4;» Informatica

Informatica® Managed File Transfer
10.2.3

Custom Task Guide

Informatica Managed File Transfer Custom Task Guide
10.2.3
November 2019

© Copyright Informatica LLC 2016, 2020

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica, the Informatica logo, Informatica Cloud, PowerCenter, PowerExchange, and Big Data Management are trademarks or registered trademarks of Informatica
LLC in the United States and many jurisdictions throughout the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/
trademarks.html. Other company and product names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1.THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2.IN'NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2020-05-21

https://www.informatica.com/legal/patents.html

Table of Contents

o -1 T+ 5
Informatica RESOUrCesS. 5
Informatica Network. 5
Informatica Knowledge Base. 5
Informatica Documentation. 5
Informatica Product Availability Matrices. 6
Informatica Velocity. e 6
Informatica Marketplace. 6
Informatica Global Customer Support. 6

Chapter 1: Introduction Overview..........cccoeiiiiiiiiiiienenineneneneeaeas 7

Requirements e 7
SUPPOM. . . 8
Chapter 2: Building a Custom Task Overview............ccoieiiiiiiiinnnnnnn. 9
Step 1. Create and Finalize the Project XML to Definethe Task 9
Step 2. Codethe Copy Task 9
Configure your IDE e 10
Createthe CopyTask Class e e e 10
Add getTagName Method e 10
Add the getDisplayString Method 11
Add the getVersion Method 11
Add the getVendor Method e 11
Create the Getter and Setter Methods. 11
Add User Validation 12
Implement the Execute Method 14
Add the cleanUp Method e 16
Implement Logging o o e 16
Pausing and Canceling Tasks 17
Step 3. Createthe BeanInfo XML. e 18
Step 4. Packaging Your Task. 19
Step 5. Installthe Task e 19
Step 6. Testthe Copy Task. e 20
Chapter 3: Advanced Concepts OVerviewcoiiveiinienieiennennns 21
Supporting Sub-elementsin Tasks e 21
Creating & Setting Variables 22

Chapter 4: Field Types and Elements..............coiiiiiiiiiiiininien... 23
textField. 23

Table of Contents 3

4

encryptedField. 23

radioBUutton. L 24
textArea. 24
il 24
direCtory. e 25
fileOrDirectory. 25
localOrNetworkFile. e 25
localOrNetworkDireCtory. o o e e 25
localOrNetworkFileOrDirectory. e 26

Table of Contents

Preface

Use the Informatica Custom Task Guide to learn how to create and install custom tasks in Managed File
Transfer. Learn about advanced task concepts, such as creating and setting variables, and supporting nested
task elements in Managed File Transfer and File Transfer Portal.

Informatica Resources

Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Network

The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:
e Search the Knowledge Base for product resources.

e View product availability information.

e Create and review your support cases.

e Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base

Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation

Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://docs.informatica.com
mailto:infa_documentation@informatica.com

6

Informatica Product Availability Matrices

Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity

Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace

The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support

Preface

You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and
select the eSupport option.

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com

CHAPTER 1

Introduction Overview

Informatica Managed File Transfer includes over 60 built-in tasks to satisfy most of the business processes
needed by organizations for moving, securing, and translating data. However, in some cases your company
may need a custom task to provide additional functionality that is not provided in the base package. For
example, a custom task could be built to integrate with an internal application, such as an ERP system,
through a proprietary interface.

Custom tasks are fully integrated into Managed File Transfer, so they offer several benefits (versus calling
external programs) for providing additional functionality in your Projects:

Custom tasks can be chosen quickly (just as easily as the base tasks) within the Project Designer.

You can create input and output parameters (with custom labels) for the task, which the user can easily
fill out within the Project Designer.

Custom tasks will be easy to identify and work with in the Project outline.

Job Managers in Managed File Transfer will be able to more effectively hold or cancel jobs which contain
custom tasks.

Log messages from the custom task will be included into the Project’s Job log.

This guide provides Java programmers with the knowledge they need in order to build, package and install
custom tasks in Managed File Transfer. Follow these instructions carefully.

Requirements

The following requirements are needed in order to build a custom task:

1.
2.

You must have a solid understanding on how tasks and Projects work in Managed File Transfer.

You will need access to a Managed File Transfer installation where you can install and test the custom
tasks created.

You must be a Java programmer with a good understanding of Java 8.0 and XML.
You will need an IDE, for example, Eclipse or NetBeans, to create, compile and package a Java project.

Warning: If a custom task is written incorrectly, it may cause serious problems or performance issues in
Managed File Transfer. It is critical that custom tasks are only developed by experienced Java
programmers. Custom tasks should be tested thoroughly to ensure that they work properly and do not
adversely affect the operation of Managed File Transfer.

Warning: Your organization will be responsible for any problems (including data loss and downtime)
caused by custom tasks. If you are not comfortable with these risks, please do not attempt to build your
own custom tasks.

Support

Please note that custom tasks are not covered under standard support by Informatica.

If you need assistance with building custom tasks, please contact your account representative at
Informatica. Our team would be happy to talk with you about your requirements and provide you with an
estimate on the hours/costs for building a custom task.

8 Chapter 1: Introduction Overview

CHAPTER 2

Building a Custom Task Overview

In this tutorial, we will walk you through the process of how to create and install a custom task within
Managed File Transfer.

The custom task in this tutorial will copy a file from one directory to another.

Step 1. Create and Finalize the Project XML to Define
the Task

The first step to create a custom task is to finalize how the task is defined within the project XML. For this
simple task, we will use the following XML fragment to define our copy task:

<example:copy sourceFile="/srcdir/myfile.txt" destinationDirectory="/destdir" />

When you add a custom task to a Project, the XML fragment will be created and added to the project XML.

All tasks have a unique tag name, which is defined by the task’s author. For our example task, we have
chosen “copy” to be the tag name for our task. All custom tasks must also have a namespace. The
namespace can be any string, but ideally should represent the entity that created the custom task. In this
example, we have chosen “example” as the namespace for our task.

The following two attributes are also defined in the XML:

e sourceFile — This is the path to the file that you want to copy.

¢ destinationDirectory — The destination directory to which the source file should be copied.

Step 2. Code the Copy Task

Perform the following tasks to code the copy task:
1. Setup your IDE

Create the CopyTask class

Add a getTagName method

Add the getVersion method

Add the getVendor method

o g M w DN

Create Getter and Setter methods

10

7. Add user validation
8. Implement the Execute method
9. Add the Cleanup method

10. Implement logging

Configure your IDE

Startup your IDE, such as Eclipse or NetBeans, and create a new Java project. Add the following JAR files
from the Managed File Transfer installation to your project class path:

e gamft-<version number>.jar
e linoma-commons.jar

The above JAR files can be located in the directory named 1ib under theManaged File Transfer installation
directory.

Create the CopyTask Class

Create a new Java class named com.example.CopyTask. In order for the CopyTask to be a valid task, it must
be extend the class com.linoma.ga.projects.CustomTask. All tasks must also have a public constructor with
TaskContainer as the argument.

package com.example;

import com.linoma.ga.projects.CustomTask;
import com.linoma.ga.projects.TaskContainer;
public class CopyTask extends CustomTask {
public CopyTask(TaskContainer parent) {
super (parent) ;

}

}

Add getTagName Method

The next step is to add the abstract method, getTagName. All tasks must indicate the tag name they use in
the XML by returning it from this method. In our case we return “example:copy”.

Please note that the red text denotes the new source added to the example.

package com.example;

import com.linoma.ga.projects.CustomTask;
import com.linoma.ga.projects.TaskContainer;
public class CopyTask extends CustomTask {
private static final String TAG NAME = "example:copy";
public CopyTask(TaskContainer parent) {
super (parent) ;

}

@Override

public String getTagName () {

return TAG NAME;

}

}

Chapter 2: Building a Custom Task Overview

Add the getDisplayString Method

Now, implement the abstract method getDisplayString(). All tasks must return a short string representing this
task, which is used by the Project Designer in Managed File Transfer. We will return either the tag name (by
default) or user defined label that all tasks support.

Please note that the red text denotes the new source added to the example.

package com.example;

import com.linoma.ga.projects.CustomTask;
import com.linoma.ga.projects.TaskContainer;
public class CopyTask extends CustomTask {
private static final String TAG NAME = "example:copy";
public CopyTask(TaskContainer parent) {
super (parent) ;

label = TAG NAME;

}

@Override

public String getTagName() {

return TAG NAME;

}

@Override

public String getDisplayString() {

return label;

}

}

Add the getVersion Method

The getVersion method indicates the version of the task. The task author may need to version the task if any
changes made to the task are no longer compatible with the previous version of the task. Multiple versions of

a task can co-exist in Managed File Transfer. The code below shows the new method that you need to add to
your class:

@Override
public String getVersion() {
return "1.0";

}

Add the getVendor Method

The getVendor method returns the vendor name (or the author name) of the task. Listed below is the code
snippet with this new method:

@Override
public String getVendor () {
return "Example, Inc.";

}

Create the Getter and Setter Methods

Create getter and setter methods for each attribute we have defined in the Copy Task’s XML. The setter and
getter methods must follow the following naming conventions so the Managed File Transfer Compiler/
Runtime can work with the objects.

The setter methods must meet the following criteria:

e Scope must be public
e Return type must be void
e Must take one argument of type java.lang.String

e Must not be static

Step 2. Code the Copy Task 11

12

The name of the method must begin with “set”, followed by the attribute name (with the first letter of the
attribute name converted to upper case), then followed by the word “attribute”.

The getter method must meet the following criteria:

Scope must be public

Return type must be of type java.lang.String
Must not have any arguments

Must not be static

The name of the method must begin with “get”, followed by the attribute name (with the first letter of the
attribute name converted to upper case), then followed by the word “attribute”.

Refer to the code shown below in how the sourceFile and destinationDirectory attributes are added:

Please note that the red text denotes the new source added to the example.

package com.example;

import com.linoma.ga.projects.CustomTask;

import com.linoma.ga.projects.TaskContainer;
public class CopyTask extends CustomTask {

private static final String TAG NAME = "example:copy";
private String sourceFileAttribute = null;

private String destinationDirectoryAttribute = null;
public CopyTask(TaskContainer parent) {

super (parent) ;

label = TAG NAME;

}

@Override

public String getTagName () {

return TAG NAME;

}

@Override

public String getDisplayString() {

return label;

}

@Ooverride

public String getVersion() {

return "1.0";

}

@Override

public String getVendor() {

return "Example, Inc.";

}

public String getSourceFileAttribute() {

return sourceFileAttribute;

}

public void setSourceFileAttribute(String sourceFileAttribute) {
this.sourceFileAttribute = sourceFileAttribute;

}

public String getDestinationDirectoryAttribute() {
return destinationDirectoryAttribute;

}

public void setDestinationDirectoryAttribute (
String destinationDirectoryAttribute) {
this.destinationDirectoryAttribute = destinationDirectoryAttribute;
}

}

Add User Validation

Validation of user input is also the responsibility of the task author. For example, in our copy task we want to
make sure the user has supplied a non-null and non-blank value for both source file and destination directory
attributes.

There are two different validation methods a task author must implement.

Chapter 2: Building a Custom Task Overview

Implement the validateAttributes Method

The validateAttributes method is already defined in the com.linoma.dpa.Task class which performs validation
on common attributes shared by all tasks, such as label, onError, logLevel, and so on. Concrete tasks might
have to override this method to perform validation of any task specific attributes. This method is called by
the Project Designer.

Implement the validate Method

This method is called by the Project Compiler in Managed File Transfer. All projects go through compilation
phase before they execute. The compilation of a project will create an object for each component in the
project and call it's validate() method. If any component fails to validate, a compilation error will be reported.

Please note that the red text denotes the new source added to the example.

package com.example;

import java.util.ArrayList;

import java.util.List;

import com.linoma.commons.StringUtilities;

import com.linoma.dpa.Message;

import com.linoma.ga.projects.CustomTask;

import com.linoma.ga.projects.TaskContainer;

import com.linoma.dpa.ValidationException;

public class CopyTask extends CustomTask {

private static final String TAG NAME = "example:copy";
private static final String ATTR SOURCE FILE = "sourceFile";
private static final String ATTR:DESTINKTIONiDIRECTORY = "destinationDirectory";
private String sourceFileAttribute = null;

private String destinationDirectoryAttribute = null;
public CopyTask(TaskContainer parent) {

super (parent) ;

label = TAG NAME;

}

@override

public String getTagName () {

return TAG_NAME;

}

@Override

public String getDisplayString() {

return label;

}

@Override

public String getVersion() {

return "1.0";

}

@Override

public String getVendor () {

return "Example, Inc.";

}

public String getSourceFileAttribute() {

return sourceFileAttribute;

}

public void setSourceFileAttribute (String sourceFileAttribute) {
this.sourceFileAttribute = sourceFileAttribute;

}

public String getDestinationDirectoryAttribute() {
return destinationDirectoryAttribute;

}

public void setDestinationDirectoryAttribute (

String destinationDirectoryAttribute) {
this.destinationDirectoryAttribute = destinationDirectoryAttribute;
}

@Override

public void validateAttributes() throws ValidationException {
// A list to hold any validation errors

List<Message> errors = new ArrayList<Message>();

// Call the validateAttributes of the super class

try {

Step 2. Code the Copy Task 13

super.validateAttributes();

}

catch (ValidationException exp) {

// If the attributes on the super class fail to validate, add the
// errors to the list.

errors.addAll (exp.getMessages());

}

// Perform our task-specific validation.

if (StringUtilities.isEmpty(sourceFileAttribute)) {
errors.add(new Message ("Source File is required"));

}

if (StringUtilities.isEmpty(destinationDirectoryAttribute)) {
errors.add(new Message ("Destination Directory is required"));
}

if (lerrors.isEmpty()) {

throw new ValidationException(errors);

1}

@Ooverride

public void validate() throws ValidationException {

// Simply call the validateAttributes to validate all the attributes.
validateAttributes () ;

}

}

Implement the Execute Method

With validation complete it is time to write the core piece of code, which is the execute method to copy the
file. Keep in mind that projects and tasks in Managed File Transfer support variables and expressions. If you
decide to support variables and expressions in your task (in one or more attributes), you must write code to
evaluate any expression specified for any attributes. In this example, we will support expressions for both
source file and destination directory attributes. With the execute method implemented, the code looks like
this:

package com.example;

import java.io.BufferedInputStream;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.util.ArrayList;

import java.util.List;

import com.linoma.commons.StringUtilities;

import com.linoma.dpa.ExecutionException;

import com.linoma.dpa.Message;

import com.linoma.ga.projects.CustomTask;

import com.linoma.ga.projects.TaskContainer;

import com.linoma.dpa.ValidationException;

public class CopyTask extends CustomTask {

private static final String TAG NAME = "example:copy";
private static final String ATTﬁisOURCEiFILE = "sourceFile";
private static final String ATTR DESTINATION DIRECTORY = "destinationDirectory";
private String sourceFileAttribute = null;

private String destinationDirectoryAttribute = null;
private File sourceFile = null;

private File destinationDirectory = null;

public CopyTask(TaskContainer parent) {

super (parent) ;

label = TAG NAME;

}

@Override

public String getTagName() {

return TAG NAME;

}

@Override

public String getDisplayString() {

14 Chapter 2: Building a Custom Task Overview

return label;

}

@Override

public String getVersion() {

return "1.0";

}

@Override

public String getVendor () {

return "Example, Inc.";

}

public String getSourceFileAttribute() {

return sourceFileAttribute;

}

public void setSourceFileAttribute(String sourceFileAttribute) {
this.sourceFileAttribute = sourceFileAttribute;

}

public String getDestinationDirectoryAttribute() {

return destinationDirectoryAttribute;

}

public void setDestinationDirectoryAttribute (

String destinationDirectoryAttribute) {
this.destinationDirectoryAttribute = destinationDirectoryAttribute;
}

@Override

public void validateAttributes() throws ValidationException {
// A list to hold any validation errors

List<Message> errors = new ArrayList<Message>();

// Call the validateAttributes of the super class

try {

super.validateAttributes();

}

catch (ValidationException exp) {

// If the attributes on the super class fail to validate, add the
// errors to the list.

errors.addAll (exp.getMessages());

}

// Perform our task-specific validation.

if (StringUtilities.isEmpty(sourceFileAttribute)) {
errors.add(new Message ("Source File is required"));

}

if (StringUtilities.isEmpty(destinationDirectoryAttribute)) {
errors.add(new Message ("Destination Directory is required"));
}

if (!errors.isEmpty()) {

throw new ValidationException(errors);

}

}

@Override

public void validate() throws ValidationException {

// Simply call the validateAttributes to validate all the attributes.
validateAttributes();

}

public void execute() throws ExecutionException {
internalValidate () ;

try {

copy ()i

}

catch (IOException exp) {

throw new ExecutionException (exp.getMessage(), exp);

}

}

private void internalValidate() throws ExecutionException {
String temp = project.expandVariables (sourceFileAttribute);
if (StringUtilities.isEmpty(temp)) {

throw new ExecutionException("Source File is required");

}

sourceFile = new File (temp);

temp = project.expandVariables(destinationDirectoryAttribute);
if (StringUtilities.isEmpty(temp)) {

throw new ExecutionException("Destination Directory is required");

}

Step 2. Code the Copy Task

15

destinationDirectory = new File(temp);

}

private long copy() throws IOException {

InputStream in = null;

OutputStream out = null;

try {

final int bufferSize = 4096;

in = new BufferedInputStream(new FileInputStream(sourceFile),

bufferSize);
out = new BufferedOutputStream(new FileOutputStream(new File(
destinationDirectory, sourceFile.getName())), bufferSize);

byte[] buffer = new byte[bufferSize];
int bytesRead = 0;

long bytesCopied = 0L;

while ((bytesRead = in.read(buffer)) != -1) {
out.write (buffer, 0, bytesRead);
bytesCopied += bytesRead;

}

return bytesCopied;

}

finally {

if (in != null) {

try {

in.close();

}

catch (IOException exp) {
exp.printStackTrace();

}

}

if (out != null) {

try {

out.close();

}

catch (IOException exp) {
exp.printStackTrace();

}
}
}

}

The execute method is setup to call the internallValidate() method. The purpose of this method is to evaluate
any expressions specified for the source file and destination directory attributes. The method then ensures
that the evaluated values are still valid for the task; i.e. the values are not null and not empty. If they are valid,
the internalValidate method initializes the sourceFile and destinationDirectory instance variables. It then calls
the other private method, copy() to actually copy the file.

Add the cleanUp Method

The cleanUp() method must be implemented by all tasks to release any resources. This method is called
when the last task in the project has finished executing. Not all tasks need to have code in this method. Only
those tasks that hold on to some resources for longer than the task execution should implement this method.
In our case, we do not have any resources to release, so we provide a blank implementation as shown below:

@Override

public void cleanUp() {

// We have nothing to cleanup.

}

At this point, your code should compile without errors.

Implement Logging

Every execution of a Managed File Transfer Project produces a job log that contains important events. Most
of the events come from the tasks within the project. The task author makes appropriate decisions on what

16 Chapter 2: Building a Custom Task Overview

should be logged depending on the log level that the task is running under. Logging is done by firing log
events. A log listener is registered with every task in the project. The log listener takes on the responsibility of

logging the messages to the job log file. Listed below is the code snippet with some log messages from the
execute() method:

Please note that the red text denotes the new source added to the example.

public void execute() throws ExecutionException {
if (isNormalLogLevel()) {

fireInfo(this, "Copy Task started");

}

internalValidate();

try {

if (isVerboseLogLevel()) {

fireInfo(this, "Copying file " + sourceFile + " t directory "
+ destinationDirectory);

}

long bytesCopied = copy();

if (isVerboseLogLevel()) {

fireInfo(this, bytesCopied + " byte(s) copied");
}

}

catch (IOException exp) {

throw new ExecutionException (exp.getMessage(), exp);
}

if (isNormalLogLevel()) {

fireInfo(this, "Copy Task finished");

}

}

Pausing and Canceling Tasks

Managed File Transfer Jobs, or actively running Projects, can be canceled or paused and later resumed. In
order to support cancel, pause and resume, the task author must periodically check for any pending cancel or
pause requests. As a task author, you need to call the checkForHoldCancel() method periodically from a long
running section of code. In our example, we will check for cancel/pause requests in the while loop of the
copy method as shown below:

Please note that the red text denotes the new source added to the example.

private long copy() throws IOException {

InputStream in = null;

OutputStream out = null;

try

final int bufferSize = 4096;

in = new BufferedInputStream(new FileInputStream(sourceFile),

bufferSize);
out = new BufferedOutputStream(new FileOutputStream(new File(
destinationDirectory, sourceFile.getName())), bufferSize);

byte[] buffer = new byte[bufferSize];
int bytesRead = 0;

long bytesCopied = 0L;

while ((bytesRead = in.read(buffer)) != -1) {
checkForHoldAndCancel () ;

out.write (buffer, 0, bytesRead);
bytesCopied += bytesRead;

}

return bytesCopied;

}

finally {

if (in != null) {

try {

in.close();

}

catch (IOException exp) {
exp.printStackTrace();

}

}

Step 2. Code the Copy Task 17

if (out != null) {

try {

out.close();

}

catch (IOException exp) {
exp.printStackTrace();

}

}

}

}
The call to the checkForHoldAndCancel will do the work by either cancelling the Job or pausing the Job
(thread) if the user requested so. Cancelation of a Job is achieved by throwing an exception,
ExecutionCancelledException, which is a RuntimeException. The Project Runtime catches this exception and

marks the job as canceled in the audit logs. Pausing is achieved by calling the Thread.wait() on the thread
that is executing the Job. The thread will wait until someone requests to resume the Job.

Step 3. Create the BeanIinfo XML

18

The Beanlinfo file is a simple XML file that provides additional information needed by the task at project
design time, by the Project Designer. The project designer generates a screen for your task based on the
information from the bean info. You can define the following information in the bean info:

1. Labels for various attributes of the task. For example, you can define a nice label, “Source File”, for the
“sourceFile” attribute.

2. Descriptions or help text for various attributes of the task.
3. The field type for attributes (e.g. text field, text area, file, directory etc.)

4. Define whether an attribute is required or not so the project designer can decorate the field as required
using the standard convention (typically a red asterisk after the field label)

5. Any fixed options that an attribute supports, which will be listed in a drop-down field.
6. Indicating the default values for attributes, if any.

For detailed field and element information that can be used in the bean, see Chapter 4, “Field Types and
Elements” on page 23.

The BeanInfo XML must exist in the same package as the corresponding Task (or any other project
component). The name of the file must be same as the class name of the project component, followed
by BeanInfo.xml. For our CopyTask, the BeanIinfo must be defined in
com.example.CopyTaskBeanInfo.xml.

Listed below is the bean info for our Copy Task:

<?xml version="1.0" encoding="UTF-8" ?>
<projectComponent name="CopyTask">

<label>Example Copy Task</label>

<description>A simple task for copying a file from one directory to another. </
description>

<tabPanel name="main">

<tab name="basic">

<attribute name="sourceFile">

<label>Source File</label>

<description>Specify the file to copy. </description>
<fieldType>localOrNetworkFile</fieldType>
<required>true</required>

<cols>60</cols>

</attribute>

<attribute name="destinationDirectory">
<label>Destination Directory</label>

Chapter 2: Building a Custom Task Overview

<description>Specify the directory to which the source file should be copied. </

description>

<fieldType>localOrNetworkDirectory</fieldType>

<required>true</required>

<cols>60</cols>

</attribute>

</tab>

<tab name="control" />

<tab name="onError" />

</tabPanel>

</projectComponent>
The BeanlInfo must start with a root element of <projectComponent>. The name of the project
component can be anything, but is recommended to keep the same as the class name. Define label and

description for the project component using the <label> and <description> tags.

The Project Designer organizes various attributes of a project component into tabs. Tabs are defined
inside a <tabPanel>. Tabs will have a name, label and description. For our copy task, we defined the
sourceFile and destinationDirectory attributes under the Basic tab. We then indicated that we want to
show the standard Control and On Error tabs that are shared by all tasks. We have defined the field type
for the source file as localOrNetworkFile, which will render a Browse button next to the text field so the
user can browse the local and network files.

Step 4. Packaging Your Task

Packaging your task for distribution and/or deployment involves creating a JAR file of the task code and
associated resources. Using your IDE, create a JAR file containing the compiled task class and the BeanInfo
xml. A correct jar file for our example should have the CopyTask.class and CopyTaskBeanInfo.xml files.

-

Folders ¥ Name Type Path
D) [custom-copytask.jar] #| CopyTask.class CLASS File com\e@mplet
4 g wom =] CopyTaskBeanInfo.xml XML Docum... comiexamplel
., example
; META-INF

Step 5. Install the Task

After you create the task, install it into Managed File Transfer. Follow the instructions below to install the
task:

1. Shut down Managed File Transfer.

Copy the new JAR file to the userdata/lib directory.

Start Managed File Transfer.

Log in with an Admin User with the Product Administrator role.
Click on the System > Custom Tasks menu item.

Click on Install Custom Task.

Specify the implementation class as com.example.CopyTask.

Click Next.

© N o o b~ WD

Step 4. Packaging Your Task 19

9.
10.

Specify an optional description.

Click Install.

Note: When installing a custom task in a clustered environment, steps 1-3 must be completed on each
additional node in the cluster. Your custom task is installed and ready for use.

Step 6. Test the Copy Task

Perform the following steps to test the Copy task.

20

1.

2
3.
4

Create a new project.
Navigate to the Add Task screen.
Expand the Custom Tasks folder and click on the Copy task we just installed.

Configure the task by specifying source file and destination directory and then click on the Execute
Project button.

Note that the task also has other attributes such as Label, Log Level, On Error, etc. These are inherited
from the super class.

Select verbose for the log level.

Save and Compile the project.

Run the project.

The final step is to add the new task to a project and test it out in Managed File Transfer.

The project should complete successfully and copy the file you have selected. The execution produces
the following job log:

6/23/15 7:41:02 AM INFO Start Date and Time: 6/23/15 7:41:02 AM
6/23/15 7:41:02 AM INFO Job Number: 1326461398353

6/23/15 7:41:02 AM INFO Project Name: /Example Copy Test

6/23/15 7:41:02 AM INFO Submitted By: root

6/23/15 7:41:02 AM INFO Informatica MFT 5.0.0 running on Windows 7
(amd64)

6/23/15 7:41:02 AM INFO Executing project 'Example Copy Test'
6/23/15 7:41:02 AM INFO Project location: C:\informaticamft\userdata
\projects\Example Copy Test.xml

6/23/15 7:41:02 AM INFO Executing module 'Main'

6/23/15 7:41:02 AM INFO Copy Task started

6/23/15 7:41:02 AM INFO Copying file C:\temp\persons 6.txt to
directory C:\Users\temp2

6/23/15 7:41:02 AM INFO 1060 byte(s) copied

6/23/15 7:41:02 AM INFO Copy Task finished

6/23/15 7:41:02 AM INFO Finished module 'Main'

6/23/15 7:41:02 AM INFO Finished project 'Example Copy Test'
6/23/15 7:41:02 AM INFO End Date and Time: 6/23/15 7:41:02 AM

Chapter 2: Building a Custom Task Overview

CHAPTER 3

Advanced Concepts Overview

In this tutorial, we will discuss advanced task concepts, such as creating and setting variables, and
supporting nested task elements.

Supporting Sub-elements in Tasks

Now let us take a look at how one can support nested elements inside a Task. For example, if we want to
enhance our Copy Task to support multiple source files using the standard FileSet component. The XML for
our task in the project would look something like this:

<example:copy destinationDirectory="/destdir”>
<fileset dir="/mydir”>

<include pattern="*.pdf” />

</fileset>

</example:copy>

For each sub-element in your task, you need to create a new method that creates a new object that is of type
ProjectComponent. In essence, each tag in the project XML should correspond to a class (or an object) that
implements the com.linoma.dpa.ProjectComponentinterface. The snippet below demonstrates how a nested
file set element can be supported by our task:

private List<FileSet> filesetElements = null;
public FileSet createFilesetElement () {

if (filesetElements == null) {
filesetElements = new ArrayList<FileSet>(1);
}

FileSet fs = new LocalFileSet (this);
filesetElements.add(fs);

return fs;

}

public void removeFilesetElement (FileSet fileSet) {
filesetElements.remove (fileSet);

}

public List<FileSet> getFilesetElements() {
return filesetElements;

}

Note that the FileSet class must implement the ProjectComponentinterface. The FileSet class must also
follow the same guidelines for supporting its own attributes and or sub-elements. For example, you need to
have setDirAttribute and getDirAttribute methods defined in the FileSet class. You also need to have
createlncludeElement which returns another type of ProjectComponent that handles the include tag and its
attributes.

During the project execution (in the task’s execute method), you can manipulate all the subelements (e.g.
filesets) any way you like.

21

In order for the sub-element to show up to a user in the Project Designer, the Bean Info XML will need to be
updated per the red text shown below:

<?xml version="1.0" encoding="UTF-8" ?2>
<projectComponent name="CopyTask">

<label>Example Copy Task</label>

<description>A simple task for copying a file from one directory to another. </
description>

<tabPanel name="main">

<tab name="basic">

<attribute name="sourceFile">

<label>Source File</label>

<description>Specify the file to copy. </description>
<fieldType>localOrNetworkFile</fieldType>
<required>true</required>

<cols>60</cols>

</attribute>

<attribute name="destinationDirectory">
<label>Destination Directory</label>
<description>Specify the directory to which the source file should be copied. </
description>
<fieldType>localOrNetworkDirectory</fieldType>
<required>true</required>

<cols>60</cols>

</attribute>

</tab>

<tab name="control" />

<tab name="onError" />

</tabPanel>

<subelement name="fileset">

<label>FileSet</label>

<description>Specify a directory of files to copy</description>
</subelement>

</projectComponent>

Creating & Setting Variables

22

It is common for tasks to create or replace a variable in the project so the variable can later be used in
subsequent tasks. For example, if you want to generate an output variable that points to the destination file,
you need to set the variable using the following line of code:

project.createOrReplaceVariable (“variableName”, destinationFile);

It is usually a good idea to have an attribute available in the task for the user to specify the name of the
output variable.

Chapter 3: Advanced Concepts Overview

CHAPTER 4

Field Types and Elements

The Beanlnfo file is where you specify additional information needed by the task. The project designer
generates a screen for your task based on the information from the bean info. The following input field types
and their elements are supported:

textField

A single line text field.
Supported Elements:
o label

e description

e required

e cols

o defaultValue

e option - This will make the text field an editable drop down. Use a new option element for each option you
want in the drop down.

- value

- description

encryptedField

A password input field with a button to encrypt the plain text.
Supported Elements:

o label

e description

e required

e cols

23

radioButton

A radio button that is rendered as a dropdown with Yes/No options.
Supported Elements:

e label

e description

e required

o defaultValue

e booleanValidator

textArea

A multi-line text field.
Supported Elements:
o label

e description

e required

* rows

e cols

o defaultValue

file

A single line input field with an ellipsis button. The ellipsis button will launch a file chooser dialog that will
allow the user to select a local file only.

Supported Elements:
o label

e description

e required

e cols

24 Chapter 4: Field Types and Elements

directory

A single line input field with an ellipsis button. The ellipsis button will launch a file chooser dialog that will
allow the user to select a local directory only.

Supported Elements:
e label

e description

e required

e cols

fileOrDirectory

A single line input field with an ellipsis button. The ellipsis button will launch a file chooser dialog that will
allow the user to select a local file or directory.

Supported Elements:
o label

e description

e required

e cols

localOrNetworkFile

A single line input field with an ellipsis button. The ellipsis button will launch a file chooser dialog that will
allow the user to select a local or network (SMB) file.

Supported Elements:
e label

e description

e required

e cols

localOrNetworkDirectory

A single line input field with an ellipsis button. The ellipsis button will launch a file chooser dialog that will
allow the user to select a local or network (SMB) directory.

Supported Elements:

e |abel

directory 25

e description
e required

e cols

localOrNetworkFileOrDirectory

A single line input field with an ellipsis button. The ellipsis button will launch a file chooser dialog that will
allow the user to select a local or network (SMB) file or directory.

Supported Elements:
o label

e description

e required

e cols

26 Chapter 4: Field Types and Elements

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction Overview
	Requirements
	Support

	Chapter 2: Building a Custom Task Overview
	Step 1. Create and Finalize the Project XML to Define the Task
	Step 2. Code the Copy Task
	Configure your IDE
	Create the CopyTask Class
	Add getTagName Method
	Add the getDisplayString Method
	Add the getVersion Method
	Add the getVendor Method
	Create the Getter and Setter Methods
	Add User Validation
	Implement the Execute Method
	Add the cleanUp Method
	Implement Logging
	Pausing and Canceling Tasks

	Step 3. Create the BeanInfo XML
	Step 4. Packaging Your Task
	Step 5. Install the Task
	Step 6. Test the Copy Task

	Chapter 3: Advanced Concepts Overview
	Supporting Sub-elements in Tasks
	Creating & Setting Variables

	Chapter 4: Field Types and Elements
	textField
	encryptedField
	radioButton
	textArea
	file
	directory
	fileOrDirectory
	localOrNetworkFile
	localOrNetworkDirectory
	localOrNetworkFileOrDirectory

