
Informatica® B2B Data Transformation
10.5.0

XMap Getting Started Guide

Informatica B2B Data Transformation XMap Getting Started Guide
10.5.0
March 2021

© Copyright Informatica LLC 2013, 2021

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

Informatica, the Informatica logo, and PowerCenter are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout
the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be
trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © OSS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright © University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright© MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/
Consortium/Legal/2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http://forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/faq.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;

http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/
EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://
jdbc.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/lz4/; https://github.com/jedisct1/libsodium/blob/master/
LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe WaInes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2021-03-18

https://www.informatica.com/legal/patents.html

Table of Contents

Preface . 6
Informatica Resources. 6

Informatica Network. 6

Informatica Knowledge Base. 6

Informatica Documentation. 7

Informatica Product Availability Matrices. 7

Informatica Velocity. 7

Informatica Marketplace. 7

Informatica Global Customer Support. 7

Chapter 1: Introduction to XMap. 8
XMap Overview. 8

The XMap Editor. 9

Mapping Statements. 9

Mapping Statement Types. 10

Scenario. 11

Chapter 2: Creating an XMap. 12
Creating an XMap Overview. 12

Step 1. Create the Data Processor Transformation. 13

Step 2. Create an XMap in the Data Processor Transformation. 13

Creating XMap - Tips. 14

Chapter 3: Configuring Repeating Values. 15
Configuring Repeating Values Overview. 15

Step 1. Create a Repeating Group Statement. 16

Step 2. Test the Transformation. 17

Testing XMap - Tips. 18

Chapter 4: Configuring XPath Expressions. 20
Configuring XPath Expressions Overview. 20

Step 1. Create an XPath Function Expression. 21

Step 2. Test the Transformation. 23

Writing XPath Expression - Tips. 24

Chapter 5: Configuring Group Statements. 25
Configuring Group Statements Overview. 25

Step 1. Create a Group Statement with Conditions. 26

Step 2. Test the Transformation. 29

4 Table of Contents

Chapter 6: Configuring Router Statements. 31
Configuring Router Statements Overview. 31

Step 1. Create a Router Statement. 32

Step 2. Test the Transformation. 34

Appendix A: Frequently Asked Questions. 35
Frequently Asked Questions. 35

Appendix B: Glossary. 36

Table of Contents 5

Preface
Complete the lessons in the Data Transformation XMap Getting Started Guide to learn how to use the Data
Processor transformation and XMap. The tutorial includes lessons that teach you how to create a Data
Processor transformation and add an XMap object to the transformation, create a repeating group statement,
configure XPath expressions, configure Group statements, and create Router statements.

This guide assumes that you have an understanding of XML source files, XML schemas, XPath expressions,
and that you are familiar with Informatica Developer.

Informatica Resources
Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Network
The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:

• Search the Knowledge Base for product resources.

• View product availability information.

• Create and review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

6

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com

Informatica Documentation
Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Product Availability Matrices
Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and
select the eSupport option.

Preface 7

https://docs.informatica.com
mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com

C h a p t e r 1

Introduction to XMap
This chapter includes the following topics:

• XMap Overview, 8

• The XMap Editor, 9

• Mapping Statements, 9

• Mapping Statement Types, 10

• Scenario, 11

XMap Overview
A mapping uses a Data Processor transformation to transform documents from one format to another. An
XMap is a Data Processor transformation object that transforms an XML input source to another XML with a
different hierarchy structure. Use the XMap editor grid in the Developer to define the XMap.

The Data Processor transformation processes unstructured and semi-structured file formats in a mapping.
When you create a Data Processor transformation, you define components, to transform the data. A Data
Processor transformation can contain multiple components to process data. Each component might contain
other components.

After you create a Data Processor transformation, you add an XMap to transform the data. You configure the
XMap with input and output schemas and an example source. An XMap uses input and output schemas to
define the expected hierarchy of input and output documents. An XMap can transform any input XML
document whose elements match the input schema hierarchy into an output document with the hierarchy of
the output schema.

If a Data Processor transformation contains multiple XMaps, you need schemas for each component that you
define in the transformation. The Data Processor transformation references schema objects in the Model
repository. The schema objects can exist in the repository before you create the transformation.

After you create an XMap, use the XMap editor to define and manage mapping statements that the
transformation uses to transform a specific input element into a specific output element. The XMap editor
contains the input schema hierarchy and the output XML schema hierarchy. Mapping statements link input
schema elements to output schema elements.

8

The XMap Editor
An XMap uses input and output schemas to define the expected hierarchy of the input and output XML. Use
the XMap editor to define how input elements are mapped to output elements.

An XMap can transform any input XML document whose elements match the input schema hierarchy into an
output document with the hierarchy of the output schema.

The following image shows the XMap editor:

1. The XMap editor contains input and output XML schemas. Drag and drop between the schema elements to create
mapping statements.

2. The XMap editor grid shows mapping statements. Use the grid to manage and edit the mapping statements.

An XMap uses mapping statements to define how to transform an input schema element to an output
schema element. You can drag from a node in the input schema to a node in the output schema to create a
link. When you create links, these are mapping statements.

The XMap editor shows the mapping statement in the grid. You can edit the mapping statements in the grid.

Mapping Statements
A mapping statement determines how to map data from the input XML document to the output XML
document. When you drag a node from the input schema to the output schema, the XMap editor creates
mapping statements in the grid.

You can use the grid to create simple or detailed mapping statements. You can drag elements from the input
or output schemas into fields in the grid to include them in mapping statements.

You can check the element that a mapping statement references. When you click a mapping statement in the
grid, the XMap editor highlights the nodes in the schemas.

The XMap Editor 9

Add XPath expressions to determine the context or add computations to a mapping statement. When an
XPath expression identifies the context for a mapping statement, the Data Processor transformation runs the
mapping statement for each occurrence of the input element or expression in the input document.

Nest mapping statements to make them dependent on other mapping statements. A mapping statement can
be a parent to a group of child statements. Each time that the Data Processor transformation runs the parent
statement, it runs the child statements also. Child statements appear indented from the parent in the XMap
editor.

Mapping Statement Types
Mapping statement types define XMap mapping logic. Define the mapping statement type based on whether
you want to map a simple input value to an output value, iterate over an element, or perform the mapping
based on a condition.

Create a statement by dragging an input schema element to an output schema element, or adding a mapping
statement to the grid. When you create a statement, the Data Processor transformation identifies a mapping
statement type based on whether the element is a simple element, a complex element, or a repeating
element.

The basic mapping statement type is a Map, which maps a simple input value to a simple output value. Other
mapping statements identify conditions or alternatives for mapping logic, or group a set of logical
statements.

You can define the following types of mapping statements in the grid:

Map

Maps a simple input element to a simple output element. A Map statement is the basic building block of
the XMap.

Group

A logical group of statements. Other mapping statement types are nested under the Group statement.

Repeating Group

A group statement that the Data Processor transformation performs each time the input element
appears in the input document. The Repeating Group contains Map statements which are iterated. The
Repeating Group identifies the element used to iterate the group.

Router

Contains a group of Option statements, and selects only the Option statement whose condition criteria
matches the input. If none of the Options apply and there is a Default statement, the Default action is
taken. If none of the Options apply and there is no Default statement, the Router fails.

Option

One or more Option statements are nested under the Router statement. The Option statement is like a
Group statement, and contains a logical group of statements. The Option statement defines a condition
to map the input element to the output element.

Default

One Default statement can be nested under the Router statement. The Default statement is performed
when none of the Option statements apply. If the all the Option statements fail and there is no Default
statement, the Router fails.

10 Chapter 1: Introduction to XMap

Run XMap

Calls another XMap object in the Data Processor transformation.

Mapping statements contain fields that you can configure to customize the statement. You can configure the
input, output, and condition for mapping an input element to an output element.

Configure whether to skip a mapping statement when it fails or there is no input. Configure whether the Data
Processor transformation adds an output element or matches an existing element with a value from a
mapping statement.

Scenario
Verity Outpatient Clinic uses an online tracking system to process insurance claim data for doctors. The
clinic uses doctor and patient data and appointment information to check if information is missing for
claims.

They need to create an XMap that transforms logs with contact information and appointment information
into sets of data that is relevant for their insurance processing system. The online system stores logs in XML
format. They use a Data Processor transformation with an XMap that inputs doctor and patient data, sorts
the data relevant to each patient insurance claim, and outputs patient insurance data sorted from claims that
are missing information.

The XMap is configured with the following objects:

PatientInputSchema

The schema that defines the XML hierarchy of data for input logs.

PatientOutputSchema

The schema that defines the XML hierarchy of data for output data.

PatientCareListExample

An example source file with sample data that you use to test the XMap.

The XMap uses the PatientInputSchema schema to define and classify the data in the input log, and the
PatientOutputSchema schema to define and classify the data in the output log. The XMap processes and
transforms the data in the input, then stores the output in a target XML.

Before you begin the tutorials to create an XMap for Verity Outpatient Clinic, download the Patient_DP.zip file
from the following link: https://mysupport.informatica.com/docs/DOC-9857

Add the file to the following directories:

<INSTALL_DIR>\clients\DeveloperClient\Tutorials

<INSTALL_DIR>\server\Tutorials

Unzip the files to access the input schema file, the output schema file, and example source file. The zip also
contains the solution as a Metadata file, named XMap_Getting_Started-Solution.xml

Scenario 11

https://mysupport.informatica.com/docs/DOC-9857

C h a p t e r 2

Creating an XMap
This chapter includes the following topics:

• Creating an XMap Overview, 12

• Step 1. Create the Data Processor Transformation, 13

• Step 2. Create an XMap in the Data Processor Transformation, 13

• Creating XMap - Tips, 14

Creating an XMap Overview
In this lesson, you create a Data Processor transformation using the Developer tool. After you create a Data
Processor transformation, you add an XMap object. To set up the Developer tool, you connect to the Model
repository and create a project and folder to store your work. If the domain includes more than one Data
Integration Service, you must also select a default service to preview data and run mappings.

Lesson Concepts

A mapping uses a Data Processor transformation to transform documents from one format to another. The
Data Processor transformation processes unstructured and semi-structured file formats in a mapping. When
you create a Data Processor transformation, you define components such as the XMap to transform the data.
A Data Processor transformation can also contain components that perform other transformation tasks.

After you create a Data Processor transformation, you add an XMap to transform the data. You configure the
XMap with input and output schemas and an example source. An XMap uses input and output schemas to
define the expected hierarchy of input and output documents. An XMap can transform any input XML
document whose elements match the input schema hierarchy into an output document with the hierarchy of
the output schema.

Lesson Objectives

In this lesson, you complete the following tasks:

• Create a Data Processor transformation to contain components that transform documents.

• Create an XMap in the Data Processor transformation to transform input with an XML hierarchy to output
with a different XML hierarchy.

Lesson Prerequisites

Before you start this lesson, verify the following prerequisites:

• Informatica Data Transformation is installed, and the services are running.

• You have configured the Developer tool.

12

• You have downloaded the files for the tutorial. Download the Patient_DP.zip file from the following link:
https://kb.informatica.com/proddocs/Product Documentation/3/Patient_DP.zip

Add the file to the <INSTALL_DIR>\clients\DeveloperClient\Tutorials directory. Unzip the file to
access the input schema file, output schema file, and example source file.

Lesson Timing

Set aside 5 to 10 minutes to complete the tasks in this lesson.

Step 1. Create the Data Processor Transformation
Create the Data Processor transformation in the Model repository.

1. In the Developer tool, click File > New > Transformation.

2. Select the Data Processor transformation and click Next.

3. Select to create a blank Data Processor transformation.

4. Enter the name Patient_DP for the transformation and browse for a Model repository location to put the
transformation.

5. Click Finish.

The Developer tool creates the transformation in the repository. The Overview view appears in the
Developer tool. You can update the transformation ports after you define the schemas and objects in the
transformation.

Step 2. Create an XMap in the Data Processor
Transformation

Create a Data Processor transformation and then create an XMap for the transformation. When you create an
XMap, you must have a schema that describes the input and the output XML documents. You select the
element in the schema that is the root element for the input XML.

1. In the Developer Data Processor transformation Objects view, click New.

2. Select XMap and click Next.

3. Enter the name Patient_Claims for the XMap.

4. The XMap component is the first component to process data in the transformation, so ensure that Set as
startup component is selected.

A Data Processor transformation can contain multiple components to process data. Each component
might contain other components. You must identify which component is the entry point for the
transformation.

Click Next.

5. To import a schema and add it to the repository, click Create a new schema object and browse for the
PatientInputSchema.xsd file in the following directory: <INSTALL_DIR>\clients\DeveloperClient
\Tutorials

Step 1. Create the Data Processor Transformation 13

https://kb.informatica.com/proddocs/Product Documentation/3/Patient_DP.zip

Note: To add a schema that is already in the repository, select Add a Schema Object, then select the
schema. However, we are using a schema that is not in the repository.

6. To add the sample XML file that you use to test the XMap, browse for and select the
PatientCareListExample.xml file in the following directory: <INSTALL_DIR>\clients\DeveloperClient
\Tutorials

7. After you select both a schema and a sample XML file, the wizard identifies the root for the input
hierarchy.

In the Root Element Selection dialog box, the in:Input element in the schema is selected as the root
element for the XML.

8. To add the schema to the repository, click Create a new schema object and browse for the
PatientOutputSchema.xsd file in the following directory: <INSTALL_DIR>\clients\DeveloperClient
\Tutorials
Note: To add a schema that is already in the repository, select Add a Schema Object, then select the
schema.

9. Choose the root for the output hierarchy.

In the Root Element Selection dialog box, select the out:Insurance element in the schema as the root
element for the XML.

10. Click Finish.

The Developer tool creates a view for the Patient_Claims XMap that you created. Click the view to
configure the XMap.

Creating XMap - Tips
Use the following tips to help you configure an XMap more effectively.

Set the XMap as the startup component.

A Data Processor transformation can contain multiple components to process data. Each component
might contain other components. Even if there is only one component, you must identify that the
component is the entry point for the transformation. If you do not select a startup component, the Data
Processor transformation will not run correctly. To select a startup component, define the XMap as a
startup component when you create the XMap, or select the startup component on the Overview tab.

Find a root element in a schema.

You can use pattern searching to search for a root element. To find a match to any number of characters
in a string, enter *<string>. To match a single character, enter ?<character>.

Select an example source.

You can change the example source to test the XMap at any time. You can test any example source with
the same XML hierarchy as the input schema.

14 Chapter 2: Creating an XMap

C h a p t e r 3

Configuring Repeating Values
This chapter includes the following topics:

• Configuring Repeating Values Overview, 15

• Step 1. Create a Repeating Group Statement, 16

• Step 2. Test the Transformation, 17

• Testing XMap - Tips, 18

Configuring Repeating Values Overview
In this lesson, you configure the Patient_Claims XMap to pass repeating sets of details for doctors to the
output.

Lesson Concepts

A mapping statement determines how to map data from the input XML document to the output XML
document. When you drag a node from the input schema to the output schema, the XMap editor creates
mapping statements in a grid. You can edit mapping statement fields in the grid to change the logic for a
mapping statement.

A Repeating Group statement is a mapping statement that can occur multiple times. The Data Processor
transformation performs the Repeating Group statement for each element or value that is a result of the
Input XPath expression.

The Repeating Group input is an XPath expression that can evaluate to a sequence of elements or values.
XPath is a query language used to select nodes in an XML document and perform computations.

Repeating Group statements can contain Map statements. A Map statement is the basic XMap object and
maps a simple input value to a simple output value. The input is a single value or a constant value.

Lesson Objectives

In this lesson, you complete the following tasks:

• Open an XMap in the XMap editor.

• Create a Repeating Group statement to pass repeating sets of details for doctors to the output.

• Create Map statements to pass a specific doctor detail to the output.

• Validate the transformation.

15

Lesson Prerequisites

Before you start this lesson, verify the following prerequisites:

• You have created a Data Processor transformation.

• You have created the Patient_Claims XMap.

Lesson Timing

Set aside 15 to 20 minutes to complete the tasks in this lesson.

Step 1. Create a Repeating Group Statement
You can create a mapping statement by dragging a node from the input schema to a node in the output
schema. The XMap editor adds the mapping statement to the mapping statement grid.

1. To open the XMap editor, in the Overview view, click the Patient_Claim XMap link.

The XMap editor appears and shows the input and output schemas. In the following image, the XMap
editor displays the input schema on the left, and the output schema on the right:

2. Drag the mouse from the Doctor input schema node to the Claims output schema node.

The following image shows how the XMap links the XML input to the XML output:

Both schema nodes are repeating nodes, so the XMap editor creates a Repeating Group statement
named Doctor to Claims in the grid. Statements under the Repeating Group statement are iterated for
each instance of input data.

16 Chapter 3: Configuring Repeating Values

3. Drag the mouse from the Specialty input node under the Doctor input node to the Specialization output
schema node.

Note: There is a Specialty input node under the Doctor input node, and a Speciality input node under the
Patient input node. We refer to the first node in this lesson.

After you complete this step, the XMap editor creates a Map statement named Specialty to Claims/
@Specialization in the grid. This statement passes the name of the medical field of specialization to the
output XML.

4. Drag the mouse from the Name input schema node to the Name output schema node.

The XMap editor creates a Map statement named Name to Name in the grid.

This statement passes the name of the doctor to the output XML.

5. Drag the mouse from the Email input schema node to the Email output schema node.

The XMap editor creates a Map statement named Email to Email in the grid. This statement passes the
customer phone number to the output XML.

The following image shows how the XMap links the XML input elements to the XML output in Map
statements:

6. To save the transformation, click File > Save.

Step 2. Test the Transformation
Save the Data Processor transformation. Then test the transformation in the Data Viewer view.

1. To test the transformation, open the Data Viewer view.

2. Click Run.

Step 2. Test the Transformation 17

The Developer tool validates and runs the transformation. If there is no error, the Developer tool shows
the example file in the Input area. The output results appear in the Output panel. The following image
shows details for doctors who submit claims:

3. To debug an error, click Show Events to show the Data Processor Events view. Double-click an event in
the Data Processor Events view in order to view further details.

Testing XMap - Tips
Use the following tips to help you validate and test an XMap more effectively.

Verify that the Data Viewer is synched with the Editor.

Before you test an XMap in the Data Viewer view, verify that you synch the view with the XMap editor. To

verify that the Data Viewer view is synched, click the Synchronize with Editor button .

Verify the example source.

You need to chose an example source to test. To verify that you have an example source, check the Data
Viewer view Input panel. The Name field lists the example source and the panel shows the example
source content. You define the example source when create the XMap. To select or change an example
source, in the XMap editor click the Choose Example Source icon above the input schema and browse to
the example source file.

18 Chapter 3: Configuring Repeating Values

Check the output.

The Data Viewer view shows the entire output in an Output panel. You can scroll through the output file
to verify that the XMap mapping logic works as you expect it to.

Check the schemas.

The XMap uses the output schema hierarchy and the XMap mapping logic to sort the output. If you see
unexpected output, check the hierarchies of the input and output schemas. Check that the element
characteristics are defined correctly.

Check the example source.

If the output is missing elements, check the example source file. Verify that the elements and the
element characteristics are defined correctly.

Use keyboard shortcuts.

You can use keyboard shortcuts to complete tasks in the Developer tool. To view the keyboard shortcuts,
click Help > Key Assist.

Testing XMap - Tips 19

C h a p t e r 4

Configuring XPath Expressions
This chapter includes the following topics:

• Configuring XPath Expressions Overview, 20

• Step 1. Create an XPath Function Expression, 21

• Step 2. Test the Transformation, 23

• Writing XPath Expression - Tips, 24

Configuring XPath Expressions Overview
In this lesson, you configure the Patient_Claim XMap with a mapping statement that passes the current date,
the date you submit claims, to the output.

Lesson Concepts

Mapping statements contain fields that you can configure to customize the statement. Use the XPath editor
to configure expressions. XPath is a query language used to select nodes in an XML document and perform
computations.

You can configure XPath expressions in Input, Condition, and Output mapping fields. XPath expressions
identify specific elements in XML documents, or check for conditions in the data. Create expressions in the
XPath editor. When you click the Open button to the right of the Input, Condition, or Output field, you open the
XPath editor.

The XPath editor has a Navigation panel with a function library that you can use to create XPath expressions.
The functions are standard for the W3C XML Path Language. The function library also includes some
functions that are specific to the Data Processor transformation.

Lesson Objectives

In this lesson, you complete the following tasks:

• Create an XPath function expression in a mapping statement that passes the current date to the output.

• Use the XPath Expression Editor to create the function expression that generates the current date.

• Validate the transformation.

Lesson Prerequisites

Before you start this lesson, verify the following prerequisites:

• You completed previous lessons in the tutorial. Use the Patient_Claim XMap that you created in previous
lessons.

20

Lesson Timing

Set aside 5 to 10 minutes to complete the tasks in this lesson.

Step 1. Create an XPath Function Expression
Add a mapping statement that provides the current date as the date when claims are submitted. Use an
XPath function to provide the date.

1. In the XMap view, add a Map statement to the Patient_Claim XMap, nested under the Doctor to Claims
Repeating Group. To add a Map statement, in the XMap editor grid select the Doctor to Claims Repeating
Group, then right-click and select New > Map.

The Map statement is indented signifying that it is within the context of the Doctor to Claims Repeating
Group statement. The statement iterates for each doctor with a set of details in the input.

2. To name the Map statement, double-click the Name field and type the name ProcessingDate.

3. To define the Output field in the ProcessingDate statement, drag the mouse from the Date output
schema node to the Output field.

The following image shows the mapping statement grid with the Date element in the Output field of the
ProcessingDate statement:

The ProcessingDate statement name is highlighted in red because the statement is missing an input
expression.

4. To assign the current date as the input to the statement, use the XPath Expression editor to create an
XPath expression in the Input field of the statement. To open the XPath Expression editor, click the
arrow to the right of the Input field.

Step 1. Create an XPath Function Expression 21

In the following image, on the left the XPath Expression editor displays the schema and function tabs,
and on the right the Expressions pane:

Use tabs on the left to choose XPath functions, input schema nodes, or output schema nodes. Drag
functions or nodes from the tabs into the Expression pane on the right, or type an expression directly
into the pane.

5. To select a function, open the XPath tab and select Functions > All Functions.

In the following image, the XPath Expression editor displays the Functions tab:

22 Chapter 4: Configuring XPath Expressions

6. To select a function that generates the current date, scroll down and double-click the current-date
function. The expression appears in the Expression pane.

In the following image, the XPath Expression editor displays the current-date expression that you
selected on the right:

7. To validate that the expression follows XPath rules, click Validate.

8. To enter the expression into the statement, click OK.

The following image shows the XMap editor with the completed statement:

9. To save the transformation, click File > Save.

Step 2. Test the Transformation
Save the Data Processor transformation. Then test the transformation in the Data Viewer view.

1. To test the transformation, open the Data Viewer view.

Step 2. Test the Transformation 23

2. Click Run.

The Developer tool validates the transformation. If there is no error, the Developer tool shows the
example file in the Input area. The output results appear in the Output panel. The following image shows
that the processing date is added to the output for each doctor:

The output is sorted according to the output schema hierarchy. The output schema categorizes the Date
element as a sub-element for the Doctor element.

Writing XPath Expression - Tips
Use the following tips to help you create and test XPath expressions more effectively.

Verify that the XPath expression is valid.

To ensure that an XPath expression follows XPath rules, type the expression in the XPath Expressions
editor and click Validate. An error message appears if the expression is not valid.

Verify that the XPath expression produces the expected results.

Ensure that the XPath expression finds or tests the nodes that you expect it to. To verify that the XPath
expression tests the correct nodes, type the expression in the XPath Expressions editor and click Test
Expression. The XPath editor displays the nodes that the expression produces in the Result pane. The
Sequence Length field displays the number of matching nodes for the expression, and the Value field
displays the XML output for the expression. If the expression contains an element that is part of a
repeating group, the expression is iterated. Each line in the Results pane displays the results of a single
iteration.

24 Chapter 4: Configuring XPath Expressions

C h a p t e r 5

Configuring Group Statements
This chapter includes the following topics:

• Configuring Group Statements Overview, 25

• Step 1. Create a Group Statement with Conditions, 26

• Step 2. Test the Transformation, 29

Configuring Group Statements Overview
In this lesson, you configure the Patient_Claim XMap to associate patients with doctors and pass patient
details to the output.

Lesson Concepts

A Group statement contains a logical group of statements. A parent Group statement contains child
statements. The child statements are nested underneath the Group statement in the XMap editor grid.

You can use a Group statement to provide a common context or common condition for success or failure to
a group of statements. You can use a Group mapping statement if you want a set of statements to either all
pass or all fail. You can also use a Group mapping statement to group a set of statements to organize and
simplify an XMap grid.

A Repeating Group input is a repeating element. A Group input evaluates to a single simple element or single
complex element. A complex element is an element that contains sub-elements. The Map statement input is
a single simple element.

Statements contain fields that you can configure to customize the statement. The On Fail field determines
the action taken if a statement fails. Choose one of the following options:

• Skip. If the statement fails, skip this statement. This option does not affect any related mapping logic.

• Propagate. If the statement fails, force the parent statement to also fail. If the statement is nested under a
Group, Repeating Group, or Router Option statement, the entire group or option will fail and none of the
statements are performed.

Lesson Objectives

In this lesson, you complete the following tasks:

• Create a Repeating Group statement to pass sets of patient details to the output. Create another
Repeating Group statement that sorts the patients according to the doctor that submitted the patient
claim.

25

• Create a Group statement to pass a single set of patient claim details for a specific patient to the output.
Create another Group to pass a single set of personal details.

• Create Map statements to each pass one contact detail to the output.

• Define Map statement fields.

• Validate the transformation.

Lesson Prerequisites

Before you start this lesson, verify the following prerequisites:

• You completed previous lessons in the tutorial. Use the Patient_Claim XMap that you created in previous
lessons.

Lesson Timing

Set aside 25 to 35 minutes to complete the tasks in this lesson.

Step 1. Create a Group Statement with Conditions
Create Repeating Group statements to process the details for patients that each doctor submits claims for.
Create a Group statement to process a single set of patient details for a specific patient.

1. In the XMap view, add a Repeating Group statement to the Patient_Claim XMap. To add a Repeating
Group statement, in the XMap editor grid, right-click and select New > Repeating Group.

2. To define the Repeating Group, perform the following steps:

a. To name the statement, double-click the Name field and type the name PatientDetails.

b. Drag the input schema node Patient into the Input field of the PatientDetails statement.

Each time the transformation iterates a Repeating Group statement, the transformation processes a
set of patient details.

The following image shows the final PatientDetails Repeating Group:

3. To create a claim for each appointment, compare the appointment details to the doctor specialization.
Drag the Patient input schema node to the Claims output schema node.

The editor creates a Repeating Group that provides the context for the patient data. We want to change
the Repeating Group to a Group that contains a set of statement to perform for each claim in the output.

4. To define the Repeating Group, perform the following steps:

a. To change the statement to be a Group statement, click the arrow to the right of the Statement Type
field and select Group.

When the transformation processes the Group statement, the transformation processes the set of
statements nested in the Group statement.

b. To name the statement, double-click the Name field and type the name ContactDetails.

26 Chapter 5: Configuring Group Statements

c. Use the XPath Expression editor to edit the expression in the Output field for the ContactDetails
Group statement. To open the XPath Expression editor, click the arrow to the right of the Output
field.

d. In the Expressions pane, add brackets to the right of the expression to create the following
expression: out:Claims[]
We use brackets to create an XPath predicate that acts as a filter. We want to associate patient
information with the doctor with whom the patient had an appointment. This is also the doctor who
makes the insurance claim. In the next steps, we see how to do this.

e. To filter according to the doctor specialization, use the specialization element as the filter condition
for the doctor appointments. To position the cursor in the expression, in the Expressions pane, click
between the brackets in the expression out:Claims[]. In the Output Schema tab, double-click to
select the Specialization node.

The action creates the following expression: out:Claims[@Specialization]
f. To the right of the Specialization node in the expression, add an equals sign to create the

following expression: out:Claims[@Specialization=]
g. To use the filter to match the output Specialization element to the input appointment Speciality

element, add the Speciality element to the expression. Open the Input Schema tab and double-click
the Speciality node that is under the Appointment node.

Note: There is a Specialty input node under the Doctor input node, and a Speciality input node under
the Patient input node. We refer to the second node in this lesson.

The action creates the following expression: out:Claims[@Specialization=../dp:input()/
in:Speciality]. The filter uses the dp:input() function to refer to an input node from the output
statement. The expression returns nodes that match Specialization to Speciality.

h. To ensure that the claim data is matched or added for the relevant doctor, change the Mode to
Match or Add.

The following image shows the final ContactDetails Repeating Group statement:

5. To transform a set of details for a specific patient, create a Group statement. Drag and drop from the
PersonDetails input node to the Patient output node. In the grid, right-click the PersonDetails to Patient
Group, and select Demote to nest the Group statement under the ContactDetails Repeating Group.

The XMap editor creates a Group statement in the grid. This statement passes a single set of patient
details to the output XML. When the Group statement is indented, this signifies that it is performed for
every patient whose doctor appointment details match the speciality for that iteration. This means that
the set of patient details are associated in the output with the doctor that makes the claim.

6. To find every patient for the Group statement according to the patient ID, use the XPath Expression
editor to edit the expression in the Output field. To define the Output field, perform the following steps:

a. To open the XPath Expression editor, click the arrow to the right of the Output field.

b. In the Expressions pane, add brackets to the right of the expression to create the following
expression: out:Patient[]
We want to find input patient contact information according to the patient ID. We also assign the
input patient ID data to the ID output element. In the next steps, we see how to do this.

c. To identify the patient according to the patient ID number, filter the patient according to the ID node
as part of the output expression. Open the Output Schema tab and double-click the ID node.

The action creates the following expression: out:Patient[out:ID]

Step 1. Create a Group Statement with Conditions 27

d. To the right of the expression, add an equals sign to create the following expression:
out:Patient[out:ID=]

e. To use the filter to match the output ID element to the input id element, add the id element to the
expression. Open the Input Schema tab and double-click the id node.

The action creates the following expression: out:Patient[out:ID=../dp:input()/@id]. The
statement filters patients according to ID and passes the ID to the output.

The following image shows the final Group statement:

7. Drag the mouse from the Last input schema node to the Name output schema node.
The XMap editor creates a Map statement named Last to Name in the grid.

8. To demote the Last to Name statement to be within the context of the PersonDetails to Patient Group
statement, select the statement and click Alt-Right as needed.

The statement is nested within the Repeating Group and Group statements that select patients
according to the filters that you defined. The patients are filtered according to the doctor that makes the
claim and according to the patient ID. For each iteration of the Group statement, the statement passes
the last name of the filtered patient to the output XML.

9. To combine the first and last name in the Name output schema node, use the XPath Expression editor to
edit the expression. To get data from both the first name and last name nodes in the input, edit the Input
field. To edit the Input field, perform the following steps:

a. To open the XPath Expression editor, click the arrow to the right of the Input field.

b. To select a function, open the XPath tab and select Functions > String.

c. To combine the first and last names, use the concat() function. Scroll down and double-click
concat().

The action creates the following expression: concat()in:Name/in:Last.

d. To correctly position the last name, delete the close parenthesis character, then add it to the end of
the expression.
The function operates on parameters that are within the parenthesis, so we must position the name
within the parenthesis. The action creates the following expression: concat(in:Name/in:Last).

e. To add the first name, open the Input Schema tab and double-click the First node.
We want to append the first name after the last name. The action creates the following expression:
concat(in:Name/in:Lastin:Name/in:First)

f. To add a comma and space between the last and first name, add commas and quotation marks
between the last name node and the first name node. Edit the expression to create the following
expression: concat(in:Name/in:Last,', ',in:Name/in:First)
We use commas to separate parameters within the concat function. The expression we created
adds a space and comma between the last and first names.

g. To test the expression, click Test Expression. Then, to enter the expression into the statement, click
OK.

When you test the expression, the Results panel displays all the nodes that result from the
expression. With this method, you can check that the results are correct before you add the
statement to the XMap. You can adjust the expression if needed.

h. To ensure that the claim data is matched or added for the relevant doctor, change the Mode field to
Match or Add.

i. To ensure that if there is an error, the statement fails, change the On Fail field to Propagate.

28 Chapter 5: Configuring Group Statements

The following image shows the final statement:

10. Drag from the InsuranceID input schema node to the InsuranceID output schema node. To demote the
statement to be within the context of the PersonDetails to Patient Group statement, select the
statement and click Alt-Right as needed.

The XMap editor creates a Map statement named InsuranceID to InsuranceID in the grid. This statement
passes a single insurance identification number to the output XML.
The following image shows the final statement:

11. To pass the date of the appointment to the output, drag from the Date input schema node to the
AppointmentDate output schema node. To demote the statement to be within the context of the
PersonDetails to Patient Group statement, select the statement and click Alt-Right as needed.

The XMap editor creates a Map statement named Date to AppointmentDate in the grid.
The following image shows the final statement:

12. To save the transformation, click File > Save.

Step 2. Test the Transformation
Save the Data Processor transformation. Then test the transformation in the Data Viewer view.

1. To test the transformation, open the Data Viewer view.

Step 2. Test the Transformation 29

2. Click Run.

The Developer tool validates the transformation. If there is no error, the Developer tool shows the
example file in the Input area. The output results appear in the Output panel. The following image shows
set of patients with patient details, grouped according to the doctors who submitted the claims:

30 Chapter 5: Configuring Group Statements

C h a p t e r 6

Configuring Router Statements
This chapter includes the following topics:

• Configuring Router Statements Overview, 31

• Step 1. Create a Router Statement, 32

• Step 2. Test the Transformation, 34

Configuring Router Statements Overview
In this lesson, you configure the Patient_Claim XMap to sort the telephone numbers for each doctor
according to type.

Lesson Concepts

A Router statement provides alternatives for the mapping logic. The Router statement contains one or more
Option statements and can contain one Default statement. When the Data Processor transformation
performs a Router statement, it tests each Option nested below the Router statement. The Option statement
that matches is performed.

The Option statement can contain one or more child statements of any type. If no Option statement matches,
the Default statement is performed. If there is no Default statement and no Option statement matches, the
Router statement fails.

If the Option statement has a condition that is true but the mapping statements inside it fail and propagate
the failure, the Router fails. You can configure the mapping to skip the Router if the Router fails.

Lesson Objectives

In this lesson, you complete the following tasks:

• Create Router and Option mapping statements to provide alternatives for mapping telephone numbers of
type mobile, work, and home.

• Create Map statements that pass a single telephone number to the output.

• Use the XPath editor to define input and condition fields for the Option statements. Define the condition
field for each Option statement to check the type of phone an input element contains.

• Validate the transformation.

31

Lesson Prerequisites

Before you start this lesson, verify the following prerequisites:

• You completed the previous lessons in the tutorial. Use the Patient_Claim XMap that you created in
previous lessons.

• You understand how to use the XPath editor.

Lesson Timing

Set aside 15 to 20 minutes to complete the tasks in this lesson.

Step 1. Create a Router Statement
Create a Router statement to check the phone numbers. Add Option statements that check if a phone number
type is a mobile, work, or home phone number.

1. In the XMap view, add a Repeating Group statement to the Patient_Claim XMap. To create a Repeating
Group, in the XMap editor grid select the Doctor to Claims Repeating Group. Right-click and select New >
Repeating Group.

2. To name the Repeating Group, double-click the Name field and type the name SortPhones.

3. To evaluate the phone numbers in the input, drag the Phone node into the Input field of the Repeating
Group.

The following image shows the Repeating Group statement:

4. To filter phone numbers by type for each doctor, create a Router. In the XMap editor grid, select the
SortPhones Repeating Group, right-click and select New > Router.

The following image shows the XMap editor with the Router statement:

5. To name the Router statement, double-click the Name field and type the name PhoneType.

6. To filter mobile numbers, create an Option. Right-click and select New > Option.

7. To name the Option statement, double-click the Name field and type the name Mobile.

8. To make the Mobile statement check that the type of phone number is a mobile number, drag the mouse
from the @type input schema node to the Condition field in the Mobile statement. To define the
condition, perform the following steps:

a. To open the XPath Expression editor, click the arrow to the right of the Condition field.

32 Chapter 6: Configuring Router Statements

b. Use the XPath Expression editor to edit the expression to the following syntax: @type="mobile"
The following image shows the XMap editor with the Option statement:

9. Drag from the Phone input schema node to the MobilePhone output schema node.

The XMap editor creates a Map statement named Phone to MobilePhone in the grid under the Mobile
statement. The statement passes the first instance of the node to the output XML. The Input field
contains the following expression: .[1]. We want to select the current node, not just the first instance. In
the next step, we correct the expression in the Input field.

10. To correct the Input field, use the XPath Expression editor to edit the expression to be a single period.

The corrected statement passes the mobile phone number in the current node to the output XML.

The following image shows the XMap editor with the completed Option statement and Map statement:

11. To filter work numbers, copy and paste the first Option statement to create another Option statement.
Select the Mobile Option statement that you created, right-click and select Copy. Select the PhoneType
Router statement, right-click and select Paste.
A copy of the Mobile Option statement appears nested under the Router. The Option statement has a red
highlight to indicate that you must correct the fields in order for the Option statement to work. For
example, two Option statements cannot have the same condition expressions.

12. To rename the copy of the Option statement, double-click the Name field and type the name Work.

13. To make the Work statement check that the type of phone number is a work number, edit the Condition
field. To define the condition, perform the following steps:

a. To open the XPath Expression editor, click the arrow to the right of the Condition field.

b. Use the XPath Expression editor to edit the expression to the following syntax: @type="work"
14. Rename the copied Phone to MobilePhone Map statement nested in the grid under the Work Option

statement. To rename the statement, double-click the Name field and type the name Phone to
WorkPhone.

15. To pass the phone number to the correct node in the output, drag the WorkPhone node to the Output
field of the Phone to WorkPhone statement.

This statement passes the work phone number to the output element for the work phone number. If you
did not edit the statement, the transformation would pass the work phone number to the output element
for the mobile phone number.

16. To filter other telephone numbers, create a Default statement. Select the PhoneType Router statement,
right-click and select New > Default.

17. To name the Default statement, double-click the Name field and type the name Other.

18. To pass the phone number to the other phone node in the output, first copy and paste the previous Map
statement to create another Map statement. Select the Phone to WorkPhone statement that you created,
right-click and select Copy. Select the Other Default statement, right-click and select Paste.

The XMap editor creates a Map statement named Phone to WorkPhone in the grid underneath the Other
statement.

Step 1. Create a Router Statement 33

19. Rename the copied Phone to WorkPhone Map statement. To rename the statement, double-click the
Name field and type the name Phone to OtherPhone.

20. To pass the phone number to the correct node in the output, drag the OtherPhone node to the Output
field of the Phone to OtherPhone statement.

This statement passes the other phone numbers, such as the home phone number, to the output XML.

The following image shows the XMap editor with the completed Router, Option, Default, and Map
statements:

21. To save the transformation, in the Developer tool click File > Save.

Step 2. Test the Transformation
Save the Data Processor transformation. Then test the transformation in the Data Viewer view.

1. To test the transformation, open the Data Viewer view.

2. Click Run.

The Developer tool validates the transformation. If there is no error, the Developer tool shows the
example file in the Input area. The output results appear in the Output panel. The following figure shows
that the contact details per doctor include phone numbers that are sorted by type:

34 Chapter 6: Configuring Router Statements

A p p e n d i x A

Frequently Asked Questions
This appendix includes the following topic:

• Frequently Asked Questions, 35

Frequently Asked Questions
The following frequently asked questions can help you configure and use an XMap more effectively.

If you drag between schema nodes to create a mapping statement, do you need to define the fields?

The XMap editor defines the fields based on the hierarchical context of the linked nodes. If you want to
change the context or add mapping statement logic, you can edit the fields.

How can you use the Events View to debug the XMap?

To find the mapping statement in the XMap editor grid that correspond to events in the Events View, use
the event information. An event lists the related index and mapping statement name. Use the mapping
statement name to find the mapping statement in the XMap editor grid. To find the node that relates to
the mapping statement, right-click the statement and select Show In Schema Trees. The editor
highlights the relevant nodes.

Can you run an XMap from other Data Processor transformation components?

To call an XMap from a Parser, Serializer, or Mapper use the Run XMap action. You can also use the Run
XMap action to call one XMap from another XMap.

Can you import a Data Processor transformation with an XMap into a PowerCenter® Unstructured Data Transformation?

Yes. PowerCenter requires a B2B Data Transformation XMap license.

35

A p p e n d i x B

Glossary
Data Processor event

An occurrence during the execution of a Data Processor transformation.

document processor

A component that operates on a document as a whole, typically performing preliminary conversions before
parsing.

editor

A window of Data Transformation Studio where you can create and modify the content of a project.

event log

A report of events that occurred during the execution of a transformation.

Events view

A window of Data Transformation Studio that displays the events that occur during a transformation.

example source document

A sample of the documents that a Data Processor transformation processes.

Explorer view

A window of Data Transformation Studio that displays the projects and files in the workspace.

Model Repository Service

An application service in the Informatica domain that runs and manages the Model repository. The Model
repository stores metadata created by Informatica products in a relational database to enable collaboration
among the products.

output document

A document that is the result of a Data Processor transformation.

perspective

A predefined layout of the Eclipse Workbench.

predicate expression

An expression that filters the data in a mapping. A predicate expression returns true or false.

preprocessor

A document processor used to perform an overall modification of a source document, before the main
transformation.

project

A framework within which you can define transformations. A project is stored in a specified folder, although
certain project files can also exist outside the folder.

project properties

Options for the behavior of a project. The options control features such as the input and output encodings,
the authentication support, and the XML validation.

source document

A document that is the input of a Data Processor transformation.

startup component

The runnable component that Data Transformation starts first when it runs a Data Processor Transformation.

transformation

A repository object in a mapping that generates, modifies, or passes data. Each transformation performs a
different function.

view

A window within Data Transformation Studio, which displays data about a project and lets a user perform
limited operations on the data.

XMap

A Data Processor transformation object that maps an XML input document to another XML document.

XML schema

A definition of the elements, attributes, and structure used in XML documents. The schema conforms to the
World Wide Web Consortium XML Schema standard, and it is stored as an *.xsd file.

XPath

A query language used to select nodes in an XML document and perform computations.

XSD schema file

An *.xsd file containing an XML schema that defines the elements, attributes, and structure of XML
documents.

Appendix B: Glossary 37

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction to XMap
	XMap Overview
	The XMap Editor
	Mapping Statements
	Mapping Statement Types
	Scenario

	Chapter 2: Creating an XMap
	Creating an XMap Overview
	Step 1. Create the Data Processor Transformation
	Step 2. Create an XMap in the Data Processor Transformation
	Creating XMap - Tips

	Chapter 3: Configuring Repeating Values
	Configuring Repeating Values Overview
	Step 1. Create a Repeating Group Statement
	Step 2. Test the Transformation
	Testing XMap - Tips

	Chapter 4: Configuring XPath Expressions
	Configuring XPath Expressions Overview
	Step 1. Create an XPath Function Expression
	Step 2. Test the Transformation
	Writing XPath Expression - Tips

	Chapter 5: Configuring Group Statements
	Configuring Group Statements Overview
	Step 1. Create a Group Statement with Conditions
	Step 2. Test the Transformation

	Chapter 6: Configuring Router Statements
	Configuring Router Statements Overview
	Step 1. Create a Router Statement
	Step 2. Test the Transformation

	Appendix A: Frequently Asked Questions
	Frequently Asked Questions

	Appendix B: Glossary

