an
expression in a storage table. If the column occurs in another source table, the Data Masking transformation
returns the masked value from the storage table instead of from the expression.

Dictionary Name
When you configure repeatable expression masking you must enter a dictionary name. The dictionary name
is a key that allows multiple Data Masking transformations to generate the same masked values from the
same source values. Define the same dictionary name in each Data Masking transformation. The dictionary
name can be any text.

Storage Table
The storage table contains the results of repeatable expression masking between sessions. A storage table
row contains the source column and a masked value pair. The storage table for expression masking is a
separate table from the storage table for substitution masking.

Each time the Data Masking transformation masks a value with a repeatable expression, it searches the
storage table by dictionary name, locale, column name and input value. If it finds a row in the storage table, it
returns the masked value from the storage table. If the Data Masking transformation does not find a row, it
generates a masked value from the expression for the column.

You need to encrypt storage tables for expression masking when you have unencrypted data in the storage
and use the same dictionary name as key.

Masking Techniques 197

Encrypting Storage Tables for Expression Masking
You can use transformation language encoding functions to encrypt storage tables. You need to encrypt
storage tables when you have enabled storage encryption.

1. Create a mapping with the IDM_EXPRESSION_STORAGE storage table as source.

2. Create a Data Masking transformation.

3. Apply the expression masking technique on the masked value ports.

4. Use the following expression on the MASKEDVALUE port:

Enc_Base64(AES_Encrypt(MASKEDVALUE, Key))
5. Link the ports to the target.

Example
For example, an Employees table contains the following columns:

FirstName
LastName
LoginID

In the Data Masking transformation, mask LoginID with an expression that combines FirstName and
LastName. Configure the expression mask to be repeatable. Enter a dictionary name as a key for repeatable
masking.

The Computer_Users table contains a LoginID, but no FirstName or LastName columns:

Dept
LoginID
Password

To mask the LoginID in Computer_Users with the same LoginID as Employees, configure expression masking
for the LoginID column. Enable repeatable masking and enter the same dictionary name that you defined for
the LoginID Employees table. The Integration Service retrieves the LoginID values from the storage table.

Create a default expression to use when the Integration Service cannot find a row in the storage table for
LoginID. The Computer_Users table does not have the FirstName or LastName columns, so the expression
creates a less meaningful LoginID.

Storage Table Scripts
Informatica provides scripts that you can run to create the storage table. The scripts are in the following
location:

<PowerCenter installation directory>\client\bin\Extensions\DataMasking
The directory contains a script for Sybase, Microsoft SQL Server, IBM DB2, and Oracle databases. Each script
is named <Expression_<database type>.

Rules and Guidelines for Expression Masking
Use the following rules and guidelines for expression masking:

• You cannot use the output from an expression as input to another expression. If you manually add the
output port name to the expression, you might get unexpected results.

• Use the point-and-click method to build expressions. Select functions, ports, variables, and operators from
the point-and-click interface to minimize errors when you build expressions.

• If the Data Masking transformation is configured for repeatable masking, and the storage table does not
exist, the Integration Service substitutes the source data with default values.

198 Chapter 12: Data Masking Transformation

Key Masking

A column configured for key masking returns deterministic masked data each time the source value and seed
value are the same. The Data Masking transformation returns unique values for the column.

When you configure a column for key masking, the Data Masking transformation creates a seed value for the
column. You can change the seed value to produce repeatable data between different Data Masking
transformations. For example, configure key masking to enforce referential integrity. Use the same seed
value to mask a primary key in a table and the foreign key value in another table.

You can define masking rules that affect the format of data that the Data Masking transformation returns.
Mask string and numeric values with key masking.

Masking String Values

You can configure key masking in order to generate repeatable output for strings. Configure a mask format to
define limitations for each character in the output string. Configure source string characters that define
which source characters to mask. Configure result string replacement characters to limit the masked data to
certain characters.

You can configure the following masking rules for key masking strings:

Seed

Apply a seed value to generate deterministic masked data for a column. You can enter a number
between 1 and 1,000.

Mask Format

Define the type of character to substitute for each character in the input data. You can limit each
character to an alphabetic, numeric, or alphanumeric character type.

Source String Characters

Define the characters in the source string that you want to mask. For example, mask the number sign (#)
character whenever it occurs in the input data. The Data Masking transformation masks all the input
characters when Source String Characters is blank. The Data Masking transformation does not always
return unique data if the number of source string characters is less than the number of result string
characters.

Result String Characters

Substitute the characters in the target string with the characters you define in Result String Characters.
For example, enter the following characters to configure each mask to contain all uppercase alphabetic
characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Masking Numeric Values

Configure key masking for numeric source data to generate deterministic output. When you configure a
column for numeric key masking, you assign a random seed value to the column. When the Data Masking
transformation masks the source data, it applies a masking algorithm that requires the seed.

You can change the seed value for a column to produce repeatable results if the same source value occurs in
a different column. For example, you want to maintain a primary-foreign key relationship between two tables.
In each Data Masking transformation, enter the same seed value for the primary-key column as the seed
value for the foreign-key column. The Data Masking transformation produces deterministic results for the
same numeric values. The referential integrity is maintained between the tables.

Masking Techniques 199

Masking Datetime Values

When you can configure key masking for datetime values, the Data Masking transformation requires a
random number as a seed. You can change the seed to match the seed value for another column in order to
return repeatable datetime values between the columns.

The Data Masking transformation can mask dates between 1753 and 2400 with key masking. If the source
year is in a leap year, the Data Masking transformation returns a year that is also a leap year. If the source
month contains 31 days, the Data Masking transformation returns a month that has 31 days. If the source
month is February, the Data Masking transformation returns February.

The Data Masking transformation always generates valid dates.

Substitution Masking
Substitution masking replaces a column of data with similar but unrelated data. Use substitution masking to
replace production data with realistic test data. When you configure substitution masking, define the
dictionary that contains the substitute values.

The Data Masking transformation performs a lookup on the dictionary that you configure. The Data Masking
transformation replaces source data with data from the dictionary. Dictionary files can contain string data,
datetime values, integers, and floating point numbers. Enter datetime values in the following format:

mm/dd/yyyy
You can substitute data with repeatable or non-repeatable values. When you choose repeatable values, the
Data Masking transformation produces deterministic results for the same source data and seed value. You
must configure a seed value to substitute data with deterministic results.The Integration Service maintains a
storage table of source and masked values for repeatable masking.

You can substitute more than one column of data with masked values from the same dictionary row.
Configure substitution masking for one input column. Configure dependent data masking for the other
columns that receive masked data from the same dictionary row.

Dictionaries
A dictionary is a reference table that contains the substitute data and a serial number for each row in the
table. Create a reference table for substitution masking from a flat file or relational table that you import into
the Model repository.

The Data Masking transformation generates a number to retrieve a dictionary row by the serial number. The
Data Masking transformation generates a hash key for repeatable substitution masking or a random number
for non-repeatable masking. You can configure an additional lookup condition if you configure repeatable
substitution masking.

You can configure a dictionary to mask more than one port in the Data Masking transformation.

When the Data Masking transformation retrieves substitution data from a dictionary, the transformation does
not check if the substitute data value is the same as the original value. For example, the Data Masking
transformation might substitute the name John with the same name (John) from a dictionary file.

200 Chapter 12: Data Masking Transformation

The following example shows a dictionary table that contains first name and gender:

SNO GENDER FIRSTNAME

1 M Adam

2 M Adeel

3 M Adil

4 F Alice

5 F Alison

In this dictionary, the first field in the row is the serial number, and the second field is gender. The Integration
Service always looks up a dictionary record by serial number. You can add gender as a lookup condition if
you configure repeatable masking. The Integration Service retrieves a row from the dictionary using a hash
key, and it finds a row with a gender that matches the gender in the source data.

Use the following rules and guidelines when you create a reference table:

• Each record in the table must have a serial number.

• The serial numbers are sequential integers starting at one. The serial numbers cannot have a missing
number in the sequence.

• The serial number column can be anywhere in a table row. It can have any label.

If you use a flat file table to create the reference table, use the following rules and guidelines:

• The first row of the flat file table must have column labels to identify the fields in each record. The fields
are separated by commas. If the first row does not contain column labels, the Integration Service takes
the values of the fields in the first row as column names.

• If you create a flat file table on Windows and copy it to a UNIX machine, verify that the file format is
correct for UNIX. For example, Windows and UNIX use different characters for the end of line marker.

Storage Tables
The Data Masking transformation maintains storage tables for repeatable substitution between sessions. A
storage table row contains the source column and a masked value pair. Each time the Data Masking
transformation masks a value with a repeatable substitute value, it searches the storage table by dictionary
name, locale, column name, input value, and seed. If it finds a row, it returns the masked value from the
storage table. If the Data Masking transformation does not find a row, it retrieves a row from the dictionary
with a hash key.

The dictionary name format in the storage table is different for a flat file dictionary and a relational
dictionary. A flat file dictionary name is identified by the file name. The relational dictionary name has the
following syntax:

<Connection object>_<dictionary table name>
Informatica provides scripts that you can run to create a relational storage table. The scripts are in the
following location:

<PowerCenter Client installation directory>\client\bin\Extensions\DataMasking
The directory contains a script for Sybase, Microsoft SQL Server, IBM DB2, and Oracle databases. Each script
is named Substitution_<database type>. You can create a table in a different database if you configure the
SQL statements and the primary key constraints.

Masking Techniques 201

You need to encrypt storage tables for substitution masking when you have unencrypted data in the storage
and use the same seed value and dictionary to encrypt the same columns.

Encrypting Storage Tables for Substitution Masking
You can use transformation language encoding functions to encrypt storage tables. You need to encrypt
storage tables when you have enabled storage encryption.

1. Create a mapping with the IDM_SUBSTITUTION_STORAGE storage table as source.

2. Create a Data Masking transformation.

3. Apply the substitution masking technique on the input value and the masked value ports.

4. Use the following expression on the INPUTVALUE port:

Enc_Base64(AES_Encrypt(INPUTVALUE, Key))
5. Use the following expression on the MASKEDVALUE port:

Enc_Base64(AES_Encrypt(MASKEDVALUE, Key))
6. Link the ports to the target.

Substitution Masking Properties
You can configure the following masking rules for substitution masking:

• Repeatable Output. Returns deterministic results between sessions. The Data Masking transformation
stores masked values in the storage table.

• Seed Value. Apply a seed value to generate deterministic masked data for a column. Enter a number
between 1 and 1,000.

• Unique Output. Force the Data Masking transformation to create unique output values for unique input
values. No two input values are masked to the same output value. The dictionary must have enough
unique rows to enable unique output.
When you disable unique output, the Data Masking transformation might not mask input values to unique
output values. The dictionary might contain fewer rows.

• Unique Port. The port used to identify unique records for substitution masking. For example, you want to
mask first names in a table called Customer. If you select the table column that contains the first names
as the unique port, the data masking transformation replaces duplicate first names with the same masked
value. If you select the Customer_ID column as the unique port, the data masking transformation replaces
each first name with a unique value.

• Dictionary Information. Configure the reference table that contains the substitute data values. Click
Select Source to select a reference table.

- Dictionary Name. Displays the name of the reference table that you select.

- Output Column. Choose the column to return to the Data Masking transformation.

• Lookup condition. Configure a lookup condition to further qualify what dictionary row to use for
substitution masking. The lookup condition is similar to the WHERE clause in an SQL query. When you
configure a lookup condition you compare the value of a column in the source with a column in the
dictionary.

For example, you want to mask the first name. The source data and the dictionary have a first name
column and a gender column. You can add a condition that each female first name is replaced with a
female name from the dictionary. The lookup condition compares gender in the source to gender in the
dictionary.

- Input port. Source data column to use in the lookup.

202 Chapter 12: Data Masking Transformation

- Dictionary column. Dictionary column to compare the input port to.

Rules and Guidelines for Substitution Masking
Use the following rules and guidelines for substitution masking:

• If a storage table does not exist for a unique repeatable substitution mask, the session fails.

• If the dictionary contains no rows, the Data Masking transformation returns an error message.

• When the Data Masking transformation finds an input value with the locale, dictionary, and seed in the
storage table, it retrieves the masked value, even if the row is no longer in the dictionary.

• If you delete a connection object or modify the dictionary, truncate the storage table. Otherwise, you might
get unexpected results.

• If the number of values in the dictionary is less than the number of unique values in the source data, the
Data Masking Transformation cannot mask the data with unique repeatable values. The Data Masking
transformation returns an error message.

Dependent Masking
Dependent masking substitutes multiple columns of source data with data from the same dictionary row.

When the Data Masking transformation performs substitution masking for multiple columns, the masked
data might contain unrealistic combinations of fields. You can configure dependent masking in order to
substitute data for multiple input columns from the same dictionary row. The masked data receives valid
combinations such as, "New York, New York" or "Chicago, Illinois."

When you configure dependent masking, you first configure an input column for substitution masking.
Configure other input columns to be dependent on that substitution column. For example, you choose the ZIP
code column for substitution masking and choose city and state columns to be dependent on the ZIP code
column. Dependent masking ensures that the substituted city and state values are valid for the substituted
ZIP code value.

Note: You cannot configure a column for dependent masking without first configuring a column for
substitution masking.

Configure the following masking rules when you configure a column for dependent masking:

Dependent column

The name of the input column that you configured for substitution masking. The Data Masking
transformation retrieves substitute data from a dictionary using the masking rules for that column. The
column you configure for substitution masking becomes the key column for retrieving masked data from
the dictionary.

Output column

The name of the dictionary column that contains the value for the column you are configuring with
dependent masking.

Masking Techniques 203

Dependent Masking Example
A data masking dictionary might contain address rows with the following values:

SNO STREET CITY STATE ZIP COUNTRY

1 32 Apple Lane Chicago IL 61523 US

2 776 Ash Street Dallas TX 75240 US

3 2229 Big Square Atleeville TN 38057 US

4 6698 Cowboy Street Houston TX 77001 US

You need to mask source data with valid combinations of the city, state, and ZIP code from the Address
dictionary.

Configure the ZIP port for substitution masking. Enter the following masking rules for the ZIP port:

Rule Value

Dictionary Name Address

Serial Number Column SNO

Output Column ZIP

Configure the City port for dependent masking. Enter the following masking rules for the City port:

Rule Value

Dependent Column ZIP

Output Column City

Configure the State port for dependent masking. Enter the following masking rules for the State port:

Rule Value

Dependent Column ZIP

Output Column State

When the Data Masking transformation masks the ZIP code, it returns the correct city and state for the ZIP
code from the dictionary row.

204 Chapter 12: Data Masking Transformation

Tokenization Masking
Use the tokenization masking technique to mask source string data based on criteria that you specify in an
algorithm. For example, you can create an algorithm that contains a fake email address to replace field
entries in the source data.

You can configure the format of the masked data using Tokenization masking. You must assign a tokenizer
name to the masking algorithm before you can use it. The tokenizer name references the masking algorithm
(JAR) used. Specify the tokenizer name when you apply the tokenization masking technique.

Configuring Tokenization Masking
Perform the following tasks before you use the tokenization masking technique:

1. Browse to the tokenprovider directory in the path: <Informatica_home>\services\shared.

2. Open the following XML file: com.informatica.products.ilm.tx-tokenizerprovider.xml.

3. Add the tokenizer name and the fully qualified name of the class file for each tokenizer you want to use.
Implement the tokenizer class within the com.informatica.products.ilm.tx-tokenprovider-<Build-
Number>.jar class in the tokenprovider directory. For each tokenizer, enter the information in the XML
file as in the following example:

<TokenizerProvider>
<Tokenizer Name="CCTokenizer"
ClassName="com.informatica.tokenprovider.CCTokenizer"/>
</TokenizerProvider>

Where:

• Tokenizer Name is the user-defined name in quotes.

• ClassName is the user-defined name for the CLASSNAME attribute. Implement this from within
com.informatica.products.ilm.tx-tokenprovider-<Build-Number>.jar.

After configuration, you can use the Tokenization masking technique. Enter the tokenizer name to specify the
algorithm to use when you create a mapping.

Masking Rules
Masking rules are the options that you configure after you choose the masking technique.

When you choose the random or key masking technique, you can configure the mask format, the source
string characters, and the result string characters. You can configure range or blurring with random masking.

The following table describes the masking rules that you can configure for each masking technique:

Masking Rule Description Masking
Technique

Source
Datatype

Mask Format Mask that limits each character in an output string to
analphabetic, numeric, or alphanumeric character.

Random and
Key

String

Source String
Characters

Set of source characters to mask or to exclude from masking. Random and
Key

String

Masking Rules 205

Masking Rule Description Masking
Technique

Source
Datatype

Result String
Replacement
Characters

A set of characters to include or exclude in a mask. Random and
Key

String

Range A range of output values.
- Numeric.

The Data Masking transformation returns numeric data
between the minimum and maximumvalues.

- String. Returns a string of random characters between the
minimum and maximum string length.

- Date/Time. Returns a date and time within the minimum
and maximum datetime.

Random Numeric
String
Date/Time

Blurring Range of output values with a fixed or percent variance from
the source data. The Data Masking transformation returns data
that is close to the value of the source data. Datetime columns
require a fixed variance. columns require a fixed variance.

Random Numeric
Date/Time

Mask Format

Configure a mask format to limit each character in the output column to an alphabetic, numeric, or
alphanumeric character. Use the following characters to define a mask format:

A, D, N, X, +, R
Note: The mask format contains uppercase characters. When you enter a lowercase mask character, the Data
Masking transformation converts the character to uppercase.

The following table describes mask format characters:

Character Description

A Alphabetical characters. For example, ASCII characters a to z and A to Z.

D Digits 0 to 9. The data masking transformation returns an "X" for characters other than digits 0 to 9.

N Alphanumeric characters. For example, ASCII characters a to z, A to Z, and 0-9.

X Any character. For example, alphanumeric or symbol.

+ No masking.

R Remaining characters. R specifies that the remaining characters in the string can be any character
type. R must appear as the last character of the mask.

For example, a department name has the following format:

nnn-<department_name>
You can configure a mask to force the first three characters to be numeric, the department name to be
alphabetic, and the dash to remain in the output. Configure the following mask format:

DDD+AAAAAAAAAAAAAAAA

206 Chapter 12: Data Masking Transformation

The Data Masking transformation replaces the first three characters with numeric characters. It does not
replace the fourth character. The Data Masking transformation replaces the remaining characters with
alphabetical characters.

If you do not define a mask format, the Data Masking transformation replaces each source character with
any character. If the mask format is longer than the input string, the Data Masking transformation ignores the
extra characters in the mask format. If the mask format is shorter than the source string, the Data Masking
transformation masks the remaining characters with format R.

Note: You cannot configure a mask format with the range option.

Source String Characters

Source string characters are source characters that you choose to mask or not mask. The position of the
characters in the source string does not matter. The source characters are case sensitive.

You can configure any number of characters. When Characters is blank, the Data Masking transformation
replaces all the source characters in the column.

Select one of the following options for source string characters:

Mask Only

The Data Masking transformation masks characters in the source that you configure as source string
characters. For example, if you enter the characters A, B, and c, the Data Masking transformation
replaces A, B, or c with a different character when the character occurs in source data. A source
character that is not an A, B, or c does not change. The mask is case sensitive.

Mask All Except

Masks all characters except the source string characters that occur in the source string. For example, if
you enter the filter source character “-” and select Mask All Except, the Data Masking transformation
does not replace the “-” character when it occurs in the source data. The rest of the source characters
change.

Source String Example

A source file has a column named Dependents. The Dependents column contains more than one name
separated by commas. You need to mask the Dependents column and keep the comma in the test data to
delimit the names.

For the Dependents column, select Source String Characters. Choose Don’t Mask and enter “,” as the source
character to skip. Do not enter quotes.

The Data Masking transformation replaces all the characters in the source string except for the comma.

Result String Replacement Characters
Result string replacement characters are characters you choose as substitute characters in the masked data.
When you configure result string replacement characters, the Data Masking transformation replaces
characters in the source string with the result string replacement characters. To avoid generating the same
output for different input values, configure a wide range of substitute characters, or mask only a few source
characters. The position of each character in the string does not matter.

Select one of the following options for result string replacement characters:

Masking Rules 207

Use Only

Mask the source with only the characters you define as result string replacement characters. For
example, if you enter the characters A, B, and c, the Data Masking transformation replaces every
character in the source column with an A, B, or c. The word “horse” might be replaced with “BAcBA.”

Use All Except

Mask the source with any characters except the characters you define as result string replacement
characters. For example, if you enter A, B, and c result string replacement characters, the masked data
never has the characters A, B, or c.

Result String Replacement Characters Example

To replace all commas in the Dependents column with semicolons, complete the following tasks:

1. Configure the comma as a source string character and select Mask Only.

The Data Masking transformation masks only the comma when it occurs in the Dependents column.

2. Configure the semicolon as a result string replacement character and select Use Only.

The Data Masking transformation replaces each comma in the Dependents column with a semicolon.

Range
Define a range for numeric, date, or string data. When you define a range for numeric or date values the Data
Masking transformation masks the source data with a value between the minimum and maximum values.
When you configure a range for a string, you configure a range of string lengths.

String Range
When you configure random string masking, the Data Masking transformation generates strings that vary in
length from the length of the source string. Optionally, you can configure a minimum and maximum string
width. The values you enter as the maximum or minimum width must be positive integers. Each width must
be less than or equal to the port precision.

Numeric Range
Set the minimum and maximum values for a numeric column. The maximum value must be less than or equal
to the port precision. The default range is from one to the port precision length.

Date Range
Set minimum and maximum values for a datetime value. The minimum and maximum fields contain the
default minimum and maximum dates. The default datetime format is MM/DD/YYYY HH24:MI:SS. The
maximum datetime must be later than the minimum datetime.

Blurring
Blurring creates an output value within a fixed or percent variance from the source data value. Configure
blurring to return a random value that is close to the original value. You can blur numeric and date values.

208 Chapter 12: Data Masking Transformation

Blurring Numeric Values
Select a fixed or percent variance to blur a numeric source value. The low blurring value is a variance below
the source value. The high blurring value is a variance above the source value. The low and high values must
be greater than or equal to zero. When the Data Masking transformation returns masked data, the numeric
data is within the range that you define.

The following table describes the masking results for blurring range values when the input source value is 66:

Blurring Type Low High Result

Fixed 0 10 Between 66 and 76

Fixed 10 0 Between 56 and 66

Fixed 10 10 Between 56 and 76

Percent 0 50 Between 66 and 99

Percent 50 0 Between 33 and 66

Percent 50 50 Between 33 and 99

Blurring Date Values
Mask a date as a variance of the source date by configuring blurring. Select a unit of the date to apply the
variance to. You can select the year, month, day, or hour. Enter the low and high bounds to define a variance
above and below the unit in the source date. The Data Masking transformation applies the variance and
returns a date that is within the variance.

For example, to restrict the masked date to a date within two years of the source date, select year as the unit.
Enter two as the low and high bound. If a source date is 02/02/2006, the Data Masking transformation
returns a date between 02/02/2004 and 02/02/2008.

By default, the blur unit is year.

Special Mask Formats
Special mask formats are masks that you can apply to common types of data. With a special mask format,
the Data Masking transformation returns a masked value that has a realistic format, but is not a valid value.

For example, when you mask an SSN, the Data Masking transformation returns an SSN that is the correct
format but is not valid. You can configure repeatable masking for Social Security numbers.

Configure special masks for the following types of data:

• Social Security numbers

• Credit card numbers

• Phone numbers

• URL addesses

• Email addresses

Special Mask Formats 209

• IP Addresses

• Social Insurance Numbers

When the source data format or datatype is invalid for a mask,the Data Integration Service applies a default
mask to the data. The Integration Service applies masked values from the default value file. You can edit the
default value file to change the default values.

Credit Card Number Masking

The Data Masking transformation generates a logically valid credit card number when it masks a valid credit
card number. The length of the source credit card number must be between 13 to 19 digits. The input credit
card number must have a valid checksum based on credit card industry rules.

The source credit card number can contain numbers, spaces, and hyphens. If the credit card has incorrect
characters, or is the wrong length, the Integration Service writes an error to the session log. The Integration
Service applies a default credit card number mask when the source data is invalid.

The Data Masking transformation does not mask the six digit Bank Identification Number (BIN). For example,
the Data Masking transformation might mask the credit card number 4539 1596 8210 2773 as 4539 1516
0556 7067. The Data Masking transformation creates a masked number that has a valid checksum.

Email Address Masking

Use the Data Masking transformation to mask the email address that contains string value. The Data
Masking transformation can mask an email address with random ASCII characters or replace the email
address with a realistic email address.

You can apply the following types of masking with email address:
Standard email masking

The Data Masking transformation returns random ASCII characters when it masks an email address. For
example, the Data Masking transformation can mask Georgesmith@yahoo.com as
KtrIupQAPyk@vdSKh.BIC. Default is standard.

Advanced email masking

The Data Masking transformation masks the email address with another realistic email address derived
from the transformation output ports or dictionary columns.

Advanced Email Masking
With the advanced email masking type, you can mask the email address with another realistic email address.
The Data Masking transformation creates the email address from the dictionary columns or from the
transformation output ports.

You can create the local part in the email address from mapping output ports. Or you can create the local
part in the email address from relational table or flat file columns.

The Data Masking transformation can create the domain name for the email address from a constant value
or from a random value in the domain dictionary.

You can create an advanced email masking based on the following options:
Email Address Based on Dependent Ports

You can create an email address based on the Data Masking transformation output ports. Select the
transformation output ports for the first name and the last name column. The Data Masking

210 Chapter 12: Data Masking Transformation

transformation masks the first name, the last name, or both names based on the values you specify for
the first and last name length.

Email Address Based on a Dictionary

You can create an email address based on the columns from a dictionary. Select a reference table as the
source for the dictionary.

Select the dictionary columns for the first name and the last name. The Data Masking transformation
masks the first name, the last name, or both names based on the values you specify for the first and last
name length.

Configuration Parameters for an Advanced Email Address Masking Type
Specify configuration parameters when you configure advanced email address masking.

You can specify the following configuration paramters:

Delimiter

You can select a delimiter, such as a dot, hyphen, or underscore, to separate the first name and last
name in the email address. If you do not want to separate the first name and last name in the email
address, leave the delimiter as blank.

FirstName Column

Select a Data Masking transformation output port or a dictionary column to mask the first name in the
email address.

LastName Column

Select a Data Masking transformation output port or a dictionary column to mask the last name in the
email address.

Length for the FirstName or LastName columns

Restricts the character length to mask for the first name and the last name columns. For example, the
input data is Timothy for the first name and Smith for the last name. Select 5 as the length of the first
name column. Select 1 as the length of the last name column with a dot as the delimiter. The Data
Masking transformation generates the following email address:

timot.s@<domain_name>

DomainName

You can use a constant value, such as gmail.com, for the domain name. Or, you can specify another
dictionary file that contains a list of domain names. The domain dictionary can be a flat file or a
relational table.

IP Address Masking

The Data Masking transformation masks an IP address as another IP address by splitting it into four
numbers, separated by a period. The first number is the network. The Data Masking transformation masks
the network number within the network range.

The Data Masking transformation masks a Class A IP address as a Class A IP Address and a 10.x.x.x address
as a 10.x.x.x address. The Data Masking transformation does not mask the class and private network
address. For example, the Data Masking transformation can mask 11.12.23.34 as 75.32.42.52. and
10.23.24.32 as 10.61.74.84.

Note: When you mask many IP addresses, the Data Masking transformation can return nonunique values
because it does not mask the class or private network of the IP addresses.

Special Mask Formats 211

Phone Number Masking

The Data Masking transformation masks a phone number without changing the format of the original phone
number. For example, the Data Masking transformation can mask the phone number (408)382 0658 as
(607)256 3106.

The source data can contain numbers, spaces, hyphens, and parentheses. The Integration Service does not
mask alphabetic or special characters.

The Data Masking transformation can mask string, integer, and bigint data.

Social Security Number Masking

The Data Masking transformation generates a Social Security number that is not valid based on the latest
High Group List from the Social Security Administration. The High Group List contains valid numbers that the
Social Security Administration has issued.

The default High Group List is a text file in the following location:

<Installation Directory>\infa_shared\SrcFiles\highgroup.txt
To use the High Group List file in workflows, copy the text file to the source directory that you configure for
the Data Integration Service.

The Data Masking transformation generates SSN numbers that are not on the High Group List. The Social
Security Administration updates the High Group List every month. Download the latest version of the list from
the following location:

http://www.socialsecurity.gov/employer/ssns/highgroup.txt

Social Security Number Format
The Data Masking transformation accepts any SSN format that contains nine digits. The digits can be
delimited by any set of characters. For example, the Data Masking transformation accepts the following
format: +=54-*9944$#789-,*()”.

Area Code Requirement
The Data Masking transformation returns a Social Security Number that is not valid with the same format as
the source. The first three digits of the SSN define the area code. The Data Masking transformation does not
mask the area code. It masks the group number and serial number. The source SSN must contain a valid area
code. The Data Masking transformation locates the area code on the High Group List and determines a range
of unused numbers that it can apply as masked data. If the SSN is not valid, the Data Masking transformation
does not mask the source data.

Repeatable Social Security Number Masking
The Data Masking transformation returns deterministic Social Security numbers with repeatable masking.
The Data Masking transformation cannot return all unique Social Security numbers because it cannot return
valid Social Security numbers that the Social Security Administration has issued.

URL Address Masking

212 Chapter 12: Data Masking Transformation

The Data Masking transformation parses a URL by searching for the ‘://’ string and parsing the substring to
the right of it. The source URL must contain the ‘://’ string. The source URL can contain numbers and
alphabetic characters.

The Data Masking transformation does not mask the protocol of the URL. For example, if the URL is
http://www.yahoo.com, the Data Masking transformation can return http://MgL.aHjCa.VsD/. The Data
Masking transformation can generate a URL that is not valid.

Note: The Data Masking transformation always returns ASCII characters for a URL.

Social Insurance Number Masking
The Data Masking transformation masks a Social Insurance number that is nine digits. The digits can be
delimited by any set of characters.

If the number contains no delimiters, the masked number contains no delimiters. Otherwise the masked
number has the following format:

xxx-xxx-xxx

Repeatable SIN Numbers
You can configure the Data Masking transformation to return repeatable SIN values. When you configure a
port for repeatable SIN masking, the Data Masking transformation returns deterministic masked data each
time the source SIN value and seed value are the same.

To return repeatable SIN numbers, enable Repeatable Values and enter a seed number. The Data Masking
transformation returns unique values for each SIN.

SIN Start Digit
You can define the first digit of the masked SIN.

Enable Start Digit and enter the digit. The Data Masking transformation creates masked SIN numbers that
start with the number that you enter.

Default Value File
When the source data format or datatype is invalid for a mask, the Data Integration Service applies a default
mask to the data. The Integration Service applies masked values from the default value file. You can edit the
default value file to change the default values.

The default value file is an XML file in the following location:

<Installation Directory>\infa_shared\SrcFiles\defaultValue.xml

To use the default value file in workflows, copy the default value file to the source directory that you
configure for the Data Integration Service.

The defaultValue.xml file contains the following name-value pairs:

<?xml version="1.0" standalone="yes" ?>
<defaultValue
default_char = "X"
default_digit = "9"
default_date = "11/11/1111 00:00:00"

Default Value File 213

default_email = "abc@xyz.com"
default_ip = "99.99.9.999"
default_url = "http://www.xyz.com"
default_phone = "999 999 999 9999"
default_ssn = "999-99-9999"
default_cc = "9999 9999 9999 9999"
default_sin = "999-999-999"
default_seed = "500"/>

Related Topics:
• “Configure the Data Integration Service” on page 214

Data Masking Transformation Configuration
Use the following steps to configure a Data Masking transformation.

1. Configure execution options for the Data Integration Service.

2. Create the transformation.

3. Define the input ports.

4. Configure masking rules for each port that you want to change.

5. Preview the data to verify the results.

Configure the Data Integration Service
You can configure execution options for the Data Integration Service in Informatica Administrator (the
Administrator tool).

Configure execution options to set the following default directories:

• Home directory. Contains the source directory and the cache directory.

• Source directory. Contains source files for workflows. For example, the source directory can contain the
highgrp.txt and defaultvalue.xml files.

• Cache directory. Contains cache files for substitution masking.

To set values for the execution options, open the Administrator tool, and select the Data Integration Service
in the Domain Navigator. Click the Properties view, and then click Edit in the Execution Options section.

Related Topics:
• “Default Value File” on page 213

Creating a Data Masking Transformation
Create a Data Masking transformation in the Developer tool.

Before you create the Data Masking transformation, create the source. Import a flat file or relational
database table as a physical data object.

1. Select a project or folder in the Object Explorer view.

2. Click File > New > Transformation.

The New dialog box appears.

214 Chapter 12: Data Masking Transformation

3. Select the Data Masking transformation.

4. Click Next.

5. Enter a name for the transformation.

6. Click Finish.

The transformation appears in the editor.

Defining the Ports
Add Data Masking input ports on the Overview view. When you create an input port, the Developer tool
creates a corresponding output port by default. The output port has the same name as the input port.

1. On the Overview view, click New to add a port.

2. Configure the datatype, precision, and scale for the column.

You must configure the column datatype before you define masking rules for the column.

3. To configure data masking for the port, click the arrow in the masking type column of the Overview view.

Configuring Data Masking for Each Port
Select a masking technique and the corresponding masking rules for a port on the Data Masking dialog box.
The Data Masking dialog box appears when you click the data masking column on the Ports tab.

1. Enable Apply Masking in order to configure masking for the selected port.

The Developer tool displays a list of masking techniques that you can use based on the datatype of the
port you are masking.

2. Select a masking technique from the list.

The Developer tool displays different masking rules based on the masking technique that you choose.
Some of the special mask formats have no masking rules to configure.

3. Configure the masking rules.

4. Click OK to apply the data masking configuration for the port.

When you define data masking for a port, the Developer tool creates an output port called out-<port
name>. The <port name> is the same name as the input port. The Data Masking transformation returns
the masked data in the out-<port name> port.

Previewing the Masked Data
You can compare the masked data to the original data when you view the Data Masking transformation
results in the Data Viewer.

1. After you configure the Data Masking transformation ports and masking rules, create a mapping that
includes the physical data object source and the Data Masking transformation.

2. Connect the source to the Data Masking transformation.

3. Verify that the source has data in a shared location that the Data Integration Service can access.

4. Click the Data Masking transformation to select it in the mapping.

5. Click Data Viewer and click Run.

The Developer tool displays data for all the Data Masking transformation output ports. The ports that
have the output prefix contain the masked data. You can compare the masked data to the original data
in the Data Viewer view.

Data Masking Transformation Configuration 215

Data Masking Transformation Runtime Properties
You can configure Data Masking transformation runtime properties to increase performance.

Configure the following runtime properties:

Cache Size

The size of the dictionary cache in main memory. Increase the memory size in order to improve
performance. Minimum recommended size is 32 MB for 100,000 records. Default is 8 MB.

Cache Directory

The location of the dictionary cache. You must have write permissions for the directory. Default is
CacheDir.

Shared Storage Table

Enables sharing of the storage table between Data Masking transformation instances. Enable Shared
Storage Table when two Data Masking transformation instances use the same dictionary column for the
database connection, seed value, and locale. You can also enable the shared storage table when two
ports in the same Data Masking transformation use the same dictionary column for the connection,
seed, and locale. Disable the shared storage table when Data Masking transformations or ports do not
share the dictionary column. Default is disabled.

Storage Commit Interval

The number of rows to commit at a time to the storage table. Increase the value to increase
performance. Configure the commit interval when you do not configure the shared storage table. Default
is 100,000.

Encrypt Storage

Encrypts storage tables, such as IDM_SUBSTITUTION_STORAGE and IDM_EXPRESSION_STORAGE.
Verify that you have encrypted data in storage tables before you enable the encrypt storage property.
Clear this option if you do not want to encrypt the storage tables. Default is disabled.

Storage Encryption Key

The Data Masking transformation encrypts the storage based on the storage encryption key. Use the
same encryption key for each session run of the same Data Masking transformation instance.

Substitution Dictionary Owner Name

Name of the substitution dictionary table owner when you select the substitution masking type. If the
database user specified in the database connection is not the owner of the substitution dictionary table
in a session, you need to specify the table owner.

Storage Owner Name

Name of the table owner for IDM_SUBSTITUTION_STORAGE or IDM_EXPRESSION_STORAGE when you
select repeatable expression or unique repeatable substitution masking type.

Data Masking Example
A developer needs to create test data for customer applications. The data must contain realistic customer
data that other developers can access in the company development environment.

216 Chapter 12: Data Masking Transformation

The developer creates a data service that returns masked customer data such as the the customer ID, credit
card number, and income. The mapping includes a Data Masking transformation that transforms the
customer data.

The following figure shows the mapping:

The mapping has the following transformations:

• Read_Customer_Data. Contains customer credit card and income information.

• Customer_Data_Masking transformation. Masks all columns except FirstName and LastName. The Data
Masking transformation passes the masked columns to the target.

• Customer_TestData. Output transformation that receives the masked customer data.

Read_Customer Data
The customer data contains the following columns:

Column Datatype

CustomerID Integer

LastName String

FirstName String

CreditCard String

Income Integer

Join_Date Datetime (MM/DD/YYYY)

The following table shows sample customer data:

CustomerID LastName FirstName CreditCard Income JoinDate
0095 Bergeron Barbara 4539-1686-3069-3957 12000 12/31/1999
0102 Brosseau Derrick 5545-4091-5232-8948 4000 03/03/2011
0105 Anderson Lauren 1234-5678-9012-3456 5000 04/03/2009
0106 Boonstra Pauline 4217-9981-5613-6588 2000 07/07/2007
0107 Chan Brian 4533-3156-8865-3156 4500 06/18/1995

Customer Data Masking Transformation
The Data Masking transformation masks all columns in the customer row except first and last name.

The Data Masking transformation performs the following types of masking:

• Key masking

• Random masking

Data Masking Example 217

• Credit card masking

The following table shows the masking rules for each port in the Data Masking transformation:

Input Port Masking Type Masking Rules Description

CustomerID Key The seed is 934.
The customer ID does not have
any mask format.
Result string replacement
characters are 1234567890.

The CustomerID mask is deterministic.
The masked customer ID contains numbers.

LastName No Masking - -

FirstName No Masking - -

CreditCard CreditCard - The Data Masking transformation masks the
credit card number with another number that
has a valid checksum.

Income Random Blurring
Percent
Low bound=1
High bound=10

The masked income is within ten percent of the
source income.

JoinDate Random Blurring
Unit=Year
Low Bound =5
HighBound=5

The masked date is within 5 years of the
original date.

Customer Test Data Results
The Customer_TestData transformation receives realistic customer data from the Data Masking
transformation.

The Customer_TestData target receives the following data:

out-CustomerID out-LastName outFirstName out-CreditCard out-Income out-JoinDate
3954 Bergeron Barbara 4539-1625-5074-4106 11500 03/22/2001
3962 Brosseau Derrick 5545-4042-8767-5974 4300 04/17/2007
3964 Anderson Lauren 1234-5687-2487-9053 5433 09/13/2006
3965 Boonstra Pauline 4217-9935-7437-4879 1820 02/03/2010
3966 Chan Brian 4533-3143-4061-8001 4811 10/30/2000

The income is within ten percent of the original income. The join date is within five years of the original date.

Data Masking Transformation Advanced Properties
Configure properties that help determine how the Data Integration Service processes data for the Data
Masking transformation.

You can configure tracing levels for logs.

218 Chapter 12: Data Masking Transformation

Configure the following property on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Data Masking Transformation in a Non-native
Environment

The Data Masking transformation processing in a non-native environment depends on the engine that runs
the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Not supported.

Data Masking Transformation on the Blaze Engine
The Data Masking transformation is supported with the following restrictions.

Mapping validation fails in the following situations:

• The transformation is configured for repeatable expression masking.

• The transformation is configured for unique repeatable substitution masking.

You can use the following masking techniques on the Blaze engine:

Credit Card

Email

Expression

IP Address

Key

Phone

Random

SIN

SSN

Tokenization

URL

Random Substitution

Repeatable Substitution

Dependent with Random Substitution

Dependent with Repeatable Substitution

Data Masking Transformation in a Non-native Environment 219

Data Masking Transformation on the Spark Engine
The Data Masking transformation is supported with the following restrictions.

Mapping validation fails in the following situations:

• The transformation is configured for repeatable expression masking.

• The transformation is configured for unique repeatable substitution masking.

You can use the following masking techniques on the Spark engine:

Credit Card

Email

Expression

IP Address

Key

Phone

Random

SIN

SSN

Tokenization

URL

Random Substitution

Repeatable Substitution

Dependent with Random Substitution

Dependent with Repeatable Substitution

To optimize performance of the Data Masking transformation, configure the following Spark engine
configuration properties in the Hadoop connection:

spark.executor.cores

Indicates the number of cores that each executor process uses to run tasklets on the Spark engine.

Set to: spark.executor.cores=1

spark.executor.instances

Indicates the number of instances that each executor process uses to run tasklets on the Spark engine.

Set to: spark.executor.instances=1

spark.executor.memory

Indicates the amount of memory that each executor process uses to run tasklets on the Spark engine.

Set to: spark.executor.memory=3G

Data Masking Transformation in a Streaming Mapping

220 Chapter 12: Data Masking Transformation

C h a p t e r 1 3

Data Processor Transformation
This chapter includes the following topics:

• Data Processor Transformation Overview, 221

• Data Processor Transformation Views, 222

• Data Processor Transformation Ports, 223

• Startup Component, 225

• References, 225

• Data Processor Transformation Settings, 226

• Events, 233

• Logs, 234

• Data Processor Transformation Development, 236

• Data Processor Transformation Import and Export, 240

• Data Processor Transformation in a Non-native Environment, 242

Data Processor Transformation Overview
The Data Processor transformation processes unstructured and semi-structured file formats in a mapping.
Configure the transformation to process messaging formats, HTML pages, XML, JSON, and PDF documents.
You can also convert structured formats such as ACORD, HIPAA, HL7, EDI-X12, EDIFACT, and SWIFT.

A mapping uses a Data Processor transformation to change documents from one format to another. The
Data Processor transformation processes files of any format in a mapping. When you create a Data
Processor transformation, you define components that convert the data.

A Data Processor transformation can contain multiple components to process data. Each component might
contain other components.

For example, you might receive customer invoices in Microsoft Word files. You configure a Data Processor
transformation to parse the data from each word file. Extract the customer data to a Customer table. Extract
order information to an Orders table.

When you create a Data Processor transformation, you define an XMap, Script, or Library. An XMap converts
an input hierarchical file into an output hierarchical file of another structure. A Library converts an industry
messaging type into an XML document with a hierarchy structure or from XML to an industry standard
format. A Script can parse source documents to hierarchical format, convert hierarchical format to other file
formats, or map a hierarchical document to another hierarchical format.

221

Define Scripts in the Data Processor transformation IntelliScript editor. You can define the following types of
Scripts:

• Parser. Converts source documents to XML. The output of a Parser is always XML. The input can have
any format, such as text, HTML, Word, PDF, or HL7.

• Serializer. Converts an XML file to an output document of any format. The output of a Serializer can be
any format, such as a text document, an HTML document, or a PDF.

• Mapper. Converts an XML source document to another XML structure or schema. You can convert the
same XML documents as in an XMap.

• Transformer. Modifies the data in any format. Adds, removes, converts, or changes text. Use
Transformers with a Parser, Mapper, or Serializer. You can also run a Transformer as stand-alone
component.

• Streamer. Splits large input documents, such as multi-gigabyte data streams, into segments. The
Streamer processes documents that have multiple messages or records in them, such as HIPAA or EDI
files.

For more information, see the Data Transformation User Guide.

Data Processor Transformation Views
The Data Processor transformation has multiple views that you access when you configure the
transformation and run it in the Developer tool.

Some of the Data Processor transformation views do not appear in the Developer tool by default. To change
the views for the transformation, click Window > Show View > Other > Informatica. Select the views you want
to see.

The Data Processor transformation has the following fixed views:

Overview view

Configure ports and define the startup component.

References view

Add or remove schemas from the transformation.

Settings view

Configure transformation settings for encoding, output control, and XML generation.

Objects view

Add, modify, or delete Script, XMap and Library objects from the transformation.

You can also access the following views for the Data Processor transformation:

Data Processor Hex Source view

Shows an input document in hexadecimal format.

Data Processor Events view

Shows information about events that occur when you run the transformation in the Developer tool.
Shows initialization, execution, and summary events.

Script Help view

Shows context-sensitive help for the Script editor.

222 Chapter 13: Data Processor Transformation

Data Viewer view

View example input data, run the transformation, and view output results.

Data Processor Transformation Ports
Define the Data Processor transformation ports on the transformation Overview view.

A Data Processor transformation can read input from a file, a buffer, or a streamed buffer from a complex file
reader. You can use a flat file reader as a buffer to read an entire file at one time. You can also read an input
file from a database.

The output ports that you create depend on whether you want to return a string, complex files, or rows of
relational data from the transformation.

Data Processor Transformation Input Ports
When you create a Data Processor transformation, the Developer tool creates a default input port. When you
define an additional input port in a Script startup component, the Developer tool creates an additional input
port in the transformation.

The input type determines the type of data that the Data Integration Service passes to the Data Processor
transformation. The input type determines whether the input is data or a source file path.

Configure one of the following input types:

Buffer

The Data Processor transformation receives rows of source data in the Input port. Use the buffer input
type when you configure the transformation to receive data from a flat file or from an Informatica
transformaton.

File

The Data Processor transformation receives the source file path in the Input port. The Data Processor
startup component opens the source file. Use the file input type to parse binary files such as Microsoft
Excel or Microsoft Word files. You can also use the File input type for large files that might require a lot
of system memory to process with a buffer input port.

Service Parameter

The Data Processor transformation receives values to apply to variables in the service parameter ports.
When you choose the variables to receive input data, the Developer tool creates a service parameter port
for each variable.

Output_Filename

When you configure the default output port to return a file name instead of row data, the Developer tool
creates an Output_Filename port. You can pass a file name to the Output_Filename port from a mapping.

When you define an input port you can define the location of the example input file for the port. An example
input file is a small sample of the input file. Reference an example input file when you create Scripts. You
also use the example input file when you test the transformation in the Data Viewer view. Define the example
input file in the Input Location field.

Data Processor Transformation Ports 223

Service Parameter Ports
You can create input ports that receive values for variables. The variables can contain can contain any
datatype such a string, a date, or a number. A variable can also contain a location for a source document.
You can reference the variables in a Data Processor component.

When you create an input port for a variable, the Developer tool shows a list of variables that you can choose
from.

Creating Service Parameter Ports
You can create input ports that receive values for variables. You can also remove the ports that you create
from variables.

1. Open the Data Processor transformation Overview view.

2. Click Choose.

The Developer tool displays a list of variables and indicates which variables already have ports.

3. Select one or more variables.

The Developer tool creates a buffer input port for each variable that you select. You cannot modify the
port.

4. To remove a port that you create from a variable, disable the selection from the variable list. When you
disable the selection, the Developer tool removes the input port.

Data Processor Transformation Output Ports
The Data Processor transformation has one output port by default. If you define additional output ports in a
Script, the Developer tool adds the ports to the Data Processor transformation. You can create groups of
ports if you configure the transformation to return relational data. You can also create service parameter
ports and pass-through ports.

Default Output Port
The Data Processor transformation has one output port by default. When you create relational output, you
can define groups of related output ports instead of the default output port. When you define an additional
output port in a Script component, the Developer tool adds an additional output port to the transformation.

Configure one of the following output types for a default output port:

Buffer

The Data Processor transformation returns XML through the Output port. Choose the Buffer file type
when you parse documents or when you map XML to other XML documents in the Data Processor
transformation.

File

The Data Integration Service returns an output file name in the Output port for each source instance or
row. The Data Processor transformation component writes the output file instead of returning data
through the Data Processor transformation output ports.

When you select a File output port, the Developer tool creates an Output_Filename input port. You can
pass a file name into the Output filename port. The Data Processor transformation creates the output
file with a name that it receives in this port.

If the output file name is blank, the Data Integration Service returns a row error. When an error occurs,
the Data Integration Service writes a null value to the Output port and returns a row error.

224 Chapter 13: Data Processor Transformation

Choose the File output type when you transform XML to a binary data file such as a PDF file or a
Microsoft Excel file.

Pass-Through Ports
You can configure pass-through ports to any Data Processor transformation. Pass-through ports are input
and output ports that receive input data and return the same data to a mapping without changing it.

You can configure pass-through ports in a Data Processor transformation instance that is in a mapping.

To add a pass-through port, drag a port from another transformation in the mapping. You can also add ports
in the Ports tab of the Properties view. Click New to add a pass-through port.

Note: When you add pass-through ports to a Data Processor transformation with relational input and
hierarchical output, add the ports to the root group of the relational structure.

Data Processor transformations can include pass-through ports with custom data types.

Startup Component
A startup component defines the component that starts the processing in the Data Processor transformation.
Configure the startup component on the Overview view.

A Data Processor transformation can contain multiple components to process data. Each component might
contain other components. You must identify which component is the entry point for the transformation.

When you configure the startup component in a Data Processor transformation, you can choose an XMap,
Library, or a Script component as the startup component. In terms of Scripts, you can select one of the
following types of components:

• Parser. Converts source documents to XML. The input can have any format, such as text, HTML, Word,
PDF, or HL7.

• Mapper. Converts an XML source document to another XML structure or schema.

• Serializer. Converts an XML file to an output document of any format.

• Streamer. Splits large input documents, such as multi-gigabyte data streams, into segments.

• Transformer. Modifies the data in any format. Adds, removes, converts, or changes text. Use
Transformers with a Parser, Mapper, or Serializer. You can also run a Transformer as stand-alone
component.

Note: If the startup component is not an XMap or Library, you can also configure the startup component in a
Script instead of in the Overview view.

References
You can define transformation references, such as schema or mapplet references, by selecting a schema or
mapplet to serve as a reference. Some Data Processor transformations require a hierarchical schema to
define the input or output hierarchy for relevant components in the transformation. To use the schema in the
transformation, you define a schema reference for the transformation. You can also use a specialized action

Startup Component 225

named the RunMapplet action to call a mapplet from a Data Processor transformation. To call a mapplet, you
must first define a mapplet reference for the transformation.

You can define transformation references, such as schema or mapplet references, in the transformation
References view.

Schema References

The Data Processor transformation references schema objects in the Model repository. The schema objects
can exist in the repository before you create the transformation. You can also import schemas from the
transformation References view.

The schema encoding must match the input encoding for Serializer or Mapper objects. The schema encoding
must match the output encoding for Parser or Mapper objects. Configure the working encoding in the
transformation Settings view.

A schema can reference additional schemas. The Developer tool shows the namespace and prefix for each
schema that the Data Processor transformation references. When you reference multiple schemas with
empty namespaces the transformation is not valid.

Mapplet References

You can call a mapplet from a Data Processor transformation with the RunMapplet action. Before you add
the RunMapplet action to a Data Processor transformation component, you must first define a reference to
the mapplet that you want to call.

Data Processor Transformation Settings
Configure code pages, XML processing options, and logging settings in the Data Processor transformation
Settings view.

Character Encoding
A character encoding is a mapping of the characters from a language or group of languages to hexadecimal
code.

When you design a Script, you define the encoding of the input documents and the encoding of the output
documents. Define the working encoding to define how the IntelliScript editor displays characters and how
the Data Processor transformation processes the characters.

Working Encoding

The working encoding is the code page for the data in memory and the code page for the data that appears in
the user interface and work files. You must select a working encoding that is compatible with the encoding of
the schemas that you reference in the Data Processor transformation.

226 Chapter 13: Data Processor Transformation

The following table shows the working encoding settings:

Setting Description

Use the Data Processor Default
Code Page

Uses the default encoding from the Data Processor transformation.

Other Select the encoding from the list.

XML Special Characters Encoding Determines the representation of XML special characters. You can select None
or XML.
- None.

Leave as & < > " '
Entity references for XML special characters are interpreted as text. For
example, the character > appears as
>
Default is none.

- XML. Convert to & < > " '
Entity references for XML special characters are interpreted as regular
characters. For example, > appears as the following character:
>

Input Encoding

The input encoding determines how character data is encoded in input documents. You can configure the
encoding for additional input ports in a Script.

The following table describes the encoding settings in the Input area:

Setting Description

Use Encoding
Specified in Input
Document

Use the codepage that the source document defines, such as the encoding attribute of an XML
document.
If the source document does not have an encoding specification, the Data Processor
transfomation uses the encoding settings from the Settings view.

Use Working
Encoding

Use the same encoding as the working encoding.

Other Select the input encoding from a drop-down list.

Data Processor Transformation Settings 227

Setting Description

XML Special
Characters
Encoding

Determines the representation of XML special characters. You can select None or XML.
- None.

Leave as & < > " '
Entity references for XML special characters are interpreted as text, for example, the
character > appears as
>
Default in None.

- XML. Convert to & < > " '
Entity references for XML special characters are interpreted as regular characters. For
example, > appears as the following character:
>

Byte Order Describes how multi-byte characters appear in the input document. You can select the following
options:
- Little-endian. The least significant byte appears first. Default.
- Big-endian. The most significant byte appears first.
- No binary conversion.

Output Encoding

The output encoding determines how character data is encoded in the main output document.

The following table describes the encoding settings in the Output area:

Setting Description

Use Working
Encoding

The output encoding is the same as the working encoding.

Other The user selects the output encoding from the list.

XML Special
Characters
Encoding

Determines the representation of XML special characters. You can select None or XML.
- None.

Leave as & < > " '
Entity references for XML special characters are interpreted as text, for example, the
character > appears as
>
Default.

- XML. Convert to & < > " '
Entity references for XML special characters are interpreted as regular characters. For
example, > appears as the following character:
>

Same as Input
Encoding

The output encoding is the same as the input encoding.

Byte order Describes how multi-byte characters appear in the input document. You can select the
following options:
- Little-endian. The least significant byte appears first. Default.
- Big-endian. The most significant byte appears first.
- No binary conversion.

228 Chapter 13: Data Processor Transformation

Rules and Guidelines for Character Encoding
Use the following rules and guidelines when you configure encodings:

• To increase performance, set the working encoding to be the same encoding as the output document.

• Set the input encoding to the same encoding as the input document.

• Set the output encoding to the same encoding as the output document.

• For languages that have multiple-byte characters, set the working encoding to UTF-8. For the input and
output encoding, you can use a Unicode encoding such as UTF-8 or a double-byte code page such as Big5
or Shift_JIS.

Output Settings
Configure output control settings to control whether the Data Processor transformation creates event logs
and saves output documents.

You can control the types of messages that the Data Processor transformation writes to the design-time
event log. If you save the parsed input documents with the event logs, you can view the context where the
error occurred in the Event view.

The following table describes the settings in the Design-Time Events area:

Setting Description

Log design-time
events

Determines whether to create a design-time event log. By default, the Data Processor
transformation logs notifications, warnings, and failures in the design-time event log. You can
exclude the following event types:
- Notifications
- Warnings
- Failures

Save parsed
documents

Determines when the Data Processor transformation saves a parsed input document. You can
select the following options:
- Always.
- Never
- On failure
The default is always.

The following table describes the settings in the Run-Time Events area:

Setting Description

Log run-time events Determines whether an event log is created when you run the transformation from a mapping.
- Never.
- On failure
The default is Never.

Data Processor Transformation Settings 229

The following table describes the settings in the Output area:

Setting Description

Disable automatic
output

Determines whether the Data Processor transformation writes the output to the standard output
file. Disable standard output in the following situations:
- You pass the output of a Parser to the input of another component before the transformation

creates an output file.
- You use a WriteValue action to write data directly to the output from a Script instead of

passing data through the output ports.

Disable value
compression

Determines whether the Data Processor transformation uses value compression to optimize
memory use.
Important: Do not disable value compression except when Informatica Global Customer Support
advises you to disable it.

The following table describes the settings in the Binary output port collection mode area. You can select one
of these options for binary output for a relational to hierarchical transformation with XML, Avro, or Parquet
output, or for a Data Processor transformation Parser with Avro or Parquet output.

Setting Description

Collect input rows to a single output Determines whether the Data Processor transformation accumulates the
relational input to a single binary output port.

Split output when size exceeds Determines whether the Data Processor transformation divides the output into
chunks based on a maximum stated output size.

Output row for each row (do not
collect)

Determines whether the Data Processor transformation passes the output in
separate rows.

Processing Settings
The processing settings define how the Data Processor transformation processes an element without a
defined datatype. The settings affect Scripts. The settings do not affect elements that an XMap processes.

The following table describes the processing settings that affect XML processing in Scripts:

Setting Description

Treat as xs:string The Data Processor transformation treats an element with no type as a string. In the Choose
XPath dialog box, the element or attribute appears as a single node.

Treat as
xs:anyType

The Data Processor transformation treats an element with no type as anyType. In the Choose
XPath dialog box, the element or attribute appears as a tree of nodes. One node is of xs:string
type, and all named complex data types appear as tree nodes.

The following table describes a processing setting that affects Streamer processing:

Setting Description

Streamer chunk
size

This setting defines the amount of data that the Streamer reads each time from an input file
stream. The Data Processor transformation applies this setting to a Streamer with a file input.

230 Chapter 13: Data Processor Transformation

The following table describes a processing setting that affects hierarchical to relational transformation
processing:

Setting Description

Enforce strict
validation

This setting determines if the Data Processor transformation performs strict validation for
hierarchical input. When strict validation applies, the hierarchical input file must conform strictly to
its schema. This option can be applied when the Data Processor mode is set to Output Mapping,
which creates output ports for relational output.
This option does not apply to mappings with JSON input from versions previous to version 10.2.1.

Normalize XML
input

This setting determines if the Data Processor transformation normalizes XML input. By default, the
transformation performs normalization for XML input. In some cases, you might choose to skip
automatic normalization to increase performance.

XMap Settings
The XMap setting defines how the Data Processor transformation processes XMap input elements that are
not transformed to output elements. The unread elements are passed to a dedicated port named
XMap_Unread_Input_Values. The setting takes affect only when the XMap is selected as the start-up
component. The setting does not affect elements that the XMap processes.

To pass unread XMap elements to a dedicated port, enable the setting Write unread elements to an
additional output port.

XML Output Configuration
The XML generation settings define characteristics of XML output documents.

The following table describes the XML generation settings in the Schema Title area:

Setting Description

Schema location Defines the schemaLocation for the root element of the main output document.

No namespace schema
location

Defines the xsi:noNamespaceSchemaLocation attribute of the root element of the main
output document.

Data Processor Transformation Settings 231

Configure XML Output Mode settings to determine how the Data Processor transformation handles missing
elements or attributes in the input XML document. The following table describes the XML generation settings
in the XML Output Mode area:

Setting Description

As is Do not add or remove empty elements. Default is enabled.

Full All required and optional elements defined in the output schema are written to the output. Elements that
have no content are written as empty elements.

Compact Removes empty elements from the output.
If Add for Elements is enabled, then the Data Processor transformation removes only the optional
elements.
If Add for Elements is disabled, the Data Processor transformation removes all empty elements. The XML
output might not be valid.

The following table describes the XML generation settings in the Default Values for Required Nodes area:

Setting Description

Add for elements When the output schema defines a default value for a required element, the output includes the
element with a default value. Default is enabled.

Add for attributes When the output schema defines a default value for a required attribute, the output includes the
attribute with its default value. Default is enabled.

Validate added
values

Determines whether the Data Processor transformation validates empty elements that are added
by the Full mode output. Default is disabled.
If Validate added values is enabled and the schema does not allow empty elements, the XML
output might not be valid.

The following table describes the XML generation settings in the Processing Instructions area:

Setting Description

Add XML
processing
instructions

Defines the character encoding and XML version of the output document. Default is selected.

XML version Defines the XML version. The XML version setting has the following options:
- 1.0
- 1.1
Default is 1.0.

Encoding Defines the character encoding that is specified in the processing instruction. The Encoding
setting has the following options:
- Same as output encoding. The output encoding in the processing instruction is the same as

the output encoding defined in the Data Processor transformation settings.
- Custom. Defines the output encoding in the processing instruction. The user types the value

in the field.

Add custom
processing
instructions

Adds other processing instructions to the output document. Enter the processing instruction
exactly as it appears in the output document. Default is Disabled.

232 Chapter 13: Data Processor Transformation

The following table describes the XML generation settings in the XML Root area:

Setting Description

Add XML root
element

Adds a root element to the output document. Use this option when the output document
contains more than one occurrence of the root element defined in the output schema. Default
is Disabled.

Root element name Defines a name for the root element to add to the output document.

Events
An event is a record of a processing step from a component in the Data Processor transformation. In a Script
or Library, each anchor, action, or transformer generates an event. In an XMap, each mapping statement
generates an event.

You can view events in the Data Processor Events view.

Event Types
The Data Processor transformation writes events in log files. Each event has an event type that indicates if
the event was successful, the event failed, or if the event ran with errors.

A component can generate one or more events. The component can pass or fail depending on whether the
events succeed or fail. If one event fails, a component fails.

The following table describes the types of events that the Data Processor transformation generates:

Event Type Description

Notification Normal operation.

Warning The Data Processor transformation ran, but an unexpected condition occurred. For example, the
Data Processor transformation wrote data to the same element multiple times. Each time the
element is overwritten, the Data Processor transformation generates a warning.

Failure The Data Processor transformation ran, but a component failed. For example, a required input
element was empty.

Optional Failure The Data Processor transformation ran, but an optional component failed. For example, an optional
anchor was missing from the source document.

Fatal Error The Data Processor transformation failed because of a serious error. For example, the input
document did not exist.

Data Processor Events View
The Data Processor Events view displays events when you run a Data Processor transformation from the
Developer tool.

The Data Processor Events view has a Navigation panel and a Details panel. The Navigation panel contains a
navigation tree. The navigation tree lists the components that the transformation ran in chronological order.

Events 233

Each node has an icon that represents the most serious event below it in the tree. When you select a node in
the Navigation panel, events appear in the Details panel.

The navigation tree contains the following top-level nodes:

• Service Initialization. Describes the files and the variables that the Data Processor transformation
initializes.

• Execution. Lists the components that the Script, Library or XMap ran.

• Summary. Displays statistics about the processing.

When you run an XMap, each node name in the navigation panel has a number in square brackets, such as
[5]. To identify the statement that generated the events for the node, right-click in the statements grid and
select Go to Row Number. Enter the node number.

When you run a Script and double-click an event in the Navigation panel or the Details panel, the Script editor
highlights the Script component that generated the event. The Input panel of the Data Viewer view highlights
the part of the example source document that generated the event.

Logs
A log contains a record of the Data Processor transformation. The Data Processor transformation writes
events to logs.

The Data Processor transformation creates the following types of logs:

Design-time event log

The design-time event log contains events that occur when you run the Data Processor transformation in
the Data Viewer view. View the design-time log in the Events view.

Run-time event log

The run-time event log contains events that occur when you run the Data Processor transformation in a
mapping. You can view the run-time event log in a text editor or you can drag a run-time event log into
the Events view of the Data Processor transformation.

User log

The user log contains events that you configure for components in a Script. The Data Processor
transformation writes to the user log when you run it from the Data Viewer view and when you run it in a
mapping. You can view the user log in a text editor.

Design-Time Event Log
The design-time event log contains the events that occur when you run the Data Processor transformation
from the Data Viewer in the Developer tool.

When you run a Data Processor transformation from the Data Viewer view, the design-time event log appears
in the Data Processor Events view. By default, the design-time event log contains notifications, warnings, and
failures. In the transformation settings, you can configure the Data Processor transformation to exclude one
or more event types from the log.

When you save the input documents with the log, you can click an event in the Data Processor Events view to
find the location in the input document that generated the event. When you configure the Data Processor
transformation settings, you can choose to save the input files for every run or only on failure.

234 Chapter 13: Data Processor Transformation

The design-time event log is named events.cme. You can find the design-time event log for the last run of the
Data Processor transformation in the following directory:

C:\<Installation_directory>\clients\DT\CMReports\Init\events.cme

The Data Processor transformation overwrites the design-time event log every time you run the
transformation in the Data Viewer. Rename the design-time event log if you want to view it after a later run of
the transformation,or if you want to compare the logs of different runs. When you close the Developer tool,
the Developer does not save any files in the

Run-Time Event Log
The run-time event log records the events that occur when you run the Data Processor transformation in a
mapping.

If the Data Processor transformation completes the run with no failures, it does not write an event log. If
there are failures in the run, Data Processor transformation runs a second time and writes an event log during
the second run. The run-time event log is named events.cme.

On a Windows machine, the run-time event log in in the following directory:

C:<Installation_Directory>\clients\DT\CMReports\Tmp\
On a Linux or UNIX machine, the run-time event log for a root user in the following directory:

/root/<Installation_Dirctory>/clients/DT/CMReports/Tmp
On a Linux or UNIX machine, you can find the run-time event log for a non-root user in the following directory:

/home/[UserName]/<Installation_Directory>/DT/CMReports/Tmp
Use the configuration editor to change the location of the run-time event log.

Viewing an Event Log in the Data Processor Events View
Use the Data Processor Events view to view a design-time event log or a run-time event log.

Open Windows Explorer, and then browse to the event log file you want to view. Drag the log from the
Windows Explorer window to the Data Processor Events view. Right-click in the Data Processor Events view,
and then select Find to search the log.

Note: To reload the most recent design-time event log, right-click the Data Processor Events view, and then
select Reload Project Events.

User Log
The user log contains custom messages that you configure about failures of components in a Script.

The Data Processor transformation writes messages to the user log when you run a Script from the Data
Viewer view and when you run it in a mapping.

When a Script component has the on_fail property, you can configure it to write a message to the user log
when it fails. In the Script, set the on_fail property to one of the following values:

• LogInfo

• LogWarning

• LogError

Logs 235

Each run of the Script produces a new user log. The user log file name contains the transformation name
with a unique GUID:

<Transformation_Name>_<GUID>.log
For example, CalculateValue_Aa93a9d14-a01f-442a-b9cb-c9ba5541b538.log

On a Windows machine, you can find the user log in the following directory:

c:\Users\[UserName]\AppData\Roaming\Informatica\DataTransformation\UserLogs
On a Linux or UNIX machine, you can find the user log for the root user in the following directory:

/<Installation_Directory>/DataTransformation/UserLogs
On a Linux or UNIX machine, you can find the user log for a non-root user in the following directory:

home/<Installation_Dirctory>/DataTransformation/UserLogs

Data Processor Transformation Development
Use the New Transformation wizard to auto-generate a Data Processor transformation, or create a blank Data
Processor transformation and configure it later. If you create a blank Data Processor transformation, you
must select to create a Script, XMap, Library, or Validation Rules object in the transformation. A Script can
parse source documents to hierarchical format, convert hierarchical format to other file formats, or map a
hierarchical document to another hierarchical format. An XMap converts an input hierarchical file into an
output hierarchical file of another structure. A Library converts an industry messaging type into an XML
document with a hierarchy structure or from XML to an industry standard format. Choose the schemas that
define the input or output hierarchies.

1. Create the transformation in the Developer tool.

2. For a blank Data Processor transformation, perform the following additional steps:

a. Add schema references that define the input or output XML hierarchies.

b. Create a Script, XMap, Library, or Validation Rules object.

3. Configure the input and output ports.

4. Test the transformation.

Create the Data Processor Transformation
Create a Data Processor transformation in the Developer tool. If you create a blank Data Processor
transformation, you must then create a Script, XMap, Library, or Validation Rules object in the transformation.
Alternatively, you can use the New Transformation wizard to auto-generate a Data Processor transformation.

1. In the Developer tool, click File > New > Transformation.

2. Select the Data Processor transformation and click Next.

3. Enter a name for the transformation and browse for a Model repository location to put the
transformation.

4. Select whether to create Data Processor transformation with a wizard or to create a blank Data
Processor transformation.

5. If you selected to create a blank Data Processor transformation, click Finish.

The Developer tool creates the empty transformation in the repository. The Overview view appears in the
Developer tool.

236 Chapter 13: Data Processor Transformation

6. If you selected to create an Data Processor transformation with a wizard, perform the following steps:

a. Click Next.

b. Select an input format.

c. Browse to select a schema, copybook, example file, or specification file if required for certain input
formats such as COBOL, JSON, or ASN.1.

d. Select an output format.

e. Browse to select a schema, copybook, example file, or specification file if required for the output
format.

f. Click Finish. The wizard creates the transformation in the repository.

The transformation might contain a Parser, Serializer, Mapper, or an object with common components. If
you selected a schema, copybook, example file, or specification file the wizard also creates a schema in
the repository that is equivalent to the hierarchy in the file.

Select the Schema Objects
Choose the schema objects that define the input or output hierarchies for each XMap or Script component
that you plan to create.

You can add schema references on the References view or you can add the schema references when you
create Script or XMap objects. A schema object must exist in the Model repository before you can reference
it in a Script or XMap.

1. In the Data Processor transformation Refererences view, click Add.

2. If the schema object exists in the Model repository, browse for and select the schema.

3. If the schema does not exist in the Model repository, click Create a new schema object and import a
schema object from a hierarchical schema file.

4. Click Finish to add the schema reference to the Data Processor transformation.

Create Objects in a Blank Data Processor Transformation
Create a Script, Library, XMap, or Validation Rules object on the Data Processor transformation Objects view.
After you create the object, you can open the object from the Objects view in order to configure it.

Creating a Script
Create a Script object and define the type of Script component to create. Optionally, you can define a schema
reference and example source file.

1. In the Data Processor transformation Objects view, click New.

2. Enter a name for the Script and click Next.

3. Choose to create a Parser or Serializer. Select Other to create a Mapper, Transformer, or Streamer
component.

4. Enter a name for the component.

5. If the component is the first component to process data in the transformation, enable Set as startup
component.

6. Click Next if you want to enter a schema reference for this Script. Click Finish if you do not want to enter
the schema reference.

Data Processor Transformation Development 237

7. If you choose to create a schema reference, select Add reference to a Schema Object and browse for
the Schema object in the Model repository. Click Create a new schema object to create the Schema
object in the Model repository.

8. Click Next to enter an example source reference or to enter example text. Click Finish if you do not want
to define an example source.

Use a example source to define sample data and to test the Script.

9. If you choose to select an example source, select File and browse for the sample file.

You can also enter sample text in the Text area. The Developer tool uses the text to test a Script.

10. Click Finish.

The Script view appears in the Developer tool editor.

Creating an XMap
Create an XMap on the Data Transformation Objects view. When you create an XMap, you must have a
schema that describes the input and the output hierarchal documents. You select the element in the schema
that is the root element for the input hierarchy.

1. In the Data Processor transformation Objects view, click New.

2. Select XMap and click Next.

3. Enter a name for the XMap.

4. If the XMap component is the first component to process data in the transformation, enable Set as
startup component.

Click Next.

5. If you choose to create a schema reference, select Add reference to a Schema Object, and browse for
the Schema object in the Model repository.

To import a new Schema object, click Create a new schema object.

6. If you have a sample hierarchical file that you can use to test the XMap with, browse for and select the
file from the file system.

You can change the sample hierarchical file.

7. Choose the root for the input hierarchy.

In the Root Element Selection dialog box, select the element in the schema that is the root element for
the input hierarchal file. You can search for an element in the schema. You can use pattern searching.
Enter *<string> to match any number of characters in the string. Enter ?<character>to match a single
character.

8. Click Finish.

The Developer tool creates a view for each XMap that you create. Click the view to configure the
mapping.

Creating a Library
Create a Library object on the Data Transformation Objects view. Select the message type, component and
name. Optionally, you can define a sample message type source file that you can use to test the Library
object.

Before you create a Library in the Data Processor transformation, install the library software package on your
computer.

1. In the Data Processor transformation Objects view, click New.

238 Chapter 13: Data Processor Transformation

2. Select Library and click Next.

3. Browse to select the message type.

4. Choose to create a Parser or Serializer.

Create a Parser if the Library object input is a message type and the output is XML. Create a Serializer if
the Library object input is XML and the output is a message type.

5. If the Library is the first component to process data in the Data Processor transformation, enable Set as
startup component.

Click Next.

6. If you have a sample message type source file that you can use to test the Library with, browse for and
select the file from the file system.

You can change the sample file.

7. Click Finish.

The Developer tool creates a view for each message type that you create. Click the view to access the
mapping.

Creating Validation Rules
Create a Validation Rules object in the Data Processor transformation Objects view.

1. In the Data Processor transformation Objects view, click New.

2. Select Validation Rules and click Next.

3. Enter a name for the Validation Rules.

4. If you have a sample XML file that you can use to test the Validation Rules with, browse for and select
the file from the file system.

You can change the sample XML file.

5. Click Finish.

The Developer tool creates a Validation Rules object and opens it in the Validation Rules editor.

Adding an Example Source
Choose the example source to test the Script, XMap, Library, or Validation Rules that you plan to create.

You can add an example source when you create a Script, XMap, Library, or Validation Rules. Once selected,
the example source is added to the Model repository. Due to Model repository limitations, the exaple source
file size is limited to 5 MB.

You can change the example source.

Create the Ports
Configure the input and output ports in the Overview view.

When you configure additional input or output ports in a Script, the Developer tool adds additional input ports
and additional output ports to the transformation by default. You do not add input ports on the Overview
view.

1. If you want to return rows of output data instead of XML, enable Relational Output.

When you enable relational output, the Developer tool removes the default output port.

2. Select the input port datatype, port type, precision and scale.

Data Processor Transformation Development 239

3. If you are not defining relational output ports, define the output port datatype, port type, precision, and
scale.

4. If a Script has additional input ports, you can define the location of the example input file for the ports.
Click the Open button in the Input Location field to browse for the file.

5. If you enabled relational output, click Output Mapping to create the output ports.

6. On the Ports view, map nodes from the Hierarchical Output area to fields in the Relational Ports area.

Testing the Transformation
Test the Data Processor transformation in the Data Viewer view.

Before you test the transformation, verify that you defined the startup component. You can define the startup
component in a Script or you can select the startup component on the Overview tab. You also need to have
chosen an example input file to test with.

1. Open the Data Viewer view.

2. Click Run.

The Developer tool validates the transformation. If there is no error, the Developer tool shows the
example file in the Input area. The output results appear in the Output panel.

3. Click Show Events to show the Data Processor Events view.

4. Double-click an event in the Data Processor Events view in order to debug the event in the Script editor.

5. Click Synchronize with Editor to change the input file when you are testing multiple components, each
with a different example input file.

If you modify the example file contents in the file system, the changes appear in the Input area.

Data Processor Transformation Import and Export
You can export a Data Processor transformation as service and run it from a Data Transformation repository.
You can also import a Data Transformation service to the Developer tool. When you import a Data
Transformation service, the Developer tool creates a Data Processor transformation from the service.

Note: When you import a Data Transformation service to the Model repository, the Developer tool imports the
associated schemas to the repository. If you modify the schema in the repository, sometimes the changes do
not appear in the transformation schema references. You can close and open the Model repository
connection, or close and open the Developer tool to cause the schema changes to appear in the
transformation..

Exporting the Data Processor Transformation as a Service
You can export the Data Processor transformation as a Data Transformation service. Export the service to
the file system repository of the machine where you want to run the service. You can run the service with
PowerCenter, user-defined applications, or the Data Transformation CM_console command.

1. In the Object Explorer view, right-click the Data Processor transformation you want to export, and select
Export.

The Export dialog box appears.

2. Select Informatica > Export Data Processor Transformation and click Next.

240 Chapter 13: Data Processor Transformation

The Select page appears.

3. Click Next.

The Select Service Name and Destination Folder page appears.

4. Choose a destination folder:

• To export the service on the machine that hosts the Developer tool, click Service Folder.

• To deploy the service on another machine, click Folder. Browse to the \ServiceDB directory on the
machine where you want to deploy the service.

5. Click Finish.

Importing Multiple Data Transformation Services
You can import a directory of Data Transformation services from the machine where you saved the directory.
When you import Data Transformation services to the Developer Model repository, the Developer tool imports
the transformations, schemas and example data with the . cmw files. If you need to import many services,
import a directory of services instead of one service at a time.

1. Click File > Import,

The Import dialog box appears.

2. Select InformaticaImport Data Transformation Services (Folder) and click Next.

The Import Data Transformation Service page appears.

3. Browse to the directory that you want to import.

4. Browse to a location in the Repository where you want to save the transformations, then click Finish.

The Developer tool imports the transformations, schemas and example data with the .cmw file.

Importing a Data Transformation Service
You can import a Data Transformation service .cmw file to the Model repository to create a Data Processor
transformation. The Developer tool imports the transformation, schemas and example data with the .cmw
file.

1. Click File > Import,

The Import dialog box appears.

2. Select Informatica Import Data Transformation Service (Single) and click Next.

The Import Data Transformation Service page appears.

3. Browse to the service .cmw file that you want to import.

The Developer tool names the transformation according to the service file name. You can change the
name.

4. Browse to a location in the Repository where you want to save the transformation, then click Finish.

The Developer tool imports the transformation, schemas and example data with the .cmw file.

5. To edit the transformation, double-click the transformation in the Object Explorer view.

Data Processor Transformation Import and Export 241

Exporting a Mapping with a Data Processor Transformation to
PowerCenter

When you export a mapping with a Data Processor transformation to PowerCenter, you can export the
objects to a local file, and then import the mapping into PowerCenter. Alternatively, you can export the
mapping directly into the PowerCenter repository.

1. In the Object Explorer view, select the mapping to export. Right-click and select Export.

The Export dialog box appears.

2. Select Informatica > PowerCenter.

3. Click Next.

The Export to PowerCenter dialog box appears.

4. Select the project.

5. Select the PowerCenter release.

6. Choose the export location, a PowerCenter import XML file or a PowerCenter repository.

7. Specify the export options.

8. Click Next.

The Developer tool prompts you to select the objects to export.

9. Select the objects to export and click Finish.

The Developer tool exports the objects to the location you selected. If you exported the mapping to a
location, the Developer tool also exports the Data Processor transformations in the mapping, as
services, to a folder at the location that you specified.

10. If you exported the mapping to a PowerCenter repository, the services are exported to the following
directory path: %temp%\DTServiceExport2PC\
The export function creates a separate folder for each service with the following name:
<date><serviceFullName>
If the transformation includes relational mapping, a folder is created for relational to hierarchical
mapping, and a separate folder for hierarchical to relational mapping.

11. Copy the folder or folders with Data Processor transformation services from the local location where you
exported the files to the PowerCenter ServiceDB folder.

12. If you exported the mapping to a PowerCenter import XML file, import the mapping to PowerCenter. For
more information about how to import an object to PowerCenter, see the PowerCenter 9.6.0 Repository
Guide.

Data Processor Transformation in a Non-native
Environment

The Data Processor transformation processing in a non-native environment depends on the engine that runs
the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Not supported in batch or streaming mappings.

242 Chapter 13: Data Processor Transformation

• Databricks Spark engine. Not supported.

Data Processor Transformation on the Blaze Engine
The Data Processor transformation is supported with the following restrictions:

• Mapping validation fails when the transformation Data processor mode is set to Input Mapping or Service
and Input Mapping.

Data Processor Transformation in a Non-native Environment 243

C h a p t e r 1 4

Decision Transformation
This chapter includes the following topics:

• Decision Transformation Overview, 244

• Decision Transformation Functions, 245

• Decision Transformation Conditional Statements , 247

• Decision Transformation Operators, 248

• Decision Transformation NULL Handling, 249

• Configuring a Decision Strategy , 249

• Decision Transformation Advanced Properties, 249

• Decision Transformation in a Non-native Environment, 250

Decision Transformation Overview
The Decision transformation is a passive transformation that evaluates conditions in input data and creates
output based on the results of those conditions.

Configure a Decision transformation to generate different values based on the values found in input fields.
For example, if customer revenue is greater than a specific amount, you can add the string "Priority" to the
customer name.

You can add multiple decision strategies to the Decision transformation. Each strategy evaluates an IF-
THEN-ELSE conditional statement. Within this statement, you can use ELSEIF conditions or nest additional
IF-THEN-ELSE statements.

The Decision transformation is similar to the Expression transformation in that it allows you to use
conditional statements and functions to test source data. However, the Decision transformation is different
from the Expression transformation in the following ways:

• The Decision transformation uses IF-THEN-ELSE statements to evaluate conditions. The Expression
transformation uses IIF statements.

• The Decision transformation contains functions that are not available in the Expression transformation.

• Each decision strategy can generate multiple outputs.

244

Decision Transformation Functions
The Decision transformation provides access to predefined functions that you use to define decision
strategies.

The Decision transformation expression editor contains a Decision folder. This folder contains functions that
are specific to the Decision transformation. The editor also contains other folders that provide access to
Expression transformation functions.

When you click a function in the expression editor, the transformation displays the usage and datatypes for
the function, in addition to a description of what the function does.

Note: Not all Expression transformation functions are compatible with the Decision transformation. The
Decision transformation only provides access to compatible Expression transformation functions.

List of Decision Transformation Functions
• ABS

• ADD_TO_DATE

• ASCII

• CEIL

• CHOOSE

• CHR

• CHRCODE

• CONCAT

• CONTAINS

• CONVERT_BASE

• COS

• COSH

• CRC32

• CUME

• CURDATE

• CURTIME

• DATE_COMPARE

• DATE_DIFF

• DATECONVERT

• EXP

• FLOOR

• FV

• GET_DATE_PART

• GREATEST

• IN

• INDEXOF

• INITCAP

• INSTR

Decision Transformation Functions 245

• IS_DATE

• IS_NUMBER

• ISNULL

• LAST_DAY

• LEAST

• LEFTSTR

• LENGTH

• LN

• LOG

• LOWER

• LPAD

• LTRIM

• MAKE_DATE_TIME

• MAX

• MD5

• METAPHONE

• MIN

• MOD

• MONTHCOMPARE

• MOVINGAVG

• MOVINGSUM

• NPER

• PMT

• POWER

• PV

• RAND

• RATE

• REG_EXTRACT

• REG_MATCH

• REG_REPLACE

• REPLACECHR

• REPLACESTR

• REVERSE

• RIGHTSTR

• ROUND

• RPAD

• RTRIM

• SET_DATE_PART

• SIGN

246 Chapter 14: Decision Transformation

• SIN

• SINH

• SOUNDEX

• SQRT

• SUBSTR

• TAN

• TANH

• TIMECOMPARE

• TO_CHAR

• TO_DATE

• TO_FLOAT

• TO_INTEGER

• TRUNC

• UPPER

• XOR

Note: Use a constant value to define the date format in the CURDATE, DATE_COMPARE, DATECONVERT, and
MONTHCOMPARE functions in the Decision transformation.

Decision Transformation Conditional Statements
The Decision transformation uses IF-THEN-ELSE conditional statements to evaluate input data.

Within these conditional statements, you can use ELSEIF conditions or nest additional IF-THEN-ELSE
statements. Decision transformation conditional statements use the following format:

// Primary condition
IF <Boolean expression>
THEN <Rule Block>
// Optional – Multiple ELSEIF conditions
ELSEIF <Boolean expression>
THEN <Rule Block>
// Optional ELSE condition
ELSE <Rule Block>
ENDIF

You can nest additional conditional statements within a rule block.

Decision Transformation Conditional Statements 247

Decision Transformation Operators
Use Decision transformation operators to define decision strategies.

The following table describes the decision transformation operators:

Operator Type Operator Description

Assignment := Assigns a value to a port.

Boolean AND Adds a required logical condition. For the parent Boolean expression to be true, all
logical conditions linked by this operator must be true.

Boolean OR

Adds a logical condition. For the parent Boolean expression to be true, at least one
logical condition linked by this operator must be true.

Boolean NOT Specifies a negative logical condition. For the parent Boolean expression to be true, the
negative condition specified by this operator must be true.

Decision = Tests whether compared items are equal. Use with string or numeric datatypes.

Decision <> Tests whether compared items are not equal. Use with string or numeric datatypes.

Decision < Tests whether a value is less than another value. Use with numeric datatypes.

Decision <= Tests whether a value is less than or equal to another value. Use with numeric
datatypes.

Decision > Tests whether a value is greater than another value. Use with numeric datatypes.

Decision >= Tests whether a value is greater than or equal to another value. Use with numeric
datatypes.

Numerical - Subtraction

Numerical NEG Negation

Numerical + Addition

Numerical * Multiplication

Numerical / Division

Numerical % Modulo. Returns the remainder after dividing one number by another.

String || Concatenates strings.

248 Chapter 14: Decision Transformation

Decision Transformation NULL Handling
NULL handling determines how the Data Integration Service processes NULL value data in a Decision
transformation.

When you enable NULL handling, the Decision transformation retains the original form of NULL input data.
The transformation evaluates functions using the NULL input value.

When you disable NULL handling, the Decision transformation assigns a default value to NULL input data.
The transformation evaluates functions using the default value. For example, if an integer type input field has
a NULL value, the Decision transformation assigns a value of 0 to the input and evaluates functions using an
input value of 0.

By default, NULL handling is not enabled in the Decision transformation. You enable NULL handling on the
Strategies tab. You can enable NULL handling after you configure a strategy for the transformation.

Configuring a Decision Strategy
To configure a decision strategy, connect source data to the Decision transformation and edit the properties
in the transformation views.

1. Open a Decision transformation.

2. Verify that the transformation contains input and output ports.

3. Select the Decision view.

4. Click Add.

5. Enter a name for the strategy.

6. In the Expression area, enter an IF-THEN-ELSE conditional statement.

7. To add a function to the expression, browse the functions in the Functions tab and double-click a
function name.

Tip: To quickly enter a function, type the first letters of the function name and select CTRL-Space.

8. To add a port to the expression, browse the ports in the Ports tab. Double-click a port name to add it to
the expression. Optionally, click Edit Output Ports to edit output port settings or add output ports.

9. Optionally, add comment lines by typing "//" followed by your comments.

10. Click Validate to determine if the decision expression is valid.

11. Click OK to save the strategy.

12. Optionally, add additional strategies. Each strategy must use unique output ports. Strategies cannot
share output ports.

Decision Transformation Advanced Properties
Configure properties that help determine how the Data Integration Service processes data for the Decision
transformation.

Configure the following advanced properties for a Decision transformation:

Decision Transformation NULL Handling 249

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Partitionable

The transformation can be processed with multiple threads. Clear this option if you want the Data
Integration Service to use one thread to process the transformation. The Data Integration Service can
use multiple threads to process the remaining mapping pipeline stages.

You might want to disable partitioning for a Decision transformation when the transformation uses one
of the numeric functions CUME, MOVINGSUM, or MOVINGAVG. These functions calculate running totals
and averages on a row-by-row basis. A partitioned transformation that uses CUME, MOVINGSUM, or
MOVINGAVG functions might not return the same calculated result with each mapping run.

If the transformation does not use CUME, MOVINGSUM, or MOVINGAVG functions, enable partitioning
for the transformation to optimize performance.

Decision Transformation in a Non-native
Environment

The Decision transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported with restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Not supported.

250 Chapter 14: Decision Transformation

C h a p t e r 1 5

Duplicate Record Exception
Transformation

This chapter includes the following topics:

• Duplicate Record Exception Transformation Overview, 251

• Duplicate Record Exception Process Flow, 252

• Duplicate Record Exceptions, 252

• Duplicate Record Exception Configuration View , 253

• Ports, 254

• Duplicate Record Exception Transformation Advanced Properties, 257

• Duplicate Record Exception Mapping Example, 257

• Creating a Duplicate Record Exception Transformation, 262

Duplicate Record Exception Transformation Overview
The Duplicate Record Exception transformation is an active transformation that reads the output of a data
quality process and identifies duplicate records that require manual review. The Duplicate Record Exception
transformation is a multiple-group transformation.

The Duplicate Record Exception transformation receives input from another transformation or from a data
object in another mapping. The input to the Exception transformation must contain a numeric match score
that the transformation can use to determine if the record is a duplicate. Set an upper and lower match score
threshold in the Duplicate Record Exception transformation.

The Duplicate Record Exception transformation performs one of the following actions:

• If the match score is greater than or equal to the upper threshold, the transformation treats the record as
a duplicate and writes it to a database target.

• If the match score is less than the upper threshold and greater than the lower threshold the
transformation treats the record as a possible duplicate and writes it to a the record to a different target
for manual review. If the record belongs to a cluster, the transformation writes all records in the cluster to
the target.

• When a cluster has any match score less than the lower threshold, all records in the cluster go to the
unique records output group. Clusters of size 1 are routed to the unique group, regardless of match score.

251

By default, the Exception transformation does not write unique records to a target. You can configure the
transformation to return the unique records.

• If any match score in a cluster is not in the range 0 - 100, the Exception transformation ignores all rows in
the cluster. The Data Integration Service logs a message that includes the clusterID.

Duplicate Record Exception Process Flow
The Duplicate Record Exception transformation analyzes the output of other data quality transformations and
creates tables that contain records with different levels of data quality.

You can configure data quality transformations in a single mapping, or you can create mappings for different
stages in the process.

You can use the Analyst tool to review and update the duplicate records that require manual review.

Use the Developer tool to perform the following tasks:

1. Create a mapping that generates score values for data quality issues.

2. Use a Match transformation in cluster mode to generate score values for duplicate record exceptions.

3. Configure the Duplicate Record Exception transformation to read the Match transformation output.
Configure the transformation to write records to database tables based on match score values in the
records.

4. Configure target data objects for automatic consolidation records.

5. Click the Generate duplicate record table option to create the duplicate record table and add it to the
mapping canvas.

6. Add the mapping to a workflow.

7. Configure a Human task to assign manual review of possible duplicate records to users. Users can
review and update the records in Analyst tool.

Duplicate Record Exceptions
You can use a Duplicate Record Exception transformation to identify clusters of duplicate data that needs
manual review. The match scores of records in clusters determines the potential duplicates. You can
configure upper and lower thresholds for match scores in the transformation. The upper and lower
thresholds define the degree of similarity.

A cluster contains related records that a matching operation groups together. The Match transformation
creates clusters using the duplicate analysis operation and the identity resolution operation. Each record in a
cluster has the same cluster ID. When the lowest match score in a cluster is between the upper and lower
thresholds, the Duplicate Record Exception transformation identifies the cluster as a duplicate record
exception cluster. The Match transformation adds a cluster ID value column to all the records. Duplicate
records receive the same cluster ID.

The lowest record score in a cluster determines the cluster type. A cluster might have 11 records that have a
match score of 0.95 and one record with match score of 0.79. If the upper threshold is 0.9 and the lower
threshold is 0.8, the Exception transformation writes the records to the unique records table.

252 Chapter 15: Duplicate Record Exception Transformation

Duplicate Record Exception Configuration View
Define the match score thresholds and configure where the Duplicate Record Exception transformation
writes the different types output data.

The following figure shows the properties that you can configure:

You can configure the following properties:

Lower Threshold

The lower limit for the duplicate record score range. The transformation processes records with match
scores less than this value as unique records. The lower threshold value is a number from 0 to 1.

Upper Threshold

The upper limit for the duplicate record score range. The transformation processes records with match
scores greater than or equal to the upper threshold as duplicate records. The upper threshold value is a
number greater than the lower threshold number.

Automatic Consolidation

Clusters in which all records have match scores greater than the upper threshold. Automatic
consolidation clusters do not require review. The records are duplicate. You can use the Consolidation
transformation to combine the records. By default, the Duplicate Record Exception transformation writes
automatic consolidation clusters to standard output ports.

Manual Consolidation

Clusters in which all records have match scores greater than or equal to the lower threshold and at least
one record has a match score less than the upper threshold. You must perform a manual review of the
clusters to determine if they contain duplicate records. By default, the Duplicate Record Exception
transformation writes manual consolidation records to the duplicate record table.

Unique Consolidation

Clusters with a cluster size equal to one or clusters in which any record has a match score less than the
lower threshold. Unique record clusters are not duplicates. By default, the Duplicate Record Exception
transformation does not write unique records to an output table.

Standard Output

The types of records that the transformation writes to the standard output ports.

Default is automatic consolidation records.

Duplicate Record Exception Configuration View 253

Duplicate Record Table

The types of record that the transformation writes to the duplicate record output ports. Default is manual
consolidation records.

Create separate output group for unique records

Creates a separate output group for unique records. If you do not create a separate table for the unique
records, you can configure the transformation to write the unique records to one of the other groups. Or,
you can skip writing unique records to an output table. Default is disabled.

Generate duplicate record table

Creates a database object to contain the duplicate record cluster data. When you select this option, the
Developer tool creates the database object. The Developer tool adds the object to the Model repository,
adds an instance of the object to the mapping canvas, and links the ports to the object.

Generating a Duplicate Records Table
You can generate a Duplicate Records table from a Duplicate Record Exception transformation instance in a
mapping.

1. In the Configuration view, click Generate Duplicate Records table to generate the table.

The Create Relational Data Object dialog box appears.

2. Browse for and select a connection to the database to contain the table.

3. Enter a name for the Duplicate Records table in the database.

4. Enter a name for the Duplicate Records table object in the Model repository.

5. Click Finish.

The Developer tool adds the new table to the mapping canvas.

Ports
The Duplicate Record Exception transformation has multiple groups of input and output ports.

The following figure shows an example of the input and output ports:

254 Chapter 15: Duplicate Record Exception Transformation

Duplicate Record Exception Transformation Input Ports
A Duplicate Record Exception transformation has a Data group and a Control group of input ports.

The Data group contains user-defined ports that receive the source data.

The Control ports receive metadata that the Match transformation adds to the source data. The following
table describes the Control ports:

Port Description

Score Decimal value between 0 and 1. Identifies the degree of similarity with the record that linked the
record to the cluster.

Row_Identifier A unique identifier for the record.

Cluster_ID The ID of the match cluster to which the record belongs.

Duplicate Record Exception Transformation Output Ports
The Duplicate Record Exception transformation has multiple output groups. By default, the transformation
writes duplicate records to the Standard Output group. The transformation writes potential matches to the
Cluster Data group. You can add an output group for unique records.

You can change the record types that the transformation writes to output ports by changing the default
settings on the Configuration view.

Ports 255

The following table describes the output ports for the Standard Output group:

Port Description

Score Decimal value between 0 and 1. Identifies the degree of similarity between the record and
another record in a cluster.

Row_Identifier A unique identifier for the record.

Cluster_ID ID of the cluster that the Match transformation assigned the record to.

User-defined ports The source data fields.

The following table describes the output ports in the Cluster Data group:

Port Description

Row_Identifier The unique identifier for the record.

Sequential_Cluster_ID Identifies the cluster in a Human task. A workflow uses the sequential cluster ID to assign a
cluster to an instance of a Human task.

Cluster_ID Identifies the cluster that the record belongs to. The Match transformation assigns a cluster
ID to all records.

Score Decimal value from 0 to 1. Identifies the degree of similarity with the record that linked the
record to the cluster.

Is_Master String value that indicates if the record is the preferred record in the cluster. By default, the
first row in the cluster is the preferred record. Value is Y or N.

Workflow_ID ID that identifies the workflow for the record in a task. When you run the mapping outside of a
workflow, the workflow ID is DummyWorkflowID.

User-defined ports The source data ports.

Creating Ports
Add each input port to the Data group. When you add the input port, the Developer tool adds an output port
with the same name to the Standard Output group, the Cluster Data group, and the Unique Records group.

1. Select the Data input group.

The group is highlighted.

2. Click New (Insert).

The Developer tool adds a field to the Data group, the Standard Output group, the Cluster Data group,
and the Unique Records group.

3. Change the name of the field as required.

The Developer tool changes the field name in the other groups.

4. Enter the rest of the ports that you need to add for the data source.

256 Chapter 15: Duplicate Record Exception Transformation

Duplicate Record Exception Transformation
Advanced Properties

The Duplicate Record Exception transformation contains advanced properties that determine the sort
behavior, the cache memory behavior, and the tracing level.

You can configure the following advanced properties:

Sort

Determines whether the transformation sorts the input rows on the Cluster ID port data. The property is
enabled by default.

Select the property if the input rows are not presorted.

Cache File Directory

Specifies the directory to which the Data Integration Service writes temporary data for the current
transformation. The Data Integration Service writes temporary files to the directory when the volume of
input data is greater than the available system memory. The Data Integration Service deletes the
temporary files after the mapping runs.

You can enter a directory path on the property, or you can use a parameter to identify the directory.
Specify a local path on the Data Integration Service machine. The Data Integration Service must be able
to write to the directory. The default value is the CacheDir system parameter.

Cache File Size

Determines the amount of system memory that the Data Integration Service uses to sort the input data
on the transformation. The default value is 400,000 bytes.

Before it sorts the data, the Data Integration Service allocates the amount of memory that you specify. If
the sort operation generates a greater amount of data, the Data Integration Service writes the excess
data to the cache file directory. If the sort operation requires more memory than the system memory and
the file storage can provide, the mapping fails.

Note: If you enter a value of 65536 or higher, the transformation reads the value in bytes. If you enter a
lower value, the transformation reads the value in megabytes.

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Duplicate Record Exception Mapping Example
An organization runs a data project to review customer data. The organization determines that the customer
data contains multiple duplicate records. The organization needs to manually review some of the records
that might be duplicates.

You create a data quality mapping to identify the duplicate customer records. The mapping includes the
Match transformation. The Duplicate Record Exception transformation receives the results from the Match
transformation. The Duplicate Record Exception transformation writes each record cluster with an uncertain
status to a database table. A data analyst reviews the data in the Analyst tool and determines which records
are duplicate records.

Duplicate Record Exception Transformation Advanced Properties 257

Duplicate Record Exception Mapping
Configure a Duplicate Record Exception mapping that examines customer records and finds duplicate
records.

The following figure shows the Duplicate Record Exception mapping:

The mapping contains the following objects:

Customer_Details

The data source that might contain duplicate records.

mat_MatchData

A Match transformation that examines the customer data to determine if records match. The Match
transformation creates a numeric score that represents the degree of similarity between two column
values. An algorithm calculates a match score as a decimal value in the range 0 through 1. An algorithm
assigns a score of one when two column values are identical.

exc_Consolidate

A Duplicate Record Exception transformation that determines which records are possible duplicate
customers, known duplicate customers, or unique customer records.

Write_GoodMatches_Customer table

Table that receives all the records that do not need manual review. The Duplicate Record Exception
transformation writes duplicate records and unique records to this table.

Target_CustomerConsolidate table

The Exception transformation writes the possible duplicate records to the Target_CustomerConsolidate
table. Records in this table require manual review in the Analyst tool.

Match Transformation
The Match transformation receives the customer data and performs an identity match.

Configure the Match transformation for the Clusters-Match All output type. The Match transformation returns
matching records in clusters. Each record in a cluster must match at least one other record in the cluster with
a score greater than or equal to the match threshold. The match threshold is .75.

Select the Division matching strategy on the Match transformation Strategies tab. The Division strategy is a
predefined matching strategy that identifies an organization based on the address fields. On the Match

258 Chapter 15: Duplicate Record Exception Transformation

transformation Strategies tab, choose the input ports to examine in a match. Configure the strategy weight
as .5.

The following figure shows the Division strategy configuration for the Match transformation:

The Match transformation adds cluster information to each output record. The transformation also adds a
unique RowID to each record.

Duplicate Record Exception Input Groups
The Duplicate Record Exception transformation has two input groups. The transformation has a Data group
that receives the customer data. The transformation has the Control group that contains the match score for
the row, the row identifier, and the cluster ID.

The following figure shows the input groups in the Exception transformation:

The Data group contains the customer data. The customer data includes a customer ID, contact, title, and
address fields. The Control group is the additional metadata that the Match transformation added for each
customer record. The Control group contains the match score, the rowID, and the cluster ID.

Duplicate Record Exception Example Configuration View
Define the upper and lower thresholds on the Configuration view. Identify where the transformation writes
the duplicate customer records, the possible duplicate records, and the unique customer records.

The following figure shows the Duplicate Record Exception transformation Configuration view:

Duplicate Record Exception Mapping Example 259

The following table describes the configuration settings:

Option Setting

Lower threshold .80

Upper threshold .95

Automatic Consolidation Standard Output table

Manual Consolidation Duplicate Record table

Unique Records Standard Output table

Click Generate duplicate record table to create the duplicate record table. Do not create a separate table for
the unique records. The transformation writes the unique records to the Standard Output table.

Standard Output Table Records
The Write_GoodMatches_Customer target table receive rows from the Standard Output group. The table
receives unique records and it receives records that are duplicates. These records do not require manual
review.

The following figure shows the Standard Output records that the Exception transformation returns:

260 Chapter 15: Duplicate Record Exception Transformation

The record contains the following fields:

Score

Match score that indicates the degree of similarity between a record and another record in the cluster.
Records with a match score of one are duplicate records that do not need review. A cluster in which any
record has a match score below the lower threshold is not a duplicate cluster.

Row_Identifier

A row number that uniquely identifies each row in the table. For this example, the row identifier contains
the customer ID.

Cluster ID

A unique identifier for a cluster. Each record in a cluster receives the same cluster ID. The first four
records in the sample output data are unique. Each record has a unique cluster ID. Rows five to nine
belong to cluster five. Each record in this cluster is a duplicate record because of similarities in the
address fields.

Source Data Fields

The Standard Output table group also receives all the source data fields.

Cluster Output
The Target_CustomerConsolidate table receives records from the Cluster Output group. The Cluster Output
group returns records that might be duplicate records. The records in the Target_CustomerConsolidate table
need manual review in the Analyst tool.

The following image shows some of the records and the fields in the Target_CustomerConsolidate table:

Duplicate Record Exception Mapping Example 261

The record contains the following fields:

Row_Identifier

A number that uniquely identifies each row in the table.

Sequential Cluster ID

A sequential identifier for each cluster to review in a Human task. The Duplicate Record Exception
transformation adds the sequential cluster ID to records in the Cluster Data output group.

Cluster ID

A unique identifier for a cluster. The Match transformation assigns a cluster ID to all the output records.
Duplicate records and possible duplicate records share a cluster ID. A unique record receives a cluster
ID, but the record does not share the ID number with any other record.

Score

Match score that indicates the degree of similarity between a record and another record in the cluster.
Records that require manual review have match scores less than .95 and greater than .80.

Is Master

Indicates whether the record is the preferred record in the cluster.

WorkflowID

The WorkflowID is DummyWorkflowID because the transformation is not in a workflow.

Record Fields

The other fields in the record contain the customer source data.

Creating a Duplicate Record Exception
Transformation

When you configure a Duplicate Record Exception transformation, configure the input ports. Define the upper
and lower thresholds for determining matches. Configure where to write the duplicate records and the unique
records.

1. Create a reusable or a nonreusable Duplicate Record Exception transformation.

262 Chapter 15: Duplicate Record Exception Transformation

• To create a reusable transformation, select File > New > Transformation and select a Duplicate
Record Exception transformation.

• To create a nonreusable transformation, open a mapping and add the transformation to the mapping
canvas. Select a Duplicate Record Exception transformation from the wizard.

2. Click Next, or click Finish.

If you click Finish, you can update the default threshold values and the data routing options before you
create the transformation.

3. In the Configuration view, configure the upper and lower match score thresholds.

4. In the Data Routing Options section, configure the standard output and exception table properties to set
where the transformation writes each type of record.

Optionally, modify where to write the duplicate records, duplicate records to review, and unique records.

5. Optionally, generate a unique records table. Enter the database connection and table name information
for the new table. When you generate a unique records table, the transformation creates a database
object in the Model repository.

6. Configure the input ports. When you add an input port, the Developer tool adds the same port name to
the output groups.

• If you create a reusable transformation, select the Ports tab, and add ports for the data you want to
connect to the transformation.

• If you create a nonreusable transformation, add other objects to the mapping canvas and drag input
ports to the transformation.

7. Connect the transformation output ports to one or more data targets. Connect the output ports to the
data objects that correspond to the output options you set on the Configuration view.

• If you create a reusable transformation, add the transformation to a mapping and connect the output
ports.

• If you create a nonreusable transformation, the transformation connects the ports to the Cluster Data
table. You must connect output ports to the other data targets.

Creating a Duplicate Record Exception Transformation 263

C h a p t e r 1 6

Expression Transformation
This chapter includes the following topics:

• Expression Transformation Overview, 264

• Expression Transformation Ports, 265

• Test Expressions, 266

• Port Selectors, 267

• Windowing, 270

• Dynamic Expressions, 274

• Expression Transformation Advanced Properties, 278

• Expression Transformation in a Non-native Environment, 279

Expression Transformation Overview
The Expression transformation is a passive transformation that you can use to perform calculations or to
test conditional statements in a row. In non-reusable Expression transformations, you can define a mapping
output expression to aggregate when you define mapping outputs.

In a single row, you might need to create an expression to adjust employee salaries, to concatenate first and
last names, or to convert strings to numbers.

264

The following figure shows an expression in an Expression transformation that concatenates the first name,
a space, and the last name:

You can enter multiple expressions in an Expression transformation by creating an expression for each
output port. For example, you might want to calculate different types of taxes from each employee paycheck,
such as the local and the federal income tax. Both tax calculations require the employee salary and a tax
rate. Define a separate output port for each calculation. Define a different expression for each output port.
You can define pass-through ports for the salary and tax rate because the port values do not change.

Expression Transformation Ports
An Expression transformation has different port types that you can reference when you define expressions.

An Expression transformation has the following port types:
Input

Receives data from upstream transformations. If the Expression transformation does not change the
port value, you can define a pass-through port instead of an input port.

Output

Contains the return value of the expression. You enter the expression as a configuration option for the
output port. You can also configure a default value for each port.

Note: If an expression results in numerical errors, such as division by zero or SQRT of a negative number,
it returns an infinite or an NaN value.

Pass-Through

Define a pass-through port to pass the data through the transformation without changing the value. You
can reference a pass-through port in a calculation, but you cannot change the data value in the pass-
through port.

Expression Transformation Ports 265

Variable

Temporarily stores data to use in expressions. You can store data across multiple rows. You can define
an expression to return a value to a variable port.

Dynamic Port

Receives or returns ports in a dynamic mapping. A dynamic port can receive one or more columns from
an upstream transformation and create a generated port for each column. A dynamic output port can
return one or more generated ports. You can define input rules to determine which columns a dynamic
port receives. A dynamic output port can contain an expression that generates multiple output ports.

Generated Port

A port that represents a single column within a dynamic port. The generated ports in the Expression
transformation might change based on the columns that the Expression transformation receives from an
upstream transformation.

Test Expressions
You can test expressions that you configure in the Expression Editor. When you test an expression, you enter
sample data and then evaluate the expression.

You can test expressions when you configure expressions in the following ways:

• In an output or variable port in the Expression transformation

• In the Mapping Outputs view of an Expression transformation after adding the transformation to a
mapping

For example, after configuring an expression that concatenates the first name, a space, and the last name,
you can enter sample data for the ports, and then evaluate the expression to verify the result.

The following image shows the results of an expression that concatenates a sample first name and last
name:

266 Chapter 16: Expression Transformation

Date Format Strings for Sample Data
When you test an expression that uses a port with the Date/Time or Timestamp with Time Zone data type,
you must enter sample data for the port using the required date format string.

To enter sample data for a port with the Date/Time data type, use the format MM/DD/YYYY HH24:MI:SS.
When you evaluate the expression, the Expression Editor displays the result using the format that you specify
in the expression. If you omit the format string in the expression, the Expression Editor displays the result
using the same format MM/DD/YYYY HH24:MI:SS.

To enter sample data for a port with the Timestamp with Time Zone data type, use the format MM/DD/YYYY
HH24:MI:SS TZR. When you evaluate the expression, the Expression Editor displays the result using the
format YYYY-MM-DD HH24:MI:SS.NS TZR.

Testing an Expression
Test an expression in the Expression Editor to evaluate the expression and verify the result.

1. Open the Expression Editor in one of the following ways:

• In an Expression transformation, click the Open button () in the Expression column for an output
port or a variable port.

• Select an Expression transformation included in a mapping. In the Mapping Outputs view, click the

Open button () in the Expression column for an output.

2. Configure the expression.

3. Click Test >> to open the testing panel.

4. Enter sample data for each field in the Test Values column.

You can enter test values for each port or parameter included in the expression.

5. Click Evaluate.

The expression result displays at the bottom of the testing panel.

Port Selectors
When a transformation has generated ports, you need to configure the transformation to run successfully
when the generated ports change. You can use a port selector to determine which ports to use in a dynamic
expression, a lookup condition, or a joiner condition.

A port selector is an ordered list of ports that you can reference in an expression. When the generated ports
change in a dynamic mapping, the port selector can contain different ports.

For example, the following expression references a generated port in a dynamic mapping:

Salary * 12

You configure the mapping to use dynamic sources, but the column that contains salary information in each
source file has a different name. The column names are Salary, Monthly_Salary, or Base_Salary.

You perform the following tasks to accommodate the different column names:

1. Create a port selector named "Salary_PortSelector."

2. Create a selection rule to accept any port name with the suffix "Salary."

Port Selectors 267

3. Change the expression to include the port selector name instead of the salary column name. The
expression has the following syntax:

Salary_PortSelector * 12
The expression runs successfully with any of the salary port names.

Port Selector Configuration
When you configure a port selector, you define selection rules to determine which generated ports to include.
The selection rules are similar to the input rules that you can configure for dynamic ports.

A port selector can include static or generated ports. Configure a port selector on the Port Selector tab.

The following image shows the Port Selector tab:

Configure the following properties for a port selector:

Name

Identifies the port selector. You can create multiple port selectors in a transformation and reference
them in expressions.

Scope

Identifies a group of ports that the port selector applies to. You must choose the scope when you create
a port selector for a Joiner or a Lookup transformation. These transformations have multiple input
groups. The Joiner transformation has a Master or a Detail scope. The Lookup transformation has an
Import or a Lookup scope. The Expression transformation has one input group. The scope is always All
Ports.

Selection Rules

Determines the ports to include in the port selector. When you create the selection rules, the Port
Preview panel shows the ports that qualify from the current input ports. These ports might change.
Configure the selection rules to accommodate ports from different sources.

Selection Rules
The selection rules associated with a port selector determine the ports to include in the port selector.

When you create the selection rules, the Port Preview panel shows the ports that qualify from the current
input ports. These ports might change. Configure the selection rules to accommodate ports from different
sources.

Create selection rules based on the following criteria:
Operator

Includes or excludes the ports that selection rules return. Default is include. You must include ports
before you can exclude ports.

268 Chapter 16: Expression Transformation

Selection Criteria

The type of selection rule you want to create. You can create a rule based on the column name, port type,
pattern, or complex data type definition. To include ports based on the column name, search for specific
names or search for a pattern of characters in the name.

Detail

The values to apply to the selection criteria. If the selection criteria is by column name, configure the
string or name to search for. If the selection criteria is by port type, select the port types to include.

The following table describes the selection criteria and how to specify the details for the criteria:

Selection
Criteria

Description Detail

All Includes all ports. No details required.

Name Filters ports based on the port
name.

Select the port names from a list of values or use a
parameter of type Port or Port List.

Type Filters ports based on the data type
of each port.

Select data types from a list.

Pattern Filters ports by a string of
characters in the name or by a
regular expression.

Choose prefix, suffix, or regular expression as the pattern
type for the port name. Then, enter a value for the pattern or
use a parameter of type String.

Complex Data
Type Definition

Filters ports by a complex data type
definition.

Choose prefix, suffix, or regular expression as the pattern
type for the complex data type definition. Then, enter a
value for the pattern or use a parameter of type String.

Creating a Port Selector
Create a port selector to determine which ports to use in a dynamic expression, a lookup condition, or a joiner
condition.

1. Click the Port Selectors tab.

2. In the Port Selectors area, click New.

The Developer tool creates a port selector with a default selection rule that includes all ports.

3. In the Port Selectors area, change the port selector name to a unique name.

4. If you are working on the Joiner transformation or the Lookup transformation, choose the scope.

The available ports change based on the group of ports that you choose.

5. In the Selection Rules area, select an Operator.

• Include. Create a rule that includes ports for the port selector. You must include ports before you can
exclude ports.

• Exclude. Create a rule that excludes specific ports from the port selector.

6. Choose the Selection Criteria.

• By Name. Select specific ports by name. You can select the port names from a list of ports in the
scope.

• By Type. Select ports by type. You can select one or more data types.

Port Selectors 269

• By Pattern. Select ports by a pattern of characters in the port name. You can search with specific
characters or you can create a regular expression.

The following image shows the Port Selector tab:

7. Click the Detail column.

The Input Rule Detail dialog box appears.

8. Select the values to filter ports by.

• By Name. Choose to create a port list by value or by a parameter. Click Choose to select the ports in
the list.

• By Type. Select one or more data types from a list. The Port Preview area shows ports of the types
that you select.

• By Pattern. Choose to search the prefix or suffix of the port name for a specific pattern of characters.
Or, choose to create a regular expression to search with. Configure a parameter or configure the
pattern to search with.

The Port Preview area shows the ports in the port selector as you configure the rules.

9. To reorder the ports in the port selector, select Reorder generated ports according to the input rule
order.

Windowing
When a transformation contains a window function, you need to configure the windowing properties.
Windowing is available for transformations on the Spark engine only.

Window functions operate on a group of rows and calculate a return value for every input row.

Before you define a window function in an Expression transformation, you need to describe the window by
configuring the windowing properties. Windowing properties include a frame specification, partition keys, and
order keys. The frame specification states which rows are included in the overall calculation for the current
row. The partition keys determine which rows are in the same partition. The order keys determine how rows
in a partition are ordered.

After you configure windowing properties, you define a window function in the Expression transformation.
Informatica supports the window functions LEAD and LAG. You can also use aggregate functions as window
functions in an Expression transformation.

270 Chapter 16: Expression Transformation

Windowing Configuration
When you include a window function in an Expression transformation, you configure the windowing
properties associated with the function. Windowing properties define the partitioning, ordering, and frame
boundaries associated with a particular input row.

Configure a transformation for windowing on the Windowing tab.

The following image shows the Windowing tab:

You configure the following groups of properties on the Windowing tab:

Frame

Defines the rows that are included in the frame for the current input row, based on physical offsets from
the position of the current input row.

You configure a frame if you use an aggregate function as a window function. The window functions
LEAD and LAG reference individual rows and ignore the frame specification.

Partition Keys

Separate the input rows into different partitions. If you do not define partition keys, all rows belong to a
single partition.

Order Keys

Define how rows in a partition are ordered. The ports you choose determine the position of a row within
a partition. The order key can be ascending or descending. If you do not define order keys, the rows have
no particular order.

Frame
The frame determines which rows are included in the calculation for the current input row, based on their
relative position to the current row.

If you use an aggregate function instead of LEAD or LAG, you must specify a window frame. LEAD and LAG
reference individual row sand ignore the frame specification.

The start offset and end offset describe the number of rows that appear before and after the current input
row. An offset of "0" represents the current input row. For example, a start offset of -3 and an end offset of 0
describes a frame including the current input row and the three rows before the current row.

Windowing 271

The following image shows a frame with a start offset of -1 and an end offset of 1:

For every input row, the function performs an aggregate operation on the rows inside the frame. If you
configure an aggregate expression like SUM with the preceding frame, the expression calculates the sum of
the values within the frame and returns a value of 6000 for the input row.

You can also specify a frame that does not include the current input row. For example, a start offset of 10
and an end offset of 15 describes a frame that includes six total rows, from the tenth to the fifteenth row
after the current row.

Note: The start offset must be less than or equal to the end offset.

Offsets of All Rows Preceding and All Rows Following represent the first row of the partition and the last row
of the partition. For example, if the start offset is All Rows Preceding and the end offset is -1, the frame
includes one row before the current row and all rows before that.

The following figure illustrates a frame with a start offset of 0 and an end offset of All Rows Following:

Partition and Order Keys
Configure partition and order keys to form groups of rows and define the order or sequence of rows within
each partition.

Use the following keys to specify how to group and order the rows in a window:

Partition keys

Configure partition keys to define partition boundaries, rather than performing the calculation across all
inputs. The window function operates across the rows that fall into the same partition as the current
row.

272 Chapter 16: Expression Transformation

You can specify the partition keys by value or parameter. Select Value to use port names. Choose
Parameter to use a sort key list parameter. A sort key list parameter contains a list of ports to sort by. If
you do not specify partition keys, all the data is included in the same partition.

Order keys

Use order keys to determine how rows in a partition are ordered. Order keys define the position of a
particular row in a partition.

You can specify the order keys by value or parameter. Select Value to use port names. Choose
Parameter to use a sort key list parameter. A sort key list parameter contains a list of ports to sort by.
You must also choose to arrange the data in ascending or descending order. If you do not specify order
keys, the rows in a partition are not arranged in any particular order.

Example

You are the owner of a coffee and tea shop. You want to calculate the best-selling and second best-selling
coffee and tea products.

The following table lists the products, the corresponding product categories, and the revenue from each
product:

Product Category Revenue

Espresso Coffee 600

Black Tea 550

Cappuccino Coffee 500

Americano Coffee 600

Oolong Tea 250

Macchiato Coffee 300

Green Tea 450

White Tea 650

You partition the data by category and order the data by descending revenue.

The following image shows the properties you configure on the Windowing tab:

Windowing 273

The following table shows the data grouped into two partitions according to category. Within each partition,
the revenue is organized in descending order:

Product Category Revenue

Espresso Coffee 600

Americano Coffee 600

Cappuccino Coffee 500

Macchiato Coffee 300

White Tea 650

Black Tea 550

Green Tea 450

Oolong Tea 250

Based on the partitioning and ordering specifications, you determine that the two best-selling coffees are
espresso and Americano, and the two best-selling teas are white and black.

Rules and Guidelines for Windowing Configuration
Certain guidelines apply when you configure a transformation for windowing.

Consider the following rules and guidelines when you define windowing properties for a window function:

• When you configure a frame, the start offset must be less than or equal to the end offset. Otherwise, the
frame is not valid.

• Configure a frame specification if you use an aggregate function as a window function. LEAD and LAG
operate based on the offset value and ignore the frame specification.

• You cannot use complex ports as partition or order keys.

• Assign unique port names to partition and order keys to avoid run-time errors.

• The partition and order keys cannot use both a dynamic port and one or more generated ports of the same
dynamic port. You must select either the dynamic port or the generated ports.

Dynamic Expressions
When you configure an expression in a dynamic output port, the expression becomes a dynamic expression.
A dynamic expression can generate multiple output ports.

You can reference a port selector or a dynamic port in a dynamic expression. When the port selector or
dynamic port contains multiple ports, the dynamic expression runs against each port.

When you configure a dynamic expression, the Developer tool does not validate if the generated ports are
valid types for the expression. For example, if you reference a port selector that contains decimal type ports
in an expression that requires string types, the expression appears as valid at design time.

274 Chapter 16: Expression Transformation

Example

An Expression transformation has the following generated input ports:

EMPNO Decimal
NAME String
SALARY Decimal
DEPTNO Decimal

The transformation contains a dynamic output port called MyDynamicPort. The output port returns the
results of a dynamic expression. The dynamic expression multiplies the value of each port in a port selector
by 100. The expression runs one time for each port in the port selector. Each instance can return a different
result. The Expression transformation generates a separate output port for each result.

The Decimal_Selector port selector has a selection rule that includes the ports that are of decimal data type:

EMPNO Decimal
SALARY Decimal
DEPTNO Decimal

The following image shows a dynamic expression that references the Decimal_Selector port selector:

Edit the output port settings to change output port names and output port properties. You can also choose
the base port.

Output Port Settings
You can indicate which ports you want to use as input to a dynamic expression. Select the ports in the Base
Port area.

If you select the Decimal_Selector port selector as the base port, the dynamic expression returns decimal
type ports. The dynamic expression does not generate a port for the NAME port because it is a string.

The following image shows the generated ports in the transformation:

Dynamic Expressions 275

Although the From_Read_Emp dynamic port is an input-output port, the transformation returns just the ports
in the MyDynamicPort dynamic output port.

You can configure how you want to name the output ports. The default output port name is the input port
name and the suffix _OUT.

You can change the base port to a port selector.

The following image shows the output port settings in the Expression Editor:

If you configure the base port as From_Read_EMP, you select the dynamic port that contains all the
generated input ports. The Data Integration Service runs the dynamic expression against all the ports in
From_Read_EMP.

The following image shows the generated output ports based on the From_Read_Emp input:

The generated output ports include an output port called NAME_OUT, which is a string type.

The Data Integration Service generates output ports for each dynamic expression. If you create a dynamic
expression that generates 15 ports and you define another dynamic expression that generates 5 ports, the
Data Integration Service generates 20 output ports. Each dynamic output port generates a different group of
ports.

276 Chapter 16: Expression Transformation

Creating a Dynamic Expression
Create a dynamic expression in an Expression transformation to run the expression one time for each port in
a dynamic port or a port selector. The dynamic expression returns the results to a separate generated port
for each instance.

1. In the Expression transformation, go to the Properties view and click the Ports tab.

2. Click New Dynamic Port.

The Developer tool creates a dynamic port with default properties.

3. Rename the dynamic port and disable the input option.

The dynamic port must be an output port.

4. In the Expression column for the dynamic output port, click the Open button ().

The Dynamic Expression dialog box appears:

5. In the Expression editor, enter an expression. The expression can include a port selector or a dynamic
port.

For example, LTRIM(RTRIM(Dynamic_Customer)), where Dynamic_Customer is a dynamic port.

6. Click Validate to validate the expression.

7. Click OK to exit the Validate Expression dialog box.

8. In the Output Port Settings area, select the dynamic output port from the Base Port list or choose a port
selector that you referenced in the expression.

The Developer tool generates output ports based on what you select.

Dynamic Expressions 277

9. Use the following steps to rename the output ports:

a. Click Edit Output Port Settings.

The Output Port Settings dialog box appears.

b. In the Name list, select one of the options and enter a value for the prefix or suffix. If you selected
Fixed string + Auto-number, enter the text for output port name. For example, if you enter TRIM for
the output port name, the output port names appear as TRIM1, TRIM2, TRIM3.

c. Optionally, choose Specify settings in the Other Settings area to change the type, precision, and
scale for the output ports. By default, the output ports use the settings of the base ports.

d. Click OK.

10. Click OK to exit the Dynamic Expression editor.

Expression Transformation Advanced Properties
Configure properties that help determine how the Data Integration Service processes data for the Expression
transformation.

Configure the following advanced properties for an Expression transformation:

278 Chapter 16: Expression Transformation

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Maintain Row Order

Maintain the row order of the input data to the transformation. Select this option if the Data Integration
Service should not perform any optimization that can change the row order.

When the Data Integration Service performs optimizations, it might lose an order established earlier in
the mapping. You can establish order in a mapping with a sorted flat file source, a sorted relational
source, or a Sorter transformation. When you configure a transformation to maintain row order, the Data
Integration Service considers this configuration when it performs optimizations for the mapping. The
Data Integration Service performs optimizations for the transformation if it can maintain the order. The
Data Integration Service does not perform optimizations for the transformation if the optimization would
change the row order.

Expression Transformation in a Non-native
Environment

The Expression transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported with restrictions.

Expression Transformation on the Blaze Engine
Mapping validation fails in the following situations:

• The transformation contains stateful variable ports.

• The transformation contains unsupported functions in an expression.

An Expression transformation with a user-defined function returns a null value for rows that have an
exception error in the function.

Expression Transformation on the Spark Engine
Mapping validation fails in the following situations:

• The transformation contains stateful variable ports.

• The transformation contains unsupported functions in an expression.

Note: If an expression results in numerical errors, such as division by zero or SQRT of a negative number, it
returns a null value and rows do not appear in the output. In the native environment, the expression returns an
infinite or an NaN value.

Expression Transformation in a Non-native Environment 279

Expression Transformation in a Streaming Mapping
Streaming mappings have the same processing rules as batch mappings on the Spark engine.

Expression Transformation on the Databricks Spark Engine
Mapping validation fails in the following situations:

• The transformation contains stateful variable ports.

• The transformation contains unsupported functions in an expression.

Note: If an expression results in numerical errors, such as division by zero or SQRT of a negative number, it
returns a null value and rows do not appear in the output. In the native environment, the expression returns an
infinite or an NaN value.

280 Chapter 16: Expression Transformation

C h a p t e r 1 7

Filter Transformation
This chapter includes the following topics:

• Filter Transformation Overview, 281

• Filter Transformations in Dynamic Mappings, 282

• Filter Condition, 283

• Filter Transformation Advanced Properties, 285

• Filter Transformation Performance Tips, 285

• Filter Transformation in a Non-native Environment, 285

Filter Transformation Overview
Use the Filter transformation to filter out rows in a mapping. As an active transformation, the Filter
transformation may change the number of rows passed through it.

The Filter transformation allows rows that meet the specified filter condition to pass through. It drops rows
that do not meet the condition. You can filter data based on one or more conditions.

281

The following image shows a filter condition in a Filter transformation:

A filter condition returns TRUE or FALSE for each row that the Data Integration Service evaluates, based on
whether a row meets the specified condition. For each row that returns TRUE, the Data Integration Services
pass through the transformation. For each row that returns FALSE, the Data Integration Service drops and
writes a message to the log.

You cannot concatenate ports from more than one transformation into the Filter transformation. The input
ports for the filter must come from a single transformation.

Filter Transformations in Dynamic Mappings
You can use an Filter transformation in a dynamic mapping. You can configure dynamic ports in the
transformation and reference the generated ports in the filter condition.

You can parameterize the complete filter condition. Configure an expression parameter with a default value
that contains the entire expression. The Developer tool does not validate a filter condition in a parameter
default value.

You can reference a dynamic port in a filter condition. The dynamic port can contain multiple generated
ports. The Data Integration Service expands the filter condition to contain each generated port. Each
generated port must be a valid type to include in the expression.

You can reference a generated port in a filter condition. However, if the generated port does not exist at run
time, the mapping fails.

282 Chapter 17: Filter Transformation

Filter Condition
The filter condition is an expression that returns TRUE or FALSE.

Enter conditions in the Expression editor. The filter condition is case sensitive.

You can use any expression that returns a single value as a filter. For example, if you want to filter out rows
for employees whose salary is less than or equal to $30,000, enter the following condition:

SALARY > 30000
You can specify multiple components of the condition, using the AND and OR logical operators. If you want to
filter out employees who make less than $30,000 and more than $100,000, enter the following condition:

SALARY > 30000 AND SALARY < 100000
You can use ports, parameters, dynamic ports, and generated ports in the filter condition. Select the ports
and the parameters in the Expression editor.

If you use a dynamic port in the filter condition, the filter condition expands to include all the generated ports
in the dynamic port. For example, the dynamic port, MyDynamicPort, contains three decimal ports:

Salary
Bonus
Stock

If you configure the following filter condition:

MyDynamicPort > 100

The filter condition expands to the following expression:

Salary > 100 AND Bonus > 100 AND Stock > 100

You can enter a constant for the filter condition. The numeric equivalent of FALSE is zero (0). Any non zero
value is the equivalent of TRUE. For example, the transformation contains a port named NUMBER_OF_UNITS
with a numeric data type. You configure a filter condition to return FALSE if the value of NUMBER_OF_UNITS
equals zero. Otherwise, the condition returns TRUE.

Note: You cannot use a single port selector or dynamic port as a boolean value.

You do not need to specify TRUE or FALSE as values in the expression. TRUE and FALSE are implicit return
values from any condition you set. If the filter condition evaluates to NULL, the row is FALSE.

Parameterize the Filter Condition
You can configure an expression parameter to define the filter condition. An expression parameter contains
the entire expression.

You might need to parameterize the filter condition when the Filter transformation is in a dynamic mapping.
The filter condition might change based on the generated ports in the transformation at run time.

To use an expression parameter for the filter condition, choose Specify by Parameter on the Filter tab of the
Filter transformation properties.

Filter Condition 283

The following image shows the Filter tab when you specify the filter condition with a parameter:

You can browse for and select an expression parameter that you already created. Or, you can create an
expression parameter.

To create an expression parameter, click New. Enter a name for the parameter, a description, and the default
expression value.

The following image shows where you enter the parameter:

You can enter a default expression on the Parameters dialog box. If you want to use an Expression editor,
click Edit. When you use the Expression editor, you can select functions and ports to use in the expression.
You can validate the expression.

The following image shows the Filter tab with a parameter for the filter condition:

The expression parameter is a mapping parameter. You can override the parameter in a parameter set or a
parameter file at run time.

284 Chapter 17: Filter Transformation

Filtering Rows with Null Values
To filter rows containing null values or spaces, use the ISNULL and IS_SPACES functions to test the value of
the port.

For example, if you want to filter out rows that contain NULL value in the FIRST_NAME port, use the following
condition:

IIF(ISNULL(FIRST_NAME),FALSE,TRUE)
This condition states that if the FIRST_NAME port is NULL, the return value is FALSE and the row should be
discarded. Otherwise, the row passes through to the next transformation.

Filter Transformation Advanced Properties
Configure properties that help determine how the Data Integration Service processes data for the Filter
transformation.

You can configure tracing levels for logs.

Configure the following property on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Filter Transformation Performance Tips
Use tips to increase Filter transformation performance.

Use the Filter transformation early in the mapping.

Keep the Filter transformation as close as possible to the sources in the mapping. Instead of passing
rows that you plan to discard through the mapping, you can filter out unwanted data early in the flow of
data from sources to targets.

Filter Transformation in a Non-native Environment
The Filter transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported without restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported without restrictions.

Filter Transformation Advanced Properties 285

Filter Transformation on the Blaze Engine
When a mapping contains a Filter transformation on a partitioned column of a Hive source, the Blaze engine
can read only the partitions that contain data that satisfies the filter condition. To push the filter to the Hive
source, configure the Filter transformation to be the next transformation in the mapping after the source.

286 Chapter 17: Filter Transformation

C h a p t e r 1 8

Hierarchical to Relational
Transformation

This chapter includes the following topics:

• Hierarchical to Relational Transformation Overview, 287

• Example - Hierarchical to Relational Transformation, 287

• Output Relational Ports and the Overview View, 289

• Hierarchical to Relational Transformation Ports, 290

• Schema References, 291

• Port Configuration, 291

• Hierarchical to Relational Transformation Development, 291

Hierarchical to Relational Transformation Overview
The Hierarchical to Relational transformation processes XML or JSON hierarchical input and transforms it
into relational output. A Hierarchical to Relational transformation reads hierarchical input from input ports
and transforms the data to relational output at the transformation output ports. To transform hierarchical
input to relational output, use a schema file to define the hierarchical data.

You can use the Hierarchical to Relational transformation wizard to automatically map the data. You can
configure the mapping to the relational output ports on the transformation Overview view.

After the wizard generates the transformation, you can pass the data from the relational output ports to
another transformation in a mapping.

Example - Hierarchical to Relational Transformation
The Logistics department of the Harrinder Shipping company must process shipment data. They need to
transform inventory and customer data from hierarchical format into relational data that they can store in
database tables.

They need to create a mapping that transforms hierarchical data into relational data. The organization
inventory system generates shipment inventory data in hierarchical format. The mapping needs to use a

287

Hierarchical to Relational transformation that inputs shipment data and outputs the details in a usable
relational format.

The Shipments input is in hierarchical format. The Shipment element contains sub-elements with customer
and inventory data for each shipment:

 Shipments
 Shipment
 Items
 Item_Name
 Inventory_ID
 Customer
 Customer_Name
 Customer_ID
 Customer_Address

In the relational output, the Customer_ID element is a primary key in the Customer table, and is a Foreign key
in the Shipment table.

Customer_ID Customer_Name Customer_Address
3543766 Tony Birch 6 Moby Drive
6342562 Sujita Man 22 Dan Street
6471862 Dwayne Horace 7 Jafendar Boulevard
7265204 Carmela Perez 23 Dan Street
4559672 Delilah Soraya 28 Jafendar Boulevard

Shipment_ID Inventory_Item Customer_ID
9173327437 908274 7265204
9174562342 553439 7265204
8484526471 546584 3543766
7023847265 908274 3543766
9174596725 553439 3543766

288 Chapter 18: Hierarchical to Relational Transformation

The following image shows the mapping in this example:

The mapping contains the following objects:

Read_input

The source that contains the path to the file with hierarchical data. Reads billing data from an XML file.

Shipping_Transform

A Hierarchical to Relational transformation that transforms XML input into relational output.

Write_Output2

A target that stores part of the transformed data, the Customer table, in relational format.

Write_Output3

A second target that stores another part of the transformed data, the Shipment table, in relational
format.

The mapping uses the Read_input flat file to input the target path for the hierarchical input. The mapping
processes and transforms the data with the Shipping_Transform transformation. Then the mapping stores
the output in the two output targets.

Output Relational Ports and the Overview View
To convert hierarchical data to relational output in the Hierarchical to Relational transformation, the wizard
generates links between hierarchical nodes to relational ports. Use the Overview view to view the links
between relational ports to hierarchical ports. You can also create groups of output ports by linking nodes
from the hierarchical output to groups of ports.

To view the mapping for relational groups, use the Overview view. Select Output Mapping. The Ports panel
appears in the Overview view.

Output Relational Ports and the Overview View 289

The following image shows the Ports panel:

The Transformation input area, which shows the hierarchical schema, is to the left. The Transformation
output area, which shows the relational output ports, is to the right.

You can define relational output ports in the Transformation output area and link nodes from the schema to
the ports. You can also drag the pointer from a node in the schema to an empty field in the Transformation
output area to create a port. When you drag a node from the output schema to a port, the Developer tool
shows a link between them.

Hierarchical to Relational Transformation Ports
The Hierarchical to Relational transformation ports are defined on the transformation Overview view.

A Hierarchical to Relational transformation can read input from a file or buffer. The output ports return
relational data from the transformation.

When you create an Hierarchical to Relational transformation, the Developer tool creates a default input port.
The input type determines the type of data that the Data Integration Service passes to the Hierarchical to
Relational transformation. The input type determines whether the input is data or a source file path.

Configure one of the following input types:

Buffer

The Hierarchical to Relational transformation receives rows of source data in the Input port. Use the
buffer input type when you configure the transformation to receive data from an Informatica
transformaton.

File

The Hierarchical to Relational transformation receives the source file path in the Input port. The
Hierarchical to Relational transofrmation opens the source file. You can also use the File input type for
large files that might require a lot of system memory to process with a buffer input port.

When you create the transformation with the New Transformation wizard you can define an example input
file. An example input file is a small sample of the input file. Reference an example input file when you create
an Hierarchical to Relational. You also use the example input file when you test the transformation in the
Data Viewer view.

The transformation contains one or more groups of ports that return relational data.

290 Chapter 18: Hierarchical to Relational Transformation

Schema References
A Hierarchical to Relational transformation requires a hierarchical schema to define the input hierarchy in the
transformation. To use the schema in the transformation, you define a schema reference.

You can define transformation schema references in the transformation References view.

The Hierarchical to Relational transformation references schema objects in the Model repository. The
schema objects can exist in the repository before you create the transformation. You can also import
schemas from the transformation References view.

A schema can reference additional schemas. The References view shows the namespace and prefix for each
schema that the Hierarchical to Relational transformation references. When you reference multiple schemas
with empty namespaces the transformation is not valid.

Port Configuration
On the Ports panel, the transformation shows the mapping between the hierarchical schema nodes to the
relational ports. The transformation uses a schema to define the hierarchical input. If the schema has more
than one element that can be a root element, choose a node to be the root element.

The wizard generates links between hierarchical schema nodes and relational ports. If you want to change
the generated links, you can use the Ports panel to add, delete, or edit links. You can link nodes to ports and
create a port.

When you link nodes to the Transformation output area, the Developer tool updates the location field with the
location of the node in the hierarchy. If you manually create ports, you must map a node to the port. Update
the Location column and select a node from the list.

When you link a multiple-occurring node to a group that contains the parent element, you can configure the
number of child element occurrences to include. Or, you can replace the parent group with the multiple-
occurring child group in the transformation output.

To create a group, link a node to an empty column in the Transformation output area. If you link a multiple-
occurring child node to an empty input or output column, the Developer tool asks you to relate the group to
other output groups. When you select a group, the Developer tool creates keys to relate the groups.

Configure related groups of output ports in the Transformation output area. When the Developer tool
prompts you to relate output groups, it adds the keys to the groups. You can also manually add ports to
represent keys.

Hierarchical to Relational Transformation
Development

Use the New Transformation wizard to auto-generate a Hierarchical to Relational transformation. Choose a
schema or hierarchical sample file to define the input hierarchy.

1. Create the transformation in the Developer tool.

2. Configure the input port and mapping.

Schema References 291

3. Test the transformation.

Creating the Hierarchical to Relational Transformation

1. In the Developer tool, click File > New > Transformation.

2. Select the Hierarchical to Relational transformation and click Next.

3. Enter a name for the transformation and browse for a Model repository location to put the
transformation and click Next.

4. To select a schema, select one of the following methods:

• To use a schema from the Model repository to define the input hierarchy, near the Schema Object
field, browse to select the schema file from the repository.

• To import a schema file, click Create a new schema object. In the New schema object window, you
can browse to and select a schema file, or you can select to create a schema from a sample
hierarchical file.

5. Choose the root for the output hierarchy. In the Hierarchy root dialog box, select the element in the
schema that is the root element for the output hierarchical file. To help select the root object, you can
add a sample hierarchical file. To add a sample file, near the Sample File field, browse for and select the
file from the file system.

6. Click Finish.

The wizard creates the transformation in the repository.

Configuring the Ports and Mapping
Configure the input and output ports in the Overview view.

1. Select the input port datatype, port type, precision and scale.

2. To view the mapping, in the Overview view Ports area, select Output Mapping.

3. Expand the trees in the Ports grid. To the left, the Transformation input panel shows the expected
hierarchical input, and to the right, the Transformation output panel shows the relational output.

4. To define a node as a root, click Choose Hierarchy.

The Developer tool displays only the nodes from the root level and below the root level in the
Transformation input area.

5. To view lines that connect the ports with the hierarchical nodes, click Show Lines. Select to view all the
connection lines or just the lines for selected ports.

6. To add an input group or port to the Transformation output area, use one of the following methods:

• Drag a simple or complex element in the Transformation input area to an empty column in the
Transformation output area. If the node is a group node, the Developer tool adds a relational group
without ports.

• To add a relational group, select a row and right-click to select New > Group.

• To add a relational port, right-click to select New > Field.

7. To clear the hierarchical node settings for locations of ports, use one of the following methods:

• Select one or more nodes in the Transformation input area, right-click and select Clear.

• Select one or more lines that connect the relational ports to the hierarchical nodes, right-click and
select Delete.

292 Chapter 18: Hierarchical to Relational Transformation

8. To display the output ports in a hierarchy, click Show As Hierarchy. Each child group appears underneath
the parent group.

Testing the Transformation
Test the Hierarchical to Relational transformation in the Data Viewer view.

Before you test the transformation, verify that you defined the file input location. You define the input
location on the DIS machine in the Input Location column of the Ports panel in the Overview view.

1. Open the Data Viewer view.

2. Click Run.

The Developer tool validates the transformation. If there is no error, the Developer tool shows the
hierarchical file content in the Output panel.

Hierarchical to Relational Transformation Development 293

C h a p t e r 1 9

Java Transformation
This chapter includes the following topics:

• Java Transformation Overview, 294

• Designing a Java Transformation, 298

• Java Transformation Ports, 298

• Java Transformation Advanced Properties, 299

• Developing Java Code, 302

• Java Transformation Java Properties, 305

• Filter Optimization with the Java Transformation, 308

• Creating a Java Transformation, 310

• Compiling a Java Transformation, 312

• Troubleshooting a Java Transformation, 312

• Converting to Struct Data Example, 314

• Java Transformation in a Non-native Environment, 317

Java Transformation Overview
Use the Java transformation to extend Developer tool functionality.

The Java transformation provides a simple native programming interface to define transformation
functionality with the Java programming language. You can use the Java transformation to define simple or
moderately complex transformation functionality without advanced knowledge of the Java programming
language or an external Java development environment. The Java transformation is an active or passive
transformation.

The Developer tool uses the Java Development Kit (JDK) to compile the Java code and generate byte code
for the transformation. The Developer tool stores the byte code in the Model repository.

The Data Integration Service uses the Java Runtime Environment (JRE) to run generated byte code at run
time. When the Data Integration Service runs a mapping with a Java transformation, the Data Integration
Service uses the JRE to run the byte code and process input rows and generate output rows.

Create Java transformations by writing Java code snippets that define transformation logic. Define
transformation behavior for a Java transformation based on the following events:

• The transformation receives an input row.

• The transformation processed all input rows.

294

In mappings that run on the Spark engine, you can use complex data types in Java transformations to
process hierarchical data. With complex data types, the Spark engine directly reads, processes, and writes
hierarchical data in Avro, Parquet, and JSON complex files.

Reusable and Non-Reusable Java Transformations
You can create a reusable or non-reusable Java transformation.

Reusable transformations can exist in multiple mappings. Non-reusable transformations exist within a single
mapping.

The views in the editor where you define properties and create Java code differ based on whether you are
creating a reusable or non-reusable Java transformation.

Active and Passive Java Transformations
When you create a Java transformation, you define its type as active or passive.

After you set the transformation type, you cannot change it.

A Java transformation runs the Java code that you define on the On Input tab one time for each row of input
data.

A Java transformation handles output rows based on the transformation type as follows:

• A passive Java transformation generates one output row for each input row in the transformation after
processing each input row.

• An active Java transformation generates multiple output rows for each input row in the transformation.

Use the generateRow method to generate each output row. For example, if the transformation contains
two input ports that represent a start date and an end date, you can use the generateRow method to
generate an output row for each date between the start date and the end date.

Data Type Conversion
A Java transformation converts Developer tool data types to Java data types, based on the Java
transformation port type.

When a Java transformation reads input rows, it converts input port data types to Java data types.

When a Java transformation writes output rows, it converts Java data types to output port data types.

For example, the following processing occurs for an input port with the integer data type in a Java
transformation:

1. The Java transformation converts the integer data type of the input port to the Java primitive int data
type.

2. In the transformation, the transformation treats the value of the input port as the Java primitive int data
type.

3. When the transformation generates the output row, it converts the Java primitive int data type to the
integer data type.

Java Transformation Overview 295

The following table shows how the Java transformation maps Developer tool data types to Java primitive and
complex data types:

Developer Tool Data Type Java Data Type

array* java.util.List

bigint long

binary byte[]

date/time With nanoseconds processing enabled, BigDecimal with nanosecond precision
With nanoseconds processing disabled, long with millisecond precision (the number
of milliseconds since January 1, 1970 00:00:00.000 GMT)

decimal With high precision processing disabled, double with precision 15
With high precision processing enabled, BigDecimal

double double

integer int

map* java.util.Map

string String

struct* Customized JavaBean class with getters and setters for the struct field elements

text String

* Supported only on the Spark engine.

In Java, the java.util.List, java.util.Map, String, byte[], and BigDecimal data types are complex data types. The
double, int, and long data types are primitive data types.

In the Developer tool, array, struct, and map data types are complex data types.

Note: The Java transformation sets null values in primitive data types to zero. You can use the isNull and the
setNull API methods on the On Input tab to set null values in the input port to null values in the output port.
For an example, see “setNull” on page 327.

Complex Data Type Conversion on the Spark Engine
You can add complex ports to the Java transformation in mappings that run on the Spark engine. A complex
port is a port that is assigned a complex data type. The Java transformation converts complex data types to
comparable Java complex data types. It also converts elements of complex data types to comparable Java
data types, which are a boxed version of primitive data types.

Array Data Type

When a Java transformation reads input rows, it converts array data type to Java List data type. The
transformation converts the data type of array elements to a boxed version of Java data types.

For example, the transformation converts the Developer tool complex data type array<integer> to a Java
data type List<Integer>.

296 Chapter 19: Java Transformation

When a Java transformation writes output rows, it converts Java List data type to array data type. The
transformation converts the data type of List elements to an unboxed version of the Developer tool data
types.

Struct Data Type

When a Java transformation reads input rows of struct data type, it generates an equivalent Java bean class.
The name of the Java bean class is the same as the name of the struct data type. The transformation
converts the data type of struct elements to a boxed version of Java data types.

If the struct data type uses special characters or Java reserved keywords, such as final or private, the Java
transformation replaces the special characters with an underscore (_) in the class name. You can open the
full code in the Java view of the transformation properties tab to see the generated classes.

The Java transformation generates class member field names prefixed with an underscore (_). It also
generates getters and setters for the member fields.

The generated Java bean class has the namespace of the type definition library name as an outer class. The
name of the outer class is the same as the name of the type definition library. The Java data type name of
the struct port is of the following format:

type_library_name.struct_type_name
For example, the type library name is m_Type_Definition_Library. The complex data type definition for the
struct port is:

Customer {
 name string
 age integer
 }

The Java transformation generates the Java bean classes with getters and setters for the member fields. The
following code snippet shows the outer class and inner class:

public static final class m_Type_Definition_Library {
 public static final class Customer implements Serializable {
 private String _name;
 private Integer _age;

 public Customer() {}
The following code snippet shows the getter and setter for the struct element name of type string:

public String get_name() {
 return _name;
 }

public void set_name(String _name) {
 this._name = _name;
 }

When a Java transformation writes output rows of struct data type, it converts Java bean class to struct data
type. The transformation converts the member fields of the class to struct elements. The data type of
member fields are converted to an unboxed version of the Developer tool data types.

Map Data Type

When a Java transformation reads input rows, it converts map data type to Java Map data type. The
transformation converts the data type of map elements to a boxed version of Java data types.

For example, the Developer tool complex data type map<string, bigint> is converted to a Java data type
Map<String, long>.

When a Java transformation writes output rows, it converts Java Map data type to map data type. The
transformation converts the data type of Map elements to an unboxed version of the Developer tool data
types.

Java Transformation Overview 297

Designing a Java Transformation
When you design a Java transformation, you must consider factors, such as the type of transformation that
you want to create.

When you design a Java transformation, consider the following questions:

• Do you need to create an active or passive Java transformation?

A passive Java transformation generates one output row for each input row in the transformation.

An active Java transformation generates multiple output rows for each input row in the transformation.

• Do you need to define any functions in the Java transformation? If so, which expressions do you want to
include in each function?

For example, you can define a function that invokes an expression to look up the values of input or output
ports or to look up the values of Java transformation variables.

• Do you want to create a reusable or non-reusable Java transformation?

A reusable transformation can exist in multiple mappings.

A non-reusable transformation can exist within a single mapping.

Java Transformation Ports
A Java transformation can have input and output ports.

To create and edit ports for a non-reusable Java transformation, use the Ports tab in the editor. To create and
edit ports for a reusable Java transformation, use the Overview view in the editor.

You can specify default values for ports. After you add ports to a transformation, you can use the port names
as variables in Java code snippets.

Creating Ports
When you create a Java transformation, it includes one input group and one output group.

When you create a port, the Developer tool adds it below the currently selected row or group.

Setting Default Port Values
You can define default values for ports in a Java transformation.

The Java transformation initializes port variables with the default port value based on the datatype of the
port.

Input and Output Ports
The Java transformation initializes the value of unconnected input ports or output ports that do not have an
assigned value in the Java code snippets.

Java transformation initializes ports based on the following Java data types:

298 Chapter 19: Java Transformation

Primitive data type

If you define a default value for the port that is not equal to null, the transformation initializes the value
of the port variable to the default value. Otherwise, it initializes the value of the port variable to 0.

Complex data type

If you define a default value for the port, the transformation creates a new object, and initializes the
object to the default value. Otherwise, the transformation initializes the port variable to null. For example,
if you define a default value for a string port, the transformation creates a new String object, and
initializes the String object to the default value.

Note: If you access an input port variable with a null value in the Java code, a NullPointerException
occurs.

You can enable an input port as a partition key and a sort key, and you can assign a sort direction. The Data
Integration Service partitions the data and sorts the data in each partition by the sort key and sort direction.
The Partition Key and Sort Key are valid when the transformation scope is set to All Input.

Use the following properties for partitioning and sorting data:
Partition Key

Input port that determines the rows of data to group into the same partition.

Sort Key

Input port that determines the sort criteria within each partition.

Direction

Ascending or descending order. Default is ascending.

Java Transformation Advanced Properties
The Java transformation includes advanced properties for both the transformation code and the
transformation.

When you use the transformation in a mapping, you can override the transformation properties.

You can define the following advanced properties for the Java transformation on the Advanced tab:
Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Partitionable

The transformation can be processed with multiple threads. Clear this option if you want the Data
Integration Service to use one thread to process the transformation. The Data Integration Service can
use multiple threads to process the remaining mapping pipeline stages.

Disable partitioning for a Java transformation when the Java code requires that the transformation be
processed with one thread.

Enable high precision

Processes a decimal data type port with a precision less than or equal to 38 as a Java BigDecimal data
type port.

Disable high precision to process a decimal data type port as a Java Double data type port.

Java Transformation Advanced Properties 299

The following table shows how a Java transformation treats a value in a decimal data type input port
based on whether you have enabled or disabled the high precision option:

Example High Precision Processing
Enabled

High Precision Processing Disabled

A decimal type input port receives a
value of 40012030304957666903.

The Java transformation
leaves the value as is.

The Java transformation converts the
value to the following value:

4.00120303049577 x 10^19

If the Java transformation contains a decimal port or a complex port with an element of a decimal data
type, the transformation must use the same precision mode as the mapping. For example, if you enable
high precision in the Java transformation, you must enable high precision in the mapping.

Use nanoseconds in Date/Time

Converts date/time datatype ports to Java BigDecimal datatype ports with nanosecond precision.

Disable nanosecond processing so that the generated Java code converts date/time datatype ports to
Java Long datatype ports with millisecond precision.

Classpath

Sets the classpath for jar or class file directories that are associated with non-standard Java packages
that you import on the Imports tab.

The jar or class file directories must be accessible on the Developer tool client machine for compilation
of the Java code.

Based on the operating system, separate classpath entries as follows:

• On UNIX, use a colon to separate classpath entries.

• On Windows, use a semicolon to separate classpath entries.

For example, if you import the Java converter package on the Imports tab and you define the package in
converter.jar, you must add the location of the converter.jar file to the classpath before you compile the
Java code for the Java transformation.

Note: You do not need to set the classpath for built-in Java packages. For example, because java.io is a
built-in Java package, you do not need to set the classpath for java.io.

Is Active

The transformation can generate more than one output row for each input row.

You cannot change this property after you create the Java transformation. If you need to change this
property, create a new Java transformation.

Transformation Scope

Defines the method that the Data Integration Service uses to apply the transformation logic to incoming
data. You can choose one of the following values:

• Row. Applies the transformation logic to one row of data at a time. Choose Row when the results of
the procedure depend on a single row of data.

• Transaction. Applies the transformation logic to all rows in a transaction. Choose Transaction when
the results of the procedure depend on all rows in the same transaction, but not on rows in other
transactions. When you choose Transaction, you must connect all input groups to the same
transaction control point.

300 Chapter 19: Java Transformation

• All Input. Applies the transformation logic to all incoming data. when you choose All Input, the Data
Integration Service drops transaction boundaries. Choose All Input when the results of the procedure
depend on all rows of data in the source.

Stateless

Maintain the row order of the input data to the transformation. Select this option if the Data Integration
Service should not perform any optimization that can change the row order.

When the Data Integration Service performs optimizations, it might lose an order established earlier in
the mapping. You can establish order in a mapping with a sorted flat file source, a sorted relational
source, or a Sorter transformation. When you configure a transformation to maintain row order, the Data
Integration Service considers this configuration when it performs optimizations for the mapping. The
Data Integration Service performs optimizations for the transformation if it can maintain the order. The
Data Integration Service does not perform optimizations for the transformation if the optimization would
change the row order.

Configuring the Classpath for the Developer Tool Client
You can add jar files or class file directories to the Developer tool client classpath.

To set the classpath for the machine where the Developer tool client client runs, complete one of the
following tasks:

• Configure the CLASSPATH environment variable. Set the CLASSPATH environment variable on the
Developer tool client client machine. This applies to all java processes run on the machine.

• For a non-reusable Java transformation, configure the the classpath in the Java transformation advanced
properties. This applies to mappings that include this Java transformation. The Developer tool client
client includes files within the classpath when it compiles the java code.

To add jar or class file directories to the classpath in a Java transformation, complete the following steps:

1. On the Advanced tab, click the down arrow icon in the Value column next to Classpath.

The Edit Classpath dialog box appears.

2. To add a classpath, complete the following steps:

a. Click Add.

The Save As window appears.

b. In the Save As window, navigate to the directory where the jar file is located.

c. Click OK.

The classpath appears in the Edit Classpath dialog box.

3. To remove a jar file or class file directory, select the jar or class file directory and click Remove.

The directory disappears from the list of directories.

Configuring the Classpath for the Data Integration Service
You can add jar or class file directories that are required at run time to the classpath on the Data Integration
Service node.

Place the jar files that are required during runtime in the following directory on the Data Integration Service
node:

$INFA_HOME/services/shared/jars
The jar files in this location are loaded dynamically. Any class files that are required by individual mappings
at run time are found and loaded from this directory.

Java Transformation Advanced Properties 301

Note: The Java transformation adds any jar files in this directory to the mapping-level classpath.

Developing Java Code
Use the code entry tabs in the Java view to write and compile Java code that defines transformation behavior
for specific transformation events.

You can develop code snippets on the code entry tabs in any order. You can view, but not edit, the full Java
code on the Full Code tab.

After you develop code snippets, you can compile the code snippets or the full Java code and view the
results of the compilation in the Results window in the Compilation properties in the Java view.

Each code entry tab contains components that you use to write, view, and compile Java code:

Code properties

Provides controls that let you view and enter Java code, including Java transformation API methods. The
following table describes the controls that are available in Code properties:

Control Description

Navigator Shows input ports, output ports, and callable Java transformation API methods.
Click an item in the navigator to display a description of the item.
Double-click an item to add it to the Java code window. Alternatively, you can drag an item from
the navigator into the Java code window.
The navigator is available on the following code entry tabs:
- Helpers
- On Input
- At End

Java code
window

Enables you to view or enter Java code for the transformation. The Java code window displays
Java code by using the basic Java syntax highlighting.
Note: On the Full Code tab, you can view but not edit the full class code for the Java
transformation.
The Java code window is available on the following code entry tabs:
- Imports
- Helpers
- On Input
- At End
- Functions
- Optimizer Interfaces
- Full Code

302 Chapter 19: Java Transformation

Control Description

New Function
command

Opens the Define Function dialog box that you use to define functions that invoke Java
expressions.
The Function command is available on the Functions tab.

Editing
toolbar

Enables you to click tool icons, such as cut, copy, and paste, to edit Java code.
The editing toolbar is available on the following code entry tabs:
- Imports
- Helpers
- On Input
- At End
- Functions
- Optimizer Interfaces

Compilation properties

Provides controls to compile and debug Java code. The following table describes the controls in the
Compilation properties:

Control Description

Compile
command

Compiles the Java code for the transformation.

Results
window

Displays the compilation results for the Java transformation class and enables you to find the
source of errors in the code.
To find an error in the code, right-click an error message in the Results window and select to
view the error in the snippet code or in the full code.
You can also double-click an error message in the Results window to find its source.

Creating Java Code Snippets
To create Java code snippets to define transformation behavior, use the Java Code window on the code entry
tabs.

1. Click the appropriate code entry tab.

The following table describes the tasks that you can complete on the code entry tabs in the Java view:

Tab Description

Imports Imports third-party, built-in, and custom Java packages for an active or passive Java
transformation. After you import packages, you can use them on the other code entry tabs.

Helpers Declares user-defined variables and methods for the Java transformation class in an active or
passive Java transformation. After you declare variables and methods, you can use them in any
other code entry tab except the Imports tab.

Developing Java Code 303

Tab Description

On Input Defines how an active or passive Java transformation behaves when it receives an input row.
The Java code that you define on this tab runs one time for each input row.
On this tab, you can also access and use input and output port data, variables, and Java
transformation API methods.

At End Defines how an active or passive Java transformation behaves after it processes all input data.
On this tab, you can also set output data for active transformations, and call Java
transformation API methods.

Functions Defines functions that invoke expressions in a Java transformation with the Java programming
language. For example, you can define a function that invokes an expression that looks up the
values of input or output ports or looks up the values of Java transformation variables.
On the Functions tab, you can manually define functions or click New Function to invoke the
Define Function dialog box, which enables you to easily define a function.

Optimizer
Interfaces

Defines early selection or push-into filter optimization. Select the optimization method in the
navigator. Update the code snippets to enable the optimization. Define the input ports and
associated output ports to push filter logic through.

Full Code Read-only. On this tab, you can view and compile the full class code for the Java transformation.

2. To access input or output column variables in the snippet, expand the Input or Output list in the
navigator and double-click the name of the port.

3. To call a Java transformation API in the snippet, expand the Callable APIs list in the navigator and
double-click the name of the method. If necessary, configure the appropriate input values for the
method.

4. Write appropriate Java code, based on the code entry tab type.

View the full class code for the Java transformation in the Java code window on the Full Code tab.

Importing Java Packages
On the Imports tab, you can import Java packages for active or passive Java transformations.

You can import third-party, built-in, or custom Java packages. After you import Java packages, you can use
the imported packages on the other code entry tabs.

Note: On the Imports tab, you cannot declare or use static variables, instance variables, or user methods.

In the Developer tool, when you export or import metadata that contains a Java transformation, the jar or
class files that contain the third-party or custom packages required by the Java transformation are not
included in the export or import.

If you import metadata that contains a Java transformation, you must copy the jar or class files that contain
the required third-party or custom packages to the Developer tool client and Data Integration Service node.

For example, to import the Java I/O package, enter the following code on the Imports tab:

import java.io.*;
When you import non-standard Java packages, add the package or class to the classpath in the Java
transformation.

304 Chapter 19: Java Transformation

Defining Helper Code
On the Helpers tab, you can declare user-defined variables and methods for the Java transformation class in
active or passive Java transformations.

After you declare variables and methods on the Helpers tab, you can use the variables and methods on any
code entry tab except the Imports tab.

On the Helpers tab, you can declare the following types of code, variables, and methods:

• Static code and static variables.

Within a static block, you can declare static variables and static code. All instances of a reusable Java
transformation in a mapping share static code and variables. Static code runs before any other code in a
Java transformation.

For example, the following code declares a static variable to store the error threshold for all instances of a
Java transformation in a mapping:

static int errorThreshold;
Use this variable to store the error threshold for the transformation and access it from all instances of the
Java transformation in a mapping.

Note: You must synchronize static variables in a reusable Java transformation.

• Instance variables.

Multiple instances of a reusable Java transformation in a mapping do not share instance variables.
Declare instance variables with a prefix to avoid conflicts and initialize non-primitive instance variables.

For example, the following code uses a boolean variable to decide whether to generate an output row:

// boolean to decide whether to generate an output row
// based on validity of input
private boolean generateRow;

• User-defined static or instance methods.

Extends the functionality of the Java transformation. Java methods declared on the Helpers tab can use
or modify output variables or locally declared instance variables. You cannot access input variables from
Java methods on the Helpers tab.

For example, use the following code on the Helpers tab to declare a function that adds two integers:

private int myTXAdd (int num1,int num2)
{
 return num1+num2;
}

Java Transformation Java Properties
Use the code entry tabs in the Java view to write and compile Java code that defines transformation behavior
for specific transformation events.

The following tabs are code entry tabs:

• Imports

• Helpers

• On Input

• At End

• Functions

Java Transformation Java Properties 305

• Optimizer Interfaces

View the full class code for the Java transformation on the Full Code tab.

Imports Tab
On the Imports tab, you can import third-party, built-in, or custom Java packages for active or passive Java
transformations.

To import a Java package, enter the code to import the package in the Java code window in the Code
properties on the Imports tab.

For example, you might enter the following code to import the java.io package:

import java.io.*;
To compile the code that imports Java packages, click Compile in the Compilation properties on the Imports
tab. The results of the compilation appear in the Results window on the Imports tab.

After you import Java packages, you can use them on the other code entry tabs.

Helpers Tab
On the Helpers tab, you can declare user-defined variables and methods for the Java transformation class in
an active or passive Java transformation.

To declare user-defined variables and methods, enter the code in the Java code window in the Code
properties on the Helpers tab.

To compile the helper code for the Java transformation, click Compile in the Compilation properties on the
Helpers tab. The results of the compilation appear in the Results window on the Helpers tab.

After you declare variables and methods, you can use them in any other code entry tab except the Imports
tab.

On Input Tab
On the On Input tab, you define how an active or passive Java transformation behaves when it receives an
input row. On this tab, you can also access and use input and output port data, variables, and Java
transformation API methods.

The Java code that you define on this tab runs one time for each input row.

To define how a Java transformation behaves when it receives an input row, enter the code in the Java code
window in the Code properties on the On Input tab.

From the navigator on the On Input tab, you can access and define the following variables and API methods:

• Input port and output port variables. Access input and output port data as a variable by using the name of
the port as the name of the variable. For example, if “in_int” is an Integer input port, you can access the
data for this port by referring as a variable “in_int” with the Java primitive datatype int. You do not need to
declare input and output ports as variables.

Do not assign a value to an input port variable. If you assign a value to an input variable on the On Input
tab, you cannot get the input data for the corresponding port in the current row.

• Instance variables and user-defined methods. Use any instance or static variable or user-defined method
you declared on the Helpers tab.

306 Chapter 19: Java Transformation

For example, an active Java transformation has two input ports, BASE_SALARY and BONUSES, with an
integer datatype, and a single output port, TOTAL_COMP, with an integer datatype. You create a user-
defined method on the Helpers tab, myTXAdd, that adds two integers and returns the result. Use the
following Java code in the On Input tab to assign the total values for the input ports to the output port and
generate an output row:

TOTAL_COMP = myTXAdd (BASE_SALARY,BONUSES);
generateRow();

When the Java transformation receives an input row, it adds the values of the BASE_SALARY and
BONUSES input ports, assigns the value to the TOTAL_COMP output port, and generates an output row.

• Java transformation API methods. You can call API methods provided by the Java transformation.

To compile the code for the Java transformation, click Compile in the Compilation properties on the On Input
tab. The results of the compilation appear in the Results window on the On Input tab.

At End Tab
On the At End tab, you define how an active or passive Java transformation behaves after it processes all
input data. On this tab, you can also set output data for active transformations, and call Java transformation
API methods.

To define how a Java transformation behaves after it processes all input data, enter the code in the Java
code window in the Code properties on the At End tab.

You can access and define the following variables and API methods on the At End tab:

• Output port variables. You can use the names of any output ports that you defined on the Ports tab as
variables, or set output data for active Java transformations.

• Instance variables and user-defined methods. Use any instance variables or user-defined methods you
declared on the Helpers tab.

• Java transformation API methods. Call API methods provided by the Java transformation.

For example, use the following Java code to write information to the log when the end of data is reached:

logInfo("Number of null rows for partition is: " + partCountNullRows);
To compile the code for the Java transformation, click Compile in the Compilation properties on the At End
tab. The results of the compilation appear in the Results window on the At End tab.

Functions Tab
On the Functions tab, you define functions that invoke expressions in a Java transformation with the Java
programming language.

For example, you can define a function that invokes an expression that looks up the values of input or output
ports or looks up the values of Java transformation variables.

To define a function, you can manually define functions in the Java code window in the Code properties on
the Functions tab, or you can click New Function to invoke the Define Function dialog box, which enables you
to easily define a function.

To compile the code, click Compile in the Compilation properties on the Functions tab. The results of the
compilation appear in the Results window on the Functions tab.

Java Transformation Java Properties 307

Full Code Tab
On the Full Code tab, you can view, but not edit, the full class code for the Java transformation and compile
the code.

You can view the full class code in the Java code window in the Code properties.

To compile the full code for the Java transformation, click Compile in the Compilation properties on the Full
Code tab. The results of the compilation appear in the Results window on the Full Code tab.

Filter Optimization with the Java Transformation
The Data Integration Service can apply filter optimization to active Java transformations. When you define
the Java transformation, you add code for filter optimization on the Java transformation Optimizer Interfaces
tab.

Early Selection Optimization with the Java Transformation
You can enable an active or passive Java transformation for early selection optimization if the Java
transformation has no side effects. The optimizer passes the filter logic through the Java transformation and
modifies the filter condition as required.

To view the code snippets for early selection optimization, choose PredicatePushOptimization in the
navigator of the Optimizer Interfaces tab.

allowPredicatePush

Boolean. Enables early selection. Change the function to return a true result and message in order to enable
early selection. Default is false, and the function returns a message that optimization is not supported.

public ResultAndMessage allowPredicatePush(boolean ignoreOrderOfOp) {
 // To Enable PredicatePushOptimization, this function should return true
 //return new ResultAndMessage(true, "");
 return new ResultAndMessage(false, "Predicate Push Optimization Is Not
Supported");
}

canGenerateOutputFieldEvalError

Boolean. Indicates whether or not the Java transformation can return an output field error, such as a division
by zero error. Change the function to return false if the Java transformation does not generate output field
errors. When the Java transformation can generate field errors, then the Data Integration Service cannot use
early selection optimization.

public boolean canGenerateOutputFieldEvalError() {
 // If this Java transformation can never generate an output field evaluation error,
 // return false.
 return true;
}

getInputExpr

Returns an Informatica expression that describes which input values from input fields comprise an output
field. The optimizer needs to know which input fields comprise an output field in order to push the filter logic
through the transformation.

public InfaExpression getInputExpr(TransformationField field,
 TransformationDataInterface group) {

308 Chapter 19: Java Transformation

 // This should return an Informatica expression for output fields in terms of input
fields
 // We will only push predicate that use fields for which input expressions are
defined.
 // For example, if you have two input fields in0 and in1 and three output fields
out0, out1, out2
 // out0 is the pass-through of in1, out2 is sum of in1 and in2, and out3 is unknown,
the code should be:
 //if (field.getName().equals("out0"))
 // return new InfaExpression("in0", instance);
 //else if (field.getName().equals("out1"))
 // return new InfaExpression("in0 + in1", instance);
 //else if (field.getName().equals("out2"))
 // return null;
 return null;
}

For example, a mapping contains a filter expression, "out0 > 8". Out0 is the value of the out0 output port in
the Java transformation. You can define the value of out0 as the value of the in0 input port + 5. The optimizer
can push the following expression "(in0 + 5) > 8" past the Java transformation with early selection
optimization. You can return NULL if an output field does not have input field expression. The optimizer does
not push filter expressions past output fields with no input expression.
You might include the following code:

if (field.getName().equals("out0"))
 return new InfaExpression("in0 + 5", instance);
else if (field.getName().equals("out2"))
 return null;

inputGroupsPushPredicateTo

Returns a list of groups that can receive the filter logic. The Java transformation has one input group. Do not
modify this function for the Java transformation.

public List<TransformationDataInterface> inputGroupsPushPredicateTo(
 List<TransformationField> fields) {
 // This functions returns a list of input data interfaces to push predicates to.
 // Since JavaTx only has one input data interface, you should not have to modify
this function
 AbstractTransformation tx = instance.getTransformation();
 List<DataInterface> dis = tx.getDataInterfaces();
 List<TransformationDataInterface> inputDIs = new
ArrayList<TransformationDataInterface>();
 for (DataInterface di : dis){
 TransformationDataInterface tdi = (TransformationDataInterface) di;
 if (tdi.isInput())
 inputDIs.add(tdi);
 }
 if(inputDIs.size() == 1)
 return inputDIs;
 else
 return null;
}

Push-Into Optimization with the Java Transformation
You can enable an active Java transformation for push-into optimization if it has no side effects and the
optimization does not affect the mapping results.

When you configure push-into optimization for the Java transformation, you define a way for the Java
transformation to store the filter condition that it receives from the optimizer. Add code that examines the
filter condition. If the Java transformation can absorb the filter logic, then the Java transformation passes a
true condition back to the optimizer. The optimizer removes the Filter transformation from the optimized
mapping.

Filter Optimization with the Java Transformation 309

When you configure the Java transformation you write the code that stores the filter condition as
transformation metadata during optimization. You also write the code to retrieve the filter condition at run-
time and to drop the rows according to the filter logic.

When you define the Java transformation, you add code for push-into optimization on the Java
transformation Optimizer Interfaces tab. To access the code snippets for push-into optimization, choose
FilterPushdownOptimization in the navigator of the transformation Optimizer Interfaces tab.

The Developer tool displays code snippets to enable push-into optimization and to receive the filter condition
from the optimizer. Update the code snippets to enable optimization and to save the filter logic as
transformation metadata.

isFilterSupported

Returns true to enable push-into optimization. Returns false to disable push-into optimization.
Change the function to return true in order to enable push-into optimization.

public ResultAndMessage isFilterSupported() {
 // To enable filter push-into optimization this function should return true
 // return new ResultAndMessage(true, "");
 return new ResultAndMessage(false, "Filter push-into optimization is not supported");
}

pushFilter

Receives the filter condition from the optimizer.
Add code to examine the filter and determine if the filter logic can be used in the transformation. If the
transformation can absorb the filter, then use the following method to store the filter condition as
transformation metadata:

storeMetadata(String key, String data)

The key is an identifier for the metadata. You can define any string as a key. The data is the data you want to
store in order to determine which rows to drop at run time. For example, the data might be the filter condition
that the Java transformation receives from the optimizer.

public ResultAndMessage pushFilter(InfaExpression condition) {

 // Add code to absorb the filter
 // If filter is successfully absorbed return new ResultAndMessage(true, ""); and the
optimizer
 // will remove the filter from the mapping
 // If the filter is not absorbed, return new ResultAndMessage(false, msg);
 return new ResultAndMessage(false, "Filter push-into optimization is not supported");
}

Creating a Java Transformation
In the Developer tool, you can create a reusable or non-reusable Java transformation.

Creating a Reusable Java Transformation
Reusable transformations can exist within multiple mappings.

Create a reusable Java transformation in the Developer tool.

1. Select a project or folder in the Object Explorer view.

2. Click File > New > Transformation.

310 Chapter 19: Java Transformation

The New dialog box appears.

3. Select the Java transformation.

4. Click Next.

5. Enter a name for the transformation.

6. To create an active transformation, select the Create as active option.

7. Click Finish.

The transformation appears in the editor.

8. In the Ports view, click the New button to add a port to the transformation.

9. Edit the port to set the name, datatype, and precision.

Use port names as variables in Java code snippets.

10. In the Java view, use the code entry tabs to write and compile the Java code for the transformation.

11. In the Java view, use the Functions tab to define functions that invoke expressions.

12. On any code entry tab, double-click error messages in the Results window in the Compilation properties
to locate and fix compilation errors in the Java code for the transformation.

13. In the Advanced view, edit the transformation properties.

Creating a Non-Reusable Java Transformation
Non-reusable transformations exist within a single mapping.

Create a non-reusable Java transformation in the Developer tool.

1. In a mapping or mapplet, drag a Java transformation from the Transformation pallette to the editor.

2. In the New Java Transformation dialog box, enter a name for the transformation.

3. To create an active transformation, select the Create as active option.

4. Click Finish.

The transformation appears in the editor.

5. On the General tab, edit the transformation name and the description.

6. On the Ports tab, click the New button to add a port to the transformation.

7. Edit the port to set the name, datatype, and precision.

Use port names as variables in Java code snippets.

8. In the Java view, use the code entry tabs to write and compile the Java code for the transformation.

9. In the Java view, use the Functions tab to define functions that invoke expressions.

10. On any code entry tab, double-click error messages in the Results window in the Compilation properties
to locate and fix compilation errors in the Java code for the transformation.

11. In the Advanced view, edit the transformation properties.

Creating a Java Transformation 311

Compiling a Java Transformation
The Developer tool uses the Java compiler to compile the Java code and generate the byte code for the
transformation.

The Java compiler compiles the Java code and displays the results of the compilation in the Results window
in the Compilation properties on the code entry tabs. The Java compiler installs with the Developer tool in the
java/bin directory.

To compile the full code for the Java transformation, click Compile in the Compilation properties on the Full
Code tab.

When you create a Java transformation, it contains a Java class that defines the base functionality for a Java
transformation. The full code for the Java class contains the template class code for the transformation, plus
the Java code you define on the code entry tabs.

When you compile a Java transformation, the Developer tool adds the code from the code entry tabs to the
template class for the transformation to generate the full class code for the transformation. The Developer
tool then calls the Java compiler to compile the full class code. The Java compiler compiles the
transformation and generates the byte code for the transformation.

The results of the compilation display in the Results window. Use the results of the compilation to identify
and locate Java code errors.

Troubleshooting a Java Transformation
In the Results window in the Compilation properties on any code entry tab, you can find and fix Java code
errors.

Errors in a Java transformation can occur due to an error in code on a code entry tab or in the full code for
the Java transformation class.

To troubleshoot a Java transformation, complete the following high-level steps:

1. Find the source of the error in the Java snippet code or in the full class code for the transformation.

2. Identify the type of error. Use the results of the compilation in the Results window and the location of the
error to identify the type of error.

3. Fix the Java code on the code entry tab.

4. Compile the transformation again.

Finding the Source of Compilation Errors
To find the source of compilation errors, use the results of the compilation displayed in the Results window
in the Compilation properties on a code entry tab or the Full Code tab.

When you double-click an error message in the Results window, the source code that caused the error is
highlighted the in Java code window on the code entry tab or on the Full Code tab.

You can find errors on the Full Code tab, but you cannot edit Java code on the Full Code tab. To fix errors
that you find on the Full Code tab, modify the code on the appropriate code entry tab. You might need to use
the Full Code tab to view errors caused by adding user code to the full class code for the transformation.

312 Chapter 19: Java Transformation

Finding an Error on a Code Entry Tab or the Full Code Tab
You can find compilation errors on a code entry tab or the Full Code tab.

1. In the Results window in the Compilation properties on any code entry tab or the Full Code tab, right-
click an error message.

2. Click either Show In > Snippet or Show In > Full Code Tab.

The Developer tool highlights the source of the error on the selected tab.

Note: You can view but you cannot correct errors on the Full Code tab. To correct errors, you must
navigate to the appropriate code entry tab.

Identifying the Source of Compilation Errors
Compilation errors can appear as a result of errors in the user code.

Errors in the user code might also generate an error in the non-user code for the class. Compilation errors
occur in user and non-user code for the Java transformation.

User Code Errors
Errors can occur in the user code on the code entry tabs. User code errors include standard Java syntax and
language errors.

User code errors might also occur when the Developer tool adds the user code from the code entry tabs to
the full class code.

For example, a Java transformation has an input port with a name of int1 and an integer datatype. The full
code for the class declares the input port variable with the following code:

int int1;
However, if you use the same variable name on the On Input tab, the Java compiler issues an error for a
redeclaration of a variable. To fix the error, rename the variable on the On Input tab.

Non-User Code Errors
User code on the code entry tabs can cause errors in non-user code.

For example, a Java transformation has an input port and an output port, int1 and out1, with integer
datatypes. You write the following code in the On Input code entry tab to calculate interest for input port int1
and assign it to the output port out1:

int interest;
interest = CallInterest(int1); // calculate interest
out1 = int1 + interest;
}

When you compile the transformation, the Developer tool adds the code from the On Input code entry tab to
the full class code for the transformation. When the Java compiler compiles the Java code, the unmatched
brace causes a method in the full class code to end prematurely, and the Java compiler issues an error.

Troubleshooting a Java Transformation 313

Converting to Struct Data Example
Your organization needs to convert a large volume of customer data in a flat file to struct data and write it to
an Avro file. The input file contains customer details such as name, age, and phone numbers. If the customer
name is null in the input file, you do not want to add customer details to the output file.

You can develop a mapping with a Java transformation to define the transformation functionality. In the
Hadoop environment, run the mapping on the Spark engine to transform the data and write the struct data to
an Avro file.

Create a mapping and configure the following transformations:

• Read transformation that reads customer information from a flat file source

• Java transformation as an active transformation that converts flat data to struct data and removes
inconsistent data

• Write transformation that writes the struct data to an Avro file

The following image shows the mapping with a Read transformation, a Java transformation, and a Write
transformation.

On the type definition library tab of the mapping editor, create a complex data type definition Customer. The
complex data type definition represents the schema of the struct data. Rename the type definition library to
CustomerInfo. Add the following elements to the complex data type definition:

• name of type string

• age of type integer

• phones of type array with string elements

314 Chapter 19: Java Transformation

The following image shows the complex data type definition in the type definition library:

In the Java transformation, add a struct output port and specify the type configuration of the port to
reference the complex data type definition that you created. The Java transformation generates a class
Customer with setters and getters to read and set the member fields. The class contains the following
member fields:

• _name

• _age

• _phones

The following image shows the class created for the struct port in the Full Code tab of the Java view:

Converting to Struct Data Example 315

The Java data type for the struct port uses the name of the type definition library and complex data type
definition. The following image shows the Java data type name CustomerInfo.Customer for the cust field in
the generated code:

In the Java view of the Java transformation, import any third-party, built-in, or custom Java packages that the
transformation requires. Write and compile the Java code to convert the flat data into struct data and to
remove the customer row if the customer name is null.

The following image shows the code in the On Input tab:

Validate the mapping and run the mapping on the Spark engine to write the transformed data to the Avro file
output.

316 Chapter 19: Java Transformation

Java Transformation in a Non-native Environment
The Java transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Not supported.

Java Transformation on the Blaze Engine
To use external .jar files in a Java transformation, perform the following steps:

1. Copy external .jar files to the Informatica installation directory in the Data Integration Service machine at
the following location: <Informatic installation directory>/services/shared/jars. Then recycle
the Data Integration Service.

2. On the machine that hosts the Developer tool where you develop and run the mapping that contains the
Java transformation:

a. Copy external .jar files to a directory on the local machine.

b. Edit the Java transformation to include an import statement pointing to the local .jar files.

c. Update the classpath in the Java transformation.

d. Compile the transformation.

Java Transformation on the Spark Engine
Some processing rules for the Spark engine differ from the processing rules for the Data Integration Service.

General Restrictions

The Java transformation is supported with the following restrictions on the Spark engine:

• The Java code in the transformation cannot write output to standard output when you push
transformation logic to Hadoop. The Java code can write output to standard error which appears in the
log files.

• For date/time values, the Spark engine supports the precision of up to microseconds. If a date/time value
contains nanoseconds, the trailing digits are truncated.

Partitioning

The Java transformation has the following restrictions when used with partitioning:

• The Partitionable property must be enabled in the Java transformation. The transformation cannot run in
one partition.

• The following restrictions apply to the Transformation Scope property:

- The value Transaction for transformation scope is not valid.

- If you enable an input port for partition key, the transformation scope must be set to All Input.

- Stateless must be enabled if the transformation scope is row.

Java Transformation in a Non-native Environment 317

Mapping Validation

Mapping validation fails in the following situations:

• You reference an unconnected Lookup transformation from an expression within a Java transformation.

• You select a port of a complex data type as the partition or sort key.

• You enable nanosecond processing in date/time and the Java transformation contains a port of complex
data type with an element of a date/time type. For example, a port of type array<data/time> is not valid if
you enable nanosecond processing in date/time.

• When you enable high precision, a validation error occurs if the Java transformation contains an
expression that uses a decimal port or a complex port with an element of a decimal data type, and the
port is used with an operator.

For example, if the transformation contains a decimal port decimal_port and you use the expression
decimal_port + 1, a validation error occurs.

The mapping fails in the following situation:

• The Java transformation and the mapping use different precision modes when the Java transformation
contains a decimal port or a complex port with an element of a decimal data type.

Even if high precision is enabled in the mapping, the mapping processes data in low-precision mode in
some situations, such as when the mapping contains a complex port with an element of a decimal data
type, or the mapping is a streaming mapping. If high precision is enabled in both the Java transformation
and the mapping, but the mapping processes data in low-precision mode, the mapping fails.

Using External .jar Files

To use external .jar files in a Java transformation, perform the following steps:

1. Copy external .jar files to the Informatica installation directory in the Data Integration Service machine at
the following location:
<Informatic installation directory>/services/shared/jars

2. Recycle the Data Integration Service.

3. On the machine that hosts the Developer tool where you develop and run the mapping that contains the
Java transformation:

a. Copy external .jar files to a directory on the local machine.

b. Edit the Java transformation to include an import statement pointing to the local .jar files.

c. Update the classpath in the Java transformation.

d. Compile the transformation.

Java Transformation in a Streaming Mapping
Streaming mappings have additional processing rules that do not apply to batch mappings.

The Data Integration Service ignores the following properties:

• Partitionable. The Data Integration Service ignores the property and can process the transformation with
multiple threads.

• Stateless. The Data Integration Service ignores the property and maintains the row order of the input data.

318 Chapter 19: Java Transformation

C h a p t e r 2 0

Java Transformation API
Reference

This chapter includes the following topics:

• Java Transformation API Methods Overview, 319

• defineJExpression, 320

• failSession, 321

• generateRow, 321

• getInRowType, 322

• getMetadata, 323

• incrementErrorCount, 323

• invokeJExpression, 324

• isNull, 325

• logError, 325

• logInfo, 326

• resetNotification, 326

• setNull, 327

• storeMetadata, 328

Java Transformation API Methods Overview
On the code entry tabs in the Java view in the editor, you can add API methods to the Java code to define
transformation behavior.

To add an API method to the code, expand the Callable APIs list in the navigator on the code entry tab, and
then double-click the name of the method that you want to add to the code.

Alternatively, you can drag the method from the navigator into the Java code snippet or manually enter the
API method in the Java code snippet.

You can add the following API methods to the Java code in a Java transformation:

defineJExpression

Defines a Java expression.

319

failSession

Throws an exception with an error message and fails the mapping.

generateRow

Generates an output row for active Java transformations.

getInRowType

Returns the input type of the current row in the transformation.

incrementErrorCount

Increments the error count for the mapping.

invokeJExpression

Invokes a Java expression that you have defined by using the defineJExpression method.

isNull

Checks for a null value in an input column.

logError

Writes an error message to the log.

logInfo

Writes an informational message to the log.

resetNotification

If the Data Integration Service machine runs in restart mode, resets variables that you use in the Java
code after a mapping run.

setNull

Sets the value of an output column in an active or passive Java transformation to null.

defineJExpression
Defines an expression, including the expression string and input parameters. Arguments for the
defineJExpression method include an array of JExprParamMetadata objects that contains the input
parameters and a string value that defines the expression syntax.

Use the following syntax:

defineJExpression(
 String expression,
 Object[] paramMetadataArray
);

The following table describes the parameters:

Parameter Type Datatype Description

expression Input String String that represents the expression.

paramMetadataArray Input Object[] Array of JExprParaMetadata objects that contain
the input parameters for the expression.

320 Chapter 20: Java Transformation API Reference

You can add the defineJExpression method to the Java code on any code entry tab except the Imports and
Functions tabs.

To use the defineJExpression method, you must instantiate an array of JExprParamMetadata objects that
represent the input parameters for the expression. You set the metadata values for the parameters and pass
the array as a parameter to the defineJExpression method.

For example, the following Java code creates an expression to look up the value of two strings:

JExprParaMetadata params[] = new JExprParamMetadata[2];
params[0] = new JExprParamMetadata(EDataType.STRING, 20, 0);
params[1] = new JExprParamMetadata(EDataType.STRING, 20, 0);
defineJExpression(":lkp.mylookup(x1,x2)",params);

Note: You must number the parameters that you pass to the expression consecutively and start the
parameters with the letter x. For example, to pass three parameters to an expression, name the parameters
x1, x2, and x3.

failSession
Throws an exception with an error message and fails the mapping.

Use the following syntax:

failSession(String errorMessage);
The following table describes the parameter:

Parameter Parameter
Type

Datatype Description

errorMessage Input String Error message string.

Use the failSession method to end the mapping. Do not use the failSession method in a try/catch block on a
code entry tab.

You can add the failSession method to the Java code on any code entry tab except the Imports and
Functions tabs.

The following Java code shows how to test the input1 input port for a null value and fail the mapping if it is
null:

if(isNull(”input1”)) {
 failSession(“Cannot process a null value for port input1.”);
}

generateRow
Generates an output row for active Java transformations.

Use the following syntax:

generateRow();

failSession 321

When you call the generateRow method, the Java transformation generates an output row using the current
value of the output port variables. If you want to generate multiple rows corresponding to an input row, you
can call the generateRow method more than once for each input row. If you do not use the generateRow
method in an active Java transformation, the transformation does not generate output rows.

You can add the generateRow method to the Java code on any code entry tab except the Imports and
Functions tabs.

You can call the generateRow method in active transformations only. If you call the generateRow method in a
passive transformation, the Data Integration Service generates an error.

Use the following Java code to generate one output row, modify the values of the output ports, and generate
another output row:

// Generate multiple rows.
if(!isNull("input1") && !isNull("input2"))
{
 output1 = input1 + input2;
 output2 = input1 - input2;
}
generateRow();
// Generate another row with modified values.
output1 = output1 * 2;
output2 = output2 * 2;
generateRow();

getInRowType
Returns the input type of the current row in the transformation. The method returns a value of insert, update,
delete, or reject.

Use the following syntax:

rowType getInRowType();
The following table describes the parameter:

Parameter Parameter
Type

Datatype Description

rowType Output String Returns the update strategy type, which is one of the following
values:
- DELETE
- INSERT
- REJECT
- UPDATE

You can add the getInRowType method to the Java code on the On Input code entry tab.

You can use the getInRowType method in active transformations configured to set the update strategy. If you
call this method in an active transformation that is not configured to set the update strategy, the Data
Integration Service generates an error.

322 Chapter 20: Java Transformation API Reference

getMetadata
Retrieves Java transformation metadata at runtime. The getMetadata method retrieves metadata that you
save with the storeMetadata method, such as a filter condition that the optimizer passes to the Java
transformation in the pushFilter function.

Use the following syntax:

getMetadata (String key);
The following table describes the parameters:

Parameter Parameter
Type

Datatype Description

key Input String Identifies the metadata. The getMetadata method uses the key
to determine which metadata to retrieve.

You can add the getMetadata method to the Java code on the following code entry tabs:

• Helper

• On Input

• At End

• Optimizer Interfaces

• Functions

You can configure the getMetadata method to retrieve filter conditions for push-into optimization. The
getMetadata method can retrieve each filter condition that you store from the optimizer.

// Retrieve a filter condition
String mydata = getMetadata ("FilterKey");

incrementErrorCount
Increments the error count. If the error count reaches the error threshold, the mapping fails.

Use the following syntax:

incrementErrorCount(int nErrors);
The following table describes the parameter:

Parameter Parameter
Type

Datatype Description

nErrors Input Integer Number by which to increment the error count.

You can add the incrementErrorCount method to the Java code on any code entry tab except the Imports and
Functions tabs.

getMetadata 323

The following Java code shows how to increment the error count if an input port for a transformation has a
null value:

// Check if input employee id and name is null.
if (isNull ("EMP_ID_INP") || isNull ("EMP_NAME_INP"))
{
 incrementErrorCount(1);
 // if input employee id and/or name is null, don't generate a output row for this
input row
 generateRow = false;
}

invokeJExpression
Invokes an expression and returns the value for the expression.

Use the following syntax:

(datatype)invokeJExpression(
 String expression,
 Object[] paramMetadataArray);

Input parameters for the invokeJExpression method are a string value that represents the expression and an
array of objects that contain the expression input parameters.

The following table describes the parameters:

Parameter Parameter
Type

Datatype Description

expression Input String String that represents the expression.

paramMetadataArray Input Object[] Array of objects that contain the input parameters
for the expression.

You can add the invokeJExpression method to the Java code on any code entry tab except the Imports and
Functions tabs.

Use the following rules and guidelines when you use the invokeJExpression method:

• Return datatype. The return datatype of the invokeJExpression method is an object. You must cast the
return value of the function with the appropriate datatype.

You can return values with Integer, Double, String, and byte[] datatypes.

• Row type. The row type for return values from the invokeJExpression method is INSERT.

To use a different row type for the return value, use the advanced interface.

• Null values. If you pass a null value as a parameter or the return value for the invokeJExpression method
is NULL, the value is treated as a null indicator.

For example, if the return value of an expression is NULL and the return datatype is String, a string is
returned with a value of null.

• Date datatype. You must convert input parameters with a Date datatype to the String datatype.

To use the string in an expression as a Date datatype, use the to_date() function to convert the string to a
Date datatype.

Also, you must cast the return type of any expression that returns a Date datatype as a String datatype.

324 Chapter 20: Java Transformation API Reference

The following example concatenates the strings “John” and “Smith” and returns the string, “John Smith”:

(String)invokeJExpression("concat(x1,x2)", new Object [] { "John ", "Smith" });
Note: You must number the parameters that you pass to the expression consecutively, and start the
parameter with the letter x. For example, to pass three parameters to an expression, name the parameters x1,
x2, and x3.

isNull
Checks the value of an input column for a null value.

Use the following syntax:

Boolean isNull(String satrColName);
The following table describes the parameter:

Parameters Parameter
Type

Datatype Description

strColName Input String Name of an input column.

You can add the isNull method to the Java code on the On Input code entry tab.

The following Java code shows how to check whether the value of the SALARY input column is null before
adding it to the totalSalaries instance variable:

// if value of SALARY is not null
if (!isNull("SALARY")) {
 // add to totalSalaries
 TOTAL_SALARIES += SALARY;
}

Alternatively, use the following Java code to achieve the same results:

// if value of SALARY is not null
String strColName = "SALARY";
if (!isNull(strColName)) {
 // add to totalSalaries
 TOTAL_SALARIES += SALARY;
}

logError
Writes an error message to the log.

Use the following syntax:

logError(String msg);

isNull 325

The following table describes the parameter:

Parameter Parameter
Type

Datatype Description

msg Input String Error message string.

You can add the logError method to the Java code on any code entry tab except the Imports and Functions
tabs.

The following Java code shows how to log an error when the input port is null:

// check BASE_SALARY
if (isNull("BASE_SALARY")) {
 logError("Cannot process a null salary field.");
}

When the code runs, the following message appears in the log:

[JTX_1013] [ERROR] Cannot process a null salary field.

logInfo
Writes an informational message to the log.

Use the following syntax:

logInfo(String msg);
The following table describes the parameter:

Parameter Parameter
Type

Datatype Description

msg Input String Information message string.

You can add the logInfo method to the Java code on any code entry tab except the Imports and Functions
tabs.

The following Java code shows how to write a message to the log after the Java transformation processes a
message threshold of 1000 rows:

if (numRowsProcessed == messageThreshold) {
 logInfo("Processed " + messageThreshold + " rows.");
}

resetNotification
If the Data Integration Service machine runs in restart mode, resets variables that you use in the Java code
after a mapping run.

In restart mode, the Data Integration Service is not deinitialized but is reset after a request so that the Data
Integration Service can process the next request.

326 Chapter 20: Java Transformation API Reference

For a Java transformation, use the resetNotification method to reset variables in the Java code after a
mapping run.

Use the following syntax:

public int resetNotification(IGroup group) {
 return EStatus.value;
}

The following table describes the parameters:

Parameter Parameter Type Datatype Description

int Output EStatus.value Return value, where value is one of the
following values:
- SUCCESS. Success.
- FAILURE. Failure.
- NOIMPL. Not implemented.

group Input IGroup The input group.

You can add the resetNotification method to the Java code on the code entry tab on the Helpers tab.

The resetNotification method does not appear in the Callable APIs list.

For example, assuming that the Java code declares a static variable named out5_static and initializes it to 1,
the following Java code resets the out5_static variable to 1 after the next mapping run:

public int resetNotification(IGroup group) {
 out5_static=1;
 return EStatus.SUCCESS;
}

This method is not required. However, if the Data Integration Service runs in restart mode and the mapping
contains a Java transformation that does not implement the resetNotification method, the JSDK_42075
warning message appears in the log.

setNull
Sets the value of an output column to null in an active or passive Java transformation.

Use the following syntax:

setNull(String strColName);
The following table describes the parameter:

Parameter Parameter Type Datatype Description

strColName Input String Name of an output column.

The setNull method sets the value of an output column in an active or passive Java transformation to null.
After you set an output column to null, you cannot modify the value until you generate an output row.

You can add the setNull method to the Java code on any code entry tab except the Imports and Functions
tabs.

setNull 327

The following Java code shows how to check the value of an input column and set the corresponding value
of an output column to null:

// check value of Q3RESULTS input column
if(isNull("Q3RESULTS")) {
 // set the value of output column to null
 setNull("RESULTS");
}

Alternatively, you can use the following Java code achieve the same results:

// check value of Q3RESULTS input column
String strColName = "Q3RESULTS";
if(isNull(strColName)) {
 // set the value of output column to null
 setNull(strColName);
}

storeMetadata
Stores Java transformation metadata that you can retrieve at runtime with the getMetadata method.

Use the following syntax:

storeMetadata (String key String data);
The following table describes the parameters:

Parameter Parameter
Type

Datatype Description

key Input String Identifies the metadata. The storeMetadata method requires a
key to identify the metadata. Define the key as any string.

data Input String The data that you want to store as Java transformation
metadata.

You can add the storeMetadata method to the Java code to the following code entry tabs:

• Helper

• On Input

• At End

• Optimizer Interfaces

• Functions

You can configure the storeMetadata method in an active transformation to accept filter conditions for push-
into optimization. The storeMetadata method stores a filter condition that the optimizer pushes from the
mapping to the Java transformation.

// Store a filter condition
storeMetadata ("FilterKey", condition);

328 Chapter 20: Java Transformation API Reference

C h a p t e r 2 1

Java Expressions
This chapter includes the following topics:

• Java Expressions Overview, 329

• Using the Define Function Dialog Box to Define an Expression, 330

• Working with the Simple Interface, 332

• Working with the Advanced Interface, 334

• JExpression Class API Reference, 338

Java Expressions Overview
You can invoke expressions in a Java transformation with the Java programming language.

Use expressions to extend the functionality of a Java transformation. For example, you can invoke an
expression in a Java transformation to look up the values of input or output ports or look up the values of
Java transformation variables.

To invoke expressions in a Java transformation, you generate the Java code or use Java transformation API
methods to invoke the expression. You invoke the expression and use the result of the expression on the
appropriate code entry tab. You can generate the Java code that invokes an expression or use API methods
to write the Java code that invokes the expression.

The following table describes the methods that you can use to create and invoke expressions in a Java
transformation:

Method Description

Define Function dialog box Enables you to create a function that invokes an expression and generate the
code for an expression.

Simple interface Enables you to call a single API method to invoke an expression and get the
result of the expression.

Advanced interface Enables you to define the expression, invoke the expression, and use the result
of the expression.
If you are familiar with object-oriented programming and want more control
over invoking the expression, use the advanced interface.

329

Expression Function Types
You can create expressions for a Java transformation by using the Define Function dialog box or by using the
simple or advanced interface.

You can enter expressions that use input or output port variables or variables in the Java code as input
parameters.

If you use the Define Function dialog box, you can validate the expression before you use it in a Java
transformation.

You can invoke the following types of expression functions in a Java transformation:

Expression Function Type Description

Transformation language functions SQL-like functions designed to handle common expressions.

User-defined functions Functions that you create in the Developer tool based on transformation
language functions.

Custom functions Functions that you create with the Custom Function API.

You can also use unconnected transformations and built-in variables in expressions. For example, you can
use an unconnected lookup transformation in an expression.

Using the Define Function Dialog Box to Define an
Expression

When you define a Java expression, you configure the function, create the expression, and generate the code
that invokes the expression.

You can define the function and create the expression in the Define Function dialog box.

To create an expression function and use the expression in a Java transformation, complete the following
high-level tasks:

1. Configure the function that invokes the expression, including the function name, description, and
parameters. You use the function parameters when you create the expression.

2. Create the expression syntax and validate the expression.

3. Generate the Java code that invokes the expression.

The Developer places the code on the Functions code entry tab.

After you generate the Java code, call the generated function on the appropriate code entry tab to invoke an
expression or get a JExpression object, based on whether you use the simple or advanced interface.

Note: To validate an expression when you create the expression, you must use the Define Function dialog
box.

330 Chapter 21: Java Expressions

Step 1. Configure the Function
You configure the function name, description, and input parameters for the Java function that invokes the
expression.

Use the following rules and guidelines when you configure the function:

• Use a unique function name that does not conflict with an existing Java function in the transformation or
reserved Java keywords.

• You must configure the parameter name, Java datatype, precision, and scale. The input parameters are
the values you pass when you call the function in the Java code for the transformation.

• To pass the Date datatype to an expression, use the String datatype for the input parameter.

If an expression returns the Date datatype, you can use the return value as the String datatype in the
simple interface and the String or long datatype in the advanced interface.

Step 2. Create and Validate the Expression
When you create the expression, use the parameters you configured for the function.

You can also use transformation language functions, custom functions, or other user-defined functions in the
expression. You can create and validate the expression in the Define Function dialog box.

Step 3. Generate Java Code for the Expression
After you configure the function and function parameters and define and validate the expression, you can
generate the Java code that invokes the expression.

The Developer places the generated Java code on the Functions code entry tab. Use the generated Java code
to call the functions that invoke the expression in the code entry tabs. You can generate the simple or
advanced Java code.

After you generate the Java code that invokes an expression, you cannot edit the expression and revalidate it.
To modify an expression after you generate the code, you must create the expression again.

Creating an Expression and Generating Java Code by Using the
Define Function Dialog Box

You can create a function that invokes an expression in the Define Function dialog box.

Complete the following steps to create a function that invokes an expression:

1. In the Developer, open a Java transformation or create a new Java transformation.

2. On the Java Code tab, click New Function.

The Define Function dialog box appears.

3. Enter a function name.

4. Optionally, enter a description for the expression.

Enter up to 2,000 characters.

5. Create the arguments for the function.

When you create the arguments, configure the argument name, datatype, precision, and scale.

6. On the Expression tab, create an expression with the arguments that you created.

7. To validate the expression, click Validate.

Using the Define Function Dialog Box to Define an Expression 331

8. Optionally, enter the expression in the Expression box. Then, click Validate to validate the expression.

9. To generate Java code by using the advanced interface, select the Generate Advanced Code option.
Then, click Generate.

The Developer generates the function to invoke the expression on the Functions code entry tab.

Java Expression Templates
You can generate Java code for an expression using the simple or advanced Java code for an expression.

The Java code for the expression is generated based on the template for the expression.

The following example shows the template for a Java expression generated for simple Java code:

Object function_name (Java datatype x1[,
 Java datatype x2 ...])
 throws SDK Exception
{
return (Object)invokeJExpression(String expression,
 new Object [] { x1[, x2, ...]});
}

The following example shows the template for a Java expression generated by using the advanced interface:

JExpression function_name () throws SDKException
{
 JExprParamMetadata params[] = new JExprParamMetadata[number of parameters];
 params[0] = new JExprParamMetadata (
 EDataType.STRING, // data type
 20, // precision
 0 // scale
);
...
 params[number of parameters - 1] = new JExprParamMetadata (
 EDataType.STRING, // data type
 20, // precision
 0 // scale
);
...
 return defineJExpression(String expression,params);
}

Working with the Simple Interface
Use the invokeJExpression Java API method to invoke an expression in the simple interface.

invokeJExpression
Invokes an expression and returns the value for the expression.

Use the following syntax:

(datatype)invokeJExpression(
 String expression,
 Object[] paramMetadataArray);

Input parameters for the invokeJExpression method are a string value that represents the expression and an
array of objects that contain the expression input parameters.

332 Chapter 21: Java Expressions

The following table describes the parameters:

Parameter Parameter
Type

Datatype Description

expression Input String String that represents the expression.

paramMetadataArray Input Object[] Array of objects that contain the input parameters
for the expression.

You can add the invokeJExpression method to the Java code on any code entry tab except the Imports and
Functions tabs.

Use the following rules and guidelines when you use the invokeJExpression method:

• Return datatype. The return datatype of the invokeJExpression method is an object. You must cast the
return value of the function with the appropriate datatype.

You can return values with Integer, Double, String, and byte[] datatypes.

• Row type. The row type for return values from the invokeJExpression method is INSERT.

To use a different row type for the return value, use the advanced interface.

• Null values. If you pass a null value as a parameter or the return value for the invokeJExpression method
is NULL, the value is treated as a null indicator.

For example, if the return value of an expression is NULL and the return datatype is String, a string is
returned with a value of null.

• Date datatype. You must convert input parameters with a Date datatype to the String datatype.

To use the string in an expression as a Date datatype, use the to_date() function to convert the string to a
Date datatype.

Also, you must cast the return type of any expression that returns a Date datatype as a String datatype.

Note: You must number the parameters that you pass to the expression consecutively, and start the
parameter with the letter x. For example, to pass three parameters to an expression, name the parameters x1,
x2, and x3.

Simple Interface Example
You can define and call expressions that use the invokeJExpression API method on the Helpers and On Input
code entry tabs.

The following example shows how to complete a lookup on the NAME and ADDRESS input ports in a Java
transformation and assign the return value to the COMPANY_NAME output port.

Enter the following code on the On Input code entry tab:

COMPANY_NAME = (String)invokeJExpression(":lkp.my_lookup(X1,X2)", new Object []
{str1 ,str2});
generateRow();

Working with the Simple Interface 333

Working with the Advanced Interface
In the advanced interface, you can use object oriented API methods to define, invoke, and get the result of an
expression.

The following table describes the classes and API methods that are available in the advanced interface:

Class or API Method Description

EDataType class Enumerates the datatypes for an expression.

JExprParamMetadata class Contains the metadata for each parameter in an expression. Parameter
metadata includes datatype, precision, and scale.

defineJExpression API method Defines the expression. Includes expression string and parameters.

invokeJExpression API method Invokes an expression.

JExpression class Contains the methods to create, invoke, get the metadata and get the
expression result, and check the return datatype.

Invoking an Expression with the Advanced Interface
You can define, invoke, and get the result of an expression by using the advanced interface.

1. On the Helpers or On Input code entry tab, create an instance of JExprParamMetadata class for each
argument for the expression and set the value of the metadata. Optionally, you can instantiate the
JExprParamMetadata object in the defineJExpression method.

2. Use the defineJExpression method to get the JExpression object for the expression.

3. On the appropriate code entry tab, invoke the expression with the invokeJExpression method.

4. Check the result of the return value with the isResultNull method.

5. You can get the datatype of the return value or the metadata of the return value with the
getResultDataType and getResultMetadata methods.

6. Get the result of the expression by using the appropriate API method. You can use the getInt, getDouble,
getStringBuffer, and getBytes methods.

Rules and Guidelines for Working with the Advanced Interface
When you work with the advanced interfaces, you must be aware of rules and guidelines.

Use the following rules and guidelines:

• If you pass a null value as a parameter or if the result of an expression is null, the value is treated as a null
indicator. For example, if the result of an expression is null and the return datatype is String, a string is
returned with a value of null. You can check the result of an expression by using the isResultNull method.

334 Chapter 21: Java Expressions

• You must convert input parameters with a Date datatype to a String before you can use them in an
expression. To use the string in an expression as a Date datatype, use the to_date() function to convert
the string to a Date datatype.

You can get the result of an expression that returns a Date datatype as a String or long datatype.

To get the result of an expression that returns a Date datatype as a String datatype, use the
getStringBuffer method. To get the result of an expression that returns a Date datatype as a long
datatype, use the getLong method.

EDataType Class
Enumerates the Java datatypes used in expressions. Gets the return datatype of an expression or assign the
datatype for a parameter in a JExprParamMetadata object. You do not need to instantiate the EDataType
class.

The following table lists the enumerated values for Java datatypes in expressions:

Datatype Enumerated Value

INT 1

DOUBLE 2

STRING 3

BYTE_ARRAY 4

DATE_AS_LONG 5

The following example Java code shows how to use the EDataType class to assign a datatype of String to a
JExprParamMetadata object:

JExprParamMetadata params[] = new JExprParamMetadata[2];
params[0] = new JExprParamMetadata (
 EDataType.STRING, // data type
 20, // precision
 0 // scale
);
...

JExprParamMetadata Class
Instantiates an object that represents the parameters for an expression and sets the metadata for the
parameters.

You use an array of JExprParamMetadata objects as input to the defineJExpression method to set the
metadata for the input parameters. You can create a instance of the JExprParamMetadata object on the
Functions code entry tab or in defineJExpression.

Use the following syntax:

JExprParamMetadata paramMetadataArray[] = new JExprParamMetadata[numberOfParameters];
paramMetadataArray[0] = new JExprParamMetadata(datatype, precision, scale);
...
paramMetadataArray[numberofParameters - 1] = new JExprParamMetadata(datatype, precision,
scale);;

Working with the Advanced Interface 335

The following table describes the arguments:

Argument Argument Type Argument Datatype Description

datatype Input EDataType Datatype of the parameter.

precision Input Integer Precision of the parameter.

scale Input Integer Scale of the parameter.

For example, use the following Java code to instantiate an array of two JExprParamMetadata objects with
String datatypes, precision of 20, and scale of 0:

JExprParamMetadata params[] = new JExprParamMetadata[2];
params[0] = new JExprParamMetadata(EDataType.STRING, 20, 0);
params[1] = new JExprParamMetadata(EDataType.STRING, 20, 0);
return defineJExpression(":LKP.LKP_addresslookup(X1,X2)",params);

defineJExpression
Defines an expression, including the expression string and input parameters. Arguments for the
defineJExpression method include an array of JExprParamMetadata objects that contains the input
parameters and a string value that defines the expression syntax.

Use the following syntax:

defineJExpression(
 String expression,
 Object[] paramMetadataArray
);

The following table describes the parameters:

Parameter Type Datatype Description

expression Input String String that represents the expression.

paramMetadataArray Input Object[] Array of JExprParaMetadata objects that contain
the input parameters for the expression.

You can add the defineJExpression method to the Java code on any code entry tab except the Imports and
Functions tabs.

To use the defineJExpression method, you must instantiate an array of JExprParamMetadata objects that
represent the input parameters for the expression. You set the metadata values for the parameters and pass
the array as a parameter to the defineJExpression method.

For example, the following Java code creates an expression to look up the value of two strings:

JExprParaMetadata params[] = new JExprParamMetadata[2];
params[0] = new JExprParamMetadata(EDataType.STRING, 20, 0);
params[1] = new JExprParamMetadata(EDataType.STRING, 20, 0);
defineJExpression(":lkp.mylookup(x1,x2)",params);

Note: You must number the parameters that you pass to the expression consecutively and start the
parameters with the letter x. For example, to pass three parameters to an expression, name the parameters
x1, x2, and x3.

336 Chapter 21: Java Expressions

JExpression Class
Contains methods to create and invoke an expression, return the value of an expression, and check the return
datatype.

The following table lists the methods in the JExpression class:

Method Name Description

invoke Invokes an expression.

getResultDataType Returns the datatype of the expression result.

getResultMetadata Returns the metadata of the expression result.

isResultNull Checks the result value of an expression result.

getInt Returns the value of an expression result as an Integer datatype.

getDouble Returns the value of an expression result as a Double datatype.

getStringBuffer Returns the value of an expression result as a String datatype.

getBytes Returns the value of an expression result as a byte[] datatype.

Advanced Interface Example
You can use the advanced interface to create and invoke a lookup expression in a Java transformation.

The following example Java code shows how to create a function that calls an expression and how to invoke
the expression to get the return value. This example passes the values for two input ports with a String
datatype, NAME and COMPANY, to the function myLookup. The myLookup function uses a lookup expression
to look up the value for the ADDRESS output port.

Note: This example assumes you have an unconnected lookup transformation in the mapping called
LKP_addresslookup.

Use the following Java code on the Helpers tab:

JExpression addressLookup() throws SDKException
{
 JExprParamMetadata params[] = new JExprParamMetadata[2];
 params[0] = new JExprParamMetadata (
 EDataType.STRING, // data type
 50, // precision
 0 // scale
);
 params[1] = new JExprParamMetadata (
 EDataType.STRING, // data type
 50, // precision
 0 // scale
);
 return defineJExpression(":LKP.LKP_addresslookup(X1,X2)",params);
}
JExpression lookup = null;
boolean isJExprObjCreated = false;

Use the following Java code on the On Input tab to invoke the expression and return the value of the
ADDRESS port:

...
if(!iisJExprObjCreated)

Working with the Advanced Interface 337

{
 lookup = addressLookup();
 isJExprObjCreated = true;
}
lookup = addressLookup();
lookup.invoke(new Object [] {NAME,COMPANY}, ERowType.INSERT);
EDataType addressDataType = lookup.getResultDataType();
if(addressDataType == EDataType.STRING)
{
 ADDRESS = (lookup.getStringBuffer()).toString();
} else {
 logError("Expression result datatype is incorrect.");
}
...

JExpression Class API Reference
The JExpression class contains API methods that let you create and invoke an expression, return the value of
an expression, and check the return datatype.

The JExpression class contains the following API methods:

• getBytes

• getDouble

• getInt

• getLong

• getResultDataType

• getResultMetadata

• getStringBuffer

• invoke

• isResultNull

getBytes
Returns the value of an expression result as a byte[] datatype. Gets the result of an expression that encypts
data with the AES_ENCRYPT function.

Use the following syntax:

objectName.getBytes();
Use the following example Java code to get the result of an expression that encrypts the binary data using
the AES_ENCRYPT function, where JExprEncryptData is a JExpression object:

byte[] newBytes = JExprEncryptData.getBytes();

getDouble
Returns the value of an expression result as a Double datatype.

Use the following syntax:

objectName.getDouble();

338 Chapter 21: Java Expressions

Use the following example Java code to get the result of an expression that returns a salary value as a
double, where JExprSalary is a JExpression object:

double salary = JExprSalary.getDouble();

getInt
Returns the value of an expression result as an Integer datatype.

Use the following syntax:

objectName.getInt();
For example, use the following Java code to get the result of an expression that returns an employee ID
number as an integer, where findEmpID is a JExpression object:

int empID = findEmpID.getInt();

getLong
Returns the value of an expression result as a Long datatype. Gets the result of an expression that uses a
Date datatype.

Use the following syntax:

objectName.getLong();
Use the following example Java code to get the result of an expression that returns a Date value as a Long
datatype, where JExprCurrentDate is a JExpression object:

long currDate = JExprCurrentDate.getLong();

getResultDataType
Returns the datatype of an expression result. Returns a value of EDataType.

Use the following syntax:

objectName.getResultDataType();
Use the following example Java code to invoke an expression and assign the datatype of the result to the
variable dataType:

myObject.invoke(new Object[] { NAME,COMPANY }, ERowType INSERT);
EDataType dataType = myObject.getResultDataType();

getResultMetadata
Returns the metadata for an expression result. You can use getResultMetadata to get the precision, scale,
and datatype of an expression result. You can assign the metadata of the return value from an expression to
a JExprParamMetadata object. Use the getScale, getPrecision, and getDataType object methods to retrieve
the result metadata.

Use the following syntax:

objectName.getResultMetadata();
Use the following example Java code to assign the scale, precision, and datatype of the return value of
myObject to variables:

JExprParamMetadata myMetadata = myObject.getResultMetadata();
int scale = myMetadata.getScale();
int prec = myMetadata.getPrecision();
int datatype = myMetadata.getDataType();

JExpression Class API Reference 339

Note: The getDataType object method returns the integer value of the datatype, as enumerated in EDataType.

getStringBuffer
Returns the value of an expression result as a String datatype.

Use the following syntax:

objectName.getStringBuffer();
Use the following example Java code to get the result of an expression that returns two concatenated
strings, where JExprConcat is an JExpression object:

String result = JExprConcat.getStringBuffer();

invoke
Invokes an expression. Arguments for invoke include an object that defines the input parameters and the row
type. You must instantiate a JExpression object before you can use the invoke method. For the row type, use
ERowType.INSERT, ERowType.DELETE, and ERowType.UPDATE.

Use the following syntax:

objectName.invoke(
 new Object[] { param1[, ... paramN]},
 rowType
);

The following table describes the arguments:

Argument Datatype Input/
Output

Description

objectName JExpression Input JExpression object name.

parameters - Input Object array that contains the input values for the
expression.

For example, you create a function on the Functions code entry tab named address_lookup() that returns an
JExpression object that represents the expression. Use the following code to invoke the expression that uses
input ports NAME and COMPANY:

JExpression myObject = address_lookup();
myObject.invoke(new Object[] { NAME,COMPANY }, ERowType INSERT);

isResultNull
Checks the value of an expression result.

Use the following syntax:

objectName.isResultNull();
Use the following example Java code to invoke an expression and assign the return value of the expression
to the variable address if the return value is not null:

JExpression myObject = address_lookup();
myObject.invoke(new Object[] { NAME,COMPANY }, ERowType INSERT);
if(!myObject.isResultNull()) {
 String address = myObject.getStringBuffer();
}

340 Chapter 21: Java Expressions

C h a p t e r 2 2

Joiner Transformation
This chapter includes the following topics:

• Joiner Transformation Overview, 341

• Joiner Transformation Advanced Properties, 342

• Joiner Caches, 343

• Joiner Transformation Ports, 344

• Joiner Transformations in Dynamic Mappings, 345

• Port Selectors in a Joiner Transformation, 345

• Defining a Join Condition, 348

• Join Types, 351

• Sorted Input for a Joiner Transformation, 354

• Joining Data from the Same Source, 357

• Blocking the Source Pipelines, 359

• Joiner Transformation Performance Tips, 360

• Rules and Guidelines for a Joiner Transformation, 361

• Joiner Transformation in a Non-native Environment , 361

Joiner Transformation Overview
The Joiner transformation joins source data from two related heterogeneous sources from different
locations or from different file systems. You can also join data from the same source. The Joiner
transformation is a multiple-group active transformation.

The Joiner transformation joins sources with at least one matching column. The Joiner transformation uses
a condition that matches one or more pairs of columns between the two sources.

The two input pipelines include a master pipeline and a detail pipeline or a master and a detail branch. The
master pipeline ends at the Joiner transformation, while the detail pipeline continues to the target.

341

The following figure shows the master and the detail pipelines in a mapping with a Joiner transformation:

1. Master Pipeline
2. Detail Pipeline

To join more than two sources in a mapping, join the output from the Joiner transformation with another
source pipeline. Add Joiner transformations to the mapping until you have joined all the source pipelines.

Joiner Transformation Advanced Properties
Configure properties that help determine how the Data Integration Service processes data for the Joiner
Transformation.

Configure the following properties on the Advanced tab:

Joiner Data Cache Size

Amount of memory that the Data Integration Service allocates to the data cache for the transformation
at the start of the mapping run. Select Auto to have the Data Integration Service automatically calculate
the memory requirements at run time. Enter a specific value in bytes when you tune the cache size.
Default is Auto.

Joiner Index Cache Size

Amount of memory that the Data Integration Service allocates to the index cache for the transformation
at the start of the mapping run. Select Auto to have the Data Integration Service automatically calculate
the memory requirements at run time. Enter a specific value in bytes when you tune the cache size.
Default is Auto.

Cache Directory

Directory where the Data Integration Service creates the index cache files and data cache files. Verify
that the directory exists and contains enough disk space for the cache files.

Enter multiple directories separated by semicolons to increase performance during cache partitioning.
Cache partitioning creates a separate cache for each partition that processes the transformation.

342 Chapter 22: Joiner Transformation

Default is the CacheDir system parameter. You can configure another system parameter or user-defined
parameter for this property.

Sorted Input

Indicates that input data is presorted by groups. Choose Sorted Input to join sorted data. Using sorted
input can increase performance.

Master Sort Order

Specifies the sort order of the master source data. Choose Ascending if the master source data is in
ascending order. If you choose Ascending, also enable sorted input. Default is Auto.

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Related Topics:
• “Cache Size” on page 71

Joiner Caches
When you run a mapping that uses a Joiner transformation, the Data Integration Service creates an index
cache and data cache in memory to run the transformation. If the Data Integration Service requires more
space than available in the memory cache, it stores overflow data in cache files.

When you run a mapping that uses a Joiner transformation, the Data Integration Service reads rows from the
master and detail sources concurrently and builds index and data caches based on the master rows. The
Data Integration Service performs the join based on the detail source data and the cached master data.

The type of Joiner transformation determines the number of rows that the Data Integration Service stores in
the cache.

Joiner Caches 343

The following table describes the information that the Data Integration Service stores in the caches for
different types of Joiner transformations:

Joiner
Transformation
Type

Index Cache Data Cache

Unsorted Input Stores all master rows in the join condition with
unique index keys.

Stores all master rows.

Sorted Input with
Different Sources

Stores 100 master rows in the join condition with
unique index keys.

Stores master rows that correspond to
the rows stored in the index cache. If the
master data contains multiple rows with
the same key, the Data Integration
Service stores more than 100 rows in the
data cache.

Sorted Input with the
Same Source

Stores all master or detail rows in the join
condition with unique keys. Stores detail rows if
the Data Integration Service processes the detail
pipeline faster than the master pipeline.
Otherwise, stores master rows. The number of
rows it stores depends on the processing rates
of the master and detail pipelines. If one pipeline
processes its rows faster than the other, the
Data Integration Service caches all rows that
have already been processed. The service keeps
the rows cached until the other pipeline finishes
processing its rows.

Stores data for the rows stored in the
index cache. If the index cache stores
keys for the master pipeline, the data
cache stores the data for master
pipeline. If the index cache stores keys
for the detail pipeline, the data cache
stores data for detail pipeline.

Joiner Transformation Ports
A Joiner transformation has different port types that determine how the Data Integration Service performs
the join.

A Joiner transformation has the following port types:

Master

Ports that link to the master source in the mapping.

Detail

Ports that link to the detail source in the mapping.

Dynamic Port

Receives or returns ports in a dynamic mapping. A dynamic port can receive one or more columns from
an upstream transformation and create a generated port for each column. A dynamic output port can
return one or more generated ports. You can define input rules to determine which columns a dynamic
port receives.

You can change a port from a master port to a detail port. You can also change a port from a detail port to a
master port. When you change the port type of one port, you change the port type of all ports. Therefore,
when you change a master port to a detail port, you change all master ports to detail ports and all detail ports
to master ports.

344 Chapter 22: Joiner Transformation

Joiner Transformations in Dynamic Mappings
You can use a Joiner transformation in a dynamic mapping. You can reference dynamic ports and generated
ports in join conditions.

A dynamic mapping is a mapping in which the sources, targets, and transformation logic can change at run
time. You can set parameters and rules to change the structure of the data. When you use a Joiner
transformation in a dynamic mapping, the structure of the source can change. The input ports and the ports
in the join condition change too.

You can perform the following tasks to configure a Joiner transformation in a dynamic mapping:

Define dynamic ports.

Define dynamic ports and generated ports to accommodate the different input columns from a dynamic
source. You can include dynamic ports or generated ports in the join condition.

Define port selectors.

Define a port selector that contains the ports to use in the join condition. Configure selection rules that
determine the ports to include in the port selector. You can parameterize the port selector to include
specific ports at run time.

Parameterize the join condition.

You can parameterize the entire join condition. Configure an expression parameter for each join
condition you might need.

For more information about dynamic mappings, see the Informatica Developer Mapping Guide.

Port Selectors in a Joiner Transformation
When the Joiner transformation has generated ports, you need to configure a join condition that is valid when
the transformation has different generated ports at run time.

For example, a dynamic mapping includes a Joiner transformation with the following Join condition:

CustomerID = CustomerNo

CustomerID is a generated port in the Joiner transformation. Since the mapping has a dynamic source, the
mapping can run with several different source file formats. The column that contains the customer number
has a different name in each source file: CustomerID, CustomerNum, or CustNO.

You can create a port selector in the Joiner transformation to accommodate the different customer column
names from the dynamic source. Configure a port selector with a selection rule that includes any port name
with the prefix "Cust."

Then, configure the Join condition to include the port selector name instead of the CustomerID column name:

Customer_PortSelector = CustomerNo

The join condition is valid with any port name that starts with "Cust."

A port selector can have one or more ports in it. The join condition can include multiple ports if the master
group and the detail group in the join condition contain the same number of ports.

Joiner Transformations in Dynamic Mappings 345

Selection Rules
When you configure a port selector, you define selection rules to determine which generated ports to include.
The selection rules are similar to the input rules that you can configure for dynamic ports.

A port selector can include ports or generated ports. Configure a port selector on the Port Selector tab.

The following image shows the Port Selector tab:

Configure the following properties for a port selector:

Name

Identifies the port selector. You can create multiple port selectors in a transformation and reference
them in expressions.

Scope

Identifies a group of ports that the port selector applies to. Choose a Master or a Detail scope.

Selection Rules

Determines the ports to include in the port selector. When you create the selection rules, the Port
Preview panel shows the ports that qualify from the current input ports. These ports might change.
Configure the selection rules to accommodate ports from different sources.

You can create selection rules based on the following criteria:

Operator

Includes or excludes the ports that selection rules return. Default is include. You must include ports
before you can exclude ports.

Selection Criteria

The type of selection rule you want to create. You can create a rule based on the port type or the
column name. To include ports based on the column name, search for specific names or search for
a pattern of characters in the name.

Detail

The values to apply to the selection criteria. If the selection criteria is by column name, configure
the string or name to search for. If the selection criteria is by port type, select the port types to
include.

The following table describes the selection criteria and how to specify the details for the criteria:

Selection
Criteria

Description Detail

All Includes all ports. No details required.

Name Filters ports based on the port name. Select the port names from a list of values or use a
parameter of type Port or Port List.

346 Chapter 22: Joiner Transformation

Selection
Criteria

Description Detail

Type Filters ports based on the data type of
each port.

Select data types from a list.

Pattern Filters ports by a string of characters in
the name or by a regular expression.

Choose prefix, suffix, or regular expression as the
pattern type for the port name. Then, enter a value for
the pattern or use a parameter of type String.

Creating a Port Selector
Create a port selector to determine which ports to use in a dynamic expression, a lookup condition, or a joiner
condition.

1. Click the Port Selectors tab.

2. In the Port Selectors area, click New.

The Developer tool creates a port selector with a default selection rule that includes all ports.

3. In the Port Selectors area, change the port selector name to a unique name.

4. If you are working on the Joiner transformation or the Lookup transformation, choose the scope.

The available ports change based on the group of ports that you choose.

5. In the Selection Rules area, select an Operator.

• Include. Create a rule that includes ports for the port selector. You must include ports before you can
exclude ports.

• Exclude. Create a rule that excludes specific ports from the port selector.

6. Choose the Selection Criteria.

• By Name. Select specific ports by name. You can select the port names from a list of ports in the
scope.

• By Type. Select ports by type. You can select one or more data types.

• By Pattern. Select ports by a pattern of characters in the port name. You can search with specific
characters or you can create a regular expression.

The following image shows the Port Selector tab:

7. Click the Detail column.

The Input Rule Detail dialog box appears.

8. Select the values to filter ports by.

Port Selectors in a Joiner Transformation 347

• By Name. Choose to create a port list by value or by a parameter. Click Choose to select the ports in
the list.

• By Type. Select one or more data types from a list. The Port Preview area shows ports of the types
that you select.

• By Pattern. Choose to search the prefix or suffix of the port name for a specific pattern of characters.
Or, choose to create a regular expression to search with. Configure a parameter or configure the
pattern to search with.

The Port Preview area shows the ports in the port selector as you configure the rules.

9. To reorder the ports in the port selector, select Reorder generated ports according to the input rule
order.

Defining a Join Condition
The join condition contains ports from both input sources that the Data Integration Service uses to join two
rows.

Depending on the type of join selected, the Data Integration Service either adds the row to the result set or
discards the row. The Joiner transformation produces result sets based on the join type, condition, and input
data sources.

Before you define a join condition, verify that the master and detail sources are configured for optimal
performance. During a mapping run, the Data Integration Service compares each row of the master source
against the detail source. To improve performance for an unsorted Joiner transformation, use the source
with fewer rows as the master source. To improve performance for a sorted Joiner transformation, use the
source with fewer duplicate key values as the master.

Use one or more ports from the input sources of a Joiner transformation in the join condition. Additional
ports increase the time necessary to join two sources. The order of the ports in the condition can impact the
performance of the Joiner transformation. If you use multiple ports in the join condition, the Data Integration
Service compares the ports in the order you specify.

If you join Char and Varchar datatypes, the Data Integration Service counts any spaces that pad Char values
as part of the string:

Char(40) = "abcd"
Varchar(40) = "abcd"

The Char value is “abcd" padded with 36 blank spaces, and the Data Integration Service does not join the two
fields because the Char field contains trailing spaces.

Note: The Joiner transformation does not match null values. For example, if both EMP_ID1 and EMP_ID2
contain a row with a null value, the Data Integration Service does not consider them a match and does not
join the two rows. To join rows with null values, replace null input with default values, and then join on the
default values.

You can define a simple or advanced condition type. You can also define an expression parameter. An
expression parameter is a parameter that contains the join expression. You can change the parameter value
at run time with a mapping parameter.

348 Chapter 22: Joiner Transformation

Simple Condition Type
Define a simple condition type for a sorted or unsorted Joiner transformation.

A simple condition includes one or more conditions that compare the specified master and detail sources. A
simple condition must use the following format:

<master_port> operator <detail_port>
For a sorted Joiner transformation, the condition must use the equality operator.

For an unsorted Joiner transformation, the condition can use any of the following operators: =, !=, >, >=, <, <=.

For example, if two sources with tables called EMPLOYEE_AGE and EMPLOYEE_POSITION both contain
employee ID numbers, the following condition matches rows with employees listed in both sources:

EMP_ID1 = EMP_ID2
The Developer tool validates datatypes in a simple condition. Both ports in the condition must have the same
datatype. If you need to use two ports in the condition with non-matching datatypes, convert the datatypes so
they match.

You can configure a list of join conditions in a simple condition. When you configure multiple join conditions,
all the conditions must be true to make the join.

For example, you might configure the following statements in a simple condition:

StoreID = StoreNO
Dept = Department
Salary > Commission

If you view the same statements as an Advanced Condition, the join condition appears as the following
expression:

StoreID = StoreNO AND Dept = Department AND (Salary > Commission)

Advanced Condition Type
Define an advanced condition type for an unsorted Joiner transformation.

An advanced condition can include any expression that evaluates to a Boolean or numeric value. An
advanced condition can include any of the following operators: =, !=, >, >=, <, <=.

You can enter a constant for the join condition. The numeric equivalent of FALSE is zero (0). Any non zero
value is the equivalent of TRUE. For example, the transformation contains a port named NUMBER_OF_UNITS
with a numeric data type. You configure a filter condition to return FALSE if the value of NUMBER_OF_UNITS
equals zero. Otherwise, the condition returns TRUE.

Note: You cannot use a single dynamic port or a port selector as a boolean value for a join condition.

To enter an expression in the join condition, choose the Advanced condition type on the Join tab. Use the
Expression Editor to include ports, parameters, expressions, port selectors, and operators in the condition.
You can use generated ports. You can enter a single port in the Expression Editor if the port type is numeric.
However, you cannot enter one port selector as an expression.

For example, you want to join sources by matching an employee's full name. The master source includes a
FirstName and a LastName port. The detail source includes a FullName port. Define the following condition
to concatenate the master ports and match the full name in both sources:

CONCAT(FirstName, LastName) = FullName

Defining a Join Condition 349

Port Selectors in Join Conditions
You can include port selectors in a join condition. The join condition must reference a port selector from the
master group and a port selector from the detail group.

For example, the Joiner transformation has dynamic ports. You might need to compare multiple generated
ports in the join condition.

The following image shows the fields in the port selector for the master group:

The Master_Cust_Selector contains has the CustomerID and FullName ports.

The following image shows the fields in the port selector for the detail group:

The Detail_Cust_Selector contains has the CustomerNo and CustFullName ports. These ports have the prefix
Cust.

Create the following simple join condition:

The join condition compares each port in the Master_Cust_Selector to the Detail_Cust_Selector. The join
condition is: CustomerID = CustomerNo AND FullName = CustFullName.

Each port selector must contain the same number of ports. The ports must be the same type.

Note: If you change the scope of a port selector and a simple type join condition is no longer valid, the
Developer tool might switch the condition type to advanced. You can switch the join condition type back to a
simple type on the Join tab.

350 Chapter 22: Joiner Transformation

Dynamic Ports in Join Conditions
You can reference a dynamic port in a port selector.

A dynamic port can contain one of more generated ports. If the join condition contains dynamic ports, the
number of master ports must be the same as the number of detail ports.

For example a dynamic port A has 2 generated ports:

CustomerID
OrderID

Dynamic port B also has 2 generated ports:

CustomerNo
OrderNo

The following join condition is valid:

DynamicPortA = DynamicPortB

The join condition expands to the following expression:

CustomerID = CustomerNo AND OrderID = OrderNo

You can reference a port selector and a dynamic port in a join condition if the port selector contains the same
number of ports as the dynamic port.

Expression Parameter
You can define an expression parameter that contains a join condition. You can choose the parameter as the
join condition in the Joiner transformation.

To use a parameter for the join condition, select the parameter condition type on the Join tab.

The following image shows where to select the parameter condition type:

You can browse for an existing parameter or you can create a parameter. To create a parameter, click New
and define the parameter. Create the expression in the expression editor.

Note: An expression parameter cannot contain other parameters. If you embed a parameter in an expression
parameter, the Data Integration Service issues a runtime validation error.

Join Types
In a Joiner transformation, the join can originate from different types of sources.

The Joiner transformation supports the following types of join:

• Normal

Join Types 351

• Master outer

• Detail outer

• Full outer

Note: A normal or master outer join performs faster than a full outer or detail outer join.

If a result set includes fields that do not contain data in either of the sources, the Joiner transformation
populates the empty fields with null values. If you know that a field returns NULL and you do not want to
insert NULLs in the target, you can set a default value for the corresponding port.

Normal Join
With a normal join, the Data Integration Service discards all rows of data from the master and detail source
that do not match, based on the condition.

For example, you have two sources of data for auto parts called PARTS_SIZE and PARTS_COLOR.

The PARTS_SIZE data source is the master source and contains the following data:

PART_ID1 DESCRIPTION SIZE

1 Seat Cover Large

2 Ash Tray Small

3 Floor Mat Medium

The PARTS_COLOR data source is the detail source and contains the following data:

PART_ID2 DESCRIPTION COLOR

1 Seat Cover Blue

3 Floor Mat Black

4 Fuzzy Dice Yellow

To join the two tables by matching the PART_IDs in both sources, you set the condition as follows:

PART_ID1 = PART_ID2
When you join these tables with a normal join, the result set includes the following data:

PART_ID DESCRIPTION SIZE COLOR

1 Seat Cover Large Blue

3 Floor Mat Medium Black

The following example shows the equivalent SQL statement:

SELECT * FROM PARTS_SIZE, PARTS_COLOR WHERE PARTS_SIZE.PART_ID1 = PARTS_COLOR.PART_ID2

352 Chapter 22: Joiner Transformation

Master Outer Join
A master outer join keeps all rows of data from the detail source and the matching rows from the master
source. It discards the unmatched rows from the master source.

When you join the sample tables with a master outer join and the same condition, the result set includes the
following data:

PART_ID DESCRIPTION SIZE COLOR

1 Seat Cover Large Blue

3 Floor Mat Medium Black

4 Fuzzy Dice NULL Yellow

Because no size is specified for the Fuzzy Dice, the Data Integration Service populates the field with a NULL.

The following example shows the equivalent SQL statement:

SELECT * FROM PARTS_SIZE RIGHT OUTER JOIN PARTS_COLOR ON (PARTS_COLOR.PART_ID2 =
PARTS_SIZE.PART_ID1)

Detail Outer Join
A detail outer join keeps all rows of data from the master source and the matching rows from the detail
source. It discards the unmatched rows from the detail source.

When you join the sample tables with a detail outer join and the same condition, the result set includes the
following data:

PART_ID DESCRIPTION SIZE COLOR

1 Seat Cover Large Blue

2 Ash Tray Small NULL

3 Floor Mat Medium Black

Because no color is specified for Ash Tray, the Data Integration Service populates the field with NULL.

The following example shows the equivalent SQL statement:

SELECT * FROM PARTS_SIZE LEFT OUTER JOIN PARTS_COLOR ON (PARTS_SIZE.PART_ID1 =
PARTS_COLOR.PART_ID2)

Full Outer Join
A full outer join keeps all rows of data from both the master and detail sources.

When you join the sample tables with a full outer join and the same condition, the result set includes the
following data:

PARTED DESCRIPTION SIZE Color

1 Seat Cover Large Blue

2 Ash Tray Small NULL

3 Floor Mat Medium Black

Join Types 353

PARTED DESCRIPTION SIZE Color

4 Fuzzy Dice NULL Yellow

Because no color is specified for the Ash Tray and no size is specified for the Fuzzy Dice, the Data Integration
Service populates the fields with NULL.

The following example shows the equivalent SQL statement:

SELECT * FROM PARTS_SIZE FULL OUTER JOIN PARTS_COLOR ON (PARTS_SIZE.PART_ID1 =
PARTS_COLOR.PART_ID2)

Sorted Input for a Joiner Transformation
You can increase Joiner transformation performance with the sorted input option. You use sorted input when
the data is sorted.

When you configure the Joiner transformation to use sorted data, the Data Integration Service increases
performance by minimizing disk input and output. You see the greatest performance increase when you work
with large data sets.

To configure a mapping to use sorted data, you establish and maintain a sort order in the mapping so the
Data Integration Service can use the sorted data when it processes the Joiner transformation. Complete the
following steps to configure the mapping:

1. Configure the sort order of the data you want to join.

2. Add transformations that maintain the order of the sorted data.

3. Configure the Joiner transformation to use sorted data and configure the join condition to use the sort
origin ports. The sort origin represents the source of the sorted data.

Configuring the Sort Order
Configure the sort order to ensure that the Data Integration Service passes sorted data to the Joiner
transformation.

To configure the sort order, use one of the following methods:

• Use sorted flat files. When the flat files contain sorted data, verify that the order of the sort columns
match in each source file.

• Use sorted relational data. Use sorted ports in the relational data object to sort columns from the source
database. Configure the order of the sorted ports the same in each relational data object.

• Use a Sorter transformation to sort relational or flat file data. Place a Sorter transformation in the master
and detail pipelines. Configure each Sorter transformation to use the same order of the sort key ports and
the sort order direction.

If you pass unsorted or incorrectly sorted data to a Joiner transformation configured to use sorted data, the
mapping run fails. The Data Integration Service logs the error in the log file.

Adding Transformations to the Mapping
Add transformations to the mapping that maintain the order of the sorted data in a Joiner transformation.

You can place the Joiner transformation directly after the sort origin to maintain sorted data.

354 Chapter 22: Joiner Transformation

When you add transformations between the sort origin and the Joiner transformation, use the following
guidelines to maintain sorted data:

• Do not place any of the following transformations between the sort origin and the Joiner transformation:

- Rank

- Union

- Unsorted Aggregator

- Mapplet that contains one the preceding transformations

• You can place a sorted Aggregator transformation between the sort origin and the Joiner transformation
if you use the following guidelines:

- Configure the Aggregator transformation for sorted input.

- Use the same ports for the group by columns in the Aggregator transformation as the ports at the sort
origin.

- The group by ports must be in the same order as the ports at the sort origin.

• When you join the result set of a Joiner transformation with another pipeline, verify that the data output
from the first Joiner transformation is sorted.

Rules and Guidelines for Join Conditions
Certain rules and guidelines apply when you create join conditions for a sorted Joiner transformation.

Use the following guidelines when you create join conditions:

• You must define a simple condition type that uses the equality operator.

• If you use a sorted Aggregator transformation between the sort origin and the Joiner transformation, treat
the sorted Aggregator transformation as the sort origin when you define the join condition.

• The ports you use in the join condition must match the ports at the sort origin.

• When you configure multiple join conditions, the ports in the first join condition must match the first ports
at the sort origin.

• When you configure multiple conditions, the order of the conditions must match the order of the ports at
the sort origin, and you must not skip any ports.

• The number of sorted ports in the sort origin can be greater than or equal to the number of ports at the
join condition.

• If you join ports with Decimal data types, the precision of each port must belong to the same precision
range.

You can use one of the following valid precision ranges:

- Decimal 0-18

- Decimal 19-28

- Decimal 29-38

- Decimal 39 and over

For example, if you define the condition DecimalA = DecimalB where DecimalA has precision 15 and
DecimalB has precision 25, the condition is not valid.

Sorted Input for a Joiner Transformation 355

Example of a Join Condition and Sort Order
This example shows a Joiner transformation that join the master and detail pipelines with sorted ports.

You configure Sorter transformations in the master and detail pipelines with the following sorted ports:

• ITEM_NO

• ITEM_NAME

• PRICE

When you configure the join condition, use the following guidelines to maintain sort order:

• You must use ITEM_NO in the first join condition.

• If you add a second join condition, you must use ITEM_NAME.

• If you want to use PRICE in a join condition, you must also use ITEM_NAME in the second join condition.

If you skip ITEM_NAME and join on ITEM_NO and PRICE, you lose the sort order and the Data Integration
Service fails the mapping run.

The following figure shows a mapping configured to sort and join on the ports ITEM_NO, ITEM_NAME, and
PRICE:

When you use the Joiner transformation to join the master and detail pipelines, you can configure any one of
the following join conditions:

ITEM_NO = ITEM_NO

356 Chapter 22: Joiner Transformation

or

ITEM_NO = ITEM_NO1

ITEM_NAME = ITEM_NAME1
or

ITEM_NO = ITEM_NO1

ITEM_NAME = ITEM_NAME1

PRICE = PRICE1

Joining Data from the Same Source
You can join data from the same source if you want to perform a calculation on part of the data and join the
transformed data with the original data.

When you join data from the same source, you can maintain the original data and transform parts of that data
within one mapping. You can join data from the same source in the following ways:

• Join two branches of the same pipeline.

• Join two instances of the same source.

Joining Two Branches of the Same Pipeline
When you join data from the same source, you can create two branches of the pipeline.

When you branch a pipeline, you must add a transformation between the mapping input and the Joiner
transformation in at least one branch of the pipeline. You must join sorted data and configure the Joiner
transformation for sorted input.

For example, you have a source with the following ports:

• Employee

• Department

• Total Sales

In the target, you want to view the employees who generated sales that were greater than the average sales
for their departments. To do this, you create a mapping with the following transformations:

• Sorter transformation. Sorts the data.

• Sorted Aggregator transformation. Averages the sales data and group by department. When you perform
this aggregation, you lose the data for individual employees. To maintain employee data, you must pass a
branch of the pipeline to the Aggregator transformation and pass a branch with the same data to the
Joiner transformation to maintain the original data. When you join both branches of the pipeline, you join
the aggregated data with the original data.

• Sorted Joiner transformation. Joins the sorted aggregated data with the original data.

Joining Data from the Same Source 357

• Filter transformation. Compares the average sales data against sales data for each employee and filter
out employees with less than above average sales.

1. Employees_West Source
2. Pipeline branch 1
3. Pipeline Branch 2
4. Sorted Joiner transformation
5. Filter out employees with less than above average sales

Joining two branches might decrease performance if the Joiner transformation receives data from one
branch much later than the other branch. The Joiner transformation caches all the data from the first branch
and writes the cache to disk if the cache fills. The Joiner transformation must then read the data from disk
when it receives the data from the second branch.

Joining Two Instances of the Same Source
You can join data from the same source by creating a second instance of the source.

After you create the second source instance, you can join the pipelines from the two source instances. If you
want to join unsorted data, you must create two instances of the same source and join the pipelines.

The following figure shows two instances of the same source joined with a Joiner transformation:

358 Chapter 22: Joiner Transformation

When you join two instances of the same source, the Data Integration Service reads the source data for each
source instance. Performance can be slower than joining two branches of a pipeline.

Guidelines for Joining Data from the Same Source
Certain guidelines apply when you decide whether to join branches of a pipeline or join two instances of a
source.

Use the following guidelines when you decide whether to join branches of a pipeline or join two instances of a
source:

• Join two branches of a pipeline when you have a large source or if you can read the source data only
once.

• Join two branches of a pipeline when you use sorted data. If the source data is unsorted and you use a
Sorter transformation to sort the data, branch the pipeline after you sort the data.

• Join two instances of a source when you need to add a blocking transformation to the pipeline between
the source and the Joiner transformation.

• Join two instances of a source if one pipeline may process slower than the other pipeline.

• Join two instances of a source if you need to join unsorted data.

Blocking the Source Pipelines
When you run a mapping with a Joiner transformation, the Data Integration Service blocks and unblocks the
source data based on the mapping configuration and whether you configure the Joiner transformation for
sorted input.

Unsorted Joiner Transformation
When the Data Integration Service processes an unsorted Joiner transformation, it reads all master rows
before it reads the detail rows. The Data Integration Service blocks the detail source while it caches rows
from the master source.

After the Data Integration Service reads and caches all master rows, it unblocks the detail source and reads
the detail rows. Some mappings with unsorted Joiner transformations violate data flow validation.

Sorted Joiner Transformation
When the Data Integration Service processes a sorted Joiner transformation, it blocks data based on the
mapping configuration. Blocking logic is possible if master and detail input to the Joiner transformation
originate from different sources.

The Data Integration Service uses blocking logic to process the Joiner transformation if it can do so without
blocking all sources in a target load order group simultaneously. Otherwise, it does not use blocking logic.
Instead, it stores more rows in the cache.

When the Data Integration Service can use blocking logic to process the Joiner transformation, it stores
fewer rows in the cache, increasing performance.

Blocking the Source Pipelines 359

Caching Master Rows
When the Data Integration Service processes a Joiner transformation, it reads rows from both sources
concurrently and builds the index and data cache based on the master rows.

The Data Integration Service then performs the join based on the detail source data and the cache data. The
number of rows the Data Integration Service stores in the cache depends on the source data and whether you
configure the Joiner transformation for sorted input.

To increase performance for an unsorted Joiner transformation, use the source with fewer rows as the
master source. To increase performance for a sorted Joiner transformation, use the source with fewer
duplicate key values as the master.

Joiner Transformation Performance Tips
Use tips to increase Joiner transformation performance.

Joiner transformations can slow performance because they need additional space at run time to hold
intermediary results. You can view Joiner performance counter information to determine whether you need to
optimize the Joiner transformations.

Use the following tips to increase performance with the Joiner transformation:

Designate the master source as the source with fewer duplicate key values.

When the Data Integration Service processes a sorted Joiner transformation, it caches rows for one
hundred unique keys at a time. If the master source contains many rows with the same key value, the
Data Integration Service must cache more rows, which can decrease performance.

Designate the master source as the source with fewer rows.

The Joiner transformation compares each row of the detail source against the master source. The fewer
rows in the master, the fewer iterations of the join comparison occur, which speeds the join process.

Perform joins in a database when possible.

Performing a join in a database is faster than performing a join in during the mapping run. The type of
database join that you use can affect performance. Normal joins are faster than outer joins and result in
fewer rows. Sometimes, you cannot perform the join in the database, such as joining tables from two
different databases or flat file systems.

Join sorted data when possible.

Configure the Joiner transformation to use sorted input. The Data Integration Service increases
performance by minimizing disk input and disk output. The greatest performance increase occurs when
you work with large data sets. For an unsorted Joiner transformation, designate the source with fewer
rows as the master source.

Optimize the join condition.

The Data Integration Service attempts to decrease the size of the data set of one join operand by reading
the rows from the smaller group, finding the matching rows in the larger group, and then performing the
join operation. Decreasing the size of the data set improves mapping performance because the Data
Integration Service no longer reads unnecessary rows from the larger group source. The Data Integration
Service moves the join condition to the larger group source and reads only the rows that match the
smaller group.

360 Chapter 22: Joiner Transformation

Use the semi-join optimization method.

Use the semi-join optimization method to improve mapping performance when one input group has
many more rows than the other and when the larger group has many rows with no match in the smaller
group based on the join condition.

Rules and Guidelines for a Joiner Transformation
Certain rules and guidelines apply when you use a Joiner transformation.

The Joiner transformation accepts input from most transformations. However, you cannot use a Joiner
transformation when either input pipeline contains an Update Strategy transformation.

Joiner Transformation in a Non-native Environment
The Joiner transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported with restrictions.

Joiner Transformation on the Blaze Engine
Mapping validation fails in the following situations:

• The transformation contains an inequality join and map-side join is disabled.

• The Joiner transformation expression references an unconnected Lookup transformation.

Map-side join is disabled when the Joiner transformation is configured for detail outer join or full outer join.

Joiner Transformation on the Spark Engine
Mapping validation fails in the following situations:

• Case sensitivity is disabled.

• The join condition is of binary data type or contains binary expressions.

Joiner Transformation in a Streaming Mapping
Streaming mappings have additional processing rules that do not apply to batch mappings.

Mapping Validation

Mapping validation fails in the following situations:

• A Joiner transformation is downstream from an Aggregator transformation.

Rules and Guidelines for a Joiner Transformation 361

• A Joiner transformation is downstream from a Rank transformation.

• A streaming pipeline contains more than one Joiner transformation.

• A Joiner transformation joins data from streaming and non-streaming pipelines.

General Guidelines

To specify a join condition, select the TIME_RANGE function from the Advanced condition type on the Join
tab and enter a join condition expression. The TIME_RANGE function determines the time range for the
streaming events to be joined.

Joiner Transformation on the Databricks Spark Engine
Mapping validation fails in the following situations:

• Case sensitivity is disabled.

• The join condition is of binary data type or contains binary expressions.

362 Chapter 22: Joiner Transformation

C h a p t e r 2 3

Key Generator Transformation
This chapter includes the following topics:

• Key Generator Transformation Overview, 363

• Soundex Strategy, 364

• String Strategy, 364

• NYSIIS Strategy, 365

• Key Generator Output Ports, 365

• Configuring a Grouping Strategy, 366

• Key Creation Properties, 366

• Key Generator Transformation Advanced Properties, 367

• Key Generator Transformation in a Non-native Environment, 367

Key Generator Transformation Overview
The Key Generator transformation is an active transformation that organizes records into groups based on
data values in a column that you select. Use this transformation to sort records before passing them to the
Match transformation.

The Key Generator transformation uses a grouping strategy to create group keys for the column you select.
The strategies are String, Soundex, and NYSIIS. Records with common values in the selected field have a
common group key value. The Match transformation processes records with common group key values
together. This enables faster duplicate analysis in the Match transformation.

The number of comparison operations that the Match transformation must perform grows exponentially with
the number of records in the data set. This exponential growth can consume significant amounts of
computing resources. By creating group keys, the Key Generator transformation enables the Match
transformation to compare records in smaller groups, which reduces processing time.

When you perform field matching, select a column for group key generation that is likely to provide useful
groups for your matching needs. For example, a Surname column is likely to provide more meaningful group
key data than a Forename column. But do not use the Surname column if you intend to select that column for
duplicate analysis in the Match transformation.

The Key Generator transformation can also create a unique ID for each record. Each record that enters the
Match transformation must contain a unique ID. Use the Key Generator transformation to create IDs for your
data if none exist.

363

Soundex Strategy
The Soundex strategy analyzes words and creates group keys from codes that represent word pronunciation.

Soundex codes begin with the first letter in the word and followed by a series of numbers representing
successive consonants. Use the Soundex strategy to assign the same code to words that sound similar.
Configure the Soundex depth to define the number of alphanumeric characters that the strategy returns.

This strategy focuses on the sound of words instead of spelling, it can group alternate spellings and minor
spelling variations. For example, the Soundex codes for Smyth and Smith are the same.

The Soundex strategy can also group mispronounced words. For example, the Soundex codes for the names
Edmonton and Edmonson are the same.

Soundex Strategy Properties
Configure the Soundex strategy properties to determine the Soundex settings that the Key Generator
transformation uses to create a group key.

The following table describes the Soundex strategy properties:

Property Description

Soundex
Depth

Determines the number of alphanumeric characters returned by the Soundex strategy. The default
depth is 3. This depth creates a Soundex code consisting of the first letter in the string and two
numbers that represent the next two distinct consonant sounds.

Related Topics:
• “String Strategy Properties” on page 365

• “Key Creation Properties” on page 366

• “ Configuring a Grouping Strategy” on page 366

String Strategy
The String strategy creates group keys from substrings in input data.

You can specify the length and location of a substring within the input column. For example, you can
configure this strategy to create a key from the first four characters in the input string.

364 Chapter 23: Key Generator Transformation

String Strategy Properties
Configure the String strategy properties to determine the substrings that the Key Generator transformation
uses to create a group key.

The following table describes the String strategy properties:

Property Description

Start from left Configures the transformation to read the input field from left to right.

Start from right Configures the transformation to read the input field from right to left.

Start position Specifies the number of characters to skip. For example, if you enter 3 for the Start position, the
substring starts at the fourth character in the input field, starting from the side that you specify.

Length Specifies the length of the string to use as a group key. Enter 0 to use the whole input field.

Related Topics:
• “Soundex Strategy Properties” on page 364

• “Key Creation Properties” on page 366

• “ Configuring a Grouping Strategy” on page 366

NYSIIS Strategy
The NYSIIS strategy analyzes words and creates group keys from letters that represent word pronunciation.

While the Soundex strategy only considers the first vowel in a string, the NYSIIS strategy analyzes vowels
throughout a string. The NYSIIS strategy converts all letters to one of six characters, and converts most
vowels to the letter A.

Key Generator Output Ports
The Key Generator transformation output ports create IDs and group keys that the Match transformation
uses to process records.

The following table describes the output ports for the Key Generator transformation:

Property Description

SequenceID Creates an ID that identifies each record in the source data set.

GroupKey Creates the group keys that the Match transformation uses to process records.

When you create a reusable Key Generator transformation, use the Overview view to view the ports. When
you add a nonreusable transformation to a mapping, use the Ports tab of the Properties view to view the
ports.

NYSIIS Strategy 365

Configuring a Grouping Strategy
To configure a grouping strategy, edit the properties in the Strategies view.

Before you configure a Key Generator strategy, add input ports to the Key Generator transformation.

1. Select the Strategies view.

2. Click the New button.

3. Select a grouping strategy.

4. Click OK.

5. In the Inputs column, select an input port.

6. Configure the strategy properties by clicking the selection arrow in the properties field.

7. Configure the key creation properties.

Related Topics:
• “Soundex Strategy Properties” on page 364

• “String Strategy Properties” on page 365

• “Key Creation Properties” on page 366

Key Creation Properties
Configure the key creation properties appropriate for the data you analyze.

The following table describes the key creation properties:

Property Description

Sort results Sorts the Key Generator transformation output using the GroupKey field. For field
matching operations, you must select this option or verify that you provide the Match
transformation with sorted data. Do not select this option for identity matching
operations.

Generate sequence key
automatically

Generates a sequence key field using the order of input data.

Use field as sequence key Generates a sequence field for a column that you specify.

Sequence key field Specifies the name of the sequence key field.

Related Topics:
• “Soundex Strategy Properties” on page 364

• “String Strategy Properties” on page 365

• “ Configuring a Grouping Strategy” on page 366

366 Chapter 23: Key Generator Transformation

Key Generator Transformation Advanced Properties
The Key Generator transformation contains advanced properties that determine the cache memory behavior
and the tracing level.

You can configure the following advanced properties:
Cache File Directory

Specifies the directory to which the Data Integration Service writes temporary data for the current
transformation. The Data Integration Service writes temporary files to the directory when the volume of
input data is greater than the available system memory. The Data Integration Service deletes the
temporary files after the mapping runs.

You can enter a directory path on the property, or you can use a parameter to identify the directory.
Specify a local path on the Data Integration Service machine. The Data Integration Service must be able
to write to the directory. The default value is the CacheDir system parameter.

Cache File Size

Determines the amount of system memory that the Data Integration Service uses to sort the input data
on the transformation. You can use a parameter to specify the cache file size.

Before it sorts the data, the Data Integration Service allocates the amount of memory that you specify. If
the sort operation generates a greater amount of data, the Data Integration Service writes the excess
data to the cache directory. If the sort operation requires more memory than the system memory and the
file storage can provide, the mapping fails.

If you do not specify a cache file size, the transformation applies the maximum memory value on the
execution options of the Data Integration Service.

Note: If you enter a value of 65536 or higher, the transformation reads the value in bytes. If you enter a
lower value, the transformation reads the value in megabytes.

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Key Generator Transformation in a Non-native
Environment

The Key Generator transformation processing in a non-native environment depends on the engine that runs
the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Not supported.

Key Generator Transformation Advanced Properties 367

C h a p t e r 2 4

Labeler Transformation
This chapter includes the following topics:

• Labeler Transformation Overview, 368

• When to Use a Labeler Transformation, 369

• Reference Data Use in the Labeler Transformation, 370

• Labeler Transformation Strategies, 372

• Labeler Transformation Ports, 373

• Character Labeling Properties, 373

• Token Labeling Properties, 375

• Configuring a Character Labeling Strategy, 377

• Configuring a Token Labeling Strategy, 378

• Labeler Transformation Advanced Properties, 379

• Labeler Transformation in a Non-native Environment, 379

Labeler Transformation Overview
The Labeler transformation is a passive transformation that analyzes input port fields and writes text labels
that describe the data in each field.

You use a Labeler transformation when you want to understand the types of information that a port contains.
Use a Labeler transformation when you do not know the types of information on a port, or when you want to
identify records that do not contain the expected types of information on a port.

A label is a string one or more characters that describes an input string. You configure the Labeler
transformation to assign labels to input strings based on the data that each string contain.

When you configure the transformation, you specify the types of character or string to search for, and you
specify the label that the transformation writes as output when it finds the associated character or string.
You enter the character and string types to search for, and the labels to use, when you configure a labeling
operation. Or, you use reference data objects to specify the characters, strings, and labels.

You configure the transformation to perform character labeling or token labeling:

Character Labeling

Writes a label that describes the character structure of the input string, including punctuation and
spaces. The transformation writes a single label for each row in a column. For example, the Labeler
transformation can label the ZIP Code 10028 as "nnnnn," where "n" stands for a numeric character.

368

Token Labeling

Writes a label that describes the type of information in the input string. The transformation writes a label
for each token identified in the input data. For example, you can configure the Labeler transformation to
label the string "John J. Smith" with the tokens "Word Init Word."

A token is a delimited value in an input string.

When the Labeler finds a character or string that matches a label that you specify, it writes the label name to
a new output port.

The Labeler transformation uses reference data to identify characters and tokens. You select the reference
data object when you configure an operation in a Labeler strategy.

When to Use a Labeler Transformation
The Labeler transformation writes a descriptive label for each value on a port.

The following examples describe some of the types of analysis you can perform with a Labeler
transformation.

Find records with contact data

Configure the transformation with a reference table that contains a list of first names. Create a token
labeling strategy to label any string that matches a value in the reference table. When you review the
output data, any record that contains the label is likely to identify a person.

Find business records

Configure the transformation with a token set that contains a list of business suffixes, such as Inc, Corp,
and Ltd. Create a token labeling strategy to label any string that matches a value in the reference table.
When you review the output data, any record that contains the label is likely to identify a business.

Note: Use a token set of business suffixes you want to identify any business name. You can use a
reference table of business names if you are certain that the table contains all the businesses you want
to identify. For example, you can use a reference table that lists the corporations on the New York Stock
Exchange.

Find telephone number data

Configure the transformation with character set that defines the character structure of a telephone
number. For example, you can use a character set that recognizes different patterns of punctuation
symbols and digits as United States telephone numbers. You can review the data to find records that do
not contain the correct digits for a telephone number.

The character labels may use the following characters to analyze the column data:

c=punctuation character n=digit s=space
The following table shows sample telephone number structures:

Character Structure Telephone number

cnnncsnnncnnncnnnnn (212) 555-1212

nnnnnnnnnn 2125551212

cnnncnnncnnnn +212-555-1212

When to Use a Labeler Transformation 369

Reference Data Use in the Labeler Transformation
Informatica Developer installs with different types of reference data objects that you can use with the Labeler
transformation. You can also create reference data objects.

When you add a reference data object to Labeler transformation strategy, the transformation searches the
input data on the strategy for values in the reference data object. The transformation replaces any value it
finds with a valid value from the reference data object, or with a value that you specify.

The following table describes the types of reference data you can use:

Reference Data
Type

Description

Character sets Identifies different types of characters, such as letters, numbers, and punctuation symbols.
Use in character labeling operations.

Probabilistic
models

Adds fuzzy match capabilities to token label operations. The transformation can use a
probabilistic model to infer the type of information in a string. To enable the fuzzy match
capabilities, you compile the probabilistic model in the Developer tool.
Use in token labeling operations.

Reference tables Finds strings that match the entries in a database table.
Use in token labeling and character labeling operations.

Regular
expressions

Identifies strings that match conditions that you define. You can use a regular expression to
find a string within a larger string.
Use in token labeling operations.

Token sets Identifies strings based on the types of information they contain.
Use in token labeling operations.
Informatica installs with token sets different types of token definitions, such as word,
telephone number, post code, and product code definitions.

Character Sets
A character set contains expressions that identify specific characters and character ranges. You can use
character sets in Labeler transformations and in Parser transformations that use token parsing mode.

Character ranges specify a sequential range of character codes. For example, the character range "[A-C]"
matches the uppercase characters "A," "B," and "C." This character range does not match the lowercase
characters "a," "b," or "c."

Use character sets to identify a specific character or range of characters as part of token parsing or labeling
operations. For example, you can label all numerals in a column that contains telephone numbers. After
labeling the numbers, you can identify patterns with a Parser transformation and write problematic patterns
to separate outputs.

370 Chapter 24: Labeler Transformation

Probabilistic Models
A probabilistic model identifies tokens by the types of information that they contain and by the positions that
they occupy in an input string.

A probabilistic model contains reference data values and label values. The reference data values represent
the data on an input port that you connect to the transformation. The label values describe the types of
information that the reference data values contain. You assign a label to each reference data value in the
model.

To link the reference data values to the labels in a probabilistic model, you compile the model. The
compilation process generates a series of logical associations between the data values and the labels. When
you run a mapping that reads the model, the Data Integration Service applies the model logic to the
transformation input data. The Data Integration Service returns the label that most accurately describes the
input data values.

You create a probabilistic model in the Developer tool. The Model repository stores the probabilistic model
object. The Developer tool writes the data values, the labels, and the compilation data to a file in the
Informatica directory structure.

Reference Tables
A reference table is a database table that contains at least two columns. One column contains the standard
or required version of a data value, and other columns contain alternative versions of the value. When you
add a reference table to a transformation, the transformation searches the input port data for values that
also appear in the table. You can create tables with any data that is useful to the data project you work on.

Regular Expressions
In the context of labeling operations, a regular expression is an expression that you can use to identify a
specific string in input data. You can use regular expressions in Labeler transformations that use token
labeling mode.

Labeler transformations use regular expressions to match an input pattern and create a single label. Regular
expressions that have multiple outputs do not generate multiple labels.

Token Sets
A token set contains expressions that identify specific tokens. You can use token sets in Labeler
transformations that use token labeling mode.

Use token sets to identify specific tokens as part of token labeling operations. For example, you can use a
token set to label all email addresses that use that use an "AccountName@DomainName" format. After
labeling the tokens, you can use the Parser transformation to write email addresses to output ports that you
specify.

The Developer tool includes system-defined token sets that you can use to identify a wide range of patterns.
Examples of system-defined token sets include:

• Words

• Numbers

• Phone numbers

• Email addresses

• Postal codes

Reference Data Use in the Labeler Transformation 371

• National identification numbers, such as Social Security Numbers

• Credit card numbers

Labeler Transformation Strategies
Use labeling strategies to assign labels to input data. To configure a labeling strategy, edit the settings in the
Strategies view of a Labeler transformation.

When you create a labeling strategy, you add one or more operations. Each operation implements a specific
labeling task.

The Labeler transformation provides a wizard that you use to create strategies. When you create a labeling
strategy, you choose between character labeling or token labeling mode. You then add operations specific to
that labeling mode.

Important: You can change the order of operations and strategies. The order of operations within a strategy
can change the output of a strategy, because each operation reads the results of the preceding operation.

Character Labeling Operations
Use character labeling operations to create labels that describe the character patterns in your data.

You can add the following types of operations to a character labeling strategy:

Label Characters using Character Sets

Label characters using predefined character sets, such as digits or alphabetic characters. You can select
Unicode and non-Unicode character sets.

Label Characters using Reference Table

Label characters with custom labels from a reference table.

Token Labeling Operations
Use token labeling operations to create labels that describe strings in your data.

The Labeler transformation can identify and label multiple tokens in an input string. For example, you can
configure the Labeler transformation to use the US Phone Number and Email Addresses token sets. When the
Labeler transformation processes the input string "555-555-1212 someone@somewhere.com," the output
string is "USPHONE EMAIL."

You can add the following types of token labeling operations to a labeling strategy:

Label with Reference Table

Label strings that match reference table entries.

Label Tokens with Token Set

Label string patterns that match token set data or probabilistic model data.

372 Chapter 24: Labeler Transformation

Labeler Transformation Ports
You select the input and output ports you need for the labeling operations you configure in the
transformation.

Labeler transformations use the following port:

Input Ports

Reads string input from upstream objects.

Labeled Output Ports

Writes the labels defined by transformation operations.

Tokenized Output Ports

Passes input strings that correspond to each label in the output. Select this port if you will add a Parser
transformation downstream of the Labeler transformation in a mapplet or mapping, and you will
configure the Parser transformation to run in pattern-based parsing mode. The Parser transformation
associates the token labeling output with the data on the tokenized output ports.

Score Output Ports

Select to write the score values generated by probabilistic matching techniques in a token labeling
operation.

When you run a token labeling operation that uses a probabilistic model, the operation generates a
numerical score for each labeled string. The score represents the degree of similarity between the input
string and the patterns defined in the probabilistic model.

Character Labeling Properties
Configure properties for character labeling operations on the Strategies view in the Labeler transformation.

General Properties
General properties apply to all character labeling operations you define in the strategy. You use the general
properties to name the strategy and specify input and output ports.

The following table describes the general properties:

Property Description

Name Provides a name for the strategy.

Inputs Identifies the input ports that the strategy operations can read.

Outputs Identifies the output ports that the strategy operations can write to.

Description Provides a text description of the strategy. This is an optional property.

Labeler Transformation Ports 373

Reference Table Properties
When you define a character labeling strategy, you can add operations to label with character sets and with
reference tables. You use the reference table properties to specify how the transformation uses reference
tables.

The following table describes the reference table properties:

Property Description

Name Provides a name for the operation.

Reference Table Specifies reference tables that the transformation uses to label characters.

Label Specifies the replacement text for input characters that match reference table entries.

Override other labels in
strategy

Determines whether this labeling operation overrides other labeling operations.

Character Set Properties
When you define a character labeling strategy, you can add operations to label with character sets and with
reference tables. You use the character set properties to specify how the transformation uses character sets.

The following table describes the character set properties:

Property Description

Name Provides a name for the operation.

Select Character
Sets

Specifies the character sets that the transformation uses to label strings.
You can override the replacement text for input strings that match the character set. Click the
selection arrow in the Label column to enter custom replacement text.

Filter text Uses characters or wildcards you enter to filter the list of character sets.

Add Character Set Select to define a custom character set.

Edit Edit the contents of a custom character set.

Import Allows you to create nonreusable copies of character sets that are stored in content sets.
Changes to the original character set do not update the copies you store in the Labeler
transformation.

Remove Deletes a custom character set.

Specify Execution
Order

Sets the order in which the operation applies the token sets to the data. Use the Up and Down
arrows to change the order.

374 Chapter 24: Labeler Transformation

Filter Properties
You can specify values to skip during a labeling operation. Use the Ignore Text properties to specify values to
which labeling operations will not apply.

The following table describes the filter properties:

Property Description

Search Term Specifies strings that the transformation filters before performing labeling. Use this feature to
specify exceptions to your defined labeling strategy.

Case Sensitive Determines whether filtered strings must match the case of the search term.

Uppercase Converts filtered strings to uppercase.

Start Specifies the character position to start searching for filtered string.

End Specifies the character position to stop searching for filtered string.

Token Labeling Properties
Configure properties for token labeling operations on the Strategies view in the Labeler transformation.

General Properties
General properties apply to all token labeling operations you define in the strategy. You use the general
properties to name the strategy, specify input and output ports, and specify whether the strategy enables
probabilistic matching techniques.

The following table describes the general properties:

Property Description

Name Provides a name for the strategy.

Inputs Identifies the output port that the strategy operations can read.

Outputs Identifies the output port that the strategy operations can write to.

Description Describes the strategy. The property is optional.

Use probabilistic
matching techniques

Specifies that the strategy can use a probabilistic model to identify token types.

Reverse Enabled Indicates that the strategy reads input data from right to left. This property is disabled for
probabilistic matching.

Delimiters Specifies the characters that the transformation uses to evaluate substrings in input data.
Default is space.
The property is disabled in probabilistic labeling.

Token Labeling Properties 375

Property Description

Tokenized Output
Field

Indicates that the strategy writes multiple labels to an output port. Select this field to create
input data for pattern-based parsing in the Parser transformation.

Score Output Field Identifies the field that contains the score values generated in probabilistic matching. Set the
score output field when you select the option to use probabilistic matching techniques.

Output Delimiter Specifies a character to separate data values on the output port. Default is colon.

Token Set Properties
Token set properties apply when you configure a labeling operation to use token sets.

The following table describes the general properties:

Property Description

Select Token Sets Specifies the token sets that the transformation uses to label strings.

Filter text Filters the list of token sets or regular expressions. Use text characters and wildcard
characters as a filter.

Add Token Set Use to define custom token sets.

Add Regular
Expression

Use to define regular expressions that match an input pattern.

Edit Edits the contents of a custom token set or a regular expression.

Import Imports a nonreusable copy of a token set or regular expression from a folder in the Model
repository. If you update the source object for the token set or regular expression, the Data
Integration Service does not update the nonreusable copy.

Remove Removes a custom token set or a regular expression.

Specify Execution
Order

Sets the order in which the operation applies the token sets or regular expressions to the data.
Use the Up and Down arrows to change the order.

Custom Label Properties
When you configure a token label operation, you can select the Custom Label view to create labels for
specific search terms.

The following table describes the custom label properties:

Property Description

Search Term Identifies the string to search for.

Case Sensitive Specifies whether the input data must match the case of the search term.

Custom Label Identifies the custom label to apply.

376 Chapter 24: Labeler Transformation

Probabilistic Matching Properties
When you select the options to use probabilistic matching techniques, you can add a probabilistic model to
the labeling operation. You cannot add a probabilistic model to a strategy that uses a token set or reference
table.

The following table describes the properties associated with probabilistic matching:

Property Description

Name Provides a name for the operation.

Filter Text Uses characters or wildcards you enter to filter the list of probabilistic models in the repository.

Probabilistic Model Identifies the probabilistic model to use in the operation.

Reference Table Properties
Reference table properties apply when you configure a labeling operation to use a reference table.

The following table describes the reference table properties:

Property Description

Name Provides a name for the operation.

Reference Table Specifies the reference table that the operation uses to label tokens.

Label Specifies the text that the operation writes to a new port when an input string matches a
reference table entry.

Case Sensitive Determines whether input strings must match the case of reference table entries.

Replace Matches
with Valid Values

Replaces labeled strings with the entry from the Valid column in the reference table.

Mode Determines the token labeling method. Select Inclusive to label input strings that match
reference table entries. Select Exclusive to label input strings that do not match reference table
entries.

Set Priority Determines whether reference table labeling operations takes precedence over token set
labeling operations in a strategy. If you set this property, the transformation performs reference
table labeling before token set labeling, and the token set analysis cannot overwrite the
reference table label analysis.

Configuring a Character Labeling Strategy
To configure a labeling strategy, edit the settings in the Strategies view of the Labeler transformation.

1. Select the Strategies view, and click New to create a strategy.

The Strategy wizard opens.

2. Enter a name for the strategy.

Configuring a Character Labeling Strategy 377

3. Click the Inputs and Outputs fields to define ports for the strategy.

4. Optionally, enter a description of the strategy.

5. Select character labeling mode.

6. Click Next.

7. Select the type of character labeling operation you want to configure. You can configure the following
operations:

• Label characters using reference tables.

• Label characters using character sets.

8. Click Next.

9. Configure the operation properties, and click Next.

10. Optionally, configure Ignore Text properties.

11. Click Next to add more operations to the strategy, or click Finish.

You can change the order that the transformation processes strategies and operations. In the Strategies
view, select a strategy or operation and click Move Up or Move Down.

Configuring a Token Labeling Strategy
To configure a labeling strategy, edit the settings in the Strategies view of the Labeler transformation.

1. Select the Strategies view, and click New to create a strategy.

The Strategy wizard opens.

2. Enter a name for the strategy.

3. Click the Inputs and Outputs fields to define ports for the strategy.

4. Optionally, enter a description of the strategy.

5. Select token labeling mode.

Verify or edit the properties for the mode you select.

6. Click Next.

7. Select the type of token labeling operation you want to configure. You can configure the following
operations:

• Label tokens with a token set.

• Label tokens with a reference table.

• Label tokens using probabilistic matching.

8. Click Next.

9. Configure the operation properties, and click Next.

If you configure the strategy to use probabilistic matching, enter a label to use for tokens identified as
residue data.

10. Optionally, configure Custom Label properties.

11. Click Next to add more operations to the strategy, or click Finish.

You can change the order that the transformation processes strategies and operations. In the Strategies
view, select a strategy or operation and click Move Up or Move Down.

378 Chapter 24: Labeler Transformation

Labeler Transformation Advanced Properties
Configure properties that help determine how the Data Integration Service processes data for the Labeler
transformation.

You can configure tracing levels for logs.

Configure the following property on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Labeler Transformation in a Non-native Environment
The Labeler transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Not supported.

Labeler Transformation Advanced Properties 379

C h a p t e r 2 5

Lookup Transformation
This chapter includes the following topics:

• Lookup Transformation Overview, 380

• Connected and Unconnected Lookups, 381

• Developing a Lookup Transformation, 383

• Lookup Query, 384

• Lookup Source Filter, 386

• Lookup Condition, 387

• Lookup Cache, 390

• Query Properties, 390

• Lookup Transformations in Dynamic Mappings, 391

• Define Dynamic Ports, 391

• Change the Lookup Source, 392

• Port Selectors, 396

• Run-time Properties, 402

• Advanced Properties, 403

• Creating a Reusable Lookup Transformation, 404

• Creating a Non-Reusable Lookup Transformation, 405

• Creating an Unconnected Lookup Transformation, 406

• Unconnected Lookup Example, 407

• Lookup Transformation in a Non-native Environment, 408

Lookup Transformation Overview
The Lookup transformation is a passive or active transformation that looks up data in a flat file, logical data
object, reference table, or relational table. The Lookup transformation can return one row or multiple rows
from a lookup.

Before you create a Lookup transformation, create the lookup source. Import a flat file or relational database
table as a physical data object. Or, create a logical data object or reference table to use as a lookup source.
When you create a Lookup transformation, the Developer tool adds the columns from the data object or
reference table as lookup ports in the transformation. After you create the transformation, configure one or

380

more output ports to return the lookup results. Configure the lookup conditions and configure other lookup
properties.

When you run a mapping or preview data, the Integration Service queries the lookup source. The Integration
Service queries the lookup source based on the lookup ports in the transformation, the lookup properties, and
the lookup condition. The Lookup transformation returns the result of the lookup to the target or another
transformation.

You can configure a connected or unconnected Lookup transformation. A connected transformation
connects to another transformation in the mapping. An unconnected transformation receives input from
a :LKP expression in another transformation. If the Lookup transformation performs a lookup on a logical
data object, you must configure a connected Lookup transformation. Connect the Lookup transformation
input ports to an upstream transformation or to an upstream source. Connect the output ports to a
downstream transformation or to a downstream target.

You can use multiple Lookup transformations in a mapping.

You can perform the following tasks with a Lookup transformation:

• Get a related value. Retrieve a value from the lookup source based on a value in the input data. For
example, the input data contains an employee ID. Retrieve the employee name from the lookup source by
employee ID.

• Retrieve multiple rows from a lookup source.

• Perform a calculation. Retrieve a value from a lookup table and use the value in a calculation. For
example, retrieve a sales tax percentage, calculate a tax, and return the tax to a target.

• Perform an unconnected lookup with a :LKP expression in a transformation that accepts expressions.
Filter the results with another expression in the transformation.

• Parameterize the lookup source and the lookup condition to use a Lookup transformation in a dynamic
mapping.

Connected and Unconnected Lookups
You can configure a connected Lookup transformation or an unconnected Lookup transformation. A
connected Lookup transformation is a transformation that has input and output ports that you connect to
other transformations in a mapping. An unconnected Lookup transformation appears in the mapping, but is
not connected to other transformations.

An unconnected Lookup transformation receives input from the result of a :LKP expression in a
transformation such as an Expression transformation or Aggregator transformation. The :LKP expression
passes arguments to the Lookup transformation and receives a result back from the Lookup transformation.
The :LKP expression can pass lookup results to another expression in the Expression or Aggregator
transformation to filter results.

The following table lists the differences between connected and unconnected lookups:

Connected Lookup Unconnected Lookup

Receives input values directly from the pipeline. Receives input values from the result of a :LKP expression in
another transformation.

Use a dynamic or static cache. Use a static cache.

Connected and Unconnected Lookups 381

Connected Lookup Unconnected Lookup

Cache includes the lookup source columns in the
lookup condition and the lookup source columns
that are output ports.

Cache includes all lookup and output ports in the lookup
condition and the lookup/return port.

Returns multiple columns from the same row or
insert into the dynamic lookup cache.

Returns one column from each row to a return port.

If there is no match for the lookup condition, the
Integration Service returns the default value for all
output ports. If you configure dynamic caching, the
Integration Service inserts rows into the cache or
leaves it unchanged.

If there is no match for the lookup condition, the Integration
Service returns NULL.

If there is a match for the lookup condition, the
Integration Service returns the result of the lookup
condition for all lookup/output ports. If you
configure dynamic caching, the Integration Service
either updates the row the in the cache or leaves the
row unchanged.

If a match occurs for the lookup condition, the Integration
Service returns the result of the lookup condition to the return
port.

Passes multiple output values to another
transformation. Link lookup/output ports to another
transformation.

Returns one output value to another transformation. The
Lookup transformation return port passes the value to the port
that contains the :LKP expression in the other transformation.

Supports user-defined default values. Does not support user-defined default values.

Connected Lookups
A connected Lookup transformation is a Lookup transformation that is connected to a source or target in a
mapping.

The following figure shows a mapping with a connected Lookup transformation:

When you run a mapping that contains a connected Lookup transformation, the Integration Service performs
the following steps:

1. The Integration Service passes values from another transformation to input ports in the Lookup
transformation.

2. For each input row, the Integration Service queries the lookup source or cache based on the lookup ports
and the lookup condition in the transformation.

382 Chapter 25: Lookup Transformation

3. If the transformation is uncached or uses a static cache, the Integration Service returns values from the
lookup query.

If the transformation uses a dynamic cache, the Integration Service inserts the row into the cache when
it does not find the row in the cache. When the Integration Service finds the row in the cache, it updates
the row in the cache or leaves it unchanged. It flags the row as insert, update, or no change.

4. The Integration Service returns data from the query and passes it to the next transformation in the
mapping.

If the transformation uses a dynamic cache, you can pass rows to a Filter or Router transformation to
filter new rows to the target.

Note: This chapter discusses connected Lookup transformations unless otherwise specified.

Unconnected Lookups
An unconnected Lookup transformation is a Lookup transformation that is not connected to a source or
target in the mapping. Call the lookup with a :LKP expression in a transformation that allows expressions.

The syntax for the lookup expression is :LKP lookup_transformation_name(argument, argument, ...)

The order in which you list each argument must match the order of the lookup conditions in the Lookup
transformation. The Lookup transformation returns the result of the query through the Lookup transformation
return port. The transformation that calls the lookup receives the lookup result value in the port that contains
the :LKP expression. If the lookup query fails to return a value, the port receives a null value.

When you perform an unconnected lookup, you can perform the same lookup multiple times in a mapping.
You can test the results of the lookup in another expression and filter rows based on the results.

When you run a mapping that contains an unconnected Lookup transformation, the Integration Service
performs the following steps:

1. An unconnected Lookup transformation receives input values from the result of a :LKP expression in
another transformation, such as an Aggregator transformation, Expression transformation, or Update
Strategy transformation.

2. The Integration Service queries the lookup source or cache based on the lookup ports and condition in
the Lookup transformation.

3. The Integration Service returns a value through the return port of the Lookup transformation.

4. The Integration Service passes the return value to the port that contains the :LKP expression.

Developing a Lookup Transformation
When you develop a Lookup transformation, you need to consider factors such as the lookup source type and
the lookup condition.

Consider the following factors when you develop a Lookup transformation:

• Whether you want to create the transformation from a flat file, logical data object, reference table, or
relational data object. Before you create a Lookup transformation, create the lookup source. Import a flat
file or relational database table as a physical data object. Or, create a logical data object or reference
table to use as a lookup source.

• The output ports for the transformation.

• The lookup conditions in the transformation.

Developing a Lookup Transformation 383

• Whether you want the Integration Service to cache lookup data. The Integration Service can cache data for
flat files, reference tables, or relational data objects.

Lookup Query
The Integration Service queries the lookup based on the ports and properties you configure in the Lookup
transformation. The Integration Service runs a default lookup query when the first row enters the Lookup
transformation.

If you use a lookup against a relational table, you can override the lookup query. You can use the override to
add a WHERE clause or transform the lookup data before it is cached.

If you configure a SQL override and a filter on the lookup query, the Integration Service ignores the filter.

Default Lookup Query
The default lookup query contains the following statements:
SELECT

The SELECT statement includes all the lookup ports in the mapping. To view the SELECT statement for
the lookup query, select the Use Custom Query property.

ORDER BY

The ORDER BY clause orders the columns in the same order they appear in the Lookup transformation.
The Integration Service generates the ORDER BY clause. You cannot view this when you generate the
default SQL.

SQL Override for a Lookup Query
You can override the lookup query for a relational lookup. You can add a WHERE clause and transform the
lookup data before it is cached.

You can use reserved words and forward slashes in table names and column names.

You can enter a query to override the default lookup query completely. Or, you view and edit the default
lookup query. The default lookup query includes the lookup ports, output ports, and the return port.

When you use an SQL override, the query appends the clause ORDER BY 1. The clause orders the data to
reliably provide first and last values for other clauses.

Note: You can manually validate the SQL by running the following query in a Hive command line utility:

CREATE VIEW <table name> (<port list>) AS <SQL>
where:

• <table name> is a name of your choice

• <port list> is the comma-delimited list of ports in the source

• <SQL> is the query to validate

384 Chapter 25: Lookup Transformation

Parameters in an SQL Override Query
You can use system parameters or user-defined parameters in the lookup query of a Lookup transformation.
The SQL Editor provides a list of the system parameters and user-defined parameters that you can select
from.

You can browse for or you can create user-defined parameters in the Query tab of a Lookup transformation.
Define a default value for each parameter. You can override a default value by binding a mapplet or mapping
parameter to the transformation parameter after you add the Lookup transformation to a mapping.

The following image shows the Lookup transformation Query tab:

Reserved Words
If any lookup name or column name contains a database reserved word, such as MONTH or YEAR, the
mapping fails with database errors when the Integration Service executes SQL against the database.

You can create and maintain a reserved words file, reswords.txt, in the Integration Service installation
directory. When the Integration Service initializes a mapping, it searches the reswords.txt file and places
quotes around reserved words, and then executes the SQL against source, target, and lookup databases.

You might need to enable some databases, such as Microsoft SQL Server and Sybase, to use SQL-92
standards regarding quoted identifiers. Use environment SQL to issue the command. For example, with
Microsoft SQL Server, use the following command:

SET QUOTED_IDENTIFIER ON

Guidelines for Overriding the Lookup Query
Certain rules and guidelines apply when you override a lookup query.

Consider the following guidelines when you override the lookup SQL query:

• You can override the lookup SQL query for relational lookups.

Lookup Query 385

• Add a source lookup filter to filter the rows that are added to the lookup cache. This ensures that the
Integration Service inserts rows in the dynamic cache and target table that match the WHERE clause.

• If multiple Lookup transformations share a lookup cache, use the same lookup SQL override for each
Lookup transformation.

• If a table name or column name in the lookup query contains a reserved word, enclose the reserved word
in quotes.

• To override the lookup query for an uncached lookup, choose to return any value when the Integration
Service finds multiple matches.

• You cannot add or delete any columns from the default SQL statement.

• The Developer tool does not validate the syntax of the SQL query. If the SQL override in an unconnected
lookup query is not valid, the mapping fails.

Overriding the Lookup Query
You can override the default lookup SQL query to create a customized query on the lookup source.

1. On the Properties view, select the Query tab.

2. Select Advanced.

3. Select Use Custom Query.

4. Edit the lookup query in the SQL Query area.

You can double-click a table name, a column name, or a parameter to add it to the query.

5. Click Validate Query to validate the lookup query.

6. Select Push Custom Query to Database to run the lookup query in the database.

Lookup Source Filter
You can configure a Lookup source filter for a relational Lookup transformation that has caching enabled.
Add the lookup source filter to limit the number of lookups that the Integration Service performs on a lookup
source table.

When you configure a Lookup source filter, the Integration Service performs lookups based on the results of
the filter statement. For example, you might need to retrieve the last name of every employee whose ID is
greater than 510.

You configure the following lookup source filter on the EmployeeID column:

EmployeeID >= 510
EmployeeID is an input port in the Lookup transformation. When the Integration Service reads the source row,
it performs a lookup on the cache when the value of EmployeeID is greater than 510. When EmployeeID is
less than or equal to 510, the Lookup transformation does not retrieve the last name.

When you add a lookup source filter to the Lookup query for a mapping configured for pushdown
optimization, the Integration Service creates a view to represent the SQL override. The Integration Service
runs an SQL query against this view to push the transformation logic to the database.

386 Chapter 25: Lookup Transformation

Filtering Source Rows in a Lookup
You can configure a Lookup source filter for a relational Lookup transformation that has caching enabled.
Filter source rows in a lookup to limit the number of lookups that the Integration Service performs on a
lookup source table.

1. On the Properties view, select the Query tab.

2. In the Filter option, click Edit.

3. In the SQL Editor, select the input ports or enter any Lookup transformation port that you want to filter.

4. Enter a filter condition.

Do not include the keyword WHERE in the filter condition. Enclose string mapping parameters and
variables in string identifiers.

5. Click Validate Query to validate the syntax of the filter condition.

Lookup Condition
The Data Integration Service looks up data in the lookup source based on a lookup condition. When you
configure a lookup condition in a Lookup transformation, you compare the value of one or more columns in
the source data with values in the lookup source or cache.

For example, the source data contains an employee_number. The lookup source table contains employee_ID,
first_name, and last_name. You configure the following lookup condition:

employee_ID = employee_number
For each employee_number, the Data Integration Service returns the employee_ID, last_name, and first_name
column from the lookup source.

The Data Integration Service can return more than one row from the lookup source. You configure the
following lookup condition:

employee_ID > employee_number
The Data Integration Service returns rows for all employee_ID numbers greater than the source employee
number.

Null Values in a Data Object Lookup

When an input to the Lookup condition is NULL, a data object Lookup transformation returns a single row
with null values for output-only ports, and values from input rows for pass-through ports.

For example, the following lookup condition performs a lookup on a data source that contains one or more
rows where the value for employee_ID is NULL:

employee_ID = employee_number
In this example, you use a lookup table with the following data:

EMPLOYEE_ID LAST_NAME

1294765 Hara

1356356 Carver

Lookup Condition 387

EMPLOYEE_ID LAST_NAME

1407207 NULL

1570348 Draper

NULL Limonov

You compare the following input values from your data source with the lookup table:

EMPLOYEE_NUMBER

1294765
1356356
1407207
1648246
NULL

In this example, the Lookup condition produces the following results:

1294765,Hara
1356356,Carver
1407207,NULL
NULL,NULL
NULL,NULL

The Lookup condition finds matches between EMPLOYEE_ID and EMPLOYEE_NUMBER for the first two rows.
For the third row, the lookup source contains a row with a NULL value that does not participate in the lookup
condition. It matches the lookup condition, and returns a result with the NULL value for the non-lookup
column.

For the fourth and fifth rows, the Lookup condition does not find a match, and returns NULL for both values.
For the fifth row, note that the Lookup condition does not find a match again, because NULL does not match
anything, including NULL.

Configure the Lookup Condition
The Lookup condition is an expression that determines which rows to retrieve from the lookup source.
Configure the lookup condition on the Lookup tab of the Properties view.

The following image shows a lookup condition to perform a lookup by customer number:

You can configure the following options on the Lookup tab:

388 Chapter 25: Lookup Transformation

Specify by

Choose Value to select the lookup column and input port names. Select Parameter to configure an
expression parameter to define the lookup condition.

Lookup column

The column in the lookup source to match with a column from the input row. You can include multiple
columns in the lookup condition.

Operator

The operator that determines the condition to search for between the lookup column and the input port.
Operators include =, !=, >, < , >=, <=.

Input Port

The input port that contains the value to search for in the lookup source. You can compare more than
one input port to ports in the lookup source.

Rules and Guidelines for Lookup Transformation Conditions
Certain rules and guidelines apply when you enter a condition for a Lookup transformation.

Consider the following rules and guidelines when you enter a condition for a Lookup transformation.

• The datatypes for the columns in a lookup condition must match.

• Use one input port for each lookup port in the lookup condition. You can use the same input port in more
than one condition in a transformation.

• If you use a port selector or a dynamic port in a lookup condition, the lookup condition considers all the
ports in the expression.

• You can use a dynamic input port or a port selector as the input port of a lookup condition. The number of
generated ports in the input port must be equal to the number of ports in the lookup column.

• When processing a Lookup transformation with multiple lookup conditions, the Integration Service returns
rows that match all the lookup conditions.

• You can create an expression parameter to parameterize the lookup condition in a nonreusable lookup
transformation.

• To increase lookup performance, enter conditions in the following order:

- Equal to (=)

- Less than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=)

- Not equal to (!=)

• Use one of the following operators when you create a lookup condition: =, >, <, >=, <=, or !=.

• The Integration Service processes lookup matches differently based on whether you configure the Lookup
transformation with a dynamic lookup cache, static lookup cache, or uncached lookup.

• The Integration Service matches null values. For example, the Integration Service considers a lookup port
and an input port equal if they both have null values.

• If the columns in a lookup condition are Decimal data types, the precision of each column must belong to
the same precision range. Valid precision ranges include:

- Decimal 0-18

- Decimal 19-28

- Decimal 29-38

- Decimal 39 and over

Lookup Condition 389

For example, if you define the condition DecimalA = DecimalB where DecimalA has precision 15 and
DecimalB has precision 25, the lookup condition is not valid.

Lookup Cache
You can increase performance by caching a large lookup source or small lookup tables. When you cache the
lookup source, the Integration Service queries the lookup cache instead of querying the lookup source for
each input row.

Based on your business requirements, you can create different types of lookup caches. You can create a
static or dynamic cache. You can create a persistent or non-persistent cache. You can share a cache among
multiple Lookup transformations.

If the Lookup transformation is in a dynamic mapping, you can have a persistent or a nonpersistent cache.
When you persist a cache and you change the lookup source with a parameter, the mapping fails. The
mapping also fails if you change the control file for a flat file lookup source.

Note: You cannot use a dynamic lookup cache or a persisted lookup cache when the Lookup transformation
contains a dynamic port or a parameterized lookup source.

Query Properties
Configure query properties to view or change the lookup query on a relational lookup table. You can apply a
filter on the lookup or customize the lookup query.

The following table describes query properties for Lookup transformations that perform relational lookups:

Property Description

Simple Select to view the lookup query and apply a filter on the lookup.

Advanced Select to view the query, customize the query, or run the query in the database that contains the
relational lookup table.

Filter Enter a filter to reduce the number of rows the Integration Service queries. You must select the
Simple option to view this option.

Use Custom Query Select to override the lookup query. You must select the Advanced option to view this option.

Push Custom
Query to Database

Select to run the query in the database that contains the relational lookup table. You must select
the Advanced option to view this option.

SQL Query Displays the SQL query used to perform the lookup. You can customize the SQL query. You must
select the Advanced option to view this option.

390 Chapter 25: Lookup Transformation

Lookup Transformations in Dynamic Mappings
You can use a Lookup transformation in a dynamic mapping. You can configure dynamic ports to receive and
return different ports based on the source data. You can parameterize the lookup source and the lookup
condition to perform a lookup based on the different ports.

A dynamic mapping is a mapping in which the sources, targets, and transformation logic can change at run
time. You can set parameters and rules to change the structure of the data. When you use a Lookup
transformation in a dynamic mapping, the input ports of the Lookup transformation might change based on
the source data. The structure of the lookup source and the ports in the lookup condition might change.

Note: When the Lookup transformation contains a dynamic port or a parameterized lookup source, you
cannot persist the lookup cache. You also cannot configure a dynamic cache.

You can perform the following tasks for a Lookup transformation to use the transformation in a dynamic
mapping:

Define dynamic ports

Define dynamic ports and generated ports to accommodate changes to the input columns.

Parameterize the lookup source

Assign a parameter for the data object that defines the lookup source. You can parameterize the lookup
source in a nonreusable Lookup transformation.

Define port selectors

Define a port selector that specifies the ports to use in the lookup condition. You can parameterize the
port selector ports in a nonreusable Lookup transformation.

Parameterize the lookup condition

Create an expression parameter and define a default value that contains a complete expression.

For more information about dynamic mappings, see the Informatica Developer Mapping Guide.

Define Dynamic Ports
You can define dynamic ports in the Lookup transformation.

You can reference a dynamic port in input column of a lookup condition. If the dynamic port contains multiple
generated ports, you can use a port selector for the lookup column element of the lookup condition. The
dynamic input port must contain the same number of ports as the port selector in the lookup condition.

If the dynamic port contains one value, you can use a single port in the lookup column element of the lookup
condition.

You can reference generated ports in the lookup condition. However, if a source in the dynamic mapping
changes, the generated port might not exist. The mapping fails.

Lookup Transformations in Dynamic Mappings 391

Change the Lookup Source
You can change the data object that is the lookup source for a reusable Lookup transformation. You can
configure a parameter that determines the data object to use as the lookup source at run time.

When you create a transformation from a physical data object, information about the data object appears on
the Data Object tab of the transformation properties. You can click the data object name to view the physical
data object definition from the Model repository.

You can change the data object for the transformation by browsing for a different physical data object in the
Model repository. When you change the data object, the transformation uses the run time properties and the
advanced properties of the data object that you select.

You can update the structure of the data object at run time based on changes in the data source. The data
source is the physical file or the database table that the data object represents. When you enable the Data
Integration Service to get data columns from the data source, the Data Integration Service examines the
structure of the data source. The Data Integration Service updates the data object ports in the transformation
instance based on the data source. The Data Integration Service does not change the physical data object
definition in the Model repository.

The following image shows the Data Object tab:

The Data Object tab has the following fields:

Specify by

Choose Value to enter a specific data object name. Choose Parameter to parameterize the data object.

Data object

The name of the data object in the Model repository. You can click the Data Object link to open the data
object definition from the repository. You can also Browse for a different data object in the Model
repository.

Description

The description of the data object in the repository. Read-only.

Data object type

Describes the type of data object, such as a flat file data object, a relational table object, or a customized
data object.

At run time, get data object columns from the data source

The Data Integration Service fetches metadata and data definition changes from the data file or the table
that the data object refers to and updates the structure of the data object for the transformation
instance at run time.

To preview how the Data Integration Service fetches metadata and data definition changes at run time,
view the mapping with resolved parameters.

392 Chapter 25: Lookup Transformation

Parameterize the Lookup Source
You can configure a parameter for the Lookup source in a nonreusable Lookup transformation.

To parameterize a data object, choose Specify by Parameter in the Data Object tab. The properties in the
Data Object tab change.

To parameterize the data object, create a resource type parameter or browse for a resource parameter that
you already created. The parameter default value is the name of physical data object in the Model repository.
When you create a default parameter value, you select a physical data object name from a list of data objects
in the repository.

The following image shows the Data Object tab when you specify the data object by a parameter:

The Data Object tab has the following options by parameter:

Parameter

The name of a resource parameter that you configured as the data object. Read-only.

Description

The description of the parameter. Read-only.

New

Create a resource parameter. Browse for and select a data object in the Model repository for the
parameter default value.

Browse

Browse for a resource parameter and select the parameter.

Default value

The default value of the resource parameter that you configured for the data object. The default value is
a physical data object name and the path to the object in the Model repository. Read-only.

Port Name Conflicts with the Lookup Port
When you parameterize a lookup source, a Lookup transformation input port might have a name conflict with
a port in the lookup source.

When a Lookup transformation input port has a name conflict with the lookup port in the lookup source, the
Developer tool does not rename either of the ports. The Developer tool displays a validation error. You must
change the input port name in the Lookup transformation or remove the port from the transformation.

Change the Lookup Source 393

Lookup Sources that Contain Parameters
You can create a lookup source from a physical data object that contains parameters. When you add the
physical data object to a mapping, the parameters appear on the Data Object Parameters tab.

The following image shows the Data Object Parameters tab in the Lookup transformation:

The image shows the Customer_Order_Parm. Customer_Order_Parm is a parameter for the source file name
in a flat file data object. To override the source file name in the mapping, bind the Customer_Order_Parm to a
parameter in the mapping. Click Expose as Mapping Parameter to create a duplicate parameter in the
mapping.

Configure Parameters in a Duplicate Data Object
You can create a duplicate data object in the repository and parameterize the properties for that physical
data object. Define default values for the properties such as the connection, the resource name, the table
owner, or the control file name.

You can create a duplicate data object for relational data objects and flat file data objects. You can create a
duplicate data object in a reusable Lookup transformation and in a nonreusable Lookup transformation.

Create a duplicate data object in the Lookup transformation Data Object tab. You can create a duplicate
object if you specify the data object as a value. When you create the duplicate data object, you replace the
data object name in the Lookup transformation with the duplicate data object name. The Developer tool
creates parameters for the data object properties. The Developer tool prompts you to enter default values for
the parameters. The duplicate data object name syntax is: <Original object name>_Param.

The following image shows the Parameterize Using New Data Object button on theData Object tab for
relational and flat file data objects:

394 Chapter 25: Lookup Transformation

When you parameterize a data object by creating a duplicate data object, the Developer tool creates set of
parameters for the data object. The Developer tool creates different parameters based on whether the data
object is a flat file or a relational data object.

When you create the duplicate data object, configure the default parameter values on the New Parameterized
Data Object dialog box.

The following image shows the New Parameterized Data Object for a relational data object:

You can change the name of the data object. Enter the parameter default values for the owner and the
resource parameters.

If the original data object is parameterized, the Developer tool copies the parameters from the original data
object to the duplicate data object. If an original property is not parameterized, the Developer tool creates a
parameter for it in the duplicate data object. The Developer tool uses the original property value as the
default parameter value in the duplicate data object. When the Developer tool cannot determine an original
property value, the Developer tool creates a parameter with a default value based on the parameter type.

Change the Lookup Source 395

The following image show the New Parameterized Data Object dialog box for a flat file data object:

Configure default parameter values for the source file and the source file directory. If the flat file has a
control file, configure the control file name and directory.

After you configure the default values, the Developer tool creates the duplicate data object. The duplicate
data object name appears on the Data Object tab of the Lookup transformation. The duplicate data object
appears in the Object Navigator.

To change the parameter values for the data object after you create it, open the physical data object in the
Object Navigator. Click the Parameters tab.

Port Selectors
You can create a lookup condition when the Lookup transformation contains generated ports. You can
reference a dynamic port or a port selector in a lookup condition. You can also use an expression parameter
to parameterize the complete lookup expression.

When the dynamic port contains multiple generated ports, you can define a port selector to filter the
generated ports in the lookup condition. The lookup source might change in a dynamic mapping. You can
configure a port selector to filter which ports to use for the lookup column. The lookup source port selector
must contain the same number of ports as the input columns port selector.

For example, Lookup_PortSelector contains the following ports:

C_CustKey
C_OrderKey

Input_PortSelector contains the following input ports:

CustomerID_IN
OrderID_IN

The following image shows a lookup condition that contains port selectors:

396 Chapter 25: Lookup Transformation

The lookup condition expands to the following expression:

C_CustKey = CustomerID_IN AND C_OrderKey = OrderID_IN

When the lookup condition contains multiple ports, you can configure one operator. For example, you can
change the operator to greater than (>). The lookup condition expands to the following expression:

C_CustKey > CustomerID_IN AND C_OrderKey > OrderID_IN

You can create a lookup condition that contains a dynamic port:

Lookup_PortSelector = Dynamic_Input_Port

The dynamic port must contain the same number of ports as the port selector.

Port Selector Configuration
When you configure a port selector, you define selection rules to determine which generated ports to include.
The selection rules are similar to the input rules that you can configure for dynamic ports.

A port selector can include static or generated ports. Configure a port selector on the Port Selector tab.

The following image shows the Port Selector tab:

Configure the following properties for a port selector:

Name

Identifies the port selector. You can create multiple port selectors in a transformation and reference
them in expressions.

Scope

Identifies a group of ports that the port selector applies to. You must choose the scope when you create
a port selector for a Joiner or a Lookup transformation. These transformations have multiple input
groups. The Joiner transformation has a Master or a Detail scope. The Lookup transformation has an

Port Selectors 397

Import or a Lookup scope. The Expression transformation has one input group. The scope is always All
Ports.

Selection Rules

Determines the ports to include in the port selector. When you create the selection rules, the Port
Preview panel shows the ports that qualify from the current input ports. These ports might change.
Configure the selection rules to accommodate ports from different sources.

Selection Rules
The selection rules associated with a port selector determine the ports to include in the port selector.

When you create the selection rules, the Port Preview panel shows the ports that qualify from the current
input ports. These ports might change. Configure the selection rules to accommodate ports from different
sources.

Create selection rules based on the following criteria:
Operator

Includes or excludes the ports that selection rules return. Default is include. You must include ports
before you can exclude ports.

Selection Criteria

The type of selection rule you want to create. You can create a rule based on the column name, port type,
pattern, or complex data type definition. To include ports based on the column name, search for specific
names or search for a pattern of characters in the name.

Detail

The values to apply to the selection criteria. If the selection criteria is by column name, configure the
string or name to search for. If the selection criteria is by port type, select the port types to include.

The following table describes the selection criteria and how to specify the details for the criteria:

Selection
Criteria

Description Detail

All Includes all ports. No details required.

Name Filters ports based on the port
name.

Select the port names from a list of values or use a
parameter of type Port or Port List.

Type Filters ports based on the data type
of each port.

Select data types from a list.

Pattern Filters ports by a string of
characters in the name or by a
regular expression.

Choose prefix, suffix, or regular expression as the pattern
type for the port name. Then, enter a value for the pattern or
use a parameter of type String.

Complex Data
Type Definition

Filters ports by a complex data type
definition.

Choose prefix, suffix, or regular expression as the pattern
type for the complex data type definition. Then, enter a
value for the pattern or use a parameter of type String.

398 Chapter 25: Lookup Transformation

Parameterize the Lookup Condition
You can configure an expression parameter that defines the lookup condition. An expression parameter
contains a complete expression that you create in an expression editor. You can define a mapping parameter
to override the expression parameter at run time.

If you specify a lookup condition using a parameter, you can browse for an expression parameter or you can
create a parameter.

The following image shows where to configure an expression parameter for the Lookup condition:

To create a parameter, click New. Define a name for the parameter and edit the default value. The expression
parameter default value is the full expression to define the lookup condition. You can use generated ports,
dynamic ports, and port selectors in the expression.

Note: When you create the expression, the lookup column is always the first value and the input column is the
second value.

For example, you create the following lookup condition in an expression parameter:

CustomerID_IN = C_CUSTKEY

CustomerID_IN is the lookup column.

C_CUSTKEY is the input column.

The following image shows the lookup expression in the expression editor:

Port Selectors 399

Creating a Port Selector
Create a port selector to determine which ports to use in a dynamic expression, a lookup condition, or a joiner
condition.

1. Click the Port Selectors tab.

2. In the Port Selectors area, click New.

The Developer tool creates a port selector with a default selection rule that includes all ports.

3. In the Port Selectors area, change the port selector name to a unique name.

4. If you are working on the Joiner transformation or the Lookup transformation, choose the scope.

The available ports change based on the group of ports that you choose.

5. In the Selection Rules area, select an Operator.

• Include. Create a rule that includes ports for the port selector. You must include ports before you can
exclude ports.

• Exclude. Create a rule that excludes specific ports from the port selector.

6. Choose the Selection Criteria.

• By Name. Select specific ports by name. You can select the port names from a list of ports in the
scope.

400 Chapter 25: Lookup Transformation

• By Type. Select ports by type. You can select one or more data types.

• By Pattern. Select ports by a pattern of characters in the port name. You can search with specific
characters or you can create a regular expression.

The following image shows the Port Selector tab:

7. Click the Detail column.

The Input Rule Detail dialog box appears.

8. Select the values to filter ports by.

• By Name. Choose to create a port list by value or by a parameter. Click Choose to select the ports in
the list.

• By Type. Select one or more data types from a list. The Port Preview area shows ports of the types
that you select.

• By Pattern. Choose to search the prefix or suffix of the port name for a specific pattern of characters.
Or, choose to create a regular expression to search with. Configure a parameter or configure the
pattern to search with.

The Port Preview area shows the ports in the port selector as you configure the rules.

9. To reorder the ports in the port selector, select Reorder generated ports according to the input rule
order.

Port Selectors 401

Run-time Properties
Set the run-time properties to enable and configure lookup caching. You must add the Lookup transformation
to a mapping before you can configure run-time lookup properties.

The following table describes run-time properties for Lookup transformations that perform flat file, reference
table, or relational lookups:

Property Description

Lookup
Caching
Enabled

Indicates whether the Integration Service caches lookup values.
When you enable lookup caching, the Integration Service queries the lookup source once, caches
the values, and looks up values in the cache. Caching the lookup values can increase performance
on large lookup tables.
When you disable caching, each time a row passes into the transformation, the Integration Service
issues a select statement to the lookup source for lookup values.
The Integration Service always caches flat file lookups.

Lookup Data
Cache Size

Amount of memory that the Data Integration Service allocates to the data cache for the
transformation at the start of the mapping run. Select Auto to have the Data Integration Service
automatically calculate the memory requirements at run time. Enter a specific value in bytes when
you tune the cache size. Default is Auto.

Lookup Index
Cache Size

Amount of memory that the Data Integration Service allocates to the index cache for the
transformation at the start of the mapping run. Select Auto to have the Data Integration Service
automatically calculate the memory requirements at run time. Enter a specific value in bytes when
you tune the cache size. Default is Auto.

Cache File
Name Prefix

Prefix for the cache file. You can specify the cache file name prefix for a persistent lookup cache.

Pre-build
Lookup Cache

Allows the Integration Service to build the lookup cache before the Lookup transformation receives
the data. The Integration Service can build multiple lookup cache files at the same time to increase
performance.
Configure one of the following options:
- Auto. The Integration Service determines the value.
- Always Allowed. Allows the Integration Service to build the lookup cache before the Lookup

transformation receives the data. The Integration Service can build multiple lookup cache files at
the same time to increase performance.

- Always disallowed. The Integration Service cannot build the lookup cache before the Lookup
transformation receives the first row.

Lookup Cache
Directory Name

Directory used to build the lookup cache files when you configure the Lookup transformation to
cache the lookup source.
Default is the CacheDir system parameter. You can configure another system parameter or user-
defined parameter for this property.

Re-cache from
Lookup Source

Rebuilds the lookup cache to synchronize the persistent cache with the lookup table. Recache the
lookup from the database when the Lookup transformation has a persistent lookup cache and the
lookup table changes occasionally.

402 Chapter 25: Lookup Transformation

Related Topics:
• “Cache Size” on page 71

Advanced Properties
Configure the persistent lookup cache and connection to a relational database in the advanced properties.
The properties that appear are based on the type of lookup source.

The following table describes advanced properties for each type of lookup source:

Property Lookup Source
Type

Description

Lookup Cache
Persistent

Flat file,
reference table,
relational lookup

Indicates whether the Integration Service uses a persistent lookup cache,
which consists of at least two cache files. If a Lookup transformation is
configured for a persistent lookup cache and persistent lookup cache files do
not exist, the Integration Service creates the files.

Case Sensitive
String
Comparison

Flat file The Integration Service uses case-sensitive string comparisons when
performing lookups on string columns.

Null Ordering Flat file Determines how the Integration Service orders null values. You can choose to
sort null values high or low. By default, the Integration Service sorts null
values high. This overrides the Integration Service configuration to treat nulls
in comparison operators as high, low, or null. For relational lookups, null
ordering is based on the database default value.

Tracing Level Flat file, logical
data object,
reference table,
relational lookup

Sets the amount of detail that appears in the log for this transformation. You
can choose terse, normal, verbose initialization, or verbose data. Default is
normal.

Update Else
Insert

Reference table,
relational lookup

Applies to dynamic lookup cache only. The Integration Service updates the
row in the cache if the row type entering the Lookup transformation is update,
the row exists in the index cache, and the cache data is different than the
existing row. The Integration Service inserts the row in the cache if it is new.

Insert Else
Update

Reference table,
relational lookup

Applies to dynamic lookup cache only. The Integration Service inserts the row
in the cache if the row type entering the Lookup transformation is insert and
it is new. If the row exists in the index cache but the data cache is different
than the current row, the Integration Service updates the row in the data
cache.

Output Old Value
on Update

Reference table,
relational lookup

The Integration Service outputs the value that existed in the cache before it
updated the row. Otherwise, the Integration Service outputs the updated value
that it writes in the cache.

Update Dynamic
Cache Condition

Reference table,
relational lookup

Applies to dynamic lookup cache only. An expression that indicates whether
to update the dynamic cache. The Integration Service updates the cache
when the condition is true and the data exists in the cache. Default is true.

Advanced Properties 403

Property Lookup Source
Type

Description

Connection Reference table,
relational lookup

Connection to the relational database that contains the relational lookup
source. You can use a parameter for the connection.
For reference table lookups, this field is read-only.

Sorted Input Flat file Indicates that input data is presorted by groups.

Datetime Format Flat file Define a datetime format and field width. Milliseconds, microseconds, or
nanoseconds formats have a field width of 29. If you do not select a datetime
format for a port, you can enter any datetime format.
Default is YYYY-MM-DD HH24:MI:SS. The Datetime format does not change
the size of the port. This field is read-only.

Thousand
Separator

Flat file Value is None. This field is read-only.

Decimal
Separator

Flat file Value is a period. This field is read-only.

Creating a Reusable Lookup Transformation
Create a Lookup transformation to look up data in a flat file, logical data object, reference table, or relational
data object.

1. Select a project or folder in the Object Explorer view.

2. Click File > New > Transformation.

3. Browse to the Lookup wizard.

4. Select Flat File Data Object Lookup, Logical Data Object Lookup, Reference Table Lookup, or Relational
Data Object Lookup.

5. Click Next.

The New Lookup Transformation dialog box appears.

6. Select a physical data object or reference table in the Developer tool.

7. Enter a name for the transformation.

8. For On multiple matches, determine which rows that the Lookup transformation returns when it finds
multiple rows that match the lookup condition.

9. Click Finish.

The Lookup transformation appears in the editor.

10. In the Ports section of the Overview view, add output ports to the transformation.

404 Chapter 25: Lookup Transformation

The following figure shows the CUSTOMER_NO output port in a Lookup transformation:

11. On the Run-time tab of the Properties view, select Lookup Caching Enabled to enable lookup caching.

Note: You must add the Lookup transformation to a mapping before you can configure run-time lookup
properties.

12. On the Lookup tab of the Properties view, add one or more lookup conditions.

13. On the Advanced tab of the Properties view, configure the tracing level, dynamic lookup cache
properties, and run-time connection.

14. Save the transformation.

Creating a Non-Reusable Lookup Transformation
Create a non-reusable Lookup transformation in a mapping or mapplet.

1. In a mapping or mapplet, drag a Lookup transformation from the Transformation pallette to the editor.

The New dialog box appears.

2. Select Flat File Data Object Lookup, Logical Data Object Lookup, Reference Table Lookup, or Relational
Data Object Lookup.

3. Click Next.

The New Lookup Transformation dialog box appears.

4. Select a physical data object or reference table in the Developer tool.

5. Enter a name for the transformation.

6. For On multiple matches, determine which rows that the Lookup transformation returns when it finds
multiple rows that match the lookup condition.

7. Click Finish.

The Lookup transformation appears in the editor.

8. Select the Lookup transformation in the editor.

The toolbar appears above the transformation.

9. On the Ports tab of the Properties view, add output ports to the transformation.

Creating a Non-Reusable Lookup Transformation 405

The following figure shows the CUSTOMER_NO output port in a Lookup transformation:

10. On the Run-time tab of the Properties view, select Lookup Caching Enabled to enable lookup caching.

Note: You must add the Lookup transformation to a mapping before you can configure run-time lookup
properties.

11. On the Lookup tab of the Properties view, add one or more lookup conditions.

12. On the Advanced tab of the Properties view, configure the tracing level, dynamic lookup cache
properties, and run-time connection.

13. Save the transformation.

Creating an Unconnected Lookup Transformation
Create an unconnected Lookup transformation when you want to perform a lookup from an expression. You
can create a reusable or a non-reusable unconnected Lookup transformation on a flat file, reference table, or
relational data object.

1. Select a project or folder in the Object Explorer view.

2. Click File > New > Transformation.

3. Browse to the Lookup wizard.

4. Select Flat File Data Object Lookup, Reference Table Lookup, or Relational Data Object Lookup.

5. Click Next.

The New Lookup dialog box appears.

6. Select a physical data object or reference table in the Developer tool.

7. Enter a name for the transformation.

8. For On multiple matches, determine which row that the Lookup transformation returns when it finds
multiple rows that match the lookup condition. Do not choose Return All for an unconnected lookup.

9. Click Finish.

The Lookup transformation appears in the editor.

10. In the Ports section in the Overview view, add ports to the transformation.

Create an input port for each argument in the :LKP expression. Create an input port for each lookup
condition that you create. You can use an input port in multiple conditions.

11. In the Ports section in the Overview view, configure one port as the return port.

12. In the Lookup view, add one or more lookup conditions to compare the transformation input values with
values in the lookup source or cache.

406 Chapter 25: Lookup Transformation

When the condition is true, the lookup returns a value in the return port. If the lookup condition is false,
the lookup returns NULL.

13. Create a :LKP expression for a port in a transformation that allows expressions, such as an Aggregator
transformation, Expression transformation, or Update Strategy transformation.

14. When you create a mapping, add the unconnected Lookup transformation to the mapping in the editor,
but do not connect the ports to the other transformations in the mapping.

Unconnected Lookup Example
A retail store in California adds a state sales tax to each price for items that it sells to customers within the
state. The amount of tax is based on what county that the customer resides in. To retrieve the sales tax, you
create a Lookup transformation that receives a county name and then returns a sales tax amount for the
county. If the county does not charge a sales tax, the Lookup transformation returns NULL. Call the lookup
from an Expression transformation.

Complete the following steps to configure an unconnected lookup of sales tax by county:

1. Import a flat file physical data object that contains the sales tax amounts by county.

2. Create the unconnected Lookup transformation.

3. Add input ports to the Lookup transformation.

4. Define the return port.

5. Create the lookup condition.

6. Call the lookup from an Expression transformation.

Step 1. Import the sales tax lookup source to the Model repository.

The sales tax file must be in the Model repository before you create the Lookup transformation. For this
scenario, the sales tax file contains two fields, Sales_County and County_SalesTax. The county is a string
that contains a county name. County_SalesTax is a decimal field that contains a tax rate for the county. The
sales tax file is the lookup source.

Step 2. Create the Unconnected Lookup Transformation

Create a reusable flat file Lookup transformation with the sales tax flat file data object. For this scenario, the
transformation name is Sales_Tax_Lookup. Select Return First Row on multiple matches.

Step 3. Define the Lookup Transformation Ports

Define the Lookup transformation ports on the Ports tab of the Properties view.

Port Type Name Type Length Scale
Input In_County String 25
Output SalesTax Decimal 3 3

Step 4. Configure the Lookup Transformation Return Port

The return port is the field in the flat file that the lookup retrieves. On the Columns tab, the County_SalesTax
column is the return port.

When the lookup is true, the Integration Service finds the county in the flat file source. The Integration Service
returns a sales tax value in the return port. If the Integration Service does not find the county, the lookup
result is false and the Integration Service returns NULL in the return port.

Unconnected Lookup Example 407

Step 5. Define the Lookup Condition

On the Lookup view, define the lookup condition to compare the input value with values in the lookup source.

To add the lookup condition, click the Lookup Column.

The lookup condition has the following syntax:

SALES_COUNTY = IN_COUNTY

Step 6. Create an Expression Transformation

Create an Expression transformation that receives sales records from a flat file. The Expression
transformation receives a customer number, sales amount, and the county of the sale. It returns the
customer number, sales amount, and a sales tax.

The Expression transformation has the following ports:

Port Type Name Type Length Precision Default Value
Input County String 25 10
Pass-through Customer String 10
Pass-through SalesAmt Decimal 10 2
Output SalesTax Decimal 10 2 0

The SalesTax port contains a :LKP expression. The expression calls the Sales_Tax_Lookup transformation
and passes the county name as the parameter. The Sales_Tax_Lookup transformation returns the sales tax
rate to the expression. The Expression transformation multiplies the tax rate by the sales amount.

Enter the following expression for the SalesTax port:

(:LKP.Sales_Tax_Lookup(County) * SalesAmt)

The SalesTax port contains the expression result. If the lookup fails, the Lookup transformation returns NULL
and the SalesTax port contains null values.

You can add an expression to check for null values in the SalesTax port. If SalesTax is NULL you can
configure the SalesTax port to return zero. Add the following text to the lookup expression to check for null
values and return zero:

IIF(ISNULL(:LKP.Sales_Tax_Lookup(County) * SalesAmt),0, SalesTax)

Lookup Transformation in a Non-native Environment
The Lookup transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported with restrictions.

408 Chapter 25: Lookup Transformation

Lookup Transformation on the Blaze Engine
Some processing rules for the Blaze engine differ from the processing rules for the Data Integration Service.

Mapping validation fails in the following situations:

• The cache is configured to be shared, named, persistent, dynamic, or uncached. The cache must be a
static cache.

If you add a data object that uses Sqoop as a Lookup transformation in a mapping, the Data Integration
Service does not run the mapping through Sqoop. It runs the mapping through JDBC.

Lookup Transformation on the Spark Engine
Some processing rules for the Spark engine differ from the processing rules for the Data Integration Service.

Mapping Validation

Mapping validation fails in the following situations:

• Case sensitivity is disabled.

• The lookup condition in the Lookup transformation contains binary data type.

• The cache is configured to be shared, named, persistent, dynamic, or uncached. The cache must be a
static cache.

The mapping fails in the following situation:

• The transformation is unconnected and used with a Joiner or Java transformation.

Multiple Matches

When you choose to return the first, last, or any value on multiple matches, the Lookup transformation
returns any value.

If you configure the transformation to report an error on multiple matches, the Spark engine drops the
duplicate rows and does not include the rows in the logs.

Note: If an HBase lookup does not result in a match, it generates a row with null values for all columns. You
can add a Filter transformation after the Lookup transformation to filter out null rows.

Lookup Transformation in a Streaming Mapping
Streaming mappings have additional processing rules that do not apply to batch mappings.

Mapping Validation

Mapping validation fails in the following situations:

• The lookup is a data object.

• An Aggregator transformation is in the same streaming pipeline as a passive Lookup transformation
configured with an inequality lookup condition.

• A Rank transformation is in the same streaming pipeline as a passive Lookup transformation configured
with an inequality lookup condition.

• A pipeline contains more than one passive Lookup transformation configured with an inequality condition.

The mapping fails in the following situations:

• The transformation is unconnected.

Lookup Transformation in a Non-native Environment 409

General Guidelines

Consider the following general guidelines:

• Using a float data type to look up data can return unexpected results.

• Use a Lookup transformation to look up data in a flat file, HDFS, Hive, relational, and HBase data.

• To avoid cross join of DataFrames, configure the Lookup transformation to ignore null values that match.

HBase Lookups

To use a Lookup transformation on uncached HBase tables, perform the following steps:

1. Create an HBase data object. When you add an HBase table as the resource for a HBase data object,
include the ROW ID column.

2. Create a HBase read data operation and import it into the streaming mapping.

3. When you import the data operation to the mapping, select the Lookup option.

4. On the Lookup tab, configure the following options:

• Lookup column. Specify an equality condition on ROW ID

• Operator. Specify =

5. Verify that format for any date value in the HBase tables is of a valid Java date format. Specify this
format in the Date Time Format property of the Advanced Properties tab of the data object read
operation.

Note: If an HBase lookup does not result in a match, it generates a row with null values for all columns. You
can add a Filter transformation after the Lookup transformation to filter out null rows.

Mapping validation fails in the following situations:

• The condition does not contain a ROW ID.

• The transformation contains an inequality condition.

• The transformation contains multiple conditions.

• An input column is of a date type.

Lookup Transformation on the Databricks Spark Engine
Some processing rules for the Databricks Spark engine differ from the processing rules for the Data
Integration Service.

Mapping Validation

Mapping validation fails in the following situations:

• Case sensitivity is disabled.

• The lookup condition in the Lookup transformation contains binary data type.

• The cache is configured to be shared, named, persistent, dynamic, or uncached. The cache must be a
static cache.

• The lookup source is not Microsoft Azure SQL Data Warehouse.

The mapping fails in the following situation:

• The transformation is unconnected and used with a Joiner transformation.

410 Chapter 25: Lookup Transformation

Multiple Matches

When you choose to return the first, last, or any value on multiple matches, the Lookup transformation
returns any value.

If you configure the transformation to report an error on multiple matches, the Spark engine drops the
duplicate rows and does not include the rows in the logs.

Note: If an HBase lookup does not result in a match, it generates a row with null values for all columns. You
can add a Filter transformation after the Lookup transformation to filter out null rows.

Lookup Transformation in a Non-native Environment 411

C h a p t e r 2 6

Lookup Caches
This chapter includes the following topics:

• Lookup Caches Overview, 412

• Lookup Cache Types, 413

• Uncached Lookup, 414

• Static Lookup Cache, 414

• Persistent Lookup Cache, 414

• Dynamic Lookup Cache, 415

• Shared Lookup Cache, 416

• Cache Comparison, 417

• Cache Partitioning for Lookups, 417

Lookup Caches Overview
You can configure a Lookup transformation to cache a relational or flat file lookup source. Enable lookup
caching on a large lookup table or file to increase lookup performance.

The Integration Service builds a cache in memory when it processes the first row of data in a cached Lookup
transformation. The Integration Service creates caches as the source rows enter the Lookup transformation.
It allocates memory for the cache based on the amount you configure in the transformation. The Integration
Service stores condition values in the index cache and output values in the data cache. The Integration
Service queries the cache for each row that enters the transformation.

If the data does not fit in the memory cache, the Integration Service stores the overflow values in cache files.
The Integration Service creates the cache files in the cache directory. By default, the Integration Service
creates cache files in the directory specified in the CacheDir system parameter. When the mapping
completes, the Integration Service releases cache memory and deletes the cache files unless you configure
the Lookup transformation to use a persistent cache.

If you use a flat file lookup, the Integration Service caches the lookup source. If you configure a flat file
lookup for sorted input, the Integration Service cannot cache the lookup if the condition columns are not
grouped. If the columns are grouped, but not sorted, the Integration Service processes the lookup as if you
did not configure sorted input.

When you do not configure the Lookup transformation for caching, the Integration Service queries the lookup
source for each input row. Whether or not you cache the lookup source, the result of the Lookup query and
processing is the same. However, you can increase lookup performance on a large lookup source if you
enable lookup caching.

412

Lookup Cache Types
You can configure different types of lookup caches. For example, you can configure a shared cache if you
want to share the cache among multiple Lookup transformations in the same mapping.

You can configure the following types of lookup caches:
Static Cache

A static cache does not change while the Integration Service processes the lookup. The Integration
Service rebuilds a static cache each time it processes the lookup. By default, the Integration Service
creates a static cache when you enable caching for a Lookup transformation. The Integration Service
builds the cache when it processes the first lookup request. It looks up values in the cache for each row
that comes into the Lookup transformation. When the lookup condition is true, the Integration Service
returns a value from the lookup cache.

Use a static cache for the following reasons:

• The lookup source does not change while the mapping runs.

• The lookup is an unconnected lookup. You must use a static cache for an unconnected lookup.

• To increase performance. Because the Integration Service does not update the cache while it
processes the Lookup transformation, the Integration Service processes a Lookup transformation
with a static cache faster than a Lookup transformation with a dynamic cache.

• You want the Integration Service to return the default value for connected transformations or NULL
for unconnected transformations when the lookup condition is false.

Persistent Cache

A persistent cache does not change each time the Integration Service processes the lookup. The
Integration Service saves the lookup cache files and reuses them the next time it processes a Lookup
transformation configured to use the cache. Use a persistent cache when the lookup source does not
change.

You can configure the Lookup transformation to rebuild a persistent lookup cache if necessary.

Dynamic Cache

A dynamic lookup cache changes while the Integration Service processes the lookup. The Integration
Service builds a dynamic lookup cache when it processes the first lookup request. When it processes
each row, the Integration Service dynamically inserts or updates data in the lookup cache and passes the
data to the target. The dynamic cache is synchronized with the target.

Use a dynamic cache when you want to update a target based on new and changed records. You might
also use a dynamic cache when the mapping requires a lookup on target data, but connection to the
target is slow.

Shared Cache

A shared cache can be used by multiple Lookup transformations in the same mapping. Use a shared
cache to increase mapping performance. Instead of generating a separate lookup cache for each Lookup
transformation, the Integration Service generates one cache.

Lookup Cache Types 413

Uncached Lookup
An uncached lookup is when the Integration Service does not cache the lookup source. By default, the
Integration Service does not use a lookup cache for a Lookup transformation.

The Integration Service processes an uncached lookup the same way it processes a cached lookup except
that it queries the lookup source instead of building and querying the lookup cache.

When the lookup condition is true, the Integration Service returns the values from the lookup source. When
the Integration Service processes a connected Lookup transformation, it returns the values represented by
the lookup/output ports. When it processes an unconnected Lookup transformation, the Integration Service
returns the value represented by the return port.

When the condition is not true, the Integration Service returns either NULL or default values. When the
Integration Service processes a connected Lookup transformation, it returns the default value of the output
port when the condition is not met. When it processes an unconnected Lookup transformation, the
Integration Service returns NULL when the condition is not met.

Static Lookup Cache
A static lookup cache is a cache that the Integration Service does not update when it processes the Lookup
transformation. By default, the Integration Service creates a static lookup cache when you configure a
Lookup transformation for caching.

The Integration Service builds the cache when it processes the first lookup request. It queries the cache
based on the lookup condition for each row that passes into the transformation.

When the lookup condition is true, the Integration Service returns the values from the static lookup cache.
When the Integration Service processes a connected Lookup transformation, it returns the values
represented by the lookup/output ports. When the Integration Service processes an unconnected Lookup
transformation, it returns the value represented by the return port.

When the condition is not true, the Integration Service returns either NULL or default values. When the
Integration Service processes a connected Lookup transformation, the Integration Service returns the default
value of the output port when the condition is not met. When the Integration Service processes an
unconnected Lookup transformation, it returns NULL when the condition is not met.

Persistent Lookup Cache
A persistent lookup cache is a cache that the Integration Service reuses for multiple runs of the same
mapping. Use a persistent lookup cache when the lookup source does not change between mapping runs.

By default, the Integration Service uses a non-persistent cache when you enable lookup caching in a Lookup
transformation. The Integration Service deletes the cache files when the mapping completes. The next time
you run the mapping, the Integration Service builds the memory cache from the lookup source.

If you configure the Lookup transformation to use a persistent lookup cache, the Integration Service saves
and reuses cache files for multiple runs of the mapping. A persistent cache eliminates the time required to
read the lookup table and rebuild the lookup cache.

414 Chapter 26: Lookup Caches

The first time the Integration Service runs a mapping with a persistent lookup cache, the Integration Service
saves the cache files to disk. The next time the Integration Service runs the mapping, it builds the memory
cache from the cache files.

You can configure the Integration Service to rebuild a persistent lookup cache if the original lookup source
changes. When you rebuild a cache, the Integration Service creates new cache files and writes a message to
the Integration Service log.

Rebuilding a Persistent Lookup Cache
You can configure the Integration Service to rebuild the persistent lookup cache. In some cases, the
Integration Service will rebuild the persistent lookup cache even if you do not configure it to.

Consider the following rules and guidelines when you rebuild a persistent lookup cache:

• Rebuild a persistent lookup cache if the lookup source changed since the last time the Integration Service
built the cache.

• You can rebuild the cache when the mapping contains one or more Lookup transformations that share a
cache.

• If the lookup table does not change between mapping runs, configure the Lookup transformation to use a
persistent lookup cache. The Integration Service saves and reuses cache files, eliminating the time
required to read the lookup table.

• If you configure subsequent Lookup transformations to rebuild the lookup cache, the Integration Service
shares the cache instead of rebuilding the cache when it processes the subsequent Lookup
transformation.

• If a mapping contains two persistent lookups and you configure the second Lookup transformation to
rebuild the cache, then the Integration Service rebuilds the persistent lookup cache for both.

The Integration Service rebuilds the persistent lookup cache in the following scenarios:

• The Integration Service cannot find the cache files.

• The Integration Service cannot reuse the cache. In this instance, it either rebuilds the lookup cache or fails
the mapping.

• You enable or disable high precision for the Integration Service.

• You edit the Lookup transformation or the mapping.

Note: The Integration Service does not rebuild the cache if you edit the transformation description.

• You change the number of partitions.

• You change the database connection or the file location used to access the lookup source.

• You change the sort order in Unicode mode.

• You change the Integration Service code page.

Dynamic Lookup Cache
A dynamic cache is a cache that the Integration Service updates when it processes each row. Use a dynamic
lookup cache to keep the cache synchronized with the target.

You can use a dynamic cache with a relational lookup and flat file lookup. The Integration Service builds the
cache when it processes the first lookup request. It queries the cache based on the lookup condition for each

Dynamic Lookup Cache 415

row that passes into the Lookup transformation. The Integration Service updates the lookup cache when it
processes each row.

Based on the results of the lookup query, the row type, and the Lookup transformation properties, the
Integration Service either inserts or updates rows in the cache, or makes no change to the cache.

Shared Lookup Cache
A shared lookup cache is a static lookup cache that is shared by multiple Lookup transformations in a
mapping. Use a shared lookup cache to decrease the amount of time required to build the cache.

By default, the Integration Service shares the cache for Lookup transformations in a mapping that have
compatible caching structures. For example, if a mapping contains two instances of the same reusable
Lookup transformation in one mapping and you use the same output ports for both instances, the Lookup
transformations share the lookup cache by default.

The Integration Service builds the cache when it processes the first Lookup transformation. It uses the same
cache to process subsequent Lookup transformations that share the cache. When the Integration Service
shares a lookup cache, it writes a message in the Integration Service log.

The Integration Service allocates data cache memory and index cache memory for the first Lookup
transformation. It does not allocate additional memory for subsequent Lookup transformations that share
the lookup cache.

If the transformation or the cache structure do not allow sharing, the Integration Service creates a new
cache.

Rules and Guidelines for Sharing a Lookup Cache
Consider the following rules and guidelines when you share a lookup cache:

• You can share one or more static caches with a dynamic lookup. If a dynamic lookup shares the cache
with a static lookup in the same mapping, the static lookup reuses the cache created by the dynamic
lookup.

• You cannot share a cache between dynamic lookups.

• If you configure multiple Lookup transformations to rebuild a persistent lookup cache, the Integration
Service builds the cache for the first Lookup transformation, and then shares the persistent lookup cache
for the subsequent Lookup transformations.

• If you do not configure the first Lookup transformation to rebuild a persistent lookup cache, but you
configure a subsequent Lookup transformation to rebuild the cache, the transformations cannot share the
cache. The Integration Service builds the cache when it processes each Lookup transformation.

• The lookup/output ports for subsequent Lookup transformations must match or be a subset of the ports
in the Lookup transformation that the Integration Service uses to build the cache. The order of the ports
do not need to match.

• Lookup transformations that share the cache must have the following characteristics:

- The Lookup transformations must use the same ports in the lookup condition.

- The Lookup transformations must use the same SQL override if one is used.

- Lookup caching must be enabled in all Lookup transformations.

- The Lookup transformations must use the same type of lookup source.

416 Chapter 26: Lookup Caches

- All relational Lookup transformations must use the same database connection.

- The Lookup transformations must use the same lookup table name.

- The structure of the cache for all Lookup transformations must be compatible.

Cache Comparison
The Integration Service performs differently based on the type of lookup cache that you configure.

The following table compares Lookup transformations with an uncached lookup, a static cache, and a
dynamic cache:

Uncached Static Cache Dynamic Cache

The Integration Service does not
insert or update the cache.

The Integration Service does not
insert or update the cache.

The Integration Service can insert or update
rows in the cache as it passes rows to the
target.

You can use a relational lookup. You can use a relational or flat
file lookup.

You can use a relational or flat file lookup.

When the condition is true, the
Integration Service returns a
value from the lookup table or
cache.
When the condition is not true,
the Integration Service returns
the default value for connected
transformations and NULL for
unconnected transformations.

When the condition is true, the
Integration Service returns a
value from the lookup table or
cache.
When the condition is not true,
the Integration Service returns
the default value for connected
transformations and NULL for
unconnected transformations.

When the condition is true, the Integration
Service either updates rows in the cache or
leaves the cache unchanged, based on the
row type. This indicates that the row is in the
cache and target table. You can pass updated
rows to a target.
When the condition is not true, the Integration
Service either inserts rows into the cache or
leaves the cache unchanged, based on the
row type. This indicates that the row is not in
the cache or target. You can pass inserted
rows to a target table.

Cache Partitioning for Lookups
Cache partitioning creates a separate cache for each partition that processes an Aggregator, Joiner, Rank, or
Lookup transformation. Cache partitioning increases mapping performance because each partition queries a
separate cache in parallel.

When the Integration Service creates partitions for a mapping, it might use cache partitioning for partitioned
Lookup transformations.

The Integration Service uses cache partitioning for connected Lookup transformations when the following
conditions are true:

• The lookup condition contains only equality operators.

• When the connected Lookup transformation looks up data in a relational table, and the database is
configured for case-sensitive comparison.

The Integration Service does not use cache partitioning for unconnected Lookup transformations.

Cache Comparison 417

When the Integration Service does not use cache partitioning for a Lookup transformation, all partitions of
the Lookup transformation share the same cache. Each partition queries the same cache serially.

418 Chapter 26: Lookup Caches

C h a p t e r 2 7

Dynamic Lookup Cache
This chapter includes the following topics:

• Dynamic Lookup Cache Overview, 419

• Uses for a Dynamic Lookup Cache, 420

• Dynamic Lookup Cache Properties, 420

• Dynamic Lookup Cache and Output Values, 422

• Lookup Transformation Values, 422

• SQL Override and Dynamic Lookup Cache, 425

• Mapping Configuration for a Dynamic Lookup Cache, 425

• Conditional Dynamic Lookup Cache Updates, 428

• Dynamic Cache Update with Expression Results, 429

• Dynamic Lookup Cache Example, 430

• Rules and Guidelines for Dynamic Lookup Caches, 431

Dynamic Lookup Cache Overview
Use a dynamic lookup cache to keep the cache synchronized with the target. You can use a dynamic cache
with a relational lookup or flat file lookup.

The Integration Service builds the dynamic lookup cache when it processes the first lookup request. It
queries the cache based on the lookup condition for each row that passes into the transformation. The
Integration Service updates the lookup cache when it processes each row.

Based on the results of the lookup query, the row type, and the Lookup transformation properties, the
Integration Service performs one of the following actions on the dynamic lookup cache when it reads a row
from the source:
Inserts the row into the cache

The Integration Service inserts the row when the row is not in the cache and you configured the Lookup
transformation to insert rows into the cache. You can configure the transformation to insert rows into
the cache based on input ports or generated sequence IDs. The Integration Service flags the row as
insert.

Updates the row in the cache

The Integration Service updates the row when the row exists in the cache and you configured the Lookup
transformation to update rows in the cache. The Integration Service updates the row in the cache based
on the input ports. The Integration Service flags the row as an update row.

419

Makes no change to the cache

The Integration Service makes no change when the row exists in the cache and you configured the
Lookup transformation to insert new rows only. Or, the row is not in the cache and you specified to
update existing rows only. Or, the row is in the cache, but based on the lookup condition, nothing
changes. The Integration Service flags the row as unchanged.

Based on the value of the NewLookupRow, you can also configure a Router or Filter transformation with the
dynamic Lookup transformation to route insert or update rows to the target table. You can route unchanged
rows to another target table or flat file, or you can drop them.

Uses for a Dynamic Lookup Cache
You can configure a Lookup transformation with a dynamic lookup cache to update the cache based on
changes in the lookup source.

You might use a dynamic lookup cache for the following reasons:
Update a master customer table with new and updated customer information.

For example, you can use a Lookup transformation to perform a lookup on the customer table to
determine if a customer exists in the target. The cache represents the customer table. The Lookup
transformation inserts and update rows in the cache as it passes rows to the target.

Use an exported flat file as a lookup source instead of a relational table.

If the connection to the database is slow, you can export the relational table contents to a flat file and
use the file as a lookup source. For example, you might need to use this method if an ODBC connection
to a database is slow. You can configure the database table as a relational target in the mapping and
pass the lookup cache changes back to the database table.

Dynamic Lookup Cache Properties
Configure the dynamic lookup properties to enable a dynamic lookup cache and configure how the cache is
updated. For example, you can configure the values that are inserted and updated in the dynamic cache.

Configure the following properties when you enable a dynamic lookup cache:
On Multiple Matches

Set to Report Error.

Dynamic Lookup Cache

Enables a dynamic lookup cache.

This option is available after you enable lookup caching.

Update Else Insert

Applies to rows entering the Lookup transformation where the row type is update. When enabled, the
Integration Service updates existing rows in the cache, and inserts a row if it is new. When disabled, the
Integration Service does not insert new rows.

This option is available after you enable dynamic caching.

420 Chapter 27: Dynamic Lookup Cache

Insert Else Update

Applies to rows entering the Lookup transformation where the row type is insert. When enabled, the
Integration Service inserts rows in the cache and updates existing rows. When disabled, the Integration
Service does not update existing rows.

This option is available after you enable dynamic caching.

Output Old Value on Update

The Lookup transformation can output the existing or new values from the cache. When enabled, the
Integration Service outputs the existing values from the lookup/output ports before it updates the value
in the cache. When the Integration Service updates a row in the cache, it outputs the value in the lookup
cache before it updates the row based on the input data. When the Integration Service inserts a row in
the cache, it outputs null values.

Disable the property for the Integration Service to pass the same values from the lookup/output and
input/output ports. This property is enabled by default.

This option is available after you enable dynamic caching.

Update Dynamic Cache Condition

When enabled, the Integration Service uses the condition expression to determine whether to update the
dynamic cache. The Integration Service updates the cache when the condition is true and the data exists
in the cache.

Create the expression using lookup ports or input ports. The expression can contain input values or
values in the lookup cache. Default is true.

This option is available after you enable dynamic caching.

NewLookupRow

The Developer tool adds this port to a Lookup transformation that is configured with a dynamic cache.

The NewLookupRow property can contain one of the following values:

• 0 = No update to the cache.

• 1 = Insert row into cache.

• 2 = Update row in cache.

To keep the lookup cache and the target table synchronized, pass rows to the target when the
NewLookupRow value is equal to 1 or 2.

Associated Port

The Integration Service uses the value of the associated port when it updates data in the cache. The
Integration Service associates input ports and lookup source ports specified in the lookup condition. You
must configure associated ports for the remaining lookup source ports in the dynamic lookup. If you do
not configure an associated port for all lookup source ports in a dynamic lookup, the mapping validation
fails.

Dynamic Lookup Cache Properties 421

You can associate a lookup source port with the following objects:

Object Description

Input port Updates the cache based on the value of an input port.

Associated
expression

Select to enter an expression. The Integration Service updates the cache based on the
result of the expression.

Sequence ID Generates a primary key for rows inserted in the lookup cache. You can associate a
sequence ID with bigint and int columns only.

Ignore Null Inputs for Updates

The Developer tool activates this port property for lookup/output ports when you configure the Lookup
transformation to use a dynamic cache. Select this property when you do not want the Integration
Service to update the column in the cache with a null input value.

Ignore in Comparison

The Developer tool activates this port property for lookup/output ports not used in the lookup condition
when you configure the Lookup transformation to use a dynamic cache. The Integration Service
compares the values in all lookup ports with the values in their associated ports by default. Select this
property if you want the Integration Service to ignore the port when it compares values before updating a
row. Use this property to increase the performance of the comparison.

Dynamic Lookup Cache and Output Values
If you enable a dynamic lookup cache, the output port values vary based on how you configure the dynamic
lookup cache. The output value of the lookup/output port depends on whether you choose to output old or
new values when the Integration Service updates a row.

You can configure the Output Old Value On Update property to specify one of the following types of output
values for a lookup/output port:

• Output old values on update. The Integration Service outputs the value that existed in the cache before it
updated the row.

• Output new values on update. The Integration Service outputs the updated value that it writes in the
cache. The lookup/output port value matches the output port value.

Lookup Transformation Values
The Lookup transformation contains values for input ports, the lookup, and output ports. If you enable a
dynamic lookup cache, the output port values vary based on how you configure the dynamic lookup cache.

The Lookup transformation contains the following types of values:
Input value

Value that the Integration Service passes into the Lookup transformation.

422 Chapter 27: Dynamic Lookup Cache

Lookup value

Value that the Integration Service inserts into the cache.

Output value

Value that the Integration Service passes from the output port of the Lookup transformation. The output
value of the lookup/output port depends on whether you choose to output old or new values when the
Integration Service updates a row.

Lookup Transformation Values Example
For example, you create a mapping with the following objects:

For the Lookup transformation, you enable dynamic lookup caching and define the following lookup
condition:

IN_CUST_ID = CUST_ID
By default, the row type of all rows entering the Lookup transformation is insert. To perform both inserts and
updates in the cache and target table, you select the Insert Else Update property in the Lookup
transformation.

Initial Cache Values

When you run the mapping, the Integration Service builds the lookup cache from the target table.

The following table shows the initial values of the lookup cache:

PK_PRIMARYKEY CUST_ID CUST_NAME ADDRESS

100001 80001 Marion James 100 Main St.

100002 80002 Laura Jones 510 Broadway Ave.

100003 80003 Shelley Lau 220 Burnside Ave.

Input Values

The source contains rows that exist and rows that do not exist in the target table. The Integration Service
passes the source rows into the Lookup transformation.

The following table shows the source rows:

SQ_CUST_ID SQ_CUST_NAME SQ_ADDRESS

80001 Marion Atkins 100 Main St.

80002 Laura Gomez 510 Broadway Ave.

Lookup Transformation Values 423

SQ_CUST_ID SQ_CUST_NAME SQ_ADDRESS

99001 Jon Freeman 555 6th Ave.

Lookup Values

The Integration Service looks up values in the cache based on the lookup condition. It updates rows in the
cache for existing customer IDs 80001 and 80002. It inserts a row into the cache for customer ID 99001. The
Integration Service generates a new key (PK_PRIMARYKEY) for the new row.

The following table shows the rows and values returned from the lookup:

PK_PRIMARYKEY CUST_ID CUST_NAME ADDRESS

100001 80001 Marion Atkins 100 Main St.

100002 80002 Laura Gomez 510 Broadway Ave.

100004 99001 Jon Freeman 555 6th Ave.

Output Values

The Integration Service flags the rows in the Lookup transformation based on the inserts and updates it
performs on the dynamic cache. The Integration Service eventually pass the rows to a Router transformation
that creates a branch for insert rows and another branch for update rows. Each branch contains an Update
Strategy transformation. The Update Strategy transformations flag the rows for insert or update based on the
value of the NewLookupRow port.

The output values of the lookup/output and input/output ports depend on whether you choose to output old
or new values when the Integration Service updates a row. However, the output values of the NewLookupRow
port and any lookup/output port that uses the sequence ID is the same for new and updated rows.

If you choose to output new values, the lookup/output ports output the following values:

NewLookupRow PK_PRIMARYKEY CUST_ID CUST_NAME ADDRESS

2 100001 80001 Marion Atkins 100 Main St.

2 100002 80002 Laura Gomez 510 Broadway Ave.

1 100004 99001 Jon Freeman 555 6th Ave.

If you choose to output old values, the lookup/output ports output the following values:

NewLookupRow PK_PRIMARYKEY CUST_ID CUST_NAME ADDRESS

2 100001 80001 Marion James 100 Main St.

2 100002 80002 Laura Jones 510 Broadway Ave.

1 100004 99001 Jon Freeman 555 6th Ave.

When the Integration Service updates rows in the lookup cache it uses the primary key (PK_PRIMARYKEY)
values for rows in the cache and the target table.

The Integration Service uses the sequence ID to generate a primary key for the customer that it does not find
in the cache. The Integration Service inserts the primary key value into the lookup cache and it returns the
value to the lookup/output port.

424 Chapter 27: Dynamic Lookup Cache

The Integration Service outputs the values from the input/output ports that match the input values.

Note: If the input value is NULL and you select the Ignore Null property for the associated input port, the input
value does not equal the lookup value or the value out of the input/output port. When you select the Ignore
Null property, the lookup cache and the target table might become unsynchronized if you pass null values to
the target. You must verify that you do not pass null values to the target.

SQL Override and Dynamic Lookup Cache
You can add a WHERE clause in the lookup query to filter the records used to build the cache and to perform
a lookup on the database table for an uncached lookup. However the Integration Service does not use the
WHERE clause when inserting rows into a dynamic cache.

When you add a WHERE clause in a Lookup transformation using a dynamic cache, connect a Filter
transformation before the Lookup transformation to filter rows that you do not want to insert into the cache
or target table. If you do not include the Filter transformation, you might get inconsistent results between the
cache and the target table.

For example, you configure a Lookup transformation to perform a dynamic lookup on the employee table,
EMP, matching rows by EMP_ID. You define the following lookup SQL override:

SELECT EMP_ID, EMP_STATUS FROM EMP ORDER BY EMP_ID, EMP_STATUS WHERE EMP_STATUS = 4
When you first run the mapping, the Integration Service builds the lookup cache from the target table based
on the lookup SQL override. All rows in the cache match the condition in the WHERE clause, EMP_STATUS = 4.

For example, the Integration Service reads a source row that meets the lookup condition you specify, but the
value of EMP_STATUS is 2. Although the target might have the row where EMP_STATUS is 2, the Integration
Service does not find the row in the cache because of the SQL override. The Integration Service inserts the
row into the cache and passes the row to the target table. When the Integration Service inserts this row in the
target table, you might get inconsistent results when the row already exists. In addition, not all rows in the
cache match the condition in the WHERE clause in the SQL override.

To verify that you only insert rows into the cache that match the WHERE clause, add a Filter transformation
before the Lookup transformation and define the filter condition as the condition in the WHERE clause in the
lookup SQL override.

For the example above, enter the following filter condition in the Filter transformation and the WHERE clause
in the SQL override:

EMP_STATUS = 4

Mapping Configuration for a Dynamic Lookup Cache
If you use a Lookup with a dynamic cache, you must configure the mapping to update the dynamic lookup
cache and write the changed rows to the target.

Complete the following steps to configure a mapping with a dynamic lookup cache:
Flag the input rows of the Lookup transformation for insert or update.

By default, the row type of all input rows is insert. Add an Update Strategy transformation before the
Lookup transformation to specify different row types for the input rows.

SQL Override and Dynamic Lookup Cache 425

Specify how the Integration Service handles the input rows for the dynamic cache.

Select the Insert Else Update or Update Else Insert options to process rows flagged for insert or update.

Create separate mapping pipelines for rows to be inserted into the target and updated in the target.

Add a Filter or Router transformation after the Lookup transformation to route insert and update rows
into separate mapping branches. Use the value of the NewLookupRow to determine the appropriate
branch for each row.

Configure the row type for output rows of the Lookup transformation.

Add an Update Strategy transformation to flag rows for insert or update.

Insert Else Update
Use the Insert Else Update property to update existing rows in the dynamic lookup cache when the row type
is insert.

This property only applies to rows entering the Lookup transformation where the row type is insert. When a
row of any other row type, such as update, enters the Lookup transformation, the Insert Else Update property
has no effect on how the Integration Service handles the row.

When you select Insert Else Update and the row type entering the Lookup transformation is insert, the
Integration Service inserts the row into the cache if it is new. If the row exists in the index cache but the data
cache is different than the current row, the Integration Service updates the row in the data cache.

If you do not select Insert Else Update and the row type entering the Lookup transformation is insert, the
Integration Service inserts the row into the cache if it is new, and makes no change to the cache if the row
exists.

The following table describes how the Integration Service changes the lookup cache when the row type of the
rows entering the Lookup transformation is insert:

Insert Else Update
Option

Row Found in
Cache

Data Cache is
Different

Lookup Cache
Result

NewLookupRow Value

Cleared - insert only Yes - No change 0

Cleared - insert only No - Insert 1

Selected Yes Yes Update 2
1

Selected Yes No No change 0

Selected No - Insert 1

1. If you select Ignore Null for all lookup ports not in the lookup condition and if all those ports contain null values, the
Integration Service does not change the cache and the NewLookupRow value equals 0.

Update Else Insert
Use the Update Else Insert property to insert new rows in the dynamic lookup cache when the row type is
update.

You can select the Update Else Insert property in the Lookup transformation. This property only applies to
rows entering the Lookup transformation where the row type is update. When a row of any other row type,
such as insert, enters the Lookup transformation, this property has no effect on how the Integration Service
handles the row.

426 Chapter 27: Dynamic Lookup Cache

When you select this property and the row type entering the Lookup transformation is update, the Integration
Service updates the row in the cache if the row exists in the index cache and the cache data is different than
the existing row. The Integration Service inserts the row in the cache if it is new.

If you do not select this property and the row type entering the Lookup transformation is update, the
Integration Service updates the row in the cache if it exists, and makes no change to the cache if the row is
new.

If you select Ignore Null for all lookup ports not in the lookup condition and if all those ports contain null
values, the Integration Service does not change the cache and the NewLookupRow value equals 0.

The following table describes how the Integration Service changes the lookup cache when the row type of the
rows entering the Lookup transformation is update:

Update Else Insert
Option

Row Found in
Cache

Data Cache is
Different

Lookup Cache
Result

NewLookupRow Value

Cleared (update only) Yes Yes Update 2

Cleared (update only) Yes No No change 0

Cleared (update only) No - No change 0

Selected Yes Yes Update 2

Selected Yes No No change 0

Selected No - Insert 1

Dynamic Lookup Cache and Target Synchronization
Configure downstream transformations to ensure that the dynamic lookup cache and the target are
synchronized.

When you use a dynamic lookup cache, the Integration Service writes to the lookup cache before it writes to
the target table. The lookup cache and target table can become unsynchronized if the Integration Service
does not write the data to the target. For example, the target database might reject the data.

Consider the following guidelines to keep the lookup cache synchronized with the lookup table:

• Use a Router transformation to pass rows to the cached target when the NewLookupRow value equals
one or two.

• Use the Router transformation to drop rows when the NewLookupRow value equals zero. Or, output the
rows to a different target.

• Use Update Strategy transformations after the Lookup transformation to flag rows for insert or update
into the target.

• Verify that the Lookup transformation outputs the same values to the target that the Integration Service
writes to the lookup cache. When you choose to output new values on update, only connect lookup/output
ports to the target table instead of output ports. When you choose to output old values on update, add an
Expression transformation after the Lookup transformation and before the Router transformation. Add
output ports in the Expression transformation for each port in the target table and create expressions to
ensure you do not output null input values to the target.

• Select Insert and Update as Update when you define the update strategy target table options. This
ensures that the Integration Service updates rows marked for update and inserts rows marked for insert.

Mapping Configuration for a Dynamic Lookup Cache 427

Conditional Dynamic Lookup Cache Updates
You can update a dynamic lookup cache based on the results of a boolean expression. The Integration
Service updates the cache when the expression is true.

For example, you might have a product number, quantity on hand, and a timestamp column in a target table.
You need to update the quantity on hand with the latest source values. You can update the quantity on hand
when the source data has a timestamp greater than the timestamp in the dynamic cache. Create an
expression in the Lookup transformation similar to the following expression:

lookup_timestamp < input_timestamp
The expression can include the lookup and the input ports. You can access built-in, mapping, and parameter
variables. You can include user-defined functions and refer to unconnected transformations.

The expression returns true, false, or NULL. If the result of the expression is NULL, the expression is false.
The Integration Service does not update the cache. You can add a check for NULL values in the expression if
you need to change the expression result to true. The default expression value is true.

Conditional Dynamic Lookup Cache Processing
You can create a condition that determines if the Integration Service updates the dynamic lookup cache. If
the condition is false or NULL, the Integration Service does not update the dynamic lookup cache.

If the condition is false or NULL, regardless of the Lookup transformation properties, the NewLookupRow
value is 0 and the Integration Services does not update the dynamic lookup cache with any row inserts or
updates.

If the row exists in the cache and you enable Insert Else Update or Update Else Insert, the NewLookupRow
value is 1 and Integration Service updates the new row in the cache.

If the row does not exist in the cache and you enable Insert Else Update or Update Else Insert, the
NewLookupRow value is 2 and Integration Service inserts the new row in the cache.

Configuring a Conditional Dynamic Lookup Cache
You can configure an expression that determines whether the Integration Service updates a dynamic lookup
cache.

1. Create the Lookup transformation.

2. On the Run-time tab of the Properties view, select Lookup Caching Enabled.

3. On the Advanced tab of the Properties view, select Dynamic Lookup Cache.

4. To enter the condition, click the down arrow for the Update Dynamic Cache Condition property.

The Expression Editor appears.

5. Define an expression condition.

You can select input ports, lookup ports, and functions for the expression.

6. Click Validate to verify that the expression is valid.

7. Click OK.

8. If applicable, configure the other advanced properties that apply to the dynamic lookup cache.

428 Chapter 27: Dynamic Lookup Cache

Dynamic Cache Update with Expression Results
The Lookup transformation can update the dynamic lookup cache values with the results of an expression.

For example, a product table target has a numeric column that contains an order count. Each time the
Lookup transformation receives an order for the product, it updates the dynamic cache order_count with the
results of the following expression:

order_count = order_count + 1
The Lookup transformation returns the order_count.

You can configure how the Integration Service handles the case where the expression evaluates to null.

Null Expression Values
The expression returns NULL if one of the values in the expression is null. However, you can configure an
expression to return a non-null value.

If the expression refers to a lookup port, but the source data is new, the lookup port contains a default value.
The default might be NULL. You can configure an IsNull expression to check for null values.

For example, the following expression checks if lookup_column is NULL:

iif (isnull(lookup_column), input_port, user_expression)
If the column is null, then return the input_port value. Otherwise return the value of the expression.

Expression Processing
The Integration Service can insert and update rows in the dynamic lookup cache based on the expression
results. The expression results might vary based on whether the lookup port value is NULL and is included in
the expression.

When you enable Insert Else Update, the Integration Service inserts a row with the expression result if the
data is not in the cache. The lookup port value is NULL when data does not exist in the cache. If the
expression refers to the lookup port value, the Integration Service substitutes the default port value in the
expression. When you enable Insert Else Update and the data exists in the cache, the Integration Service
updates the cache with the expression result.

When you enable Update Else Insert, the Integration Service updates the cache with the expression result if
the data exists in the cache. When the data does not exist in the cache, the Integration Service inserts a row
that contains the expression result. If the expression refers to a lookup port value, the Integration Service
substitutes the default port value in the expression.

Configuring an Expression for Dynamic Cache Updates
You can configure an expression for a dynamic cache lookup update.

You must enable the Lookup transformation to perform dynamic lookups before you can create a conditional
expression.

1. Create the Lookup transformation.

2. On the Run-time tab of the Properties view, select Lookup Caching Enabled.

3. On the Advanced tab of the Properties view, select Dynamic Lookup Cache.

4. If applicable, configure the other advanced properties that apply to the dynamic lookup cache.

5. To create an expression, select the Columns tab on the Properties view.

Dynamic Cache Update with Expression Results 429

6. Click the drop-down arrow in the Associated Port column for the lookup port that you want to update.

7. Select Associated Expression from the drop-down list, and click Enter.

The Expression Editor appears.

8. Define the expression.

You can select input ports, lookup ports, and functions for the expression. The expression return value
must match the datatype of the lookup port.

9. Click Validate to verify that the expression is valid.

10. Click OK.

Dynamic Lookup Cache Example
You can use a dynamic lookup cache to insert and update rows in the target. When you use a dynamic lookup
cache, you can insert and update the same rows in the cache that you insert and update in the target.

For example, you need to update a table that contains customer data. The source data contains rows of
customer data to insert or update in the target. Create a dynamic cache that represents the target. Configure
a Lookup transformation to lookup customers in the dynamic cache.

The following figure shows a mapping that has a Lookup transformation with a dynamic lookup cache:

The Router transformation splits into two branches. The Router transformation passes insert rows into one
branch and update rows into the other branch. Each branch contains an Update Strategy transformation that
writes rows to the target. Both branches contain the same target.

When the mapping starts, the Integration Service builds the lookup cache from customer target table. When
the Integration Service reads a row that is not in the lookup cache, it inserts the row in the cache.

The Lookup transformation returns each row to a Router transformation. Based on whether the row is marked
for insert or update, the Router transformation directs the row to one of the Update Strategy transformations.
The Router transformation determines whether rows are marked for insert or update based on the
NewLookupRow property. The Update Strategy transformations mark each row as insert or update before
passing it to the target.

The customer target table changes as the mapping runs. The Integration Service inserts new rows and
updates existing rows in the lookup cache. The Integration Service keeps the lookup cache and customer
target table synchronized.

To generate keys for the target, use Sequence-ID in the associated port. The Integration Service uses the
sequence ID as the primary key for each new row inserted into the target table.

You increase session performance when you use a dynamic lookup cache because you build the cache from
the database once.

430 Chapter 27: Dynamic Lookup Cache

Rules and Guidelines for Dynamic Lookup Caches
Consider the following guidelines when you use a dynamic lookup cache:

• You must set On Multiple Matches property to Report Error when you use a dynamic lookup cache. To
reset the property, change the dynamic lookup to a static lookup, change the property, and then change
the static lookup to a dynamic lookup.

• You cannot share the cache between a dynamic Lookup transformation and static Lookup transformation
in the same target load order group.

• You can enable a dynamic lookup cache for a relational or flat file lookup.

• The Lookup transformation must be a connected transformation.

• You can use a persistent or a non-persistent cache.

• If the dynamic cache is not persistent, the Integration Service always rebuilds the cache from the
database, even if you do not enable Re-cache from Lookup Source.

• You can only create an equality lookup condition. You cannot look up a range of data in a dynamic cache.

• You must associate each lookup port that is not in the lookup condition with an input port, sequence ID, or
associated expression.

• Use a Router transformation to pass rows to the cached target when the NewLookupRow value equals
one or two.

• Use the Router transformation to drop rows when the NewLookupRow value equals zero. Or, you can
output the rows to a different target.

• Verify that the Integration Service outputs the same values to the target that it writes to the lookup cache.
When you choose to output new values on update, only connect lookup/output ports to the target table
instead of the input/output ports. When you choose to output old values on update, add an Expression
transformation after the Lookup transformation and before the Router transformation. Add output ports in
the Expression transformation for each port in the target table and create expressions to ensure you do
not output null input values to the target.

• When you use a lookup SQL override, map the correct columns to the appropriate targets for lookup.

• When you add a WHERE clause to the lookup SQL override, use a Filter transformation before the Lookup
transformation. This ensures that the Integration Service inserts rows in the dynamic cache and target
table that match the WHERE clause.

• When you configure a reusable Lookup transformation to use a dynamic cache, you cannot edit the
condition or disable the Dynamic Lookup Cache property in a mapping.

• Use Update Strategy transformations after the Lookup transformation to flag the rows for insert or update
for the target.

• Use an Update Strategy transformation before the Lookup transformation to define some or all rows as
update if you want to use the Update Else Insert property in the Lookup transformation.

Rules and Guidelines for Dynamic Lookup Caches 431

C h a p t e r 2 8

Match Transformation
This chapter includes the following topics:

• Match Transformation Overview, 432

• Match Analysis, 433

• Match Score Calculations, 436

• Master Data Analysis, 440

• Identity Match Analysis and Persistent Index Data, 441

• Match Mapping Performance, 442

• Match Performance in Identity Analysis, 444

• Match Transformation Views, 446

• Match Transformation Ports, 448

• Match Mapplets, 453

• Configuring a Match Analysis Operation, 454

• Match Transformation in a Non-native Environment, 455

Match Transformation Overview
The Match transformation is an active transformation that analyzes the levels of similarity between records.
Use the Match transformation to find records that contain duplicate information in a data set or between two
data sets.

The Match transformation analyzes the values on an input port and generates a set of numeric scores that
represent the degrees of similarity between the values. You can select multiple ports to determine the overall
levels of similarity between the input records. You specify a minimum score as a threshold value to identify
the records that are likely to contain duplicate information.

You can use the Match transformation in the following data projects:

• Customer Relationship Management. For example, a store designs a mail campaign and must check the
customer database for duplicate customer records.

• Mergers and acquisitions. For example, a bank buys another bank in the same region, and the two banks
have customers in common.

• Regulatory compliance initiatives. For example, a business operates under government or industry
regulations that insist all data systems are free of duplicate records.

432

• Financial risk management. For example, a bank may want to search for relationships between account
holders.

• Master data management. For example, a retail chain has a master database of customer records, and
each retail store in the chain submits records to the master database on a regular basis.

• Any project that must identify duplicate records in a data set.

Match Analysis
You can define different types of duplicate analysis in the Match transformation. The duplicate analysis
operations that you define depend on the number of data sources in the mapping and the type of information
that the sources contain.

Consider the following factors when you configure a Match transformation:

• You can select a single column from a data set or you can select multiple columns.

• You can analyze columns from a single data source or you can analyze two data sources.

• You can configure the Match transformation to analyze the raw data in the input port fields, or you can
configure the transformation to analyze the identity information in the data.

• You can configure the Match transformation to write different types of output. The type of output that you
select determines the number of records that the transformation writes and the order of the records.

• To increase performance, sort the input records into groups before you perform the match analysis.

Column Analysis
When you configure a Match transformation, you select one or more columns for analysis.

The Match transformation analyzes columns in pairs. When you select a single column for analysis, the
transformation creates a temporary copy of the column and compares the source column with the temporary
column. When you select two columns for analysis, the transformation compares the values across the two
columns that you select. The transformation compares each value in one column with all of the values in the
other column. The transformation returns a match score for each pair of values that it analyzes.

You select the columns to analyze when you configure a strategy in the Match transformation. The strategy
specifies the columns to analyze and the algorithm to apply to the columns. The algorithm calculates the
levels of similarity between each pair of values. The different algorithms in the transformation use different
criteria to measure the levels of similarity between the values. You can define multiple strategies in a
transformation, and you can and assign different columns to each strategy.

Column Analysis Example

You want to compare the values in a column of surname data. You create a mapping that includes a data
source and a Match transformation. You connect the Surname port to the Match transformation. The
transformation creates a temporary copy of the data on the Surname port when the mapping runs.

Match Analysis 433

The following image shows a fragment of the surname data:

The mapping generates a set of match scores that indicate that the following values might be duplicates:

• Baker, Barker

• Barker, Parker

• Smith, Smith

When you review the data, you decide that Baker, Barker, and Parker are not duplicate values. You decide that
Smith and Smith are duplicate values.

Single-Source Analysis and Dual-Source Analysis
You can configure the Match transformation to analyze data from one or two data sources. You select the
ports from each data source when you define a strategy in the transformation.

When you configure the transformation to perform single-source analysis, you select one or more ports from
a single data set. When you configure the transformation to perform dual-source analysis, you select one or
more ports from each data set. You select the ports in pairs. For each pair of ports that you select, the
transformation compares each value in one port with every value in the other port. If you perform single-
source analysis on data from a single column, the transformation creates a temporary copy of the port that
you select.

Note: When you perform identity match analysis, you can compare a data source to a persistent index of
identity data that you created in an earlier mapping. Use the Match Type options to specify identity analysis
with a persistent index.

Field Match Analysis and Identity Match Analysis
You can configure a Match transformation to perform field match analysis or identity match analysis.

In field match analysis, the Match transformation analyzes the source data that enters the transformation.
You can perform field match analysis on any type of data. In identity match analysis, the Match
transformation generates an index of alternative data values from the input data and analyzes the index data.
Configure the Match transformation for identity match analysis when the input ports contain identity data. An
identity is a group of data values that identifies a person or an organization.

A data set can represent a single identity in different ways. For example, the following data values represent
the name John Smith:

• John Smith

• Smith, John

434 Chapter 28: Match Transformation

• jsmith@email.com

• SMITHJMR

The Match transformation reads the identity data in a record and calculates the possible alternative versions
of the identity. The transformation creates an index that includes the current versions and alternative
versions of the identities. The Match transformation analyzes the index values and not the values in the input
records.

Identity Population Files

Identity match operations read reference data files called populations. The population files define the
potential variations in the identity data. The files do not install with Informatica applications. You buy and
download the population data files from Informatica.

Install the files to a location that the Content Management Service can access. Use Informatica
Administrator to set the location on the Content Management Service.

Groups in Match Analysis
A match analysis mapping can take a long time to run because of the number of data comparisons that the
transformation must perform. The number of comparisons relates to the number of data values on the ports
that you select.

The following table shows the number of calculations that a mapping performs for different numbers of data
values on a single port:

Number of data values Number of comparisons

10,000 50 million

100,000 5,000 million

1 million 500,000 million

To reduce the time that the mapping takes to run, assign the input data records to groups. A group is a set of
records that contain identical values on a port that you specify. When you perform match analysis on
grouped data, the Match transformation analyzes the records within each group. The transformation does
not compare the records in one group with the records in another group. The groups reduce the overall
number of comparisons that the transformation must perform without any loss of accuracy in the mapping
analysis.

Consider the following rules and guidelines when you organize data into groups:

• The port on which you group the data is the group key port. A group key port must contain a range of
duplicate values, such as a city name or a state name in an address data set. If the mapping data does not
contain a usable group key port, use the Key Generator to create the port from the current mapping data.
Connect the group key output port from the Key Generator transformation to the Match transformation.

You can also use the Key Generator transformation to add sequence identifiers to the mapping data.

• Field match operations must specify a group key port. If you configure the Match transformation for
identity analysis, do not select a group key port. The identity analysis generates group keys for the identity
index data.

• Do not specify a group key port that you plan to use in the match analysis.

• When you create groups, you must verify that the groups are a valid size. If the groups are too small, the
match analysis might not find all the duplicate data in the data set. If the groups are too large, the match

Match Analysis 435

analysis might return false duplicates. Select group keys that create an average group size of 10,000
records.

• Groups do not reorder the position of the records in the mapping data set.

Match Pairs and Clusters
The Match transformation can read and write different numbers of input rows and output rows, and it can
change the sequence of the output rows. You determine the output format for the results of the match
analysis.

The transformation can write rows in the following formats:

Matched pairs

The transformation writes a row for every pair of records that match with a score that meets the match
threshold. The transformation writes each pair of records to a single row.

Because a record might match more than one other record, a record might appear on more than one
output row.

Best match

The transformation writes a row for each record in a data set and adds the most similar record from
another data set to the same row.

Clusters

The transformation assigns the output records to clusters based on the levels of similarity between the
records. A cluster is a set of records in which each record matches at least one other record with a score
that meets the match threshold. The transformation writes each record to a single row.

Each record in a cluster must match at least one other record in the cluster. Therefore, a cluster can
contain pairs of records that do not match each other. A cluster can contain a single record if the record
does not match any other record.

Note: The Clusters option in field analysis corresponds to the Clusters - Match All option in identity
analysis. The Clusters - Best Match option in identity analysis combines cluster calculations and
matched pair calculations.

Configure the output options on the Match Output view of the transformation.

Related Topics:
• “Cluster Output Options” on page 437

Match Score Calculations
The match score is a numerical value that represents the degree of similarity between two column values. An
algorithm calculates a match score as a decimal value in the range 0 through 1. An algorithm assigns a score
of 1 when two column values are identical.

When you select multiple column pairs for analysis, the transformation calculates an average score based on
the scores in the selected columns. By default, the transformation assigns equal weight to scores from each
pair of columns. The transformation does not infer the relative importance of the column data in the data set.

You can edit the weight values that the transformation uses to calculate the match score. Edit the weight
values when you want to assign higher or lower priority to columns in the data set.

436 Chapter 28: Match Transformation

You can also set the scores that the transformation applies when it finds a null value in a column. By default,
the transformation treats null values as data errors and assigns a low match score to any pair of values that
contains a null.

Note: The algorithm you select determines the match score between two values. The algorithm generates a
single score for the two values. The match scores do not depend on the type of match output or the type of
scoring method you select.

Weighted Scores
When you select multiple columns for match analysis, the transformation calculates an average score for
each record based on the scores in the columns. The average score includes any weight values that you
apply to the comparison algorithms for each column.

By default, all algorithms use a weight value of 0.5. You can increase this value if the selected columns are
more likely to contain duplicated information. You can decrease the weight value if duplicate values in the
selected columns are less likely to indicate genuine duplicate information between records. The Match
transformation uses the average score as the single match score for each pair of records.

Null Match Scores
A match algorithm applies a predefined match score to a pair of values when one or both values are null. You
can edit the match score that a field match algorithm applies to null values.

Null Match Scores and Field Match Algorithms

When you configure a field match algorithm, verify the match score values that the algorithm applies to null
data. A field match algorithm applies a default score of 0.5 when it compares two values and one or both
values are null. A score of 0.5 indicates a low level of similarity between data values.

Consider the following rules and guidelines when you verify the null match scores:

• When the algorithm analyzes columns that contain primary keys or other critical data, do not edit the
default scores. In this case, a null value represents a data error, and the default scores are appropriate for
the data.

• When the algorithm analyzes columns that can optionally contain data, update the null match score
values to the same value as the match threshold. You cancel the effect of the null values on the match
analysis when you set the null match scores to the match threshold value.

Null Match Scores and Identity Match Algorithms

An identity match algorithm applies a match score of 0 when it compares two values and one or both values
are null. Identity match analysis assigns a record with a null match score to a unique record cluster and
records a cluster size value of 1. You cannot edit the score that an identity match algorithm applies to null
data.

Cluster Output Options
Select a cluster output option when you want to organize similar or identical records in the output data.

When you select a cluster output option, the transformation adds a cluster ID value to each output record.
You can sort the records by the cluster ID values. The transformation output includes a row for every record.
If a record does not match another record with a score that meets the match threshold, the transformation
assigns a unique cluster ID to the record. Use the Match Output view to select or update the cluster output
options.

You can select the following cluster output options:

Match Score Calculations 437

Clusters

Select the option to assign cluster ID values to the output records.

Clusters - Best Match

Select the option to add the record pair with the highest match score to a cluster. Because a record
might represent the best match with more than one other record, more than one record pair can share a
cluster ID value.

Clusters - Match All

The Clusters - Match All option works in the same way as the Clusters option.

The transformation uses Clusters - Match All and Clusters - Best Match as option names in identity
match analysis.

Note: If a Data Integration Service runs multiple Match transformations concurrently, the Data Integration
Service generates unique cluster ID values for the output from each transformation. Therefore, the cluster ID
values for the records that each transformation generates can be non-consecutive.

The Clusters Option and the Clusters - Match All Option

Select the Clusters option in field match analysis. Select the Clusters - Match All option in identity match
analysis.

The Match transformation uses the following rules to create the clusters:

• When two records have a match score that meets the match threshold, the Match transformation adds the
records to a cluster.

• When a record in the data set matches any record in the cluster, the transformation adds the record to the
cluster.

• If a record in one cluster matches a record in another cluster, the process merges the clusters.

• The transformation performs a continual sweep of the match results until all the records belong to a
cluster.

• If a record does not match any other record in the data set, the transformation assigns a unique cluster ID
value to the record.

The Clusters - Best Match Option

Select the Clusters - Best Match option in identity match analysis.

The transformation uses the following rules to create the clusters:

• The transformation identifies the record that has the highest match score with the current record. If the
match score meets the threshold, the transformation adds the pair of records to a cluster.

• If one of the matching records is in a cluster, the transformation adds the other record to the current
cluster.

• The transformation performs a continual sweep of the match score results until all the records belong to
a cluster.

• A cluster can contain a single record if the record does not match any other record in the data.

Note: You can use the Match property on the Match Output view to specify how the transformation compares
a single data source to a persistent data store. The Match property determines whether the transformation
looks for duplicates within the source data or the persistent data store.

438 Chapter 28: Match Transformation

Related Topics:
• “Match Pairs and Clusters” on page 436

Driver Scores and Link Scores in Cluster Analysis
When you select a cluster output option in the Match transformation, you can add link score and driver score
data to the output.

The link score is the score between two records that identifies the records as members of the same cluster.
The links between records determine the composition of the cluster. Any record can link to any other record
in the same cluster.

The driver score is the score between the record with the highest sequence ID value in a cluster and another
record in the same cluster. Driver scores provide a means to assess all records in a cluster against a single
record. When you add driver scores to the match output, the mapping runs more slowly, as the Match
transformation cannot calculate the driver scores until all the clusters are complete.

Note: Match analysis generates a single set of scores for each strategy that you define. The driver score and
the link score indicate the match scores for different pairs of records in each cluster. The driver scores and
link scores can depend on the order in which the records enter the transformation. The driver score might be
lower than the match threshold.

Cluster Analysis Example

You configure a field match strategy to analyze a column of surname data. You set a match threshold of
0.825 in the strategy. You select a clustered output format, and you run the Data Viewer on the
transformation.

The following table shows the data that the Data Viewer displays:

Surname Sequence
ID

Cluster ID Cluster
Size

Driver ID Driver
Score

Link ID Link
Score

SMITH 1 1 2 1 - 6 1 1 - 1 1

SMYTH 2 2 2 1 - 3 0.83333 1 - 2 1

SMYTHE 3 2 2 1 - 3 1 1 - 2 0.83333

SMITT 4 3 1 1 - 4 1 1 - 4 1

SMITS 5 4 1 1 - 5 1 1 - 5 1

SMITH 6 1 2 1 - 6 1 1 - 1 1

The Data Viewer contains the following information about the surname data:

• SMITT and SMITS do not match any record with a score that meets the match threshold. The Match
transformation determines that the records are unique in the data set.

SMITT and SMITS have a cluster size of 1. To find unique records in cluster output, search for clusters
that contain a single record.

• SMITH and SMITH have a link score of 1. The Match transformation determines that the records are
identical. The transformation adds the records to a single cluster.

• SMYTH and SMYTHE have a link score of 0.83333. The score exceeds the match threshold. Therefore, the
transformation adds the records to a single cluster.

Match Score Calculations 439

Master Data Analysis
When you analyze two data sources in the Match transformation, you must identify a source as the master
data set. The transformation compares data values from each record in the data set that you specify with the
corresponding values in every record in the second data set.

In many organizations, a master data set constitutes a permanent, high-quality data store. Before you add
records to a master data set, use the Match transformation to verify that the records do not add duplicate
information to the master data.

Master Data Example

A bank maintains a master data set of customer account records. The bank updates the master data set
every day with records that identify new customer accounts. The bank uses a duplicate analysis mapping to
verify that the new records do not duplicate the customer information in the master data set. The master
data set and the new account tables have a common structure, and the tables use the same type of
database. Therefore, the bank can reuse the duplicate analysis mapping each time it needs to update the
master data set.

Directionality in Master Data Set Analysis

The Match transformation compares records from one data set to another in a single direction. The
transformation compares each record in the master data set to all of the records in the second data set. The
transformation does not compare each record in the second data set to all of the records in the master data
set. Therefore, the selection of the master data set can affect the results of the match analysis.

The following table shows two data sets that you can compare in identity match analysis:

Data Set 1 Data Set 2

Alex Bell Alexander Bell

Alexander Graham Bell Thomas Edison

Alva Edison Nicola Tesla

Marie Curie Irene Joliot Curie

Dorothy Crowfoot Dorothy Hodgkin

If you select Data Set 1 as the master data set and you select the Best Match output option, the output
includes the following records:

• Alex Bell, Alexander Bell

• Alexander Graham Bell, Alexander Bell

If you select Data Set 2as the master data set and you select the Best Match output option, the output
includes the following records:

• Alexander Bell, Alex Bell

When Data Set 2 is the master data set, the transformation cannot match Alexander Bell and Alexander
Graham Bell, because Alexander Bell already matches Alex Bell in the output data.

440 Chapter 28: Match Transformation

Mapping Reuse
If you add data to a master data set on a regular basis, configure a duplicate analysis mapping that you can
reuse. You can reuse the mapping if the port configurations on the data source that you compare to the
master data set do not change.

When you run the mapping, verify that the transformation specifies the master data and the newer data. You
can run the mapping without any other configuration update.

Identity Match Analysis and Persistent Index Data
When you run a mapping to analyze identity information, the Match transformation generates an index that
stores the alternative versions of the identities in the data set. By default, the Match transformation writes
the index data to temporary files. You can configure the transformation to save the index data to database
tables.

The index tables that you generate represent a data store that you can reuse in subsequent mappings. You
can compare the index tables to a data source, and you can optionally update the index tables with index
data from the data source. Because the transformation does not regenerate the index tables, the subsequent
mappings run faster. Additionally, the index tables can represent a trusted data store of identity data.

Related Topics:
• “Match Performance in Identity Analysis” on page 444

Rules and Guidelines for Persistent Index Data
Consider the following rules and guidelines when you configure a Match transformation to analyze a master
data set of identity information:

• To generate a reusable index for a master data set, configure the transformation to write the index data to
database tables. The database tables constitute a persistent store of the index data.

• To compare the identities in another data set to the index data store, configure the data set as the
mapping data source. Configure the Match transformation to read the data source and the index data
store. Select the index tables from the default schema of the database connection that you specify.

• The Match transformation adds the sequence identifier value from the input record to the index data rows
that correspond to the record. The SequenceID input port contains the sequence identifiers. The
transformation uses the sequence identifiers to track the index data through the different steps in the
match analysis. Do not disconnect the sequence ID port.

• When you connect a Match transformation to an index store, the transformation reuses the population,
key level, key type, and key field property values from the transformation that created the store. The
transformation also reuses the port configuration from the transformation that created the store.

If the transformation properties do not match, the identity analysis cannot compare the mapping source
data and the index data correctly.

• The Match transformation uses the data on the input port that you select as the key field to generate the
identity index. The transformation can also write data from other ports to the index. If you disconnect the
non-key field data ports from the transformation, you erase any data in the corresponding index columns
when you run the mapping. To preserve the input port data in the index tables, do not disconnect the input
data ports.

Identity Match Analysis and Persistent Index Data 441

• You can disable the match analysis in the Match transformation when you generate the index table data
for a data set. For example, you might disable the match analysis when you create an index store for a
data set. When you disable match analysis, the mapping runs faster.

When you disable match analysis, the Match transformation can generate and display persistence status
codes and persistence status descriptions. The transformation does not generate or display match scores
or other data associated with the results of the match analysis. For example, if you configure the
transformation to assign records to clusters and you disable match analysis, the transformation does not
generate or display cluster ID values.

• You determine whether the Match transformation updates the index store with data from the mapping
source. The Match transformation uses sequence identifiers to determine whether the rows in the index
store and in the mapping data represent the same records.

Match Mapping Performance
You can preview the data factors that determine the performance of the Match transformation before you run
the mapping that contains the transformation. You can verify that the system has the resources to run the
mapping. You can also verify that you configured the transformation correctly to measure the levels of
similarity in the input data.

Use the Match Performance Analysis option to verify that the system has the required resources. Use the
Match Cluster Analysis option to verify that the mapping can accurately measure the levels of similarity in
the input data.

Run match performance analysis and match cluster analysis on any Match transformation that reads a single
data source. Run match performance analysis on any Match transformation that performs dual-source field
match analysis. Do not run match performance analysis or match cluster analysis on an identity match
strategy that connects to index tables.

Drill-down on Match Performance Analysis

You can drill down on the match analysis data to view the record pairs that meet or exceed the match
threshold. Double-click a record in the Details view, and use the Data Viewer to view the records that match
the record that you select. The Data Viewer displays the data for each pair of records on a single row. The
row contains the row identifier of each record in the pair.

Drill-down on Match Cluster Analysis

You can drill down on the cluster analysis data to view the records in each cluster. Double-click a cluster in
the Details view and read the data in the Data Viewer. The Data Viewer displays one cluster at a time. The
cluster data includes the score options that you selected, such as the driver score, link score, driver identifier,
or link identifier.

Match Transformation Logging

When you run a mapping that uses a Match transformation, the Developer tool log tracks the number of
comparison calculations that the mapping performs. To view the log data, select the Show Log option in the
Data Viewer.

The mapping updates the log every 100,000 calculations.

442 Chapter 28: Match Transformation

Viewing Match Cluster Analysis Data
You can view statistical data on the clusters that the transformation can create. The cluster statistics
summarize the level of record duplication in the data set based on the current mapping configuration.

To view the data, right-click the Match transformation in the mapping canvas and select Match Cluster
Analysis.

Before you run the analysis, validate the mapping that contains the transformation.

Match cluster analysis displays data for the following properties:

Property Description

Source The number of input data rows.

Last run The date and time of the analysis.

Total number of
discovered clusters

The number of clusters that the match analysis generates when the mapping runs.

Minimum cluster size The number of records in the cluster or clusters that contain the fewest records. If the
minimum cluster size is 1, the data set contains at least one unique record.

Maximum cluster size The number of records in the cluster or clusters that contain the most records.
If this value greatly exceeds the average cluster size, the largest cluster might contain
false duplicates.

Number of unique records The number of records in the data set that do not match another record with a score
that meets the match threshold.

Number of duplicate
records

The number of records in the data set that match another record with a score that meets
the match threshold.

Total comparisons The number of comparison operations that the mapping performs.

Average cluster size The average number of records in a cluster.

Viewing Match Performance Analysis Data
You can view statistical data on the record groups that the mapping reads as input data.

To view the data, right-click the Match transformation in the mapping canvas and select Match Performance
Analysis.

Before you run the analysis, validate the mapping that contains the transformation.

Match performance analysis displays data for the following properties:

Property Description

Source The number of input data rows.

Last run The date and time of the analysis.

Total number of
discovered groups

The number of groups defined for the data set, based on the selected group key value.

Match Mapping Performance 443

Property Description

Throughput (records
per minute)

Variable value that estimates the speed of the match analysis. You set this value. Use the
value to estimate the time required to run the match analysis.

Estimated time to
match records

The time taken to analyze all records in the data set, based on the Match transformation
configuration.

Total number of pairs
generated

The number of comparisons that the transformation must perform, based on the number of
input data rows and the number of groups.

Minimum group size Variable value that indicates the minimum number of records a group can contain. You set
this value. Use the value to verify that the mapping will create groups of a usable size.
Note: The minimum group size value does not determine the size of the groups created
when the mapping runs.

Number of groups
below minimum
threshold

The number of groups that contain fewer records than the minimum group size value.
If many groups are below the minimum group size, you might need to edit the
transformation and select a different group key.

Maximum group size Variable value that indicates the maximum number of records a group can contain. You set
this value for the performance analysis. Use the value to verify that the mapping will create
groups of a usable size.
Note: The value does not determine the size of the groups created when the mapping runs.

Number of groups
above maximum
threshold

The number of groups that contain more records than the maximum group size value.
If many groups are above the maximum group size, you might need to edit the
transformation and select a different group key.

Match Performance in Identity Analysis
To improve the mapping performance when you perform identity analysis on two data sets, configure the
Match transformation to read identity index data from database tables. Run a mapping to create the index
tables for the master data set. Run the mapping again to compare the index data to another data source.

Use the options on the Match Type view to identify the database tables that store the index data. Use the
same options to select the index tables when you configure the transformation to compare the index data to
data from another source.

To write the index data to database tables, perform the following tasks:

1. Create a mapping that reads a data source of identity information.

2. Configure a Match transformation in the mapping to write the index data to a database.

3. Run the mapping to generate the index data. The index data represents a data store that you can reuse.

To read the index data from database tables, perform the following tasks:

1. Create a mapping that reads another identity data source.

2. Configure a Match transformation in the mapping to read the index data from the database that you
specified earlier.

When the mapping data source and the index data share a common structure, you can reuse the
mapping that generated the index data.

444 Chapter 28: Match Transformation

3. Run the mapping to compare the data source to the index data.

The mapping generates index data for the data source. The mapping does not need to generate index
data for the larger data set. Therefore, the mapping runs faster than a dual-source mapping that
generates index data for both data sets.

Related Topics:
• “Identity Match Analysis and Persistent Index Data” on page 441

Creating a Data Store for Identity Index Data
Configure a mapping that reads a data source that contains identity information. Use a Match transformation
to write the index data to a database.

1. Create a mapping, and add the data source to the mapping canvas.

2. Add a Match transformation to the mapping canvas.

3. On the data source, select the ports that contain the identity information.

• Connect the identity information ports to the Match transformation.

• Connect the port that contains the sequence identifier values to the Match transformation.

4. On the Match transformation, select the Match Type view.

5. Set the match type to Identity Match with Persistent Record ID.

6. Configure the following options to create the index data store.

• Set the persistence method to Update the database with new IDs.

• Verify the matching process value. The default value is Enable. If you disable the matching process,
the mapping creates the identity index tables but does not perform match analysis on the data.

• On the DB Connection menu, select a database for the index tables.

• On the Persistent Store menu, select Create New. Enter a name for the index in the Create Storage
Tables dialog box.

7. Perform any other configuration step that the Match transformation requires. For example, configure a
transformation strategy.

8. Add a target data object to the mapping.

9. Connect the Match transformation output ports to the target data object.

10. Run the mapping.

The mapping writes the index data for the data source to the database tables that you specify.

Using the Index Data Store in Single-Source Analysis
Configure a mapping that reads a data source of identity information. Use a Match transformation to
compare the data source to the index data store for the master data set.

Before you configure the mapping, verify that the data source contains a column of sequence identifier
values.

To save time, you can copy or reuse the mapping that created the index data store.

1. Open the mapping that generated the index data store.

Alternatively, open a copy of the mapping.

2. Verify the data source in the mapping.

Match Performance in Identity Analysis 445

If required, replace the data source with a source that contains the current data.

Note: If you delete the data source, you also delete the port connections on the Match transformation.

3. Identify the data source ports that contain the identity information.

• Connect the identity information ports to the Match transformation.

• Connect the port that contains the sequence identifier values to the Match transformation.
The input ports and the input port order must correspond to the input ports on the transformation
that created the index tables.

4. On the Match transformation, select the Match Type view.

5. Set the match type to Identity Match with Persistent Record ID.

6. Verify the population, key level, key type, and key field values.

7. Configure the options to identify the index data store:

• Set the persistence method. For example, select Do not update the database to preserve the current
data in the index tables.

• Set the matching process to Enable.

• On the DB Connection menu, select the database that contains the index tables.

• On the Persistent Store menu, browse to the tables that contain the index data.

8. Configure the following properties on the Match Output view:

• Match. Identifies the records to analyze when the transformation reads index data from database
tables.

• Output. Filters the records that the transformation writes as output.

9. Perform any other configuration step that the Match transformation requires.

For example, configure a transformation strategy.

10. Verify the data target in the mapping.

If required, replace the data target with another target object.

11. Connect the Match transformation output ports to the target data object.

12. Run the mapping.

The mapping compares the data source records with the index data store. The transformation writes the
index data for the data source to the data store.

Match Transformation Views
The Match transformation organizes the options that you can configure on a series of views. In a reusable
transformation, the views appear as tabs on the Developer tool canvas. To open a view, click a tab. In a
nonreusable transformation, the views appear as a list on the canvas. To open a view, click an item on the
list.

When you configure a match analysis operation, you can configure the following views:

General

Use the General view to update the name and the description of a nonreusable Match transformation.
The description is optional.

446 Chapter 28: Match Transformation

Ports

Use the Ports view to verify the input ports and output ports on a nonreusable Match transformation.

Overview

Use the Overview to update the name and the description of a reusable transformation. The description
is optional. You also use the Overview to create the input ports and output ports on a reusable
transformation.

Match Type

Use the Match Type view to select the type of duplicate analysis that the transformation performs. You
can select field match analysis or identity match analysis. You can specify a single data source or two
data sources.

Strategies

Use the Strategies view to define one or more strategies to analyze the input data. You select two data
columns in each strategy, and you assign a match analysis algorithm to the columns.

Match Output

Use the Match Output view to specify the structure and format of the output data.

Parameters

Use the Parameters view to define any parameter that the Data Integration Service can apply to the
transformation when you run a mapping that contains the transformation.

Advanced

Use the Advanced view to specify the following properties:

• The level of detail in any log message that the mapping writes for the transformation.

• The number of processes that identity match operations use when you run a mapping that contains
the transformation.

• Whether the transformation passes data from identical records directly to the output ports. You can
filter identical records when you configure the transformation to write clustered output.

Match Transformation Views 447

The following image shows the views on a Match transformation that you configure for identity analysis with
a persistent index store:

Match Transformation Ports
The Match transformation includes a set of predefined input ports and output ports that contain metadata for
the match analysis operations that you define. The transformation selects or clears the ports when you
configure the match type and match output options.

When you configure the transformation, review the metadata ports. When you add the transformation to a
mapping, verify that you connect the metadata ports to the correct ports on the upstream and downstream
mapping objects.

Match Transformation Input Ports
The predefined input ports contain the metadata that the transformation requires for match analysis.

After you create a Match transformation, you can configure the following input ports:

SequenceId

Unique identifier for each record in the mapping source data set. Every record in an input data set must
include a unique sequence identifier. If a data set contains duplicate sequence identifiers, the Match
transformation cannot identify duplicate records correctly. Use the Key Generator transformation to
create unique identifiers if none exist in the data.

When you create an index data store for identity data, the Match transformation adds the sequence
identifier for each record to the data store. When you configure the transformation to compare a data

448 Chapter 28: Match Transformation

source with the index data store, the transformation might find a common sequence identifier in both
data sets. The transformation can analyze the sequence identifiers if they are unique in the respective
data sets.

GroupKey

Key value that identifies the group to which the record belongs.

Note: To improve mapping performance, configure the GroupKey input port and the output port that
connects to it with the same precision value.

Match Transformation Output Ports
The predefined output ports contain metadata about the analysis that the transformation performs.

After you create a Match transformation, you can configure the following output ports:

GroupKey

Key value that identifies the group to which the record belongs.

Downstream transformations such as the Association transformation can read the group key value.

ClusterId

The identifier of the cluster to which the record belongs. Used in cluster output.

ClusterSize

The number of records in the cluster to which a record belongs. When a cluster contains a unique record,
the cluster size is 1. Used in cluster output.

RowId and RowId1

A unique row identifier for the record. The Match transformation uses the row identifier to identify the
row during the match analysis operations. The identifier might not match the row number in the input
data.

DriverId

The row identifier of the driver record in a cluster. Used in cluster output. The driver record is the record
in the cluster with the highest value on the SequenceID input port.

DriverScore

The transformation assigns a driver score in matched pair output and clustered output. In a matched
pair, the driver score is the match score between the pair of records. In a cluster, the driver score is the
match score between the current record and the driver record in the cluster.

LinkId

The row identifier of the record that matched with the current record and linked it to the cluster. Used in
cluster output.

LinkScore

The match score between two records that results in the creation of a cluster or the addition of a record
to a cluster. The LinkID port identifies the record with which the current record shares the link score.
Used in cluster output.

PersistenceStatus

An eight-character code that represents the results of the match analysis on an input record. Used in
single-source identity analysis when the transformation compares the data source to an index data
store.

Match Transformation Ports 449

The transformation populates the first three characters in the code. The transformation can return
different characters at each position. The transformation returns 0 for positions four through eight.

When you configure the transformation to generate matched pair output, the transformation creates a
PersistenceStatus port and a PersistenceStatus1 port.

PersistenceStatusDesc

A text description of the persistence status code values. Used in single-source identity analysis when the
transformation compares the data source to an index data store.

When you configure the transformation to generate matched pair output, the transformation creates a
PersistenceStatusDesc port and a PersistenceStatusDesc1 port.

Persistence Status Codes and Persistence Status Descriptions
The persistence status codes and the persistence status descriptions describe the relationship between the
different types of index data that the Match transformation analyzes. The transformation generates the
status codes and the status descriptions when you configure the transformation to read a persistent identity
data store.

The transformation writes the persistence status code to the PersistenceStatus port. The code contains eight
characters. The transformation populates the first three positions in the string with code values. The
transformation returns 0 for positions four through eight.

The transformation writes the persistence status description to the PersistenceStatusDesc port. The
description contains three comma-separated text strings that describe the values in the first three positions
in the persistence status code.

The transformation uses the sequence identifier values from the source data records to compare the index
data for the two data sets.

The following table describes the types of information that the transformation writes at each position in the
status description and the status code:

Position Description

1 Identifies the data set that contains the record.

2 Indicates the duplicate status of the record. The transformation looks for common
sequence identifiers between the transformation input data and the index data store.

3 Describes any action that the transformation performs on the data.

4-8 The status code contains 0 at each position.
The status description does not contain text for the positions.

Status Code Values and Status Description Values
The persistence status codes and the persistence status descriptions describe the relationship between the
transformation input records and the records that the data store represents. The transformation uses
sequence identifier values to identify the records and to determine the relationship between the records in
the data sets.

The persistence status code and the persistence status descriptions have a common structure. The status
codes and the status descriptions contain the same information at each position in the output data string.

450 Chapter 28: Match Transformation

Data Set Status

The first value in the status code and in the status description identifies the data set that contains the record.

The following table describes the status codes and the status descriptions that the transformation can return
in the first position:

Status Code Status Description

S Store.
The current record originates in the index data store.

I Input.
The current record originates in the transformation input data.

Duplicate Record Status

The second value in the status code and in the status description describes the relationship between the
transformation index data and the persistent data store.

The following table describes the status codes and the status descriptions that the transformation can return
in the second position:

Status Code Status Description

A Absent.
The index data store does not contain data for the current record.

E Exists.
The current record is present in the index data store and in the transformation input
data.

I Invalid.
The transformation cannot analyze the current record. For example, the transformation
cannot generate index data for the record because the key field on the Match Type tab
is not compatible with the record data.

N New.
The record is present in the data source.

0 [Dash]
The record is present in the index data store.

Data Store Status

The third value in the status code and in the status description describes any action that the transformation
performs on the index data tables.

Match Transformation Ports 451

The following table describes the status codes and the status descriptions that the transformation can return
in the third position:

Status Code Status Description

A Added.
The transformation adds the index data for the current input record to the persistent
data store.
The transformation input data and the persistent index data have different sequence
identifiers.

I Ignored.
The transformation does not add any index data for the current input record to the
persistent data store.

N The transformation returns one of the following descriptions:
- No change.

The current record originates in the persistent data store, and the transformation
takes no action.

- Not added.
The transformation does not update the persistent data store with any data for the
current input record because of the match policy that you defined.

R Removed.
The transformation removes the index data for the record from the index data store.

U Updated.
The transformation updates the rows in the persistent data store with index data from
the transformation input record.
The transformation input data and the persistent index data have common sequence
identifiers.

Persistence Status Description Example

The persistence status code INA00000 has the following persistence status description:

Input, New, Added

The status code and the status description contain the following information about the record:

• The record originates in the transformation input data.

• The persistent data store does not contain a copy of the record.

• The transformation adds the index data for the record to the persistent data store.

Output Ports and Match Output Selection
The match output options that you select determine the output ports on the transformation. For example, the
transformation creates a ClusterId port and ClusterSize port when you select a clustered output type.

Select the type of transformation output that you need, and review the ports on the transformation.

If you update the match output type, verify the output port configuration on the transformation after you do
so. If you use the transformation in a mapping, you might need to reconnect the output ports to the
downstream objects in the mapping.

452 Chapter 28: Match Transformation

Match Mapplets
A match mapplet is a type of mapplet that you can create and embed in Match transformations.

You create match mapplets by saving the configuration of a Match transformation as a match mapplet. When
you create a match mapplet, you convert Match transformation settings into Comparison and Weighted
Average transformations.

After you create a match mapplet, you can add transformations to customize the match analysis. For
example, you can add an Expression transformation to evaluate the link scores of two strategies and choose
the highest score.

Unlike Match transformations, match mapplets are passive, which means that you can use them as rules
within the Analyst tool. Use match mapplets in the Analyst tool to match records as part of data profiling
processes.

The Match transformation can only read match mapplets that you create from within a Match transformation.

Creating a Match Mapplet
Create a match mapplet to define a match analysis operation that uses multiple transformations.

1. Open a Match transformation in the editor and select the Strategies view.

2. Select Use Match Rule.

3. In the Name field, select Create new.

The New Mapplet window opens.

4. In the New Mapplet window, enter a name for the mapplet and choose a location to save the mapplet.

5. Optionally, select Reuse Strategies from the Match transformation to copy the inputs, strategies, and
weights from the current Match transformation to the match mapplet.

Note: Informatica recommends using this setting to quickly create match mapplets that replicate the
match functionality currently defined in Match transformations.

6. Click Finish.

The match mapplet opens in the editor.

7. Optionally, create match operations by adding and configuring Comparison transformations and
Weighted Average transformations in the match mapplet.

8. Click File > Save to save the mapplet.

9. Close the mapplet and select the editor that contains the Match transformation. Verify that the mapplet
you created appears in the Name field.

10. Optionally, configure the match fields in the mapplet by clicking the Match Fields button.

The Configure Match Rule window opens.

11. Double-click the fields in the Input Fields and Available Inputs columns to assign input ports to match
inputs.

12. Click File > Save to save the transformation.

Using a Match Mapplet
You can select and configure a previously defined match mapplet in the Match transformation.

1. Open a Match transformation in the editor and select the Strategies view.

Match Mapplets 453

2. Select Use Match Rule.

3. In the Name field, select Use Existing.

The Configure Match Rule window opens.

4. Click Browse to locate a match mapplet in the repository.

Important: You can only select mapplets created by the Match transformation.

The Select Match Mapplet window opens.

5. Select a match mapplet and click OK.

6. Double-click the fields in the Input Fields and Available Inputs columns to assign input ports to match
inputs.

7. Click OK.

The Configure Match Rule window closes.

8. Click File > Save to save the Match transformation.

Configuring a Match Analysis Operation
To configure a match operation, connect source data to the Match transformation and edit the properties in
the transformation views.

1. Create a Match transformation and connect source data to the transformation.

2. Select the Match Type view and choose a match type.

3. Configure the properties for the type of match operation that you select.

If you selected a dual source match type, configure the Master Data Set property.

4. Select the Strategies view and choose Define match strategies.

5. Click New.

The New Match Strategy wizard opens.

6. Choose a match strategy and click Next.

7. Optionally, edit the weight and null match settings. Click Next.

8. Double-click the cells in the Available column to select the input ports to analyze.

Click Next to configure another strategy, or click Finish to exit the wizard.

Note: To edit the strategy configuration, click the arrow in the cell for that strategy in the Strategies view.

9. Select the Match Output view.

Choose a match output type and configure the properties.

Note: You can also configure match strategies by selecting or creating a match mapplet in the Strategies
view. A match mapplet is a type of mapplet that you can embed in a Match transformation.

454 Chapter 28: Match Transformation

Match Transformation in a Non-native Environment
The Match transformation processing in the non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Not supported.

Match Transformation on the Blaze Engine
Mapping validation fails when the Match transformation is configured to write identity index data to database
tables.

A Match transformation generates cluster ID values differently in native and non-native environments. In a
non-native environment, the transformation appends a group ID value to the cluster ID.

Match Transformation on the Spark Engine
Mapping validation fails when the Match transformation is configured to write identity index data to database
tables.

A Match transformation generates cluster ID values differently in native and non-native environments. In a
non-native environment, the transformation appends a group ID value to the cluster ID.

Match Transformation in a Non-native Environment 455

C h a p t e r 2 9

Match Transformations in Field
Analysis

This chapter includes the following topics:

• Field Match Analysis, 456

• Process Flow for Field Match Analysis, 456

• Field Match Type Options, 457

• Field Match Strategies, 457

• Field Match Output Options, 460

• Field Match Advanced Properties, 462

• Field Match Analysis Example, 462

Field Match Analysis
Perform field match analysis to find similar or duplicate records in a data set or between two data sets.

When you configure the Match transformation for field match analysis, you set the options on the following
views:

• Match Type

• Strategies

• Match Output

Optionally, set the options on the Parameters and Advanced views.

Process Flow for Field Match Analysis
The following process flow summarizes the steps that you take to configure a Match transformation for field
match analysis. You can define a process that uses the Match transformation alone or that uses the Match
transformation and other transformations.

Note: When you add a Match transformation to a mapping in field match analysis, add an upstream Key
Generator transformation to the mapping.

456

To prepare the data for the Match transformation, perform the following steps:

1. Organize the source data records into groups.

Use a Key Generator transformation to assign a group key value to each record. The group assignments
reduce the number of computations that the Match transformation must perform.

2. Verify that the data source records contain unique sequence identifier values. You can use a Key
Generator transformation to create the values.

Perform the following steps in the Match transformation:

1. Specify field analysis as the match type, and specify the number of data sources.

If you configure the transformation to analyze two data sets, select a master data set.

Use the Match Type view to set the type and the number of data sources.

2. Define a match analysis strategy. Select an algorithm, and assign a pair of columns to the algorithm.

Use the Strategies view to define the strategy.

3. Specify the method that the transformation uses to generate the match analysis results.

4. Set the match threshold value. The match threshold is the minimum score that can identify two records
as duplicates of one another.

Use the Match Output view to select the output method and the match threshold.

Note: You can set the match threshold in a Match transformation or a Weighted Average transformation.
Use the Weighted Average transformation if you create a match mapplet.

Field Match Type Options
The Match Type view contains a single option that applies to dual-source match analysis. The option
identifies the master data set. The Match Type view does not contain an option for single-source match
analysis.

When you analyze two data sets, you must select one as a master data set. If neither data set represents a
master data set in the project or the organization, select the larger data set as the master data set.

Use the Master Data Set option to specify the master data set.

Field Match Strategies
The Strategies view lists the strategies that you define for the input data.

The strategies determine how the transformation measures the similarities and differences between the data
source records.

Field Match Algorithms
The Match transformation includes algorithms that compare data values across two columns. Each
algorithm calculates the degree of difference between data values in a different way.

Select an algorithm that can measure the types of data difference that you expect to find in the columns that
you select.

Field Match Type Options 457

Bigram
Use the Bigram algorithm to compare long text strings, such as postal addresses entered in a single field.

The Bigram algorithm calculates a match score for two data strings based on the occurrence of consecutive
characters in both strings. The algorithm looks for pairs of consecutive characters that are common to both
strings. It divides the number of pairs that match in both strings by the total number of character pairs.

Bigram Example

Consider the following strings:

• larder
• lerder
These strings yield the following Bigram groups:

l a, a r, r d, d e, e r
l e, e r, r d, d e, e r

Note that the second occurrence of the string "e r" within the string "lerder" is not matched, as there is no
corresponding second occurrence of "e r" in the string "larder".

To calculate the Bigram match score, the transformation divides the number of matching pairs (6) by the
total number of pairs in both strings (10). In this example, the strings are 60% similar and the match score is
0.60.

Hamming Distance
Use the Hamming Distance algorithm when the position of the data characters is a critical factor, for example
in numeric or code fields such as telephone numbers, ZIP Codes, or product codes.

The Hamming Distance algorithm calculates a match score for two data strings by computing the number of
positions in which characters differ between the data strings. For strings of different length, each additional
character in the longest string is counted as a difference between the strings.

Hamming Distance Example

Consider the following strings:

• Morlow
• Marlowes
The highlighted characters indicate the positions that the Hamming algorithm identifies as different.

To calculate the Hamming match score, the transformation divides the number of matching characters (5) by
the length of the longest string (8). In this example, the strings are 62.5% similar and the match score is
0.625.

Edit Distance
Use the Edit Distance algorithm to compare words or short text strings, such as names.

The Edit Distance algorithm calculates the minimum “cost” of transforming one string to another by inserting,
deleting, or replacing characters.

Edit Distance Example

Consider the following strings:

• Levenston
• Levenshtein

458 Chapter 29: Match Transformations in Field Analysis

The highlighted characters indicate the operations required to transform one string into the other.

The Edit Distance algorithm divides the number of unchanged characters (8) by the length of the longest
string (11). In this example, the strings are 72.7% similar and the match score is 0.727.

Jaro Distance
Use the Jaro Distance algorithm to compare two strings when the similarity of the initial characters in the
strings is a priority.

The Jaro Distance match score reflects the degree of similarity between the first four characters of both
strings and the number of identified character transpositions. The transformation weights the importance of
the match between the first four characters by using the value that you enter in the Penalty property.

Jaro Distance Properties

When you configure a Jaro Distance algorithm, you can configure the following properties:

Penalty

Determines the match score penalty if the first four characters in two compared strings are not identical.
The transformation subtracts the full penalty value for a first-character mismatch. The transformation
subtracts fractions of the penalty based on the position of the other mismatched characters. The default
penalty value is 0.20.

Case Sensitive

Determines whether the Jaro Distance algorithm considers character case when it compares characters.

Jaro Distance Example

Consider the following strings:

• 391859
• 813995
If you use the default Penalty value of 0.20 to analyze these strings, the Jaro Distance algorithm returns a
match score of 0.513. This match score indicates that the strings are 51.3% similar.

Reverse Hamming Distance
Use the Reverse Hamming Distance algorithm to calculate the percentage of character positions that differ
between two strings, reading from right to left.

The Hamming Distance algorithm calculates a match score for two data strings by computing the number of
positions in which characters differ between the data strings. For strings of different length, the algorithm
counts each additional character in the longest string as a difference between the strings.

Reverse Hamming Distance Example

Consider the following strings, which use right-to-left alignment to mimic the Reverse Hamming algorithm:

• 1-999-9999

• 011-01-999-9991

The highlighted characters indicate the positions that the Reverse Hamming Distance algorithm identifies as
different.

To calculate the Reverse Hamming match score, the transformation divides the number of matching
characters (9) by the length of the longest string (15). In this example, the match score is 0.6, indicating that
the strings are 60% similar.

Field Match Strategies 459

Field Match Strategy Properties
Open the Strategy wizard on the Strategies view and configure the properties for each field match strategy.

When you configure a field match strategy, you can configure the following properties:

Name

Identifies the strategy by name.

Weight

Determines the relative priority assigned to the match score when the overall score for the record is
calculated. Default is 0.5.

Single Field Null

Defines the match score that the algorithm applies to a pair of data values when one value is null.
Default is 0.5.

Both Fields Null

Defines the match score that the algorithm applies to a pair of data values when both values are null.
Default is 0.5.

Note: A match algorithm does not calculate a match score when one or both of the matched column values
are null. The algorithm applies the scores defined in the null match properties. You cannot clear the null
match properties.

Field Match Output Options
Configure the Match Output options to define the output format for field match analysis.

You configure the options in the Match Output Type area and the Properties area.

Match Output Types
The Match Output view includes options that specify the output data format. You can configure the
transformation to write records in clusters or in matched pairs.

Select one of the following match output types:

Best Match

Writes each record in the master data set with the record that represents the best match in the second
data set. The match operation selects the record in the second data set that has the highest match
score for the master record. If two or more records return the highest score, the match operation selects
the first record in the second data set. Best Match writes each pair of records to a single row.

You can select Best Match when you configure the transformation for dual-source analysis.

Clusters

Writes clusters that contain sets of records that link to each other with match scores that meet the
match threshold. Each record must match at least one other record in the cluster with a score that meets
the threshold.

You can select Clusters when you configure the transformation for single-source analysis and dual-
source analysis.

460 Chapter 29: Match Transformations in Field Analysis

Matched Pairs

Writes all pairs of records that match each other with a score that meets the match threshold. The
transformation writes each pair to a single row and adds the match score for each pair to each row. If a
record matches more than one other record, the transformation writes a row for each record pair.

You can select Matched Pairs when you configure the transformation for single-source and dual-source
analysis.

Match Output Properties
The Match Output view includes properties that specify the cache memory behavior, the match score
threshold, and the match scores that appear in the transformation output.

You can also use the match output properties to specify how the transformation adds match score values to
the output records.

After you select a match output type, configure the following properties:

Cache Directory

Specifies the directory to which the Data Integration Service writes temporary data during field match
analysis. The Data Integration Service writes temporary files to the directory when the volume of data
that the match analysis generates is greater than the available system memory. The Data Integration
Service deletes the temporary files after the mapping runs.

You can enter a directory path on the property, or you can use a parameter to identify the directory.
Specify a local path on the Data Integration Service machine. The Data Integration Service must be able
to write to the directory. The default value is the CacheDir system parameter.

Cache Size

Determines the amount of system memory that the Data Integration Service assigns to field match
analysis. The default value is 400,000 bytes.

Before it sorts the data, the Data Integration Service allocates the amount of memory that you specify. If
the match analysis generates a greater amount of data, the Data Integration Service writes the excess
data to the cache directory. If the match analysis requires more memory than the system memory and
the file storage can provide, the mapping fails.

Note: If you enter a value of 65536 or higher, the transformation reads the value in bytes. If you enter a
lower value, the transformation reads the value in megabytes.

Threshold

Sets the minimum match score that identifies two records as potential duplicates of each other.

You can assign a parameter to the threshold value. Set a decimal value in the range 0 through 1.

Scoring Method

Determines the match score values that appear in the transformation output. Select a scoring method
for cluster outputs.

The following table describes the scoring method options:

Scoring Method Option Description

Both Adds the link score and the driver score to each record in the cluster.

Link Score Adds the link score to each record in the cluster. Default option.

Field Match Output Options 461

Scoring Method Option Description

Driver Score Adds the driver score to each record in the cluster.

None Does not add a match score to any record in the cluster.

Note: If you add the driver score to the records, you increase the mapping run time. The mapping waits
until all clusters are complete before it adds the driver score values to the records.

Field Match Advanced Properties
The transformation includes advanced properties that determine the number of execution instances, how the
transformation analyzes identical rows, and the tracing level for log data.

You can configure the following advanced properties:

Execution Instances

Determines the number of threads that the transformation uses at run time.

The Match transformation uses a single execution instance in field match analysis. You can edit the
number of execution instances when you configure the transformation for identity match analysis.

Filter Exact Match

Determines whether the transformation applies the comparison algorithm in a match strategy to pairs of
identical records in the input data.

When the transformation finds a pair of identical records, the algorithm does not need to analyze the
levels of similarity between the records. The transformation can pass the records directly to the output
stage without additional analysis. To configure the transformation to pass the identical records directly
to the output stage, select Filter Exact Match. When the input data contains many identical rows, the
comparison algorithm performs fewer calculations, and the mapping runs faster.

Select the option when the input data contains many identical rows. Do not select the option if the input
data does not contain many identical rows, as the transformation might run more slowly.

Note: The transformation output contains the same record data when you select or clear the option. The
transformation might assign different link scores and driver scores to the output records when you
select and clear the option.

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Field Match Analysis Example
You are a data steward at a retail bank. You receive a set of account records for the customers who opened
bank accounts in the past seven days. You want to verify that the data set does not contain duplicate
records. You design a mapping to search the records for duplicate data.

462 Chapter 29: Match Transformations in Field Analysis

Create the Mapping
Create a mapping that looks for duplicate data in multiple fields.

The mapping performs the following tasks:

• It reads a data source.

• It adds a group key value and sequence identifier value to the source records.

• It analyzes the field data in the records.

• It writes the results to a data target.

The following image shows the mapping in the Developer tool:

The mapping that you create contains the following objects:

Object Name Description

Read_Match_Customers Data source.
Contains the account holder details, including names, addresses, and account numbers.

Key_Generator Key Generator transformation.
Adds group key values and sequence identifier values to the source data.

Match Match transformation.
Analyzes the levels of duplication in the account data.

Write_match_target Data target.
Contains the results of the field analysis.

Input Data Sample
The data set contains the account number, name, address, and employer for each customer. You create a
data source from the data set in the Model repository. You add the data source to the mapping.

The following data fragment shows a sample of the customer account data:

CustomerID Lastname City State ZIP

15954467 JONES SCARSDALE NY 10583

10110907 JONES MINNEAPOLIS MN 55437

Field Match Analysis Example 463

CustomerID Lastname City State ZIP

19131127 JONES INDIANAPOLIS IN 46240

10112097 JONES HOUSTON TX 77036

19133807 JONES PLANTATION FL 33324

10112447 JONES SCARSDALE NY 10583

15952487 JONES HOUSTON TX 77002

10112027 JONES OAKLAND CA 94623

Key Generator Transformation Configuration
When you configure the Key Generator transformation, connect the data source ports that you want to
analyze. Specify the port that contains the group key data. If the records do not include a unique identifier,
use the sequence ID port to add unique identifiers to the record.

When you specify the group key port, consider the following guidelines:

• Select a port that contains values that repeat regularly in the port data. Preferably. select a port that
creates groups that are similar in size.

• Select a port that is not relevant to the duplicate analysis.

In the current example, select the City port as the group key. If an account name appears more than once in a
city, the accounts might contain duplicate data. If an account name appears more than once in different
cities, the accounts are unlikely to be duplicates.

Tip: Run a column profile on the data source before you select the group key port. The profile results can
indicate the number of times each value appears on a port.

Match Transformation Configuration
Add a nonreusable Match transformation to the mapping to perform the field analysis.

Complete the following tasks to configure the Match transformation:

1. Select the type of match analysis to perform.

2. Connect the input ports to the transformation.

3. Configure strategies to compare the record data.

4. Select the type of match output data that the transformation creates.

5. Connect the output ports to a data target.

Select the Type of Match Operation
Use the options on the Match Type view to select the match operation. To compare the account data,
configure the transformation to perform single-source field analysis.

464 Chapter 29: Match Transformations in Field Analysis

Connect the Input Ports
Connect the customer account data ports to the Match transformation.

The Match transformation uses preset input ports to determine the order in which it processes the records.
The transformation uses a sequence identifier to track the records from the input ports to the matched pairs
or clusters that it writes as output. The transformation uses a group key to sort the records that it processes.

Connect the following preset ports on the Match transformation to the preset output ports on the Key
Generator transformation:

• SequenceID

• GroupKey

Configure the Strategies for Field Analysis
Use the options on the Strategies view to configure the strategies. The strategies determine the types of
analysis that the transformation performs on the record data.

Create the following strategies:

• Create a strategy that uses the Edit Distance algorithm to analyze the customer identification numbers.
Select the CustomerID_1 and CustomerID_2 ports.

• Create a strategy that uses the Jaro Distance algorithm to analyze the surname data. Select the
Lastname_1 and Lastname_2 ports.

Note: The Jaro Distance algorithm applies an additional penalty to similar strings that start with different
characters. Therefore, the Jaro Distance algorithm can apply a high match score to PATTON and PATTEN
but apply a lower match score to BAYLOR and TAYLOR.

• Create a strategy that uses the Reverse Hamming Distance algorithm to analyze the ZIP code data. Select
the Zip_1 and Zip_2 ports.

Related Topics:
• “Field Match Algorithms” on page 457

Select the Match Output Type
Use the options on the Match Output view to define the output format for the results of the match analysis.

The following image shows the Match Output view for single-source field analysis:

You configure the transformation to organize the output records in matched pairs. Because the
transformation returns records in pairs, the results of the analysis do not include unique records.

Field Match Analysis Example 465

Connect the Output Ports
Connect the Match transformation output ports to the data target in the mapping. Select the ports that
contain the record data that you want to write to the data target.

The transformation includes preset ports that identify the records in each matched pair. The preset port
names are RowId and RowId1. Each row ID value identifies a record in the output data.

The row ID values correspond to the ports that you select in a match strategy. When you configure a strategy,
you select port names with the suffix _1 or _2. The RowId value identifies the record that contains a port with
the suffix _1. The RowId1 value identifies the record that contains a port the suffix _2.

You can use other output ports to review the relationships between the records. The link port values and
driver port values indicate the extent of the similarity between the records in each cluster.

In the current example, you connect all the ports to the data target. To view the output data on the ports, run
the Data Viewer.

Run the Data Viewer
Run the Data Viewer to review the results of the match analysis. By default, the Data Viewer shows all the
output ports on the Match transformation. When you run the mapping, you update the data target with the
data from the output ports.

The following image shows the output data in the Data Viewer:

The Data Viewer verifies that the customer account data includes one or more duplicate records.

Consider the following data in the Data Viewer:

• The transformation determines that the records for Augusta Chan and Carmen Chan might contain the
same information because they contain the same surname and address data. When you review the
records, you decide that the records are unique in the data set. However, you notice that the records share
a common customer ID value. Because the customer ID column is a primary key in the data set, you
contact the New York office. The New York office resolves the error.

• The transformation determines that the records for Keith Anderson might contain the same information.
When you review the records, you verify that the two records represent the same account. However, you
notice that the records have different customer ID values. Because a customer account must have a
single ID value, you contact the San Antonio office. The San Antonio office resolves the error.

466 Chapter 29: Match Transformations in Field Analysis

Conclusion
The results of the match analysis indicate that the customer account data set includes at least one pair of
duplicate records. You contact the local branch for the accounts that you need to verify. You verify that the
other records in the data set uniquely identify a customer account.

Field Match Analysis Example 467

C h a p t e r 3 0

Match Transformations in Identity
Analysis

This chapter includes the following topics:

• Identity Match Analysis, 468

• Process Flow for Identity Match Analysis, 469

• Identity Match Type Properties, 469

• Identity Match Strategies, 473

• Identity Match Output Options, 475

• Identity Match Advanced Properties, 478

• Persistent Index Case Study, 479

• Identity Match Analysis Example, 481

Identity Match Analysis
Perform identity match analysis to find similar or duplicate identities in a data set or between two data sets.

Similar identities in two or more records might indicate record duplication. Or, the similar identities might
indicate a connection between the records, such as a shared family identity or a shared employer identity.

When you configure the Match transformation for identity match analysis, you set the options on the
following views:

• Match Type

• Strategies

• Match Output

Optionally, set the options on the Parameters and Advanced views.

When you configure a Match transformation for identity match analysis, connect input ports to all of the
primary required fields in an identity strategy. Most identity strategies contain primary required fields. Some
strategies also contain secondary required fields. Connect an input port to at least one secondary required
field.

468

Process Flow for Identity Match Analysis
The following process flow summarizes the steps that you take to configure a Match transformation for
identity match analysis. You can define a process that uses the Match transformation alone or that uses the
Match transformation and other transformations.

Before you connect the Match transformation to upstream data objects, verify that the records contain
unique sequence identifier values. You can use a Key Generator transformation to create the values. When
you perform identity match analysis, you can optionally organize the input data into groups.

Perform the following steps in the Match transformation:

1. Specify identity analysis as the match type, and specify the number of data sources.

If you configure the transformation to analyze two data sets, select a master data set.

Use the Match Type view to set the type and the number of data sources.

2. Identify the location to store the index data. The transformation can write the index data to temporary
files or save the index data to database tables.

Use the Match Type view to specify the index data store.

3. Define a match analysis strategy. Select a population and a comparison algorithm, and assign a pair of
columns to the algorithm.

The population indicates the column pairs to select.

Use the Strategies view to define the strategy.

4. Specify the method that the transformation uses to generate the match analysis results.

5. Set the match threshold value. The match threshold is the minimum score that can identify two records
as duplicates of one another.

Use the Match Output view to select the output method and the match threshold.

Note: You can set the match threshold in a Match transformation or a Weighted Average transformation.
Use the Weighted Average transformation if you create a match mapplet.

Identity Match Type Properties
Use the Match Type view to specify the type of analysis that the Match transformation performs and to set
the properties that define the analysis. You can specify single-source analysis or dual-source analysis. You
can also specify a persistent data store for the identity index data.

The properties that you configure depend on the type of analysis that you select. Many of the options are
common to all types of analysis.

Common Properties

The following properties are common to all types of identity analysis:

Population

Identifies the population file that the transformation uses. The population file contains the key-building
algorithms that generate the index keys.

Process Flow for Identity Match Analysis 469

Key Level

Determines the number of keys that the identity algorithms generate. The default setting is Standard.
The Limited setting results in a lower number of keys, higher accuracy, and longer processing time. The
Extended setting results in a higher number of keys, lower accuracy, and shorter processing time.

Key Type

Describes the type of information that the key field contains. Identity analysis can generate keys for
person names, organizations, and addresses. Select the key type that best describes the column that you
specify on Key Field property.

Search Level

Indicates the balance of search depth and search speed that the transformation applies to the match
analysis. The search depth corelates inversely to the number of matches returned. For example, the
Exhaustive option returns fewer matches.

Key Field

Specifies the column that the Match transformation uses to generate the index key data. Verify that the
column that you select contains the type of information that you specified on the Key Type property.

Index Directory

Identifies the directory to which the Data Integration Service writes index key data for the current
transformation. By default, the property is blank. If you do not specify an index directory, the Data
Integration Service uses the location that you set on the Content Management Service.

You can enter a path to the directory, or you can use a parameter to identify the directory. Specify a local
path on the Data Integration Service machine. The Data Integration Service must be able to write to the
directory.

Cache Directory

Identifies the directory to which the Data Integration Service writes temporary data during the index
creation stage of identity match analysis. Update the property to specify a location for data from the
current transformation. By default, the property is blank. If you do not specify a cache directory, the Data
Integration Service uses the location that you set on the Content Management Service.

You can enter a path to the directory, or you can use a parameter to identify the directory. Specify a local
path on the Data Integration Service machine. The Data Integration Service must be able to write to the
directory.

Cache Size

Determines the amount of system memory that the Data Integration Service assigns to identity index
creation. The default value is 400,000 bytes.

If the index creation operation generates a greater amount of data, the Data Integration Service writes
the excess data to the cache directory. If the operation requires more memory than the system memory
and the file storage can provide, the mapping fails.

Note: If you enter a value of 65536 or higher, the transformation reads the value in bytes. If you enter a
lower value, the transformation reads the value in megabytes.

Dual-Source Properties

Set the following property in addition to the common properties when you configure the transformation for
dual-source analysis:

Master Data Set

Identifies the data source that contains the master data. Specify a master data set in dual-source
analysis.

470 Chapter 30: Match Transformations in Identity Analysis

Persistent Data Storage Properties

Set the following properties in addition to the common properties when you configure the transformation to
use the persistent index data store:

Persistence Method

Specifies whether the transformation updates the current index tables with index data from the mapping
data source. Select one of the following options:

• Update the database with new IDs.
The transformation adds all rows to the index data that do not duplicate a sequence identifier in the
index data. The transformation does not update the current rows in the index.

By default, the transformation performs match analysis when you select the option. You can use the
Matching Process option to enable or disable the match analysis.

• Do not update the database.
The transformation does not update the index tables with index data from the mapping data source.

The transformation performs match analysis when you select the option.

• Remove IDs from the database.
The transformation deletes rows from the index tables if the rows share sequence identifiers with the
mapping source data.

The transformation does not perform match analysis when you select the option.

• Update the current IDs in the database.
The transformation replaces rows in the index tables with rows from the mapping source data if the
rows share sequence identifiers. The transformation does not add rows to the index.

By default, the transformation performs match analysis when you select the option. You can use the
Matching Process option to enable or disable the match analysis.

The default persistence method is Update the database with new IDs.

Matching Process

Determines whether the current transformation performs identity analysis.

The option that you select on the Persistence Method property determines the options on the Matching
Process property.

DB Connection

Identifies the database that contains the index tables.

Persistent Store

Identifies the index tables within the database that you specify.

Related Topics:
• “Persistent Index Case Study” on page 479

• “Persistence Method Parameters” on page 472

Index Directory and Cache Directory Properties
The index directory and the cache directory store the temporary data that the Match transformation
generates during identity analysis.

The Data Integration Service writes data to the index directory if you do not configure the transformation to
write the index data to database tables. The Data Integration Service writes data to the cache directory if the

Identity Match Type Properties 471

identity analysis requires a greater amount of memory than the cache size specifies. By default, the
properties are blank on the Match Type view. If you do not specify an index directory or a cache directory, the
Data Integration Service reads the directory paths from the Content Management Service.

When you specify an index directory or a cache directory on the Match Type view, enter a local path on the
Data Integration Service machine. You can enter a fully qualified path or a relative path. If you enter a relative
path, start the path with a period. The path is relative to the tomcat/bin directory on the Data Integration
Service machine.

The following table shows a relative path on a cache directory or index directory property and identifies the
fully qualified path that the property represents:

Relative Path Fully Qualified Path

./ch [Informatica_installation_directory]/tomcat/bin/ch

You can configure the index directory property and the cache directory property to identify the same
directory. If you specify the same directory on each property, the Data Integration Service creates directories
in the directory that you specify. The Data Integration Service creates an index directory for the index data
and a cache directory for the cache data. If you specify different directories on each property, the Data
Integration Service writes the data to the directories that you specify.

The Data Integration Service deletes the index files and the cache files from the directories after the mapping
runs. The Data Integration Service does not delete the directories. The Data Integration Service can reuse the
directories in other mappings if the Match transformation identifies the directories.

Content Management Service Properties

The Content Management Service specifies the following default locations for the index directory and the
cache directory:

• ./identityIndex. Default directory for the identity index data.

• ./identityCache. Default directory for the identity cache data.

If you do not set the properties on the Match transformation, the Data Integration Service creates the default
directories when you run an identity match mapping. The Data Integration Service creates the directories in
the tomcat/bin directory.

Persistence Method Parameters
When you select a persistence data index in identity match analysis, you can use a parameter to identify the
persistence method. Use a string to define the parameter value.

The following table lists the persistence methods that you can select on the Match Type tab and the
parameter values that you can set for the methods:

Persistence Method Parameter

Update the database with new IDs ignore

Do not update the database addNone

Remove IDs from the database remove

Update the current IDs in the database update

472 Chapter 30: Match Transformations in Identity Analysis

The parameter values are case-sensitive.

Related Topics:
• “Identity Match Type Properties” on page 469

Identity Match Strategies
The Strategies view lists the strategies that you define for the identity data. The strategies determine how the
transformation measures the similarities and differences between the data in the identity index.

Identity Match Algorithms
The Match transformation includes predefined identity algorithms that compare the data values in the
identity index. Select the algorithm that best represents the type of identity data in the data set.

The following table describes the algorithms and identifies the inputs that you select for each one:

Identity Algorithm Description

Address Identifies records that share an address.
The algorithm requires the following primary input:
- Address
The algorithm does not require a secondary input.

Contact Identifies records that share a contact at a single organization location.
The algorithm requires the following primary inputs:
- Person_Name
- Organization_Name
- Address_Part1
The algorithm does not require a secondary input.

Corp Entity Identifies records that share corporate identification data. Optionally, select
this algorithm to analyze address and telephone data.
The algorithm requires the following primary input:
- Organization_Name
The algorithm does not require a secondary input.

Division Identifies records that share an office location within an organization.
The algorithm requires the following primary inputs:
- Organization_Name
- Address_Part1
The algorithm does not require a secondary input.

Family Identifies individuals that belong to a family. Analyzes name, address, and
telephone number data.
The algorithm requires the following primary input:
- Person_Name
The algorithm requires one of the following secondary inputs:
- Address_Part1
- Telephone_Number

Identity Match Strategies 473

Identity Algorithm Description

Fields Identifies records that share data on ports that you select.
The algorithm does not specify any required input. Select the port or ports
that might contain duplicate identity data.

Household Identifies individuals that belong to a household. Analyzes name data and
address data.
The algorithm requires the following primary inputs:
- Person_Name
- Address_Part1

Individual Identifies duplicate individuals. Analyzes name, date of birth, and personal
identification data such as Social Security numbers, account numbers, and
vehicle identification numbers.
The algorithm requires the following primary input:
- Person_Name
The algorithm requires one of the following secondary inputs:
- Date
- ID

Organization Identifies records that share organization data.
The algorithm requires the following primary input:
- Organization_Name
The algorithm does not require a secondary input.

Person Name Identifies records that share information about individuals.
The algorithm requires the following primary input:
- Person_Name
The algorithm does not require a secondary input.

Resident Identifies duplicate individuals at an address. Optionally, configure this
strategy to analyze personal identification data.
The algorithm requires the following primary input:
- Person_Name
- Address_Part1
The algorithm does not require a secondary input.

Wide Contact Identifies records that share a contact at an organization.
The algorithm requires the following primary inputs:
- Person_Name
- Organization_Name
The algorithm does not require a secondary input.

Wide Household Identifies individuals that belong the same household.
The algorithm requires the following primary input:
- Address_Part1
The algorithm does not require a secondary input.

Identity Match Strategy Properties
Configure the properties for each identity strategy.

When you configure an identity strategy, you can configure the following strategy properties:

474 Chapter 30: Match Transformations in Identity Analysis

Population

Determines the population to apply to identity analysis. Populations contain key-building algorithms for
specific locales and languages.

Match level

Determines the balance of search quality and search speed. The search speed is inversely related to the
number of matches returned. Searches that use the Loose setting return fewer matches, while searches
that use the Conservative setting return more matches.

Identity Match Output Options
The Match Output view includes options that specify the output data format. You can configure the
transformation to write records in clusters or in matched pairs. You can also configure the transformation to
include or exclude different categories of identity when you perform identity analysis against a persistent
index data store.

You configure the options in the Match output type area and the Properties area.

Match Output Types
The Match Output view includes options that specify the output data format. You can configure the
transformation to write records in clusters or in matched pairs.

Select one of the following match output types:

Best Match

Writes each record in the master data set with the record that represents the best match in the second
data set. The match operation selects the record in the second data set that has the highest match
score for the master record. If two or more records return the highest score, the match operation selects
the first record in the second data set. Best Match writes each pair of records to a single row.

You can select Best Match when you configure the transformation for dual-source analysis.

Clusters - Best Match

Writes clusters that represent the best match between one record and another record in the same data
set or between two data sets. The match score between the two records must meet the match threshold.
Best match clusters can contain more than two records if a record represents the best match with more
than one other record.

You can select Clusters - Best Match in any type of identity analysis.

Note: The index data storage method that you select can affect the contents of the cluster output in
Clusters - Best Match mode. A transformation that connects to index tables can create different clusters
than a transformation that stores index data for the same records in temporary files. The index data
storage method does not affect the match scores that the transformation generates for pairs of records.

Clusters - Match All

Writes clusters of records that match with a score that meets the match threshold. Each record must
match at least one other record in the cluster.

You can select Clusters - Match All in any type of identity analysis.

Identity Match Output Options 475

Matched Pairs

Writes all pairs of records that match each other with a score that meets the match threshold. The
transformation writes each pair to a single row and adds the match score for each pair to each row. If a
record matches more than one other record, the transformation writes a row for each record pair.

You can select Matched Pairs in any type of identity analysis.

Match Output Properties
The Match Output view contains properties that specify the cache memory behavior and the match score
threshold. You can also use the properties to determine how the transformation selects data store records
for analysis and writes data store records as output.

After you select a match output type, configure the following properties:

Cache Directory

Specifies the directory to which the Data Integration Service writes temporary data during identity match
analysis. The Data Integration Service writes temporary files to the directory when the volume of data
that the match analysis generates is greater than the available system memory. The Data Integration
Service deletes the temporary files after the mapping runs.

You can enter a directory path on the property, or you can use a system parameter to identify the
directory. Specify a local path on the Data Integration Service machine. The Data Integration Service
must be able to write to the directory. The default value is the CacheDir system parameter.

Cache Size

Determines the amount of system memory that the Data Integration Service assigns to identity match
analysis. The default value is 400,000 bytes.

If the match analysis generates a greater amount of data, the Data Integration Service writes the excess
data to the cache directory. If the match analysis requires more memory than the system memory and
the file storage can provide, the mapping fails.

Note: If you enter a value of 65536 or higher, the transformation reads the value in bytes. If you enter a
lower value, the transformation reads the value in megabytes.

Match

Identifies the records to analyze when the transformation reads index data from database tables. Use
the options on the Match Type view to identify the index tables.

By default, the transformation analyzes all the records in the data source and the index database tables.
Configure the Match property to specify a subset of the records for duplicate analysis.

Output

Filters the records that the transformation writes as output when you configure the transformation to
read index database tables. Use the options on the Match Type view to identify the index tables.

By default, the Match transformation writes all records from the data source and the index database
tables as output. Configure the Output property when you do not need to review all the records in the
input data.

Threshold

Sets the minimum match score that identifies two records as potential duplicates of each other.

You can assign a parameter to the threshold value. Set a decimal value in the range 0 through 1.

476 Chapter 30: Match Transformations in Identity Analysis

Match Property Configuration
Use the Match property on the Match Output view to specify how the transformation selects input data for
analysis. Configure the property when you configure the Match transformation to read a persistent store of
index data. The Match property refines the options that you set on the Match Type view.

You can configure the Match property to perform the following types of analysis:

Compare the data source records with the index data records

To look for duplicate records between the data source and the index data tables, select Exclusive.

When you select the Exclusive option, the Match transformation compares the data source records with
the index data store. The transformation does not analyze the records within the data source or within
the data store.

Select Exclusive when you know that the index data store does not contain duplicate records, and you
know that the data source does not contain duplicate records.

Compare the data source records with the index data records, and compare the data source records with each other

To look for duplicates in the data source and to look for duplicates between the data source and the
index tables, select Partial.

The transformation compares the data source records with the index data store. The transformation also
compares the records within the data source with each other.

Select Partial when you know that the index data store does not contain duplicate records, but you have
not performed any duplicate analysis on the data source.

Compare all records in the data source and the index tables as a single data set

To look for duplicates between the data source and the index tables, and to look for duplicates within the
data source and within the index tables, select Full. The default option is Full.

The transformation analyzes the data source and the data store as a single data set and compares all
record data within the data set.

Select Full when you cannot verify that either data set is free of duplicate records.

Output Property Configuration
Use the Output property on the Match Output view to filter the records that the transformation writes as
output. Configure the property when you specify index data tables and you select a clustered output format.
Filter the records to limit the output to clusters that contain one or more records from the data source.

You can filter the output data in the following ways:

Write every cluster that includes a record from the data source or the index tables

Select All Rows. The transformation writes every cluster that contains at least one record from either the
data source or the index data store. The default is All Rows.

Because a cluster can contain a single record, the output contains all records.

Write every cluster that includes a record from the data source

Select New and Associated Rows. The transformation writes every cluster that contains at least one
record from the data source.

Because a cluster can contain a single record, the output contains all records in the data source. The
clusters can also include records from the index tables.

Identity Match Output Options 477

Write every cluster from the data source

Select New Rows Only. The transformation writes the clusters that contains records from the data
source. The output does not contain any record from the index tables.

Identity Match Advanced Properties
The transformation includes advanced properties that determine the number of execution instances, whether
the transformation analyzes identical rows, and the tracing level for log data.

You can configure the following advanced properties:

Execution Instances

Specifies the number of threads that the Data Integration Service tries to create for the current
transformation at run time. The Data Integration Service considers the Execution Instances value if you
override the Maximum Parallelism run-time property on the mapping that contains the transformation.
The default Execution Instances value is Auto.

The Data Integration Service considers multiple factors to determine the number of threads to assign to
the transformation. The principal factors are the Execution Instances value and the values on the
mapping and on the associated application services in the domain.

The Data Integration Service that runs the mapping reads the following values to determine the number
of threads to use for the transformation:

• The Maximum Parallelism value on the Data Integration Service. Default is 1.

• Any Maximum Parallelism value that you set at the mapping level. Default is Auto.

• The Execution Instances value on the transformation. Default is Auto.

If you override the Maximum Parallelism value at the mapping level, the Data Integration Service
attempts to use the lowest value across the properties to determine the number of threads.

If you use the default Maximum Parallelism value at the mapping level, the Data Integration Service
ignores the Execution Instances value.

Consider the following rules and guidelines when you set the number of execution instances:

• Multiple users might run concurrent mappings on a Data Integration Service. To calculate the correct
number of threads, divide the number of central processing units that the Data Integration Service
can access by the number of concurrent mappings.

• When you use the default Execution Instances value and the default Maximum Parallelism values, the
transformation operations are not partitionable.

Filter Exact Match

Determines whether the transformation applies the comparison algorithm in a match strategy to pairs of
identical records in the input data.

When the transformation finds a pair of identical records, the algorithm does not need to analyze the
levels of similarity between the records. The transformation can pass the records directly to the output
stage without additional analysis. To configure the transformation to pass the identical records directly
to the output stage, select Filter Exact Match. When the input data contains many identical rows, the
comparison algorithm performs fewer calculations, and the mapping runs faster.

Select the option when the input data contains many identical rows. Do not select the option if the input
data does not contain many identical rows, as the transformation might run more slowly.

478 Chapter 30: Match Transformations in Identity Analysis

Note: The transformation output contains the same record data when you select or clear the option. The
transformation might assign different link scores and driver scores to the output records when you
select and clear the option.

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Persistent Index Case Study
You are a data steward at a retail bank that has multiple branches. You manage a master set of the customer
account records from all of the branches. You use a set of index database tables to verify that the customer
account database does not contain redundant or duplicate records.

To create and manage the index data store, you perform the following operations:

• You create the data store.

• You update the data store with the most recent data from the bank branches.

You might add account data to the data store, or you might update the current data in the data store.

• You remove obsolete records from the data store.

You understand that each operation might create duplicate records in the data store. You decide to develop a
policy to analyze the branch data before you add the data to the master data store data. You use identity
match analysis to analyze the branch data and to verify that the data does not create duplicate identities in
the data store. You configure the persistent index options on the Match transformation to analyze the branch
data and the data store.

Develop a Policy for Persistent Index Data Management

As a data steward, you define a business rule that states that the customer account data store cannot
contain duplicate identities. You design an identity match mapping to analyze the branch data in a staging
database before you add the data to the data store.

The operations to add the branch data to the data store can create duplicate identities in the following cases:

• The branch data contains duplicate identities.

• The branch data contains an identity that the index also contains.

• The branch data contains a newer version of an identity in the data store, and the newer version matches
another identity in the index.

When you compare the staging database to the data store, select the persistent index options that reflect the
duplicate record status of the branch data. Before you update the data store, you might decide to compare
the branch data with the index data.

Note: You can enable and disable match analysis on some of the options. Enable match analysis to analyze
the mapping data or to compare the index data store to the mapping data. Disable match analysis when you
do not need to compare the data. You can also use the Match properties on the Match Output tab to include
or exclude data from match analysis.

Persistent Index Case Study 479

Compare a Mapping Data Source with the Index Data Store

To compare the mapping input data with the index data store and to make no change to the data store, select
the following option:

• Do not update the database

The mapping compares the input data to the index data store. The mapping does not add, remove, or update
any data in index data store.

You cannot disable identity match analysis when you select the option.

Because you do not update the index data, you cannot create duplicate rows in the store. Select the option
from the Match properties on the Match Output tab that meets the current needs of the data project. For
example, select the Full option. The Full option verifies that the mapping data does not contain duplicates
and verifies that the mapping data does not add duplicates to the data store.

Note: Use the option to compare the mapping data and the data store before you update the data store. If the
mapping output indicates that the mapping data does not add duplicates to the data store, run the mapping
again. Select the option to update the database when you run the mapping again.

Create the Data Store and Add Rows to the Data Store

To create a data store or to add rows from the mapping data to a data store, select the following option:

• Update the database with new IDs

The mapping adds a row to the data store if the row does not share a sequence identifier with a row in the
data store. The mapping does not overwrite any row in the index tables. When you specify empty database
tables, the mapping writes all of the mapping index data to the tables.

You can enable or disable identity match analysis when you select the option. The option enables match
analysis by default.

Because you do not update the index rows, select the Exclusive option or the Partial option from the Match
properties on the Match Output tab. Use the Exclusive option if you verified the uniqueness of the mapping
data rows in an earlier process.

Update the Rows in the Data Store

To update a current row in the data store with the mapping data, select the following option:

• Update the current IDs in the database

The mapping updates a current record in the data store if the record shares a sequence identifier with a
record in the mapping data. The mapping does not add any row to the index tables.

You can enable or disable identity match analysis when you select the option. The option disables match
analysis by default.

Because you do not add index rows to the index tables, select the Full option from the Match properties on
the Match Output tab.

Note: When you update the rows in the data store, you expect to find duplicates between the mapping source
data and the data store. Select the Full option to verify that the identity data that you add to the store does
not match the current data in the store.

Remove Rows from the Data Store

To remove rows from the data store, select the following option:

• Remove IDs from the database

The mapping deletes a row from the data store if the row shares a sequence identifier with a record in the
mapping data.

480 Chapter 30: Match Transformations in Identity Analysis

You can enable or disable identity match analysis when you select the option. The option disables match
analysis by default.

Note: When you remove data from a data store, you change the relationships between the rows in the store. If
the store contains duplicate identities, you might remove data for a driver record or a linked record in a
cluster. Or, you might remove data for the best match in a matched pair. When you run the mapping again,
the mapping might generate different clusters or duplicate pairs. If you remove rows from a data store that
does not contain duplicate records, you cannot change the duplicate status of the records. When you run the
mapping after you delete the rows, the mapping generates the same match scores for the identities that
remain in the data set.

Identity Match Analysis Example
You are a human resources officer at a software organization with development centers in different cities.
The organization stores personnel records for staff members in a database at the head office. The
development centers hire staff at regular intervals, and the centers send you the personnel data for the staff
members that they hire.

You add the personnel records to a spreadsheet file, and you use the file data to update the employee
database. You are concerned that the current file might contain duplicate identities.

You design a mapping to perform identity analysis on the employee records. You configure a Match
transformation to search for duplicate identities in the spreadsheet file. You must also verify that the file data
does not duplicate any employee data in the master database. You configure the Match transformation to
compare the file data with the master data that you store for the organization employees.

Because the database is a master data set, you store the index data for the staff records in a persistent data
store.

Create the Mapping
Create a mapping that looks for duplicate identities. The mapping reads a data source, adds a sequence
identifier to the source records, performs identity analysis, and writes the results to a data target.

The following image shows the mapping in the Developer tool:

Identity Match Analysis Example 481

The mapping that you create contains the following objects:

Object Name Description

Read_PersistID_Data Data source.
Contains the employee names and details.

Expression Expression transformation.
Adds sequence identifier values to the source data.

Match Match transformation.
Analyzes the levels of duplication in the source data identities.

Write_tgt_PartialMatchNewandAssociate Data target.
Contains the results of the identity analysis.

Note: The mapping does not use a Key Generator transformation. In identity match analysis, the Key
Generator transformation is optional.

Input Data Sample
The staff file contains the name of the employee, the city in which the employee works, and the designated
role of the employee. You create a data source from the staff file in the Model repository. You add the data
source to the mapping.

The following data fragment shows a sample of the employee data in the staff file:

Name City Designation

Chaithra Bangalore SE

Ramanan Chennai SSE

Ramesh Chennai SSE

Ramesh Chennai Lead

Sunil Bangalore Principal

Venu Hyderabad Principal

Harish Bangalore SE

Sachin Bangalore SSE

Expression Transformation Configuration
When you configure the Expression transformation, connect all the data source ports that you want to include
in the mapping output. Connect the ports as pass-through ports. Create an expression to add a sequence
identification value to the ports.

The following expression creates the variable Init3 and adds the integer value 1267 to each sequence
identifier:

482 Chapter 30: Match Transformations in Identity Analysis

Init3+1267

The following table describes the ports on the Expression transformation that reads the employee data
source:

Name Port Type Port Group

SEQID bigint Output Only

Name string Passthrough

City string Passthrough

Designation string Passthrough

Init3 integer Variable

Match Transformation Configuration
Add a nonreusable Match transformation to the mapping to perform the identity analysis.

Perform the following tasks to configure the transformation:

1. Select the type of match analysis to perform.

2. Connect the input ports to the transformation.

3. Configure a strategy to compare the record data.

4. Select the type of match output data that the transformation creates.

5. Connect the output ports to a data target.

Select the Type of Match Operation
Use the options on the Match Type view to select the match operation.

The following image shows the Match Type view:

Identity Match Analysis Example 483

To compare the index data from the data source with the index data from the master data set, select Identity
Match with Persistent Record ID. Update the persistence method so that the match analysis does not add
data to the index tables. You can determine whether to update the index tables after you review the results of
the mapping.

Use the DB Connection option to identify the database that contains the index data. Use the Persistent Store
option to select the index tables.

Note: The Match transformation reads the identity population, key level, key type, and key field property
values from the metadata in the index database tables. The values match the corresponding properties on
the transformation that created the index data store.

Connect the Input Ports
Connect the input data ports to the transformation. Verify that the port names, port order, data types, and
precisions must match the port configurations of the transformation that created the data store.

The Match transformation uses preset input ports to determine the order in which it processes the records.
The transformation uses a sequence identifier to track the records from the input ports to the matched pairs
or clusters that it writes as output. The transformation uses a group key to sort the records that it processes.

Connect the preset ports to the following ports on the Expression transformation:

• SequenceID. Connect to the SEQID port from the Expression transformation.

• GroupKey. Connect to the City port from the from the Expression transformation.

Configure a Strategy for Identity Analysis
Use the options on the Strategies view to configure a strategy. The strategy determines the type of analysis
that the transformation performs on the record data.

Select the Person_Name algorithm for the record data. Select the Name input port for analysis. Because the
transformation creates a copies of the port data, you select the Name_1 port and Name_2 port.

Related Topics:
• “Identity Match Algorithms” on page 473

Select the Match Output Type
Use the options on the Match Output view to define the output format for the results of the match analysis

The following image shows the Match Output view for single-source identity analysis:

484 Chapter 30: Match Transformations in Identity Analysis

You configure the transformation to organize the output records in clusters. Each cluster contains all the
records that match at least one other record, based on the match properties that you specify. The match
properties determine how the transformation compares the data source records to the index records.

The following table describes the match property options that you specify to analyze the staff record data:

Match
Property

Option Option Description

Match Partial The transformation compares the data source records with the index data store.
The transformation also compares the records within the data source with each
other.

Output New and
Associated
Rows

The transformation writes every cluster that contains at least one record from the
data source. The clusters can include records from the index data store.
Because a cluster can contain a single record, the output contains all records in
the data source.

Related Topics:
• “Match Property Configuration” on page 477

• “Output Property Configuration” on page 477

Connect the Output Ports
Connect the Match transformation output ports to the data target in the mapping. Select the ports that
contain the record data that you want to write to the data target.

The transformation includes a series of preset ports for clustered data. Select the preset ports that indicate
duplicate status of the records and identify the data source that stores each record.

The following ports contain data that you can use to find duplicate records and determine the source or the
records:

• The ClusterSize port indicates the number of records in a cluster. If a record belongs to a cluster with a
cluster size greater than 1, the transformation considers the record to be a duplicate of another record.

• The ClusterID port identifies the cluster that a record belongs to. Use the ClusterID data to find the
records that are duplicates of the current record.

• The PersistenceStatus port uses a code value to describe the relationship between the index data from
the mapping source and the index data in the data store.

• The PersistenceStatusDesc port returns a text description of the values on the PersistenceStatus port
code.

You can use other ports to review the relationships between the cluster records. The link port values and
driver port values indicate the extent of the similarity between the records in each cluster.

In the current example, you connect all the ports to the data target. To view the output data on the ports, run
the Data Viewer.

Related Topics:
• “Persistence Status Codes and Persistence Status Descriptions” on page 450

• “Status Code Values and Status Description Values” on page 450

Identity Match Analysis Example 485

Run the Data Viewer
Run the Data Viewer to review the results of the match analysis. By default, the Data Viewer shows all the
output ports on the Match transformation. When you run the mapping, you update the data target with the
data from the output ports.

The following image shows the output data in the Data Viewer:

The Data Viewer verifies that the file contains records that duplicate the data in the master data set.

Consider the following data values in the Data Viewer:

• Each record in the data set belongs to a cluster that contains two or more records. Therefore, each record
is a duplicate of at least one other record. The transformation assigns a cluster size of 1 to unique
records. The data source does not contain any record that the master data set does not contain.

• The PersistenceStatusDesc data identifies the origin of the record and indicates if the Match
transformation adds the record to the index tables. The column indicates that each input record exists in
the master data set. The transformation does not add data to the master data index.

486 Chapter 30: Match Transformations in Identity Analysis

Conclusion
The results of the match analysis indicate that the staff record file does not contain any record that the
master data set does not contain. The persistence status descriptions indicate that the mapping does not
update the index tables with any data from the data source. You discard the staff record file.

When you receive another update from the regional offices, you can create another file and compare it to the
master data set. You can reuse the mapping and the index tables. Because you store the index data for the
master data set in the database tables, you do not need to regenerate the index data.

Identity Match Analysis Example 487

C h a p t e r 3 1

Merge Transformation
This chapter includes the following topics:

• Merge Transformation Overview, 488

• Configuring a Merge Strategy, 488

• Merge Transformation Advanced Properties, 489

• Merge Transformation in a Non-native Environment, 489

Merge Transformation Overview
The Merge transformation is a passive transformation that reads the data values from multiple input
columns and creates a single output column.

Use the Merge transformation to create data in a preferred format. For example, you can combine
Customer_Firstname and Customer_Surname fields to create a field called Customer_FullName.

Within a Merge transformation, you can create multiple merge strategies. The Merge transformation provides
a wizard that you use to create strategies.

Configuring a Merge Strategy
To configure a merge strategy, edit the settings in the Strategies view of a Merge transformation.

1. Select the Strategies view.

2. Click New.

The New Strategy wizard opens.

3. Click the Inputs field to select input ports for the strategy.

4. To define the merge character to place between merged items, click Choose. If you do not select a
merge character, the Merge transformation uses a space character by default.

5. Optionally, select Include empty strings in merged output to include empty input strings in the output.

6. Click Finish.

488

Merge Transformation Advanced Properties
Configure properties that help determine how the Data Integration Service processes data for the Merge
transformation.

You can configure tracing levels for logs.

Configure the following property on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Merge Transformation in a Non-native Environment
The Merge transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Not supported.

Merge Transformation Advanced Properties 489

C h a p t e r 3 2

Normalizer Transformation
This chapter includes the following topics:

• Normalizer Transformation Overview, 490

• Multiple-Occurring Fields, 491

• Multiple-Occurring Records, 492

• Input Hierarchy Definition, 493

• Normalizer Transformation Output Groups and Ports, 501

• Key Generation for Output Groups, 505

• Normalizer Transformation Advanced Properties, 505

• Creating a Normalizer Transformation, 506

• Creating a Normalizer Transformation from an Upstream Source, 507

• Normalizer Mapping Example, 507

• Normalizer Transformation in a Non-native Environment, 511

Normalizer Transformation Overview
The Normalizer transformation is an active transformation that transforms one source row into multiple
target rows. When the Normalizer transformation receives a row that contains multiple-occurring data, it
returns a row for each instance of the multiple-occurring data.

The Normalizer transformation parses multiple-occurring data into separate output rows. For example, a
relational source row might contain four quarters of sales. The Normalizer transformation generates a
separate output row for each sales occurrence.

When you define the Normalizer transformation, you configure an input row hierarchy that describes the
source data structure. Optionally, you can define records in the transformation input hierarchy. A record is a
container for a group of fields. Define a record when a group of fields occurs multiple times in the source
data. The input hierarchy determines how you can configure the transformation output groups.

The Normalizer transformation transforms data from relational tables or from flat file sources.

490

Multiple-Occurring Fields
When a field repeats multiple-times in the source data, you can define the field as a multiple-occurring field in
the input row hierarchy. The Normalizer transformation can return a separate row for each occurrence of a
multiple-occurring field or group of fields in a source.

A source row might contain four quarters of sales by store:

Store Sales(1) Sales(2) Sales(3) Sales(4)
Store1 100 300 500 700
Store2 250 450 650 850

When you define the Normalizer input hierarchy, you can you combine the four Sales fields into one multiple-
occurring field. Define a field name such as Qtr_Sales and configure it to occur four times in the source.

When the output group contains the store data and the sales data, the Normalizer transformation returns a
row for each Store and Qtr_Sales combination. The output row contains an index that identifies which
instance of Qtr_Sales that is in the output row.

The transformation returns the following rows:

Store Qtr_Sales Qtr (GCID)
Store1 100 1
Store1 300 2
Store1 500 3
Store1 700 4
Store2 250 1
Store2 450 2
Store2 650 3
Store2 850 4

When an output group contains single-occurring columns and a multiple-occurring column, the Normalizer
returns duplicate data for the single-occurring columns in each output row. For example, Store1 and Store2
repeat for each instance of Qtr_Sales.

A source row might contain more than one level of multiple-occurring data. You can configure the Normalizer
transformation to return separate rows at each level based on how you define the input hierarchy.

Generated Column ID
The Normalizer transformation returns a generated column ID (GCID) output port for each instance of a
multiple-occurring field.

The generated column ID port is an index for the instance of the multiple-occurring data. For example, if a
field occurs four times in a source record, the Developer tool returns a value of 1, 2, 3, or 4 in the generated
column ID port based on which instance of the multiple-occurring data occurs in the row.

Multiple-Occurring Fields 491

Multiple-Occurring Records
You can define multiple-occurring records in the Normalizer transformation source data. Records are groups
of fields. Define records in the Normalizer transformation when you need to define groups of source fields
that are multiple-occurring.

Multiple-Occurring Records Example

The following Customer row contains customer information with home address information and business
address information:

 CustomerID
 FirstName
 LastName
 Home_Street
 Home_City
 Home_State
 Home_Country
 Business_Street
 Business_City
 Business_State
 Business_Country

When you configure the Normalizer transformation, you can define an input structure that contains the
customer fields and a multiple-occurring address record. The address record occurs twice. When you
configure the Normalizer transformation output groups, you can return the Address record to a different
target than the CustomerID, FirstName, and LastName fields.

The following example shows an input structure with a multiple-occurring address record:

CustomerID
FirstName
LastName
Address (occurs twice)
 Street
 City
 State
 Country

Subrecords are records within records. When you define records and subrecords, you define an input
hierarchy of fields in the source row. Each record is a node in a hierarchy that you can reference when you
define the transformation output.

For example, the source row might contain multiple phone numbers for each address type:

 CustomerID
 FirstName
 LastName
 Home_Street
 Home_City
 Home_State
 Home_Country
 Telephone_No
 Cell_Phone_No
 Alternate_Phone_No
 Business_Street
 Business_City
 Business_State
 Business_Country
 Business_Telephone_No
 Business_Cell_Phone_No
 Business-Alternate_Phone1

492 Chapter 32: Normalizer Transformation

You define an input hierarchy where Address is the parent of Phone. When you define the Normalizer
transformation output, you can return the addresses and the phone numbers to separate targets than the
customer information.

Define an input hierarchy similar to the following example:

CustomerID
FirstName
LastName
Address (occurs twice)
 Street
 City
 State
 Country
 Phone
 Telephone_No (occurs three times)

Input Hierarchy Definition
When you create a Normalizer transformation, you define an input hierarchy that describes records and fields
in the source. Define the input hierarchy on the Normalizer view of the transformation.

The Developer tool creates the transformation input ports based on the fields that you define in the input
hierarchy. Define the input group structure before you define the transformation output groups.

When you define an input hierarchy, you must define an input structure that corresponds to the structure of
the source data. The source data might contain more than one group of multiple-occurring fields. To define
the structure, you can configure a record that occurs at the same level as another record in the source. Or,
you can define records that occur within other records.

Input Hierarchy Example

The following source row contains customer fields and an address record that occurs twice:

CustomerID
 FirstName
 LastName
 Address
 Street
 City
 State
 Country
 Address1
 Street1
 City1
 State1
 Country1

When you define the input structure in the Normalizer view, you can add the CustomerID, FirstName, and
LastName as fields. Define an Address record and include the Street, City, State, and Country fields in the
address. Change the Address Occurs value to 2.

The following image shows the input hierarchy in the Normalizer view:

Input Hierarchy Definition 493

The Occurs column in the Normalizer view identifies the number of instances of a field or record in a source
row. Change the value in the Occurs column for multiple-occurring fields or records. In this example, the
customer fields occur one time, and the Address record occurs twice.

The Level column in the Normalizer view indicates where a field or record appears in the input hierarchy. The
customer fields are at level 1 in the hierarchy. The Address record is also level 1.

Normalizer Transformation Input Ports
The Developer tool creates the Normalizer transformation input ports when you define the input hierarchy in
the Normalizer view. When you change fields in the input hierarchy, the Developer tool changes the input
ports.

View the Normalizer transformation input ports in the Overview view. You can reorder the input ports in the
Overview view. To change the input ports, update the input hierarchy in the Normalizer view.

When you define a field as multiple-occurring in the input hierarchy, the Developer tool creates one input port
for each instance of the multiple-occurring field. When a record is multiple-occurring, the Developer tool
creates an input port for each instance of the fields in the record.

Input Ports Example

The following image shows the input ports that the Developer tool creates for the customer data and the
multiple-occurring address data:

494 Chapter 32: Normalizer Transformation

Merge Fields
You can merge fields of similar data into a single multiple-occurring field in the Normalizer view. You might
need to merge fields when you drag ports from another object to create a Normalizer transformation in a
mapping.

A source row might contain multiple fields that contain different types of salary data, such as Base_Salary,
Bonus_Pay, and Sales_Commissions. You can merge the fields to create one Salary field that occurs three
times.

The following image shows an employee row with three types of salary selected in the Normalizer view:

You can merge the three types of salary data into a Salary field that occurs three times.

The following image shows the Salary field:

Input Hierarchy Definition 495

Merging Fields
Merge fields of the same type into one multiple-occurring field on the Normalizer view.

1. Click the Normalizer view.

2. Select the fields that you want to merge.

3. Click the Merge button.

The Merge Fields dialog box appears.

4. Enter a name for the merge field, the type, the precision, the scale, and occurrence of the multiple-
occurring field.

5. Click OK.

Flatten Fields
You can flatten fields of a complex data type in mappings that run on the Spark engine. You flatten fields in
the Normalizer view to modify hierarchical data that passes through a complex port.

The output of the flatten action depends on the complex data type. When you flatten an array or struct data
type, the Normalizer transformation creates a row for each element in the complex data type. When you
flatten a map data type, the Normalizer transformation creates two columns for the map key and map value
elements.

The flatten action on a nested data type extracts elements at the first-level. To flatten a nested data type at
all levels, use the Flatten Complex Port hierarchical conversion wizard in the Developer tool. The Flatten All
option extracts elements at each level and returns relational data of primitive data type. For more information
about hierarchical conversion wizards, see the Informatica Big Data Management User Guide.

The flatten action changes the value of Occurs column in the Normalizer view to Auto and adds a flatten icon
next to the flattened field. The value Auto indicates that the transformation flattens all the elements of the
complex data type.

The following image shows a struct that is flattened to a string field with a flatten icon next to it and the
Occurs value as Auto:

496 Chapter 32: Normalizer Transformation

You cannot flatten a multi-occurring field. For example, you cannot flatten an array field with Occurs value as
2.

The following image shows a multi-occurring field of an array data type that you cannot flatten:

Flatten Array
The Normalizer transformation flattens a one-dimensional array to a primitive data type and an n-dimensional
array to an (n-1)-dimensional array. The number of rows that the transformation creates is the same as the
size of the array.

For example, if you flatten an array port with 10 string elements, the output returns 10 string ports. If you
flatten a 3-dimensional array, the output returns a 2-dimensional array.

A table contains a string port Name and an array port Phones. You want to flatten the array port. The table
contains the following values:

Name Phones

Adams [205-128-6478, 722-515-2889, 650-213-4020]

Jane [650-321-4506]

When you flatten the array port, the output is as follows:

Name Phones GCID_Phones

Adams 205-128-6478 1

Adams 722-515-2889 2

Adams 650-213-4020 3

Jane 650-321-4506 1

You can edit the Occurs value of a flattened field to extract a specific number of elements in the array. The
value must be a positive integer greater than 1. The value determines the number of elements to extract. For
example, you can change the value of Occurs to 2 to extract the first two elements of the array. The output is
as follows:

Name Phones GCID_Phones

Adams 205-128-6478 1

Adams 722-515-2889 2

Jane 650-321-4506 1

Input Hierarchy Definition 497

Flatten Struct
The transformation flattens a struct into a field of the data type of the elements in the struct. To flatten a
struct data type, all the struct elements must be of the same data type. The transformation creates a row for
each element in the struct data type.

For example, you want to flatten the following struct field:

customer_address{
 city : string
 state : string
 zip : string
 }

The table contains the following values:

Name customer_address

Clara {
 New York
 NY
 10032
}

When you flatten the struct port, the output is as follows:

Name customer_address GCID_customer_address

Clara New York 1

Clara NY 2

Clara 10032 3

When the struct elements are of different data types and at least the first two elements are of the same data
type, you can flatten the struct data for consecutive elements of the same data type. To extract consecutive
struct elements of the same data type, edit the Occurs value. The value must be a positive integer greater
than 1. For example, a struct emp_address contains the following elements:

emp_address{
 city : string
 state : string
 zip : int
 country : string
 }

You can define the value of Occurs to 2 to extract city and state struct elements. If you define the value as 3
or 4, the mapping validation fails.

Flatten Map
The transformation flattens a map into two fields for the key and value elements in the map. For a map field
that you flattened, you cannot change the value of Occurs from Auto to an integer value.

For example, you want to flatten the following map field emp_sal with a string key and an array of integer
values:

<emp_name -> [base_sal, bonus, commision]>

498 Chapter 32: Normalizer Transformation

The following image shows the map field that you want to flatten in the Normalizer view:

The table contains the following values:

emp_id emp_sal

12200 <Greg -> [4000, 1000, 500]>

12201 <Patricia -> [3800, 1500, 1000]>

When you flatten the map port, the output returns a string field for the map key and an array field for the map
value as follows:

emp_id emp_sal_Key emp_sal_Value GCID_emp_salary

12200 Greg [4000, 1000, 500] 1

12201 Patricia [3800, 1500, 1000] 1

The following image shows the map field that is flattened to a string key field and an array value field in the
Normalizer view:

The following image shows the Output group in the Ports view:

Input Hierarchy Definition 499

Flattening Fields
Flatten fields of a complex data type to modify hierarchical data or to convert to relational data.

1. Click the Normalizer view.

2. Select the field of a complex data type.

The following image shows a field of type array with string elements:

500 Chapter 32: Normalizer Transformation

3. Click the Flatten button.

The following image shows the Flatten button:

The flatten action replaces the field of a complex data type with a flattened field and changes the value
of Occurs to Auto. The data type of the flattened field depends on the complex data type that you flatten.
The following image shows the flattened field of type string:

The following image shows the flattened string output port and the GCID output port in the Ports view:

Normalizer Transformation Output Groups and Ports
Define output groups and ports in the Overview view of the Normalizer transformation. You can define the
output groups after you define the transformation input hierarchy.

The Developer tool generates at least one output group by default. The output group contains all the level 1
fields from the input ports and the first multiple-occurring field. When you define more than one multiple-
occurring field in the Normalizer view, the Developer tool creates an output group for each additional
multiple-occurring field.

Normalizer Transformation Output Groups and Ports 501

The following source row contains the customer data, the multiple-occurring sales field, and the multiple-
occurring phone field:

CustomerID
LastName
FirstName
Sales (occurs 4 times)
Phone (occurs 3 times)

The Developer tool creates two output groups from the input structure:

Output
CustomerID
LastName
FirstName
Sales
Output1
Phone
GCID_Phone

The Developer tool creates an Output1 group because the source data contains more than one multiple-
occurring field. The Developer tool does not create groups for fields that you define in records. When you
define records, you must define the output groups that contain the fields in the records.

The following source row contains customer fields and an address record that occurs twice:

CustomerID
 FirstName
 LastName
 Address
 Street
 City
 State
 Country
 Address1
 Street1
 City1
 State1
 Country1

The Developer tool creates an output group that contains the following fields.

CustomerID
FirstName
LastName

The Developer tool creates a default output group for the level 1 customer fields. The default output group
does not include the Address record. You must configure how to return the Address data in the output.

Create the output groups based on how you need to structure the output rows. When the source row contains
customer data and address data, you can create an output group for the customer fields. You can create
another output group for the address fields. Or, you can update the default output group and add the address
fields to it. The following examples show different output results based on the output group configuration.

Create an Output Group
Create an output group in the Overview view of the Normalizer transformation.

When you open the Overview view of the Normalizer transformation, the Developer tool shows the default
groups it creates from the input hierarchy.

When you create a new output group, a dialog box shows a list of the fields and records in the input
hierarchy. Select which fields or records to include in the group.

502 Chapter 32: Normalizer Transformation

Output Group Example

The following image shows the New Output Group dialog box:

When you select the Address record, the Developer tool creates a group of output ports that correspond to
the fields in the Address record. The Output1 group contains the Street, City, State, and Country ports. You
can change the ports in the output group.

The following image shows the Output group and the Output1 group in the Overview view:

You might configure the Normalizer transformation to return the rows from the Output group to a Customer
table.

The Customer table receives data similar to the following rows:

100, Robert, Bold
200, James, Cowan

You might return the rows from the Output1 group to an Address table. The Address table receives the Street,
City, State, Country, and GCID.

The Address table receives data similar to the following rows:

100 Summit Dr, Redwood City, CA, United States,1
41 Industrial Way, San Carlos, CA, United States,2
85 McNulty Way, Los Angeles, CA, United States,1
55 Factory Street, Los Vegas, NV, United States,2

Normalizer Transformation Output Groups and Ports 503

The GCID identifies which instance of the customer address is in the output row. In this example, the
Normalizer transformation returns two instances of the Address record. Each output row contains a GCID
value of 1 or 2.

Update an Output Group
You can update a Normalizer transformation output group. You can add or remove the fields in the group.

By default, the Developer tool creates level 1 output groups when you define an input hierarchy. The
Developer tool does not include records in the groups. You can update the default output groups and add
records to them.

To update an output group, highlight the group name and click New > Update Group. The Edit Output Group
dialog box shows the fields in the input hierarchy. Choose which fields to include in the group.

Update Output Group Example

In the previous example, the Developer tool created a default output group with the CustomerID, FirstName,
and LastName fields.

The following image shows the default output group:

You can update the default output group and add the Address record to it.

The following image shows the Edit Output Group dialog box:

In this example, the CustomerID, FirstName, and LastName are level 1 nodes. The Address record is also a
level 1 node. The Normalizer transformation can return Address in the same row as the customer data. Since
Address is multiple-occurring, the Developer tool adds the GCID_Address index to the output gorup.

The following image shows the ports in the Output group:

504 Chapter 32: Normalizer Transformation

When the customer fields and the multiple-occurring address fields are in the output group, the Normalizer
transformation returns the same customer fields for each instance of the address data.

The following example shows the rows that the Normalizer transformation generates from the output group:

100, Robert, Bold, 100 Summit Dr, Redwood City, CA, United States,1
100, Robert, Bold, 41 Industrial Way, San Carlos, CA, United States,2
200, James, Cowan, 85 McNulty Way, Los Angeles, CA, United States,1
200, James, Cowan, 55 Factory Street, Los Vegas, NV, United States,2

The GCID port contains the Address instance number. The GCID value is 1 or 2.

Key Generation for Output Groups
You can configure a Sequence Generator transformation to generate keys that link each output row that the
Normalizer transformation returns from the same source row.

You can add a Sequence Generator transformation before the Normalizer transformation in a mapping. The
Sequence Generator transformation adds a sequence number to each source row. When the Normalizer
transformation returns multiple output groups or rows from the same source row, each output row receives
the same sequence number. You can use the number as a key in a primary key-foreign key relationship
between target tables.

For example, the Normalizer transformation returns customer information in an output group and it returns
order information in another output group. You can use the sequence number to link the customer
information in a table to the order information in another table.

Normalizer Transformation Advanced Properties
Configure properties for the Normalizer transformation on the Advanced tab.

Configure the following properties on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Key Generation for Output Groups 505

Generate First Level Output Groups
The Developer tool generates the Normalizer transformation first-level output group by default. The
Developer tool generates additional output groups when you define more than one multiple-occurring field in
the Normalizer view.

The Developer tool creates an output group that contains all level 1 single-occurring fields and the first level
1 multiple-occurring field. The Developer tool creates an additional output group when the transformation
contains more than one multiple-occurring field.

The Developer tool does not create an output group for level 1 records. When you define a level 1 record, you
must configure where you to put them in the output.

To stop the Developer tool from creating output groups for multiple-occurring fields, disable the
Automatically Generate First-Level Output Groups advanced property.

Creating a Normalizer Transformation
You can create a reusable or non-reusable Normalizer transformation. Reusable transformations can exist in
multiple mappings. Non-reusable transformations exist within a single mapping.

1. To create a transformation, use one of the following methods:

Option Description

Reusable Select a project or folder in the Object Explorer view. Click File > New > Transformation. Select
the Normalizer transformation and click Next.

Non-
reusable

In a mapping or mapplet, drag a Normalizer transformation from the Transformation palette to
the editor. You can drag ports from source data objects or from transformations in the mapping
to define the transformation.

The New Normalizer Transformation wizard appears.

2. Enter a name for the transformation.

3. Click Next.

The Normalizer Definition page appears.

4. To add a record, click the New button and then select Record.

5. To add a field, click the New button and then select Field.

To add a field to a record, you must select the record before you add the field.

6. Optionally, double-click the value in the Occurs column to change the occurrence of a field or record.

7. Click Next.

The Normalizer Ports page appears.

8. To add an output group, click the New button and then select New Output Group.

9. To edit an output group, select the output group that you want to edit. Click the New button and then
select Edit Output Group.

10. Click Finish.

The transformation appears in the editor.

506 Chapter 32: Normalizer Transformation

Creating a Normalizer Transformation from an
Upstream Source

You can create an empty Normalizer transformation and drag the ports from a source data object or from a
transformation into the Normalizer transformation to create input and ports.

1. Create a mapping that includes the source or transformation to pass the source data to the Normalizer
transformation.

2. To create the Normalizer transformation, select the Normalizer transformation from the Transformation
palette and drag the transformation to the editor.

The Normalizer dialog box appears.

3. Click Finish to create an empty transformation.

4. Select ports from a source or transformation in the mapping and drag them to the Normalizer
transformation.

The input and output ports appear in the Normalizer transformation. The Developer tool creates one
input group and one output group.

5. Open the Normalizer view to update the default group and organize fields into records as required.

6. To merge multiple fields into a single multiple-occurring field, select the fields in the Normalizer view
and click the Merge option.

Choose a name for the multiple-occurring field.

Normalizer Mapping Example
A retail organization receives sales totals for the stores in the organization. The organization receives a row
of data that contains store information and four sales amounts. Each sales amount represents the total sales
for one quarter of the year.

The following example shows how to define a Normalizer transformation to return the sales data to a Store
target and a Sales target. The Store target receives one row for each store. The Sales target receives four
rows from each store. Each row contains one quarter of sales data.

A Sequence Generator transformation generates a unique ID for each store. The Normalizer transformation
returns the StoreID with each output row.

Create a mapping with a Read transformation, a Sequence Generator transformation, the Normalizer
transformation, and two Write transformations.

Normalizer Example Mapping
Create a mapping that contains the Normalizer transformation to normalize multiple-occurring quarterly
sales data from a flat file source.

The Normalizer transformation generates a separate output row for each quarter of sales and writes the
normalized sales amounts to a the Sales target. The Normalizer transformation writes the Store information
to a Store target.

Creating a Normalizer Transformation from an Upstream Source 507

The following figure shows the Normalizer transformation mapping:

The mapping contains the following objects:

Read_STORE

A data source that contains multiple-occurring fields.

StoreID Sequence Generator transformation

A Sequence Generator transformation that generates a storeID key to link the Store table to the Sales
table.

Sales_Normalizer

A Normalizer transformation that normalizes the multiple-occurring sales data.

Write_Store

A target that receives the store information from the Normalizer transformation.

Write_Sales

A target that receives the sales numbers from the Normalizer transformation.

Normalizer Example Definition
The source is a flat file that contains store information and quarterly sales data. Define the structure of the
source data in the Normalizer view.

The STORE flat file contains the following source data:

StoreID Store_Name Store_City District Manager Quarter1 Quarter2 Quarter3 Quarter4
1 BigStore New York East Robert 100 300 500 700
2 SmallStore Phoenix West Radhika 250 450 650 850

Add the flat file to a mapping as a Read transformation, and then create an empty Normalizer transformation.
Drag the ports from the Read_STORE data object to the Normalizer transformation to create the Normalizer
definition.

The Normalizer view contains one instance of the Store_Name, Store_City, District, and Manager fields. The
Normalizer view contains four instances of a field called QUARTER. Merge the QUARTER fields to create one
SalesByQuarter field that occurs four times.

508 Chapter 32: Normalizer Transformation

The following figure shows the Normalizer definition with merged Quarter fields:

Normalizer Example Input and Output Groups
After you modify the input hierarchy, the Normalizer transformation has one input group and one default
output group. You need to reorganize the output ports into two groups. You need one group that contains the
Store information and one group that contains the Sales information.

The input group contains a port for each field in the source. The output group contains ports for the store
fields and port for the multiple-occurring SalesByQuarter field. The output group also contains a generated
column ID, GCID_SalesByQuarter, that corresponds to the multiple-occurring SalesByQuarter field.

To return the quarterly sales to a different target, create a new group in the Overview view. In the Output1
group, add the following fields:

StoreID
SalesByQuarter
GCID_SalesByQuarter

Update the default output group. Remove the following fields:

SalesByQuarter
GCID_SalesByQuarter

Normalizer Mapping Example 509

The following image shows the input group and output groups in the Overview view:

The StoreID is the generated key that links the Store information with the Sales information. Verify that both
output groups return the StoreID.

Normalizer Example Mapping Output
Add the Write transformation to the mapping and connect the Normalizer transformation output ports to the
data objects.

When you run the mapping, the Normalizer transformation writes the following rows to the Store target:

StoreID Store_Name Store_City District Manager
1 BigStore New York East Robert
2 SmallStore Phoenix West Radhika

The Normalizer transformation writes the following rows to the Sales target:

StoreID SalesByQuarter GCID_SalesByQuarter
1 100 1
1 300 2
1 500 3
1 700 4
2 250 1
2 450 2
2 650 3
2 850 4

510 Chapter 32: Normalizer Transformation

Normalizer Transformation in a Non-native
Environment

The Normalizer transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported without restrictions.

Normalizer Transformation in a Non-native Environment 511

C h a p t e r 3 3

Parser Transformation
This chapter includes the following topics:

• Parser Transformation Overview, 512

• Parser Transformation Modes, 513

• When to Use a Parser Transformation, 513

• Reference Data Use in the Parser Transformation, 514

• Token Parsing Operations, 516

• Token Parsing Ports, 517

• Token Parsing Properties, 517

• Pattern-Based Parsing Mode, 520

• Configuring a Token Parsing Strategy, 521

• Configuring a Pattern Parsing Strategy, 521

• Parser Transformation Advanced Properties, 522

• Parser Transformation in a Non-native Environment, 522

Parser Transformation Overview
The Parser transformation is a passive transformation that parses input data values into new ports. The
transformation writes the values to new ports according to the types of information the values contain and
the position of the values in the input string.

You use a Parser transformation when you want to change the structure of a data set. The Parser
transformation can add columns to a data set and write data values to new columns. Use a Parser
transformation when a data column contains multiple values in a single column and you want to write the
data values to individual columns based on the type of information they contain.

The Parser transformation parses data values into the output ports that you define. If the transformation can
identify an input data value but a defined output port is not available, the transformation writes it to an
overflow port. If the transformation cannot identify an input data value, it writes it to an unparsed data port.

512

Parser Transformation Modes
When you create a Parser transformation, select either token parsing mode or pattern-based parsing mode.

You select one of the following modes:

• Token parsing mode. Use this mode to parse input values that match values in reference data objects
such as token sets, regular expressions, probabilistic models, and reference tables. You can use multiple
token parsing strategies in a transformation.

• Pattern-based parsing mode. Use this mode to parse input values that match values in pattern sets.

When to Use a Parser Transformation
Use the Parser transformation when the data fields in a column contain more than one type of information
and you want to move the field values to new columns. The Parser transformation lets you create new
column for each type of information in a data set.

The following examples describe some types of structural change you can perform with a Parser
transformation.

Create new columns for contact data

You can create a data structure that parses name data from a single column into multiple columns. For
example, you can create columns for salutations, first names, middle names, and surnames.

You configure the transformation with a probabilistic model that represents the structures of the person
names on the input port. You use a sample of the input port data to define the model.

You create a token parsing strategy that applies the probabilistic model to the input port and writes the
name values to new columns. The transformation writes the name values to the new columns based on
the position of each value in the input string and the type of name that the value represents.

Note: You can also use a pattern-based parsing strategy to parse contact data. When you configure a
pattern-based parsing strategy, you define the patterns that represents the structures of the names on
the input port.

Create address columns

You can create a data structure that parses a single column of address data into multiple columns that
describe a deliverable address.

Configure the transformation with reference tables that contain recognizable address elements, such as
ZIP Codes, state names, and city names. Create a token parsing strategy that writes each address
element to a new port.

You cannot use a reference table to parse street address data from an input string, because street name
and number data is too general to be captured in a reference table. However, you can use the Overflow
port to capture this data. When you have parsed all city, state, and ZIP data from an address, the
remaining data contains street information.

For example, use a token parsing strategy to split the following address into address elements:

123 MAIN ST NW STE 12 ANYTOWN NY 12345

Parser Transformation Modes 513

The parsing strategy can write the address elements to the following columns:

Column Name Data

Overflow 123 MAIN ST NW STE 12

City ANYTOWN

State NY

ZIP 12345

Create product data columns

You can create a data structure that parses a single column of product data into multiple columns that
describe the product inventory details.

Configure the transformation with token sets that contain inventory elements, such as dimension, color,
and weight. Create a token parsing strategy that writes each inventory element to a new port

For example, use a token parsing strategy to split the following paint description into separate inventory
elements:

500ML Red Matt Exterior
The parsing strategy can write the address elements to the following columns:

Column Name Data

Size 500ML

Color Red

Style Matt

Exterior Y

Reference Data Use in the Parser Transformation
Informatica Developer installs with multiple reference data objects that you can use with the Parser
transformation. You can also create reference data objects in the Developer tool.

When you add a reference data object to a Parser transformation, the transformation writes the strings that
match a value in the object to new columns that you specify.

514 Chapter 33: Parser Transformation

The following table describes the types of reference data you can use:

Reference Data
Type

Description

Pattern sets Identifies data values based on the relative position of each value in the string.

Probabilistic models Adds fuzzy match capabilities to token parsing operations. The transformation can use a
probabilistic model to infer the type of information in a string. To enable the fuzzy match
capabilities, you compile the probabilistic model in the Developer tool.

Reference tables Finds strings that match the entries in a database table.

Regular expressions Identifies strings that match conditions that you define. You can use a regular expression to
find a string within a larger string.

Token sets Identifies strings based on the types of information they contain.
Informatica installs with token sets different types of token definitions, such as word,
telephone number, post code, and product code definitions.

Pattern Sets
A pattern set contains expressions that identify data patterns in the output of a token labeling operation. You
can use pattern sets to analyze the Tokenized Data output port and write matching strings to one or more
output ports. Use pattern sets in Parser transformations that use pattern parsing mode.

For example, you can configure a Parser transformation to use pattern sets that identify names and initials.
This transformation uses the pattern sets to analyze the output of a Labler transformation in token labeling
mode. You can configure the Parser transformation to write names and initials in the output to separate
ports.

Probabilistic Models
A probabilistic model identifies tokens by the types of information they contain and by the positions that they
occupy an input string.

A probabilistic model contains reference data values and label values. The reference data values represent
the data on an input port that you connect to the transformation. The label values describe the types of
information that the reference data values contain. You assign a label to each reference data value in the
model.

To link the reference data values to the labels in a probabilistic model, you compile the model. The
compilation process generates a series of logical associations between the data values and the labels. When
you run a mapping that reads the model, the Data Integration Service applies the model logic to the
transformation input data. The Data Integration Service returns the label that most accurately describes the
input data values.

You create a probabilistic model in the Developer tool. The Model repository stores the probabilistic model
object. The Developer tool writes the data values, the labels, and the compilation data to a file in the
Informatica directory structure.

Note: If you add a probabilistic model to a token parsing operation and you then edit the label configuration in
the probabilistic model, you invalidate the operation. When you update the label configuration in a
probabilistic model, recreate any parsing operation that uses the model.

Reference Data Use in the Parser Transformation 515

Reference Tables
A reference table is a database table that contains at least two columns. One column contains the standard
or required version of a data value, and other columns contain alternative versions of the value. When you
add a reference table to a transformation, the transformation searches the input port data for values that
also appear in the table. You can create tables with any data that is useful to the data project you work on.

Regular Expressions
In the context of parsing operations, a regular expression is an expression that you can use to identify one or
more strings in input data. The Parser transformation writes identified strings to one or more output ports.
You can use regular expressions in Parser transformations that use token parsing mode.

Parser transformations use regular expressions to match patterns in input data and parse all matching
strings to one or more outputs. For example, you can use a regular expression to identify all email addresses
in input data and parse each email address component to a different output.

Token Sets
A token set contains expressions that identify specific tokens. You can use token sets in Parser
transformations that use token parsing mode.

Use token sets to identify specific tokens as part of parsing operations. For example, you can use a token set
to parse all email addresses that use that use an "AccountName@DomainName" format.

Token Parsing Operations
In token parsing mode, the Parser transformation parses strings that match data in token sets, regular
expressions, probabilistic models, or reference table entries.

To perform token parsing, add strategies on the Strategies view of the transformation. You can add one or
more operations to each strategy. The transformation provides a wizard that you use to create strategies.

You can add the following types of operations to a token parsing strategy:

Parse using Token Set

Use predefined or user-defined token sets to parse input data. Token set operations can use custom
regular expressions that write data to one or more outputs.

You can also use probabilistic models to identify and parse input data values.

Parse using Reference Table

Use reference tables to parse input data.

The transformation performs the operations in the order in which they appear in the strategy.

516 Chapter 33: Parser Transformation

Token Parsing Ports
Configure the token parsing ports with settings appropriate for your data.

A Parser transformation in token parsing mode has the following port types:

Input

Contains data that you pass to the Parser transformation. The transformation merges all input ports into
a combined data string using the Input Join Character specified on the Strategies tab. If you do not
specify an input join character, the transformation uses a space character by default.

Parsed Output Ports

User-defined output port(s) that contains successfully parsed strings. In cases where multiple parsing
strategies use the same output, the transformation merges the output into a combined data string using
the Output Join Character specified on the Strategies tab. If you do not specify an output join character,
the transformation uses a space character by default.

Overflow

Contains successfully parsed strings that do not fit into the number of outputs defined in the
transformation. For example, if the transformation only has two "WORD" outputs, the string "John James
Smith" results in an overflow output of "Smith." The Parser transformation creates an overflow port for
each strategy that you add.

When you select the Detailed Overflow option, the transformation creates an overflow port for each label
in the model.

Unparsed

Contains strings that the transformation cannot parse successfully. The Parser transformation creates
an unparsed port for each strategy that you add.

Output Ports in Probabilistic Matching

When you configure a parsing strategy to use probabilistic matching techniques, the Parser transformation
adds a port to store the match scores for each output port.

The following table describes the types of port:

Port Type Port Created in Probabilistic Matching

Parsed output port [label name] output
[label name] score output

Overflow data port [overflow data] output
[[overflow data] score output

Unparsed data port [unparsed data] output
[unparsed data] score output

Token Parsing Properties
Configure properties for token parsing operations on the Strategies view in the Parser transformation.

Token Parsing Ports 517

General Properties
General properties apply to all token parsing operations you define in the strategy. You use the general
properties to name the strategy, specify input and output ports, and specify whether the strategy enables
probabilistic matching techniques.

The following table describes the general properties.

Property Description

Name Provides a name for the strategy.

Inputs Identifies the input ports that the strategy operations can read.

Outputs Identifies the output ports that the strategy operations can write to.

Description Describes the strategy. The property is optional.

Use probabilistic
matching techniques

Specifies that the strategy can use a probabilistic model to identify tokens.

Input Join Character Specifies the character used to join input data ports. The transformation merges all input
ports into a combined data string and parses the complete string.

Output Join Character Specifies the character used to join output data values when multiple parsing operations
use the same output.

Reverse Enabled Configures the strategy to parse data from right to left. This property is disabled for
probabilistic matching.

Overflow Reverse
Enabled

Configures the strategy to parse the overflow data from right to left. This property is
disabled for probabilistic matching.

Detailed Overflow
Enabled

Creates a unique overflow field for each parsing operation.

Delimiters Specifies the delimiter that separates the input data into separate tokens. Default is space.

Probabilistic Model Properties
You can select a probabilistic model in place of a token set when you configure a token parsing strategy.
Select the Parse using Token Set operation and select the option to use probabilistic matching techniques.

The following table describes the probabilistic model properties:

Property Description

Name Provides a name for the operation.

Filter Text Uses characters or wildcards you enter to filter the list of token sets, probabilistic models, or
regular expressions.

Probabilistic Model Identifies the probabilistic model you select.

518 Chapter 33: Parser Transformation

Reference Table Properties
Reference table properties apply when you configure a labeling operation to use a reference table.

The following table describes the reference table properties:

Property Description

Name Provides a name for the operation.

Reference Table Specifies the reference table that the operation uses to parse input values.

Case Sensitive Determines whether input strings must match the case of reference table entries.

Replace Matches with Valid
Values

Replaces parsed data with the data from the Valid column in the reference table.

Outputs Specifies the output ports for the parsed data.

Token Set Properties
Token set properties apply when you configure a parsing operation to use token sets.

Select the Parse using Token Set operation to parse input with token sets. Clear the option to use
probabilistic matching techniques.

The following tables describe the token set properties:

Property Description

Name Provides a name for the operation.

Token Sets (Single Output
Only)

Specifies the token set that the operation uses to parse data. The operation writes the
data to a single port.

Regular Expression (Single
or Multiple Outputs)

Specifies the regular expression that the operation uses to parse data. The operation
writes the data to multiple ports if it finds multiple strings in the input field.

Outputs Identifies the output ports that the operations writes to.

You can add, edit, import, or remove a token set or a regular expression. You can also filter the list of the
token sets.

The following table describes the properties that you use to perform the tasks:

Property Description

Filter text Filters the list of token sets or regular expressions. Use text characters and wildcard characters as a
filter.

Add Use to define a custom token set or regular expression.

Edit Edits the contents of a custom token set.

Token Parsing Properties 519

Property Description

Import Imports a nonreusable copy of a token set or regular expression from a folder in the Model repository. If
you update the source object for the token set or regular expression, the Data Integration Service does not
update the nonreusable copy.

Remove Deletes a custom token set or regular expression.

Pattern-Based Parsing Mode
In pattern-based parsing mode, the Parser transformation parses patterns made of multiple strings.

You can use the following methods to define patterns in pattern-based parsing mode:

• Parse input data using patterns defined in reference tables. You can create a pattern reference table from
the profiled output of a Labeler transformation that uses the token labeling mode.

• Parse input data using patterns that you define.

• Parse input data using patterns that you import from a reusable pattern set in the Model repository.
Changes to the reusable pattern set do not update the data you add in the Parser transformation.

You can use the "+" and "*" wildcards to define a pattern. Use "*" characters to match any string, and "+"
characters to match one or more instances of the preceding string. For example, use "WORD+" to find
multiple consecutive instances of a word token, and use "WORD *" to find a word token followed by one or
more tokens of any type.

You can use multiple instances of these methods within the Parser transformation. The transformation uses
the instances in the order in which they are listed on the Configuration view.

Note: In pattern-based parsing mode, the Parser transformation requires the output of a Labeler
transformation that uses token labeling mode. Create and configure the Labeler transformation before
creating a Parser transformation that uses pattern-based parsing mode.

Pattern-Based Parsing Ports
Configure the pattern-based parsing ports with settings appropriate for your data.

A Parser transformation that uses the pattern-based parsing mode has the following port types:

Label_Data

Connect this port to the Labeled_Output port of a Labeler transformation that uses the token labeling
mode.

Tokenized_Data

Connect this port to the Tokenized_Data output port of a Labeler transformation that uses the token
labeling mode.

Parse_Status

If a match is found for the input pattern, this port outputs the value Matched. If no match is found, it
outputs Unmatched.

520 Chapter 33: Parser Transformation

Overflow

Successfully parsed strings that do not fit into the number of outputs defined in the transformation. For
example, if only two "WORD" outputs are defined, the string "John James Smith" results in an overflow
output of "Smith" by default.

Parsed

Successfully parsed strings in user-defined ports.

Configuring a Token Parsing Strategy
To configure a token parsing strategy, open a Parser transformation in token parsing mode and select the
Strategies view.

1. Select the Strategies view.

2. Click New.

The New Strategy wizard opens.

3. Click the Inputs field to select ports for the strategy.

4. Configure the strategy properties and click Next.

5. Choose an operation and click Next.

6. Configure the operation properties and select output ports for successfully parsed data.

7. Optionally, click Next to add more operations to the strategy.

8. After you add all operations to the strategy, click Finish.

9. Optionally, add more strategies to the transformation.

10. Optionally, change the order in which the transformation processes strategies and operations. Select a
strategy or operation and click Move Up or Move Down.

Configuring a Pattern Parsing Strategy
To configure a pattern parsing strategy, open a Parser transformation in pattern parsing mode and select the
Patterns view.

Before you configure the transformation to parse patterns, verify that the Patterns view shows the output
port names you expect. The Parser transformation parses tokens to output ports you select. Create
additional output ports if necessary.

1. Select the Patterns view.

2. Add one or more patterns to the strategy. You can add patterns in the following ways:

• Enter data values to create a pattern. Click New and select New Pattern.

If you select New Pattern, click Enter Patterns Here and enter one or more token types. The tokens
you enter must match the token structure of an input data field. Add patterns need to describe the
token structures on the input port.

• Import data values from a reference table. Click New and select New Reference Table.

Configuring a Token Parsing Strategy 521

If you select New Reference Table, browse the Model repository and select a reference table that
contains a list of token structures. The reference table must contain two columns. The second
column in the reference table must contain numeric values.

• Import data values from a pattern set. Click Import and select a reusable pattern set in the Model
repository.

If you select Import, browse the content sets in the Model repository and select a reusable pattern
set.

Note: You can use the Filter text field to filter the lists of reference tables and pattern sets.

You can mix pattern sets and reference tables in the Patterns column.

3. Assign each token in the Patterns column to an output port.

• To assign a token to an output port, double-click in the port column and select the token name from
the menu.

• To parse multiple tokens to a single output, double-click in the port column and select Custom.
Assign tokens to the port and select the delimiter to use.

Assign the tokens in each row of the pattern to one or more output ports.

4. Save the transformation.

Parser Transformation Advanced Properties
Configure properties that help determine how the Data Integration Service processes data for the Parser
transformation.

You can configure tracing levels for logs.

Configure the following property on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Parser Transformation in a Non-native Environment
The Parser transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch and streaming mappings.

• Databricks Spark engine. Not supported.

522 Chapter 33: Parser Transformation

C h a p t e r 3 4

Python Transformation
This chapter includes the following topics:

• Python Transformation Overview, 523

• Python Transformation Ports, 525

• Python Transformation Advanced Properties, 525

• Python Transformation Components, 525

• Rules and Guidelines, 527

• Creating a Python Transformation, 527

• Python Transformation Use Case, 528

• Python Transformation in a Non-native Environment, 529

Python Transformation Overview
Use the Python transformation to execute Python code in a mapping that runs on the Spark engine.

The Python transformation is a passive transformation that provides an interface to define transformation
functionality using Python code. You reference the Python code and the resource files that you use in the
Python code within the Python transformation.

You can use a Python transformation to implement a machine model on the data that you pass to the
transformation. For example, you can use the Python transformation to write Python code that loads a pre-
trained model. You can use the pre-trained model to classify input data or create predictions.

Before you can use the Python transformation, you must install Python on the Data Integration Service
machine and configure the corresponding Spark advanced properties in the Hadoop connection.

For more information about installing Python, see the Informatica Big Data Management Integration Guide.

Data Type Conversion
A Python transformation converts Developer tool data types to Python data types, based on the Python
transformation port type.

When a Python transformation reads input rows, it converts input port data types to Python data types. When
a Python transformation writes output rows, it converts Python data types to output port data types.

523

For example, the following processing occurs for an input port with the double data type in a Python
transformation:

• The Python transformation converts the double data type in the input port to the Python float data type.

• The transformation uses the value in the input port as the value for the Python float data type.

• To generate the output row, the Python transformation converts the Python float data type to the double
data type.

The following table shows how the Python transformation maps Developer tool data types to Python data
types:

Developer Tool Data Type Python Data Type

Integer Int

Decimal Float

Double Float

Binary* PyJArray

Timestamp Datetime

String Str

Deferment Notice: Support for binary ports in the Python transformation is deferred. Support will be reinstated in a
future release.
The Python transformation does not support data types that are not listed in this table.

When you write code in the Python transformation, the data types of the output ports in the Python
transformation must be compatible with the data types in the Python code. Thus, if you configure an output
port in the Python transformation to be a double data type, the corresponding variable in the Python code
must be a float.

Data Types in Input and Output Ports
The data types in corresponding input and output ports in the Python transformation must be the same. If the
data types are not the same, convert the data type in the Python code.

For example, you create an input port with the integer data type and an output port with the string data type.
You define the Python code to process the data in the input port and write the data to the output port. In the
Python code, you can use the Python function str() to convert the integer data type in the input port and
write the output as a string data type in the output port.

Note: When you pass a binary data type to the Python transformation, the Python transformation converts the
binary data type to a PyJArray. In the Python code, you can convert the PyJArray to a different Python data
type such as a byte, a bytearray, or a struct that you can use in the code. When you define the output variable,
you must convert the Python data type to a data type that is supported in the Python transformation.

Deferment Notice: Support for binary ports in the Python transformation is deferred. Support will be
reinstated in a future release.

524 Chapter 34: Python Transformation

Python Transformation Ports
A Python transformation can have input and output ports.

To create and edit ports for a non-reusable Python transformation, use the Ports tab in the editor. To create
and edit ports for a reusable Python transformation, use the Overview view in the editor. After you add ports
to the transformation, you can use the port names as variables in the Python code.

Use the following rules to create input and output ports:

• The port name can contain only ASCII characters.

• The port name cannot be a Python keyword. For example, do not use port names such as import, global
or class.

• The port name cannot be resourceJepFile.

You cannot configure user-defined default values in output ports in the Python transformation. Set user-
defined default values in the Python code.

For example, you can write output_port = 'value' to set the default value 'value' for the output port
output_port.

Python Transformation Advanced Properties
The Python transformation includes advanced properties for the transformation.

You can define the following advanced property for the Python transformation on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Python Transformation Components
The Python transformation includes the components that allow you to run a Python script on the data that
you pass to the transformation.

The Python transformation contains the following components:
Resource File

A file that contains the resources that you access in the Python code.

The file can be a pre-trained model that has been trained on a larger data set outside the Developer tool.
You can use the pre-trained model to classify data or make predictions based on the data that you pass
to the Python transformation. You can access the pre-trained model in the Python code.

Python Code

The Python script that the Python transformation uses to process data that you pass to the Python
transformation. When you write Python code, you might reconstruct input variables, load a pre-trained
model, and define output variables.

Python Transformation Ports 525

Resource File
A resource file is a file that contains the resources that you use in the Python code. If you use a pre-trained
model, you specify the pre-trained model as a resource file in the Python transformation.

In the Python transformation, list the resource file path on the Data Integration Service machine. Separate
multiple resource file paths using a comma.

When you access the resource file in the Python code, you reference the list resourceJepFile. To reference
the list, you must specify a resource file in the Python transformation. When you reference the list, you
specify an index to locate the resource file according to the order that the resource file appears in the Python
transformation.

For example, you specify several resource files in the Python transformation. To reference the first resource
file in the Python code, you can use the variable resourceJepFile[0].

The following image shows how you can specify a resource file in the Python transformation and access the
resource file in the Python code:

The resource files foxgloveDataMLmodel.pkl and irisDataMLmodel.pkl are listed using the resource file
paths on the Data Integration Service machine. The Python code accesses the resource files to reconstruct
the respective Python objects. To access the first resource file, the Python code references the resource file
using resourceJepFile[0]. To access the second resource file irisDataMLmodel.pkl, the Python code
references the resource file using resourceJepFile[1].

Python Code
The Python code is the Python script that you write in the Python transformation to define how the
transformation processes data. When you write Python code, you might reconstruct input variables, load a
pre-trained model, and define output variables.

Use the following rules to write Python code:

• To access input ports, call the input port name.

• To set output ports, set the output port to a value. You must set the output port to a value for each output
port that you define in the Python transformation.

526 Chapter 34: Python Transformation

• To define how the transformation writes data from the input ports to output ports, set the output port to
the value of the input port.

For example, write output_port = input_port to write the data from the input port input_port to the
output port output_port.

• To access the resource file path, use the variable resourceJepFile. Specify the resource file using an
index such as resourceJepFile[0].

When you run the Python transformation, the Data Integration Service does not validate the Python code.

Rules and Guidelines
Consider the following rules and guidelines when you use a Python transformation:

• The Python transformation is a passive transformation. The Spark engine processes the Python
transformation row by row.

• The Data Integration Service does not validate Python code in the Python transformation.

• You cannot pass complex ports to the Python transformation.

Creating a Python Transformation
In the Developer tool, you can create a reusable or non-reusable Python transformation.

Creating a Reusable Python Transformation
You can create a reusable Python transformation to use the transformation in multiple mappings. Create a
reusable Python transformation in the Developer tool.

1. In the Object Explorer view, select a project or a folder.

2. Click File > New > Transformation.

The New dialog box appears.

3. Select the Python transformation.

4. Click Next.

5. Enter a name for the transformation.

6. Click Finish.

The transformation appears in the editor.

7. In the Overview view, click the New button to add a port to the transformation.

8. Edit the port to set the name, data type, and precision.

Use port names as variables in the Python code.

9. In the Python view, specify the resource files and write the Python code for the transformation.

10. In the Advanced view, edit the advanced properties for the transformation.

Rules and Guidelines 527

Creating a Non-Reusable Python Transformation
You can create a non-reusable Python transformation to use the transformation in a single mapping. Create a
non-reusable Python transformation in the Developer tool.

1. In a mapping or a mapplet, drag a Python transformation from the mapping palette to the editor.

The transformation appears in the editor.

2. In the General tab, edit the transformation name and the description.

3. In the Ports tab, click the New button to add a port to the transformation.

4. Edit the port to set the name, data type, and precision.

Use port names as variables in the Python code.

5. In the Python tab, specify the resource files and compile the Python code for the transformation.

6. In the Run-time Linking tab, create run-time links between the Python transformation and an upstream or
downstream transformation in the mapping if the ports change at run time.

7. In the Advanced tab, edit the advanced properties for the transformation.

Python Transformation Use Case
You work for a pharmaceutical company and you are studying data on flower formation in foxglove in your
research to provide a better treatment for heart diseases. You want to find out whether the common foxglove
Digitalis purpurea or the woolly foxglove Digitalis lanata can provide a better prognosis for the development
of a disease.

To perform your research, you must classify data on the length and width of the flower sepals and petals by
flower species. To classify the data, you developed a pre-trained model outside of the Developer tool.

You operationalize the pre-trained model in the Developer tool. In the Developer tool, you create a mapping
that contains a Python transformation. In the Python transformation, you list the pre-trained model as a
resource file. You write a Python script that accesses the pre-trained model. You pass the data on flower
sepals and petals to the Python transformation to classify the data by foxglove species.

The following image shows the mapping that you might create:

528 Chapter 34: Python Transformation

The following image shows the Python code you might write to access the pre-trained model in the Python
transformation:

The Python transformation processes the data in the input ports according to the Python script and writes
the classed data to the output ports.

Python Transformation in a Non-native Environment
The Python transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Not supported.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Not supported.

Python Transformation on the Spark Engine
Mapping validation fails if a user-defined default value is assigned to an output port.

The mapping fails in the following situations:

• An output port is not assigned a value in the Python code.

• The data types in corresponding input and output ports are not the same, and the Python code does not
convert the data type in the input port to the data type in the output port.

• The Python transformation contains decimal ports and high precision is enabled in the mapping.

Note: The Data Integration Service does not validate Python code.

Python Transformation in a Non-native Environment 529

Python Transformation in a Streaming Mapping
Streaming mappings have additional processing rules that do not apply to batch mappings.

When you close a Jep instance, you might not be able to call CPython modules.

530 Chapter 34: Python Transformation

C h a p t e r 3 5

Rank Transformation
This chapter includes the following topics:

• Rank Transformation Overview, 531

• Rank Transformations in Dynamic Mappings, 532

• Rank Transformation Ports, 532

• Rank Port, 534

• Define Group By Ports, 534

• Rank Caches, 535

• Rank Transformation Advanced Properties, 536

• Rank Transformation in a Non-native Environment, 537

Rank Transformation Overview
The Rank transformation is an active transformation that limits records to a top or bottom range. Use a Rank
transformation to return the largest or smallest numeric value in a port or group. Or use a Rank
transformation to return the strings at the top or the bottom of a mapping sort order.

During a mapping run, the Data Integration Service caches input data until it can perform the rank
calculations.

The Rank transformation differs from the transformation functions MAX and MIN. The Rank transformation
returns a group of top or bottom values, not just one value. For example, use a Rank transformation to select
the top 10 salespersons in a given territory. Or, to generate a financial report, you might use a Rank
transformation to identify the three departments with the lowest expenses in salaries and overhead. While
the SQL language provides many functions designed to handle groups of data, identifying top or bottom
strata within a set of rows is not possible using standard SQL functions.

You connect all ports representing the same row set to the transformation. The rows that fall within that rank,
based on some measure you set when you configure the transformation, pass through the Rank
transformation.

As an active transformation, the Rank transformation might change the number of rows passed through it.
You might pass 100 rows to the Rank transformation, but select to rank only the top 10 rows. The top 10
rows pass from the Rank transformation to another transformation.

You can connect ports from one transformation to the Rank transformation. You can also create local
variables and write non-aggregate expressions.

531

Ranking String Values
You can configure the Rank transformation to return the top or bottom values of a string port. The Data
Integration Service sorts strings based on the sort order selected for the deployed mapping.

When you configure the application that contains the mapping, you select the sort order that the Data
Integration Service uses to run the mapping. You can select binary or a specific language such as French or
German. If you select binary, the Data Integration Service calculates the binary value of each string and sorts
the strings using the binary values. If you select a language, the Data Integration Service sorts the strings
alphabetically using the sort order for the language.

Rank Transformation Properties
When you create a Rank transformation, you can configure the following properties:

• Enter a cache directory.

• Select the top or bottom rank.

• Select the input/output port that contains values used to determine the rank. You can select only one port
to define a rank.

• Select the number of rows that you want to rank.

• Define groups for ranks, such as the 10 least expensive products for each manufacturer.

Rank Transformations in Dynamic Mappings
You can use a Rank transformation in a dynamic mapping. You can configure dynamic ports in the
transformation and reference the generated ports.

If you reference a generated port in the Rank transformation and the generated port does not exist at run
time, the mapping fails.

If you specify a dynamic port as a Rank port, the dynamic port can have no more than one generated port.

If you specify a dynamic port as the Group By port, the Data Integration service considers all the generated
ports as Group By ports. The mapping is not valid if you specify a generated port as a Group By port and you
specify the parent dynamic port as a Rank port or as a Group By port.

You can parameterize the Rank port and the Group By ports. Use a port type parameter for the Rank port. Use
a port list type parameter for the Group By ports.

Rank Transformation Ports
The Rank transformation includes input, input/output, or output ports that are connected to another
transformation in the mapping. The transformation also includes pass-through, and variable ports.

A Rank transformation has the following port types:
Input

Receives data from upstream transformations. You can designate input ports as input/output ports. The
transformation must have at least one input port.

532 Chapter 35: Rank Transformation

Dynamic Port

A port that can receive multiple columns to create a dynamic number of generated ports. A generated
port is a port within a dynamic port that represents a single column. You can create input, output, and
variable dynamic ports.

Output

Passes data to downstream transformations. You can designate output ports as input/output ports. The
transformation must have at least one output port.

Pass-Through

Passes data unchanged.

Variable

Used for local variables. You can use a variable port to store values or calculations to use in an
expression. Variable ports cannot be input or output ports. They pass data within the transformation.

Rank Index
The Developer tool creates a RANKINDEX port for each Rank transformation. The Data Integration Service
uses the Rank Index port to store the ranking position for each row in a group.

For example, you might create a Rank transformation to identify the 50 highest paid employees in the
company. You identify the SALARY column as the input/output port used to measure the ranks, and configure
the transformation to filter out all rows except the top 50.

After the Rank transformation identifies all rows that belong to a top or bottom rank, it then assigns rank
index values. In the case of the top 50 employees, measured by salary, the highest paid employee receives a
rank index of 1. The next highest-paid employee receives a rank index of 2, and so on. When measuring a
bottom rank, such as the 10 lowest priced products in the inventory, the Rank transformation assigns a rank
index from lowest to highest. Therefore, the least expensive item would receive a rank index of 1.

If two rank values match, they receive the same value in the rank index and the transformation skips the next
value. For example, if you want to see the top five retail stores in the country and two stores have the same
sales, the return data might look similar to the following:

RANKINDEX SALES STORE

1 10000 Orange

1 10000 Brea

3 90000 Los Angeles

4 80000 Ventura

The RANKINDEX is an output port only. You can pass the rank index to another transformation in the
mapping or directly to a target.

Rank Transformation Ports 533

Rank Port
The rank port determines the column to rank values by.

You must designate one input/output or output ports as the rank port. For example, you create a Rank
transformation to rank the top employees in each department based on salary. The Salary port contains the
salary for each employee. You designate the Salary input/output port as the Rank port.

Select the rank port on the Rank tab of the Properties view. You can use a parameter for the rank port. To use
a parameter, select Specify By Parameter. Browse for a port parameter, or create a port parameter. The
parameter default value is the name of a port or generated port.

You must link the rank port to another transformation.

The following image shows the Rank tab:

Define Group By Ports
You can configure the Rank transformation to create groups for ranked rows.

For example, if you want to select the 10 most expensive items by manufacturer, you would first define a
group for each manufacturer. In the Group By panel of the Rank tab, you can set one of the input, input/
output, or output ports as a group by port.

For each unique value in the group port, the transformation creates a group of rows falling within the rank
definition (top or bottom, and a particular number in each rank).

The Rank transformation changes the number of rows in two different ways. By filtering all but the rows
falling within a top or bottom rank, you reduce the number of rows that pass through the transformation. By
defining groups, you create one set of ranked rows for each group.

For example, if you create a Rank transformation that ranks the top five salespersons grouped by quarter, the
rank index numbers the salespeople from 1 to 5 for each quarter:

RANKINDEX SALES_PERSON SALES QUARTER

1 Sam 10,000 1

2 Mary 9,000 1

3 Alice 8,000 1

4 Ron 7,000 1

5 Alex 6,000 1

534 Chapter 35: Rank Transformation

Set the number of rows to include in a ranking on the Advanced tab of the Properties view.

Group By Parameters
You can configure a port list parameter that contains one or more ports to include in the group. Create a port
list parameter by selecting ports from a list of the ports in the transformation.

The following image shows the Group By tab when you use a parameter to identify the ports in the group:

You can browse for a port list parameter or click New to create a port list parameter. If you choose to create
a port list parameter, you can select the ports from a list of the ports in the transformation.

Rank Caches
When you run a mapping that uses a Rank transformation, the Data Integration Service creates an index
cache and data cache in memory to run the transformation. If the Data Integration Service requires more
space than available in the memory cache, it stores overflow data in cache files.

When you run a mapping that uses a Rank transformation, the Data Integration Service compares an input
row with rows in the data cache. If the input row out-ranks a cached row, the Data Integration Service
replaces the cached row with the input row. If you configure the Rank transformation to group rows, the Data
Integration Service ranks rows within each group.

The Data Integration Service creates the following caches for the Rank transformation:

• Index cache that stores group values as configured in the group by ports.

• Data cache that stores information based on the group by ports.

Rank Caches 535

Rank Transformation Advanced Properties
Configure properties that help determine how the Data Integration Service processes data for the Rank
transformation.

Configure the following properties on the Advanced tab:

Top/Bottom

Specifies whether you want the top or bottom ranking for a column.

Number of Ranks

Number of rows to include in the top or bottom ranking.

Case-Sensitive String Comparison

Specifies whether the Data Integration Service uses case-sensitive string comparisons when it ranks
strings. Clear this option to have the Data Integration Service ignore case for strings. By default, this
option is selected.

Cache Directory

Directory where the Data Integration Service creates the index cache files and data cache files. Verify
that the directory exists and contains enough disk space for the cache files.

Enter multiple directories separated by semicolons to increase performance during cache partitioning.
Cache partitioning creates a separate cache for each partition that processes the transformation.

Default is the CacheDir system parameter. You can configure another system parameter or user-defined
parameter for this property.

Rank Data Cache Size

Amount of memory that the Data Integration Service allocates to the data cache for the transformation
at the start of the mapping run. Select Auto to have the Data Integration Service automatically calculate
the memory requirements at run time. Enter a specific value in bytes when you tune the cache size.
Default is Auto.

Rank Index Cache Size

Amount of memory that the Data Integration Service allocates to the index cache for the transformation
at the start of the mapping run. Select Auto to have the Data Integration Service automatically calculate
the memory requirements at run time. Enter a specific value in bytes when you tune the cache size.
Default is Auto.

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

536 Chapter 35: Rank Transformation

Related Topics:
• “Cache Size” on page 71

Rank Transformation in a Non-native Environment
The Rank transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported with restrictions.

Rank Transformation on the Blaze Engine
Some processing rules for the Blaze engine differ from the processing rules for the Data Integration Service.

The data cache for the Rank transformation is optimized to use variable length to store binary and string data
types that pass through the Rank transformation. The optimization is enabled for record sizes up to 8 MB. If
the record size is greater than 8 MB, variable length optimization is disabled.

When variable length is used to store data that passes through the Rank transformation in the data cache, the
Rank transformation is optimized to use sorted input and a pass-through Sorter transformation is inserted
before the Rank transformation in the run-time mapping.

To view the Sorter transformation, view the optimized mapping or view the execution plan in the Blaze
validation environment.

During data cache optimization, the data cache and the index cache for the Rank transformation are set to
Auto. The sorter cache for the Sorter transformation is set to the same size as the data cache for the Rank
transformation. To configure the sorter cache, you must configure the size of the data cache for the Rank
transformation.

Rank Transformation on the Spark Engine
Some processing rules for the Spark engine differ from the processing rules for the Data Integration Service.

Mapping Validation

Mapping validation fails in the following situations:

• Case sensitivity is disabled.

• The rank port is of binary data type.

Data Cache Optimization

You cannot optimize the data cache for the transformation to store data using variable length.

Rank Transformation in a Non-native Environment 537

Rank Transformation in a Streaming Mapping
Streaming mappings have additional processing rules that do not apply to batch mappings.

Mapping Validation

Mapping validation fails in the following situations:

• A Rank transformation is in the same streaming pipeline as a passive Lookup transformation configured
with an inequality lookup condition.

• A Rank transformation is upstream from a Joiner transformation.

• A streaming pipeline contains more than one Rank transformation.

• A streaming pipeline contains an Aggregator transformation and a Rank transformation.

Rank Transformation on the Databricks Spark Engine
Some processing rules for the Databricks Spark engine differ from the processing rules for the Data
Integration Service.

Mapping Validation

Mapping validation fails in the following situations:

• Case sensitivity is disabled.

• The rank port is of binary data type.

Data Cache Optimization

You cannot optimize the data cache for the transformation to store data using variable length.

538 Chapter 35: Rank Transformation

C h a p t e r 3 6

Read Transformation
This chapter includes the following topics:

• Read Transformation Overview, 539

• Read Transformation Properties , 539

• Synchronize Relational Data Objects, 543

• Change the Source Data Object, 543

• Read Transformation Parameters, 545

• Constraints , 546

• Create a Read Transformation, 546

Read Transformation Overview
The Read transformation is a passive transformation that reads data from a source. The Read transformation
is nonreusable.

You can create a Read transformation from a physical data object or a logical data object. If you want to
create a Read transformation from a physical data object that you imported from a PowerExchange® adapter
source, the mapping editor might prompt you to specify a read operation before you can create a Read
transformation from the data object.

You can configure different properties for a Read transformation based on the type of data object that you
used to create the transformation. For example, if you create a Read transformation from a relational data
object, you can configure SQL overrides and define constraints. The properties that you can configure also
depend on whether you have configured parameters for the transformation.

Read transformations can contain dynamic sources. You can configure a Read transformation to dynamically
update its ports, metadata, and other properties. For information about configuring dynamic sources, read
the "Dynamic Mappings" chapter in the Informatica Developer Mapping Guide.

Read Transformation Properties
After you create a Read transformation, you can configure properties for the transformation.

Configure Read transformation properties on property tabs. The tabs you can use depend on the type of
source that the Read transformation represents.

539

The following table describes each property tab and identifies the source type you use the tab for:

Property Tab Description Source Type

General Specify transformation properties and behavior.
For relational and customized data object sources, synchronize
transformation input ports with source.

All

Data Object Specify the transformation data source. - Relational
- Flat file
- Customized data object

Ports Set port definition by the associated data object. - Relational
- Customized data object
- Logical data object

Format Input settings for a flat file data source Flat file

Query Specify a query to the source. - Relational
- Customized data object
- Logical data object

Run-time Define run-time behavior. - Relational
- Flat file
- Customized data object

Sources Select source tables and configure source details. - Relational
- Customized data object

Data Object
Parameters

Set parameter properties. - Flat file
- Customized data object
- Logical data object

Run Time Linking Configure a group-to-group link between transformations that
uses a parameter, a link policy, or both to determine which ports
to link at run time.

All

Advanced Set tracing level and row order.
For a relational source, set option to create or replace the target
table at run time.

All

General Properties
You can configure the name and description of the Read transformation. You can also configure the
following properties:

When Column Metadata Changes

Available for relational sources. Select one of the following options:

• Synchronize output ports. The Developer tool updates Read transformation output ports with
metadata changes that the Model repository stores for the data object.

• Do not synchronize. The Read transformation does not show metadata changes in the data object.

Physical Data Object

Available for flat file and customized sources. The object used to create the transformation.

You can select the data object name and configure its properties.

540 Chapter 36: Read Transformation

Data Object Properties
On the Data Object tab, you can specify or change the Read transformation source, and make relational, flat
file, and customized data object sources dynamic.

You can configure the following properties:

Specify By

To specify source columns and metadata for the Read transformation, select one of the following
options:

• Value. The Read transformation uses the associated data object to specify source columns and
metadata.

• Parameter. The Read transformation uses a parameter to specify source columns and metadata.

Data Object

If you created the Read transformation from an existing data object, the field displays the name of the
object. Click Browse to change the data object to associate with the Read transformation.

At runtime, get data object columns from data source

When you enable this option, the Data Integration Service fetches metadata and data definition changes
from source tables to the Read transformation.

Query Properties
Configure an SQL query to a relational resource or customized data object.

When you configure properties on the Query tab, you choose to configure simple or advanced properties.

In the Simple properties view, you configure the default SQL statement as a Define Distinct statement, and to
edit the hints, join, filter and sort conditions for the statement.

In the Advanced properties view, you can define a custom SQL query. You can select from columns in the
associated data object, or from parameters, or create a new parameter to represent a data object.

Run-Time Properties
You can configure the following Read transformation properties on the Run-time tab:

Connection

Available for relational sources. Connection used by the transformation. Click in the right side of the field
to change the connection.

Read Transformation Properties 541

The following image shows the location of the dropdown button to click:

Sources Properties
Configure the details of sources for relational resources and customized data objects. You can change the
relational data object definition after you import it to the repository. You can add and remove ports, define
primary keys, and configure relationships between multiple relational data objects in the repository.

The Sources tab enables you to configure the following settings:

All sources

Use the Add and Remove buttons to add and remove additional sources for the transformation.

General tab

Change the name and description for the selected source. Click the source name to change other details.

Keys tab

Designate resource columns as keys.

Relationships tab

Add and remove relationships between multiple relational resources.

Advanced Properties
Configure advanced properties to determine how the Data Integration Service processes data for the Read
transformation.

Configure the following properties on the Advanced tab:

Tracing level

Control the amount of detail in the mapping log file.

PreSQL

SQL command the Data Integration Service runs against the source database before it reads the source.

The Developer tool does not validate the SQL.

PostSQL

SQL command that the Data Integration Service runs against the source database after it writes to the
target.

The Developer tool does not validate the SQL.

542 Chapter 36: Read Transformation

Constraints

SQL statements for table-level referential integrity constraints. Applies to relational sources only.

Synchronize Relational Data Objects
You can synchronize physical data objects when their sources change. When you synchronize a physical data
object, the Developer tool reimports the object metadata from the source you select.

You can synchronize all physical data objects. When you synchronize relational data objects or customized
data objects, you can retain or overwrite the key relationships you define in the Developer tool.

Choose from among several methods to synchronize mapping objects:

Synchronize a relational resource.

To synchronize any physical data object, right-click the object in the Object Explorer view, and select
Synchronize.

Synchronize transformation ports with the physical data object.

In the Data Object tab of a transformation, select the option At run time, get data object columns from
the data source.

At run time, the Data Integration Service fetches metadata and data definition changes from the data
source and refreshes the data object definition in the Model repository.

To preview how the Data Integration Service fetches metadata and data definition changes, view the
mapping with resolved parameters.

Synchronize ports when metadata changes

In the General tab of a transformation, select the option to synchronize ports. The exact label of this
option depends on the type of transformation you configure. For example, for a Read transformation, the
option is When metadata changes, synchronize output ports.

When the mapping runs, the Data Integration Service synchronizes column metadata in the
transformation with the metadata in the data source.

Change the Source Data Object
A Read transformation is based on a physical data object or a logical data object in the Model repository. You
can change the data object when you configure a Read transformation. You can parameterize the data object
to change the data object at run time. For example, you might test a mapping with a different source file than
the source file you use for a production mapping run.

When you create a transformation from a physical data object, information about the data object appears on
the Data Object tab of the transformation properties. You can click the data object name to view the physical
data object definition from the Model repository.

You can change the data object for the transformation by browsing for a different physical data object in the
Model repository. When you change the data object, the transformation uses the run time properties and the
advanced properties of the data object that you select.

Synchronize Relational Data Objects 543

You can update the structure of the data object at run time based on changes in the data source. The data
source is the physical file or the database table that the data object represents. When you enable the Data
Integration Service to get data columns from the data source, the Data Integration Service examines the
structure of the data source. The Data Integration Service updates the data object ports in the transformation
instance based on the data source. The Data Integration Service does not change the physical data object
definition in the Model repository.

The following image shows the Data Object tab:

The Data Object tab has the following fields:

Specify by

Choose Value to enter a specific data object name. Choose Parameter to parameterize the data object.

Data object

The name of the data object in the Model repository. You can click the Data Object link to open the data
object definition from the repository. You can also Browse for a different data object in the Model
repository.

Description

The description of the data object in the repository. Read-only.

Data object type

Describes the type of data object, such as a flat file data object, a relational table object, or a customized
data object.

At run time, get data object columns from the data source

The Data Integration Service fetches metadata and data definition changes from the data file or the table
that the data object refers to and updates the structure of the data object for the transformation
instance at run time.

To preview how the Data Integration Service fetches metadata and data definition changes at run time,
view the mapping with resolved parameters.

Parameterize the Read Transformation
You can parameterize the Read transformation and change the data object at run time.

To parameterize a data object, choose Specify by Parameter in the Data Object tab. The properties in the
Data Object tab change.

To parameterize the data object, create a resource type parameter or browse for a resource parameter that
you already created. The parameter default value is the name of physical data object in the Model repository.
When you create a default parameter value, you select a physical data object name from a list of data objects
in the repository.

544 Chapter 36: Read Transformation

The following image shows the Data Object tab when you specify the data object by a parameter:

The Data Object tab has the following options by parameter:

Parameter

The name of a resource parameter that you configured as the data object. Read-only.

Description

The description of the parameter. Read-only.

New

Create a resource parameter. Browse for and select a data object in the Model repository for the
parameter default value.

Browse

Browse for a resource parameter and select the parameter.

Default value

The default value of the resource parameter that you configured for the data object. The default value is
a physical data object name and the path to the object in the Model repository. Read-only.

Read Transformation Parameters
You can parameterize some of the properties of a Read transformation and some of the properties of the
reusable physical data object that you create the Read transformation from.

When you create a physical data object, you configure the read and write properties. The parameters that you
configure for read properties in a physical data object appear in the Read transformation Data Object
Parameters tab when you add the data object to a mapping.

You can configure parameters for the following Read properties in the physical data object:

• Control file directory

• Control file name

• Default scale

• Delimiter

• Flat file delimiter

• Merge file directory

• Source file name

• Source file directory

Read Transformation Parameters 545

After you add the physical data object to a mapping, you can view the parameters in the Data Object
Parameters tab of the Read transformation. You can expose these parameters as mapping parameters to
override the parameter values at run time.

Note: You cannot nest user-defined parameters within a parameterized source. If the source data object is
parameterized, you cannot expose a user-defined parameter as a mapping parameter to override the
parameter values at run time. The mapping uses the default value instead.

You can configure the following mapping parameters for the Read transformation:

• Connection (relational)

• Data object

• Link resolution order

• Resource name (relational)

• Table owner name (relational)

You can view these parameters in the mapping Data Object Parameters tab.

Constraints
A constraint is a conditional expression that the values on a data row must satisfy.

When you set a constraint, you enter an expression that evaluates to TRUE for each data row.

The Data Integration Service can read constraints from relational sources, logical data objects, physical data
objects, or virtual tables. To set a constraint on a reusable physical data object, create a customized data
object.

When the Data Integration Service reads constraints, it might drop the rows that do not evaluate to TRUE for
the data rows based on the optimization method applied.

Before you set a constraint, you must verify that the source data satisfies the condition set by the constraint.
For example, a source database has an AGE column that appears to have rows with AGE < 70. You can set a
constraint with AGE < 70 on the source database. The Data Integration reads records from the source
database with the constraint AGE < 70. If the Data Integration Service reads records with AGE >= 70, it might
drop the rows with AGE >= 70.

In the database, you can use SQL commands to set constraints on the database environment when you
connect to the database. The Data Integration Service runs the connection environment SQL each time it
connects to the database.

Create a Read Transformation
When you create a Read transformation, you choose one of the following methods based on the resource you
create the transformation from:

Create the transformation from a data object in the Model repository.

Perform the following steps to create a Read transformation from a data object in the Model repository:

1. Open the mapping in the editor.

546 Chapter 36: Read Transformation

2. Drag a data object from the Object Explorer to the editor view.

3. Select Read and click OK.
The Read transformation in the mapping contains the ports and properties of the data object.

Create the transformation using the mapping editor.

Use this method if you want to configure detailed Read transformation settings. You can also use this
method if you want to base a Read transformation on a parameter.

To create a Read transformation in the mapping editor, see “Creating a Read Transformation in the
Mapping Editor” on page 547.

Creating a Read Transformation in the Mapping Editor
You can create a Read transformation to represent the source of data and column metadata and properties in
a mapping.

Perform the following steps:

1. Choose one of the following methods to create a Read transformation:

• Right-click in the mapping editor and select Add Transformation.
The Add Transformation dialog box opens.

Select Read transformation and click Next.

• Scroll down in the mapping palette to locate and double-click the Read transformation icon.
The following image shows the Read transformation icon:

The New Read Transformation dialog box opens.

2. To use a flat file, a relational resource, or a customized data object as the source, perform the following
steps:

a. Select Physical Data Object as the data object type.

b. Click Browse to select a flat file, a relational resource, or a customized data object.

The Select Data Object window opens.

c. Select a data object and click OK.

d. Optionally, configure the transformation to fetch data object columns from the source at run time.
Select At run-time, get data object columns from data source.

The Data Integration Service refreshes column metadata for the Read transformation when the
mapping runs.

3. To use a parameter as the source, perform the following steps:

a. Select Create using a parameter.

b. Click New to create a new parameter, or click Browse to select an existing parameter.

Create a Read Transformation 547

c. Select a parameter and click OK.

d. Optionally, configure the transformation to fetch data object columns from the source at run time.
Select At run-time, get data object columns from data source.

The Data Integration Service refreshes column metadata for the Read transformation when the
mapping runs.

4. To use a logical data object as the source, perform the following steps:

a. Select Logical Data Object as the data object type.

b. Click Browse to select a data object, and then click OK.

5. Optionally, type a name for the Read transformation.

6. Click Finish.

548 Chapter 36: Read Transformation

C h a p t e r 3 7

Relational to Hierarchical
Transformation

This chapter includes the following topics:

• Relational to Hierarchical Transformation Overview, 549

• Example - Relational to Hierarchical Transformation, 550

• Input Relational Ports and the Overview View, 551

• Relational to Hierarchical Transformation Ports, 552

• Schema References, 552

• Relational to Hierarchical Transformation Development, 553

Relational to Hierarchical Transformation Overview
The Relational to Hierarchical transformation processes relational input and transforms it into hierarchical
output. A Relational to Hierarchical transformation reads relational input from input ports and transforms the
data to hierarchical output at the transformation output port. To transform relational input to hierarchical
output, use a schema object to define the hierarchical structure.

You can use the Relational to Hierarchical transformation wizard to create a hierarchical structure that reflect
the relational input ports. You can view the mapping for the hierarchical output ports in the transformation
Overview view.

After you create the transformation, you can pass the data from the hierarchical output port to another
transformation in a mapping.

In the relational model, each table schema identifies a column, called the primary key, to uniquely identify
each row. You identify the relationship between each row in the table and a row in another table with a
foreign key. The wizard generates keys when it creates the transformation. You can change an auto-
generated transformation, and add, edit, or delete ports.

You can link an input relational port to a node in the hierarchy. Link a primary key from the relevant element
or attribute in the hierarchy to a relational group in the input. The primary key identifies each row in the
relational tables.

Link a foreign key from the relevant element or attribute in the hierarchy to a relational group in the input. A
foreign key in the relational input is a column in one table that points to the primary key of another table.

The input relational port and the hierarchical node must have compatible data types.

549

Example - Relational to Hierarchical Transformation
The Finance department of the Electronics Superstore company must process paychecks for company
employees. They need to transform employee data stored in a relational database into a hierarchical format
that their payment system can process.

The mapping needs to use a Relational to Hierarchical transformation that inputs employee details such as
employee name, employee ID, employee address, and employee bank account data, and outputs the details in
a usable hierarchical format.

In the relational input, the Bank_ID element is a primary key in the Employee table, and a Foreign key in the
Bank table:

Employee_ID Last_Name First_Name Address Bank_ID Bank_Account
9173327437 Sandrine Jacques 74 Mobile Avenue 74845 8723487234
9174562342 Race Tom 266 Crouse St. 9234734 45324734
8484526471 Jones Charles 3815 LaValle Boulevard 389236 234638437
7023847265 Smith Delilah 193 Short Drive 74845 8723463432
9174596725 Frederick George 17 Serenity Road 9234734 6342636699

Bank_ID Bank_Name SWIFT_Code
74845 National Bank 9173327
9234734 International Bank 9174562
389236 Star National Bank 8484526

In the Payment output in hierarchical format, the elements are combined from the tables:

<banks>
 <bank name="National Bank" SWIFT="9173327">
 <account id="8723487234">
 <employee_id>9173327437</employee_id>
 <fname>Sandrine</fname>
 <lname>Jacques</lname>
 <address>74 Mobile Avenue</address>
 </account>
 <account id="8723463432">
 <employee_id>9082745558</employee_id>
 <fname>Delilah</fname>
 <lname>Smith</lname>
 <address>193 Short Drive</address>
 </account>
 </bank>
 <bank name="International Bank" SWIFT="9174562">
 <accounts>
 <account id="45324734">
 <employee_id>5534398889</employee_id>
 <fname>Race</fname>
 <lname>Tom</lname>
 <address>266 Crouse St.</address>
 </account>
 <account id="6342636699">
 <employee_id>9174596725</employee_id>
 <fname>Frederick</fname>
 <lname>George</lname>
 <address>17 Serenity Road</address>
 </account>
 </accounts>
 </bank>
 <bank name="Star National Bank" SWIFT="8484526">
 <accounts>
 <account id="234638437">
 <employee_id>8484526471</employee_id>
 <fname>Jones</fname>
 <lname>Charles</lname>
 <address>3815 LaValle Boulevard</address>
 </account>

550 Chapter 37: Relational to Hierarchical Transformation

 </accounts>
 </bank>
</banks>

The following image shows the mapping in this example:

The mapping contains the following objects:

Read_BankAccounts

The source that contains the bank data.

Read_Employees

The source that contains the employee data.

BankAccountsAndEmployees_To_PaymentsSystemXML

A Relational to Hierarchical transformation that transforms relational input that contains employee and
bank account information into an XML format that the payment system consumes.

Write_BanksXML

A target path to the file that stores the transformed data every time you run the mapping.

The mapping uses the Read_BankAccount and Read_Employees files to provide relational input. The mapping
processes and transforms the data with the BankAccountsAndEmployees_To_PaymentsSystemXML
transformation. Then the mapping stores the output in the target path listed in the Write_BanksXML flat file.

Input Relational Ports and the Overview View
To transform relational data to hierarchical data, the wizard creates a hierarchical structure that reflects the
relational input ports. You can use the Overview View to link relational ports to hierarchical ports.

To view the links between relational input to hierarchal output, use the Overview view. Select Input Mapping.
The Ports panel appears in the Overview view.

Input Relational Ports and the Overview View 551

The following image shows the Ports panel:

To the left of the Ports panel is the Transformation input area that contains the relational elements and
groups. To the right is the Transformation output area that contains the hierarchical schema nodes.

You can create ports in the Transformation input area, and link relational elements to the schema nodes. You
can also drag the pointer from a node in the schema to an empty field in the Transformation input area to
create a port. When you connect a relational port to a schema node, the Developer tool shows a link between
them.

Relational to Hierarchical Transformation Ports
The Relational to Hierarchical transformation ports are defined on the transformation Overview view.

A Relational to Hierarchical transformation can read relational data output from a buffer. The output ports
return hierarchical data to a buffer.

Schema References
A Relational to Hierarchical transformation requires a hierarchical schema to define the output hierarchy in
the transformation. To use the schema in the transformation, you define a schema reference.

You can define transformation schema references in the transformation References view.

552 Chapter 37: Relational to Hierarchical Transformation

The Relational to Hierarchical transformation references schema objects in the Model repository. The
schema objects can exist in the repository before you create the transformation.

A schema can reference additional schemas. The References view shows the namespace and prefix for each
schema that the Relational to Hierarchical transformation references.

Relational to Hierarchical Transformation
Development

Use the New Transformation wizard to auto-generate a Relational to Hierarchical transformation. Choose a
schema or hierarchical sample file to define the output hierarchy.

Creating the Relational to Hierarchical Transformation

1. In the Developer tool, click File > New > Transformation.

2. Select the Relational to Hierarchical transformation and click Next.

3. Enter a name for the transformation and browse for a Model repository location to put the
transformation and click Next.

4. To select a schema, select one of the following methods:

• To use a schema from the Model repository to define the output hierarchy, near the Schema Object
field, browse to select the schema file from the repository.

• To import a schema file, click Create a new schema object. In the New schema object window, you
can browse to and select a schema file, or you can select to create a schema from a sample
hierarchical file.

5. Choose the root for the output hierarchy. In the Hierarchy root dialog box, select the element in the
schema that is the root element for the output hierarchical file. To help select the root object, you can
add a sample hierarchical file. To add a sample file, near the Sample File field, browse for and select the
file from the file system.

6. Click Finish.

The wizard creates the transformation in the repository.

Creating the Ports
Configure the ports in the Overview view.

1. To view the mapping, in the Overview view Ports area, select Input Mapping.

2. Select the input port type, precision and scale.

3. Expand the trees in the Ports grid. To the left, the Transformation input panel shows the relational input,
and to the right, the Transformation output panel shows the expected hierarchical output.

4. To define a node as a root, click Choose Hierarchy.

The Developer tool displays only the nodes from the root level and below the root level in the
Transformation input area.

5. To view lines that connect the ports with the hierarchical nodes, click Show Lines. Select to view all the
connection lines or just the lines for selected ports.

Relational to Hierarchical Transformation Development 553

6. To add an input group or port to the Transformation input area, use one of the following methods:

• Drag a simple or complex element in the Transformation output area to an empty column in the
Transformation input area. If the node is a group node, the Developer tool adds a relational group
without ports.

• To add a relational group, select a row and right-click to select New > Group.

• To add a relational port, right-click to select New > Field.

7. To clear the hierarchical node settings for locations of ports, use one of the following methods:

• Select one or more nodes in the Transformation output area, right-click and select Clear.

• Select one or more lines that connect the relational input ports to the hierarchical nodes, right-click
and select Delete.

8. To display the output ports in a hierarchy, click Show As Hierarchy. Each child group appears underneath
the parent group.

554 Chapter 37: Relational to Hierarchical Transformation

C h a p t e r 3 8

REST Web Service Consumer
Transformation

This chapter includes the following topics:

• REST Web Service Consumer Transformation Overview, 555

• REST Web Service Consumer Transformation Configuration, 557

• HTTP Methods, 558

• REST Web Service Consumer Transformation Ports, 561

• REST Web Service Consumer Transformation Input Mapping, 564

• REST Web Service Consumer Transformation Output Mapping, 566

• REST Web Service Consumer Transformation Advanced Properties, 568

• REST Web Service Consumer Transformation Creation, 569

• Parsing a JSON Response Message that Contains Arrays, 570

REST Web Service Consumer Transformation
Overview

The REST Web Service Consumer Transformation is an active transformation that connects to a REST web
service as a web service client to access or transform data. Use a REST Web Service Consumer
transformation to connect to a REST web service. The REST Web Service Consumer transformation can send
a request to a REST web service and receive a response from a REST web service.

The REST Web Service Consumer transformation connects to a web service through a URL that you define in
the transformation or in an HTTP connection. You can also use an HTTPS connection. REST Web Service
Consumer transformations can use TLS 1.2, TLS 1.1, or TLS 1.0.

A REST web service contains an HTTP method for each action that the web service supports. When the Data
Integration Service connects to a REST web service, it can send a request to get, post, put, or delete data. The
request can act upon individual resources or collections of resources. After the Data Integration Service
sends a request message, it receives a response message from the web service.

The request and the response messages contain XML or JSON data with elements that can form a hierarchy.
When a request or a response message contains multiple-occurring elements, groups of elements form
levels in the XML or JSON hierarchy. Groups are related when one level is nested within another.

555

In the REST Web Service Consumer transformation, the method input and method output define the structure
of the request and the response messages. The method input and method output include mappings that
define how to map the message elements to the input and output ports.

The REST Web Service Consumer transformation supports proxy server. You can also connect to a Microsoft
SharePoint application with the REST Web Service Consumer transformation.

Example

An online store defines resources for a products database. The database identifies each product by part
number.

Web service clients access the product details through a REST web service. The web service uses the
following URL:

http://www.HypoStores.com/products/ProductDetails

You need to retrieve details about a specific product, such as the description and the unit price, and pass the
details to a transformation downstream in a mapping. Create a REST Web Service Consumer transformation
to retrieve details about a product and pass them to another transformation..

The following table shows the transformation details that you configure:

Transformation Detail Value

HTTP method Get

Base URL http://www.HypoStores.com/products/ProductDetails

Input argument port Part_No

Output ports Description, Unit_Price

Method output <The structure of the response message.>

The method output includes an output mapping that defines how the elements in the response message map
to the output ports.

When the Data Integration Service sends the request to the web service, it appends the value in the argument
port to the base URL. For example, to retrieve details about part 0716, the Data Integration Service uses the
following URL:

http://www.HypoStores.com/products/ProductDetails?Part_No=0716

When the Data Integration Service receives a response, it converts the product description and the unit price
in the response message to data for the output ports.

You can also pass Part_No as a parameter and substitute the value mid-stream when you run the mapping.

REST Web Service Consumer Transformation Process
The REST Web Service Consumer transformation creates a request message based on the data in the input
ports and the method input. It converts elements in the response message to data for the output ports based
on the method output.

The input ports of the REST Web Service Consumer transformation contain relational data from upstream
transformations in a mapping. The Data Integration Service uses the method input to convert data from the
input ports to elements in the request message.

556 Chapter 38: REST Web Service Consumer Transformation

To connect to the web service, the Data Integration Service reads the base URL that you configure in the
transformation properties or the HTTP connection. It identifies the resource that you want to get, post, put, or
delete by appending values from the URL ports or argument ports to the base URL.

When the Data Integration Service receives a response, it passes the data in the response message to the
output ports of the transformation. The Data Integration Service passes data based on how you configure the
method output. The output ports contain relational data. The Data Integration Service sends the data in the
output ports to downstream transformations in the mapping or to the target.

REST Web Service Consumer Transformation
Configuration

When you create a REST Web Service Consumer transformation, you select the HTTP method and define the
method input and output. If you select the Get method, you do not define method input.

The input elements in the HTTP request message map to input ports. The output elements in the HTTP
response message map to output ports. The Developer tool creates ports for the first level elements.

When you configure the transformation, you complete the following tasks:

1. Select the HTTP method.

2. Configure ports to represent elements in the header and body of the request and response messages.

3. Configure the input mapping.

4. Configure the output mapping.

5. Configure advanced properties such as the connection and the base URL for the web service.

If the REST web service requires authentication, create an HTTP connection object.

Message Configuration
The Data Integration Service generates request messages and interprets response messages based on the
method input and output and on the ports that you configure in the REST Web Service Consumer
transformation.

Input ports represent different parts of the request message. You can add input ports that identify the
resource that you want to retrieve or change. You can also add input ports that represent HTTP headers,
cookie information, and elements in the request message.

Output ports represent elements in the response message that you want to send to downstream
transformations or to the target in a mapping. You can add output ports that represent HTTP headers, cookie
information, the response code, and elements in the response message.

Resource Identification
To identify the resource in an HTTP request, the Data Integration Service appends values in specific input
ports to the base URL. You define the base URL in the HTTP connection or in the transformation properties.
Use URL or argument ports to identify a particular resource.

Use URL ports when the web service identifies a resource through a unique string of characters.

For example, the HypoStores REST web service identifies parts by the part number through the following URL:

http://www.HypoStores.com/products/ProductDetails/<Part_No>

REST Web Service Consumer Transformation Configuration 557

To identify a part, define the following transformation details:

1. Set the base URL to the following URL:

http://www.HypoStores.com/products/ProductDetails
2. Define a URL port, and pass the part number to the transformation through the URL port.

If the mapping passes part number 500 to the URL port, the Data Integration Service uses the following URL
in the request message:

http://www.HypoStores.com/products/ProductDetails/500

Use argument ports when the web service identifies the location of a resource through arguments.

For example, you want to pass a part number to the HypoStores REST web service through the "Part_No"
argument.

To identify a part, define the following transformation details:

1. Set the base URL to the following URL:

http://www.HypoStores.com/products/ProductDetails
2. Create an argument port with argument name "Part_No," and pass the part number to the transformation

through the argument port.

If the mapping passes part number 600 to the argument port, the Data Integration Service uses the following
URL in the request message:

http://www.HypoStores.com/products/ProductDetails?Part_No=600

Create multiple argument ports to define multiple arguments. The Data Integration Service separates each
argument with an ampersand character (&).

For example, you want to retrieve employee details from a REST web service and pass the employee first
name and last name through the "First_Name" and "Last_Name" arguments. Create argument ports with the
argument names "First_Name" and "Last_Name." If the mapping passes the name "John Smith" to the
transformation, the Data Integration Service uses a URL like the following in the request message:

http://www.HypoStores.com/employees/EmpDetails?First_Name=John&Last_Name=Smith

If you do not specify a URL or an argument port, the Data Integration Service uses the base URL from the
transformation properties or HTTP connection to identify the resource. The base URL in the HTTP connection
overrides the base URL in the transformation.

HTTP Methods
When you create a REST Web Service Consumer transformation, you select the HTTP method that the Data
Integration Service uses in the request message. You cannot change the HTTP method after you create the
transformation.

You configure the transformation to use one of the following HTTP methods:

Get

Retrieves a resource or a collection of resources from the web service. For example, you can retrieve a
table of products or retrieve information about one product.

Post

Sends data to a web service. Use the Post method to create a resource or collection of resources. For
example, you can add the details of a new store transaction.

558 Chapter 38: REST Web Service Consumer Transformation

Put

Replaces a resource or a collection of resources. If the data does not exist, the Put method posts the
data. For example, you can update a customer shipping address.

Delete

Deletes a resource or a collection of resources. For example, you can delete the record of an employee
that no longer works for an organization.

HTTP Get Method
The Data Integration Service uses the HTTP Get method to retrieve data from a REST web service. Use the
Get method to retrieve a resource or a collection of resources.

When you configure the REST Web Service Consumer transformation to use the Get method, you configure
the input ports, the method output, and the output ports. You do not configure method input.

Example

You want to retrieve the description and price for part number 500 in the HypoStores products database. The
web service uses the following URL to identify a part:

http://www.HypoStores.com/products/ProductDetails?Part_No=<Part_No>

Enter the following base URL:

http://www.HypoStores.com/products/ProductDetails

The following table shows the input port that you might define:

Port Type Argument Name Input Value

Argument Part_No 500

The following table shows the output ports that you might define:

Port Type Port Name Return Value

Output Part_Desc …<desc>ACME ball point pens, 12-pk, black, 0.7 mm</desc>…

Output Price_USD …<price>9.89</price>…

HTTP Post Method
The Data Integration Service uses the HTTP Post method to send data to a REST web service. The web
service determines the actual function that the Post method performs. You might use the Post method to
create a resource or a collection of resources.

When you configure the REST Web Service Consumer transformation to use the Post method, you configure
the input ports, the method input, the method output, and the output ports.

Example

You want to post new part 501 to the HypoStores products database. The web service uses the following URL
for part 501:

http://www.HypoStores.com/products/ProductDetails/501

HTTP Methods 559

Enter the following base URL:

http://www.HypoStores.com/products/ProductDetails

The following table shows the input ports that you might define:

Port Type Port Name Input Value

URL URL_Part_No 501

Input Part_Desc ACME ball point pens, 12-pk, black, 0.5 mm

Input Price_USD 9.89

The following table shows the output ports that you might define:

Port Type Port Name Return Value

Output Response <Response returned by the web service>

HTTP Put Method
The Data Integration Service uses the HTTP Put method to update data through a REST web service. Use the
Post method to update a resource or a collection of resources. If the data does not exist, the Data Integration
Service creates the resource or collection of resources.

When you configure the REST Web Service Consumer transformation to use the Put method, you configure
the input ports, the method input, the method output, and the output ports.

Example

You want to update the unit price for part 501 in the HypoStores products database. The web service uses
the following URL for part 501:

http://www.HypoStores.com/products/ProductDetails/501

Enter the following base URL:

http://www.HypoStores.com/products/ProductDetails

The following table shows the input ports that you might define:

Port Type Port Name Input Value

URL URL_Part_No 501

Input Price_USD 9.99

The following table shows the output ports that you might define:

Port Type Port Name Return Value

Output Response <Response returned by the web service>

560 Chapter 38: REST Web Service Consumer Transformation

HTTP Delete Method
The Data Integration Service uses the HTTP Delete method to remove data through a REST web service. Use
the Delete method to remove a resource or a collection of resources.

When you configure the REST Web Service Consumer transformation to use the Delete method, you configure
the input ports, the method input, the method output, and the output ports.

Example

You want to delete part number 502 from the HypoStores products database. The web service uses the
following URL to identify a part:

http://www.HypoStores.com/products/ProductDetails?Part_No=<Part_No>

Enter the following base URL:

http://www.HypoStores.com/products/ProductDetails

The following table shows the input port that you might define:

Port Type Argument Name Input Value

Argument Part_No 502

The following table shows output ports that you might define:

Port Type Port Name Return Value

Output Response <Response returned by the web service>

REST Web Service Consumer Transformation Ports
A REST Web Service Consumer transformation can have multiple input ports and multiple output ports. You
create ports in groups based on the structure of the XML or JSON hierarchy.

When you view the transformation ports, show the ports if you do not need to view the XML or JSON
hierarchy. When you show the ports, you can define groups, define ports, and map elements from the method
input and output to input and output ports.

A REST Web Service Consumer transformation can have multiple input groups and multiple output groups.
When you create ports, create groups and add the ports to the groups. Define the ports in a group hierarchy
based on the structure of the input or output hierarchy in the XML or JSON . Add a key to relate a child group
to a parent group.

All groups except the lowest group in the hierarchy must have primary keys. All groups in the hierarchy
except the root group must have foreign keys.

The transformation has a root input group named RequestInput. You must add a primary key to the root input
group. The key must be string, bigint, or integer. You can configure any port in the root input group as a pass-
through port.

To map an element to a port, click the field in the Location column and expand the hierarchy in the Select
Location dialog box. Then, choose an element from the hierarchy.

REST Web Service Consumer Transformation Ports 561

Input Ports
Input ports represent data from an upstream transformation or source that you want to pass to the web
service. You can configure multiple input ports. Each input port maps to an element in the request message.

To add an input port, select an input group, click the arrow next to the New button, and select Field.

Output Ports
Output ports represent elements in the response message that you want to pass to a downstream
transformation or to the target. You can configure multiple output ports. Each output port maps to an
element in the response message.

To add an output port, select an output group, click the arrow next to the New button, and select Field.

Pass-through Ports
Pass-through ports pass data through the transformation without changing the data. You can configure any
port in the root input group as a pass-through port.

To add a pass-through port, add a port to the root input group. Then right-click the port and select Map.

Argument Ports
Argument ports allow you to identify a resource when the URL for the resource takes an argument. Add
argument ports to the root input group.

An argument port has a port name and an argument name. If an argument name contains a character that is
not allowed in a port name, enter an argument name that differs from the port name. For example, you want
to pass the argument "Cust-ID" to the web service, but the Data Integration Service does not allow the dash
character (-) in port names. Enter "Cust-ID" as the argument name, but enter "CustID" as the port name.

The Data Integration Service appends the argument names and values for each argument port to the base
URL as name=value pairs. You can configure multiple argument ports. The Data Integration Service separates
multiple arguments in the request with an ampersand character (&).

For example:

http://www.HypoStores.com/customers/CustDetails?Last_Name=Jones&First_Name=Mary

If you define argument ports and URL ports in the transformation, the Data Integration Service appends the
URL port values to the base URL, followed by the argument names and values.

To add an argument port, right-click on the root input group and select New > Argument Ports. Enter the
argument name and the port name.

URL Ports
URL ports allow you to identify a resource through a static URL. To identify a resource, the Data Integration
Service appends the value of the URL port to the base URL.

For example:

http://www.HypoStores.com/products/ProductDetails/<URL_port_value>

Add URL ports to the root input group.

You can configure multiple URL ports. The Data Integration Service separates the values in each URL port
with a slash character (/). If you define URL ports and argument ports in the transformation, the Data

562 Chapter 38: REST Web Service Consumer Transformation

Integration Service appends the URL port values to the base URL, followed by the argument names and
values.

To add a URL port, right-click on the root input group and select New > URL Ports.

HTTP Header Ports
HTTP header ports represent HTTP headers in the request message. You can configure multiple HTTP
header ports.

To pass header information to the web service in the request, add the port to the root input group. You can
configure one HTTP header port for the root input group. If you add an HTTP header to the root input group,
you can configure it as a pass-through port.

An HTTP header port has a port name and an HTTP header name. If an HTTP header name contains a
character that is not allowed in a port name, enter an HTTP header name that differs from the port name. For
example, you want to pass the header name "Content-Type" to the web service, but the Data Integration
Service does not allow the dash character (-) in port names. Enter "Content-Type" as the HTTP header name,
but enter "ContentType" as the port name.

To add an HTTP header port, right-click on the root input group and select New > HTTP Header. Enter a
header name and port name.

Cookie Ports
You can configure the REST Web Service Consumer transformation to use cookie authentication. The remote
web server tracks the web service consumer users based on the cookies. You can increase performance
when a mapping calls a web service multiple times.

To pass cookie information to the web service in the request, add the port to the root input group. You can
configure one cookie port for the root input group. If you add a cookie port to the root input group, you can
configure it as a pass-through port.

To extract cookie information from the response, add a cookie port to an output group. You can configure
one cookie port for each output group.

When you project the cookie port to a web service request message, the web service provider returns a
cookie value in the response message. You can pass the cookie value to another transformation downstream
in the mapping, or you can save the cookie value in a file. When you save the cookie value in a file, you can
configure the cookie as input to the REST Web Service Consumer transformation.

To add a cookie port, right-click on the root input group and select New > Other Ports. Then, select Cookie,
and click OK.

Output XML Ports
Output XML ports represent responses from the web service. Output XML ports are string ports.

Add an output XML port to an output group. You can configure one output XML port for each output group.

right-click on the root input group and select New > Other Ports. Then, select Output XML, and click OK.

REST Web Service Consumer Transformation Ports 563

Response Code Ports
Response code ports represent the HTTP response codes from the web service. Response code ports are
integer ports.

Add a response code port to an output group. You can configure one response code port for each output
group.

To add a response code port, select an output group, right-click on the root input group and select New >
Other Ports. Then, select Response Code, and click OK. .

REST Web Service Consumer Transformation Input
Mapping

When you view the transformation ports, show the input mapping to view the method input hierarchy. When
you show the input mapping, you can define input groups, define input ports, and map input ports to method
input elements.

The input mapping includes the following areas:

Ports

Create the transformation input groups and input ports in the Ports area.

Method Input

The Method Input area shows the elements in the request message that the REST Web Service
Consumer transformation sends to the web service. If you use a schema object to create the
transformation, the schema object defines the method input hierarchy.

After you create input ports, map the input ports from the Ports area to the elements in the Method Input
area. When you map an input port to an element in the method input, the location of the port appears in the
Location column in the Method Input area.

The Developer tool maps elements in the first level of the method input to input ports when you choose to
map the first level of the input hierarchy. The Developer tool also creates the ports to perform the mapping. If
the first level of the hierarchy contains a multiple occurring parent element with one or more multiple
occurring child elements, the Developer tool does not map the first level of the hierarchy.

You can choose to view the lines that connect the input ports to the elements in the method input.

Rules and Guidelines to Map Input Ports to Elements
Review the following rules when you map input ports to elements in the method input hierarchy:

• You can map an input port to one element in the hierarchy. You can map the same port to any number of
keys in the hierarchy.

• The input port and the element must have compatible datatypes.

• You can map ports from one input group to multiple hierarchy levels in the method input.

• You must map input ports to the keys in the method input. Any port that you map to a key must be of
string, integer, or bigint datatype. Map data to the keys in all levels in the method input above the
hierarchy level that you are including in the request message. Include the foreign keys for all levels above
and including the level you are mapping.

564 Chapter 38: REST Web Service Consumer Transformation

Note: You do not have to map input ports to keys if you are mapping only the lowest level of the method
input hierarchy.

• You must map the RequestInput root element to the child element of Rest_Consumer_input group for
method input definition.

• You can map multiple string, bigint, or integer input ports to a key in the Method Input area to create a
composite key. When you click the Location field for a composite key, you can reorder the input ports or
remove one of the ports.

• If the web service produces a JSON document, ensure that xmlRoot is the first node in the response
hierarchy. If xmlRoot is not the first node for a web service with JSON response, null values may appear.

Mapping Input Ports to the Method Input
When you show the transformation input mapping, you can define input groups, define input ports, and map
input ports to method input elements.

1. Open a REST Web Service Consumer transformation.

2. In the Ports view, show the input mapping.

3. Define a primary key for the root input group.

4. To add an input group or port to the Ports area, use one of the following methods:

Method Description

Drag an element. Drag a group or a child element from the Method Input area to an empty column in
the Ports area. If you drag a group to the Ports area, the Developer tool adds a
group without ports.

Manually add a group or
port.

To add a group, click the arrow next to the New button, and then click Group. To add
a port, click the arrow next to the New button, and then click Field.

Drag a port from another
transformation.

In the editor, drag a port from another transformation to the REST Web Service
Consumer transformation.

Copy a port. Select ports from another transformation and copy them to the Ports area. To copy
ports, you can use keyboard shortcuts or you can use the Copy and Paste buttons in
the Developer tool.

Select Map first level of
hierarchy.

The Developer tool maps elements in the first level of the method input to input
ports and groups. The Developer tool also creates the input ports and groups to
perform the mapping.

5. If you manually create a port or you copy a port from another transformation, click the Location column
in the Method Input area and choose a port from the list.

6. To map input ports as a composite key, use one of the following methods:

Method Description

Drag input ports. Select two or more input ports, and drag them to a key in the method input
hierarchy.

Select input ports from the
Select Location dialog box.

Click the Location column of a key in the method input hierarchy and then
select the input ports.

REST Web Service Consumer Transformation Input Mapping 565

7. To clear the locations of elements, use one of the following methods:

Method Description

Click Clear. Select one or more elements in the Method Input area and click Clear.

Delete the lines that connect
ports to elements.

Select one or more lines that connect the input ports to the elements in the
method input, and press Delete.

REST Web Service Consumer Transformation Output
Mapping

When you view the transformation ports, show the output mapping to view the method output hierarchy.
When you show the output mapping, you can define output groups, define output ports, and map method
output elements to output ports.

The output mapping includes the following areas:

Method Output

The Method Output area shows the elements in the response message that the web service returns to
the REST Web Service Consumer transformation. If you use a schema object to create the
transformation, the schema object defines the method output hierarchy.

Ports

Create the transformation output groups and ports in the Ports area.

After you create output ports, map the elements from the Method Output area to the ports in the Ports area.
When you map an element from the method output to an output port, the location of the element appears in
the Location column in the Ports area.

The Developer tool maps elements in the first level of the method output to output ports when you choose to
map the first level of the output hierarchy. The Developer tool also creates the ports to perform the mapping.
If the first level of the hierarchy contains a multiple occurring parent element with one or more multiple
occurring child elements, the Developer tool does not map the first level of the hierarchy.

You can choose to display the output ports in a hierarchy. Each child group appears under the parent group.
You can also choose to view the lines that connect the elements in the method output to the output ports.

If the associated schema object is deleted from the repository, the Developer tool retains the location of the
method elements in the output mapping. When you show the output mapping, the Ports area still displays the
location of the method elements in the Location column for the output ports. If you associate another
schema with the transformation, the Developer tool checks whether each location is valid. The Developer tool
clears the location of method elements in the Ports area of the output mapping if the location is no longer
valid.

Rules and Guidelines to Map Elements to Output Ports
Review the following rules when you map elements in the method output hierarchy to output ports:

• The method output element and the output port must have compatible datatypes.

• You cannot map an element to more than one output port in a group.

566 Chapter 38: REST Web Service Consumer Transformation

• Each output port must have a valid location, unless the port is a pass-through port.

• If you drag a multiple-occurring child element to an empty output port, you must relate the group to other
output groups. When you select a group, the Developer tool creates keys to relate the groups.

• When you drag a multiple-occurring element into a group that contains the parent element, you can
configure the number of child element occurrences to include. Or, you can replace the parent group with
the multiple-occurring child group in the transformation output.

• If the web service produces a JSON document, ensure that xmlRoot is the first node in the response
hierarchy. If xmlRoot is not the first node for a web service with JSON response, null values may appear in
the output ports.

Customize View Options
You can change the method output hierarchy to show the cookie ports, pass-through ports, and keys in the
Method Output area. You can also show grouping constructs that define how to order elements.

Click Customize View in the Method Output area. Enable any of the following options:

Sequence, Choice, and All

Show a line that indicates whether an element definition is sequence, choice, or all.

Elements in a sequence group must be in the order specified in the hierarchy.

At least one element in a choice group must appear in the response message.

Elements in an all group must all be included in the response message.

Keys

View the keys in the Method Output area. The Method Output area includes keys for each group. You can
add a key to an output port in the Ports area.

Pass-through Ports

The Method Output area shows the pass-through ports. Pass-through ports are ports that pass data
through the transformation without changing the data. You can project pass-through ports from the
method output to any of the REST Web Service Consumer transformation output groups. A pass-through
port receives data one time, so the port is at the root level in the response messages.

Mapping the Method Output to Output Ports
When you show the transformation output mapping, you can define output groups, define output ports, and
map method output elements to output ports.

1. Open a REST Web Service Consumer transformation.

2. In the Ports view, show the output mapping.

3. To add an output group or port to the Ports area, use one of the following methods:

Method Description

Drag an element. Drag a group or a child element in the Method Output area to an empty column in the
Ports area. If you drag a group to the Ports area, the Developer tool adds a group
without ports.

REST Web Service Consumer Transformation Output Mapping 567

Method Description

Manually add a group or
port.

To add a group, click the arrow next to the New button and then click Group. To add
a port, click the arrow next to the New button, and then click Field.

Drag a port from another
transformation.

In the editor, drag a port from another transformation to the REST Web Service
Consumer transformation.

Copy a port. Select ports from another transformation and copy them to the Ports area. To copy
ports, you can use keyboard shortcuts or you can use the Copy and Paste buttons in
the Developer tool.

4. If you manually create a port or you copy a port from another transformation, click the Location column
in the Ports area, and choose an element from the list.

5. To clear the locations of ports, use one of the following methods:

Method Description

Click Clear. Select one or more ports in the Ports area, and click Clear.

Delete the lines that connect
elements to ports.

Select one or more lines that connect the elements in the method output to the
output ports, and press Delete.

REST Web Service Consumer Transformation
Advanced Properties

Configure properties that help determine how the Data Integration Service processes data for the REST Web
Service Consumer transformation.

Configure the following properties on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Connection

Identifies the HTTP connection object to connect to the web service. Create and edit the HTTP
connection in the Developer tool. When you configure an HTTP connection, configure the base URL, the
type of security that the web service requires, and a connection timeout period.

The REST Web Service Consumer transformation connects to a web service using a URL. You can define
the URL in the transformation properties or in the HTTP connection.

Configure an HTTP connection in the following circumstances:

• You do not use a URL input port.

• The web service requires HTTP authentication or SSL certificates.

• You want to change the default connection timeout period.

XML Schema Validation

Validates the response message at run time. Select Error on Invalid XML or No Validation.

568 Chapter 38: REST Web Service Consumer Transformation

Sorted Input

Enables the Data Integration Service to generate output without processing all of the input data. Enable
sorted input when the input data is sorted by the keys in the XML input hierarchy.

URL

The base URL for the REST web service. The base URL in the HTTP connection overrides this value.

Format

The format of the web service response. Select XML or JSON depending on the web service response..

REST Web Service Consumer Transformation
Creation

You can create a reusable or non-reusable REST Web Service Consumer transformation. Reusable
transformations can exist in multiple mappings. Non-reusable transformations exist within a single mapping.

When you create a REST Web Service Consumer transformation, you can define the elements and XML
hierarchy manually or you can import the elements and hierarchy from a schema object. The schema object
can be an XML file or a text file.

Creating a REST Web Service Consumer Transformation
When you create a REST Web Service Consumer transformation, you select a method and define the method
input and the method output based on the method that you choose.

1. To create a REST Web Service Consumer transformation, use one of the following methods:

Method Description

Reusable Select a project or folder in the Object Explorer view. Click File > New > Transformation. Select
the REST Web Service Consumer transformation and click Next.

Non-reusable In a mapping or mapplet, drag a REST Web Service Consumer transformation from the
transformation palette to the mapping or mapplet editor.

2. Enter the transformation name, and select the location and the HTTP method.

3. Click Next.

4. To define the method input, use one of the following methods:

Method Description

Create as empty Define the XML elements and hierarchy manually.

Create from an element in a Schema Object Import the XML elements and hierarchy from a schema object.

The Method input definition area shows the transformation input groups and input ports. The Input
mapping area shows the request message hierarchy.

5. Define the input groups and input ports, and map the input ports to input elements.

6. Click Next.

REST Web Service Consumer Transformation Creation 569

7. To define the method output, select Create as empty or Create from an element in a Schema Object.

The Method output definition area shows the transformation input groups and input ports. The Output
mapping area shows the request message hierarchy.

8. Define the output groups and output ports, and map the elements to output ports.

9. Click Finish.

Parsing a JSON Response Message that Contains
Arrays

When the element is a child element of complex type and the maximum occurrence of this element is
unbounded, the schema is not valid. The JSON parser restricts you from extracting multiple instances of an
element.

The maximum occurrence of child elements under complex type must be 0 or 1 with the order indicator as
choice for the complex type in a schema. When you change the maximum occurrence as 1 to validate the
schema, you can extract one instance of the element at a time.

You can use the maximum occurrence as unbounded in the choice order indicator of a complex type in the
schema.

Example JSON Response Message
You have the following schema where the complex type element xmlRoot has element name Likes whose
maximum occurrence is unbounded:

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="xmlRoot">
 <xs:complexType>
 <xs:all>
 <xs:element type="xs:byte" name="Age"/>
 <xs:element type="xs:string" name="FirstName"/>
 <xs:element type="xs:string" name="Likes" maxOccurs="unbounded" minOccurs="0"/>
 <xs:element type="xs:string" name="FamilyName"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:schema>

You can change the JSON response in the following format:

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="xmlRoot">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element type="xs:byte" name="Age"/>
 <xs:element type="xs:string" name="FirstName"/>
 <xs:element type="xs:string" name="Likes" />
 <xs:element type="xs:string" name="FamilyName"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:schema>

<xs:choice maxOccurs="unbounded"> allows the contents to be repeated one or more times, in any order.

570 Chapter 38: REST Web Service Consumer Transformation

Unnamed Arrays in a Response Message
A REST Web Service Consumer transformation supports unnamed arrays only in a response message but not
in a request message. To parse an unnamed array schema defined in the Method Output Definition, the
parent element of complexType or simple type array elements must be of name xmlRooot.

In a Rest Web Service Consumer transformation, you must define xmlRoot as the child element of the
xmlRoot element with maximum occurs set to unbounded and the elements in unnamed array as child
elements of the xmlRoot element.

The following image shows the defined method output for the unnamed array:

Parsing a JSON Response Message that Contains Arrays 571

C h a p t e r 3 9

Router Transformation
This chapter includes the following topics:

• Router Transformation Overview, 572

• Router Transformations in Dynamic Mappings, 573

• Working with Groups, 573

• Working with Ports, 577

• Connecting Router Transformations in a Mapping, 578

• Router Transformation Advanced Properties, 578

• Router Transformation in a Non-native Environment, 578

Router Transformation Overview
The Router transformation is an active transformation that routes data into multiple output groups based on
one or more conditions. Route the output groups to different transformations or to different targets in the
mapping.

A Router transformation is similar to a Filter transformation because both transformations use a condition to
test data. A Filter transformation tests data for one condition and drops the rows of data that do not meet the
condition. A Router transformation tests data for one or more conditions and can route rows of data that do
not meet any of the conditions to a default output group.

If you need to test the same input data based on multiple conditions, use a Router transformation in a
mapping instead of creating multiple Filter transformations to perform the same task. The Router
transformation is more efficient. For example, to test data based on three conditions, you can use one Router
transformation instead of three Filter transformations. When you use a Router transformation in a mapping,
the Data Integration Service processes the incoming data once. When you use multiple Filter transformations
in a mapping, the Data Integration Service processes the incoming data for each transformation.

A Router transformation consists of input and output groups, input and output ports, group filter conditions,
and advanced properties that you configure in the Developer tool.

572

The following figure shows a sample Router transformation and its components:

1. Input group

2. Input ports

3. Default output group

4. User-defined output groups

Router Transformations in Dynamic Mappings
You can use an Router transformation in a dynamic mapping. You can configure dynamic ports in the
transformation and reference the generated ports in the group filter condition.

When you use a dynamic port in the group filter condition, the dynamic port might contain more than one
generated port. The group filter condition expands to include each generated port. Each generated port must
be a valid type for the expression.

You can parameterize the group filter condition. Use an expression type parameter to specify the filter.

Working with Groups
A Router transformation has the following types of groups:

• Input

• Output

Router Transformations in Dynamic Mappings 573

Input Group
The Rank transformation includes a single input group. The input group includes all input ports that you add
to the transformation.

Output Groups
The Rank transformation includes the following types of output groups:

User-Defined Groups

You create a user-defined group to test a condition based on incoming data. A user-defined group
consists of output ports and a group filter condition. You can create and edit user-defined groups on the
Groups tab with the Developer tool. Create one user-defined group for each condition that you want to
specify.

The Data Integration Service uses the condition to evaluate each row of incoming data. It tests the
conditions of each user-defined group before processing the default group. The Data Integration Service
determines the order of evaluation for each condition based on the order of the connected output
groups. The Data Integration Service processes user-defined groups that are connected to a
transformation or a target in a mapping.

If a row meets more than one group filter condition, the Data Integration Service passes this row multiple
times.

The Default Group

The Developer tool creates the default group after you create one user-defined group. The Developer tool
does not allow you to edit or delete the default group. This group does not have a group filter condition
associated with it. If all of the group conditions evaluate to FALSE, the Data Integration Service passes
the row to the default group. If you want the Data Integration Service to drop all rows in the default
group, do not connect it to a transformation or a target in a mapping.

The Developer tool deletes the default group when you delete the last user-defined group from the list.

The Developer tool copies property information from the input ports of the input group to create a set of
output ports for each output group. You cannot change or delete output ports or their properties.

Using Group Filter Conditions
You can test data based on one or more group filter conditions. You create group filter conditions on the
Groups tab using the Expression Editor.

You can enter any expression that returns a single value. You can also specify a constant for the condition. A
group filter condition returns TRUE or FALSE for each row that passes through the transformation, based on
whether a row satisfies the specified condition. Zero (0) is the equivalent of FALSE. Any non-zero value is the
equivalent of TRUE. You can use a single numeric port as a filter condition. The Data Integration Service
passes the rows of data that evaluate to TRUE to each transformation or target that is associated with each
user-defined group.

Note: You cannot use a single dynamic port to return a boolean value.

For example, you have customers from nine countries, and you want to perform different calculations on the
data from three countries. You can use a Router transformation in a mapping to filter this data to three
different Expression transformations.

You can use parameters as elements in the group filter condition. You can use system parameters or user-
defined parameters. You can create parameters from the Expression Editor and add them to the expression.

574 Chapter 39: Router Transformation

The default group does not have a group filter condition. However, you can create an Expression
transformation to perform a calculation based on the data from the other six countries.

The following figure shows a mapping with a Router transformation that filters data based on multiple
conditions:

To perform multiple calculations based on the data from three different countries, create three user-defined
groups and specify three group filter conditions on the Groups tab.

The following figure shows group filter conditions that filter customer data:

The following table shows group filter conditions that filter customer data:

Group Name Group Filter Condition

France customer_name=‘France’=TRUE

Japan customer_name=‘Japan’=TRUE

USA customer_name=‘USA’=TRUE

Working with Groups 575

In the mapping, the Data Integration Service passes the rows of data that evaluate to TRUE to each
transformation or target associated with each user-defined group, such as Japan, France, and USA. The Data
Integration Service passes the row to the default group if all of the conditions evaluate to FALSE. The Data
Integration Service then passes the data of the other six countries to the transformation or target that is
associated with the default group. If you want the Data Integration Service to drop all rows in the default
group, do not connect it to a transformation or a target in a mapping.

The Router transformation passes data through each group that meets the condition. If data meets three
output group conditions, the Router transformation passes the data through three output groups.

For example, you configure the following group conditions in a Router transformation:

Group Name Group Filter Condition

Output Group 1 employee_salary > 1000

Output Group 2 employee_salary > 2000

When the Router transformation processes an input row data with employee_salary=3000, it routes the data
through output groups 1 and 2.

Dynamic Ports in Group Filter Conditions
You can use a dynamic port in a group filter condition. The Data Integration Service applies the filter
condition to each generated port in the dynamic port.

For example, a dynamic port, MyDynamicPort, contains three decimal ports:

Salary
Bonus
Stock

You might configure the following group filter condition:

MyDynamicPort > 100

The group filter condition expands to the following expression:

Salary > 100 AND Bonus > 100 AND Stock > 100

Each generated port must be a valid type for the expression.

Parameterize the Group Filter
You can use an expression parameter to define a group filter. An expression parameter is a parameter that
contains a complete expression.

For example, an expression parameter might contain the expression

Employee_Salary > 1000.

To parameterize the group filter, choose New Parameter in the Group Filter Condition field of the Groups tab.
Define the parameter and enter the expression on the Expression Editor. An expression parameter cannot
contain other parameters.

576 Chapter 39: Router Transformation

The following image shows the Groups tab in the transformation properties:

When you use an expression parameter, the Developer tool cannot validate the expression. If the expression
is not valid at run time, the mapping might fail.

Adding Groups
When you add a group, the Developer tool copies property information from the input ports to the output
ports.

1. Click the Groups tab.

2. Click the New button.

3. Enter a name for the group in the Group Name section.

4. Click the Group Filter Condition field to open the Expression Editor.

5. Enter the group filter condition.

6. Click Validate to check the syntax of the condition.

7. Click OK.

Working with Ports
A Router transformation has input ports and output ports. Input ports are in the input group, and output ports
are in the output groups.

You can create input ports by copying them from another transformation or by manually creating them on the
Ports tab.

The Developer tool creates output ports by copying the following properties from the input ports:

• Port name

• Datatype

• Precision

• Scale

• Default value

When you make changes to the input ports, the Developer tool updates the output ports to reflect these
changes. You cannot edit or delete output ports.

The Developer tool creates output port names based on the input port names. For each input port, the
Developer tool creates a corresponding output port in each output group.

Working with Ports 577

Connecting Router Transformations in a Mapping
When you connect transformations to a Router transformation in a mapping, consider the following rules:

• You can connect one group to one transformation or target.

• You can connect one output port in a group to multiple transformations or targets.

• You can connect multiple output ports in one group to multiple transformations or targets.

• You cannot connect more than one group to one target or a single input group transformation.

• You can connect more than one group to a multiple input group transformation, except for Joiner
transformations, when you connect each output group to a different input group.

Router Transformation Advanced Properties
Configure advanced properties to help determine how the Data Integration Service processes data for the
Router transformation.

You can configure tracing levels for logs.

Configure the following property on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Router Transformation in a Non-native Environment
The Router transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported without restrictions.

578 Chapter 39: Router Transformation

C h a p t e r 4 0

Sequence Generator
Transformation

This chapter includes the following topics:

• Sequence Generator Transformation Overview, 579

• Sequence Generator Ports, 579

• Sequence Generator Transformation Properties, 582

• Sequence Data Object, 584

• Creating a Sequence Generator Transformation, 587

• Frequently Asked Questions, 588

• Sequence Generator Transformation in a Non-native Environment, 589

Sequence Generator Transformation Overview
The Sequence Generator transformation is a passive transformation that generates numeric values. Use the
Sequence Generator transformation to create unique primary key values, replace missing primary keys, or
cycle through a sequential range of numbers.

The Sequence Generator contains pass-through ports and an output port. You connect the NEXTVAL port to
the input ports of other transformations. The Integration Service increments the sequence when the mapping
runs.

You can create a Sequence Generator transformation based on a new sequence or a sequence data object. A
sequence data object is an object that creates and maintains a sequence of values.

Sequence Generator Ports
The Sequence Generator transformation has pass-through ports and one output port, NEXTVAL. You cannot
edit or delete the output port.

579

Pass-Through Ports
You can add a port to the Sequence Generator transformation as a pass-through port. Pass-through ports are
input and output ports that receive input data and return the same data to a mapping without changing it.

You must add at least one input port to the transformation and connect it to an upstream source or
transformation before you link the NEXTVAL output port to targets. To add a pass-through port to the
transformation, drag a port from an upstream source or transformation in the mapping to the Sequence
Generator transformation.

NEXTVAL Port
You can connect NEXTVAL to a transformation to generate unique values for each row in the transformation.
Connect the NEXTVAL port to a downstream transformation or target to generate a sequence of numbers. If
you connect NEXTVAL to multiple transformations, the Integration Service generates the same sequence of
numbers for each transformation.

You connect the NEXTVAL port to generate the sequence based on the Start Value and Increment Value
properties. If the Sequence Generator is not configured to cycle through the sequence, the NEXTVAL port
generates sequence numbers up to the configured end value.

The following image shows a mapping with the Sequence Generator transformation NEXTVAL port
connected to a source and two targets to generate primary and foreign key values:

When you configure the Sequence Generator transformation with a Start Value = 1 and an
Increment Value = 1, the Integration Service generates the same primary key values for the
T_ORDERS_PRIMARY and T_ORDERS_FOREIGN target tables.

Create Keys
You can create primary or foreign key values with the Sequence Generator transformation by connecting the
NEXTVAL port to a target or downstream transformation. You can use a range of values from 1 to
9,223,372,036,854,775,807 with the smallest interval of 1. You can also create composite keys to identify
each row in the table.

To create a composite key, you can configure the Integration Service to cycle through a smaller set of values.
For example, if three stores generate order numbers, configure a Sequence Generator transformation to cycle
through values from 1 to 3, incrementing by 1. When you connect the ORDER_NO port to the Sequence
Generator transformation, the generated values create unique composite keys.

580 Chapter 40: Sequence Generator Transformation

The following example shows composite keys and order numbers:

COMPOSITE_KEY ORDER_NO

1 12345

2 12345

3 12345

1 12346

2 12346

3 12346

Replace Missing Values
When you use a Sequence Generator transformation to replace missing keys, you can also use a Router
transformation to filter null values from columns that have values assigned. You connect the Router
transformation to the Sequence Generator transformation, and use NEXTVAL to generate a sequence of
numeric values to populate the null values.

For example, to replace null values in a CUSTOMER_NO column, you create a mapping with a source that
contains customer data. You add a Router transformation to filter customers with customer numbers
assigned from those with null values. You add a Sequence Generator transformation to generate unique
CUSTOMER_NO values. You add customer targets to write the data to.

The following image shows a mapping that replaces null values in the CUSTOMER_NO column:

Sequence Generator Ports 581

Sequence Generator Transformation Properties
Configure transformation properties that the Integration Service uses to generate sequential values.

The following table lists the properties that you configure for a sequence data object and a new sequence:

Property Description

Start Value Start value of the generated sequence that you want the Integration Service to use if you use the
Cycle option. If you select Cycle, the Integration Service cycles back to this value when it reaches the
end value.
Default is 0.
Maximum value is 9,223,372,036,854,775,806.

End Value Maximum value that the Integration Service generates. If the Integration Service reaches this value
during the session and the sequence is not configured to cycle, the session fails.
Maximum value is 9,223,372,036,854,775,807.

Increment
Value

Difference between two consecutive values from the NEXTVAL port.
Default is 1.
Must be a positive integer.
Maximum value is 2,147,483,647.

Cycle If enabled, the Integration Service cycles through the sequence range and starts over with the start
value.
If disabled, the Integration Service stops the sequence at the configured end value. The Integration
Service fails the session with overflow errors if it reaches the end value and still has rows to process.

Reset If enabled, the Integration service resets the sequence data object to the start value when the
mapping run completes. If disabled, the Integration Service increments the current value after the
mapping run completes, and uses that value in the next mapping run.
This property is disabled for reusable Sequence Generator transformations and for non-reusable
Sequence Generator transformations that use a reusable sequence data object.

Tracing Level Level of detail about the transformation that the Integration Service writes into the mapping log. You
can choose terse, normal, verbose initialization, or verbose data. Default is normal.

Maintain Row
Order

Maintain the row order of the input data to the transformation. Select this option if the Integration
Service should not perform any optimization that can change the row order. Default is false.

Start Value
Use Cycle to generate a repeating sequence, such as numbers 1 through 12 to correspond to the months in a
year.

1. Enter the lowest value in the sequence that you want the Integration Service to use for the start value.

2. Enter the highest value to be used for End Value.

3. Select Cycle.

As it cycles, the Integration Service reaches the configured end value for the sequence, it wraps around and
starts the cycle again, beginning with the configured start value.

582 Chapter 40: Sequence Generator Transformation

End Value
The end value is the maximum value that you want the Integration Service to generate. If the Integration
Service reaches the end value and the sequence senerator is not configured to cycle through the sequence,
the mapping run fails with an overflow error.

Set the end value to any integer between 1 and 9,233,372,036,854,775,807. If you connect the NEXTVAL port
to a downstream integer port, set the end value to a value no larger than the integer maximum value. For
example, if you connect the NEXTVAL port to a Small Integer port, set the end value to a maximum of 32,767.
If the NEXTVAL exceeds the datatype maximum value for the downstream port, the mapping fails.

Increment Value
The Integration Service generates a sequence in the NEXTVAL port based on the Current Value and Increment
By properties in the Sequence Generator transformation.

The Current Value property is the value at which the Integration Service starts creating the sequence for each
session. Increment By is the integer the Integration Service adds to the existing value to create the new value
in the sequence. By default, the Current Value is set to 1, and Increment By is set to 1.

For example, you might create a Sequence Generator transformation with a current value of 1,000 and an
increment of 10. If you pass three rows through the mapping, the Integration Service generates the following
set of values:

1000
1010
1020

Cycle Through a Range of Values
You can establish a range of values for the Sequence Generator transformation. If you use the cycle option,
the Sequence Generator transformation repeats the range when it reaches the end value.

For example, if you set the sequence range to start at 10 and end at 50, and you set an increment value of 10,
the Sequence Generator transformation creates the values 10, 20, 30, 40, 50. The sequence starts over again
at 10.

Reset
If you configure a non-reusable Sequence Generator transformation to use the reset property, the Integration
Service uses the original start value for each mapping run. Otherwise, the Integration Service increments the
current value and uses that value in the next mapping run.

For example, you configure a Sequence Generator transformation to create values from 1 to 1,000 with an
increment of 1, a start value of 1, and choose reset. During the first mapping run, the Integration Service
generates numbers 1 through 234. In each subsequent mapping run, the Integration Service again generates
numbers beginning with the start value of 1.

If you do not reset, the Integration Service updates the current value to 235 at the end of the first run. The
next time it uses the Sequence Generator transformation, the first value generated is 235.

Note: Reset is disabled for reusable Sequence Generator transformations.

Maintain Row Order
Maintain the row order of the input data to the transformation. Select this option if the Integration Service
should not perform any optimization that can change the row order.

Sequence Generator Transformation Properties 583

When the Integration Service performs optimizations, it might lose an order established earlier in the
mapping. You can establish order in a mapping with a sorted flat file source, a sorted relational source, or a
Sorter transformation. When you configure a transformation to maintain row order, the Integration Service
considers this configuration when it performs optimizations for the mapping. The Integration Service
performs optimizations for the transformation if it can maintain the order. The Integration Service does not
perform optimizations for the transformation if the optimization would change the row order.

Sequence Data Object
A sequence data object creates and maintains a sequence of numeric values. The Sequence Generator
transformation uses the sequence data object to generate the values for the transformation.

You can use a reusable sequence data object in multiple Sequence Generator transformations. All Sequence
Generator transformations that use the same sequence data object use the same sequence of values if they
run on the same Integration Service. You can also use a reusable sequence data object in a non-reusable
Sequence Generator transformation. You can use a non-reusable sequence data object a non-reusable
Sequence Generator transformation.

For example, you create multiple mappings that write to the same primary key field in a relational table. Each
mapping uses the same reusable Sequence Generator transformation, which uses the same reusable
sequence data object and runs on the same Integration Service. Each mapping write unique values to the
primary key field.

Creating a Sequence Data Object
To use a Sequence data object to create a Sequence Generator transformation, create the Sequence data
object, configure the object properties, and select the object in the Sequence Generator transformation dialog
box.

1. In the mapping editor, scroll down in the mapping palette to locate the Sequence Generator
transformation and drag it to the mapping.

The New Transformations wizard opens.

2. Click New Sequence Data Object.

584 Chapter 40: Sequence Generator Transformation

The New Data Object wizard opens.

3. Enter a name for the Sequence data object.

The naming convention for Sequence data objects is SEQ_<data object name>.

4. Click Next to configure the Sequence data object properties.

Sequence Data Object 585

If you create a Sequence Generator transformation from the object, the transformation will use the
properties you enter for the data object. The following image shows the properties that you can
configure:

5. After you configure the data object properties, you can create a Sequence Generator transformation
using the Sequence data object. When you create the transformation, name the Sequence Generator
transformation, and select Choose an existing Sequence object. Navigate to the data object and click
OK.

The Sequence Generator transformation appears in the mapping editor with a NEXTVAL output-only port.
You can connect the NEXTVAL port to a downstream transformation or target to generate a sequence of
numbers.

586 Chapter 40: Sequence Generator Transformation

Creating a Sequence Generator Transformation
To use a Sequence Generator transformation in a mapping, add it to the mapping, configure the
transformation properties, and then connect NEXTVAL to one or more transformations.

1. In the mapping editor, scroll down in the mapping palette to locate the Sequence Generator
transformation and drag it to the mapping.

The New Transformations wizard opens.

2. Enter a name for the Sequence Generator transformation.

The naming convention for Sequence Generator transformations is SEQ_<transformation name>.

3. Choose to create a new sequence or to use an existing Sequence object.

Creating a Sequence Generator Transformation 587

• To create a new sequence, select Create a new sequence. Click Next to configure the sequence
properties. The following image shows the properties that you can configure:

• To use an existing Sequence object, select Choose an existing Sequence object. Navigate to the
Sequence object and click OK.

The Sequence Generator transformation appears in the mapping editor with a NEXTVAL output-only port.
You can connect the NEXTVAL port to a downstream transformation or target to generate a sequence of
numbers.

Frequently Asked Questions
Can I change a non-reusable Sequence Generator transformation to make it reusable?

You cannot make the transformation reusable, but you can change the transformation to use a sequence
data object. The sequence data object maintains the integrity of the sequence, regardless of the number
of transformations that use it.

Can I place a non-reusable Sequence Generator transformation in a mapplet?

No, you cannot. Mapplets are reusable objects, so all objects in the mapplet must also be reusable. Use
a reusable Sequence Generator transformation instead.

588 Chapter 40: Sequence Generator Transformation

Sequence Generator Transformation in a Non-native
Environment

The Sequence Generator transformation processing in a non-native environment depends on the engine that
runs the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Not supported.

Sequence Generator Transformation on the Blaze Engine
A mapping with a Sequence Generator transformation consumes significant resources when the following
conditions are true:

• You set the Maintain Row Order property on the transformation to true.

• The mapping runs in a single partition.

Sequence Generator Transformation on the Spark Engine
The Sequence Generator transformation does not maintain row order in output data. If you enable the
Maintain Row Order property on the transformation, the Data Integration Service ignores the property.

Sequence Generator Transformation in a Non-native Environment 589

C h a p t e r 4 1

Sorter Transformation
This chapter includes the following topics:

• Sorter Transformation Overview, 590

• Sorter Transformations in Dynamic Mappings, 591

• Developing a Sorter Transformation, 591

• Sorter Transformation Ports, 591

• Sort Tab, 592

• Configure Sort Keys, 592

• Sorter Transformation Advanced Properties, 594

• Sorter Cache, 595

• Creating a Sorter Transformation, 595

• Sorter Transformation Example, 596

• Sorter Transformation in a Non-native Environment, 598

Sorter Transformation Overview
Use a Sorter transformation to sort data in ascending or descending order according to a specified sort key.
You can configure the Sorter transformation for case-sensitive sorting and for distinct output. The Sorter
transformation is an active transformation.

When you create a Sorter transformation, you specify ports as sort keys and configure each sort key port to
sort in ascending or descending order. The Data Integration Service sorts each port sequentially when you
specify multiple ports for sort key.

For example, you need to create an invoice for the overall customer sales from a customer database. Use a
Sorter transformation on the customer sales table to sort the data in descending order according to the
customer number. Use the result of the Sorter transformation as an input to the Aggregator transformation.
You can increase Aggregator transformation performance with the sorted input option.

590

The following figure shows the mapping:

Sorter Transformations in Dynamic Mappings
You can use a Sorter transformation in a dynamic mapping. You can configure dynamic ports in the
transformation and reference the generated ports.

You can reference a dynamic port or a generated port in the Sorter transformation. However, if the generated
port does not exist at run time, the mapping fails.

If you use a dynamic port as a sort key, the Data Integration service considers all the generated ports in the
dynamic port and the generated port order.

You can parameterize the sort keys. Use a sort list parameter for the sort key.

Developing a Sorter Transformation
When you develop a Sorter transformation, you need to consider factors such as the sort key ports, distinct
output rows, and the case-sensitive sort criteria.

Consider the following factors when you develop a Sorter transformation:

• The ports that you want to configure as sort keys and the sort direction.

• Whether you want a case-sensitive sort.

• Whether you want to consider null values as sort priority.

• Whether you want distinct output rows.

• The sorter cache size value you want to set.

Sorter Transformation Ports
When you create ports in the Sorter transformation, you create input and output ports by default. The Sorter
transformation returns the same output ports as input ports.

Sorter Transformations in Dynamic Mappings 591

You can define dynamic ports in a Sorter transformation. A dynamic port can receive different columns of
data from an upstream transformation in a mapping. This enables the Sorter transformation to sort rows that
contain different columns.

Define the sort keys on the Sort tab of the Properties view.

Sort Tab
Define the sort key on the Sort tab of the Sorter transformation Properties view. Choose one or more ports
that you want to use as the sort criteria.

The Data Integration Service sorts data according to the order of the ports on the Sorter tab. Configure to
sort data in ascending or descending order. The default is ascending.

If you configure the Sorter transformation for distinct output rows, the Developer tool configures all ports as
part of the sort key. The Data Integration Service discards duplicate rows during the sort operation

Configure Sort Keys
Define the sort key on the Sort tab of the transformation Properties view.

This is the start of the concept.

The following image shows the Sort tab:

The Sort tab contains the following options:

592 Chapter 41: Sorter Transformation

Output

Choose whether to return all the sorted rows or to discard duplicate rows. Duplicate rows are rows
where all the column values are the same.

Specify by

Select Value or Parameter. Select Value to use port names. Choose Parameter to use a sort list
parameter.

Add

Accepts a port name that you type in manually. You must type a valid port name before you click Add.

Choose

Click Choose to select ports to add to the sort key. The Developer tool provides a list of ports from the
transformation to choose from.

Move Up and Move Down

You can change the order of the ports in the group. Select the port name and then click one of the move
buttons to move it up or down in the sort order.

Parameterize the Sort Keys
You can create a sort list parameter that contains a list of ports for the sort keys.

If the Sort transformation is in a dynamic mapping, the Sorter transformation might contain generated ports.
You can parameterize the sort keys. Create a sort list parameter that contains a list of ports to sort by.

On the Sort tab of the transformation properties, choose Specify by Parameter. Click New to create a
parameter.

The following image shows the Parameters dialog box:

Configure Sort Keys 593

Choose ports or generated ports for the sort keys. You can choose an ascending or descending sort type.

You can manually enter port names. Type the port name in the Default Value field and click Add. The
Developer tool adds the port name to the sort list.

The following image shows the Sort tab after you configure a parameter for the sort keys:

Sorter Transformation Advanced Properties
You can specify additional sort criteria in the Sorter transformation advanced properties. The Data
Integration Service applies the properties to all sort key ports. The Sorter transformation properties also
determine the system resources that the Data Integration Service allocates when it sorts data.

The following section describes the advanced properties for a Sorter transformation:
Case Sensitive

Determines whether the Data Integration Service considers case when sorting data. When you enable the
Case Sensitive property, the Data Integration Service sorts uppercase characters higher than lowercase
characters. The Developer tool sets the Case Sensitive by default.

Null Treated Low

Treats a null value as lower than any other value. Enable the property if you want the Data Integration
Service to treat a null value as lower than any other value when it performs the sort operation.

Sorter Cache Size

Amount of memory that the Data Integration Service allocates at the start of the mapping run to perform
the sort operation. The Data Integration Service passes all incoming data into the Sorter transformation
before it performs the sort operation. Select Auto to have the Data Integration Service automatically
calculate the memory requirements at run time. Enter a specific value in bytes when you tune the cache
size. Default is Auto.

Work Directory

Directory where the Data Integration Service temporarily stores data if the amount of incoming data is
greater than the Sorter cache size. After the Data Integration Service sorts data, it deletes the temporary
files.

Enter multiple directories separated by semicolons to increase performance during cache partitioning.
Cache partitioning creates a separate cache for each partition that processes the transformation.

594 Chapter 41: Sorter Transformation

Default is the TempDir system parameter. You can configure another system parameter or user-defined
parameter in this field.

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Related Topics:
• “Cache Size” on page 71

Sorter Cache
The Data Integration Service creates a cache in memory to run the Sorter transformation. The Data
Integration Service passes all incoming data into the Sorter transformation before it performs the sort
operation. If the Data Integration Service requires more space than available in the memory cache, it
temporarily stores data in the Sorter transformation work directory.

If you do not configure the cache size to sort all of the data in memory, a warning appears in the session log
stating that the Data Integration Service made multiple passes on the source data. The Data Integration
Service makes multiple passes on the data when it has to page information to disk to complete the sort. The
message specifies the amount of memory required for a single pass, which is when the Data Integration
Service reads the data once and performs the sort in memory without paging to disk. To optimize mapping
performance, configure the cache size so that the Data Integration Service makes one pass on the data.

If the amount of incoming data is greater than the Sorter cache size, the Data Integration Service temporarily
stores data in the Sorter transformation work directory. The Data Integration Service requires disk space of at
least twice the amount of incoming data when storing data in the work directory.

For best performance, configure the Sorter cache size with a value less than or equal to the amount of
available physical memory on the machine that runs the mapping. To sort data using a Sorter transformation,
allocate at least 16 MB (16,777,216 bytes) of physical memory. Sorter cache size is set to Auto by default.

Optimizing the Sorter Cache
The sorter cache is optimized to use variable length to store binary and string data types that pass through
the Sorter transformation.

Variable length reduces the amount of data that the Data Integration Service stores in the sorter cache and
the disk space consumption on the Data Integration Service machine.

For example, you store data on customers. Some customers have longer names than other customers. If the
Data Integration Service uses fixed length to store the data on customer names, the Data Integration Service
might store data on 20 characters for each name. If the Data Integration Service uses variable length, the
Data Integration Service might store data with an average length of 10 characters.

Creating a Sorter Transformation
You can create reusable or non-reusable sorter transformations.

Sorter Cache 595

Creating a Reusable Sorter Transformation
Create a reusable Sorter transformation to use in multiple mappings or mapplets.

1. Select a project or folder in the Object Explorer view.

2. Click File > New > Transformation.

The New dialog box appears.

3. Select the Sorter transformation.

4. Click Next.

5. Enter a name for the transformation.

6. Click Finish.

The transformation appears in the editor.

7. Click New to add a port to the transformation.

8. Edit the port to set the name, datatype, and precision.

9. On the Sort tab, choose the ports to sort by or select a sort list parameter.

10. Click the Advanced view and edit the transformation properties.

Creating a Non-Reusable Sorter Transformation
Create a non-reusable Sorter transformation in a mapping or mapplets.

1. In a mapping or mapplet, drag a Sorter transformation from the Transformation palette to the editor.

The transformation appears in the editor.

2. In the Properties view, edit the transformation name and the description.

3. On the Ports tab, click New to add ports to the transformation.

4. Edit the ports to set the name, datatype, and precision.

5. Select Key to indicate the port as sort key.

6. Click the Advanced tab and edit the transformation properties.

Sorter Transformation Example
You have a database table PRODUCT_ORDERS that contains information about all the orders which were
placed by the customer.

ORDER_ID ITEM_ID ITEM QUANTITY PRICE

43 123456 ItemA 3 3.04

41 456789 ItemB 2 12.02

43 000246 ItemC 6 34.55

45 000468 ItemD 5 0.56

41 123456 ItemA 4 3.04

45 123456 ItemA 5 3.04

596 Chapter 41: Sorter Transformation

ORDER_ID ITEM_ID ITEM QUANTITY PRICE

45 456789 ItemB 3 12.02

Use the Sorter transformation on PRODUCT_ORDERS and specify the ORDER_ID as the sort key with direction
as descending.

After sorting the data, the Data Integration Service passes the following rows out of the Sorter
transformation:

ORDER_ID ITEM_ID ITEM QUANTITY PRICE

45 000468 ItemD 5 0.56

45 123456 ItemA 5 3.04

45 456789 ItemB 3 12.02

43 123456 ItemA 3 3.04

43 000246 ItemC 6 34.55

41 456789 ItemB 2 12.02

41 123456 ItemA 4 3.04

You need to find out the total amount and item quantity for each order. You can use the result of the Sorter
transformation as an input to an Aggregator transformation. Use sorted input in Aggregator transformation
to improve performance.

When you do not use sorted input, the Data Integration Service performs aggregate calculations as it reads.
The Data Integration Service stores data for each group until it reads the entire source to ensure that all
aggregate calculations are accurate. If you use sorted input and do not presort data correctly, you receive
unexpected results.

The Aggregator transformation has the ORDER_ID group by port, with the sorted input option selected. When
you pass the data from the Sorter transformation, the Aggregator transformation groups ORDER_ID to
calculate the total amount for each order.

ORDER_ID SUM

45 54.06

43 216.42

41 36.2

Sorter Transformation Example 597

Sorter Transformation in a Non-native Environment
The Sorter transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch and streaming mappings.

• Databricks Spark engine. Supported with restrictions.

Sorter Transformation on the Blaze Engine
Some processing rules for the Blaze engine differ from the processing rules for the Data Integration Service.

Mapping Validation

Mapping validation fails in the following situations:

• The target is configured to maintain row order and the Sorter transformation is not connected directly to a
flat file target.

Parallel Sorting

The Data Integration Service enables parallel sorting with the following restrictions:

• The mapping does not include another transformation between the Sorter transformation and the target.

• The data type of the sort keys does not change between the Sorter transformation and the target.

• Each sort key in the Sorter transformation must be linked to a column in the target.

Global Sort

The Blaze engine can perform global sorts when the following conditions are true:

• The Sorter transformation is connected directly to flat file targets.

• The target is configured to maintain row order.

• The sort key is not a binary data type.

If any of the conditions are not true, the Blaze engine performs a local sort.

Data Cache Optimization

If a Sorter transformation is inserted before an Aggregator or Rank transformation to optimize the
Aggregator or Rank data cache, the size of the sorter cache is the same size as the data cache for the
Aggregator or Rank transformation. To configure the sorter cache, you must configure the size of the data
cache for the Aggregator or Rank transformation.

Sorter Transformation on the Spark Engine
Some processing rules for the Spark engine differ from the processing rules for the Data Integration Service.

Mapping Validation

Mapping validation fails when case sensitivity is disabled.

598 Chapter 41: Sorter Transformation

The Data Integration Service logs a warning and ignores the Sorter transformation in the following situations:

• There is a type mismatch in between the target and the Sorter transformation sort keys.

• The transformation contains sort keys that are not connected to the target.

• The Write transformation is not configured to maintain row order.

• The transformation is not directly upstream from the Write transformation.

Null Values

The Data Integration Service treats null values as high even if you configure the transformation to treat null
values as low.

Data Cache Optimization

You cannot optimize the sorter cache to store data using variable length.

Parallel Sorting

The Data Integration Service enables parallel sorting with the following restrictions:

• The mapping does not include another transformation between the Sorter transformation and the target.

• The data type of the sort keys does not change between the Sorter transformation and the target.

• Each sort key in the Sorter transformation must be linked to a column in the target.

Sorter Transformation in a Streaming Mapping
Streaming mappings have additional processing rules that do not apply to batch mappings.

Mapping Validation

Mapping validation fails in the following situation:

• The Sorter transformation in a streaming mapping does not have an upstream Aggregator transformation.

General Guidelines

Consider the following general guidelines:

• The mapping runs in complete output mode if it contains a Sorter transformation.

• To maintain global sort order, ensure that the target is single-partitioned. Source can be single- or multi-
partitioned.

Sorter Transformation on the Databricks Spark Engine
Some processing rules for the Databricks Spark engine differ from the processing rules for the Data
Integration Service.

Mapping Validation

Mapping validation fails when case sensitivity is disabled.

The Data Integration Service logs a warning and ignores the Sorter transformation in the following situations:

• There is a type mismatch in between the target and the Sorter transformation sort keys.

• The transformation contains sort keys that are not connected to the target.

• The Write transformation is not configured to maintain row order.

• The transformation is not directly upstream from the Write transformation.

Sorter Transformation in a Non-native Environment 599

Null Values

The Data Integration Service treats null values as high even if you configure the transformation to treat null
values as low.

Data Cache Optimization

You cannot optimize the sorter cache to store data using variable length.

Parallel Sorting

The Data Integration Service enables parallel sorting with the following restrictions:

• The mapping does not include another transformation between the Sorter transformation and the target.

• The data type of the sort keys does not change between the Sorter transformation and the target.

• Each sort key in the Sorter transformation must be linked to a column in the target.

600 Chapter 41: Sorter Transformation

C h a p t e r 4 2

SQL Transformation
This chapter includes the following topics:

• SQL Transformation Overview, 601

• SQL Transformation Ports, 602

• SQL Transformation Advanced Properties, 606

• SQL Transformation Query, 608

• Input Row to Output Row Cardinality, 610

• Filter Optimization with the SQL Transformation, 613

• SQL Transformation Example with an SQL Query, 615

• Stored Procedures, 618

• SQL Transformation Connection, 623

• Manually Creating an SQL Transformation, 624

• Creating an SQL Transformation from a Stored Procedure, 625

SQL Transformation Overview
The SQL transformation processes SQL queries midstream in a mapping. You can run SQL queries from the
SQL transformation or you can configure the SQL transformation to run stored procedures from a database.

You can pass input port values to parameters in the query or stored procedure. The transformation can
insert, delete, update, and retrieve rows from a database. You can run SQL DDL statements to create a table
or drop a table midstream in a mapping. The SQL transformation is an active transformation. The
transformation can return multiple rows for each input row.

You can import a stored procedure from a database to the SQL transformation. When you import the stored
procedure, the Developer tool creates the transformation ports that correspond to the parameters in the
stored procedure. The Developer tool also creates the stored procedure call for you.

To configure an SQL transformation to run a stored procedure, perform the following tasks:

1. Define the transformation properties including the database type to connect to.

2. Import a stored procedure to define the ports and create the stored procedure call.

3. Manually define ports for result sets or additional stored procedures that you need to run.

4. Add the additional stored procedure calls in the SQL Editor.

You can configure an SQL query in the transformation SQL Editor. When you run the SQL transformation, the
transformation processes the query, returns rows, and returns any database error.

601

To configure an SQL transformation to run a query, perform the following tasks:

1. Define the transformation properties including the database type to connect to.

2. Define the input and output ports.

3. Create an SQL query in the SQL Editor.

After you configure the transformation, configure the SQL transformation in a mapping and connect the
upstream ports. Preview the data to verify the results.

SQL Transformation Ports
When you create an SQL transformation, the Developer tool creates the SQLError port by default. Add input
ports, output ports, and pass-through ports in the Ports view.

The SQL transformation has the following types of ports:

Input

Receives source data that you can use in an SQL query.

Output

Returns database data from an SQL SELECT query.

Pass-through

Input-output ports that pass source data through the transformation without changing it.

SQLError

Returns SQL errors from the database. If no errors occur, returns NULL.

NumRowsAffected

Returns the total number of database rows affected by INSERT, DELETE, and UPDATE query statements
for an input row. The Developer tool creates this port when you choose to include the update statistics in
the output row.

Return Value

Receives the return value from a stored procedure.

Input Ports
You can reference SQL transformation input ports with parameter binding in any type of SQL statement or
stored procedure. You can create input ports in the SQL transformation for data that you do not intend to
pass to output ports.

You must manually add ports if you are configuring an SQL query that has input parameters. When you import
a stored procedure to the SQL transformation, the SQL transformation creates the input ports. You can add
pass-through ports to pass data through the transformation without changing it.

You can add ports in the Overview view. When you add a port, enter the native datatype for the port. The
native datatype is a datatype that is valid for the database that you are connecting to. When you configure a
native datatype, a transformation datatype appears. If you drag rows to the SQL transformation, the
Developer tool sets the native datatype based on datatypes that are valid for the database you are connecting
to. Verify that the datatypes for columns that you use in the query are the same datatypes as the columns in
the database.

602 Chapter 42: SQL Transformation

The following figure shows the CreationDate input port in a reusable SQL transformation:

To add input ports, click Input in the Ports panel. Click New.

Note: If you select Copy to Output for a port, the input port becomes a pass-through port. Pass-through ports
appear in the Input and Output sections of the Ports view.

Output Ports
SQL transformation output ports return values from a query statement or from a stored procedure.

You must define the output ports when you manually configure a SQL transformation. Define an output port
for each stored procedure output parameter or for each port that a SELECT statement returns.

When you import a stored procedure, the Developer tool creates an output port for each output parameter
that the procedure returns. If the procedure returns a result set, you must manually define the output ports in
the result set. A stored procedure can return a result set and it can return output parameters that are not part
of the result set in the same run. You must define the output ports for the result set fields and for the output
parameters.

When you configure an output port, choose the native datatype for the port. The output port native datatype
must match the datatype of the corresponding column in the database. When you configure the native
datatype, the Developer tool defines the transformation datatype for the port.

For example, the SQL transformation contains the following SQL query for an Oracle database:

SELECT FirstName, LastName, Age FROM EMPLOYEES

SQL Transformation Ports 603

You might configure the following output ports and the native datatypes in the SQL transformation:

Output Port Native Datatype Transformation Datatype

FirstNm varchar2 string

LastNm varchar2 string

Age number double

The number of the output ports and the order of the output ports must match the number and the order of the
columns that the query or stored procedure returns. When the number of output ports is more than the
number of columns in the query or stored procedure, the extra ports return a null value. When the number of
output ports is less than the number of columns in the SQL, the Data Integration Service generates a row
error.

If you change the database type that the transformation connects to, the Developer tool changes the native
types of the output ports. The Developer tool might not choose the correct datatype for all the ports. If you
change the database type, verify that the native datatype for each output port is the same datatype as the
column in the database. For example, the Developer tool might choose nVarchar2 for a Oracle database
column. You might need to change the datatype to varchar2.

Configure output ports in the SQL transformation Overview view.

Pass-through Ports
Pass-through ports are input-output ports that pass data through the transformation without changing the
data. The SQL transformation returns data in the pass-through ports whether an SQL query returns rows or
not.

When the input row contains a SELECT query statement, the SQL transformation returns the data in the pass-
through port for each row it returns from the database. If the query result contains multiple rows, the SQL
transformation repeats the pass-through data in each row.

When a query returns no rows, the SQL transformation returns the pass-through column data with null values
in the output columns. For example, queries that contain INSERT, UPDATE, and DELETE statements return no
rows. When the query has errors, the SQL transformation returns the pass-through column data, the SQLError
message, and null values in the output ports.

You cannot configure a pass-through port to return data from a SELECT query.

To create a pass-through port, create an input port and select Copy to Output. The Developer tool creates an
output port and adds an “_output” suffix to the port name. You cannot change the output port that the
Developer tool creates for a pass-through port. You cannot create an output port with the "_output" suffix.

604 Chapter 42: SQL Transformation

The following figure shows a Name pass-through port in a reusable SQL transformation:

SQLError Port
The SQLError port returns SQL errors from the database from stored procedures or SQL queries.

The following figure shows the SQLError port in a reusable SQL transformation:

When the SQL query contains syntax errors, the SQLError port contains the error text from the database. For
example, the following SQL query generates a row error from an Oracle database:

SELECT Product_ID FROM Employees

SQL Transformation Ports 605

The Employees table does not contain Product_ID. The Data Integration Service generates one row. The
SQLError port contains the error text in one line:

ORA-0094: “Product_ID”: invalid identifier Database driver error... Function Name:
Execute SQL Stmt: SELECT Product_ID from Employees Oracle Fatal Error

You can configure multiple query statements in the SQL query or you can call multiple stored procedures.
When you configure the SQL transformation to continue on SQL error, the SQL transformation might return
rows for one query statement, but return database errors for another query statement. The SQL
transformation returns any database error in a separate row.

Number of Rows Affected
Enable the NumRowsAffected output port to return the number of rows that the INSERT, UPDATE, or DELETE
query statements change for each input row. You can configure the NumRowsAffected output port for SQL
queries.

The Data Integration Service returns the NumRowsAffected for each statement in the query.
NumRowsAffected is disabled by default.

When you enable NumRowsAffected and the SQL query does not contain an INSERT, UPDATE, or DELETE
statement, NumRowsAffected is zero in each output row.

When the SQL query contains multiple statements, the Data Integration Service returns the
NumRowsAffected for each statement. NumRowsAffected contains the sum of the rows that the INSERT,
UPDATE, and DELETE statements change for an input row.

For example, a query contains the following statements:

DELETE from Employees WHERE Employee_ID = ‘101’;
SELECT Employee_ID, LastName from Employees WHERE Employee_ID = ‘103’;
INSERT into Employees (Employee_ID, LastName, Address)VALUES (‘102’, 'Gein', '38 Beach
Rd')

The DELETE statement affects one row. The SELECT statement does not affect any row. The INSERT
statement affects one row.

The Data Integration Service returns one row from the DELETE statement. NumRowsAffected is equal to one.
The Data Integration Service returns one row from the SELECT statement, NumRowsAffected is zero. The
Data Integration Service returns one row from the INSERT statement with NumRowsAffected equal to one.

SQL Transformation Advanced Properties
You can change the SQL transformation properties at any time. The default database type is Oracle. If the
database you need to connect to is another database type, change the database type before you add ports to
the transformation.

Configure the following properties on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal. When you configure the SQL transformation tracing
level to Verbose Data, the Data Integration Service writes each SQL query it prepares to the mapping log.

606 Chapter 42: SQL Transformation

Connection type

Describes how the Data Integration Service connects to the database. The connection type is static. The
Data Integration Service connects one time to the database. Select a database connection object in the
SQL transformation. Read only.

DB Type

Type of database that the SQL transformation connects to. Choose a database type from the list. You
can choose Oracle, Microsoft SQL Server, IBM DB2, or ODBC. The database type affects the datatypes
that you can assign on the Ports tab. When you change the database type, the Developer tool changes
the port datatypes for input, output, and pass-through ports.

Continue on Error Within Row

Continues processing the remaining SQL statements in a query after an SQL error occurs.

Include Statistics as Output

Adds a NumRowsAffected output port. The port returns the total number of database rows that INSERT,
DELETE, and UPDATE query statements update for an input row.

Max Output Row Count

Defines the maximum number of rows the SQL transformation can output from a SELECT query. To
configure unlimited rows, set Max Output Row Count to zero.

Query Description

Description of the SQL query that you define in the transformation.

SQL Mode

Determines whether the SQL query is an external script or whether the query is defined in the
transformation. The SQL Mode is Query. The SQL transformation runs a query that you define in the SQL
Editor. Read only.

SQL Query

Displays the SQL query that you configure in the SQL Editor.

Has Side Effects

Indicates that the SQL transformation performs a function besides returning rows. The SQL
transformation has a side effect when the SQL query updates a database. Enable Has Side Effects when
the SQL query contains a statement such as as CREATE, DROP, INSERT, UPDATE, GRANT, or REVOKE.

The SQL transformation also has a side effect if the transformation returns NULL rows for SELECT
statements that return no results. The rows might contain pass-through port values, SQL error
information, or the NUMRowsAffected field.

Disable the Has Side Effects property in order to allow push-into optimization or early selection
optimization. Default is enabled.

Return Database Output Only

The SQL transformation does not generate rows for SELECT statements that return 0 results, rows for
other statements such as INSERT,UPDATE, DELETE, or COMMIT, or null rows.

Enable Push-Into Optimization

Enables the Data Integration Service to push the logic from a Filter transformation in the mapping to the
SQL in the SQL transformation.

Maintain Row Order

Maintain the row order of the input data to the transformation. Select this option if the Data Integration
Service should not perform any optimization that can change the row order.

SQL Transformation Advanced Properties 607

When the Data Integration Service performs optimizations, it might lose an order established earlier in
the mapping. You can establish order in a mapping with a sorted flat file source, a sorted relational
source, or a Sorter transformation. When you configure a transformation to maintain row order, the Data
Integration Service considers this configuration when it performs optimizations for the mapping. The
Data Integration Service performs optimizations for the transformation if it can maintain the order. The
Data Integration Service does not perform optimizations for the transformation if the optimization would
change the row order.

Partitionable

The transformation can be processed with multiple threads. Clear this option if you want the Data
Integration Service to use one thread to process the transformation. The Data Integration Service can
use multiple threads to process the remaining mapping pipeline stages.

Disable partitioning for an SQL transformation when the SQL queries require that the transformation be
processed with one thread. Or, you might want to disable partitioning for an SQL transformation so that
only one connection is made to the database.

SQL Transformation Query
Create an SQL query in the SQL Editor to retrieve rows from a database or to update the database.

To create a query, type the query statement in the SQL Editor in the SQL view. You can enter up to 32767
characters in an SQL query statement. The SQL Editor provides a list of the transformation ports that you can
reference in the query. You can double-click a port name to add it as a query parameter.

When you create a query, the SQL Editor validates the port names in the query. It also verifies that the ports
you use for string substitution are string datatypes. The SQL Editor does not validate the syntax of the SQL
query.

You can use constants in the SQL query. Enclose each string in a single quote (').

The following figure shows a sample SQL query:

608 Chapter 42: SQL Transformation

You can create a static SQL query. The query statement does not change, but you can include parameters to
change values. The Data Integration Service runs the query for each input row.

Define the SQL Query
Define an SQL query that runs the same query statements for each input row. You can change the query
columns or table based on input port values in the row. You can also change the values in the WHERE clause
based on input port values.

To change the data values in the WHERE clause for each input row, configure parameter binding.

To change the query columns or to change the table based on input port values, use string substitution.

Parameter Binding
To change the data in the query, configure the query parameters and bind the query parameters to input ports
in the transformation. When you bind a parameter to an input port, identify the port by name in the query. The
SQL Editor encloses the port name in question marks (?). The query data changes based on the value of the
data in the port.

The following queries use parameter binding:

DELETE FROM Employee WHERE Dept = ?Dept?
INSERT INTO Employee(Employee_ID, Dept) VALUES (?Employee_ID?, ?Dept?)
UPDATE Employee SET Dept = ?Dept? WHERE Employee_ID > 100

The following SQL query has query parameters that bind to the Employee_ID and Dept input ports of an SQL
transformation:

SELECT Name, Address FROM Employees WHERE Employee_Num =?Employee_ID? and Dept = ?Dept?
The source might have the following rows:

Employee_ID Dept

100 Products

123 HR

130 Accounting

The Data Integration Service generates the following query statements from the rows:

SELECT Name, Address FROM Employees WHERE Employee_ID = ‘100’ and DEPT = ‘Products’
SELECT Name, Address FROM Employees WHERE Employee_ID = ‘123’ and DEPT = ‘HR’
SELECT Name, Address FROM Employees WHERE Employee_ID = ‘130’ and DEPT = ‘Accounting’

String Substitution
Use string variables to replace components of query statements. For example, you can use the string variable
to replace the table name in a query. Or, you can substitute the column names in a SELECT statement.

To substitute the table name, configure an input port to receive the table name from each input row. In the
SQL Editor, select the port from the String Substitution list of ports. The Developer tool identifies the input
port by name in the query and encloses the name with the tilde (~).

The following query contains a string variable, ~Table_Port~:

SELECT Emp_ID, Address from ~Table_Port~ where Dept = ‘HR’

SQL Transformation Query 609

The source might pass the following values to the Table_Port column:

Table_Port

Employees_USA

Employees_England

Employees_Australia

The Data Integration Service replaces the ~Table_Port~ variable with the table name value in the input port:

SELECT Emp_ID, Address from Employees_USA where Dept = ‘HR’
SELECT Emp_ID, Address from Employees_England where Dept = ‘HR’
SELECT Emp_ID, Address from Employees_Australia where Dept = ‘HR’

Input Row to Output Row Cardinality
When the Data Integration Service runs a SELECT query, the SQL transformation returns a row for each row it
retrieves. When the query does not retrieve data, the SQL transformation returns zero or one row for each
input row.

Query statement processing

When a SELECT query is successful, the SQL transformation might retrieve multiple rows. When the
query contains other statements, the Data Integration Service might generate a row that contains SQL
errors or the number of rows affected.

Port configuration

The NumRowsAffected output port contains the number of rows that an UPDATE, INSERT, or DELETE
statement changes for one input row. The SQL transformation returns the number of rows affected for
each statement in a query. When the SQL transformation contains pass-through ports, the
transformation returns the column data at least one time for each source row.

The maximum row count configuration

The Max Output Row Count limits the number of rows the SQL transformation returns from SELECT
queries.

Error rows

The Data Integration Service returns row errors when it encounters connection errors or syntax errors.
The SQL transformation returns errors to the SQLError port.

Continue on SQL Error

You can configure the SQL transformation to continue processing when there is an error in an SQL
statement. The SQL transformation does not generate a row error.

610 Chapter 42: SQL Transformation

Query Statement Processing
The type of SQL query determines how many rows the SQL transformation returns. The SQL transformation
can return zero, one, or multiple rows. When the query contains a SELECT statement, the SQL transformation
returns each column from the database to an output port. The transformation returns all qualifying rows.

The following table lists the output rows that the SQL transformation generates for different types of query
statements when no errors occur in query mode:

Query Statement Output Rows

UPDATE, INSERT, DELETE only One row for each statement in the query.

One or more SELECT statements Total number of database rows retrieved.

DDL queries such as CREATE, DROP, TRUNCATE One row for each statement in the query.

Port Configuration
When you enable Include Statistics as Output, the Developer tool creates the NumRowsAffected port. The
Data Integration Service returns at least one row with the NumRowsAffected based on the statements in the
SQL query.

The following table lists the output rows the SQL transformation generates if you enable NumRowsAffected:

Query Statement Output Rows

UPDATE, INSERT, DELETE only One row for each statement with the NumRowsAffected for the statement.

One or more SELECT statements Total number of database rows retrieved.
NumRowsAffected is zero in each row.

DDL queries such as CREATE, DROP,
TRUNCATE

One row with zero NumRowsAffected.

Maximum Output Row Count
You can limit the number of rows that the SQL transformation returns for SELECT queries. Configure the Max
Output Row Count property to limit number of rows. When a query contains multiple SELECT statements, the
SQL transformation limits total rows from all the SELECT statements.

For example, you set Max Output Row Count to 100. The query contains two SELECT statements:

SELECT * FROM table1; SELECT * FROM table2;
If the first SELECT statement returns 200 rows, and the second SELECT statement returns 50 rows, the SQL
transformation returns 100 rows from the first SELECT statement. The SQL transformation returns no rows
from the second statement.

To configure unlimited output rows, set Max Output Row Count to zero.

Input Row to Output Row Cardinality 611

Error Rows
The Data Integration Service returns row errors when it encounters a connection error or syntax error. The
SQL transformation returns SQL errors to the SQLError port.

When you configure a pass-through port or the NumRowsAffected port, the SQL transformation returns at
least one row for each source row. When a query returns no data, the SQL transformation returns the pass-
through data and the NumRowsAffected values, but it returns null values in the output ports. You can remove
rows with null values by passing the output rows through a Filter transformation.

The following table describes the rows that the SQL transformation generates for UPDATE, INSERT, or
DELETE query statements:

NumRowsAffected Port or Pass-
Through Port Configured

SQLError Rows Output

Neither port configured No One row with NULL in the SQLError port.

Neither port configured Yes One row with the error in the SQLError port.

Either port configured No One row for each query statement with the NumRowsAffected or
the pass-through column data.

Either port configured Yes One row with the error in the SQLError port, the NumRowsAffected
port, or the pass-through port data.

The following table describes the number of output rows that the SQL transformation generates for SELECT
statements:

NumRowsAffected Port
or Pass-Through Port
Configured

SQLError Rows Output

Neither port configured No One or more rows, based on the rows returned from each SELECT statement.

Neither port configured Yes One row greater than the sum of the output rows for the successful
statements. The last row contains the error in the SQLError port.

Either port configured No One or more rows, based on the rows returned for each SELECT statement:
- If NumRowsAffected is enabled, each row contains a NumRowsAffected

column with a value zero.
- If a pass-through port is configured, each row contains the pass-through

column data. When the query returns multiple rows, the pass-through
column data is duplicated in each row.

Either port configured Yes One or more rows, based on the rows returned for each SELECT statement.
The last row contains the error in the SQLError port:
- When NumRowsAffected is enabled, each row contains a

NumRowsAffected column with value zero.
- If a pass-through port is configured, each row contains the pass-through

column data. When the query returns multiple rows, the pass-through
column data is duplicated in each row.

612 Chapter 42: SQL Transformation

The following table describes the number of output rows that the SQL transformation generates for DDL
queries such as CREATE, DROP, or TRUNCATE:

NumRowsAffected Port or Pass-
Through Port Configured

SQLError Rows Output

Neither port configured No One row with NULL in the SQLError port.

Neither port configured Yes One row that contains the error in the SQLError port.

Either port configured No One row that includes the NumRowsAffected column with value
zero and the pass-through column data.

Either port configured Yes One row with the error in the SQLError port, the NumRowsAffected
column with value zero, and the pass-through column data.

Continue on SQL Error
You can choose to ignore an SQL error that occurs in a query statement. Enable Continue on SQL Error within
a Row. The Data Integration Service continues to run the rest of the SQL statements for the row.

The Data Integration Service does not generate a row error. However, the SQLError port contains the failed
SQL statement and error messages.

For example, a query might have the following statements:

DELETE FROM Persons WHERE FirstName = ‘Ed’;
INSERT INTO Persons (LastName, Address) VALUES ('Gein', '38 Beach Rd')

If the DELETE statement fails, the SQL transformation returns an error message from the database. The Data
Integration Service continues processing the INSERT statement.

Disable the Continue on SQL Error option to troubleshoot database errors and to associate errors with the
query statements that caused the errors.

Filter Optimization with the SQL Transformation
The Data Integration Service can apply filter optimization with an SQL transformation if the filter condition
references only pass-through ports and the SQL transformation does not have side effects.

The SQL transformation has side effects under the following circumstances:

• The SQL query updates a database. The SQL query contains a statement such as as CREATE, DROP,
INSERT, UPDATE, GRANT, or REVOKE.

• The transformation returns NULL rows for SELECT statements that return no results. The rows might
contain pass-through port values, SQL error information, or the NUMRowsAffected field.

The Data Integration Service can apply the early selection and push-into optimization methods with the SQL
transformation.

Filter Optimization with the SQL Transformation 613

Early Selection Optimization with the SQL Transformation
The Data Integration Service can perform early selection optimization with an SQL transformation if the filter
condition references only pass-through ports and the SQL transformation does not have side effects.

The SQL transformation has side effects under the following circumstances:

• The SQL query updates a database. The SQL query contains a statement such as as CREATE, DROP,
INSERT, UPDATE, GRANT, or REVOKE.

• The transformation returns NULL rows for SELECT statements that return no results. The rows might
contain pass-through port values, SQL error information, or the NUMRowsAffected field.

Enabling Early Selection Optimization with the SQL Transformation
Enable early selection optimization in the SQL transformation if the SQL transformation has no side effects.

1. Enable the Return Database Output Only option in the SQL transformation Advanced Properties.

2. Clear Has Side Effects in the transformation Advanced Properties.

3. If the transformation has a NumAffectedRows port, remove the port.

Push-Into Optimization with the SQL Transformation
With push-into optimization, the Data Integration Service pushes the filter logic from a Filter transformation in
the mapping to the query in the SQL transformation.

Use the following rules and guidelines when you enable push-into optimization with the SQL transformation:

• The transformation SQL query must only contain SELECT statements.

• The transformation SQL query must be a valid subquery.

• The filter condition cannot refer to the SQL Error or NumRowsAffected fields.

• The names of the output ports must match the names of the columns in the SQL SELECT statement.
When you reference an output port in a filter condition, the Data Integration Service pushes the
corresponding port name to the SQL query. You can add aliases to the SQL if the columns in the query do
not match the output port names. For example, SELECT mycolname1 AS portname1, mycolname2 AS
portname2.

• The transformation cannot have side effects.

Push-Into Optimization with the SQL Transformation Example
An SQL transformation retrieves orders by customer ID. A Filter transformation that appears after the SQL
transformation returns only the rows where the order amount is greater than 1000.

The Data Integration Service pushes the following filter into a SELECT statement in the SQL transformation:

orderAmount > 1000

Each statement in the SQL query becomes a separate subquery of the SELECT statement that contains the
filter.

The following query statement shows the original query statement as a subquery in the SELECT statement:

SELECT <customerID>, <orderAmount>, … FROM (original query statements) ALIAS WHERE
<orderAmount> > 1000

If the SQL query has multiple statements, each statement is included in a separate subquery. The subquery
has the same syntax, including the WHERE clause.

614 Chapter 42: SQL Transformation

The ports customerID and orderAmount, are the names of the output ports in the SQL transformation. The
subquery does not include pass-through ports, the SQL error, or the SQL statistics ports. If you push multiple
filters into the SQL transformation, the WHERE clause contains all the filters.

Enabling Push-Into Optimization with the SQL Transformation
Enable push-into optimization by configuring properties on the SQL transformation Advanced Properties tab.

1. Clear Has Side Effects.

2. Enable Return Database Output Only.

3. Set Max Out Row Count to zero.

4. Enable push-into optimization.

SQL Transformation Example with an SQL Query
You are a developer in the HR department of Hypostores corporation. Hypostores maintains employee payroll
information in a separate database from the human resources employee data. The Human Resources
department needs to query a single view of the employees and salaries across regions.

You want to create a logical data object mapping that shows a single view of the employee data and salary
data in an employee logical data object.

Create a logical data object mapping with the employee data source. Include an SQL transformation to
retrieve the salary and hire date from the payroll database.

Logical Data Object Mapping
The logical data object mapping contains the following objects:

Employee table

Input relational table of employee data from the Human Resources database.

Salary table

A table in the Payroll database that contains the employee salary and hire date. The database is an
Oracle database.

SQL transformation

Transformation that retrieves the hire date and salary for each employee row. The transformation
connects to a Payroll database and runs an SQL query against the Salary table in the database.

Logical data object

Contains the combined view of the employee and the salary data. The logical data object receives the
output from the SQL transformation.

SQLErrors file

The SQLErrors file is flat file that contains any SQL error from the database. The Data Integration Service
writes at least one row to the SQLErrors file for each input row. If no SQL errors occur, the SQLError
column contains NULL. Review the SQLErrors file to troubleshoot errors.

SQL Transformation Example with an SQL Query 615

Salary Table
The Salary table is a relational table in the Payroll database. The table contains employee data that the
Payroll department maintains. The SQL transformation retrieves the hire date and the employee salary from
the Salary table.

The following table shows some rows from the Salary table:

Employee_Num HireDate Salary

10 3-May-97 232000

11 11-Sep-01 444000

12 17-Oct-89 656000

13 13-Aug-07 332100

Employee Table
The source is the Employee table from the Human Resources database.

The following table shows sample rows from the Employee table:

EmpID LastName FirstName DeptId Phone

10 Smith Martha FIN (415) 552-1623

11 Jones Cynthia ENG (415) 552-1744

12 Russell Cissy SLS (415) 552-1656

13 Goyal Girish FIN (415) 552-1656

SQL Transformation
The SQL transformation retrieves the employee hire date and salary from the Salary table of the Payroll
database. The Salary table is in an Oracle database.

Use the following steps to configure the SQL transformation:

1. Configure the SQL transformation properties.

2. Define the ports.

3. Create the SQL query.

4. Configure the database connection for the SQL transformation.

Define SQL Transformation Properties
Configure the SQL transformation properties in the Advanced Properties view.

Configure the following properties:

616 Chapter 42: SQL Transformation

Database type

The database type is Oracle. When you define the ports, you can choose port datatypes that are
applicable for Oracle.

Continue on Error Within Row

Disable. Stop processing if an SQL error occurs in the row.

Include Statistics as Output

Disable. Do not create the NumRowsAffected output port.

Define the Ports
Define input ports for each column in the employee source table. Select Copy to Output to change the input
ports to pass-through ports for the columns. When you select Copy to Output, the Developer tool creates the
corresponding output port for each port that you copy.

Create the following input pass-through ports:

Name Type Native Type Precision Scale Copy to Output

EmpID decimal number(p,2) 4 0 x

LastName string varchar2 30 0 x

FirstName string varchar2 20 0 x

DeptID string varchar2 4 0 x

Phone string varchar2 16 0 x

The SQL transformation has the following output ports:

Name Type Native Type Precision Scale

EmpID decimal number(p,s) 4 0

LastName string varchar2 30 0

FirstName string varchar2 20 0

DeptID string varchar2 4 0

Phone string varchar2 16 0

HireDate date/time timestamp 29 0

Salary decimal number(p,s) 8 2

The Developer tool adds the "_output" suffix to each output port that it creates when you select Copy to
Output.

Manually define the output ports for the hire date and salary columns. The SQL transformation returns the
hire date and salary columns from the Salary table in the ports.

SQL Transformation Example with an SQL Query 617

Define the SQL Query
Create an SQL query to select the hiredate and salary for each employee from the Salary table.

Define the query in the SQL transformation SQL view.

Enter the following query in the SQL Editor:

select HIREDATE,SALARY,from Salary where EMPLOYEE_NUM =?EmpID?
Hiredate, Salary, and Employee_Num are column names in the Salary table.

?EMPID? is a parameter that contains the value of the EmpID port.

Define the Database Connection
In the Runtime view, select a database connection object for the database that the SQL transformation
connects to. Select an Oracle database connection object.

Output
Connect the SQLError port and the EmpID_output port to the SQLErrors flat file. The SQLError port contains
null values unless an SQL error occurs.

Connect EmpID and the other output ports to the logical data object.

The SQL transformation returns a row that contains data from the Employee table and includes the hire date
and salary from the Salary table.

The following table shows some rows from the logical data object:

EmpID LastName FirstName DeptId Phone HireDate Salary

10 Smith Martha FIN (415) 552-1623 19970303 00:00:00 2320.00

11 Jones Cynthia ENG (415) 552-1744 20010911 00:00:00 4440.00

12 Russell Cissy SLS (415) 552-1656 19891017 00:00:00 6560.00

13 Goyal Girish FIN (415) 552-1660 20070813 00:00:00 3210.00

Stored Procedures
You can call a stored procedure from an SQL transformation. You can use a stored procedure to automate
tasks in a relational database. Stored procedures accept user-defined variables, conditional statements, and
other features that standard SQL statements do not support.

The SQL transformation connects to a relational database to run the stored procedure. The SQL
transformation can call stored procedures from Oracle, IBM DB2, Microsoft SQL Server, Sybase, and ODBC. A
stored procedure is kept in the database, and it runs in the database.

Create an ODBC connection to call a stored procedure from a Sybase database. You must also create an
ODBC connection to call a stored procedure from a Microsoft SQL Server database on non-Windows
operating systems.

618 Chapter 42: SQL Transformation

A stored procedure is a pre-compiled collection of Transact-SQL, PL-SQL, or other database procedural
statements. Stored procedure syntax varies based on the database.

You might use stored procedures to complete the following tasks:

• Check the status of a target database before loading data into it.

• Determine if enough space exists in a database.

• Perform a specialized calculation.

• Retrieve data by a value.

• Drop and re-create indexes.

You can use a stored procedure to perform a query or calculation that you would otherwise include in a
transformation. For example, if you have a well-tested stored procedure for calculating sales tax, you can
perform that calculation with the stored procedure instead of recreating the same calculation in an
Expression transformation.

A stored procedure can accept input and then return a result set of rows. A stored procedure can run a DDL
task that requires no input and then returns no output.

You can configure the SQL transformation to run more than one stored procedure. For each stored procedure
that you configure, configure transformation ports to match the stored procedure parameters. Each stored
procedure can pass data back to output ports.

The database that contains the stored procedure has user permissions. You must have permissions to run
the stored procedure on the database.

Note: A stored function is similar to a stored procedure, except that a function returns a single value. The
SQL transformation can run stored functions.

SQL Transformation Ports for Stored Procedures
The SQL transformation input and output ports correspond to the input and output parameters in the stored
procedure.

When you import a stored procedure, the Developer tool determines the database type from the database
connection. It generates input and output ports in the SQL transformation from the parameters in the stored
procedure. The Developer tool determines the native datatype of each port from the parameter of the stored
procedure.

When you manually configure the SQL transformation, you need to configure the input and the output ports in
the transformation. When you configure the database type, the SQL transformation changes the native
datatype for each port based on the database type that you enter.

The following types of data can pass between the SQL transformation and the stored procedure:

Input and output parameters

The SQL transformation sends parameters to the stored procedure and the SQL transformation receives
parameters from the stored procedure in the input and output ports.

Return value

If the stored procedure passes a return value, the Developer tool creates a Return Value port.

SQL errors

The SQL transformation returns errors from the stored procedure in the SQLError port.

Stored Procedures 619

Input and Output Parameters
When you call a stored procedure from an SQL transformation, each field that the call statement references
identifies an input or output port. When you import a stored procedure, the Developer tool generates the
stored procedure call statement. Otherwise, you need to manually configure the call statement.

You can edit the call statement in the SQL view of the transformation.

The call statement has the following format:

?RETURN_VALUE? = call <stored proc name>(?Field1?, ?Field2?,. . .)

Enclose the port names in question marks. The port names do not have to match the parameter names in the
stored procedure. The output ports must be in the same order as parameters in a SELECT query.

You can use a stored procedure that contains INOUT parameters. The SQL transformation identifies INOUT
parameters by the input port name. The output port has the prefix output_. The Data Integration service
binds the input port and output port to the same parameter.

You can configure an SQL transformation to return a result set. When the stored procedure returns a result
set, the Developer tool cannot create output ports for the columns in the result set. When you import the
stored procedure, you must manually enter the ports and configure the stored procedure call.

Return Value
A return value is a code or text string that defines that status of the stored procedure. When the stored
procedure has a return value, the SQL transformation has a Return Value port.

Most databases can pass a return value after running a stored procedure. The return value can contain an
integer value, or it can contain a value that you define in the stored procedure. For example, a stored
procedure might return "Success" when the procedure succeeds.

If a stored procedure returns a result set instead of a single return value, the SQL transformation receives the
first return value from the procedure.

Stored Procedure Result Sets
You can configure a SQL transformation to receive a result set from a stored procedure. A stored procedure
returns multiple rows in a result set. The SQL transformation can return each row to the mapping.

The following stored procedure returns a result set:

CREATE OR REPLACE FUNCTION fetchEMPinfo
(p_State IN VARCHAR2)
return types.cursortype
AS
my_cursor types.cursortype;
BEGIN
OPEN my_cursor FOR SELECT EMP_ID, NAME, CITY FROM EMP WHERE STATE = p_State ORDER BY
EMP_ID;
RETURN my_cursor;
END;

When you import the stored procedure, the Developer tool creates a stored procedure call statement similar
to the following syntax:

call FETCHEMPINFO (?P_STATE?)

The input parameter is p_state. The Developer tool does not create the output ports for you. You must
manually create the output ports with the same datatypes as the stored procedure parameters.

For example, the resultSet contains the EMP_ID, EMPNAME, and CITY columns. Create output ports for these
columns.

620 Chapter 42: SQL Transformation

You must also manually update the SQL call with the output columns using the following syntax:

(?EMP_ID?,?EMPNAME?,?CITY?) = call FETCHEMPINFO (?P_STATE?)

Result Sets with Different Databases
Configure stored procedures to return result sets using different syntax based on the database type.

Oracle

An Oracle stored function returns results with a cursor:

create or replace function sp_ListEmp return types.cursortype
as
 l_cursor types.cursorType;
begin
 open l_cursor for select ename, empno from emp order by ename;
 return l_cursor;
end;

Oracle also accepts cursors as input parameters. You cannot configure cursors as input parameters with the
SQL transformation.

Microsoft SQL Server

A Microsoft SQL Server stored procedure returns a result set stored procedure with a select statement in the
procedure body or with the return type explicitly declared as a table.

Create PROCEDURE InOut(
@inout varchar(100) OUT
)
AS
BEGIN
set @inout = concat(@inout,'__')
select * from mytable;
END

IBM DB2

An IBM DB2 stored procedure can return a resultset with an open cursor. The number of result sets it returns
are declared in the RESULT SET clause. The stored procedure opens a cursor and returns it. The below
example returns 2 open cursors.

CREATE PROCEDURE TESTMULTIRS
 (IN i_cmacct CHARACTER(5))
RESULT SETS 2
LANGUAGE SQL
BEGIN

DECLARE csnum INTEGER;

--Declare serial cursors to consume less resources
--You do not need a rollable cursor.

DECLARE getDeptNo CHAR(50); --Be careful with the estimated length.
DECLARE getDeptName CHAR(200);
DECLARE c1 CURSOR WITH RETURN FOR s1;
SET getDeptNo = 'SELECT DEPTNO FROM DEPT';
SET getDeptName = 'SELECT DEPTNAME FROM DEPT';

PREPARE s1 FROM getDeptNo;
OPEN c1;

END;

Stored Procedures 621

Sybase

A Sybase stored procedure returns a result set stored procedure with a select statement in the procedure
body or with the return type explicitly declared as a table.

CREATE PROCEDURE FETCHEMPINFO
(
@p_State VARCHAR(5),
@e_id INT OUTPUT,
@e_name VARCHAR(50) OUTPUT
)
AS
BEGIN
SET NOCOUNT ON
SELECT EMP_ID, NAME FROM EMP WHERE STATE = @p_State ORDER BY EMP_ID
SET NOCOUNT OFF
SELECT @e_id AS EMP_ID, @e_name AS NAME
RETURN
END
GO

--Configure the following variables to execute the procedure.

DECLARE @p_State VARCHAR(5)
DECLARE @EMPID int
DECLARE @EMPNAME varchar(50)

SET @p_State = 'CA'
exec FETCHEMPINFO @p_State, @e_id = @EMPID, @e_name = @EMPNAME
GO

Result Set Rows
Some stored procedures return output parameters in addition to the result set rows. The SQL transformation
returns output parameters in the last row. It does not include the single-occurring output parameters in the
result set rows.

For example, you write a stored procedure that receives an employee ID and returns the employee name in
output parameter 1 and department in output parameter 2. The stored procedure also returns a row for each
sick day that the employee took throughout the year. The row contains the date, the number of hours, and the
reason for the absence.

The result set contains a different number of rows for each employee. Each row in the result set contains an
empty employee name and department. The SQL transformation returns the employee name and department
after the result set. The employee name and department appear in the last row.

Stored Procedure Example
You can call a stored procedure that returns data to the SQL transformation.

The following stored procedure receives an employee number and returns one row with the employee number
and the employee name:

CREATE OR REPLACE PROCEDURE SP_GETNAME
(IN_EMPNO IN NUMBER, OUT_EMPNO NUMBER, OUT_NAME OUT STRING)
AS
BEGIN
SELECT EMP_KEY,EMP_NAME into OUT_EMPNO , OUT_NAME from EMP_TABLE where EMP_KEY=IN_EMPNO;
END;/"

To create the SQL transformation, import the stored procedure. The Developer tool creates the input ports
and the output ports. The port names are the same as the parameter names in the stored procedure.

The following figure shows the ports for the SQL transformation:

622 Chapter 42: SQL Transformation

The Developer tool creates the following stored procedure call to retrieve the employee name:

call SP_GETNAME (?IN_EMPNO?,?OUT_EMPNO?,?OUT_NAME?)

You can view the stored procedure call in the SQL Editor. Any SQL errors appear in the SQLError port.

SQL Transformation Connection
Configure the SQL transformation connection in the transformation run-time properties. You might need to
configure a run-time connection if you did not specify a connection when you created the transformation.

You can define a different connection name than the connection that you selected to create the SQL
transformation. You must select a connection of the same database type as the database type in the SQL
transformation Advanced properties.

You can configure a parameter for the SQL transformation connection name. You must define the parameter
in the Parameters view of the mapping before you assign it to a run-time connection.

Creating a Connection Name Parameter
You can specify a user-defined parameter in the run-time connection name for an SQL transformation. The
Developer tool creates a mapping parameter for the connection instead of a transformation parameter.

1. Create a mapping that includes the SQL transformation.

2. Click the SQL transformation Run-time tab.

3. In the Connection Name, click the selection arrow and choose Assign Parameters.

4. In the Assign Parameter dialog box, click New.

5. In the Parameters dialog box, enter a connection parameter name and a description for the parameter.
The parameter type defaults to connection.

6. Click OK in the Parameters dialog box and in the Assign Parameters dialog box.

The Developer tool creates a mapping parameter and assigns it to the Connection Name. The parameter
name appears in the Run-time properties.

SQL Transformation Connection 623

7. To view a list of the mapping parameters, click inside the editor and then click the mapping Parameters
tab.

Manually Creating an SQL Transformation
You can manually create an SQL transformation. Manually create the transformation when you configure a
transformation that runs an SQL query. You might also manually create a transformation that calls a stored
procedure when the procedure is not available to import. When you manually create the transformation, you
configure the input and output ports and type the SQL statements in the SQL Editor.

1. Select a project or a folder in the Object Explorer view.

2. Click File > New > Transformation.

The New dialog box appears.

3. Select the SQL transformation.

4. Click Next.

5. Select Create as Empty.

6. Enter a name for the transformation and enter the repository location for the transformation.

7. Click Finish

8. Click the Overview view to add ports to the transformation.

9. To add an input port, click Input in the Ports panel to indicate where to add the port. Click the New
button and enter the port name, the native type, and the precision.

The default database type is Oracle. The Developer tool shows native types for Oracle databases unless
you change the database type on the Advanced view.

10. To add an output port, click Output in the Ports panel before you add the port. Click the New button and
enter the port name, the native type, and the precision.

624 Chapter 42: SQL Transformation

The SQLError port is the first output port by default.

11. In the Advanced view, select the database type that the SQL transformation connects to. Configure other
advanced properties for error handling and other optional properties.

When you choose the database type, the Developer tool changes the native datatypes of the ports on the
Overview view.

12. Type the SQL query or stored procedure call on the SQL view. Select ports for parameter binding or
string substitution in the SQL Editor.

If the stored procedure returns a result set, you must enter the stored procedure call with a syntax
similar to the following syntax: (?Field1?,?Field2?,?Field3?) = call Stored_Procedure_Name (?
Input_Parm?).

Related Topics:
• “Define the SQL Query” on page 618

Creating an SQL Transformation from a Stored
Procedure

You can configure an SQL transformation by importing a stored procedure from a database connection.

1. Select a project or folder in the Object Explorer view.

2. Click File > New > Transformation.

The New dialog box appears.

3. Select the SQL transformation.

4. Click Next.

5. Select Create from an existing stored procedure.

6. Browse for and select a database connection.

7. Browse for and select the stored procedure to import.

8. Enter a name and location for the transformation.

9. Click Finish.

The Developer tool creates the ports and the stored procedure call.

10. If the stored procedure returns a result set, you must manually add the output ports and then reconfigure
the stored procedure call.

a. In the Overview view, click Output in the Ports panel. Click the New button and enter the output port
name, the native type, and the precision.

b. In the SQL view, change the stored procedure call to use the following syntax: (?Field1?,?
Field2?,?Field3?) = call Stored_Procedure_Name (?Input_Parm?)
You can select the input and the output parameters from the Parameter Binding list of ports in the
SQL Editor.

Creating an SQL Transformation from a Stored Procedure 625

C h a p t e r 4 3

Standardizer Transformation
This chapter includes the following topics:

• Standardizer Transformation Overview, 626

• Standardization Strategies, 626

• Standardization Properties, 627

• Configuring a Standardization Strategy, 628

• Standardizer Transformation Advanced Properties, 628

Standardizer Transformation Overview
The Standardizer transformation is a passive transformation that examines input strings and creates
standardized versions of those strings.

The Standardizer transformation creates columns that contain standardized versions of input strings. The
transformation can replace or remove strings in the input data when creating these columns.

For example, you can use the Standardizer transformation to examine a column of address data that contains
the strings Street, St., and STR. You can replace all instances of these strings with the string St.

Within a Standardizer transformation, you can create multiple standardization strategies. Each strategy can
contain multiple standardization operations. The Standardizer transformation provides a wizard that you use
to create strategies.

Standardization Strategies
Use standardization strategies to create columns with standardized versions of input strings.

When you configure a standardization strategy, you add one or more operations. Each operation implements
a specific standardization task.

You can add the following types of operations to a standardization strategy:

Replace Reference Table Matches With Valid Values

Replace strings that match reference table values with the "Valid" value from the reference table.

Replace Reference Table Matches With Custom Strings

Replace strings that match reference table values with a user-defined replacement string.

626

Remove Reference Table Matches

Remove strings that match reference table values.

Replace Custom Strings

Replace user-defined strings with a user-defined replacement string.

Remove Custom Strings

Remove user-defined strings.

Important: You can change the order of operations. The order of operations can change the output of a
strategy because each operation reads the results of the preceding operation.

Standardization Properties
To configure properties for standardization strategies and operations, select the Strategies view in the
Standardizer transformation.

Strategy Properties

Strategy properties apply to all the operations within a strategy. You can configure the following strategy
properties:

Remove multiple spaces

Replaces multiple consecutive spaces with one space.

Remove trailing and leading spaces

Removes spaces from the beginning and end of data strings.

Delimiters

Determines the delimiters that define search tokens. For example, if you choose "Semicolon," the
Standardizer transformation searches the string "oranges;apples;" and finds the strings "oranges" and
"apples." The transformation uses the space delimiter by default.

Operation Properties

You can configure properties for the following types of standardization operations.

Reference Table Operations

Reference table operations include the following properties:

• Reference table. Determines the reference table you use to standardize data. Click Browse to select a
reference table.

• Case Sensitive. Determines whether input strings must match the case of reference table entries.

• Replace With. Replaces input strings that match reference table entries with the text you provide.
Applies to replacement operations only.

• Scope. Specifies the part of the input string that contains the reference table value.

Custom String Operations

Custom string operations include the following properties:

• Match Tokens With. Defines the search strings to find within input data.

Standardization Properties 627

• Replace With. Replaces input strings that match the search strings you specify. Applies to
replacement operations only.

• Scope. Specifies the part of the input string to search.

Configuring a Standardization Strategy
To configure a standardization strategy, edit the settings in the Strategies view of the Standardizer
transformation.

1. Select the Strategies view.

2. Click New.

The New Strategy wizard opens.

3. Click the Inputs field to select ports for the strategy.

4. Configure the strategy properties and click Next.

5. Choose an operation and click Next.

6. Configure the operation properties.

7. Optionally, click Next to add more operations to the strategy.

8. After you add all operations to the strategy, click Finish.

9. Optionally, add more strategies to the transformation.

10. Optionally, change the order that the transformation processes strategies or operations. Select an
strategy or operation and click Move Up or Move Down.

Standardizer Transformation Advanced Properties
Configure properties that help determine how the Data Integration Service processes data for the
Standardizer transformation.

You can configure tracing levels for logs.

Configure the following property on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

628 Chapter 43: Standardizer Transformation

C h a p t e r 4 4

Union Transformation
This chapter includes the following topics:

• Union Transformation Overview, 629

• Groups and Ports, 630

• Union Transformation Advanced Properties, 630

• Union Transformation Processing, 631

• Creating a Union Transformation, 631

• Union Transformation in a Non-native Environment, 632

Union Transformation Overview
Use the Union transformation to merge data from multiple pipelines or pipeline branches into one pipeline
branch.

The Union transformation is an active transformation with multiple input groups and one output group. It
merges sources with matching ports, and it passes data through an output group that has the same port
structure as the input groups. Use a Union transformation in the Developer tool to merge data from multiple
sources without removing the duplicate rows.

For example, you want to combine customer account data from American Bank and California Bank. You can
create a mapping that contains a Union transformation to merge data from the source objects and write to a
target object.

629

The following figure shows a mapping with a Union transformation:

Groups and Ports
A Union transformation has multiple input groups and one output group. You can create one or more input
groups. The Developer tool creates one output group. You cannot create, edit, or delete the output group.
Each group must have matching ports.

To create ports, you can copy ports from a transformation, or you can manually create them. When you
create ports, the Developer tool creates input ports in each input group and output ports in the output group.
The Developer tool uses the output port names you specify for each input and output port. The Developer tool
also uses the same metadata for each port, such as datatype, precision, and scale.

You can connect the input groups from different branches in a single pipeline or from different source
pipelines. When you add a Union transformation to a mapping, you must verify that you connect the same
ports in all input groups. If you connect a port in one input group, but do not connect the same port in another
input group, the Data Integration Service passes NULLs to the unconnected port.

Union Transformation Advanced Properties
Configure properties that help determine how the Data Integration Service displays log details for the Union
transformation.

You can configure tracing levels for logs.

Configure the following property on the Advanced tab:

630 Chapter 44: Union Transformation

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Union Transformation Processing
Use the Union transformation to merge data from multiple pipelines or pipeline branches into one pipeline
branch. The Data Integration Service processes all input groups in parallel. It concurrently reads sources
connected to the Union transformation and passes blocks of data to the input groups of the transformation.
The Union transformation processes the blocks of data based on the order it receives the blocks from the
Data Integration Service. The Union transformation does not block input data on the input groups.

Creating a Union Transformation
You can create a reusable or non-reusable Union transformation.

Creating a Reusable Union Transformation
Create a reusable Union transformation to use in multiple mappings or mapplets.

1. Select a project or folder in the Object Explorer view.

2. Click File > New > Transformation.

The New dialog box appears.

3. Select the Union transformation.

4. Click Next.

5. Enter a name for the transformation.

6. Click Finish.

The transformation appears in the editor.

7. Click the New button to add a port to the transformation.

8. Edit the port to set the name, datatype, and precision.

9. Select the Groups view.

10. Click the New button to add an input group.

11. Click the Advanced view and edit the transformation properties.

Creating a Non-Reusable Union Transformation
Create a non-reusable Union transformation in a mapping or mapplet.

1. In a mapping or mapplet, drag a Union transformation from the Transformation palette to the editor.

The transformation appears in the editor.

2. On the General tab, edit the transformation name and the description.

Union Transformation Processing 631

3. Select all the ports from the upstream transformation and drag them to the Union transformation. The
ports appear as ports in an input group and output group of the Union transformation.

4. Click New on the Groups tab in the Properties view to add an input group.

Another input group appears which has similar ports as the existing input group.

5. Select the ports in the output group of the Union transformation and drag them to the downstream
transformation in the mapping.

Union Transformation in a Non-native Environment
The Union transformation processing in a non-native environment depends on the engine that runs the
transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch mappings. Supported with restrictions in streaming
mappings.

• Databricks Spark engine. Supported without restrictions.

Union Transformation in a Streaming Mapping
Streaming mappings have mapping validation restrictions.

Mapping Validation

Mapping validation fails in the following situation:

• The transformation is configured to merge data from streaming and non-streaming pipelines.

Union Transformation on the Databricks Spark Engine

632 Chapter 44: Union Transformation

C h a p t e r 4 5

Update Strategy Transformation
This chapter includes the following topics:

• Update Strategy Transformation Overview, 633

• Update Strategy Transformations in Dynamic Mappings, 634

• Flagging Rows Within a Mapping, 634

• Specifying Update Options for Individual Targets, 636

• Update Strategy Transformation in a Non-native Environment, 637

Update Strategy Transformation Overview
The Update Strategy transformation is an active transformation that flags a row for insert, update, delete, or
reject. Use an Update Strategy transformation to control changes to existing rows in a target based on a
condition that you apply.

As an active transformation, the Update Strategy transformation might change the number of rows passed
through it. The Update Strategy transformation tests each row to see if it meets a particular condition, and
then flags the row accordingly. The transformation passes rows that it flags for insert, update, or delete to
the next transformation. You can configure the transformation to pass rows flagged for reject to the next
transformation or to drop rows flagged for reject.

For example, you might use the Update Strategy transformation to flag all customer rows for update when
the mailing address has changed. Or, you might flag all employee rows for reject for people who no longer
work for the organization.

You can use an Update Strategy transformation to write results to a relational database target when the
mapping runs on the Spark engine. The mapping uses a JDBC connection string.

Setting the Update Strategy
To define an update strategy, complete the following steps:

1. To control how rows are flagged for insert, update, delete, or reject within a mapping, add an Update
Strategy transformation to the mapping. Use an Update Strategy transformation to flag rows destined
for the same target for different database operations, or to reject rows.

2. Define insert, update, and delete options for individual targets when you configure the mapping. On a
target-by-target basis, you can allow or disallow inserts and deletes for all rows flagged for insert or
delete. You can choose different ways to handle updates for all rows flagged for update.

633

3. If the mapping runs on the Spark run-time engine, you can choose Use Hive Merge in Update Strategy
transformation advanced properties. When a query uses a MERGE statement instead of INSERT, UPDATE
or DELETE statements, processing is usually more efficient.

Update Strategy Transformations in Dynamic
Mappings

You can use an Update Strategy transformation in a dynamic mapping. You can configure dynamic ports in
the transformation and reference the generated ports.

You can reference a dynamic port or a generated port in the Update Strategy transformation. However, if the
generated port does not exist at run time, the mapping fails.

If you use a dynamic port in the update strategy expression, the dynamic port can have no more than one
generated port.

You can parameterize the update strategy expression. Use an expression type parameter and enter the entire
expression as the default parameter value.

Flagging Rows Within a Mapping
Add an Update Strategy transformation to a mapping to flag individual rows for insert, update, delete, or
reject.

Define an update strategy expression to test each row to see if it meets a particular condition. Then, assign
each row a numeric code to flag the row for a particular database operation.

The following table lists the constants for each database operation and their numeric equivalent:

Operation Constant Numeric Value

Insert DD_INSERT 0

Update DD_UPDATE 1

Delete DD_DELETE 2

Reject DD_REJECT 3

The Data Integration Service treats any other value as an insert.

634 Chapter 45: Update Strategy Transformation

Update Strategy Expressions
Enter an update strategy expression in the Expression Editor.

The update strategy expression uses the IIF or DECODE function from the transformation language to test
each row. For example, the following IIF statement flags a row for reject if the entry date is after the apply
date. Otherwise, the statement flags the row for update:

IIF((ENTRY_DATE > APPLY_DATE), DD_REJECT, DD_UPDATE)
You can configure parameters in an update strategy expression. Create parameters or browse parameters in
the Expression Editor.

If the transformation is in a dynamic mapping, the generated fields in the transformation might change. You
can parameterize the complete update strategy expression. If you use a parameter to define the expression,
the Developer tool cannot validate the expression. An expression parameter cannot contain another
parameter.

Update Strategy Transformation Advanced Properties
Configure advanced properties to help determine how the Data Integration Service processes data for the
Update Strategy transformation.

You can define the following advanced properties for the Update Strategy transformation on the Advanced
tab:

Forward Rejected Rows

Determines whether the Update Strategy transformation passes rejected rows to the next transformation
or drops rejected rows. By default, the Data Integration Service forwards rejected rows to the next
transformation. The Data Integration Service flags the rows for reject and writes them to the reject file. If
you do not select Forward Rejected Rows, the Data Integration Service drops rejected rows and writes
them to the mapping log file.

Use Hive Merge

Determines whether the Update Strategy transformation uses Hive MERGE to perform updates on Hive
targets when the mapping runs on Spark. When a query uses a MERGE statement instead of INSERT,
UPDATE or DELETE statements, processing is more efficient.

The mapping ignores the Hive MERGE option and the Data Integration Service uses INSERT, UPDATE and
DELETE to perform the operation under the following scenarios:

• The mapping runs on Blaze or Hive.

• In scenarios where MERGE is restricted by Hive implementation on particular Hadoop distributions.

The mapping log contains results of the operation, including whether restrictions affected results.

When the update affects partitioning or bucketing columns, updates to the columns are omitted.

Note: The Developer tool and the Data Integration Service do not validate against this restriction. If the
Update Strategy expression violates these restrictions, the mapping might produce unexpected results.

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

Flagging Rows Within a Mapping 635

Aggregator and Update Strategy Transformations
When you connect Aggregator and Update Strategy transformations as part of the same pipeline, put the
Aggregator before the Update Strategy transformation. In this order, the Data Integration Service performs
the aggregate calculation, and then flags rows that contain the results of this calculation for insert, update,
delete, or reject.

If you put the Update Strategy before the Aggregator transformation, you must consider how the Aggregator
transformation handles rows flagged for different operations. In this order, the Data Integration Service flag
rows for insert, update, delete, or reject before it performs the aggregate calculation. How you flag a row
determines how the Aggregator transformation treats values in that row used in the calculation. For example,
if you flag a row for delete and then use the row to calculate the sum, the Data Integration Service subtracts
the value in this row. If you flag a row for reject and then use the row to calculate the sum, the Data
Integration Service does not include the value in this row. If you flag a row for insert or update and then use
the row to calculate the sum, the Data Integration Service adds the value in this row to the sum.

Specifying Update Options for Individual Targets
After you use an Update Strategy transformation to flag each row for a particular database operation, define
insert, update, and delete options for each target in the mapping. You can disallow inserts or deletes for rows
flagged for insert or delete. You can choose different ways to handle updates for all rows flagged for update.

Define the update strategy options in the Advanced properties of a target data object in a mapping. You can
set the following update strategy options:

Insert

Inserts all rows flagged for insert into a target. Default is enabled.

Delete

Deletes all rows flagged for delete from a target. Default is enabled.

Update Strategy

Update strategy for existing rows. Select one of the following strategies:

• Update as Update. Updates all rows flagged for update. This is the default value.

• Update as Insert. Inserts all rows flagged for update.

• Update else Insert. Updates all rows flagged for update if they exist in the target and then inserts any
remaining rows marked for insert.

Truncate Table

Truncates the target before loading data. Default is disabled.

636 Chapter 45: Update Strategy Transformation

Update Strategy Transformation in a Non-native
Environment

The Update Strategy transformation processing in a non-native environment depends on the engine that runs
the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported with restrictions.

• Spark engine. Supported with restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Not supported.

Note: The Update Strategy transformation is supported only on Hadoop distributions that support Hive ACID.

Update Strategy Transformation on the Blaze Engine
You can use the Update Strategy transformation on the Hadoop distributions that support Hive ACID.

Some processing rules for the Blaze engine differ from the processing rules for the Data Integration Service.

General Restrictions

If the Update Strategy transformation receives multiple update rows for the same primary key value, the
transformation selects one random row to update the target.

If multiple Update Strategy transformations write to different instances of the same target, the target data
might be unpredictable.

The Blaze engine executes operations in the following order: deletes, updates, inserts. It does not process
rows in the same order as the Update Strategy transformation receives them.

Hive targets always perform Update as Update operations. Hive targets do not support Update Else Insert or
Update as Insert.

Mapping Validation and Compile Validation

Mapping validation fails in the following situations:

• The Update Strategy transformation is connected to more than one target.

• The Update Strategy transformation is not located immediately before the target.

• The Update Strategy target is not a Hive target.

• The Update Strategy transformation target is an external ACID table.

• The target does not contain a primary key.

• The Hive target property to truncate the target table at run time is enabled.

• The Hive target property to create or replace the target table at run time is enabled.

The mapping fails in the following situation:

• The target is not ORC bucketed.

• The Hive target is modified to have fewer rows than the actual table.

Compile validation errors occur and the mapping execution stops in the following situations:

• The Hive version is earlier than 0.14.

• The target table is not enabled for transactions.

Update Strategy Transformation in a Non-native Environment 637

Using Hive Target Tables

To use a Hive target table with an Update Strategy transformation, you must create the Hive target table with
the following clause in the Hive Data Definition Language: TBLPROPERTIES ("transactional"="true").

To use an Update Strategy transformation with a Hive target, verify that the following properties are
configured in the hive-site.xml configuration set associated with the Hadoop connection:

hive.support.concurrency true
hive.enforce.bucketing true
hive.exec.dynamic.partition.mode nonstrict
hive.txn.manager org.apache.hadoop.hive.ql.lockmgr.DbTxnManager
hive.compactor.initiator.on true
hive.compactor.worker.threads 1

Update Strategy Transformation on the Spark Engine
Some processing rules for the Spark engine differ from the processing rules for the Data Integration Service.

You can use the Update Strategy transformation on the Hadoop distributions that support Hive ACID.

General Restrictions for Hive Targets

The Update Strategy transformation does not forward rejected rows to the next transformation when the
target is a Hive table.

If the Update Strategy transformation receives multiple update rows for the same primary key value, the
transformation selects one random row to update the target.

If multiple Update Strategy transformations write to different instances of the same target, the target data
might be unpredictable.

If the mapping runs on the Spark engine, you can choose the Use Hive Merge option. The option has the
following restrictions:

• A single row for delete or update cannot match multiple rows in the target. When the mapping violates
this restriction, the mapping fails with a runtime error.

• If you configure the Update Strategy expression to update partitioning or bucketing columns, the mapping
ignores the Hive MERGE option and does not update the columns.

Note: The Developer tool and the Data Integration Service do not validate against these restrictions. If the
expression or the mapping violates these restrictions, the mapping might run, but the results will not be as
expected.

Hive targets always perform Update as Update operations. Hive targets do not support Update Else Insert or
Update as Insert.

Mapping Validation

Mapping validation fails in the following situations.

• The Update Strategy transformation is connected to more than one target.

• The Update Strategy transformation is not located immediately before the target.

• The Update Strategy transformation target is an external ACID table.

• The target does not contain a connected primary key.

• The property to enable truncation of the Hive or relational target table at run time is selected.

638 Chapter 45: Update Strategy Transformation

• One of the following target strategies for the Hive or relational target table at run time is selected:

- Create or replace the target table

- ApplyNewColumns

- ApplyNewSchema

- Fail

The mapping fails in the following situations when the target is a Hive target:

• The target table is not enabled for transactions.

• The target is not ORC bucketed.

Using Hive Target Tables

To use a Hive target table with an Update Strategy transformation, you must create the Hive target table with
the following clause in the Hive Data Definition Language: TBLPROPERTIES ("transactional"="true").

To use an Update Strategy transformation with a Hive target, verify that the following properties are
configured in the hive-site.xml configuration set associated with the Hadoop connection:

hive.support.concurrency true
hive.enforce.bucketing true
hive.exec.dynamic.partition.mode nonstrict
hive.txn.manager org.apache.hadoop.hive.ql.lockmgr.DbTxnManager
hive.compactor.initiator.on true
hive.compactor.worker.threads 1

Update Strategy Transformation in a Non-native Environment 639

C h a p t e r 4 6

Web Service Consumer
Transformation

This chapter includes the following topics:

• Web Service Consumer Transformation Overview, 640

• WSDL Selection, 643

• Web Service Consumer Transformation Ports, 643

• Web Service Consumer Transformation Input Mapping, 645

• Web Service Consumer Transformation Output Mapping, 648

• Web Service Consumer Transformation Advanced Properties, 651

• Filter Optimizations, 655

• Creating a Web Service Consumer Transformation, 657

• Web Service Consumer Transformation Example, 658

Web Service Consumer Transformation Overview
The Web Service Consumer transformation connects to a web service as a web service client to access or
transform data. The Web Service Consumer transformation is a multiple-group transformation.

A web service uses open standards, such as SOAP, WSDL, and XML. SOAP is the communications protocol
for web services. The web service client request and the web service response are SOAP messages. A WSDL
is an XML schema that describes the protocols, formats, and signatures of the web service operations.

Web service operations include requests for information, requests to update data, or requests to perform
tasks. For example, the Web Service Consumer transformation sends a SOAP request to run a web service
operation called getCustomerOrders. The transformation passes a customer ID in the request. The web
service retrieves the customer and order information. The web service returns the information to the
transformation in a SOAP response.

The Web Service Consumer transformation connects to a web service using an endpoint URL defined in the
WSDL, in a web services connection, or in an endpoint URL input port. You enable security for web services in
a web services connection.

640

SOAP Messages
The Web Service Consumer transformation uses Simple Object Access Protocol (SOAP) to exchange
information with the web services provider and to request web services. SOAP defines the format for web
service request and response messages.

When you transform data with a Web Service Consumer transformation, the transformation generates a
SOAP request and connects to the web service. The transformation connects to the web service using an
endpoint URL defined in the WSDL object, in a web services connection, or in an endpoint URL input port. The
SOAP request contains the information that the web service requires to run the requested operation. The web
service operation returns data to the transformation in a SOAP response. The transformation maps data from
the SOAP response and returns the data in output ports.

The Web Service Consumer transformation encodes the SOAP message headers in ISO-8859-1.

The transformation can process SOAP messages with document/literal encoding. The document/literal style
requires an XML schema to describe the SOAP message. SOAP messages are formed from the XML. When a
SOAP message contains multiple-occurring elements, the groups of elements form levels in the XML
hierarchy. The groups are related when one level is nested within another.

A SOAP request message can contain hierarchical data. For example, the Web Service Consumer
transformation sends a request to add customer orders to a sales database. The transformation passes two
groups of data in a SOAP request message. One group contains a customer ID and name, and the other group
contains order information. The order information occurs multiple times.

A SOAP response message can contain hierarchical data. For example, the Web Service Consumer
transformation generates a SOAP request for customer orders. The web service returns an order header and
multiple-occurring order detail elements in the SOAP response.

WSDL Files
A WSDL file contains a description of the data to be passed to the web service so that the sender and the
receiver understand the data to exchange. You must import a WSDL file to the repository before you can
create a Web Service Consumer transformation.

The WSDL describes the operations to perform on the data and a binding to a protocol or transport, so that
the web service consumer can send the request message in the correct format. The WSDL describes the
network address to connect to the web service.

The WSDL includes information about how to encode SOAP request and response messages. SOAP encoding
determines the format of the SOAP message body. It describes the format for request and response
messages that the web service uses to communicate to the web service consumer. Web service developers
can use a variety of toolkits to create web services. Toolkits support different ways of encoding SOAP
messages.

The Web Service Consumer transformation supports the document/literal SOAP encoding style. You can use
WSDL 1.1 with the Web Service Consumer transformation. You cannot use WSDL attachments such as MIME,
DIME, and MTOM messages.

Operations
A web service contains an operation for each action supported by the web service.

For example, a web service can have an operation named getcustomerid that receives a customer name and
responds with the customer details. The operation input includes an element for the customer name. The
operation output includes elements for customer details based on the customer name.

Web Service Consumer Transformation Overview 641

When you configure a Web Service Consumer transformation, you define how the transformation maps data
to the operation input and how the transformation maps data from the operation output. You configure the
following information in the transformation:

Input mapping

Define how to map the transformation input ports to the web service operation input nodes. The
operation input defines the elements in the SOAP request for the operation.

Output mapping

Define how to map the web service operation output nodes to the transformation output ports. The
operation output defines the elements in a SOAP response for the operation.

Web Service Security
You enable security for web services in a web services connection. You can configure the following types of
security:

Web Service Security

The Data Integration Service can include a web service security header when it sends a SOAP request to
the web service provider. The web service security header contains authentication information so the
web service provider can authenticate the Data Integration Service.

The Web Service Consumer transformation supplies the user name token. The Data Integration Service
creates a separate security SOAP header in the SOAP request and passes the request to the web service
provider.

You can use the following types of web service security in a web services connection:

• PasswordText. The Data Integration Service does not change the password in the WS-Security SOAP
header.

• PasswordDigest. The Data Integration Service combines the password with a nonce and a time
stamp. The Data Integration Service applies a SHA hash on the password, encodes it in base64
encoding, and uses the encoded password in the SOAP header.

Transport layer security

Security implemented on top of the transport layer (TCP layer) of TCP/IP using Secure Sockets Layer
(SSL). Web services use Hypertext Transfer Protocol over SSL (HTTPS) as a web address for secure
message transport. Web Service Consumer transformations can use TLS 1.2, TLS 1.1, or TLS 1.0. You
can use the following authentication with transport layer security: HTTP authentication, proxy server
authentication, and SSL certificates.

SSL authentication

You can use SSL authentication when you connect through the HTTPS protocol.

You can use the following types of SSL authentication:

• One-way SSL authentication

• Two-way SSL authentication

HTTP authentication

You can use HTTP authentication when you connect through the HTTP protocol.

You can use the following HTTP authentication methods:

• Basic authentication

• Digest authentication

642 Chapter 46: Web Service Consumer Transformation

• NT LAN Manager (NTLM) authentication

WSDL Selection
Before you create a Web Service Consumer transformation, you must import a WSDL file into the model
repository. The WSDL defines the operation signature of the web service you want to run. When you import a
WSDL, the Developer tool creates a physical data object that you can reuse for other transformations.

A WSDL can define multiple operations. When you create a Web Service Consumer transformation, select
which operation you want to run. You can view the operation input and the operation output hierarchies in the
Web Service Consumer transformation. The hierarchies define the structure of the SOAP request message
and the SOAP response message.

You can also import a WSDL with one-way input operation. You must create dummy output ports when you
import a WSDL with one-way input operation.

Web Service Consumer Transformation Ports
When you view the transformation ports, show the ports if you do not need to view the operation hierarchy.
When you show the ports, you can define groups, define ports, and map nodes from the operation output to
the output ports.

The following figure shows the ports for a non-reusable Web Service Consumer transformation:

A Web Service Consumer transformation can have multiple input groups and multiple output groups. When
you create ports, create groups and add the ports to the groups. Define the ports in a group hierarchy based
on the structure of the operation input or operation output hierarchy. Add a key to relate a child group to a
parent group. All groups except the lowest group in the hierarchy must have primary keys. All groups in the
hierarchy except the root group must have foreign keys.

WSDL Selection 643

The transformation has a root input group named RequestInput. You must add a primary key to the root input
group. The key must be string, bigint, or integer.

You can add additional pass-through ports to the root input group. Pass-through ports pass data through the
transformation without modifying the data. The pass-through port can occur one time in the input data. You
can add the pass-through port to any output group. Associate the output port to the input port. The input
value that you pass through a SOAP request repeats in the output rows from the SOAP response.

You can also add HTTP headers, cookie ports, a dynamic URL port, and ports for web service security
authentication to the root input group. Data in the root group occurs one time.

To map an operation output node to an output port, click the field in the Location column and expand the
hierarchy in the Select Location dialog box. Then, choose a node from the hierarchy.

HTTP Header Input Ports
A web service might require additional HTTP headers. You can create input ports in the root input group to
pass the additional header information to the web service provider.

To add an HTTP header and an HTTP port, select the root input group and click the arrow next to the New
button. Then, click HTTP Header. Enter a header name and port name.

You can create multiple HTTP headers.

Other Input Ports
You can add predefined input ports to the Web Service Consumer transformation.

You can add the following predefined input ports:

Cookie port

You can configure the Web Service Consumer transformation to use cookie authentication. The remote
web service server tracks the web service consumer users based on the cookies. You can increase
performance when a mapping calls a web service multiple times.

When you project the cookie port to a web service request message, the web service provider returns a
cookie value in the response message. You can pass the cookie value to another transformation
downstream in the mapping or you can save the cookie value in a file. When you save the cookie value in
a file, you can configure the cookie as input to the Web Service Consumer transformation.

You can project the cookie output port to any of the Web Service Consumer transformation output
groups.

Endpoint URL port

The Web Service Consumer transformation connects to a web service using an endpoint URL. You can
define the endpoint URL in the WSDL file, in a web services connection, or in an endpoint URL input port.
When the transformation receives the URL dynamically in a port, the Data Integration Service overrides
the URL defined in the WSDL file or in the web services connection.

The Web Service Consumer transformation can have one URL port value for each web service request.
Add an Endpoint URL port to the root input group.

WS-Security ports

You enable web service security in a web services connection. When you enable web service security,
you must define the user name and password in a web services connection or in WS-Security input ports.

644 Chapter 46: Web Service Consumer Transformation

When you add WS-Security ports, you pass the user name and the password through input ports in the
transformation. When the transformation receives the user name and password dynamically in ports, the
Data Integration Service overrides the values defined in the web services connection.

Note: A web services connection has one user name and password for HTTP and WS-Security
authentication.

To add predefined input ports, click the root input group in the Ports area. Click the arrow next to the New
button and then click Other Ports. Choose the ports to add.

Web Service Consumer Transformation Input
Mapping

When you view the transformation ports, show the input mapping to view the operation input hierarchy. When
you show the input mapping, you can define input groups, define input ports, and map input ports to
operation input nodes.

The input mapping includes the following areas:

Ports

Create the transformation input groups and input ports in the Ports area.

Operation Input

The Operation Input area shows the nodes in the SOAP request message that the Web Service
Consumer transformation sends to the web service. The WSDL data object that you use to create the
transformation defines the operation input hierarchy.

The following figure shows the input mapping for a non-reusable Web Service Consumer transformation:

After you create input ports, map the input ports from the Ports area to the nodes in the Operation Input area.
When you map an input port to a node in the operation input, the location of the port appears in the Location
column in the Operation Input area.

The Developer tool maps nodes in the first level of the operation input to input ports when you choose to map
the first level of the input hierarchy. The Developer tool also creates the ports to perform the mapping. If the
first level of the hierarchy contains a multi-occurring parent node with one or more multi-occurring child
nodes, the Developer tool does not map the first level of the hierarchy.

Web Service Consumer Transformation Input Mapping 645

You can map XML data from one string or text input port to the entire SOAP request message. When you map
XML data to the entire SOAP request, you cannot map ports to nodes in the operation input.

You can choose to view the lines that connect the input ports to the nodes in the operation input.

Related Topics:
• “Generating Web Service SOAP Messages Overview” on page 670

Rules and Guidelines to Map Input Ports to Nodes
Review the following rules when you map input ports to nodes in the operation input hierarchy:

• You can map an input port to one node in the hierarchy. You can map the same port to any number of keys
in the hierarchy.

• The input port and the node must have compatible data types.

• You can map ports from one input group to multiple hierarchy levels in the operation input.

• You must map input ports to the keys in the operation input. Any port that you map to a key must be a
string, integer, or bigint datatype. Map data to the keys in all levels in the operation input above the
hierarchy level that you are including in the SOAP message. Include the foreign keys for all levels above
and including the level you are mapping.

Note: You do not have to map input ports to keys if you are mapping only the lowest level of the operation
input hierarchy.

• You can map multiple string, bigint, or integer input ports to a key in the Operation Input area to create a
composite key. When you click the Location field for a composite key, you can reorder the input ports or
remove one of the ports.

Customize View Options
You can change the operation input hierarchy to show keys in the Operation Input area. You can also show
grouping constructs that define how to order nodes.

Click the Customize View button () in the Operation Input area. Enable any of the following options:

Sequence, Choice, and All

Show a line that indicates whether an element definition is sequence, choice, or all.

Nodes in an all group must all be included in the SOAP message.

Nodes in a sequence group must be in the order specified in the WSDL.

At least one node in a choice group must appear in the SOAP message.

Keys

View the keys in the Operation Input area. The Operation Input area includes keys for each group. You
can add a key to an input port in the Ports area.

Mapping Input Ports to the Operation Input
When you show the transformation input mapping, you can define input groups, define input ports, and map
input ports to operation input nodes.

1. Open a Web Service Consumer transformation.

2. To show the transformation input mapping, use one of the following methods:

646 Chapter 46: Web Service Consumer Transformation

• For a reusable transformation, click the Overview view. Choose to show the input mapping.

• For a non-reusable transformation, click the Ports tab in the Properties view. Choose to show the
input mapping.

3. Define a primary key for the root input group.

4. To add an input group or port to the Ports area, use one of the following methods:

Option Description

Drag a node Drag a group node or a child node in the Operation Input area to an empty column in
the Ports area. If the node is a group node, the Developer tool adds a group without
ports.

Manually add a group or
port

To add a group, click the arrow next to the New button and then click Group. To add
a port, click the arrow next to the New button and then click Field.

Drag a port from another
transformation

In the editor, drag a port from another transformation to the Web Service Consumer
transformation.

Copy a port Select ports from another transformation and copy them to the Ports area. To copy
ports, you can use keyboard shortcuts or you can use the copy and paste buttons in
the Developer tool.

Select Map first level of
hierarchy

Select Map first level of hierarchy. The Developer tool maps nodes in the first level
of the operation input to input ports and groups. The Developer tool also creates the
input ports and groups to perform the mapping.

5. If you manually create a port or you copy a port from another transformation, click the Location column
in the Operation Input area and choose a port from the list.

6. To map input ports as a composite key, use one of the following methods:

Option Description

Drag input ports Select two or more input ports and drag them to a key in the operation input
hierarchy.

Select input ports from the
Select Location dialog box

Click the Location column of a key in the operation input hierarchy and then
select the input ports.

7. To clear the locations of nodes, use one of the following methods:

Option Description

Click Clear Select one or more nodes in the Operation Input area and click Clear.

Delete the lines that connect
ports to nodes

Select one or more lines that connect the input ports to the nodes in the
operation input and press Delete.

8. If the associated WSDL data object includes anyType elements, any elements, anyAttribute attributes,
derived type elements, or substitution groups, choose objects in the Operation Input area. In the Type
column for a node, click Choose and then choose one or more types, elements, or attributes from the
list.

9. To map XML data from a string or text input port to the complete SOAP request, right-click the port and
select Map as XML.

Web Service Consumer Transformation Input Mapping 647

Web Service Consumer Transformation Output
Mapping

When you view the transformation ports, show the output mapping to view the operation output hierarchy.
When you show the output mapping, you can define output groups, define output ports, and map operation
output nodes to output ports.

The output mapping includes the following areas:

Operation Output

The Operation Output area shows the nodes in the SOAP response message that the web service returns
to the Web Service Consumer transformation. The WSDL data object that you use to create the
transformation defines the operation output hierarchy.

Ports

Create the transformation output groups and ports in the Ports area.

The following figure shows the output mapping for a non-reusable Web Service Consumer transformation:

After you create output ports, map the nodes from the Operation Output area to the ports in the Ports area.
When you map a node from the operation output to an output port, the location of the node appears in the
Location column in the Ports area.

The Developer tool maps nodes in the first level of the operation output to output ports when you choose to
map the first level of the output hierarchy. The Developer tool also creates the ports to perform the mapping.
If the first level of the hierarchy contains a multi-occurring parent node with one or more multi-occurring child
nodes, the Developer tool does not map the first level of the hierarchy.

You can choose to display the output ports in a hierarchy. Each child group appears under the parent group.
You can also choose to view the lines that connect the nodes in the operation output to the output ports.

If the associated WSDL data object is deleted from the repository, the Developer tool retains the location of
the operation nodes in the output mapping. When you show the output mapping, the Ports area still displays
the location of the operation nodes in the Location column for the output ports. If you associate another
WSDL with the transformation, the Developer tool checks whether each location is valid. The Developer tool
clears the location of operation nodes in the Ports area of the output mapping if the location is no longer
valid.

648 Chapter 46: Web Service Consumer Transformation

Related Topics:
• “Parsing Web Service SOAP Message Overview” on page 662

Rules and Guidelines to Map Nodes to Output Ports
Review the following rules when you map nodes in the operation output hierarchy to output ports:

• The operation output node and the output port must have compatible datatypes.

• You cannot map a node to more than one output port in a group.

• Each output port must have a valid location, unless the port is a pass-through port.

• If you drag a multiple-occurring child node to an empty output port, you must relate the group to other
output groups. When you select a group, the Developer tool creates keys to relate the groups.

• When you drag a multiple-occurring element into a group that contains the parent element, you can
configure the number of child element occurrences to include. Or, you can replace the parent group with
the multiple-occurring child group in the transformation output.

Mapping the SOAP Message as XML
You can map the complete SOAP message as XML instead of returning the data to separate output ports.

When you map the SOAP message as XML, the Data Integration Service returns the complete SOAP message
in one port. Do not create output ports.

To map the complete message, right-click the root group in the Operation Output area. Select Map as XML.

The Developer tool creates a string output port. The precision is 65535 bytes.

Customize View Options
You can change the operation output hierarchy to show the cookie ports, pass-through ports, and keys in the
Operation Output area. You can also show grouping constructs that define how to order nodes.

Click the Customize View button in the Operation Output area. Enable any of the following options:

Sequence, Choice, and All

Show a line that indicates whether an element definition is sequence, choice, or all.

Nodes in an all group must all be included in the SOAP message.

Nodes in a sequence group must be in the order specified in the WSDL.

At least one node in a choice group must appear in the SOAP message.

Keys

View the keys in the Operation Output area. The Operation Output area includes keys for each group.
You can add a key to an output port in the Ports area.

Pass-through Ports

The Operation Output area shows the pass-through ports. Pass-through ports are ports that pass data
through the transformation without changing the data. You can project pass-through ports from the
operation output to any of the Web Service Consumer transformation output groups. A pass-through port
receives data one time, so the port is at the root level in the SOAP messages.

Web Service Consumer Transformation Output Mapping 649

Cookie Ports

Shows the cookie port. When you configure cookie authentication, the remote web service server tracks
the web service consumer users based on the cookies. When you project a web service cookie in the
request message, the web service returns a cookie in the response message. You can project the cookie
from the operation output to any of the Web Service Consumer transformation output groups.

Mapping the Operation Output to Output Ports
When you show the transformation output mapping, you can define output groups, define output ports, and
map operation output nodes to output ports.

1. Open a Web Service Consumer transformation.

2. To show the transformation output mapping, use one of the following methods:

• For a reusable transformation, click the Overview view. Choose to show the output mapping.

• For a non-reusable transformation, click the Ports tab in the Properties view. Choose to show the
output mapping.

3. To add an output group or port to the Ports area, use one of the following methods:

Option Description

Drag a node Drag a group node or a child node in the Operation Output area to an empty column
in the Ports area. If the node is a group node, the Developer tool adds a group
without ports.

Manually add a group or
port

To add a group, click the arrow next to the New button and then click Group. To add
a port, click the arrow next to the New button and then click Field.

Drag a port from another
transformation

In the editor, drag a port from another transformation to the Web Service Consumer
transformation.

Copy a port Select ports from another transformation and copy them to the Ports area. To copy
ports, you can use keyboard shortcuts or you can use the copy and paste buttons in
the Developer tool.

Select Map first level of
hierarchy

Select Map first level of hierarchy. The Developer tool maps nodes in the first level
of the operation output to output ports and groups. The Developer tool also creates
the output ports and groups to perform the mapping.

4. If you manually create a port or you copy a port from another transformation, click the Location column
in the Ports area and choose a node from the list.

5. To clear the locations of ports, use one of the following methods:

Option Description

Click Clear Select one or more ports in the Ports area and click Clear.

Delete the lines that connect
nodes to ports

Select one or more lines that connect the nodes in the operation output to the
output ports and press Delete.

6. If the associated WSDL data object includes anyType elements, any elements, anyAttribute attributes,
derived type elements, or substitution groups, choose objects in the Operation Output area. In the Type
column for a node, click Choose and then choose one or more types, elements, or attributes from the
list.

650 Chapter 46: Web Service Consumer Transformation

7. To map the complete SOAP response message as XML, right-click the root group in the Operation
Output area and select Map as XML.

Web Service Consumer Transformation Advanced
Properties

The Web Service Consumer transformation advanced properties include the tracing level, generic fault ports,
web services connection, and concurrent web service request messages.

You can define the following advanced properties for the Web Service Consumer transformation on the
Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

SOAP Action

Overrides the SOAP action value defined in the WSDL with a constant value for the Web Service
Consumer transformation.

Enable Generic SOAP Fault Handling

Returns fault messages that are not defined in the WSDL. Creates output ports in a GenericFault output
group to handle fault codes and messages.

The following table describes the fault output ports for SOAP 1.1 and SOAP 1.2:

Fault Output Port for
SOAP 1.1

Fault Output Port for
SOAP 1.2

Description

Fault Code Code* Returns a fault identification code.

Fault String Reason* Returns an explanation of the error in a fault
message.

Fault Detail Detail Returns custom information that the web service
provider passes to the Web Service Consumer
transformation in a generic fault message.

Fault Actor Role Returns information about the object that caused
the fault to happen.

- Node Returns the URI of the SOAP node that generated
the fault.

* The Code and Reason output ports are hierarchical.

Note: You can expand the Code fault output port to extract the SubCode fault output port upto one level.

Enable HTTP Error Handling

Returns any HTTP error from the web service. Creates an HTTP error output port in the GenericFault
output group.

Web Service Consumer Transformation Advanced Properties 651

Treat Fault as Error

Adds fault messages to the mapping log. When a fault occurs, the Data Integration Service increments
the error count for the mapping. Disable this property to allow early selection and push-into optimization.
Default is enabled.

Connection

Identifies the web services connection object to connect to the web service. Create the web services
connection in the Developer tool. Edit the web services connection in the Developer tool or the
Administrator tool. When you configure a web services connection, configure the endpoint URL, the type
of security that the web service requires, and a connection timeout period.

The Web Service Consumer transformation connects to a web service using an endpoint URL. You can
define the endpoint URL in the WSDL file, in a web services connection, or in an endpoint URL input port.

Use the following guidelines to determine when to configure a web services connection:

• Configure a connection if you want to use an endpoint URL that differs from the URL in the WSDL file
and if you are not using an endpoint URL input port.

• Configure a connection if the web service you connect to requires web service security, HTTP
authentication, or SSL certificates.

• Configure a connection if you want to change the default connection timeout period.

Note: You can associate a WSDL data object in the repository with a web services connection. The
associated connection becomes the default connection for each Web Service Consumer transformation
that you create from that WSDL.

Enable Compression

Enables coding of SOAP requests with the GZIP compression method and enables decoding of SOAP
responses with GZIP or deflate.

XML Schema Validation

Validates the SOAP response message at run time. Select Error on Invalid XML or No Validation.

Sorted Input

Enables the Data Integration Service to generate output without processing all of the input data. Enable
sorted input when the input data is sorted by the keys in the operation input hierarchy.

Push-into Optimization

Enables push-into optimization. Click the Open button in the Push-Into Optimization property to select
filter ports that receive filter values. For each filter port, choose the output port that contains the filtered
column in the web service response.

Has Side Effects

Checkbox that indicates that the web service performs any function besides returning rows. The Web
Service Consumer transformation has a side effect if the web service, in addition to returning a rows,
modifies an object or interacts with other objects or functions. The web service might modify a
database, add to a total, raise an exception, write an email, or call other web services with side effects.
Disable the Has Side Effects property in order to allow push-into optimization or early selection
optimization. Default is enabled.

Enable Concurrency

Enables the Web Service Consumer transformation to create multiple concurrent connections to a web
service so that it can send multiple web service requests in parallel. When you enable the Web Service
Consumer transformation to create multiple concurrent connections to the web service, you can set the
total memory consumption limit and the number of concurrent connection limits.

652 Chapter 46: Web Service Consumer Transformation

The following table describes the options:

Options Description

Enable concurrency Creates multiple concurrent connections to a web service.

Concurrency Connection Limit The number of concurrent web service connections. Default is 20.

Total Concurrency Memory Limit (in MB) The total memory allocation limit for all the concurrent
connections. Default is 100 MB.

Web Service Error Handling
You can configure the Web Service Consumer transformation to pass SOAP faults and HTTP errors
downstream in a mapping. You can increment the error count when a fault occurs. Configure web service
error handling in the transformation advanced properties.

A web service returns either a response message or it returns a fault. A fault is an error. The web service can
generate different faults based on the errors that occur.

The Web Service Consumer transformation can return the following types of faults:

SOAP faults

SOAP errors that the WSDL defines. Configure output error ports that return the faults in the web service
response message. For a SOAP 1.1 binding, the Data Integration Service returns the fault message, fault
code, fault string, and fault actor elements for the fault. For a SOAP 1.2 binding, the Data Integration
Service returns the fault message, code, reason, node, and role elements for the fault.

Generic SOAP faults

The web service generates generic SOAP faults at run time. The fault elements are different for a SOAP
1.1 binding and a SOAP 1.2 binding. The WSDL does not define generic SOAP faults. Generic SOAP faults
include authentication failures and SOAP request errors.

HTTP errors

The Developer tool adds the HTTP fault output port when you enable HTTP error handling in the
transformation. The Data Integration Service returns HTTP errors from the web service in a single string
port. An HTTP error includes an error code and a message.

If the SOAP response from the web service has XML data that is not valid, the Web Service Consumer
transformation returns an error.

You can configure whether to treat SOAP faults as errors. When you enable Treat Fault as Error and a SOAP
fault occurs, the Data Integration Service increments the error count for the mapping. The fault appears in the
message log.

Message Compression
When you enable SOAP message compression, the Web Service Consumer transformation compresses web
service request messages and receives compressed web service response messages.

The Web Service Consumer transformation encodes the SOAP request with GZip compression. The
transformation accepts a response message encoded with the GZip or the deflate compression.

When the Data Integration Service receives the response from the web service, it checks the Content-
Encoding HTTP header in the SOAP message and it decodes the message.

The default is no compression encoding. The web service does not compress the SOAP response.

Web Service Consumer Transformation Advanced Properties 653

The following table shows the headers in the request and response messages when compression is on or off:

Compression Header

On Content-Encoding header: GZip
Accept-Encoding header: GZip, deflate

Off Empty Content-Encoding header
Empty Accept-Encoding header

Sometimes a web service encodes a response message with a default compression. The Web Service
Consumer transformation decodes the message if it is GZip or deflate encoded. The Web Service Consumer
transformation logs a message to the mapping log if the web service encodes the response message
unexpectedly.

Enable compression in the transformation advanced properties.

Concurrency
You can enable the Web Service Consumer transformation to create multiple concurrent connections to a
web service so that it can send multiple web service requests in parallel.

For example, while querying bank information, you can configure the Web Service Consumer transformation
for concurrency so that multiple rows are sent in parallel. If there are 20 input rows, you can send 20 requests
concurrently for faster processing.

When you enable concurrency in the Web Service Consumer transformation, you can configure the total
memory consumption limit.

When you enable concurrency in the Web Service Consumer transformation, you can configure the number of
concurrent web service connections.

Rules and Guidelines for Concurrency
Use the following rules and guidelines while using concurrency:

• Concurrency supports sorted input rows as multiple concurrent connections to a web service. Ordered
output rows are not supported.

• Use concurrency if the data set is more than 100 rows.

• It is advisable not to increase the number of concurrent web service connections. The number of
concurrent web service connections is linked to the number of sockets used by the operating system.
Increasing the number of sockets is expensive.

• Use systems that have multi-core processors with a minimum of 100 MB of RAM for optimal performance
while using the concurrency feature.

• Concurrency memory limit represents the memory consumed by concurrent work flows while invoking
web services.

• When you enable concurrency in the Web Service Consumer transformation, you can configure the
memory consumption limit. Ensure that the memory consumption is not more than the physical RAM on
the server.

654 Chapter 46: Web Service Consumer Transformation

Best Practices for Concurrency
For optimal performance while using concurrency, adhere to the following best practices:

• Avoid changing the default values of the total concurrency memory limit and concurrency connection
limit.

• Avoid using concurrency for data sets of less than 100 rows.

• Avoid pass-through ports in the mapping while using concurrency.

Filter Optimizations
Filter optimization increases performance by reducing the number of rows that pass through the mapping.
The Data Integration Service can apply the early selection optimization or push-into optimization.

When the Data Integration Service applies a filter optimization method, it moves a filter as close to the source
as possible in a mapping. If the Data Integration Service cannot move a filter before a transformation in a
mapping, it might be able to push the filter logic into a transformation.

Enabling Early Selection Optimization with the Web Service
Consumer Transformation

Enable early selection optimization for the Web Service Consumer transformation if the transformation does
not have side effects and it does not treat faults as errors.

1. Open the Web Service Consumer transformation Advanced Properties view.

2. Clear Treat Fault as Error.

3. Clear Has Side Effects.

Push-Into Optimization with the Web Service Consumer
Transformation

With push-into optimization, the Web Service Consumer transformation receives the filter value in a filter
port. The filter port is an unconnected input port that you identify as a filter port when you configure push-
into optimization. The filter port has a default value that ensures that the web service returns all rows if the
end-user query contains no filter. The filter port is not a pass-through port.

Note: The filter field must be part of the root group in the web service request.

The filter field cannot be a pass-through port. When you configure a filter port, the default value of the port
changes to the value of the filter condition, so the pass-though output port value changes. A filter based on
the output pass-through port returns unexpected results.

You can push multiple filter expressions to the Web Service Consumer transformation. Each filter condition
must be the following format:

<Field> = <Constant>

The filter conditions must be joined by AND. You cannot join the conditions with an OR.

Filter Optimizations 655

Push-Into Optimization with Web Service Consumer Transformation Example
An SQL data service returns orders for all customers or it returns orders for a specific customer based on the
SQL query it receives from the user.

The data service contains a logical data object with the following components:

Customer table

An Oracle database table that contains customer information.

Web Service Consumer transformation

A transformation that calls a web service to retrieve the latest orders for customers. The Web Service
Consumer transformation has input ports for customerID and orderNum. The transformation has pass-
through ports that contain customer data that it receives from the Customer table. The orderNum port is
the filter port and is not connected. orderNum has the default value "*". When the web service receives
this value in the web service request, it returns all orders.

Orders virtual table

A virtual table that receives the customer and order data from the web service. The end-user queries this
table. Orders contains a customer column, orderID column, and customer and order data.

The end-user passes the following SQL query to the SQL data service:

SELECT * from OrdersID where customer = 23 and orderID = 56

The Data Integration Service splits the query to optimize the mapping. The Data Integration Service uses
early selection optimization and moves the filter logic, customer = 23, to the Customer table read. The Data
Integration Service uses push-into optimization and pushes the filter logic, orderID = 56, into the Web
Service Consumer transformation filter port. The Web Service Consumer transformation retrieves ordersID 56
for customer 23.

Enabling Push-Into Optimization with the Web Service Consumer
Transformation
Enable push-into optimization for the Web Service Consumer transformation if the transformation does not
have side effects and it does not treat faults as errors.

1. Open the Web Service Consumer transformation Advanced Properties view.

2. Clear Treat Fault as Error.

3. Clear Has Side Effects.

4. Click the Open button in the Push-Into Optimization property.

5. Choose the filter port name in the Optimized Input dialog box.
You can choose multiple filter ports.

6. Click the Output column.

7. For each filter port, choose the output port that contains the filtered column in the web service response.

8. Enter a default value for each filter port.

Note: You cannot configure a default value for a Web Service Consumer port unless it is a filter port.

656 Chapter 46: Web Service Consumer Transformation

Creating a Web Service Consumer Transformation
You can create a reusable or non-reusable Web Service Consumer transformation. Reusable transformations
can exist in multiple mappings. Non-reusable transformations exist within a single mapping.

You can create Web Service Consumer transformations for a SOAP 1.1 binding and a SOAP 1.2 binding from
a single WSDL object.

1. To create a transformation, use one of the following methods:

Option Description

Reusable Select a project or folder in the Object Explorer view. Click File > New > Transformation. Select
the Web Service Consumer transformation and click Next.

Non-reusable In a mapping or mapplet, drag a Web Service Consumer transformation from the Transformation
pallette to the editor.

The New Web Service Consumer Transformation dialog box appears.

2. Browse and select a WSDL data object to define the web service request and response messages.

If the WSDL is not in the repository, you can import the WSDL from the New Web Service Consumer
Transformation dialog box.

3. Browse and select an operation from the WSDL.

You can choose an operation that has a SOAP 1.1 binding or SOAP 1.2 binding.

4. Click Next.

The Map Ports to the Operation Input screen appears. The Ports area shows the transformation input
groups and input ports. The Operation Input area shows the request message hierarchy.

5. Define the input groups and input ports and map the input ports to operation input nodes.

6. Click Next.

Creating a Web Service Consumer Transformation 657

The Map Ports from the Operation Output screen appears. The Operation Output area shows the
response message hierarchy. The Ports area shows the transformation output groups and output ports.

7. Define the output groups and output ports, and map the operation output nodes to the output ports.

8. Click Finish.

9. Click the Advanced view to configure the transformation properties and the web services connection.

Related Topics:
• “Mapping Input Ports to the Operation Input” on page 646

• “Mapping the Operation Output to Output Ports” on page 650

• “Web Service Consumer Transformation Advanced Properties” on page 651

Web Service Consumer Transformation Example
Your organization needs to expose order information for the RT100 product line to the sales organization.
The sales team needs to query the order summary and order details on a daily basis.

Create a logical data object that exposes the daily order information in virtual tables. The read mapping
contains a Web Service Consumer transformation that returns the latest RT100 orders. The Web Service
Consumer transformation consumes a web service that returns the daily order summary and order detail
information for the RT100 product line.

Input File
The input file is a flat file that contains the product line number.

Create a physical data object to define the input file. The file has one field, Product_Line. The field value is
RT100. Define the location of the physical data object in the Runtime Properties view.

658 Chapter 46: Web Service Consumer Transformation

Logical Data Object Model
A business analyst in your organization creates a logical data model that describes the order summary and
order detail table structures. The logical data model contains the Order_Summary and Order_Detail logical
data objects.

The analyst creates a schema in a modeling tool that defines the logical data model. You import the logical
data model from the schema and create the Order_Summary and Order_Detail logical data objects.

Logical Data Object Mapping
The logical data object mapping describes how to access data through the logical data object.

The read mapping contains the following objects:

Product_Line

Input flat file that contains the product line number.

Exp_Curr_Date transformation

Expression transformation that returns the current date and a primary key for the Web Service Consumer
transformation root level input group.

WSC_Order transformation

Web Service Consumer transformation that consumes a web service to retrieve order information. The
transformation passes the product line and current date to the web service in the request message. The
transformation receives order information from the web service in the response message.

Order_Summary table

A logical data object that contains order information such as Order_No, Customer_Id, Qty, and
Order_Date.

Order_Detail table

A logical data object that contains order detail information such as Order_No, Product_Id, Qty, and
Status.

Orders_Fault

Output flat file that receives generic fault messages.

Web Service Consumer Transformation Example 659

Web Service Consumer Transformation
The Web Service Consumer transformation receives a product line, date, and a sequence number as input.
The transformation consumes the Get_Order_Info web service operation to retrieve the order information.

When you create the Web Service Consumer transformation, choose a WSDL data object that describes the
request and response web service messages. A web service message contains hierarchical groups of XML
elements. An element can contain other elements. Some elements occur multiple times. Create the
transformation from the Order_Info WSDL object in the repository.

Configure the transformation input ports and map the ports to the operation input hierarchy. Map nodes from
the operation output hierarchy to the output ports. Define the web services connection and run-time
properties.

Transformation Input Mapping
When you show the input mapping on the Ports view, you can define input ports and map them to nodes in
the operation input.

The transformation Ports area has a root group and an Order group. The root group is the Request input
group. Add one port to the Request input group to represent the primary key.

The Order group has the Select_Date and Select_Product_Line input ports.

Map the input ports to the Order_Date and Product_Line nodes in the Operation Input area.

The Operation Input area defines the request message that the Web Service Consumer transformation
passes to the web service. The nodes appear in the Operation Input area by default.

Transformation Output Mapping
When you show the output mapping on the Ports view, you can define the output ports by mapping nodes
from the operation output to the transformation output groups.

The web service returns the following hierarchy in a web service response message:

Response
 Orders
 Order
 Key_Order
 Order_ID
 Order_Date
 Customer_ID
 Total_Qty
 Order_Details
 Order_Detail
 Product_ID
 Description
 Qty
 Status

The web service returns multiple orders. Order is a multiple-occurring node in the Orders level. For each
order, the web service can return multiple order details. Order_Detail is a multiple-occurring node in the
Order_Details level.

Note: The Developer tool adds the Key_Order node in the user interface. You can map the key to output
groups to define relationships between groups. For this example, the Order_ID is the primary key in Order, and
it is the foreign key in Order_Details.

660 Chapter 46: Web Service Consumer Transformation

Create the following output groups in the Ports area:

Order
 Order_ID
 Order_Date
 Customer_ID
 Total_Qty
Order_Detail
 Order_ID
 Product_ID
 Description
 Qty
 Status

The Data Integration Service writes a row from the Order group whenever the value of Order_ID changes.

The Data Integration Service writes a row from the Order_Detail group whenever the values of Order_ID and
Product_ID change.

Transformation Advanced Properties
Configure the following advanced properties for the Web Service Consumer transformation:

Enable Generic SOAP Fault Handling

Adds output ports that receive SOAP fault messages.

Connection

Choose a web services connection to access the web service.

Enable Compression

The Web Service Consumer transformation compresses the web messages with GZIP.

Web Service Consumer Transformation Example 661

C h a p t e r 4 7

Parsing Web Service SOAP
Messages

This chapter includes the following topics:

• Parsing Web Service SOAP Message Overview, 662

• Transformation User Interface, 663

• Multiple-Occurring Output Configuration, 664

• Parsing anyType Elements, 666

• Parsing Derived Types, 667

• Parsing QName Elements, 668

• Parsing Substitution Groups, 668

• Parsing XML Constructs in SOAP Messages, 668

Parsing Web Service SOAP Message Overview
The Data Integration Service generates row data when it parses a SOAP message in a web service
transformation.

The web service Input transformation and the Web Service Consumer transformation are web service
transformations that parse SOAP messages.

To configure a transformation to parse a SOAP message, create output ports in a structure similar to the
SOAP message hierarchy. Map the nodes in the SOAP message hierarchy to the ports.

You can configure normalized groups of output ports, denormalized groups, and pivoted groups of ports.
When the SOAP message contains derived types, anyType elements, or substitution groups, you can
configure different output groups based on what types might occur in the SOAP messsage instance.

662

Related Topics:
• “Web Service Consumer Transformation Output Mapping” on page 648

Transformation User Interface
The Web Service Consumer transformation and the web services Input transformation provide a user
interface that you can use to map data from the SOAP message to the transformation output ports.

The following figure shows a mapping between SOAP 1.1 message nodes and output ports in a Web Service
Consumer transformation:

Operation Area

The Operation area contains the SOAP message hierarchy. Complex nodes or multiple-occurring nodes
define hierarchy levels in the structure. The Developer tool adds keys to the levels that define the parent-child
relationships between them.

In the preceding figure, the SOAP message hierarchy has the following levels:

Response or Request

Level that represents the root of the response or request message.

Company

Top level of the request data.

Departments

Multiple-occurring departments within the company.

Employees

Employee is a complex element within a department.

Fault Group

Fault message group that receives error messages.

Ports Area

You can map data from levels of the SOAP message to output ports. Each group of output ports can be
related to other output groups with primary foreign-key relationships.

Transformation User Interface 663

In the preceding figure, the transformation has groups of output ports that correspond to the groups of nodes
in the SOAP message.

Multiple-Occurring Output Configuration
When an Input transformation or Web Service Consumer transformation returns multiple-occurring data, you
can configure the output ports in different configurations.

You can configure normalized output data, pivoted output data, or denormalized output data.

For example, a SOAP message contains Departments and Employees complex elements. Each department
contains multiple employees. Departments is the parent of Employees.

The SOAP message contains the following element hierarchy:

Departments
 Department_ID
 Department_Name
 Employees
 Employee_ID
 Employee_Name

Normalized Relational Output
When you create normalized output data, the data values do not repeat in an output group. You create a one-
to-one relationship between the hierarchy levels in the SOAP message and the output groups of ports.

When the SOAP message contains a Departments parent hierarchy level and an Employees child hierarchy
level, you might create the following groups of ports:

Departments
 Department_Key
 Department_ID
 Department_Name

Employees
 Department_Key
 Employee_ID
 Employee_Name

The Department_Key is a generated key that relates the Employees output group to a Department group.

Generated Keys
When you add an output group, the Developer tool relates the output group to another output group with a
generated key. The Developer tool adds a bigint key to the parent group and to the child group. At run time,
the Data Integration Service creates the key values for the generated keys.

Example

The SOAP hierarchy has the following nodes:

Departments
 Dept_Key
 Dept_Num
 Dept_Name

 Employees

664 Chapter 47: Parsing Web Service SOAP Messages

 Dept_FK
 Employee_Num
 Employee_Name

When you create an output group of ports for Departments, you map the Departments node to an empty field
in the Ports area. The Developer tool creates the following output group:

Departments
 Dept_Num
 Dept_Name

When you map the Employees node to an empty field in the Ports area, the Developer tool prompts you to
relate the Employees group to the Departments group. You can relate the Employees group to more than one
group. The Developer tool adds a key to the each group.

The Developer tool creates the following groups and generated keys:

Departments
 Key_Departments
 Dept_Num
 Dept_Name

 Employees
 Key_Departments
 Employee_Num
 Employee_Name

Note: You do not have to map nodes to the generated keys. The Data Integration Service creates the key
values at run time.

The Developer tool can create generated keys to multiple levels in one output group. The Employees group
might contain the following ports:

Employees
 Key_Employees
 Key_Departments
 Key_Managers
 Employee_Num
 Employee_Name

Key_Departments and Key_Managers are the generated keys that point to parent groups. Key_ Employees is a
generated key for the Employees group. Key_Employees appears when you relate a child group to the
Employees group.

Denormalized Relational Output
You can denormalize relational output. When you denormalize the output data, the element values from the
parent group repeat for each child element.

To denormalize output data, map nodes from the parent hierarchy level to the child group of output ports.

The following example shows the Department_ID and the Department_Name in the Employees output group:

Employees
 Department_ID
 Department_Name
 Employee_ID
 Employee_Name

Department_ID and Department_Name repeat for each employee in the department:

Department_ID Department_Name Employee_ID Employee_Name
100 Accounting 56500 Kathy Jones
100 Accounting 56501 Tom Lyons
100 Accounting 56509 Bob Smith

Multiple-Occurring Output Configuration 665

Pivoted Relational Output
You can include a specific number of multiple-occurring elements in an output group.

To pivot multiple-occurring elements, map the multiple-occurring child element to the parent group of output
ports. The Developer tool prompts you to define the number of child elements to include in the parent.

The following example shows two instances of Employee_ID in the Departments parent group:

Departments
 Department_ID
 Department_Name
 Employee_ID1
 Employee_ID2

Parsing anyType Elements
The anyType element represents a choice of all global types in a WSDL or schema. When you map nodes to
ports in the Developer tool, you choose which types to appear in the SOAP message for the anyType element.
You must replace an anyType element in the SOAP message with a complex type or xs:string. Create groups
of ports for each type that you choose.

You must choose a type to map data to output ports. If the WSDL or schema does not contain a global type,
the Developer tool replaces the anyType element with xs:string.

To choose an element type in the Operation area, click Choose in the Type column for the anyType element.
A list of available complex types and xs:string appears.

When you replace an anyType element with derived types, the Data Integration Service populates elements
for one type at a time. The SOAP message does not contain data for the base type and the derived type at the
same time.

Derived Types Example

The WSDL contains an anyType element. You replace the element with AddressType and a derived type called
USAddressType. The SOAP message hierarchy has the following groups:

 Address:AddressType (base type)
 Address: AddressType
 Street
 City

 Address:USAddressType (derived type)
 Street
 City
 State
 ZipCode

The SOAP message contains the following data:

<address xsi: type ="AddressType">
<street>1002 Mission St.</street>
<city>san jose</city>
</address>

<address xsi:type="USAddressType">
<street>234 Fremont Blvd</street>
<city>Fremont</city>
<zip>94556</zip>
<state>CA</state>

666 Chapter 47: Parsing Web Service SOAP Messages

</address>

The Data Integration Service returns one row for xsi: AddressType:

Street City
1002 Mission St. San Jose

The Data Integration Service returns one row for the derived type xsi: USAddressType:

Street City State Zip
234 Fremont Blvd. Sunnyvale CA 94556

The Data Integration Service does not populate the AddressType if the type is xsi: USAddressType.

Parsing Derived Types
You can parse SOAP messages that contain derived types. When you define the ports that receive the data
from the SOAP message, choose which types might appear in a SOAP message. The elements in the types
you choose determine the ports that you need to create.

For example, the WSDL might contain an AddressType and a derived type called USAddressType. You can
create the following groups in the Developer tool Operation area:

 Address
 Address: AddressType
 Street
 City

 Address:USAddressType
 Street
 City
 State
 ZipCode

The SOAP message might contain the following data:

<address>
<street>1002 Mission St.</street>
<city>san jose</city>
</address>

<address xsi:type="USAddressType">
<street>234 Fremont Blvd</street>
<city>Fremont</city>
<zip>94556</zip>
<state>CA</state>
</address>

<address xsi:type="USAddressType">
<street>100 Cardinal Way</street>
<city>Redwood City</city>
<zip>94536</zip>
<state>CA</state>
</address>

<address>
<street>100 El Camino Real</street>
<city>Sunnyvale</city>
</address>

Parsing Derived Types 667

The Data Integration Service returns the following rows for the base type, Address:

Street City
1002 Mission St. San Jose
234 Fremont Blvd Sunnyvale
100 Cardinal Way Redwood City
100 El Camino Real Sunnyvale

The Data Integration Service returns the following rows for the derived type, USAddress:

Street City State Zip
234 Fremont Blvd. Sunnyvale CA 94556
100 Cardinal Way Redwood City CA 94536

The Data Integration Service returns all addresses in the base type. The Data Integration Service returns US
Addresses in the derived type. The derived type includes the Street and City elements that the
USAddressType inhertits from the base type.

Parsing QName Elements
When Data Integration Service parses QName elements in the SOAP message, it updates QName values that
belong to the namespace of the schema to use the namespace prefix defined in the schema. Otherwise, Data
Integration Service does not update the value of the element.

For example, the schema has the namespace prefix tns defined for namespace "http://user/test". The
SOAP message has namespace prefix mytns defined for the same namespace. When the Data Integration
Service parses Qname value mytns:myelement it changes the value to tns:myElement.

When Data Integration Service generates QName elements in the SOAP message, it does not update the
value of the element.

Parsing Substitution Groups
A substitution group replaces one element with another element from the same group. Substitution groups
are similar to derived types, except that each element definition includes a substitution group name.

You can configure an output group of ports that receives elements from a specific type in a substitution
group. You can create a different output group of ports that receives an element from another type in the
substitution group.

Parsing XML Constructs in SOAP Messages
A SOAP message might contain XML constructs such as choice, list, and union elements.

Web service transformations can parse SOAP messages with these constructs with some limitations.

668 Chapter 47: Parsing Web Service SOAP Messages

Choice Element
A choice element restricts a child element to one of the elements in the <choice> declaration.

The following text shows a person element that is an employee or a contractor:

<xs:element name="person">
 <xs:complexType>
 <xs:choice>
 <xs:element name="employee" type="employee"/>
 <xs:element name="contractor" type="contractor"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

You can map choice elements using the following methods:

• Create output ports for each choice element in an output group. Some elements will have null values in
the output row.

• Create an output group for each choice. For the above example, create an employee group and a
contractor group. The Data Integration Service generates a row based on which element appears in the
SOAP message.

List Element
A list is an XML element that can contain multiple simple type values, such as "Monday Tuesday Wednesday".

The Data Integration Service can return a list as a string value. When the SOAP message contains a list, you
cannot map items from the list to separate output rows. You can configure an Expression transformation to
separate the elements in the list if you need them separated in a mapping.

Union Element
The union element is a simple type that is a union of more than one type.

The following text shows an element Size that is a union of two simple types, size_no and size_string:

<xs:element name="Size">
 <xs:simpleType>
 <xs:union memberTypes="size_no size_string" />
 </xs:simpleType>
</xs:element>

To map the size to an output port, create one port for the size. Configure the output port as a string. You can
configure another transformation in the mapping to convert the data to another type.

Parsing XML Constructs in SOAP Messages 669

C h a p t e r 4 8

Generating Web Service SOAP
Messages

This chapter includes the following topics:

• Generating Web Service SOAP Messages Overview, 670

• Transformation User Interface, 671

• Port and Hierarchy Level Relationships , 672

• Keys, 673

• Map Ports, 674

• Pivoting Multiple-Occurring Ports , 676

• Map Denormalized Data, 678

• Derived Types and Element Substitution, 679

• Generating XML Constructs in SOAP Messages, 680

Generating Web Service SOAP Messages Overview
The Data Integration Service generates XML data from groups of input data when it generates a SOAP
message. When you create a Web Service Consumer transformation, a web service Output transformation, or
a Fault transformation, you configure which input ports to map to the SOAP message hierarchy.

To configure a transformation to generate a SOAP message, create groups of input ports and map each
group to a group in the SOAP message hierarchy. A WSDL or schema defines the structure of the SOAP
message.

You can configure groups of data in the SOAP message from denormalized input data. You can also pivot
multiple-occurring input data to multiple-occurring nodes in the SOAP message.

You can map data to derived types, anyType elements, or substitution groups in a SOAP message. You must
choose which types can occur in the SOAP message when you define a transformation. The types that you
choose determine the input ports that you need to create.

When you view the SOAP message hierarchy in the Developer tool, the hierarchy contains keys. The keys do
not appear in the SOAP message. The Data Integration Service uses keys to define parent-child relationships
between groups in the SOAP message. To configure key values, map input data to keys in the SOAP
message.

670

Related Topics:
• “Web Service Consumer Transformation Input Mapping” on page 645

Transformation User Interface
The web services Output transformation, the Fault transformation, and the Web Service Consumer
transformation contain a user interface that you use to configure the SOAP message.

To configure a transformation to generate a SOAP message, create input ports in a structure similar to the
SOAP message hierarchy. The WSDL or schema determines the structure of the hierarchy. Map each input
port to a node in the SOAP message.

The following figure shows a mapping between the input ports and the SOAP message nodes in a web
service Output transformation:

Input Ports Area
Create groups of input ports in the Input Ports area. Include input ports for each level in the SOAP message
hierarchy that you need to map.

You must create a Response or Request input group and the child groups that receive the data.

When you create input port groups, define a primary key in each parent group. Define a foreign key in each
child group. The foreign key relates the group to a parent group.

You do not have to define keys for the Response level or the WSDL root level unless you are passing data at
the WSDL root level. For example, the root level might contain HTTP headers.

You might create groups of ports similar to the following groups for customers and orders:

Response
 Response_Key

 Customer_Details_Root
 Key_Cust_Det
 FK_Response_Key

 Customer
 Customer_ID

Transformation User Interface 671

 FK_Cust_Det
 Name
 Address

 Orders
 Order_Num
 FK_Cust_ID

 Order_Items
 Order_Num
 Item
 Count
 Price

Operation Area
The Operation area shows the elements in the SOAP message hierarchy as defined by the WSDL or schema.
The SOAP message does not have to contain all the elements from the WSDL or schema. The message
contains the data that you map from the input ports.

Multiple-occurring nodes and complex nodes define hierarchy levels in the SOAP message structure. The
Developer tool adds keys to the levels to create parent-child relationships between them. All levels in the
hierarchy, except for the leaf levels, have a primary key. Each child level has a foreign key to a parent level.
The keys that appear in the SOAP message hierarchy do not appear in a SOAP message instance. The Data
Integration Service requires values in the keys to relate levels of the data when it generates the SOAP
message.

The Location column contains the group name and input port that contains the data for an element in the
SOAP message. The Location column is empty until you map an input port to the node.

In the preceding figure, the SOAP message contains a single instance of customer details and orders. The
Orders group contains a multiple-occurring element called Order. The SOAP message hierarchy has the
following levels related by key:

Response
 GetCustomerDetailsResponse
 GetCustomerDetailsResult
 Orders
 Order

The Response level represents the root of the response message. The Data Integration Service requires this
level to attach headers to the SOAP message.

The GetCustomerDetailsResponse level is the root of the message.

Port and Hierarchy Level Relationships
When you map input ports to the SOAP message hierarchy, you maintain a relationship between an input
group and a SOAP message hierarchy level. For example, you might have two input groups, Department and
Employee.

The Department input group receives the following rows:

Dept_num Name Location
101 HR New York
102 Product California

672 Chapter 48: Generating Web Service SOAP Messages

The Employee input group receives the following rows:

Dept_num Employee
101 Alice
101 Bob
102 Carol
102 Dave

Map the department number in the Employee group as a foreign key that establishes the relationship
between the Department and the Employee group. The department number occurs in the department
hierarchy level, but not the employee level.

The SOAP message contains the following XML structure:

<department>
 <dept_num>101</dept_num>
 <name>HR</name>
 <location>New York</location>

 <employee>
 <name>Alice</name>
 </employee>

 <employee>
 <name>Bob</name>
 </employee>
</department>

<department>
 <dept_num>102</dept_num>
 <name>Product</name>
 <location>California</location>

 <employee>
 <name>Carol</name>
 </employee>

 <employee>
 <name>Dave</name>
 </employee>

</department>

Keys
A SOAP message hierarchy includes keys. The Data Integration Service requires key values to construct the
XML hierarchy in the SOAP message.

You must map input port data to the keys in the SOAP message hierarchy. Map data to the keys in each level
that you are providing data. When you have a multiple-occurring node, you need to relate the node to a
parent.

The keys appear in the SOAP message without types. Any port that you map to a key must be a string,
integer, or bigint datatype. The primary key in the parent group and the foreign key in each child group must
have the same datatype, precision, and scale. You can map generated keys to the SOAP message keys.

You can map a port to a node and to a key in the same hierarchy level. For example, you map Employee_ID to
a node in the SOAP message and you map it to a key in the Employee level.

If two group nodes in the hierarchy have a parent-child relationship, complete the following tasks:

• Map a port to the primary key in the parent node group.

Keys 673

• Map a port to the foreign key in the child node group.

You can also map primary keys to input ports to remove rows with a primary key of null or with duplicate
primary keys.

You can create a composite key in a SOAP message by mapping multiple ports to the same key. Use
composite keys when you need to denormalize data and maintain unique keys for some multiple-occurring
combinations of values. You can create composite keys that contain strings, bigint, or integer values.

Note: You can include an Expression transformation in the operation mapping to generate key values.

Composite Key Example

Configure a unique division-department key from the following groups of ports:

Company
 Company_Num
 Company_Name

 Division
 Company_Num
 Divison_Num
 Division_Name

 Department
 Division_Num
 Dept_Num
 Dept_Name
 Location

The Dept_Num is unique within a division, but Dept_Num is not unique for all divisions in the Company.

You might configure a Department group that contains the division and the department information.
Configure the division number and the department number as part of the composite key:

 Department
 Division_Num + Dept_Num (key)
 Dept_Name
 Location

The order that you map the ports determines the key value.

Map Ports
After you create input ports, map each input port to the SOAP message hierarchy. The location of the port
appears next to the node in the Operation area.

You can map ports to the following types of nodes:

Atomic node

A simple element or an attribute that has no children and is not divisible.

Multiple-occurring atomic node

A simple element or an attribute that occurs multiple times at the same location in the hierarchy.

Complex node

An element that contains other elements.

674 Chapter 48: Generating Web Service SOAP Messages

If the parent node does not have a location, the parent node receives the input group name as the location.
When the parent node has a location, each node in the hierarchy level must have an output location from the
same location.

You can map an input group name to a parent node in a hierarchy level. The Developer tool updates the
location field for the parent node in the hierarchy. The Developer tool does not update the child nodes that
belong to the group in the hierarchy. When you map input ports to the child nodes, each input port location
must be the same location as the location parent node.

After you map an input group to a hierarchy level, you can change it later. You can click Clear or you can
delete the lines between the Ports and the Operation area. To delete the lines, drag the pointer of the lines to
select them. Click Delete.

Map a Port
When you map a port to a node in the SOAP message, the Developer tool provides different results based on
the type of node to which you map the port.

The following table describes the results when you map a single port to different target nodes in the
Operation area:

Target Node Results

Atomic node When you map a single port to a node and the parent node does not have a location, the node
receives the location of the port. The parent node location receives the location of the input
group for the single port. When you map a single port to a node and the parent node already has
a location, you can change the location for the parent node and clear the location for the other
child nodes in the same level. The hierarchy level location changes to the group name of the
port.

Multiple-occurring
atomic node or
the primary key of
the multiple-
occurring atomic
node

When you map a single port to the multiple-occurring atomic node, the Developer tool sets the
location for the atomic node to the group of the selected port.

Complex node When you map a single port to a complex node, the Developer tool sets the location of the
complex node to the location of the group that contains the port. The Developer tool prompts you
for the single occurring atomic node to assign the port to.
If all single-occurring atomic nodes have a location, you cannot map the complex node.

Map Ports 675

Map a Group
When you map an input group to a node in the SOAP message, the Developer tool provides different results
based on the type of node that you map the port to.

The following table describes the results when you map a group to a node in the Operation area:

Target Node Results

Atomic node You cannot map a group to an atomic node.

Multiple-occurring atomic
node

You are prompted to choose a port in the input group to update the location for the node
and primary key.

Multiple-occurring
complex node

The Developer tool sets the location for the complex node to the location of the group.

Map Multiple Ports
When you map multiple ports to a node in the SOAP message, the Developer tool provides different results
based on the type of node you map the ports to. You can map multiple ports at the same time if you map
them from the same group.

The following table describes the results for the node when you map multiple ports to nodes:

Target Node Results

Single atomic
node

When you map multiple ports to a single node, you update the location for more than one single
atomic node in the Operation area. If the hierarchy does not have enough nodes in the level to
update, the Developer tool maps ports just for the available nodes.

Multiple-
occurring atomic
node

When you map multiple ports to multiple-occurring atomic node, you pivot the ports into multiple
occurrences of the node. The Developer tool creates instances of the node based on how many
ports you map. A message appears that describes the number of ports that you projected.

Multiple-
occurring
complex node

When you map multiple ports to a complex node, you must select which single-occurring nodes
atomic nodes to update. You pivot the ports into multiple occurrences of the node. The Developer
tool creates instances of the node based on how many ports you map.

Pivoting Multiple-Occurring Ports
You can map multiple input ports to a multiple-occurring node in the SOAP message. The Developer tool
pivots the input data into multiple nodes in the SOAP message.

To change the number of elements to pivot, choose Override existing pivoting in the Map Options dialog box.

If you remove one of the pivoted port instances from the Ports area, the Developer tool removes all instances
from the Operation area.

676 Chapter 48: Generating Web Service SOAP Messages

Pivoting Example

An input group might have the following rows:

Num Name Location emp_name1 emp_name2 emp_name3
101 HR New York Alice Tom Bob
102 Product California Carol TIm Dave

Each row contains a department number and three employees names.

Employee is a multiple-occurring node in the SOAP message hierarchy. You can map all instances of
Employee from the input row to the SOAP message hierarchy. Select all occurrences of Employee. Click Map.
The Map Options dialog box prompts you to choose a node from the list.

The Developer tool changes the Employee node to include the multiple name nodes in the SOAP message
hierarchy:

Department
 num
 name
 location
 Employee (unbounded)
 emp_name1
 emp_name2
 emp_name3

The SOAP message returns the following hierarchy:

<department>
 <num>101</num>
 <name>HR</name>
 <location>New York</location>
 <employee>
 <emp_name>Alice</name>
 </employee>
 <employee>
 <emp_name>Tom</name>
 </employee>
 <employee>
 <emp_name>Bob</name>
 </employee>
</department>

<department>
 <num>102</num>
 <name>Product</name>
 <location>California</location>
 <employee>
 <emp_name>Carol</name>
 </employee>
 <employee>
 <emp_name>Tim</name>
 </employee>
 <employee>
 <emp_name>Dave</name>
 </employee>
 </department>

Pivoting Multiple-Occurring Ports 677

Map Denormalized Data
You can map denormalized data and pass it to normalized nodes in a SOAP message.

When you map denormalized data, you pass data from one input group to multiple nodes in the SOAP
message hierarchy. You can create group relationships in the SOAP message similar to the following types of
relationships:

Linear Node Relationship

Node A is parent to Node B. Node B is a parent to Node C. Node C is the parent of Node D.

Hierarchical Node Relationship

Node A is a parent to Node B. Node A is also a parent to Node C. Node B and Node C are not related.

The following table shows input rows that contain denormalized division and department data:

Division Dept_Num Dept_Name Phone Employee_Num Employee_Name
01 100 Accounting 3580 2110 Amir
01 100 Accounting 3580 2113 Robert
01 101 Engineering 3582 2114 Stan
01 101 Engineering 3582 2115 Jim
02 102 Facilities 3583 2116 Jose

The input data contains unique employee numbers and names. The division and department data repeat for
each employee in the same department and division.

Linear Group Relationship

When you configure ports, you can configure a separate group for Division, Department, and Employee.
Division is a parent of Department, and Department is the parent of Employee. You can configure groups in
the following linear structure:

Division
 Division_Key
 Division_Num
 Division Name

 Department
 Department_Key
 Division_FKey
 Dept_Num
 Dept_Name
 Phone

 Employee
 Department_Fkey
 Employee_Num
 Employee_Name

The SOAP message contains unique instances of Division and Department although Division_Num and
Dept_Num repeat in the input data. Define the Division_Num as the primary key in the Division group. Define
Dept_Num as the primary key in the Department group.

Hierarchical Group Relationship

You can create a group hierarchy that contains the Division parent group and Department and Employee child
groups. Department and Employee do not have a primary key-foreign key relationship. Department and
Employee are children of Division. You can configure the groups in the following structure:

Division
 Division_Key
 Division_Num

678 Chapter 48: Generating Web Service SOAP Messages

 Division_Name

 Department
 Division_FKey
 Dept_Num
 Dept_Name

 Employee
 Division_FKey
 Employee_Num
 Employee_Name

Derived Types and Element Substitution
You can map input ports to derived complex types, anyType elements, and substitution groups in a SOAP
message. The SOAP message can include elements for the base type and the derived types.

In a type relationship, the base type is the type from which you derive another type. A derived type inherits
elements from the base type. An extended complex type is a derived type that inherits elements from a base
type and includes additional elements. A restricted complex type is a derived type that restricts some
elements from the base type.

Generating Derived Types
When a WSDL or schema includes derived types, you must choose the types that you want to include in the
SOAP message.

For example, the WSDL defines a base type AddressType. The WSDL also contains a USAddressType and a
UKAddressType that are the derived AddressTypes.

Each type contains the following elements:

• AddressType: street, city

• USAddressType (extends AddressType): state, zipCode

• UKAddressType (extends AddressType): postalCode, country

When you choose a USAddressType in the Operation area, the Developer tool creates a group for the
USAddressType element in the SOAP message. The group includes the street and city from the base address
and the state and zipCode for the USAddress. Derived types that extend base types always include the
elements from the base type.

If you choose all of the available derived types for the SOAP messsage, the Developer tool creates groups
similar to the following in the SOAP hierarchy:

 Address
 Address: Address
 Street
 City

 Address:USAddressType
 Street
 City
 State
 ZipCode

 Address: UKAddressType
 Street
 City

Derived Types and Element Substitution 679

 PostalCode
 Country

You need to define input port groups for Address, USAddress, and UKAddress.

Generating anyType Elements and Attributes
Some schema elements and attributes allow any type of data in a SOAP message.

The anytype element represents a choice of all globally known types. Before you map a port to an anyType
element in a SOAP message, choose an available complex type or xs:string. If the WSDL or schema does not
contain a complex type, the Developer tool replaces the anyType element type with xs:string.

To choose an element type in the Operation area, click Choose in the Type column for the anyType element.
A list of available complex types and xs:string appears.

The following element and attributes allow any type of data:

anyType element

Allows an element to be any datatype in the associated XML file.

anySimpleType element

Allows an element to be any simpleType in the associated XML file.

ANY content element

Allows an element to be any global element defined in the schema.

anyAttribute attribute

Allows an element to be any attribute already defined in the schema.

Generating Substitution Groups
Use substitution groups to replace one element with another in a SOAP message. Substitution groups work
similarly to derived types, except that the element definitions include a substitution group name.

For example, you might have a base type Address and the derived types USAddress and UKAddress:

xs:element name="Address" type="xs:string"/>
<xs:element name="USAddress" substitutionGroup="Address"/>
<xs:element name="UKAddress" substitutionGroup="Address"/>

When you configure the SOAP message hierarchy, you can choose which element to substitute for Address in
the SOAP message.

Generating XML Constructs in SOAP Messages
A WSDL or schema can contain choice, list, or union elements. Web service transformations can generate
SOAP messages that contain these elements.

680 Chapter 48: Generating Web Service SOAP Messages

Choice Element
A choice element restricts a child element to one of the elements in the <choice> declaration.

To map ports to a SOAP message that contains choice elements, create one input group that includes all the
elements in the choice construct. For example, an item description might be a dimension or a weight:

item: description, choice {dimension, weight}
When the description is a dimension, the description is a complex type that contains, length, width, and
height.

When the description is a weight, the description is a simple string type.

The input data has the following columns and rows:

description length width height weight
box 20cm 18cm 15cm NULL
coffee NULL NULL NULL 500g

The SOAP message contains an Item group that contains dimensions or weight descriptions:

Item
 Description
 Dimension
 Length
 Width
 Height
 Weight

The NULL values in the input data become missing elements in the XML output.

The SOAP message contains the following data:

<item>
 <desc>box</desc>
 <dimension>
 <length>20cm</length>
 <width>18cm</width>
 <height>15cm</height>
 </dimension>
</item>

<item>
 <desc>coffee</desc>
 <weight>500g</weight>
</item>

List Element
A list is an XML element that can contain multiple simple type values in the same element or attribute. The
Data Integration Service can process a list in the input data if the list is represented as consolidated string of
data.

If each item in the list is a separate element, such as ClassDates1, ClassDates2, and ClassDates3, the Data
Integration Service cannot process the items as a list. You can use an Expression transformation to combine
them into a string if you need to return a list in a SOAP message.

The following input rows contain a list element called ClassDates that contains days of the week:

CourseID Name ClassDates
Math 1 Beginning Algebra Mon Wed Fri
History 1 World History Tue Thu

Generating XML Constructs in SOAP Messages 681

The Data Integration Service can return a SOAP message with the following XML structure:

<class>
 <courseId>Math 1</courseId>
 <name>Beginning Algebra</name>
 <classDates>Mon Wed Fri</classDates>
</class>
<class>
 <courseId>History 1</courseId>
 <name>World History</name>
 <classDates>Tue Thu</classDates>
</class>

Union Element
The union element is a simple type that is a union of more than one type. When a SOAP message contains a
union element, you must map a single input port that contains the data in a string.

For example, the SOAP message contains an element called size. Size is a union of integer and string:

<xs:element name="size">
 <xs:simpleType>
 <xs:union memberTypes="size_no size_string" />
 </xs:simpleType>
</xs:element>

The input rows contain items with a description and size. An item can have a numeric size, such as 42. Or, an
item can have a size that is a string value, such as large, medium, or small.

The following table shows input rows with a numeric size and a string size:

Desc Size
shoes 42
shirt large

Create one port for the item size. Map the port as a string. The SOAP message contains the following
elements:

<item>
 <desc>shoes</desc>
 <size>42</size>
</item>

<item>
 <desc>shirt</desc>
 <size>large</size>
</item>

682 Chapter 48: Generating Web Service SOAP Messages

C h a p t e r 4 9

Weighted Average
Transformation

This chapter includes the following topics:

• Weighted Average Transformation Overview, 683

• Configuring a Weighted Average Transformation, 683

• Weighted Match Scores Example, 684

• Weighted Average Transformation Advanced Properties, 684

• Weighted Average Transformation in a Non-native Environment, 685

Weighted Average Transformation Overview
The Weighted Average transformation is a passive transformation that reads match scores from multiple
matching operations and produces single match score.

You can apply a numerical weight to each score that enters the Weighted Average Transformation. A weight
is a value between zero and 1. You can edit the weight applied to each input score to increase or decrease its
contribution to the output score. Apply weights that reflect the relative importance of each data column in the
duplicate analysis.

Use the Weighted Average transformation when you add Comparison transformations to a mapping or
mapplet.

Note: You also can assign weights in a Match transformation. Use the Match transformation to configure
matching strategies and assign weights in a single transformation. You can embed a matching mapplet in a
Match transformation.

Configuring a Weighted Average Transformation
You use the Weighted Average transformation to adjust the overall match score that a mapping generates for
a series of match analysis operations. You edit the relative weights of each input port to reflect the priorities

683

of the data comparisons that you defined for the source data set. Each input port on the Weighted Average
transformation represents a match score output from a Comparison transformation strategy.

The following steps describe the process to configure a non-reusable Weighted Average transformation in a
mapplet or mapping that uses Comparison transformations.

1. Open a match analysis mapplet or mapping, and add a Weighted Average transformation downstream of
the Comparison transformations.

2. Connect the score output from a Comparison transformation to a Weighted Average input port.

Repeat this step for other Comparison transformations in the mapplet or mapping.

3. Select the Ports tab on the Weighted Average transformation.

4. Double-click the Weight field for each input, and enter a weight value between 0.001 and 1. The weight
value should reflect the relative importance of the input score when compared to other inputs on the
transformation.

5. Save the mapplet or mapping.

Weighted Match Scores Example
You create a match analysis mapping to determine the number of duplicate customer names in a customer
database. You add two Comparison transformations to generate match scores for the ZIP code and Surname
columns in the data set.

Many records have matching ZIP codes, but a much smaller number of records have matching surnames.
When averaging these match scores, you need to emphasize the importance of the more unique matches.

To emphasize the importance of the surname match scores, you apply a higher weight to the Surname match
score.

For example, you set the Weight value of the Surname score input to 0.8, and you set the value of the Weight
value of the ZIP Code score input to 0.4.

Weighted Average Transformation Advanced
Properties

Configure properties that help determine how the Data Integration Service processes data for the Weighted
Average transformation.

You can configure tracing levels for logs.

Configure the following property on the Advanced tab:

Tracing Level

Amount of detail that appears in the log for this transformation. You can choose terse, normal, verbose
initialization, or verbose data. Default is normal.

684 Chapter 49: Weighted Average Transformation

Weighted Average Transformation in a Non-native
Environment

The Weighted Average transformation processing in a non-native environment depends on the engine that
runs the transformation.

Consider the support for the following non-native run-time engines:

• Blaze engine. Supported without restrictions.

• Spark engine. Supported without restrictions in batch mappings. Not supported in streaming mappings.

• Databricks Spark engine. Not supported.

Weighted Average Transformation in a Non-native Environment 685

C h a p t e r 5 0

Write Transformation
This chapter includes the following topics:

• Write Transformation Overview, 686

• Write Transformation Properties , 686

• Create a Write Transformation, 692

Write Transformation Overview
A Write transformation is a passive transformation. The mapping uses the Write transformation to write data
to a target. The Write transformation is nonreusable.

You can create a Write transformation from a physical data object, a logical data object, or a parameter. If
you want to create a Write transformation from a physical data object that you imported from a
PowerExchange adapter source, the mapping editor might prompt you to specify a write operation before you
can create a Write transformation from the data object.

The properties that you can configure for a Write transformation depend on the type of data object that you
used to create the transformation.

Write transformations can represent dynamic targets. You can configure a Write transformation to
dynamically update its ports, metadata, and other properties. For information about configuring dynamic
targets, see the Informatica Developer Mapping Guide.

Write Transformation Properties
After you create a Write transformation, you can configure properties for the transformation.

Configure Write transformation properties on tabs in the Properties view of the transformation. The tabs that
you can configure depend on the type of target that the Write transformation represents.

686

The following table describes each property tab and identifies the target type that you use the tab for:

Property Tab Description Target Type

General Specify transformation properties and behavior.
For relational and customized data object sources, synchronize
transformation input ports with source.

All

Data Object Specify the transformation data source.
For relational and customized data object sources, get data object
columns from data source at run time.

Flat file
Relational
Customized data object

Format Input settings for a flat file data source Flat file

Ports Set port definition by the associated data object or by mapping flow. All

Run-time Properties that the Data Integration Service uses when writing data to
the target at run time, such as where to send reject files.
For a flat file target, reject file names and directories.

Flat file
Relational

Data Object
Parameters

View the data object parameters. Configure parameter values for the
mapping or bind the parameters to a mapping parameters.

Flat file
Customized data object
Logical data objects

Run-time Linking Create new run-time links and view link properties. All

Advanced Set tracing level and row order.
For a relational or Hive target, set the target schema strategy.

Flat file
Relational
Customized data
objects
Logical data objects

General Properties
You can configure the name and description of the Write transformation. You can also configure the
following properties:

When Column Metadata Changes

Available for relational and customized targets. Select one of the following options:

• Synchronize input ports. The Developer tool updates Write transformation input ports with metadata
changes that the Model repository stores for the data object.

• Do not synchronize. The Developer tool does not show metadata changes in the data object.

Default is the Synchronize input ports option.

Physical Data Object

Available for flat file and customized targets. The object used to create the transformation.

You can select the data object name and configure its properties.

Write Transformation Properties 687

Data Object Properties
On the Data Object tab, you can specify or change the Write transformation target, and make relational and
customized data object targets dynamic.

You can configure the following properties:

Specify By

To specify target columns and metadata for the Write transformation, select one of the following
options:

• Value. The Write transformation uses the associated data object to specify target columns and
metadata.

• Parameter. The Write transformation uses a parameter to specify target columns and metadata.

Default is the Value option.

Data Object

If you created the Write transformation from an existing data object, the field displays the name of the
object. Click Browse to change the data object to associate with the Write transformation.

Parameter

Choose or create a parameter to associate with the Write transformation.

At run time, get data object columns from the data source

When you enable this option, the Data Integration Service fetches metadata and data definition changes
from target tables to the Write transformation.

To preview how the Data Integration Service fetches metadata and data definition changes, view the
mapping with resolved parameters.

Ports Properties
On the Ports tab, you can configure the following properties:

Columns defined by

Select one of the following options to define Write transformation columns:

• Associated data object. Use column names, metadata, and other properties from the data object in
the Data Object tab.

• Mapping flow. The mapping fetches column names, metadata, and other properties from the
upstream objects in the mapping.

Default is the Associated data object option.

Column resource properties

Available for flat file and customized targets. The resource for each column is the data object from
which the column fetches its name, metadata, and other properties. Select the resource name to change
resource properties.

Run-Time Properties
You can configure the following Write transaction properties on the Run-time tab:

Connection

Available for relational targets. Connection used by the transformation. Click in the right side of the field
to change the connection.

688 Chapter 50: Write Transformation

The following image shows the location of the dropdown button to click:

Reject truncated/overflow rows

Available for relational and customized targets.

The Developer tool lets you convert data by passing it from port to port. Sometimes a conversion causes
an overflow of numeric data or truncation of strings in columns that contain characters. For example,
passing data from a Decimal (28, 2) to a Decimal (19, 2) port causes a numeric overflow. Likewise, if you
pass data from a String(28) port to a String(10) port, the Data Integration Service truncates the strings to
10 characters.

When a conversion causes an overflow, the Data Integration Service, by default, skips the row. The Data
Integration Service does not write the data to the reject file. For strings, the Data Integration Service
truncates the string and passes it to the next transformation.

Select this option to include all truncated and overflow data between the last transformation and target
in the session reject file. The Data Integration Service sends all truncated rows and any overflow rows to
the session reject file or to the row error logs, depending on how you configure the session.

Reject file directory

Directory where the reject file exists. Default is the RejectDir system parameter.

Reject file name

File name of the reject file. Default is <output_file_name>.bad.

If multiple partitions write to the flat file target, each partition writes to a separate reject file named
<output_file_name><partition_number>.bad.

Run-time Linking Properties
Create and configure a run-time link on the Run-time Linking tab. A run-time link is a group-to-group link
between transformations that uses a parameter, a link policy, or both to determine which ports to link at run
time. Run-time links appear as thick lines in the mapping editor.

Create and configure run-time links to a Write transformation in the following cases:

• The target data object in the Write transformation uses a parameter.

• Ports from the upstream transformation can change at run time.

Note: Do not create a run-time link to a Write transformation when you define the target columns based on
the mapping flow.

You can perform the following tasks on the Run-time Linking tab:

Create a run-time link.

In the Links area, click the New button and select the transformation from which you want to link the
ports to the Write transformation at run time in the New Link dialog box.

Write Transformation Properties 689

Configure the run-time link properties.

In the Link Properties area, configure the following run-time link properties:

Parameter

Select this option when the port names can change between mapping runs and you know the port
name values. Use a parameter of type Input Link Set to connect ports by name values between
mapping runs. The syntax for the Input Link Set mapping parameter consists of comma-separated
pairs of ports: Afield1->Bfield2, Afield3->Bfield4 .

Link Policy

Select this option when you want to automatically link ports that have matching names. For
example, when both of the mapping objects contain a port called SALARY, the Data Integration
Service links them. You can ignore prefixes and suffixes in the port names.

At run time, the Data Integration Service establishes and resolves links between the ports in the following
order:

• Links that you manually create in the mapping editor.

• Links based on the parameter that you configured for a run-time link.

• Links based on the link policy that you configured for a run-time link.

For more information on run-time links, see the Informatica Developer Mapping Guide.

Advanced Properties
Configure advanced properties to determine how the Data Integration Service processes data for the Write
transformation.

Configure the following properties on the Advanced tab:

Tracing level

Control the amount of detail in the mapping log file.

Target load type

Type of target loading. Select Normal or Bulk. You can set the target load type for relational resources or
customized data objects.

If you select Normal, the Data Integration Service loads targets normally. You can choose Bulk when you
load to DB2, Sybase, Oracle, or Microsoft SQL Server. If you specify Bulk for other database types, the
Data Integration Service reverts to a normal load. Bulk loading can increase mapping performance, but it
limits the ability to recover because no database logging occurs. When you write to an Oracle target with
bulk loading, you can optimize performance by disabling constraints in the Oracle database.

Choose Normal mode if the mapping contains an Update Strategy transformation. If you choose Normal
and the Microsoft SQL Server target name includes spaces, configure the following environment SQL in
the connection object:

SET QUOTED_IDENTIFIER ON
Update override

Overrides the default UPDATE statement for the target.

Delete

Deletes all rows flagged for delete.

Default is enabled.

690 Chapter 50: Write Transformation

Insert

Inserts all rows flagged for insert.

Default is enabled.

Target Schema Strategy

Type of target schema strategy for the relational or Hive target table.

You can select one of the following target schema strategies:

• RETAIN - Retain existing target schema. The Data Integration Service retains the existing target
schema.

• CREATE - Create or replace table at run time. The Data Integration Service drops the target table at
run time and replaces it with a table based on a target table that you identify.

• Assign Parameter. You can assign a parameter to represent the value for the target schema strategy
and then change the parameter at run time.

DDL Query to create or replace

Creates or replaces the target table at run time based on a DDL query that you define. Applicable when
you select CREATE - Create or replace table at run time target schema strategy option.

Truncate target table

Truncates the target before it loads data.

Default is enabled.

Truncate target partition

Truncates an internal or external partitioned Hive target before it loads data. You must choose Truncate
target table before you choose this option.

Default is disabled.

Update strategy

Update strategy for existing rows. You can select one of the following strategies:

• Update as update. The Data Integration Service updates all rows flagged for update.

• Update as insert. The Data Integration Service inserts all rows flagged for update. You must also
select the Insert target option.

• Update else insert. The Data Integration Service updates rows flagged for update if they exist in the
target and then inserts any remaining rows marked for insert. You must also select the Insert target
option.

PreSQL

SQL command the Data Integration Service runs against the target database before it reads the source.

The Developer tool does not validate the SQL.

PostSQL

SQL command that the Data Integration Service runs against the target database after it writes to the
target.

The Developer tool does not validate the SQL.

Maintain row order

Maintain the row order of the input data to the target. Select this option if the Data Integration Service
should not perform any optimization that can change the row order.

Write Transformation Properties 691

When the Data Integration Service performs optimizations, it might lose the row order that was
established earlier in the mapping. You can establish row order in a mapping with a sorted flat file
source, a sorted relational source, or a Sorter transformation. When you configure a target to maintain
row order, the Data Integration Service does not perform optimizations for the target.

Constraints

SQL statements for table-level referential integrity constraints. Applies to relational targets only.

Create a Write Transformation
When you create a Write transformation, you choose one of the following methods based on the resource you
create the transformation from:

Create the transformation from a data object in the Model repository.

Use this method if you want to base the Write transformation metadata on a data object.

To create a Write transformation in the mapping editor, use the New Write Transformation wizard, or
drag a data object from the Object Explorer view and select Write as the transformation type.

Create the transformation from the flow of mapping objects.

Use this method to base the ports in the Write transformation on the flow of metadata from upstream
mapping transformations.

Create the transformation using a parameter.

Use this method if you want the Write transformation to inherit ports from the object that the parameter
represents.

Create the transformation using another transformation in the mapping.

Use this method if you want the Write transformation to have the same ports as the source
transformation.

Creating a Write Transformation from a Data Object
You can create and configure a Write transformation in the mapping editor.

You might want to use this method if you want to configure specific properties for the transformation. For
example, you can create the transformation, and then configure it to get column metadata from the data
source at run time.

1. Right-click in the mapping editor and select Add Transformation.

The Add Transformation dialog box opens.

2. Select Write and click OK.

The New Write Transformation wizard opens.

3. Select Physical Data Object or Logical Data Object, and then click Browse.

The Select Data Object dialog box opens.

4. Select a data source, and then click OK.

5. To define Write transformation columns by the associated data object, select Associated data object.

The Write transformation ports are the same as the columns of the associated data object.

692 Chapter 50: Write Transformation

6. To dynamically update target object columns at run time with changes from the target file, select At run-
time, get data object columns from data source.

The Data Integration Service refreshes the column metadata for the Write transformation when the
mapping runs.

7. Click Finish.

Creating a Write Transformation from Mapping Flow
You can create and configure a Write transformation in the mapping editor.

You might want to use this method if you want to configure specific properties for the transformation. For
example, you can create the transformation, and then configure it to define columns based on mapping flow
and to get column metadata from the data source at run time.

1. Right-click in the mapping editor and select Add Transformation.

The Add Transformation dialog box opens.

2. Select Write and click OK.

The New Write Transformation wizard opens.

3. Select Physical Data Object or Logical Data Object, and then click Browse.

The Select Data Object dialog box opens.

4. Select a data source, click OK.

5. Select Mapping flow, and then click Finish.

6. Drag ports from the All Ports port of the upstream to the Input port of the Write transformation.

The following image shows how to connect upstream ports to the Input port of the Write transformation:

The Write transformation receives column definitions from upstream mapping objects.

7. To dynamically update target object columns at run time with changes from the target file, select At run-
time, get data object columns from data source.

The Data Integration Service refreshes the column metadata for the Write transformation when the
mapping runs.

Creating a Write Transformation from a Parameter
A parameter is a constant value that you can change between mapping runs.

In a dynamic mapping, you can use parameters to change sources and targets. You can also use parameters
for input rules, selection rules, run-time links, and transformation properties. When you change the value of

Create a Write Transformation 693

the parameter, the Data Integration Service creates or recreates the target according to the value specified in
the parameter.

1. Right-click in the editor and select Add Transformation.

2. Select Write from the list of transformations, and then click OK.

Tip: Type the first letter of the transformation to filter the list.

The New Write Transformation dialog box opens.

3. Select Create using a parameter.

4. Browse to select the parameter, or click New to create a new parameter, and then browse to select a
data object to create the parameter from.

5. Optionally, select the option At run time, get data object columns from data source to refresh the
transformation columns at run time.

6. Optionally, click Next to choose how to define transformation columns.

7. Click Finish.

Creating a Write Transformation from an Existing Transformation
You can create a Write transformation with the same ports in a transformation that exists in the mapping.

You can create a target for complex files, flat files, or relational resources. If one of the ports in the existing
transformation contains a complex port, you must create a complex file target and link ports by name or link
ports at run time based on the link policy. The Developer tool can create an Avro, Parquet, ORC, or JSON
complex file target.

1. Open a mapping in the editor.

2. Right-click a transformation in the mapping editor and select Create Target.

The Create Target window opens.

3. Choose a complex file, flat file, or relational data object type.

694 Chapter 50: Write Transformation

4. Choose a link type.

You can choose from the following link types:
Link ports by name

Ports in the Write transformation correspond to those in the source and have the same names.

Link dynamic port based on the mapping flow

The Write transformation contains dynamic ports based on upstream objects in the mapping flow.

Link ports at run time based on link policy

Ports are created in the target at run time based on the link policy that you configure on the Run
Time Linking tab of the Write transformation.

For more information about dynamic ports and run-time link configuration, see the Informatica Developer
Mapping Guide.

5. Name the new data object.

6. Optionally, click Browse to select a location for the data object.

7. If you chose to create a complex file target, select the complex file format as Avro or Parquet in the
Resource Format drop-down box.

8. Click Finish.

The Developer tool performs the following tasks:

• Adds a Write transformation to the mapping.
The following image shows a Write transformation created from a Read transformation:

• Links ports.

• Creates a physical data object.
You can configure the physical data object properties. For example, you must specify an HDFS connection
for the complex file data object.

Create a Write Transformation 695

A p p e n d i x A

Transformation Delimiters
This appendix includes the following topic:

• Transformation Delimiters Overview, 696

Transformation Delimiters Overview
Transformation delimiters specify divisions between data strings.

The following table lists the delimiters that transformations use to parse and write data strings:

Delimiter Name Delimiter Symbol

at symbol @

comma ,

dash -

double quote "

forward slash /

full stop .

hash #

pipe |

semi-colon ;

single quote '

space [Spacebar]

tab [Tab key]

underscore _

696

I n d e x

A
ABORT function

using 51
active transformations

description 32
Java 294, 295
Rank 531

Address Validator transformation
non-native environment 127

advanced condition type
Joiner transformation 349

advanced interface
EDataType class 335
example 337
invoking Java expressions 334
Java expressions 334
JExpression class 337, 338
JExprParaMetadata class 335

advanced properties
Association transformation 144
Consolidation transformation 179
Duplicate Record Exception transformation 257
Java transformations 299
Key Generator transformation 367
REST Web Service Consumer transformation 568
Web Service Consumer transformation 651

Advanced Properties
Bad Record Exception transformation 154
SQL transformation 606

Aggregator transformation
advanced properties 137
aggregate expressions 130
aggregate functions 131
Blaze engine 139
cache size 69
caches 135
creating non-reusable 138
creating reusable 137
Databricks Spark engine 141
developing 129
dynamic mappings 129
group by ports 132
nested aggregate functions 131
non-aggregate expressions 134
non-native environment 139
overview 128
ports 129
sorted input 135
sorting data 136
Spark engine 140
tips 138
troubleshooting 139
Update Strategy combination 636
using variables 46

all group
viewing in REST Web Service Consumer transformation 567
viewing in Web Service Consumer transformation 646, 649

any elements
Web Service Consumer transformation 645, 648

anyAttribute attributes
Web Service Consumer transformation 645, 648

anyType
map ports 680

anyType elements
parsing 666
Web Service Consumer transformation 645, 648

API methods
Java transformation 319
Java transformations 319

assigning ports
quality issues 153

Association transformation
advanced properties 144
overview 142
tracing levels 144

At End tab
Java transformations 307

auto cache size
description 71

automatic consolidation
Duplicate Record Exception transformation 253

B
Bad Record Exception transformation

advanced properties 154
blank quality issue ports 146
Configuration view 151
configuring 154
example 155
example bad records output 158
example Issues output 158
example mapplet 155
example output 158
good records example output 159
input ports 150
mapping 147
output groups 146
output ports 150
overview 145
port groups 149
process flow 147
quality issues 149

binding
WSDL file element 641

blocking transformations
description 41

blurring
date values 209

697

blurring (continued)
numeric values 209

buffer input port
Data Processor transformation 223

buffer output port
Data Processor transformation 224

C
cache

Lookup transformation 390
cache directory

Data Masking transformation 216
cache file directory

Association transformation 144
Consolidation transformation 179
Duplicate Record Exception transformation 257
Key Generator transformation 367

cache file size
Association transformation 144
Consolidation transformation 179
Duplicate Record Exception transformation 257
Key Generator transformation 367

cache files
directory 71
overview 70

cache size
auto 71
Data Masking transformation 216

caches
cache files 69
data 70
directory for files 71
dynamic lookup cache 419
index 70
Lookup transformation 412
overview 69
partitioning 73
size 71
size increased by Data Integration Service 73
size optimization 74
static lookup cache 414
transformations 69
types 70

calculations
using variables with 47

Case Converter transformation
non-native environment 162
overview 160

choice elements
description 681
parsing SOAP messages 669
viewing in REST Web Service Consumer transformation 567
viewing in Web Service Consumer transformation 646, 649

Classifier transformation
classifier algorithm 164
classifier model 164
non-native environment 171
overview 163

classpath
mapping property 301

Cluster Data
output group 255

clusters
Duplicate Record Exception transformation 252

code snippets
creating for Java transformations 303

Comparison transformation
non-native environment 176
overview 172

compilation errors
identifying the source of in Java transformations 313

compiling
Java transformations 312

compiling Java code
Full Code tab 308

Component view
Data Processor transformation 222

composite keys
creating with Sequence Generator transformation 580
REST Web Service Consumer transformation 564
Web Service Consumer transformation 645

concurrent web service request messages
enabling in Web Service Consumer transformation 651

condition type
advanced for Joiner transformation 349
simple for Joiner transformation 349

conditions
Joiner transformation 348
Router transformation 574

Configuration view
Bad Record Exception transformation 151
Bad Record Exception transformation example 157
Duplicate Record Exception transformation 253

connected lookups
description 381
overview 382

connected transformations
Java 294
Rank 531
Sequence Generator 579

connection
REST web services 568
web services 651

considerations
Java transformations 298

Consolidation transformation
advanced properties 179
non-native environment 193
overview 177
sorting records 179
tracing levels 179

constants
replacing null values with 50

constraints
source optimization 546

Continue on SQL Error
SQL transformation 610, 613

cookie authentication
REST Web Service Consumer transformation 563
Web Service Consumer transformation 644

creating
Java transformations 310, 311
Python transformation 527, 528
Sequence Data Object 584
Sequence Generator transformation 587

Current Value (property)
Sequence Generator transformation 582

cycle
Sequence Generator transformation property 582

Cycle (property)
Sequence Generator transformation property 582

698 Index

D
data

storing temporary 46
data caches

transformations 70
Data Integration Service)

restart mode 326
data masking transformation

masking IP addresses 211
Data Masking transformation

blurring 208
cache directory 216
cache size 216
default value file 213
dependent data masking 203
description 194
dictionary for substitution masking 200
dictionary name expression masking 197
expression masking 197
expression masking guidelines 198
mask format 206
masking credit cards 210
masking date values 208
masking email addresses 210
masking phone numbers 212
masking Social Insurance numbers 213
masking social security numbers 212, 214
masking techniques 194
masking URLs 212
non-native environment 219
random masking 195
range 208
repeatable expression masking 197
repeatable SIN numbers 213
repeatable SSN 212
runtime properties 216
shared storage table 216
source string characters 207
special mask formats 209
storage commit interval 216
storage table 197
storage tables 201
substitution masking 200
substitution masking properties 201, 202
unique output 216

data object
duplicate parameterized 394
parameterizing 543

Data Object tab
description 543
field descriptions 392
parameterize using a new data object 394

Data Processing transformation
startup component 225

Data Processor Events view
Data Processor transformation 233
viewing event log 235

Data Processor Hex Source view
description 222

Data Processor transformation
encoding settings 226
Blaze engine 243
creating 236
description 221, 222
exporting as a service 240
input ports 223
non-native environment 242

Data Processor transformation (continued)
output control settings 229
output ports 224
ports 223
processing settings 230
service parameter ports 224
settings 226
testing in the Data Viewer 240
user logs 235
views 222
XMap settings 231
XML settings 231

Data Transformation service
import multiple services 241
importing to the Model repository 241

data types
Java transformations 295

date values
random data masking 196

datetime values
data masking 200

Decision transformation
advanced properties 249
non-native environment 250
overview 244
quality issue sample strategy 149

default groups
Router transformation 573

default values
data masking 213
entering 53, 55
input ports 49, 50
output ports 49, 50
overview 49
pass-through ports 49, 50
rules for 55
user-defined 50
validating 53, 55

defineJExpression
Java expression API method 336

defineJExpression method
Java transformations 320

denormalized input
web service ports 678

denormalized output
SOAP message parsing 665

dependencies
implicit 63
link path 63

dependent column
data masking 203

dependent masking
description 203

derived type elements
Web Service Consumer transformation 645, 648

derived types
parsing SOAP messages 667
web services 679

design-time event log
description and location 234

designing
Java transformations 298

dictionary
repeatable expression masking 197
substitution data masking 200

dictionary information
Data Masking transformation 202

Index 699

distinct output
Sorter transformation 592

driver scores
Match transformation 439

dual-source match analysis 434
Duplicate Record Exception transformation

advanced properties 257
automatic consolidation 253
cluster output example 261
clusters 252
Configuration view 253
configuring 262
example 257
example configuration settings 259
generating duplicate records table 254
mapping example 258
output groups 255
overview 251
ports 254
sample output 260
sorting records 257
Standard Output group 255
tracing levels 257

dynamic expression
creating 277

dynamic expressions
example 274
output port settings 275
overview 274

dynamic lookup cache
description 419
lookup SQL override 425
use cases 420
using flat file sources 419

dynamic mappings
port selector 268, 398
Aggregator transformation 129
Filter transformation 282
Joiner transformations 345
Lookup condition 396
Lookup transformations 391
Rank transformation 532
Router transformation 573
selection rules 268, 398
Sorter transformation 591
Update Strategy transformation 634

dynamic ports
join condition 351
lookup condition 391

dynamic relational data objects
creating read transformations 547

dynamic URL
Web Service Consumer transformation 644

E
early selection optimization

SQL transformation 614
Web Service Consumer transformation 655

EDataType class
Java expressions 335

Edit Output Group dialog box
Normalizer transformation 504

elements
union 682

encoding guidelines
Data Processor transformation 229

encoding settings
Data Processor transformation 226

encrypt storage
Data Masking transformation 216

End Value (property)
Sequence Generator transformation 582

endpoint URL
REST Web Service Consumer transformation 562
Web Service Consumer transformation 644

error counts
incrementing for Java transformations 323

ERROR function
using 51

errors
handling 53
increasing threshold in Java transformations 323

event log
viewing 235

event log, design-time
description and location 234

event types
Data Processor transformation 233

events
Data Processor transformation 233

Events view
Data Processor transformation 233

Events view, Data Processor
viewing event log 235

example
dynamic expression 274
partition and order keys 272

example input file
Data Processor transformation 223

Example Source
creating in Data Processor transformation 239

Excel
configuring transformation ports 67
copying ports 66
copying to the Developer tool 67
editing a transformation 68
copying rules and guidelines 68

Exception transformation
Issue Assignment view 153

Expression Editor
description 43
testing expressions 266
validating expressions 44

expression masking
description 197
repeatable masking 197
repeatable masking example 198
rules and guidelines 198

expression parameter
for a join condition 351
lookup condition 399

Expression transformation
advanced properties 278
Blaze engine 279
Databricks Spark engine 280
dynamic expression 274
non-native environment 279
output port settings 275
overview 264
port types 265
Spark engine 279
testing 266
using variables 46

700 Index

expressions
adding comments 44
adding to a port 44
entering 43
in transformations 42
Java transformations 329
simplifying 46
validating 44

F
failing mappings

Java transformations 321
failSession method

Java transformations 321
failure event

Data Processor transformation 233
fatal error event

Data Processor transformation 233
field match analysis

field analysis defined 434
process flow 456

file input port
Data Processor transformation 223

file ouptput port
Data Processor transformation 224

filter port
Web Service Consumer transformation 655

Filter transformation
advanced properties 285
Blaze engine 286
dynamic mappings 282
filter condition 283
filter condition parameter 283
non-native environment 285
overview 281
performance tips 285
rows with null values 285

filtering source rows
Lookup transformation 386

finding
errors in Java code 313

foreign keys
creating with Sequence Generator transformation 580

Forwarding Rejected Rows
configuring 635
option 635

Full Code tab
Java compilation errors 312
Java transformations 308

Functions tab
Java transformations 307

G
GCID

description 491
Normalizer transformation example 502

generate bad records table
Bad Record Exception transformation 152

generate Java code
Java expressions 331

generate output row
Java transformations 321

generated keys
web service output groups 664

generateRow method
Java transformations 321

generic fault output
enabling in Web Service Consumer transformation 651

generic SOAP faults
Web Service Consumer transformation 653

getBytes method
Java transformations 338

getDouble method
Java transformations 338

getInRowType method
Java transformations 322

getInt method
Java transformations 339

getLong method
Java transformations 339

getMetada method
Java transformations 323

getResultDataType method
Java transformations 339

getResultMetadata method
Java transformations 339

getStringBuffer method
Java transformations 340

Group By tab
description 133
port list parameters 134, 535

group filter condition
Router transformation 574

groups
adding to Router transformation 577
Router transformation 573
user-defined 573

groups in match analysis 435
GZip

compressing SOAP messages 653

H
Helpers tab

Java transformations 305, 306
Hex Source view, Data Processor

description 222
Hierarchical to Relational transformation

configure ports 291
creating 292
creating ports 292
description 287
development 291
example 287
ports 290
testing in the Data Viewer 293

high precision processing
Java transformations 299

HTTP connection
REST web services 568

HTTP error output
enabling in Web Service Consumer transformation 651

HTTP header
adding to REST Web Service Consumer transformation 563
adding to Web Service Consumer transformation 644

HTTP response code
REST Web Service Consumer transformation 564

Human tasks
bad record exceptions 149

Index 701

I
identity match analysis

identity analysis defined 434
master data sets 441
output properties for index data analysis 477
persistence status codes 450
persistence status descriptions 450
persistent store of index data 441
process flow 469
rules and guidelines for persistent index data 441

IIF function
replacing missing keys with Sequence Generator transformation
581

Imports tab
Java transformations 304, 306

Increment By (property)
Sequence Generator transformation property 582

incrementErrorCount method
Java transformations 323

incrementing
setting sequence interval 583

index caches
transformations 70

initializing
variables 49

input hierarchy
Normalizer transformation 493

input mapping
REST Web Service Consumer transformation 564
Web Service Consumer transformation 645

input ports
default values 49
Java transformations 298

Input Ports area
generating SOAP messages 671

input rows
getting the row type for 322

Insert Else Update (property)
description 426

instance variables
Java transformations 305

invoke
Java expression API method 340

invokeJExpression
API method 332

invokeJExpression method
Java transformations 324

isNull method
Java transformations 325

isResultNull method
Java transformations 340

Issue Assignment view
Bad Record Exception transformation 153

Issues table
generating 152

J
Java code

finding errors 313
in Java transformations 302

Java code snippets
creating for Java transformations 303

Java expression API method
getResultDataType 339

Java expression API methods
defineJExpression 336
getBytes 338
getDouble 338
getInt 339
getLong 339
getResultMetadata 339
getStringBuffer 340
invoke 340
isResultNull 340

Java expressions
advanced interface 334
advanced interface example 337
configuring 330
configuring functions 331
creating 331
creating in the Define Function dialog box 331
EDataType class 335
generate Java code 331
generating 330
invokeJExpression API method 332
invoking 324
invoking with advanced interface 334
invoking with simple interface 332
Java transformations 329
JExpression class 337, 338
JExprParaMetadata class 335
rules and guidelines 332, 334
rules and guidelines for invoking 324
simple interface 332
simple interface example 333

Java packages
importing 304

Java primitive data types
Java transformations 295

Java transformation
API methods 319
Blaze engine 317
Non-native environment 317
overview 294
Spark engine 317

Java transformations
active 295
advanced properties 299
API methods 319
At End tab 307
checking null values in 325
compilation errors 312
compiling 312
creating 310, 311
creating Java code snippets 303
creating ports 298
data type conversion 295
default port values 298
defineJExpression method 320
designing 298
failing mappings in 321
failSession method 321
Full Code tab 308
Function tab 307
generateRow method 321
getInRowType method 322
getMetadata method 323
getting the input row type 322
Helpers tab 305, 306
high precision processing 299
identifying the source of compilation errors 313
Imports tab 304, 306

702 Index

Java transformations (continued)
incrementErrorCount method 323
input ports 298
invokeJExpression method 324
isNull method 325
Java code 302
Java primitive data types 295
logError method 325
logInfo method 326
logs 325, 326
mapping-level classpath 301
nanosecond processing 299
non-user code errors 313
On Inputs tab 306
output ports 298
passive 295
resetNotification method 326
resetting variables in 326
retrieving metadata 323
setNull method 327
setting null values in 327
Stateless 299
storeMetadata method 328
storing metadata 328
Transformation Scope 299
troubleshooting 312
user code errors 313

JDK
Java transformation 294

JExpression class
Java expressions 337, 338

JExprParaMetadata class
Java expressions 335

join condition
overview 348

Joiner transformation
advanced condition type 349
advanced properties 342
Blaze engine 361
blocking source pipelines 359
cache size 69
caches 343
caching master rows 360
condition type 349
conditions 348
configuring sort order 354
Databricks Spark engine 362
detail outer join 353
dynamic mappings 345
dynamic ports 351
expression parameter 351
full outer join 353
join types 351
joining data from the same source 357
master outer join 353
non-native environment 361
normal join 352
overview 341
performance 360
port selectors 345
ports 344
rules and guidelines 361
selection rules 346
simple condition type 349
sorted 359
sorted input 354
Spark engine 361
unsorted 359

Joiner transformation (continued)
using port selectors 350

JRE
Java transformation 294

K
Key Generator transformation

advanced properties 367
Non-native environment 367
overview 363
tracing levels 367

key masking
description 199
masking datetime values 200
masking numeric values 199
masking string values 199
numeric values 199

keys
creating with Sequence Generator transformation 580
SOAP message hierarchy 673

L
Labeler transformation

Non-native environment 379
overview 368

Library
creating in Data Processor transformation 238

link
one to many 61
one to one 61

link scores
Match transformation 439

list elements
description 681
parsing SOAP messages 669

local variables
overview 46

Location column
web service transformation 672

log
definition 234

log, design-time event
description and location 234

logError method
Java transformations 325

logInfo method
Java transformations 326

logs
Java transformations 325, 326

lookup
uncached 414

lookup cache
overview 390

lookup caches
definition 412
dynamic 419
overview 412
persistent 414
static 414

lookup condition
Data Masking transformation 202
description 388
specify by parameter 399
using generated ports 396

Index 703

lookup query
default query 384
description 384
ORDER BY 384
override guidelines 385
overriding 384, 386
reserved words 385

lookup source
parameterizing 394

lookup source filter
limiting lookups 386

lookup SQL override
dynamic caches 425

Lookup transformation
advanced properties 403
Blaze engine 409
cache size 69
cache size, reducing 384
caches 412
caching 390
connected 381, 382
creating non-reusable 405
creating reusable 404
creating unconnected lookups 406
Databricks Spark engine 410
default query 384
developing 383
dynamic cache 419
dynamic mappings 391
dynamic ports 391
lookup condition 387
lookup condition rules and guidelines 389
lookup query override 384
mapping parameters and variables 384
Non-native environment 408
overriding lookup 386
overview 380
persistent cache 414
port name conflicts 393
query properties 390
relational parameterized data object 394
run-time properties 402
Spark engine 409
uncached lookup 414
unconnected 381, 383

lower threshold
configuring 151, 253

M
maintain row order

Sequence Generator transformation 583
manual consolidation

Duplicate Record Exception transformation 253
Mapper

description 221
mapping parameters

in lookup SQL override 384
mapping variables

in lookup SQL override 384
mappings

flagging rows for update 634
using Router transformations 578

Mapplet
reference 226

mask format
masking string values 206

mask format (continued)
special mask formats 209

masking rules
blurring 208
mask format 206
range 208
result string replacement characters 207
source string characters 207
special mask formats 209

masking techniques
data masking 194

match strategy
Duplicate Record Exception transformation 258

Match transformation
Blaze engine 455
cluster score options 437
concepts in match analysis 433
configuring a match analysis operation 454
creating a mapplet for match analysis 453
driver scores 439
dual-source analysis 434
field analysis defined 434
field analysis process flow 456
grouped data 435
identity analysis defined 434
identity analysis process flow 469
identity index tables 441
link scores 439
Match Output view options 460
Match Output view properties 461
Match properties on the Match Output view 477
Non-native environment 455
null match scores 437
output formats 475
Output properties on the Match Output view 477
performance factors 442
persistence status codes 450
persistence status descriptions 450
predefined input ports 448
predefined output ports 449
sample match strategy 258
single-source analysis 434
Spark engine 455
use cases 432
viewing cluster analysis data 443
viewing performance data 443

Max Output Row Count
SQL transformation 610

Maximum Output Row Count
SQL transformation 611

Merge transformation
Non-native environment 489
overview 488

methods
Java transformation API 319

missing values
replacing with Sequence Generator 581

multi-group
transformations 41

multiple-occurring fields
Normalizer transformation 491

N
nanosecond processing

Java transformations 299

704 Index

NEXTVAL port
Sequence Generator 580

non-reusable transformations
description 57

non-user code errors
in Java transformations 313

Normalizer transformation
advanced properties 505
creating 506
definition example 508
dragging ports from other objects 507
editing an output group 504
example use case 507
GCID 491
input and output groups example 509
input hierarchy 493
input ports 494
key generation 505
mapping example 507
mapping output example 510
merging fields 495, 496
multiple-occurring fields 491
multiple-occurring records 492
Non-native environment 511
output groups 501, 502
overview 490
subrecords 492

Normalizer view
description 493

notification event
Data Processor transformation 233

null match scores
Match transformation 437

null values
checking in Java transformations 325
replacing with a constant 50
setting for Java transformation 327
skipping 52

number of cached values
Sequence Generator property value 582

Number of Rows Affected
SQL transformation 606

numeric values
key masking 199
random masking 196

NumRowsAffected
rows output 612

O
On Inputs tab

Java transformations 306
operation

WSDL file element 641
operation area

web service transformations 672
Operation Input area

customizing Web Service Consumer transformation 646
Operation Output area

customizing Web Service Consumer transformation 649
optional failure event

Data Processor transformation 233
ORDER BY

lookup query 384
override 384

output control settings
Data Processor transformation 229

output groups
Bad Record Exception transformation 146
Normalizer transformation 502

output mapping
REST Web Service Consumer transformation 566
Web Service Consumer transformation 648

output port settings
description 275

output ports
default values 49
error handling 49
Java transformation 298
Java transformations 298

override lookup
guidelines 385

override SOAP action
Web Service Consumer transformation 651

P
parameter binding

SQL transformation 609
Parameter option

Joiner transformation 351
parameters

filter condition 283
Router transformation 576

Parser
description 221

Parser transformation
Non-native environment 522
overview 512

pass-through ports
Expression transformation 265
SQL transformation 604

pass-throught ports
default values 49

passive transformations
Java 294, 295
overview 33
Sequence Generator 579

performance
using variables to improve 46

persistent lookup cache
overview 414

persistent storage of identity index data 441
physical data objects

synchronization 543
pivoted data

SOAP messages 676
pivoted output

SOAP message parsing 666
port attributes

propogating 63
port list parameters

Group By tab 134, 535
port selector

selection rules 268, 397, 398
creating 269, 347, 400
in dynamic expressions 274
Joiner transformation 345, 346
selection rules 268, 397, 398

port selectors
in Joiner transformations 350

port values
Java transformations 298

Index 705

ports
Bad Record Exception transformation 149
configure 60
copying from Excel 66
creating 59
default values overview 49
denormalized web service input 678
Duplicate Record Exception transformation 254
evaluation order 48
Java transformations 298
linking 60
linking automatically 61
linking by name 61
linking by position 62
linking manually 61
linking rules and guidelines 62
map to SOAP messages 674
propagated attributes by transformation 64
Router transformation 577
Sequence Generator transformation 579
variables ports 46

Ports view
SQL transformation output 603

primary keys
creating with Sequence Generator transformation 580

properties
Read transformation

properties 539
Write transformation

properties 686
push-into optimization

enabling in SQL transformation 615
SQL transformation 614
Web Service Consumer transformation 655

python
guidelines 527
rules 527

Python
advanced properties 525
code 526
components 525
creating 527
data type 523
example 528

input port
data type 524

input ports 525
output port

data type 524
output ports 525
pre-trained model 525
resource file 525, 526
script 525
use case 528

Python transformation
creating 527, 528
Non-native environment 529
overview 523
Spark engine 529

Q
Qname elements

parsing SOAP messages 668
quality issue ports

blank versus NULL 146

quality issues
assigning ports to 153

quality issues ports
description 150

queries
Lookup transformation 384
overriding lookup 384

R
random masking

masking date values 196
masking string values 195
numeric values 195

range
masking numeric values 208

rank port
Rank transformation 534

Rank transformation
advanced properties 536
Blaze engine 537
cache size 69
caches 535
Databricks Spark engine 538
defining groups for 534
dynamic mappings 532
Non-native environment 537
options 532
overview 531
ports 532
rank port 534
RANKINDEX port 533
Spark engine 537
using variables 46

ranking
groups of data 534
string values 532

Read data object
parameterizing 544

Read transformation
overview 539

read transformations
creating from relational data objects 547

records
Normalizer transformation 492

References view
Data Processor transformation 226
Hierarchical to Relational transformation 291
Relational to Hierarchical transformation 552

reject file
update strategies 635

rejected records
Bad Record Exception transformation 150

relational data objects
creating a dynamic read transformation 547

Relational to Hierarchical transformation
creating 553
creating ports 553
description 549
development 553
example 550
ports 552

Repository view
Data Processor transformation 222

reserved words
lookup query 385

706 Index

reset
Sequence Generator transformation 583

Reset (property)
Sequence Generator transformation 582

resetNotification method
Java transformations 326

response code
REST Web Service Consumer transformation 564

REST Web Service Consumer transformation
advanced properties 568
argument ports 562
configuration 557
connection property 568
cookie ports 563
creating 569
customizing output mapping view 567
Delete method 561
Get method 559
HTTP header ports 563
HTTP methods 558
input mapping 564
input mapping rules 564
input ports 562
internet media type 568
mapping elements to ports 561
mapping input 555
mapping input ports 565
mapping output 555
mapping output ports 567
message configuration 557
non-reusable 569
output mapping 566
output mapping rules 566
output ports 562
output XML ports 563
overview 555
pass-through ports 562
ports 561
Post method 559
process 556
proxy server support 555
Put method 560
RequestInput port 561
resource identification 557
response code ports 564
reusable 569
security 642
setting base URL 568
sorted input 568
tracing level 568
transport layer security 642
URL ports 562
XML schema validation 568

result sets
output parameter placement 622
sample stored procedures 621
SQL transformation 620

result string replacement characters
Data Masking transformation 207

Reusable
Sequence Generator transformation 584

reusable transformations
description 56
editing 57

Router transformation
advanced properties 578
connecting in mappings 578
dynamic mappings 573

Router transformation (continued)
dynamic ports 576
example 574
group filter condition 574
groups 573
Non-native environment 578
overview 572
parameters 576
ports 577

rows
flagging for update 634

rules
default values 55

rules and guidelines
windowing properties 274

run-time event log
Data Processor transformation 235

Runtime view
SQL transformation 618

S
sample source file

defining in Data Processor transformation 237
schemas

Data Processor transformation 226
Hierarchical to Relational transformation 291
Relational to Hierarchical transformation 552

scope
master and detail 346
port selector 268, 397

Script
creating in Data Processor transformation 237

Script Help view
Data Processor transformation 222

selection criteria
port selector 268, 397

selection rules
dynamic mappings 268, 398
Joiner transformation 346
port selectors 268, 397

Sequence Data Object
creating 584
properties 584

Sequence Generator transformation
Blaze engine 589
creating 587
creating composite key 580
cycle 582
Cycle 583
Increment By property 583
maintain row order 583
NEXTVAL port 580
Non-native environment 589
overview 579
ports 579
properties 582, 584
range of values 583
reset 583
Spark engine 589
start value 582
using IIF function to replace missing keys 581

sequence group
viewing in REST Web Service Consumer transformation 567

service
WSDL file element 641

Index 707

service parameter port
Data Processor transformation 223

service parameter ports
Data Processor transformation 224

setNull method
Java transformations 327

Settings view
Data Processor transformation 226

shared lookup cache
guidelines 416
partitioning, guidelines 416

shared storage table
Data Masking transformation 216

side effects
SQL transformation 614
Web Service Consumer transformation 655

simple condition type
Joiner transformation 349

simple interface
example 333
Java expressions 332
Java transformation API methods 332

SIN numbers
masking Social Insurance numbers 213
repeatable data masking 213

single-source match analysis 434
SOAP action

overriding in Web Service Consumer transformation 651
SOAP compression

Web Service Consumer transformation 653
SOAP hierarchy

relationship to input ports 672
SOAP message

keys 673
SOAP message parsing

denormalized output 665
derived types 667
description 662
normalized output 664
pivoted output 666
Qname elements 668
union element 669

SOAP messages
map choice elements 681
map list elements 681
map multiple input ports 676
map multiple-occurring nodes 664
map ports 674
map ports to union elements 682
overview 641
parsing anyType elements 666
parsing choice elements 669
parsing list elements 669
parsing substitution groups 668
pivoting data 676

Social Security numbers
area code masking 212
repeatable data masking 212

Sort keys
configuring 592

sort property
Consolidation transformation 179
Duplicate Record Exception transformation 257

Sort tab
Sorter transformation 592

Sorter
variable length 595

Sorter transformation
Blaze engine 598
cache size 69
caches 595
Databricks Spark engine 599
dynamic mappings 591
Non-native environment 598
overview 590
Sort tab 592
Spark engine 598

source optimization
constraints 546

source string characters
Data Masking transformation 207

special format masking
credit card numbers 210
email addresses 210
IP addresses 211
phone numbers 212
repeatable SIN numbers 213
Social Insurance numbers 213
Social Security numbers 212
URLs 212

SQL input ports
SQL transformation 602

SQL query
SQL transformation 609

SQL transformation
INOUT parameters 620
Advanced Properties view 606
calling a stored procedure 620
continuing on SQL error 613
create as empty 624
creating from a stored procedure 625
defining output ports 603
defining the database connection 618
defining the query 609
early selection optimization 614
example 615
input ports description 602
input row to output row cardinality 610
number of rows affected 606
number of rows output 612
overview 601
parameter binding 609
pass-through ports 604
ports 602
push-into optimization 614
push-into optimization properties 615
query statement 618
query string substitution 609
restricting output rows 611
result sets 620
return value port 619
run-time connection 623
SQLError port 605
stored procedure parameters 620
stored procedures 618

SQLError port
SQL transformation 605

Standard Output group
Duplicate Record Exception transformation 255

Standard Output port
description 150

Standardizer transformation
overview 626

start digit
Social Insurance numbers 213

708 Index

start value
Sequence Generator transformation 582

Start Value (property)
Sequence Generator transformation 582

startup component
Data Processor transformation 225

Stateless
Java transformations 299

static code
Java transformations 305

static lookup cache
overview 414

static variables
Java transformations 305

storage commit interval
Data Masking transformation 216

storage encryption key
Data Masking transformation 216

storage table
expression masking 197
substitution data masking 201

stored procedures
example 622
input and output ports 619
parameters 620
result set examples 621
return value 620
return value port 619
SQL transformation 618
writing to variables 48

storeMetada method
Java transformations 328

Streamer
description 221

string substitution
SQL transformation 609

string values
custom data masking 195
key data masking 199

strings
ranking 532

subrecords
Normalizer transformation 492

substitution groups
parsing SOAP messages 668
Web Service Consumer transformation 645, 648
web services 680

substitution masking
description 200
masking properties 201

synchronization
customized data objects 543
physical data objects 543

synchronize with editor
Data Processor transformation 240

T
targets

relational 633
tracing levels

Association transformation 144
Consolidation transformation 179
Duplicate Record Exception transformation 257
Key Generator transformation 367
Sequence Generator transformation property 582

transformation ports
overview 59

Transformation Scope
Java transformations 299

transformations
configuring ports in Excel 67
copying metadata 67
active 32
cache files 70
cache partitioning 73
cache size 71, 73
cache size optimization 74
caches 69
connected 33
creating 58
developing 41
editing in Excel 68
editing reusable 57
expression validation 44
expressions 42
Hadoop environment 36
handling errors 53
Java 294
multi-group 41
non-reusable 57
overview 32
reusable 56, 57
Sequence Generator 579
unconnected 33

Transformer
description 221

transport layer security
REST Web Service Consumer transformation 642
Web Service Consumer transformation 642

treat fault as error
enabling in Web Service Consumer transformation 651

troubleshooting
Java transformations 312

U
unconnected lookups

description 381
overview 383

unconnected transformations
Lookup transformation 383

union element
parsing SOAP messages 669

union elements
description 682

Union transformation
Databricks Spark engine 632
Non-native environment 632
overview 629

unique output
Data Masking transformation 202

unique records table
creating 262

Update Else Insert (property)
description 426

Update Strategy transformation
advanced properties 635
Aggregator combination 636
Blaze engine 637
creating 634
dynamic mappings 634
expressions 635

Index 709

Update Strategy transformation (continued)
forwarding rejected rows 635
Non-native environment 637
overview 633
Spark engine 638
steps to configure 633

upper threshold
configuring 151, 253

Use Hive Merge
option 635

user code errors
Java transformations 313

user log
Data Processor transformation 235

user-defined group
Router transformation 573

user-defined methods
Java transformations 305

V
validating

default values 53, 55
Validation Rule object

creating in Data Processor transformation 239
variable length

in the Sorter transformation 595
variable ports

Expression transformation 265
overview 46

variables
initializations 49
Java transformations 305
overview 46
port evaluation order 48
stored procedure results, capturing 48

W
warning event

Data Processor transformation 233
web service

derived types 679
map ports to anyTypes 680
substitution groups 680

Web Service Consumer transformation
adding HTTP headers 644
advanced properties 651
concurrent web service request messages 651
cookie authentication 644
creating 657

Web Service Consumer transformation (continued)
dynamic web service URL 644
dynamic WS-Security name 644
early selection optimization 655
enabling generic fault output 651
enabling HTTP error output 651
enabling push-into optimization 656
endpoint URL 644
error handling 653
filter optimization 655
generic SOAP faults 653
input mapping 645
mapping input ports 645
mapping output nodes 648
operations 641
output mapping 648
overview 640
push-into optimization 655
security 642
SOAP compression 653
SOAP messages 641
transport layer security 642
viewing keys 646, 649

web service transformations
Location column 672

web services connections
overview 651

Weighted Average transformation
Non-native environment 685

windowing
properties 271

windowing properties
frame 271
order 271, 272
partition 271, 272
rules and guidelines 274

Write transformation
overview 686

WS-Security user name
dynamic port 644

WSDL file
binding element 641
operation element 641
port element 641
service element 641

X
XMap object

creating in Data Processor transformation 238

710 Index

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction to Transformations
	Introduction to Transformations Overview
	Active Transformations
	Passive Transformations
	Unconnected Transformations
	Multi-Strategy Transformations
	Transformation Descriptions

	Transformations in the Native and Non-native Environments
	Handling Transformation Data Types
	Decimal Data Type
	Timestamp with Time Zone
	Timestamp with Local Time Zone

	Developing a Transformation
	Multi-Group Transformations
	Rules and Guidelines for Multi-Group Transformations

	Expressions in Transformations
	The Expression Editor
	Port Names in an Expression
	Adding an Expression to a Port
	Comments in an Expression
	Expression Validation
	Test Expressions
	Data Type Conversion

	Local Variables
	Temporarily Store Data and Simplify Complex Expressions
	Store Values Across Rows
	Capture Values from Stored Procedures
	Guidelines for Configuring Variable Ports
	Variable Initialization

	Default Values for Ports
	User-Defined Default Values
	User-Defined Default Input Values
	Default Value Validation
	User-Defined Default Output Values
	General Rules for Default Values
	Default Value Validation

	Tracing Levels
	Reusable Transformations
	Reusable Transformation Instances and Inherited Changes
	Editing a Reusable Transformation
	Editor Views for a Reusable Transformation

	Non-Reusable Transformations
	Editor Views for a Non-Reusable Transformation

	Creating a Transformation

	Chapter 2: Transformation Ports
	Transformation Ports Overview
	Create Ports
	Configure Ports
	Linking Ports
	One to One Links
	One to Many Links
	Manually Linking Ports
	Automatically Linking Ports
	Rules and Guidelines for Linking Ports

	Propagating Port Attributes
	Dependency Types
	Link Path Dependencies
	Implicit Dependencies
	Propagated Port Attributes by Transformation

	Copying Ports from Excel
	Editing Transformations in Excel
	Copying Metadata to the Developer Tool
	Example: Editing a Transformation in Excel
	Rules and Guidelines for Copying from Excel

	Chapter 3: Transformation Caches
	Transformation Caches Overview
	Cache Types
	Cache Files
	Cache File Directory

	Cache Size
	Auto Cache Size
	Specific Cache Size

	Cache Size Increase by the Data Integration Service
	Cache Size for Partitioned Caches
	Cache Size Optimization
	Step 1. Set the Tracing Level to Verbose Initialization
	Step 2. Run the Mapping in Auto Cache Mode
	Step 3. Analyze Caching Performance
	Step 4. Configure Specific Cache Sizes

	Chapter 4: Address Validator Transformation
	Address Validator Transformation Overview
	Address Reference Data
	Types of Address Reference Data

	Modes and Templates
	Port Groups and Port Selection
	Address Validator Transformation Input Port Groups
	Address Validator Transformation Output Port Groups
	Multiple-Instance Ports
	Address Validation Projects
	Formatted Addresses and Mail Carrier Standards
	Partial Address Completion
	Address Validator Status Ports
	Element Status Code Definitions
	Address Resolution Code Output Port Values
	Element Input Status Output Port Values
	Element Relevance Output Port Values
	Element Result Status Output Port Values
	Extended Element Result Status Output Port Values
	Mailability Score Output Port Values
	Match Code Output Port Values
	Geocoding Status Output Port Values

	Address Validator Transformation General Settings
	Address Validation Properties in the Preferences Window
	Address Validation Data Properties
	Address Validation License Properties
	Address Validation Engine Properties

	Address Validation Advanced Properties
	Alias Locality
	Alias Street
	Casing Style
	Country of Origin
	Country Type
	Default Country
	Dual Address Priority
	Element Abbreviation
	Execution Instances
	Flexible Range Expansion
	Geocode Data Type
	Global Max Field Length
	Global Preferred Descriptor
	Input Format Type
	Input Format With Country
	Line Separator
	Matching Alternatives
	Matching Extended Archive
	Matching Scope
	Max Result Count
	Mode
	Optimization Level
	Output Format Type
	Output Format With Country
	Preferred Language
	Preferred Script
	Ranges To Expand
	Standardize Invalid Addresses
	Tracing Level

	Certification Reports
	AMAS Report Fields
	CASS Report Fields
	SendRight Report
	SERP Report Fields

	Configuring an Address Validator Transformation
	Adding Ports to the Address Validator Transformation
	Creating User-Defined Templates
	Defining Address Validator Models
	Defining a Certification Report
	Address Validator Transformation in a Non-native Environment
	Address Validator Transformation on the Blaze Engine
	Address Validator Transformation on the Spark Engine

	Chapter 5: Aggregator Transformation
	Aggregator Transformation Overview
	Aggregator Transformations in Dynamic Mappings
	Developing an Aggregator Transformation
	Aggregator Transformation Ports
	Aggregate Expressions
	Aggregate Functions
	Nested Aggregate Functions
	Conditional Clauses in Aggregate Expressions

	Group By Ports
	Configure Group By Ports
	Group By Parameters
	Default Values of Group By Ports
	Non-Aggregate Expressions

	Aggregator Caches
	Sorted Input for an Aggregator Transformation
	Sorted Input Conditions
	Sorting Data in an Aggregator Transformation

	Aggregator Transformation Advanced Properties
	Creating a Reusable Aggregator Transformation
	Creating a Non-Reusable Aggregator Transformation
	Tips for Aggregator Transformations
	Troubleshooting Aggregator Transformations
	Aggregator Transformation in a Non-native Environment
	Aggregator Transformation on the Blaze Engine
	Aggregator Transformation on the Spark Engine
	Aggregator Transformation on the Databricks Spark Engine

	Chapter 6: Association Transformation
	Association Transformation Overview
	Memory Allocation
	Association Transformation Advanced Properties

	Chapter 7: Bad Record Exception Transformation
	Bad Record Exception Transformation Overview
	Bad Record Exception Output Record Types
	Bad Record Exception Management Process Flow
	Bad Record Exception Mappings
	Bad Record Exception Quality Issues
	Human Tasks

	Bad Record Exception Ports
	Bad Record Exception Transformation Input Ports
	Bad Record Exception Transformation Output

	Bad Record Exception Configuration View
	Generating the Bad Records Table and the Issues Table

	Bad Record Exception Issue Assignment
	Assigning Ports to Quality Issues

	Exception Transformation Advanced Properties
	Configuring a Bad Record Exception Transformation
	Bad Record Exception Mapping Example
	Bad Record Exception Mapplet
	Bad Record Exception Example Input Groups
	Bad Record Exception Example Configuration
	Bad Record Exception Example Mapping Output

	Chapter 8: Case Converter Transformation
	Case Converter Transformation Overview
	Case Strategy Properties
	Configuring a Case Converter Strategy
	Case Converter Transformation Advanced Properties
	Case Converter Transformation in a Non-native Environment

	Chapter 9: Classifier Transformation
	Classifier Transformation Overview
	Classifier Models
	Classifier Algorithms
	Classifier Transformation Options
	Classifier Strategies
	Classifier Transformation Advanced Properties
	Configuring a Classifier Strategy
	Classifier Analysis Example
	Create the Classifier Mapping
	Input Data Sample
	Data Source Configuration
	Classifier Transformation Configuration
	Router Transformation Configuration
	Data Target Configuration
	Classifier Mapping Outcome

	Classifier Transformation in a Non-native Environment

	Chapter 10: Comparison Transformation
	Comparison Transformation Overview
	Field Matching Strategies
	Bigram
	Hamming Distance
	Edit Distance
	Jaro Distance
	Reverse Hamming Distance

	Identity Matching Strategies
	Configuring a Comparison Strategy
	Comparison Transformation Advanced Properties
	Comparison Transformation in a Non-native Environment

	Chapter 11: Consolidation Transformation
	Consolidation Transformation Overview
	Consolidation Mappings
	Consolidation Transformation Ports
	Consolidation Transformation Views
	Consolidation Transformation Strategies View
	Consolidation Transformation Advanced Properties
	Cache File Size

	Simple Strategies
	Row-Based Strategies
	Advanced Strategies
	Simple Consolidation Functions
	CONSOL_AVG
	CONSOL_LONGEST
	CONSOL_MAX
	CONSOL_MIN
	CONSOL_MOSTFREQ
	CONSOL_MOSTFREQ_NB
	CONSOL_SHORTEST

	Row-Based Consolidation Functions
	CONSOL_GETROWFIELD
	CONSOL_MODALEXACT
	CONSOL_MOSTDATA
	CONSOL_MOSTFILLED

	Consolidation Mapping Example
	Input Data
	Key Generator Transformation
	Consolidation Transformation
	Consolidation Mapping Output

	Configuring a Consolidation Transformation
	Consolidation Transformation in a Non-native Environment
	Consolidation Transformation on the Blaze Engine
	Consolidation Transformation on the Spark Engine
	Consolidation Transformation on the Databricks Spark Engine

	Chapter 12: Data Masking Transformation
	Data Masking Transformation Overview
	Masking Techniques
	Random Masking
	Expression Masking
	Key Masking
	Substitution Masking
	Dependent Masking
	Tokenization Masking

	Masking Rules
	Mask Format
	Source String Characters
	Result String Replacement Characters
	Range
	Blurring

	Special Mask Formats
	Credit Card Number Masking
	Email Address Masking
	Advanced Email Masking
	IP Address Masking
	Phone Number Masking
	Social Security Number Masking
	URL Address Masking
	Social Insurance Number Masking

	Default Value File
	Data Masking Transformation Configuration
	Configure the Data Integration Service
	Creating a Data Masking Transformation
	Defining the Ports
	Configuring Data Masking for Each Port
	Previewing the Masked Data

	Data Masking Transformation Runtime Properties
	Data Masking Example
	Read_Customer Data
	Customer Data Masking Transformation
	Customer Test Data Results

	Data Masking Transformation Advanced Properties
	Data Masking Transformation in a Non-native Environment
	Data Masking Transformation on the Blaze Engine
	Data Masking Transformation on the Spark Engine

	Chapter 13: Data Processor Transformation
	Data Processor Transformation Overview
	Data Processor Transformation Views
	Data Processor Transformation Ports
	Data Processor Transformation Input Ports
	Data Processor Transformation Output Ports
	Pass-Through Ports

	Startup Component
	References
	Data Processor Transformation Settings
	Character Encoding
	Rules and Guidelines for Character Encoding
	Output Settings
	Processing Settings
	XMap Settings
	XML Output Configuration

	Events
	Event Types
	Data Processor Events View

	Logs
	Design-Time Event Log
	Run-Time Event Log
	Viewing an Event Log in the Data Processor Events View
	User Log

	Data Processor Transformation Development
	Create the Data Processor Transformation
	Select the Schema Objects
	Create Objects in a Blank Data Processor Transformation
	Create the Ports
	Testing the Transformation

	Data Processor Transformation Import and Export
	Exporting the Data Processor Transformation as a Service
	Importing Multiple Data Transformation Services
	Importing a Data Transformation Service
	Exporting a Mapping with a Data Processor Transformation to PowerCenter

	Data Processor Transformation in a Non-native Environment
	Data Processor Transformation on the Blaze Engine

	Chapter 14: Decision Transformation
	Decision Transformation Overview
	Decision Transformation Functions
	Decision Transformation Conditional Statements
	Decision Transformation Operators
	Decision Transformation NULL Handling
	Configuring a Decision Strategy
	Decision Transformation Advanced Properties
	Decision Transformation in a Non-native Environment

	Chapter 15: Duplicate Record Exception Transformation
	Duplicate Record Exception Transformation Overview
	Duplicate Record Exception Process Flow
	Duplicate Record Exceptions
	Duplicate Record Exception Configuration View
	Generating a Duplicate Records Table

	Ports
	Duplicate Record Exception Transformation Input Ports
	Duplicate Record Exception Transformation Output Ports
	Creating Ports

	Duplicate Record Exception Transformation Advanced Properties
	Duplicate Record Exception Mapping Example
	Duplicate Record Exception Mapping
	Match Transformation
	Duplicate Record Exception Input Groups
	Duplicate Record Exception Example Configuration View
	Standard Output Table Records
	Cluster Output

	Creating a Duplicate Record Exception Transformation

	Chapter 16: Expression Transformation
	Expression Transformation Overview
	Expression Transformation Ports
	Test Expressions
	Date Format Strings for Sample Data
	Testing an Expression

	Port Selectors
	Port Selector Configuration
	Selection Rules
	Creating a Port Selector

	Windowing
	Windowing Configuration

	Dynamic Expressions
	Output Port Settings
	Creating a Dynamic Expression

	Expression Transformation Advanced Properties
	Expression Transformation in a Non-native Environment
	Expression Transformation on the Blaze Engine
	Expression Transformation on the Spark Engine
	Expression Transformation on the Databricks Spark Engine

	Chapter 17: Filter Transformation
	Filter Transformation Overview
	Filter Transformations in Dynamic Mappings
	Filter Condition
	Parameterize the Filter Condition
	Filtering Rows with Null Values

	Filter Transformation Advanced Properties
	Filter Transformation Performance Tips
	Filter Transformation in a Non-native Environment
	Filter Transformation on the Blaze Engine

	Chapter 18: Hierarchical to Relational Transformation
	Hierarchical to Relational Transformation Overview
	Example - Hierarchical to Relational Transformation
	Output Relational Ports and the Overview View
	Hierarchical to Relational Transformation Ports
	Schema References
	Port Configuration
	Hierarchical to Relational Transformation Development
	Creating the Hierarchical to Relational Transformation
	Configuring the Ports and Mapping
	Testing the Transformation

	Chapter 19: Java Transformation
	Java Transformation Overview
	Reusable and Non-Reusable Java Transformations
	Active and Passive Java Transformations
	Data Type Conversion
	Complex Data Type Conversion on the Spark Engine

	Designing a Java Transformation
	Java Transformation Ports
	Creating Ports
	Setting Default Port Values

	Java Transformation Advanced Properties
	Configuring the Classpath for the Developer Tool Client
	Configuring the Classpath for the Data Integration Service

	Developing Java Code
	Creating Java Code Snippets
	Importing Java Packages
	Defining Helper Code

	Java Transformation Java Properties
	Imports Tab
	Helpers Tab
	On Input Tab
	At End Tab
	Functions Tab
	Full Code Tab

	Filter Optimization with the Java Transformation
	Early Selection Optimization with the Java Transformation
	Push-Into Optimization with the Java Transformation

	Creating a Java Transformation
	Creating a Reusable Java Transformation
	Creating a Non-Reusable Java Transformation

	Compiling a Java Transformation
	Troubleshooting a Java Transformation
	Finding the Source of Compilation Errors
	Identifying the Source of Compilation Errors

	Converting to Struct Data Example
	Java Transformation in a Non-native Environment
	Java Transformation on the Blaze Engine
	Java Transformation on the Spark Engine

	Chapter 20: Java Transformation API Reference
	Java Transformation API Methods Overview
	defineJExpression
	failSession
	generateRow
	getInRowType
	getMetadata
	incrementErrorCount
	invokeJExpression
	isNull
	logError
	logInfo
	resetNotification
	setNull
	storeMetadata

	Chapter 21: Java Expressions
	Java Expressions Overview
	Expression Function Types

	Using the Define Function Dialog Box to Define an Expression
	Step 1. Configure the Function
	Step 2. Create and Validate the Expression
	Step 3. Generate Java Code for the Expression
	Creating an Expression and Generating Java Code by Using the Define Function Dialog Box
	Java Expression Templates

	Working with the Simple Interface
	invokeJExpression
	Simple Interface Example

	Working with the Advanced Interface
	Invoking an Expression with the Advanced Interface
	Rules and Guidelines for Working with the Advanced Interface
	EDataType Class
	JExprParamMetadata Class
	defineJExpression
	JExpression Class
	Advanced Interface Example

	JExpression Class API Reference
	getBytes
	getDouble
	getInt
	getLong
	getResultDataType
	getResultMetadata
	getStringBuffer
	invoke
	isResultNull

	Chapter 22: Joiner Transformation
	Joiner Transformation Overview
	Joiner Transformation Advanced Properties
	Joiner Caches
	Joiner Transformation Ports
	Joiner Transformations in Dynamic Mappings
	Port Selectors in a Joiner Transformation
	Selection Rules
	Creating a Port Selector

	Defining a Join Condition
	Simple Condition Type
	Advanced Condition Type
	Port Selectors in Join Conditions
	Dynamic Ports in Join Conditions
	Expression Parameter

	Join Types
	Normal Join
	Master Outer Join
	Detail Outer Join
	Full Outer Join

	Sorted Input for a Joiner Transformation
	Configuring the Sort Order
	Adding Transformations to the Mapping
	Rules and Guidelines for Join Conditions
	Example of a Join Condition and Sort Order

	Joining Data from the Same Source
	Joining Two Branches of the Same Pipeline
	Joining Two Instances of the Same Source
	Guidelines for Joining Data from the Same Source

	Blocking the Source Pipelines
	Unsorted Joiner Transformation
	Sorted Joiner Transformation

	Joiner Transformation Performance Tips
	Rules and Guidelines for a Joiner Transformation
	Joiner Transformation in a Non-native Environment
	Joiner Transformation on the Blaze Engine
	Joiner Transformation on the Spark Engine
	Joiner Transformation on the Databricks Spark Engine

	Chapter 23: Key Generator Transformation
	Key Generator Transformation Overview
	Soundex Strategy
	Soundex Strategy Properties

	String Strategy
	String Strategy Properties

	NYSIIS Strategy
	Key Generator Output Ports
	Configuring a Grouping Strategy
	Key Creation Properties
	Key Generator Transformation Advanced Properties
	Key Generator Transformation in a Non-native Environment

	Chapter 24: Labeler Transformation
	Labeler Transformation Overview
	When to Use a Labeler Transformation
	Reference Data Use in the Labeler Transformation
	Character Sets
	Probabilistic Models
	Reference Tables
	Regular Expressions
	Token Sets

	Labeler Transformation Strategies
	Character Labeling Operations
	Token Labeling Operations

	Labeler Transformation Ports
	Character Labeling Properties
	General Properties
	Reference Table Properties
	Character Set Properties
	Filter Properties

	Token Labeling Properties
	General Properties
	Token Set Properties
	Custom Label Properties
	Probabilistic Matching Properties
	Reference Table Properties

	Configuring a Character Labeling Strategy
	Configuring a Token Labeling Strategy
	Labeler Transformation Advanced Properties
	Labeler Transformation in a Non-native Environment

	Chapter 25: Lookup Transformation
	Lookup Transformation Overview
	Connected and Unconnected Lookups
	Connected Lookups
	Unconnected Lookups

	Developing a Lookup Transformation
	Lookup Query
	Default Lookup Query
	SQL Override for a Lookup Query
	Parameters in an SQL Override Query
	Reserved Words
	Guidelines for Overriding the Lookup Query
	Overriding the Lookup Query

	Lookup Source Filter
	Filtering Source Rows in a Lookup

	Lookup Condition
	Configure the Lookup Condition
	Rules and Guidelines for Lookup Transformation Conditions

	Lookup Cache
	Query Properties
	Lookup Transformations in Dynamic Mappings
	Define Dynamic Ports
	Change the Lookup Source
	Parameterize the Lookup Source
	Lookup Sources that Contain Parameters
	Configure Parameters in a Duplicate Data Object

	Port Selectors
	Port Selector Configuration
	Selection Rules
	Parameterize the Lookup Condition
	Creating a Port Selector

	Run-time Properties
	Advanced Properties
	Creating a Reusable Lookup Transformation
	Creating a Non-Reusable Lookup Transformation
	Creating an Unconnected Lookup Transformation
	Unconnected Lookup Example
	Lookup Transformation in a Non-native Environment
	Lookup Transformation on the Blaze Engine
	Lookup Transformation on the Spark Engine
	Lookup Transformation on the Databricks Spark Engine

	Chapter 26: Lookup Caches
	Lookup Caches Overview
	Lookup Cache Types
	Uncached Lookup
	Static Lookup Cache
	Persistent Lookup Cache
	Rebuilding a Persistent Lookup Cache

	Dynamic Lookup Cache
	Shared Lookup Cache
	Rules and Guidelines for Sharing a Lookup Cache

	Cache Comparison
	Cache Partitioning for Lookups

	Chapter 27: Dynamic Lookup Cache
	Dynamic Lookup Cache Overview
	Uses for a Dynamic Lookup Cache
	Dynamic Lookup Cache Properties
	Dynamic Lookup Cache and Output Values
	Lookup Transformation Values
	Lookup Transformation Values Example

	SQL Override and Dynamic Lookup Cache
	Mapping Configuration for a Dynamic Lookup Cache
	Insert Else Update
	Update Else Insert
	Dynamic Lookup Cache and Target Synchronization

	Conditional Dynamic Lookup Cache Updates
	Conditional Dynamic Lookup Cache Processing
	Configuring a Conditional Dynamic Lookup Cache

	Dynamic Cache Update with Expression Results
	Null Expression Values
	Expression Processing
	Configuring an Expression for Dynamic Cache Updates

	Dynamic Lookup Cache Example
	Rules and Guidelines for Dynamic Lookup Caches

	Chapter 28: Match Transformation
	Match Transformation Overview
	Match Analysis
	Column Analysis
	Single-Source Analysis and Dual-Source Analysis
	Field Match Analysis and Identity Match Analysis
	Groups in Match Analysis
	Match Pairs and Clusters

	Match Score Calculations
	Weighted Scores
	Null Match Scores
	Cluster Output Options
	Driver Scores and Link Scores in Cluster Analysis

	Master Data Analysis
	Mapping Reuse

	Identity Match Analysis and Persistent Index Data
	Rules and Guidelines for Persistent Index Data

	Match Mapping Performance
	Viewing Match Cluster Analysis Data
	Viewing Match Performance Analysis Data

	Match Performance in Identity Analysis
	Creating a Data Store for Identity Index Data
	Using the Index Data Store in Single-Source Analysis

	Match Transformation Views
	Match Transformation Ports
	Match Transformation Input Ports
	Match Transformation Output Ports
	Persistence Status Codes and Persistence Status Descriptions
	Output Ports and Match Output Selection

	Match Mapplets
	Creating a Match Mapplet
	Using a Match Mapplet

	Configuring a Match Analysis Operation
	Match Transformation in a Non-native Environment
	Match Transformation on the Blaze Engine
	Match Transformation on the Spark Engine

	Chapter 29: Match Transformations in Field Analysis
	Field Match Analysis
	Process Flow for Field Match Analysis
	Field Match Type Options
	Field Match Strategies
	Field Match Algorithms
	Field Match Strategy Properties

	Field Match Output Options
	Match Output Types
	Match Output Properties

	Field Match Advanced Properties
	Field Match Analysis Example
	Create the Mapping
	Input Data Sample
	Key Generator Transformation Configuration
	Match Transformation Configuration
	Run the Data Viewer
	Conclusion

	Chapter 30: Match Transformations in Identity Analysis
	Identity Match Analysis
	Process Flow for Identity Match Analysis
	Identity Match Type Properties
	Index Directory and Cache Directory Properties
	Persistence Method Parameters

	Identity Match Strategies
	Identity Match Algorithms
	Identity Match Strategy Properties

	Identity Match Output Options
	Match Output Types
	Match Output Properties

	Identity Match Advanced Properties
	Persistent Index Case Study
	Identity Match Analysis Example
	Create the Mapping
	Input Data Sample
	Expression Transformation Configuration
	Match Transformation Configuration
	Run the Data Viewer
	Conclusion

	Chapter 31: Merge Transformation
	Merge Transformation Overview
	Configuring a Merge Strategy
	Merge Transformation Advanced Properties
	Merge Transformation in a Non-native Environment

	Chapter 32: Normalizer Transformation
	Normalizer Transformation Overview
	Multiple-Occurring Fields
	Generated Column ID

	Multiple-Occurring Records
	Input Hierarchy Definition
	Normalizer Transformation Input Ports
	Merge Fields
	Flatten Fields

	Normalizer Transformation Output Groups and Ports
	Create an Output Group
	Update an Output Group

	Key Generation for Output Groups
	Normalizer Transformation Advanced Properties
	Generate First Level Output Groups

	Creating a Normalizer Transformation
	Creating a Normalizer Transformation from an Upstream Source
	Normalizer Mapping Example
	Normalizer Example Mapping
	Normalizer Example Definition
	Normalizer Example Input and Output Groups
	Normalizer Example Mapping Output

	Normalizer Transformation in a Non-native Environment

	Chapter 33: Parser Transformation
	Parser Transformation Overview
	Parser Transformation Modes
	When to Use a Parser Transformation
	Reference Data Use in the Parser Transformation
	Pattern Sets
	Probabilistic Models
	Reference Tables
	Regular Expressions
	Token Sets

	Token Parsing Operations
	Token Parsing Ports
	Token Parsing Properties
	General Properties
	Probabilistic Model Properties
	Reference Table Properties
	Token Set Properties

	Pattern-Based Parsing Mode
	Pattern-Based Parsing Ports

	Configuring a Token Parsing Strategy
	Configuring a Pattern Parsing Strategy
	Parser Transformation Advanced Properties
	Parser Transformation in a Non-native Environment

	Chapter 34: Python Transformation
	Python Transformation Overview
	Data Type Conversion
	Data Types in Input and Output Ports

	Python Transformation Ports
	Python Transformation Advanced Properties
	Python Transformation Components
	Resource File
	Python Code

	Rules and Guidelines
	Creating a Python Transformation
	Creating a Reusable Python Transformation
	Creating a Non-Reusable Python Transformation

	Python Transformation Use Case
	Python Transformation in a Non-native Environment
	Python Transformation on the Spark Engine

	Chapter 35: Rank Transformation
	Rank Transformation Overview
	Ranking String Values
	Rank Transformation Properties

	Rank Transformations in Dynamic Mappings
	Rank Transformation Ports
	Rank Index

	Rank Port
	Define Group By Ports
	Group By Parameters

	Rank Caches
	Rank Transformation Advanced Properties
	Rank Transformation in a Non-native Environment
	Rank Transformation on the Blaze Engine
	Rank Transformation on the Spark Engine
	Rank Transformation on the Databricks Spark Engine

	Chapter 36: Read Transformation
	Read Transformation Overview
	Read Transformation Properties
	General Properties
	Data Object Properties
	Query Properties
	Run-Time Properties
	Sources Properties
	Advanced Properties

	Synchronize Relational Data Objects
	Change the Source Data Object
	Parameterize the Read Transformation

	Read Transformation Parameters
	Constraints
	Create a Read Transformation
	Creating a Read Transformation in the Mapping Editor

	Chapter 37: Relational to Hierarchical Transformation
	Relational to Hierarchical Transformation Overview
	Example - Relational to Hierarchical Transformation
	Input Relational Ports and the Overview View
	Relational to Hierarchical Transformation Ports
	Schema References
	Relational to Hierarchical Transformation Development
	Creating the Relational to Hierarchical Transformation
	Creating the Ports

	Chapter 38: REST Web Service Consumer Transformation
	REST Web Service Consumer Transformation Overview
	REST Web Service Consumer Transformation Process

	REST Web Service Consumer Transformation Configuration
	Message Configuration
	Resource Identification

	HTTP Methods
	HTTP Get Method
	HTTP Post Method
	HTTP Put Method
	HTTP Delete Method

	REST Web Service Consumer Transformation Ports
	Input Ports
	Output Ports
	Pass-through Ports
	Argument Ports
	URL Ports
	HTTP Header Ports
	Cookie Ports
	Output XML Ports
	Response Code Ports

	REST Web Service Consumer Transformation Input Mapping
	Rules and Guidelines to Map Input Ports to Elements
	Mapping Input Ports to the Method Input

	REST Web Service Consumer Transformation Output Mapping
	Rules and Guidelines to Map Elements to Output Ports
	Customize View Options
	Mapping the Method Output to Output Ports

	REST Web Service Consumer Transformation Advanced Properties
	REST Web Service Consumer Transformation Creation
	Creating a REST Web Service Consumer Transformation

	Parsing a JSON Response Message that Contains Arrays
	Example JSON Response Message
	Unnamed Arrays in a Response Message

	Chapter 39: Router Transformation
	Router Transformation Overview
	Router Transformations in Dynamic Mappings
	Working with Groups
	Input Group
	Output Groups
	Using Group Filter Conditions
	Dynamic Ports in Group Filter Conditions
	Parameterize the Group Filter
	Adding Groups

	Working with Ports
	Connecting Router Transformations in a Mapping
	Router Transformation Advanced Properties
	Router Transformation in a Non-native Environment

	Chapter 40: Sequence Generator Transformation
	Sequence Generator Transformation Overview
	Sequence Generator Ports
	Pass-Through Ports
	NEXTVAL Port

	Sequence Generator Transformation Properties
	Start Value
	End Value
	Increment Value
	Cycle Through a Range of Values
	Reset
	Maintain Row Order

	Sequence Data Object
	Creating a Sequence Data Object

	Creating a Sequence Generator Transformation
	Frequently Asked Questions
	Sequence Generator Transformation in a Non-native Environment
	Sequence Generator Transformation on the Blaze Engine
	Sequence Generator Transformation on the Spark Engine

	Chapter 41: Sorter Transformation
	Sorter Transformation Overview
	Sorter Transformations in Dynamic Mappings
	Developing a Sorter Transformation
	Sorter Transformation Ports
	Sort Tab
	Configure Sort Keys
	Parameterize the Sort Keys

	Sorter Transformation Advanced Properties
	Sorter Cache
	Optimizing the Sorter Cache

	Creating a Sorter Transformation
	Creating a Reusable Sorter Transformation
	Creating a Non-Reusable Sorter Transformation

	Sorter Transformation Example
	Sorter Transformation in a Non-native Environment
	Sorter Transformation on the Blaze Engine
	Sorter Transformation on the Spark Engine
	Sorter Transformation on the Databricks Spark Engine

	Chapter 42: SQL Transformation
	SQL Transformation Overview
	SQL Transformation Ports
	Input Ports
	Output Ports
	Pass-through Ports
	SQLError Port
	Number of Rows Affected

	SQL Transformation Advanced Properties
	SQL Transformation Query
	Define the SQL Query

	Input Row to Output Row Cardinality
	Query Statement Processing
	Port Configuration
	Maximum Output Row Count
	Error Rows
	Continue on SQL Error

	Filter Optimization with the SQL Transformation
	Early Selection Optimization with the SQL Transformation
	Push-Into Optimization with the SQL Transformation

	SQL Transformation Example with an SQL Query
	Logical Data Object Mapping
	Salary Table
	Employee Table
	SQL Transformation
	Output

	Stored Procedures
	SQL Transformation Ports for Stored Procedures
	Stored Procedure Result Sets
	Stored Procedure Example

	SQL Transformation Connection
	Creating a Connection Name Parameter

	Manually Creating an SQL Transformation
	Creating an SQL Transformation from a Stored Procedure

	Chapter 43: Standardizer Transformation
	Standardizer Transformation Overview
	Standardization Strategies
	Standardization Properties
	Configuring a Standardization Strategy
	Standardizer Transformation Advanced Properties

	Chapter 44: Union Transformation
	Union Transformation Overview
	Groups and Ports
	Union Transformation Advanced Properties
	Union Transformation Processing
	Creating a Union Transformation
	Creating a Reusable Union Transformation
	Creating a Non-Reusable Union Transformation

	Union Transformation in a Non-native Environment
	Union Transformation in a Streaming Mapping
	Union Transformation on the Databricks Spark Engine

	Chapter 45: Update Strategy Transformation
	Update Strategy Transformation Overview
	Setting the Update Strategy

	Update Strategy Transformations in Dynamic Mappings
	Flagging Rows Within a Mapping
	Update Strategy Expressions
	Update Strategy Transformation Advanced Properties
	Aggregator and Update Strategy Transformations

	Specifying Update Options for Individual Targets
	Update Strategy Transformation in a Non-native Environment
	Update Strategy Transformation on the Blaze Engine
	Update Strategy Transformation on the Spark Engine

	Chapter 46: Web Service Consumer Transformation
	Web Service Consumer Transformation Overview
	SOAP Messages
	WSDL Files
	Operations
	Web Service Security

	WSDL Selection
	Web Service Consumer Transformation Ports
	HTTP Header Input Ports
	Other Input Ports

	Web Service Consumer Transformation Input Mapping
	Rules and Guidelines to Map Input Ports to Nodes
	Customize View Options
	Mapping Input Ports to the Operation Input

	Web Service Consumer Transformation Output Mapping
	Rules and Guidelines to Map Nodes to Output Ports
	Mapping the SOAP Message as XML
	Customize View Options
	Mapping the Operation Output to Output Ports

	Web Service Consumer Transformation Advanced Properties
	Web Service Error Handling
	Message Compression
	Concurrency

	Filter Optimizations
	Enabling Early Selection Optimization with the Web Service Consumer Transformation
	Push-Into Optimization with the Web Service Consumer Transformation

	Creating a Web Service Consumer Transformation
	Web Service Consumer Transformation Example
	Input File
	Logical Data Object Model
	Logical Data Object Mapping
	Web Service Consumer Transformation

	Chapter 47: Parsing Web Service SOAP Messages
	Parsing Web Service SOAP Message Overview
	Transformation User Interface
	Multiple-Occurring Output Configuration
	Normalized Relational Output
	Generated Keys
	Denormalized Relational Output
	Pivoted Relational Output

	Parsing anyType Elements
	Parsing Derived Types
	Parsing QName Elements
	Parsing Substitution Groups
	Parsing XML Constructs in SOAP Messages
	Choice Element
	List Element
	Union Element

	Chapter 48: Generating Web Service SOAP Messages
	Generating Web Service SOAP Messages Overview
	Transformation User Interface
	Input Ports Area
	Operation Area

	Port and Hierarchy Level Relationships
	Keys
	Map Ports
	Map a Port
	Map a Group
	Map Multiple Ports

	Pivoting Multiple-Occurring Ports
	Map Denormalized Data
	Derived Types and Element Substitution
	Generating Derived Types
	Generating anyType Elements and Attributes
	Generating Substitution Groups

	Generating XML Constructs in SOAP Messages
	Choice Element
	List Element
	Union Element

	Chapter 49: Weighted Average Transformation
	Weighted Average Transformation Overview
	Configuring a Weighted Average Transformation
	Weighted Match Scores Example
	Weighted Average Transformation Advanced Properties
	Weighted Average Transformation in a Non-native Environment

	Chapter 50: Write Transformation
	Write Transformation Overview
	Write Transformation Properties
	General Properties
	Data Object Properties
	Ports Properties
	Run-Time Properties
	Run-time Linking Properties
	Advanced Properties

	Create a Write Transformation
	Creating a Write Transformation from a Data Object
	Creating a Write Transformation from Mapping Flow
	Creating a Write Transformation from a Parameter
	Creating a Write Transformation from an Existing Transformation

	Appendix A: Transformation Delimiters
	Transformation Delimiters Overview

	Index

