4;» Informatica

Informatica®
10.7.7

Developer Workflow Guide

Informatica Developer Workflow Guide
10.1.1
December 2016

© Copyright Informatica LLC 2010, 2019

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

Informatica, the Informatica logo, are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A
current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be trade
names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © 0SS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright © University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright® MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/Igpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright () 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

The product includes software copyright © 2004-2007, The Dojo Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to
terms available at http://dojotoolkit.org/license.

This product includes ICU software which is copyright International Business Machines Corporation and others. All rights reserved. Permissions and limitations
regarding this software are subject to terms available at http://source.icu-project.org/repos/icu/icu/trunk/license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edI|-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http:/slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antir.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/
Consortium/Legal/2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http://forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sglite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/fag.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;

http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/
EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://
jdbc.postgresgl.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/1z4/; https://github.com/jedisct1/libsodium/blob/master/
LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe Walnes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1.THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2.IN'NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, please report them to us in writing at
Informatica LLC 2100 Seaport Blvd. Redwood City, CA 94063.

INFORMATICA LLC PROVIDES THE INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2019-04-24

https://www.informatica.com/legal/patents.html

Table of Contents

4

Preface .. .o e e 10
Informatica Resources. 10
Informatica Network. L 10
Informatica Knowledge Base. 10
Informatica Documentation. 10
Informatica Product Availability Matrixes. 11
Informatica Velocity. e 11
Informatica Marketplace. e 11
Informatica Global Customer Support. 11
Chapter 1: Workflows.......... ceeees e e P '
Workflows OVEIVIEW. 12
Developing a Workflow. 13
Workflow Objects. 13
Events. . . . 13
Tasks. . . . 14
GateWaAYS. . . . e 14
Sequence FIOWS. 15
Conditional Sequence Flows. e 16
Parameters and Variables in Conditional Sequence Flows. 17
Creating a Workflow. 17
Adding Objects to a Workflow. 17
Connecting Objects. 18
Creating a Conditional Sequence Flow. 18
Workflow Validation. 18
Workflow Object Validation. 18
Sequence Flow Validation. 19
Expression Validation. L 19
Validating a Workflow. e 20
Workflow Advanced Properties. e 20
Workflow Deployment. 21
Deploy and Runa Workflow. 21
Running Workflows. e e 22
Monitoring Workflows. 22
Deletinga Workflow. e e 22
Workflow Examples. e 22
Example: Running Commands Before and After Running a Mapping. 22
Example: Creating Multiple Sequence Flows. 23

Table of Contents

Chapter 2: Workflow Variables...........ccooiiiiiiiiiiii i 25

Workflow Variables Overview. 25
Task INput. e 26
Task OUTPUL. e 26
System Workflow Variables. 27
User-Defined Workflow Variables. 27
Creating a User-Defined Variable. 28
Assign a Value with an Assignment Task. 28
Assign a Value with Task Output. e 30
Where to Use Workflow Variables. 31
Assigning Variablesto Task Input. 31
Variable Names in Expressions and Strings. 32
Escape Characters in Strings. e 33
Nested Variables. 34
Workflow Variable Datatype Conversion. 34
Changing the Format of Date Variables. 35
Chapter 3: Workflow Parametersc.ccoiiiiiiiiiiiiienineenennenns 36
Workflow Parameters Overview. 36
Task Input. e 37
Process to Run Workflows with Parameters. 37
Where to Use Workflow Parameters. 37
Assigning Workflow Parameters to Task Input. 38
Parameter Names in Expressionsand Strings. 39
Escape Characterin Strings. 39
Nested Parameters. 40
Creating Workflow Parameters for User-Defined Mapping Parameters. 41
Default Parameter Values. 41
Workflow Parameter data type Conversion. 42
Parameter Sets 42
Creating a Parameter Set. e 43
Running a Workflow with a ParameterSet. 45
Parameter Files. 46
Sample Parameter File fora Workflow. 46
Sample Parameter File 47
Rules and Guidelines for Parameter Files. 47
Export a Parameter File. e 47
Creating a Parameter File from infacmd ms ListMappingParams 48
Running a Workflow with a Parameter File. 49
Chapter 4: Command Task.................... e e e e e . 50
Command Task OVerview. 50

Table of Contents

5

6

Command Syntax. 50

Parameters and VariablesinaCommand. 51
Command Task Input. e 51
Command Task Output. e 52
Command Task Advanced Properties. e 53
Troubleshooting Command Tasks. 53
Chapter 5: Human Task........cooiiiiiiiiiiiiii ittt ittt ieieeieenans 55
Human Task OVerview. e 55
Human Tasks and Exception Data Management. 56

Types of Exception Data. e 56

Analyst TOOL. 56
Human Task Instances. 57
Human Task Steps. e 57
Human Task Roles. 58
Human Task Properties. e 58

General Tab. 59

Participants Tab. 59

Data Source Tab. 59

Task Distribution Tab. 60

Notifications Tab. 60

Input Tab e 61

Output Tab. e 61

Advanced Tab. 61
Step Properties. 62

General OptioNns. o . e 62

Configuration Options. 62

Participants Options. 63

Permissions Options. 63

Timeout OptioNS. 65

Notifications Options. e 65
Human Tasks and Workflow Configuration. 66
Human Task Configuration. 67

Configuring Task InstancesinaHumanTask. 67

Configuring Task Steps. e 67
Create Task Instances. 68

Creating Task Instances of Equal Size. 68

Creating Task Instances by DataValue. 68

Setting PermissionsonaStep. L 69

Rules and Guidelines for Step Permission Options. 70
Chapter 6: Mapping Task....... e e e e e e e A
Mapping Task OVEIVIEW. 71

Table of Contents

Multiple Mapping Tasks that Run the Same Mapping. 71

Mapping Task General Properties. e 72
Mapping Task Input. 73
Mapping Parameters and Mapping Tasks. 74
Override Mapping Parameters Duringa Workflow Run. 74
Parameter Usageina Mapping Task. e 75
Auto-Assign Mapping Input Parameter Values. 75
Clear Assignments. e 76
Mapping Task OUTpUL. 76
System-Defined Mapping Outputs. 78
Mapping Task LOgS. e 78
Mapping Task Log File Name. e 79
Mapping Task Log File Directory 79
Mapping Task Advanced Properties. e 79
Custom Properties. 82
Variable and Parameter Values for Configuration Properties. 82
Changing the Mapping thatthe Task Runs. 84
Chapter 7: Notification Task..........cooeiiiiiiiiiiiiiiiiiiiiii i 85
Notification Task Overview. 85
ReCipients. 86
Selecting Recipients. e 86
Configuring Notification Types for Recipients. 87
Typing Recipient Names. e 87
Dynamic Email Recipients. e 87
Email Addresses. 88
Entering Email Addresses. 89
Dynamic Email Addresses. e 89
Email Content. 90
Dynamic Email Content. 90
Entering Email Content. L 91
Notification Task Output. 91
Notification Task Advanced Properties. 92
Troubleshooting Notification Tasks. e 92
Chapter 8: Gateways........ e e e e e e e e 93
Gateways OVerview. 93
Exclusive Gateways. 94
Exclusive Gateway Example. 94
Inclusive Gateways. 95
Inclusive Gateway Example. 96
Default Sequence Flows. e 97
Splitting a Sequence Flow into Multiple Branches. 97

Table of Contents

7

8

Merging Branches into a Single Sequence Flow. 98

Chapter 9: Workflow Recovery.........ccciiiiiiiiiiiiiiiiiiiiiineneneene... 99

Workflow Recovery OVEIVIEW. e 99
Recoverable Workflow States. 100
Nonrecoverable Workflow States. 100
Task Errors and RECOVEIY. e e 100
Workflow Recovery Strategies. e 101
Workflow Recovery and Terminate Events. 102
Workflow Recovery on Grid. e 102
Task Recovery Strategies. e 103
Restart Recovery Behavior. 103
Skip Recovery Behavior. e 105
Human Task Restart Behavior. 106
Rules and Guidelines for Workflow and Task Recovery. 106
Steps to Configure Recovery. 107
Configuring a Workflow for Recovery. e 107
Configuring a Task Recovery Strategy. 107
Parameter and Variable Values During Workflow Recovery. 108
Workflow Recovery Logs. oo e 108
Steps to Develop a Mapping forRestart. 109
Remove Target Rows Manually. 109
Configure the Mapping to Remove Target Rows. 109
Recovering Workflow Instances. 112
Summary of Workflow States After an Interruption. 113
Workflow Recovery Examples. e 114
Chapter 10: Workflow Administration.........................oiiii... 116
Workflow Administration Overview. 116
Workflow Graph e 117
Viewing a Workflow Graph. e 117
View Workflow Objects. 117
Viewing Summary Statistics for Workflow Objects. 118
Viewing Detailed Statistics for Workflow Objects. 118
Workflow States. 119
Workflow Object States. 120
Mapping Task Work Item States. 121
Canceling or Abortinga Workflow. 122
Workflow ReCOVErY. 122
Recovery Properties. e 123
Recoveringa Workflow. 123
Workflow LOgs. o e 123
Workflow Log Information. e 124

Table of Contents

Viewing Logs fora Workflow. 124
Viewing Logs for a Mapping Runina Workflow. 124

Table of Contents

9

Preface

The Informatica Developer Workflow Guide is written for developers and administrators who are responsible
for creating and running workflows. This guide assumes that you have an understanding of flat file and
relational database concepts, the database engines in your environment, and data quality concepts. This

guide also assumes that you are familiar with the concepts presented in the Informatica Developer User
Guide.

Informatica Resources

10

Informatica Network

Informatica Network hosts Informatica Global Customer Support, the Informatica Knowledge Base, and other
product resources. To access Informatica Network, visit https://network.informatica.com.

As a member, you can:

o Access all of your Informatica resources in one place.

e Search the Knowledge Base for product resources, including documentation, FAQs, and best practices.
e View product availability information.

e Review your support cases.

e Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base

Use the Informatica Knowledge Base to search Informatica Network for product resources such as
documentation, how-to articles, best practices, and PAMs.

To access the Knowledge Base, visit https://kb.informatica.com. If you have questions, comments, or ideas
about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation

To get the latest documentation for your product, browse the Informatica Knowledge Base at
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx.

If you have questions, comments, or ideas about this documentation, contact the Informatica Documentation
team through email at infa_documentation@informatica.com.

HTTPS://NETWORK.INFORMATICA.COM/
http://kb.informatica.com
mailto:KB_Feedback@informatica.com
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx
mailto:infa_documentation@informatica.com

Informatica Product Availability Matrixes

Product Availability Matrixes (PAMSs) indicate the versions of operating systems, databases, and other types
of data sources and targets that a product release supports. If you are an Informatica Network member, you
can access PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity

Informatica Velocity is a collection of tips and best practices developed by Informatica Professional
Services. Developed from the real-world experience of hundreds of data management projects, Informatica
Velocity represents the collective knowledge of our consultants who have worked with organizations from
around the world to plan, develop, deploy, and maintain successful data management solutions.

If you are an Informatica Network member, you can access Informatica Velocity resources at
http://velocity.informatica.com.

If you have questions, comments, or ideas about Informatica Velocity, contact Informatica Professional
Services at ips@informatica.com.

Informatica Marketplace

The Informatica Marketplace is a forum where you can find solutions that augment, extend, or enhance your
Informatica implementations. By leveraging any of the hundreds of solutions from Informatica developers
and partners, you can improve your productivity and speed up time to implementation on your projects. You
can access Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support

You can contact a Global Support Center by telephone or through Online Support on Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
http://www.informatica.com/us/services-and-training/support-services/global-support-centers.

If you are an Informatica Network member, you can use Online Support at http://network.informatica.com.

Preface 11

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/
http://network.informatica.com

CHAPTER 1

Workflows

This chapter includes the following topics:

e Workflows Overview, 12

e Developing a Workflow, 13
o Workflow Objects, 13

e Sequence Flows, 15

e Creating a Workflow, 17
e Adding Objects to a Workflow, 17

e Connecting Objects, 18

e Creating a Conditional Sequence Flow, 18

o Workflow Validation, 18

o Workflow Advanced Properties, 20

o Workflow Deployment, 21

e Running Workflows, 22

e Monitoring Workflows, 22

o Deleting a Workflow, 22

o Workflow Examples, 22

Workflows Overview

12

A workflow is a graphical representation of a set of events, tasks, and decisions that define a business
process. Use the Developer tool to create a workflow and to save the workflow to the Model repository. You
deploy the workflow as application to the Data Integration Service.

You create a workflow in the Developer tool. You add objects to the workflow and connect the objects with
sequence flows. The Data Integration Service uses the instructions that you configure in the workflow to run
the objects.

A workflow object is an event, task, or gateway. An event starts or ends the workflow. A task is an activity
that runs a single unit of work in the workflow, such as running a mapping, sending an email, or running a
shell command. A gateway defines a decision to split or merge the data paths in the workflow.

A sequence flow connects one workflow object to another. Sequence flows specify the order in which the
Data Integration Service runs the objects. You can define a condition on a sequence flow to determine
whether the Data Integration Service runs the object that the sequence flow specifies.

You can define and use workflow variables and parameters to make workflows more flexible. A workflow
variable represents a value that records run-time information and that can change during a workflow run. A
workflow parameter represents a constant value that you define before you run a workflow. You use
workflow variables and parameters in conditional sequence flows and object fields. You also use workflow
variables and parameters to pass data between a task and the workflow.

You can configure a workflow for recovery so that you can complete an interrupted workflow instance. A
running workflow instance can be interrupted when an error occurs, when you cancel the workflow instance,
or when a service process shuts down unexpectedly. You cannot recover an aborted workflow.

After you deploy a workflow, you run an instance of the workflow from the deployed application using the
infacmd wfs command line program. You monitor the workflow instance run in the Monitoring tool.

Developing a Workflow

To develop a workflow, you select the objects to run in the workflow and you connect the objects with
sequence flows. You can use gateways to split or merge the sequence flows based on conditions that you
define.

1. Create a workflow.
2. Add objects to the workflow and configure the object properties.

3. Connect objects with sequence flows to specify the order in which the Data Integration Service runs the
objects.

4. Define variables for the workflow to capture run-time information. Use the workflow variables in
conditional sequence flows and object fields.

5. Define parameters for the workflow so that you can change parameter values each time you run a
workflow. Use the workflow parameters in conditional sequence flows and object fields.

6. Optionally, configure the workflow for recovery.
7. Validate the workflow to identify any error that the workflow might contain. Fix any error that you find.
8. Add the workflow to an application and deploy the application to the Data Integration Service.

After you deploy a workflow, you run an instance of the workflow from the deployed application using the
infacmd wfs command line program. You monitor the workflow instance run in the Monitoring tool.

Workflow Objects

A workflow object is an event, task, or gateway. You add objects as you develop a worklow in the editor.
Workflow objects are non-reusable. The Developer tool stores the objects within the workflow only.

Events

Events define the start and the end of the activity that the workflow specifies for the data. Each workflow has
a Start event and an End event. Optionally, a workflow can include one or more Terminate events.

The Developer tool gives each event a default name of Start_Event, End_Event, or Terminate_Event. You can
rename and add a description to an event in the event properties.

Developing a Workflow 13

The following table describes all events that you can add to a workflow:

Event Description

Start Defines the beginning of the workflow. The Start event represents the start the sequence of possible
actions that the workflow specifies for the data. A workflow contains a single Start event.

End Defines the end of the workflow. The End event represents the completion of the sequence of possible
actions that the workflow specifies for the data. A workflow contains a single End event.

Terminate | Defines a point before the End event at which the workflow can end. A workflow terminates if you
connect the task to a Terminate event and the task output satisfies a condition on the sequence flow.
The Terminate event aborts the workflow before any further task in the workflow can run. A workflow can
have one or more Terminate events.

Note: A Human task also contains a Start event and an End event. The events create a sequence flow for one
or more steps in the Human task. A Human task cannot contain a Terminate event.

Tasks

A task in an activity that runs a single unit of work in the workflow, such as running a mapping, sending an
email, or running a shell command. A task represents something that is performed during the workflow. The
editor displays tasks as squares.

The following table describes all tasks that you can add to a workflow:

Task Description

Assignment | Assigns a value to a user-defined workflow variable.

Command Runs a single shell command or starts an external executable program.

Human Defines actions that one or more users perform on the workflow data. Create a Human task when you
want Analyst tool users to analyze the output of a mapping that runs in a Mapping task.

Mapping Runs a mapping.

Notification | Sends an email notification to specified recipients.

Voting Not active. Analyst tool users run approval workflows to approve or reject the assets in a business
glossary. Analyst tool users do not interact with the workflow features of the Developer tool to
configure or run approval workflows.

A workflow can contain multiple tasks of the same task type.

The Developer tool gives each task a default name of <task type> Task, for example Command_Task. When
you add another task of the same type to the same workflow, the Developer tool appends an integer to the
default name, for example Command_Taskl. You can rename and add a description to a task in the task
general properties.

Gateways

A gateway splits a sequence flow into multiple branches or merges multiple branches into a sequence flow.
Gateways operate in pairs. One gateway defines the branches that the workflow data can follow. Another
gateway restores the branches to a single sequence flow. You can add a condition to the sequence flow that

14 Chapter 1: Workflows

starts each branch. The Data Integration Service uses the condition values to identify the branches that the
workflow data follows.

Exclusive Gateways and Inclusive Gateways

You can add Exclusive gateways and Inclusive gateways to a workflow. You add gateways to a workflow in
pairs. Add Exclusive gateways when the workflow data must follow a single branch between the gateways.
Add Inclusive gateways when the workflow data might follow multiple branches between the gateways. When
you add Inclusive gateways, the Data Integration Service runs the objects on each branch in parallel.

The Developer tool gives a gateway the default name of Exclusive Gateway or Inclusive Gateway. When
you add another gateway to the same workflow, the Developer tool appends an integer to the default name,
for example Exclusive Gatewayl. You can rename and add a description to a gateway in the gateway
properties

RELATED TOPICS:

e “Exclusive Gateways” on page 94

¢ “Inclusive Gateways” on page 95

Sequence Flows

A sequence flow connects workflow objects to specify the order that the Data Integration Service runs the
objects. The editor displays sequence flows as arrows. You can create conditional sequence flows to
determine whether the Data Integration Service runs the next object.

You cannot use sequence flows to create loops. Each sequence flow can run one time.
The number of incoming and outgoing sequence flows that an object can have depends on the object type:
Events

A Start event must have a single outgoing sequence flow. An End event must have a single incoming
sequence flow.

Tasks
Tasks must have a single incoming sequence flow and a single outgoing sequence flow.
Gateways

Gateways must have either multiple incoming sequence flows or multiple outgoing sequence flows, but
not both. Use multiple outgoing sequence flows from a gateway to split a workflow. Use multiple
incoming sequence flows to a gateway to merge multiple branches into a single flow.

When you connect objects, the Developer tool gives the sequence flow a default name. The Developer tool
names sequence flows using the following format:

<originating object name> to <ending object name>

If you create a conditional sequence flow, you might want to rename the sequence flow to indicate the
conditional expression. For example, if a conditional sequence flow from a Mapping task to a Command task
includes a condition that checks if the Mapping task ran successfully, you might want to rename the
sequence flow to MappingSucceeded. You can rename and add a description to a sequence flow in the
sequence flow general properties.

Sequence Flows 15

16

Conditional Sequence Flows

Create a conditional sequence flow to determine whether the Data Integration Service runs the next object in
the workflow.

A conditional sequence flow includes an expression that the Data Integration Service evaluates to true or
false. The expression must return either a boolean or an integer value. If an expression returns an integer
value, any non-zero value is the equivalent of true. A value of zero (0) is the equivalent of false.

If the expression evaluates to true, the Data Integration Service runs the next object. If the expression
evaluates to false, the Data Integration Service does not run the next object. If you do not specify a condition
in a sequence flow, the Data Integration Service runs the next object by default.

When an expression in a conditional sequence flow evaluates to false, the Data Integration Service does not
run the next object or any of the subsequent objects in that branch. When you monitor the workflow, the
Monitoring tool does not list objects that do not run in the workflow. When a workflow includes objects that
do not run, the workflow can still complete successfully.

You cannot create a conditional sequence flow from the Start event to the next object in the workflow or from
the last object in the workflow to the End event.

Failed Tasks and Conditional Sequence Flows

By default, the Data Integration Service continues to run subsequent objects in a workflow after a task fails.
To stop running subsequent workflow objects after a task fails, use a conditional sequence flow that checks
if the previous task succeeds.

You can use a conditional sequence flow to check if a Mapping, Command, Notification, or Human task
succeeds. These tasks return an Is Successful general output. The Is Successful output contains true if the
task ran successfully, or it contains false if the task failed. Create a boolean workflow variable that captures
the Is Successful output returned by a task. Then, create an expression in the outgoing conditional sequence
flow that checks if the variable value is true.

You can use a conditional sequence flow to check if a Mapping, Command, or Notification task succeeds.
These tasks return an Is Successful general output. The Is Successful output contains true if the task ran
successfully, or it contains false if the task failed. Create a boolean workflow variable that captures the Is
Successful output returned by a task. Then, create an expression in the outgoing conditional sequence flow
that checks if the variable value is true.

For example, you create a boolean workflow variable that captures the Is Successful output returned by a
Mapping task. You create the following expression in the conditional sequence flow that connects the
Mapping task to the next task in the workflow:

Svar:MappingTaskSuccessful = true

If the Mapping task fails, the expression evaluates to false and the Data Integration Service stops running any
subsequent workflow objects.

RELATED TOPICS:

e “Task Recovery Strategies” on page 103

e “Task Output” on page 26

Terminate Events and Conditional Sequence Flows

You can use a conditional sequence flow to connect a task to a Terminate event. If the output from the task
satisfies the condition on the sequence flow, the workflow reaches the Terminate event and the workflow
ends. A workflow that ends at a Terminate event enters an aborted state.

Chapter 1: Workflows

Parameters and Variables in Conditional Sequence Flows

You can include workflow parameters and variables in an expression for a conditional sequence flow.

You can select a workflow parameter or variable in the Condition tab, or you can type the parameter or
variable name in the conditional expression using the required syntax.

For example, you create a workflow variable that captures the number of rows written to the target by a
mapping run by a Mapping task. You create the following expression in the conditional sequence flow that
connects the Mapping task to a Command task:

Svar:TargetRowsMapping > 500
The Data Integration Service runs the Command task if the mapping wrote more than 500 rows to the target.
RELATED ToOPICS:

o “Parameter Names in Expressions and Strings” on page 39

e “Variable Names in Expressions and Strings” on page 32

Creating a Workflow

When you create a workflow, the Developer tool adds a Start event and an End event to the workflow.

1. Select a project or folder in the Object Explorer view.
2. Click File > New > Workflow.
The Developer tool gives the workflow a default name.
Optionally, edit the default workflow name.
4. Click Finish.

A workflow with a Start event and an End event appears in the editor.

Adding Objects to a Workflow

Add the tasks and gateways that you want to run in the workflow. A workflow must contain one Start event
and one End event. When you create a workflow, the Developer tool adds the Start event and End event to the
workflow.

1. Open the workflow in the editor.

2. Select an object from the Workflow Object palette and drag it to the editor. If you selected a Mapping
task, click Browse to select the mapping and then click Finish.

Or to add a Mapping task, select a mapping from the Object Explorer view and drag it to the editor.

The object appears in the editor. Select the object to configure the object properties.

Creating a Workflow 17

Connecting Objects

Connect objects with sequence flows to determine the order that the Data Integration Service runs the
objects in the workflow.

To connect two objects, select the first object in the editor and drag it to the second object. To connect
multiple objects, use the Connect Workflow Objects dialog box.

1. Right-click in the editor and select Connect Workflow Objects.
The Connect Workflow Objects dialog box appears.

2. Select the object that you want to connect from, select the object that you want to connect to, and click
Apply.
3. Continue connecting additional objects, and then click OK.

The sequence flows appear between the objects.

Creating a Conditional Sequence Flow

A conditional sequence flow includes an expression that evaluates to true or false. Create a conditional
sequence flow to determine whether the Data Integration Service runs the next object in the workflow.

1. Select a sequence flow in the editor.
2. Inthe Properties view, click the Condition tab.
3. Enter the conditional expression.

The Functions tab lists transformation language functions. The Inputs tab lists workflow parameters and
variables. Double-click a function, parameter, or variable name to include it in the expression.
Type operators and literal values into the expression as needed.

4. Validate the condition using the Validate button.
Errors appear in a dialog box.

5. If an error appears, fix the error and validate the condition again.

Workflow Validation

18

When you develop a workflow, you must configure it so that the Data Integration Service can read and
process the entire workflow. The Developer tool marks a workflow as not valid when it detects errors that will
prevent the Data Integration Service from running the workflow.

When you validate a workflow, the Developer tool validates sequence flows, expressions, and workflow
objects.

Workflow Object Validation

The Developer tool performs workflow object validation each time you validate a workflow.

The Developer tool validates the following workflow objects:

Chapter 1: Workflows

Events

The workflow contains one Start event that is the first object in the workflow. The workflow contains one
End event that is the last object in the workflow. The workflow has a path from the Start event to the End
event.

Tasks

Each task has a unique name within the workflow. If applicable, task input is assigned to workflow
parameters and variables with compatible types. If applicable, task output is assigned to workflow
variables with compatible datatypes. Task configuration properties are assigned to valid values.

Each Assignment task assigns a valid value to a single workflow variable. The value assigned to the
workflow variable has a compatible datatype. If the task uses workflow parameters or variables in the
assignment expression, the Developer tool verifies that the parameters and variables exist.

Each Command task includes a command that does not contain a carriage return character or line feed
character. If the command uses workflow parameters or variables, the Developer tool verifies that the
parameters and variables exist.

Each Mapping task includes a valid mapping that exists in the repository.

Each Notification task includes at least one recipient. If the task uses workflow parameters or variables,
the Developer tool verifies that the parameters and variables exist.

Gateways

Each gateway has a unique name within the workflow.

Sequence Flow Validation

The Developer tool performs sequence flow validation each time you validate a workflow.

The Developer tool makes the following sequence flow validations:

The workflow must not include looped sequence flows. Each sequence flow can run one time.
The Start event has a single outgoing sequence flow.

The sequence flow that leads from the Start event does not include a condition.

The End event has a single incoming sequence flow.

Each task has a single incoming sequence flow and a single outgoing sequence flow.

Each gateway has either multiple incoming sequence flows or multiple outgoing sequence flows, but not
both. A gateway that splits the workflow has at least two outgoing sequence flows, with one of the
sequence flows set as the default. A gateway that merges the workflow does not have a default outgoing
sequence flow.

An expression in a conditional sequence flow must return a boolean or integer value. The expression
cannot contain a carriage return character or a line feed character.

Expression Validation

You can validate an expression in a conditional sequence flow or in an Assignment task while you are
creating the expression. If you did not correct the errors, error messages appear in the Validation Log view
when you validate the workflow.

Workflow Validation 19

Validating a Workflow

Validate a workflow to ensure that the Data Integration Service can read and process the entire workflow.

1. Open the workflow in the editor.
2. Click Edit > Validate.
Errors appear in the Validation Log view.

3. If an error appears, fix the error and validate the workflow again.

Workflow Advanced Properties

The workflow advanced properties include properties that define how workflow instances run.
Tracing Level

Determines the amount of detail that appears in the workflow log. You can select a value for the tracing
level. Or, you can assign the tracing level to a parameter so that you can define the value of the property
in a workflow parameter. The tracing level has a string datatype.

Default is INFO.

The following table describes the workflow tracing levels:

Tracing Description
Level
ERROR Logs error messages that caused the workflow instance to fail.

The workflow log displays this level as SEVERE.

WARNING In addition to the error level messages, logs warning messages that indicate failures occurred,
but the failures did not cause the workflow instance to fail.

The workflow log displays this level as WARNING.

INFO In addition to the warning level messages, logs additional initialization information and details
about the workflow instance run. Logs task processing details including the input data passed to
the task, the work item completed by the task, and the output data produced by the task. Also
logs the parameter file name and expression evaluation results for conditional sequence flows.

The workflow log displays this level as INFO.

TRACE In addition to the info level messages, logs additional details about workflow or task
initialization.
The workflow log displays this level as FINE.

DEBUG In addition to the trace level messages, logs additional details about task input and task output
and about the workflow state.

The workflow log displays this level as FINEST.

Enable Recovery

Indicates that the workflow is enabled for recovery. When you enable a workflow for recovery, you can
recover a workflow instance if a task with a restart recovery strategy encounters a recoverable error, if
you cancel the workflow instance, or if the Data Integration Service process shuts down unexpectedly.

20 Chapter 1: Workflows

When you enable a workflow for recovery, you must define a recovery strategy for each task in the
workflow.

Default is disabled.
Automatically Recover Workflows

Indicates that the Data Integration Service process automatically recovers workflow instances that were
interrupted by an unexpected service process shutdown. The workflow recovery starts after the Data
Integration Service process restarts. You can select this option if the workflow is enabled for recovery.

Default is disabled.

Workflow Deployment

When you develop a workflow in the Developer tool, you create a workflow definition. To run an instance of
the workflow, you add the workflow definition to an application. Then, you deploy the application to the Data
Integration Service.

Deploy workflows to allow users to run workflows using the infacmd wfs startWorkflow command. When you
deploy a workflow, the Data Integration Service creates a separate set of run-time metadata in the Model
repository for the workflow. If you make changes to a workflow definition in the Developer tool after you
deploy it, you must redeploy the application that contains the workflow definition for the changes to take
effect.

Use the Developer tool to deploy workflows. You deploy workflows using the same procedure that you use to
deploy other Model repository objects.

Deploy and Run a Workflow

When you deploy a workflow to the Data Integration Service, you can run a single instance of the workflow
immediately after you deploy it. When you deploy and run a workflow, you cannot specify a parameter file. If
the workflow uses parameters, the Data Integration Service uses the default parameter values.

To run a workflow immediately after you deploy it, click Run Object in the Deploy Completed dialog box. If the
deployed application contains multiple workflows, select the workflows to run. The Data Integration Service
concurrently runs an instance of each selected workflow. If the deployed application contains other object
types, you cannot select those objects to run.

Monitor the workflow instance run in the Monitoring tab of the Administrator tool. To run additional
instances of the workflow, use the infacmd wfs startWorkflow command.

If you receive an error message when you deploy and run a workflow, view the workflow and Data Integration
Service logs for more information.

Workflow Deployment 21

Running Workflows

After you deploy a workflow, you run an instance of the workflow from the deployed application using the
infacmd wfs startWorkflow command. You can specify a parameter file for the workflow run.

You can concurrently run multiple instances of the same workflow from the deployed application. When you
run a workflow instance, the application sends the request to the Data Integration Service. The Data
Integration Service runs the objects in the workflow according to the sequence flows connecting the objects.

For example, the following command runs an instance of the workflow MyWorkflow in the deployed
application MyApplication using the parameter values defined in the parameter file MyParameterFile:

infacmd wfs startWorkflow -dn MyDomain -sn MyDataIntSvs -un MyUser -pd MyPassword -a
MyApplication -wf MyWorkflow -pf MyParameterFile.xml

Monitoring Workflows

You monitor a workflow instance run in the Monitoring tool. The Monitoring tool is a direct link to the
Monitoring tab of the Administrator tool.

The Monitoring tool shows the status of running workflow and workflow object instances. You can abort or
cancel a running workflow instance in the Monitoring tool. You can also use the Monitoring tool to view logs
for workflow instances and to view workflow reports.

Deleting a Workflow

You might decide to delete a workflow that you no longer use. When you delete a workflow, you delete all
objects in the workflow.

When you delete a workflow in the Developer tool, you delete the workflow definition in the Model repository.
If the workflow definition has been deployed to a Data Integration Service, you can continue to run instances
of the workflow from the deployed workflow definition.

To delete a workflow, select the workflow in the Object Explorer view and then click Edit > Delete.

Workflow Examples

22

The following examples show how you might want to develop workflows.

Example: Running Commands Before and After Running a Mapping

You can develop a workflow that runs commands to perform steps before and after a mapping runs. For
example, you might configure a Command task before a Mapping task to drop indexes on the mapping target

Chapter 1: Workflows

before the mapping runs. You might configure a Command task after the Mapping task to recreate the
indexes when the mapping completes.

The following figure shows a workflow that runs a command, runs a mapping, runs another command, and

sends an email notifying users of the status of the workflow:

Start
Task

Command
Taszk 1

hd

Mapping
Task

Command
Tazk 2

¥

Mt ficati on
Task

Parameter files provide you with the flexibility to change the parameter values each time you run a workflow.
You can use the following parameters in this workflow:

o Workflow parameter that represents the command that the first Command task runs.

¢ Mapping parameter that represents the connection to the source for the mapping.

* Mapping parameter that represents the connection to the target for the mapping.

o Workflow parameter that represents the command that the second Command task runs.

o Workflow parameter that represents the email address that the Notification task sends an email to.

Define the values of the parameters in a parameter file. Specify the parameter file when you run the workflow.
You can run the workflow with different parameter files to run different commands, to connect the mapping
to a different source or target, or to send an email to different users.

Example: Creating Multiple Sequence Flows

You can develop a workflow that splits a sequence flow into multiple sequence flows and that uses
conditions to determine the path that the workflow data follows. Use gateways to create the sequence flows.
For example, you might develop a workflow that follows one sequence flow if a mapping runs successfully

and follows another sequence flow if the mapping fails.

The following image shows a workflow that uses an Exclusive gateway to create the sequence flows:

Mapping

Task 1

—

Command
Task 1

Mapping
Task 2

Cotnmaned
Task 2

L

Command
Task 3

Mapping
Task 3

Cotnmaned
Task 4

The workflow includes the following components:

e Start event and End event.

e Mapping task. The task runs a mapping and assigns the Is Successful output to a boolean workflow

variable.

e Exclusive gateway that specifies two outgoing sequence flows. One of the sequence flows includes a
condition that evaluates the value of the workflow variable. If the condition evaluates to true, the Data

Merging
Excliusive
G atesnary

Mt ficati on
Task

End
_h

Integration Service runs the next task on the sequence flow. If the condition evaluates to false, the Data
Integration Service runs the next task on the other sequence flow.

Workflow Examples

23

In this example, each sequence flow includes a Command task, a Mapping task, and another Command
task.

e Exclusive gateway that merges the sequence flows into a single flow.

* Notification task that sends an email to notify users of the status of the workflow.

24 Chapter 1: Workflows

CHAPTER 2

Workflow Variables

This chapter includes the following topics:
e Workflow Variables Overview, 25

e Task Input, 26

e Task Output, 26
e System Workflow Variables, 27

e User-Defined Workflow Variables, 27

o Where to Use Workflow Variables, 31

o Workflow Variable Datatype Conversion, 34

Workflow Variables Overview

A workflow variable represents a value that can change during a workflow run. Use workflow variables to
reference values and record run-time information.

You can use system or user-defined workflow variables. A system workflow variable returns system run-time
information such as the workflow instance ID, the user who started the workflow, or the workflow start time.

A user-defined workflow variable captures task output or captures criteria that you specify. After you create a
user-defined workflow variable, you configure the workflow to assign a run-time value to the variable.

Assign workflow variables to task input and task output to pass data between a task and the workflow.
Use workflow variables for the following reasons:
Determine whether to run the next object based on run-time data.

Use workflow variables in expressions in conditional sequence flows when you want the Data Integration
Service to evaluate the variable value and then determine which object to run next. For example, create a
user-defined boolean variable that captures the Is Successful task output. Use the variable in the
expression of a conditional sequence flow on a gateway to evaluate whether the previous task ran
successfully. If it did, run task A. If not, run task B.

Use run-time data for the value of a task field.

Use workflow variables in task fields when you want the Data Integration Service to use the variable
value for the field at run time. For example, use the UserName system variable in the list of recipients for
a Notification task to send an email to the user that started the workflow.

25

Task Input

Task input is the data that passes into a task from workflow parameters and variables. The task uses the
input data to complete a unit of work.

When you configure a task, you specify which workflow parameters and variables the task requires. The Data
Integration Service copies the workflow parameter and variable values to the task when the task starts.

Some tasks include an Input tab where you specify the workflow parameters and variables that the task
requires. For other tasks, you specify the workflow parameters and variables needed by the task in other
tabs.

RELATED TOPICS:

o “Assigning Workflow Parameters to Task Input” on page 38

e “Assigning Variables to Task Input” on page 31

Task Output

When you configure a Mapping, Command, Notification, or Human task, you can define the task output. Task
output is the data that passes from a task into workflow variables. When you configure a Mapping,
Command, or Notification task, you can define the task output. Task output is the data that passes from a
task into workflow variables.

When you configure a task, you specify the task output values that you want to assign to workflow variables.
The Data Integration Service copies the task output values to workflow variables when the task completes.
The Data Integration Service can access these values from the workflow variables when it evaluates
expressions in conditional sequence flows and when it runs additional objects in the workflow.

For example, each task includes an Is Successful output value that indicates whether the task ran
successfully. The workflow cannot directly access this task output data. To use the data in the remainder of
the workflow, you create a boolean workflow variable named TaskSuccessful and assign the Is Successful
output to the variable. Then use the TaskSuccessful workflow variable in an expression for a conditional
sequence flow. The Data Integration Service runs the next object in the workflow if the previous task ran
successfully.

Tasks produce general outputs and task specific outputs. If a task fails, the Data Integration Service copies
the general task output values to workflow variables. The service does not copy the task specific output
values to workflow variables. If a task aborts, the Data Integration Service does not copy any task output
values to workflow variables.

The following table describes the general outputs produced by each task:

Output Data Datatype Description

Start Time Date Date and time that the task started running.
End Time Date Date and time that the task finished running.
Is Successful Boolean Indicates whether the task ran successfully.

Note: The Assignment task does not produce general or task specific outputs.

26 Chapter 2: Workflow Variables

RELATED TOPICS:

e “Mapping Task Output” on page 76

e “Assign a Value with Task Output” on page 30

e “Command Task Output” on page 52

o “Notification Task Output” on page 91

System Workflow Variables

System workflow variables return system run-time information.

You cannot create system workflow variables. The Developer tool provides a pre-defined list of system
workflow variables that you can use in a workflow.

Use a system workflow variable in a conditional sequence flow or in a task field so that the Data Integration
Service uses the variable value at run time. For example, use the UserName system variable in the list of
recipients for the Notification task to send an email to the user that runs the workflow.

The following table describes the system workflow variables:

System Variable Datatype Description

InstancelD String Unique ID of the workflow instance.

StartTime Date Date and time that the workflow instance starts running.
UserName String Name of the user that runs the workflow instance.

User-Defined Workflow Variables

Create user-defined workflow variables to capture task output or to make a workflow decision based on
criteria that you specify. You can create a user-defined workflow variable of datatype boolean, date, integer,
or string.

To use user-defined workflow variables, complete the following steps:

1. Create a workflow variable with an initial value.
The Data Integration Service uses the initial value of the variable when the workflow starts.
2. Configure the workflow to assign a run-time value to the variable.

As a workflow progresses, the Data Integration Service can calculate and change the initial variable
value according to how you configure the workflow. You can assign a value to a user-defined variable
using an Assignment task. Or, you can assign a value to a user-defined variable using task output.

3. Use the variable in a conditional sequence flow or in a task field so that the Data Integration Service
uses the variable value at run time.

System Workflow Variables 27

28

Creating a User-Defined Variable

Create a user-defined workflow variable to record run-time information.

1. Open the workflow in the editor.
2. Create a user-defined workflow variable in the workflow properties or in a task properties.
¢ In the workflow Properties view, click the Variables tab. In the User view, click Add.

e In atask Properties view, select the Input tab or Output tab. Select New Variable in the Value or
Variable column.

The Add Variable dialog box displays.

Enter a name and optionally a description for the variable.
Select the variable datatype.

Enter an initial value for the variable.

Click OK.

o g &~ ®

Assign a Value with an Assignment Task

An Assignment task assigns a value to a user-defined workflow variable.

When you create a user-defined workflow variable, you enter an initial value. The Data Integration Service
uses the initial value of the variable when the workflow starts. You can add an Assignment task to the
workflow to assign another value to the variable. The Data Integration Service uses the assigned value for the
variable during the remainder of the workflow.

For example, you create a counter variable and set the initial value to 0. In the Assignment task, you
increment the variable by setting the variable to its current value plus 1.

When you add an Assignment task to a workflow, you select the user-defined variable whose value you want
to change. Then, you write an expression to assign a value to the selected variable.

The following table lists the values that you can assign to a user-defined variable:

Value Example

Literal value For example, to assign the value 500 to a user-defined variable, enter the following value in
the expression:

500

Workflow parameter For example, to assign the value of a workflow parameter to a user-defined variable, enter
the following value in the expression:

Spar:MyParameter

Chapter 2: Workflow Variables

Value Example

Workflow system or For example, to assign the value of a workflow system or user-defined variable to another
user-defined variable user-defined variable, enter the following value in the expression:

Svar:MyVariable

Any valid expression The expression must return a boolean, date, integer, or string value. Use a conversion
using the function to convert a return value with another datatype to one of the supported datatypes.

"a"SfOfma“O". For example, to assign the value of an expression to a user-defined variable, enter the
language functions and | ¢5|10wing value in the expression:

operators
LENGTH('test")

If you use the equality operator (=) in the expression, the Data Integration Service checks
whether both sides of the expression are equal and returns true or false. For example, the
following expression assigns either true or false to the selected user-defined variable:

$var.MyVariable = 7 + 5

You cannot assign values to system workflow variables.

Parameters and Variables in Assignment Expressions

You can include workflow parameters and variables in the expression value that you assign to a user-defined
workflow variable.

You can select a workflow parameter or variable from the Inputs tab in the Assignment Expression Editor, or
you can type the parameter or variable name in the expression using the required syntax.

For example, you create a user-defined workflow variable named Counter and set the initial value to 0. Use
the Assignment task to increment the value of the variable by 1. Enter the following expression in the
Assignment task:

Svar:Counter + 1

The Data Integration Service does not resolve workflow variable or parameter values that are included in a
string literal in an assignment expression. For example, you use an Assignment task to assign the following
value to a variable:

‘The mapping completed successfully: ${var:MappingIsSuccessful}’

The Data Integration Service does not evaluate the string literal, and so does not resolve the
MappinglsSuccessful variable value. The Data Integration Service displays the variable name in the string.

Configuring an Assignment Task

Before you can use an Assignment task to assign a value to a user-defined workflow variable, you must
create the workflow variable with an initial value.

1. Add an Assignment task to the workflow.
Select the Assignment task in the editor.
In the Properties view, click the Assignment tab.

In the User-defined Variable column, select a user-defined workflow variable.

o > 0N

Click the arrow in the Expression column.
The Assignment Expression Editor appears.

6. Enter the value or expression to assign to the variable.

User-Defined Workflow Variables 29

30

The Functions tab lists transformation language functions. The Inputs tab lists workflow parameters and
variables. Double-click a function, parameter, or variable name to include it in the expression.
Type operators and literal values into the expression as needed.

7. Validate the expression using the Validate button.
Errors appear in a dialog box.

8. Fix errors and validate the expression again.

9. Click OK.

Assign a Value with Task Output

Assign task output to a user-defined workflow variable when you want to pass output data produced by the
task to the remainder of the workflow.

When you create a user-defined workflow variable, you enter an initial value. The Data Integration Service
uses the initial value of the variable when the workflow starts. You use a task Output tab to assign another
value to the variable. After the task completes, the Data Integration Service uses the task output value for the
variable during the remainder of the workflow.

For example, you create a workflow variable named CommandStdOutput and set the initial value to "test.” In
the Command task Output tab, you assign the CommandStdOutput workflow variable to the standard output
returned by the command. When the workflow starts, the Data Integration Service sets the workflow variable
value to "test." If you use the echo command in the Command task to print the value of the
CommandStdOutput variable, the Data Integration Service prints the initial value of "test." After the Command
task completes, the Data Integration Service sets the workflow variable value to the standard output returned
by the command.

You cannot assign task output to system workflow variables.

RELATED ToOPICS:
e “Mapping Task Output” on page 76

e “Task Output” on page 26

e “Command Task Output” on page 52

e “Notification Task Output” on page 91

Assigning Task Output

You can assign task output values to user-defined workflow variables.

1. Open the workflow in the editor.
2. Select a task that produces output data in the editor.
3. Inthe Properties view, click the Output tab.
The tab lists all output data that the task produces.
4. Enter a string to search for an output.
You can use wildcard characters in the string. The string is not case sensitive.
5. Click the Variable column for an output.
6. Select a variable name or click New Variable to create and assign a new variable to the output.

7. To clear an output assignment, select an output and click Clear. Or, click Clear All to clear all output
assignments.

Chapter 2: Workflow Variables

Where to Use Workflow Variables

Use a workflow variable in an expression in a conditional sequence flow when you want the Data Integration
Service to evaluate the variable value and then determine which object to run next. Use a workflow variable in

a task field when you want the Data Integration Service to use the variable value for the field.
Depending on the expression or task field, you can select or type the workflow variable name.

The following table lists the objects and fields where you can use workflow variables:

Object Tab or Dialog Box Fields Select or Type
Sequence flow Condition tab Condition both
Assignment task | Assignment Expression Editor Expression both
dialog box
Command task Command tab Command both
Command task Input tab Advanced configuration properties select
assigned to task input
Human task Input tab Number of items processed select
Mapping task Input tab User-defined mapping parameters select
Advanced configuration properties
assigned to task input
Notification task | Notification tab Dynamic email content type
Notification task | Email Properties dialog box Dynamic recipients select
Dynamic email addresses
Notification task | Email Properties dialog box Dynamic email content both

Assigning Variables to Task Input

Mapping and Command tasks include an Input tab where you specify the workflow variables that the task

requires.

In a Mapping and Command task Input tab, you can assign task configuration properties to task input to
define the value of the property in a workflow variable. The Advanced tab for a task lists the task
configuration properties.

In a Mapping task Input tab, you can also assign user-defined mapping parameters to workflow variables to
use workflow run-time data for the user-defined mapping parameter value.

1. Select a Mapping or Command task in the editor.

2. Inthe Properties view, click the Advanced tab to assign an advanced configuration property to task

input.

In the Value column for a property, select Assigned to task input.
3. Click the Input tab.

4. Enter a string to search for an input.

You can use wildcard characters in the string. The string is not case sensitive.

Where to Use Workflow Variables 31

5. Click the Value column for a configuration property or mapping parameter.

6. Assign the property or parameter to an existing workflow variable, to a new workflow variable, or to a

literal value.

o Select a workflow variable name.

e Click New Variable. In the Add Variable dialog box, enter the name, type, and initial value for a
workflow variable. The Developer tool creates the workflow variable and assigns the variable to the

property.

e Click New Value. In the Add Value dialog box, enter the literal value and datatype to assign to the

property.

7. Toclear an input assignment, select an input and click Clear. Or, click Clear All to clear all input

assignments.

RELATED TOPICS:

e “Mapping Task Input” on page 73

e “Task Input” on page 26

e “Command Task Input” on page 51

Variable Names in Expressions and Strings

When you use a workflow variable name in an expression or a string field, you can select the name from the
Inputs tab or you can type the name using the required syntax.

The following table shows the required syntax for workflow variable names in expression and string fields:

Field

Syntax

Example

Expressionina
conditional
sequence flow
orinan
Assignment
task

$var:<variable name> for user-
defined variables
$var:sys.<variable name> for
system variables

For example, you create a workflow variable named
CommandExitCode and assign the exit code output value
for a Command task to the variable. You create the
following expression in the conditional sequence flow
that connects the Command task to a Mapping task:

S$var:CommandExitCode = 0

The Data Integration Service evaluates the condition and
runs the Mapping task if the previous Command task
returned 0 in the exit code which indicates that the
command succeeded.

String field for
a Command or
Notification
task

${var:<variable name>} for
user-defined variables
${var:sys.<variable name>}
for system variables

When you enter a variable name in a string field for a
Command or Notification task, you must include brackets
around the variable name. For example, you create a
workflow variable named MappingErrorRows and assign
the number of error rows output value for a Mapping task
to the variable. You enter the following text in the body of
a Notification task:

Mapping failed to write $
{var:MappingErrorRows} rows to the target.

If you do not include "var:" in the variable name, the Data Integration Service uses the name as a parameter.
For example, if you enter $CommandExitCode or ${CommandExitCode}, the Data Integration Service uses

Spar:CommandExitCode Or ${par:CommandExitCode}.

32 Chapter 2: Workflow Variables

Escape Characters in Strings

When you use a workflow variable name in a string field, you can use an escape character so that the Data
Integration Service displays the workflow variable name in the string instead of resolving the variable value.

Use the backslash (\) as an escape character before the ${...} syntax for workflow variable names.

For example, you have a workflow string variable named myVariable with a value of "test". You enter the
following text in the body field for a Notification task:

Variable \${var:myVariable} has a value of ${var:myVariable}

When you run the workflow, the Data Integration Service displays the following string in the body field of the
email:

Variable ${var:myVariable} has a value of test

Escape Characters in Directory Paths

If you use a workflow variable name within a directory path, you can use the escape character before the
backslashes in the directory path.

The following table provides examples using the escape character with a variable name in a directory path:

Syntax in String Field Output Value Description

C:\${var:myVariable} C:${var:myVariable} | The Data Integration Service displays the variable name as a
string.

C:\\${var:myVariable} C:\test The Data Integration Service reads the backslash as a regular

character and resolves the variable to its value.

C:\temp\\$ C:\temp\test The Data Integration Service reads the backslash as a regular
{var:myVariable} character and resolves the variable to its value. No escape
character is required for the first backslash.

C:\\\${var:myVariable} C:\S{var:myVariable} | The Data Integration Service reads the backslash as a regular
character and displays the variable name as a string.

C:\\\\${var:myVariable} C:\\test The Data Integration Service reads two backslashes as regular
characters and resolves the variable to its value.

Escape Characters in Command Tasks

Use a Command task to write the output of a command to a file. If the command output includes a variable
name, use a backslash as an escape character to add the $ character before the variable name.

When you configure the Command task to run on a non-Windows operating system, use three backslashes.
The first backslash is an escape character for the second backslash. The third backslash is an escape
character for the $§ character.

For example, you define the following command in the Command task:
echo \\\${var:myVariable} = ${var: myVariable} > file.txt

If the variable has a value of 10 when the workflow runs, the Command task writes the following string to
file.txt:

S{var:Var} = 10

Where to Use Workflow Variables 33

Nested Variables

The Data Integration Service resolves one level of variable values. The Data Integration Service does not
resolve variable values that are nested within another workflow parameter or variable.

For example, you create the following workflow variables with these datatypes and initial values:

e Variable1 with an integer datatype and an initial value of 4
e Variable2 with an integer datatype and an initial value of 3
e Variable3 with a string datatype and an initial value of ${var:variablel} + ${var:Variable2}

When you use Variable3 in an expression or task field, the Data Integration Service does not resolve the
nested variables Variable1 and Variable2 to the value of 7. Instead, the Data Integration Service uses the
following string value for Variable3:

S{var:Variablel} + ${var:Variable?2}

Workflow Variable Datatype Conversion

34

A workflow variable can have a datatype of boolean, date, integer, or string. You can assign a variable of one
datatype to a workflow variable, parameter, literal value, task input, or task output of a different datatype if
the Data Integration Service can convert the datatypes.

The following table describes the workflow variable datatype conversion that the Data Integration Service
performs:

Variable Datatype String Integer Boolean Date
String Yes Yes Yes No
Integer Yes Yes Yes No
Boolean Yes Yes Yes No
Date Yes No No Yes

To convert a string to an integer, the string must contain a number.
To convert a string to a boolean, the string must contain either "true" or "false."

When the Data Integration Service converts an integer to a boolean, the service converts a value of zero (0) to
false. The service converts any non-zero value to true.

When the Data Integration Service converts a boolean to an integer, the service converts a value of false to
zero. The service converts a value of true to one (1).

When you run the workflow, the Data Integration Service converts the data to the valid datatype. For example,
the StartTime system workflow variable has a date datatype. You can use this variable in the body string field
of a Notification task. When you run the workflow, the Data Integration Service converts the date stored in the
system workflow variable to a string.

Chapter 2: Workflow Variables

Changing the Format of Date Variables

The Data Integration Service uses the format DAY MON DD HH24:MI:SS YYYY for workflow variables with a
date datatype. You can use an Assignment task to change the default format of a date variable.

Use an Assignment task to convert the date value to a string value with a specified date format. Then, assign
the converted value to a string workflow variable.

1.
2.

N o o w

10.
11.
12.

Create a user-defined workflow variable with a string datatype.

Add an Assignment task to the workflow after the task that assigns a run-time value to the date
workflow variable.

Connect the Assignment task to other objects in the workflow.

Select the Assignment task in the editor.

In the Properties view, click the Assignment tab.

In the User-defined Variable column, select the string workflow variable.
Click the arrow in the Expression column.

The Assignment Expression Editor appears.

Enter the following expression to convert the value of the date workflow variable to a string value with
the specified date format:

TO_CHAR (date variable [, format])
For example, enter the following expression:
TO CHAR($var:MyDateVariable, 'MM/DD/YYYY HH24:MI:SS')
Click Validate to validate the expression.
Errors appear in a dialog box.
Fix errors and validate the expression again.
Click OK.

Use the string workflow variable in an expression or task field.

Workflow Variable Datatype Conversion 35

CHAPTER 3

Workflow Parameters

This chapter includes the following topics:

o Workflow Parameters Overview, 36

e Process to Run Workflows with Parameters, 37

o Where to Use Workflow Parameters, 37

e Creating Workflow Parameters for User-Defined Mapping Parameters, 41

e Default Parameter Values, 41

o Workflow Parameter data type Conversion, 42

e Parameter Sets, 42

e Parameter Files, 46

Workflow Parameters Overview

36

A workflow parameter is a constant value that you define before the workflow runs. Use workflow parameters
to set values for tasks in the workflow or to set some user-defined mapping parameters. You can also use
workflow parameters to set values for connection parameters or to set values for string parameters, such as
configuration properties, command strings, or email addresses.

When you create parameters in a workflow, you can run a workflow with different parameter values.
Parameters can reduce the overhead of creating multiple workflows when you need to change certain
attributes of a workflow. All workflow parameters are user-defined parameters.

You can assign workflow parameters to task input and pass data from the workflow to the task. For example,
you define a working directory parameter and assign the parameter to the Command tasks in the workflow.

You can also assign workflow parameters to user-defined mapping parameters in a Mapping task. For
example, you define a workflow parameter that identifies the email address to send a notification email in a
Notification task. Reference the workflow parameter in the recipients field for the Notification task.

You can override the value of a workflow parameter by including the parameter in a parameter set or a
parameter file. A parameter set is a repository object that contains parameter values. You can deploy a
workflow with a parameter set. A parameter file is an XML file that contains parameter values. A parameter
file resides on the file system instead of in the repository. When you run a workflow, you can specify a
specific parameter set or a parameter file for the workflow run.

Task Input

Task input is the data that passes into a task from workflow parameters and variables. The task uses the
input data to complete a unit of work.

When you configure a task, you specify which workflow parameters and variables the task requires. The Data
Integration Service copies the workflow parameter and variable values to the task when the task starts.

Mapping tasks, Command tasks, and Human tasks include an Input view to configure the workflow
parameters and variables that the task requires. You can configure parameters for Mapping task
configuration properties on the Input view.

You can reference workflow parameters for other tasks in different task views. For example, configure a
workflow parameter that contains an email address in the Notification view of Notification task.

You can use workflow parameters in expressions in the conditional sequence flows from an outgoing
gateway. The Data Integration Service evaluates the parameter values and identifies the object or objects to
run next in the workflow.

Process to Run Workflows with Parameters

A workflow parameter represents a constant value that you define before the workflow runs. You can
override the parameter value when you include the parameter in a parameter set or a parameter file.

To run workflows with different parameter values, perform the following steps:

1. Create a workflow parameter and assign it a default value.
2. Assign the parameter in task input or assign the parameter to a mapping parameter.

3. Create one or more parameter sets that include the workflow and mapping parameters in the workflow.
Change the parameter values as required.

4. Deploy the workflow and the parameter sets to a Data Integration Service.

5. Run the workflow from the command line and specify which parameter set to use for the workflow run.

Note: You can create a parameter file and then run the workflow from the command line with the parameter
file. You cannot run a workflow with a parameter file and a parameter set at the same time.

Where to Use Workflow Parameters

Use a workflow parameter in an expression in a conditional sequence flow when you want the Data
Integration Service to evaluate the parameter value and then determine which object to run next. Use a
workflow parameter in an object field when you want the Data Integration Service to use the parameter value
for the field.

Depending on the expression or task field, you can select or type the workflow parameter name.

Process to Run Workflows with Parameters 37

38

The following table lists the objects and fields where you can use workflow parameters:

Object Tab or Dialog Box Fields Select or Type
Workflow Advanced tab Tracing level select
Sequence flow Condition tab Condition both
Assignment task | Assignment Expression Editor Expression both
dialog box
Command task Command tab Command both
Command task Input tab Advanced configuration properties select
assigned to task input
Human task Input tab Number of items processed select
Mapping task Input tab User-defined mapping parameters select
Advanced configuration properties
assigned to task input
Notification task | Notification tab Dynamic email content type
Notification task | Email Properties dialog box Dynamic recipients select
Dynamic email addresses
Notification task | Email Properties dialog box Dynamic email content both

Assigning Workflow Parameters to Task Input

Mapping tasks, Human tasks, and Command tasks include an Input tab where you specify the workflow
parameters that the task requires.

On the Input tab of a Mapping or Command task, you can assign task configuration properties to task input
to define the value of the property in a workflow parameter. The Advanced tab for a task lists the task
configuration properties.

On the Input tab of a Mapping task, you can also assign some user-defined mapping parameters to workflow
parameters. You can assign a distinct value to a user-defined mapping parameter that appears multiple times
in the workflow.

Note: Workflow parameter types must be either a connection type or a string type.

1.
2.
3.

Select a Mapping, Command, or Human task in the editor.

Click the Properties view.

For a Mapping task or a Command task, click the Advanced tab to assign an advanced configuration
property to the task input.

In the Value column for a property, select Assigned to task input.

Click the Input tab.

At the top of the Input tab, search for the property that you want to update.

You can use wildcard characters in the search string. The string is not case sensitive.

Click the Value column for the property.

Chapter 3: Workflow Parameters

7. Inthe Value column, choose to assign the property to an existing workflow parameter, to a new workflow
parameter, or to a literal value.

e Select an existing workflow parameter name.

e Create a workflow parameter. Click New Parameter. In the Add Parameter dialog box, enter the name,
type, and default value for a workflow parameter. The Developer tool creates the workflow parameter
and assigns the parameter to the property.

¢ Click New Value. In the Add Value dialog box, enter the literal value and data type to assign to the
property.

8. To clear an input assignment, select an input and click Clear. Or, click Clear All to clear all input
assignments.

RELATED ToOPICS:
e “Mapping Task Input” on page 73

e “Task Input” on page 26

e “Command Task Input” on page 51

Parameter Names in Expressions and Strings

When you use a workflow parameter name in an expression or a string field, you can select the name from
the Inputs tab or you can type the name using the required syntax.

The following table shows the required syntax for workflow parameter names in expression and string fields:

Field Syntax Example

Expressionin a $par:<parameter name> For example, you create the following expression in a conditional

conditional sequence flow:

sequence flow . . ,

orinan Spar:Connection=SourceConnection

Assignment task The Data Integration Service evaluates the condition and runs
the connected task if the parameter value is SourceConnection.

String field fora | $ When you enter a parameter name in a string field for a

Command or {par:<parameter_name>} Command or Notification task, you must include brackets around

Notification task the parameter name. For example, the following command in a

Command task uses a workflow parameter named
SourceDirectory to define the source directory from which the
command copies a file:

copy ${par:SourceDirectory} H:\marketing\

If you do not include "par:" in the parameter name, the Data Integration Service uses the name as a
parameter. For example, if you enter $SourceDirectory or ${SourceDirectory}, the Data Integration Service
uses $par:SourceDirectory Or ${par:SourceDirectory}.

Escape Character in Strings

When you use a workflow parameter name in a string field, you can use an escape character so that the Data
Integration Service displays the workflow parameter name in the string instead of resolving the parameter
value.

Use the backslash (\) as an escape character before the ${...} syntax for workflow parameter names.

Where to Use Workflow Parameters 39

40

For example, you have a workflow string parameter named myParameter with a value of "test". You enter the
following text in the body field for a Notification task:

Parameter \${par:myParameter} has a value of ${par:myParameter}

When you run the workflow, the Data Integration Service displays the following string in the body field of the
email:

Parameter ${par:myParameter} has a value of test

If you use a workflow parameter name within a directory path, you can use the escape character before the
backslashes in the directory path.

The following table provides examples using the escape character with a parameter name in a directory path:

Syntax in String Field Output Value Description

C:\${par:myParameter} C:${par:myParameter} The Data Integration Service displays the parameter name
as a string.

C:\\${par:myParameter} C:\test The Data Integration Service reads the backslash as a

regular character and resolves the parameter to its value.

C:\temp\\$ C:\temp\test The Data Integration Service reads the backslash as a
{par:myParameter} regular character and resolves the parameter to its value.
No escape character is required for the first backslash.

C:\\\${par:myParameter} C:\${par:myParameter} | The Data Integration Service reads the backslash as a
regular character and displays the parameter name as a
string.

C:\\\\${par:myParameter} C:\\test The Data Integration Service reads two backslashes as

regular characters and resolves the variable to its value.

Nested Parameters

The Data Integration Service resolves one level of parameter values. The Data Integration Service does not
resolve parameter values that are nested within another workflow parameter or variable.

For example, you assign the following workflow parameters these values in a parameter file:
e Parameter1 has a value of 3

e Parameter2 has a value of 4

e Parameter3 has a value of ${par:Parameterl)} + ${par:Parameter2}

When you use Parameter3 in an expression or task field, the Data Integration Service does not resolve the
nested parameters Parameter1 and Parameter2 to the value of 7. Instead, the Data Integration Service uses
the following string value for Parameter3:

S{par:Parameterl} + S${par:Parameter2}

Chapter 3: Workflow Parameters

Creating Workflow Parameters for User-Defined
Mapping Parameters

You can create a workflow parameter to override a user-defined mapping parameter.

1. Open the workflow in the editor.

2. Inthe workflow Properties view, click the Parameters tab.

' *Orders_ Workflow 2 = 08
B - < o
=l
7 =
O-— —-0
-
[~ Start_Event Mapping_ End_Event
Task L
v
< | 1 | »
o (Default View)
= Properties 2 &4 Data Viewer 1% Tags 1 @ Checked Out Objects W@ Notifications 1 = O
= 7
List of parameters:
Parameters hedBEU ST
T Name oType Default Value Precisi.. Scale Description
1 Wf_Order_Suffix String _CA *3 (*
2 Wf_Orders_Connection Connection

3. To add a parameter, click New.

The Developer tool creates a parameter with default properties. Change each field in the parameter
properties as required.

4. Enter a name for the parameter.
Select either a connection or a string parameter type.
6. Enter a default value for the parameter.
For connection parameters, select a connection. For string parameters, enter a string value.

7. Optionally, enter the scale and the description of the parameter.

Default Parameter Values

When you create a workflow parameter, you must enter a default value.

When you run a workflow with a parameter set or a parameter file, the Data Integration Service resolves all
parameters to the values set in the parameter set or parameter file.

The Data Integration Service resolves parameters to the default values in the following circumstances:

e You run a workflow without a parameter set or parameter file.

¢ You do not define a parameter value in the parameter set or parameter file.

Creating Workflow Parameters for User-Defined Mapping Parameters 41

Workflow Parameter data type Conversion

A workflow parameter can have a type of connection or string. You can assign a string workflow parameter to
a workflow variable or to task input of an integer or boolean type if the Data Integration Service can convert
the data types.

The following table describes the workflow parameter data type conversion that the Data Integration Service
performs:

Parameter data type Integer Boolean Date

String Yes Yes No

To convert a string to an integer, the string must contain a number.
To convert a string to a boolean, the string must contain either "true" or "false."

For example, a Mapping task has a High Precision property with a boolean data type. You need to assign a
workflow parameter to the property. You can define the workflow parameter as a string with a default value
of "true" or "false". When you run the workflow, the Data Integration Service converts the parameter value to
the boolean value.

You cannot assign a connection parameter to a parameter that is not a connection parameter.

Parameter Sets

42

A parameter set is an object in the Model repository that contains a set of parameters and parameter values
to run mappings and workflows.

When you create a parameter set, you choose a mapping or workflow to use the parameters. After you
choose a mapping or workflow, you can manually enter parameters in the parameter set or you can select
parameters that are already in the repository for the mapping or the workflow.

You can use parameter sets for different situations. For example, you might use a specific parameter set
when you run a workflow in a test environment.

You use a parameter set with a mapping, Mapping task, or workflow. You can add one or more parameter
sets to an application when you deploy the application. You can add a parameter set to multiple applications
and deploy them. To use a parameter set with a workflow or mapping, you must add the parameter set to the
application when you deploy the workflow or mapping.

The following image shows a parameter set that contains parameters for two mappings:

Chapter 3: Workflow Parameters

E7 *Employee_Parameter _Set & =

Overview
General
Name: Employee_Parameter_Set
Description: Includes all the mappings that will be part of the Emplayee application.
ParameterSet
Ty - ot ucs)
Object Name Parameter Name Value Type Path
]
NewestEmployeeNumber 1000 integer
m_Table_Owner_Parm AcctMgr string
m_Table_Name Clients string
=]
Filter_Parameter_Value 100 integer
m_Employee_Filter_Parm 1000 integer

The parameter set contains the following information:

Object Name

The name of the mapping, mapplet, or workflow that contains the parameter definition.

Parameter Name

The name of the parameter in the mapping, mapplet, or workflow.

Value

The value of the parameter to use at runtime. The value of the parameter in the parameter set overrides
the parameter value in the mapping or workflow.

Type

The type of the parameter. Example parameter types include strings, numeric types, connections, port
lists, sort lists, and date\time parameters.

Creating a Parameter Set

Create a parameter set that you can use to change the runtime context for mappings and workflows.

When you create the parameter set, choose a mapping or workflow to contain the parameters. After you

choose a mapping or workflow, you can manually enter parameters in the parameter set or you can select
parameters.

1. Inthe Object Explorer view, right-click a project and click New > Parameter Set.

2. Enter a name for the parameter set and click Finish.

Parameter Sets 43

[u_-] Parameter Set l (.

Parameter Set

Create a Parameter 5et u

Mame: Orders_Parameter_Set

Location: Repositoryl/Orders

@ Einish | |

Cancel

Drag the Properties panel down and view the grid to add the parameters to the parameter set.
4. Click New > Mapping/Workflow.

Orders_Parameter_Set &%
Overview

General

Name: Orders_Parameter_Set

Description:

Parameter Set

B o~ of
Type Path #1 Mapping\Worlkflow
Parameter

Object Name Parameter Name Value

< >

In the Add Parameters dialog box click Browse to find the mapping or workflow that contains the
parameters you need to include in the set.

A list of mappings and workflows appears.
6. Select a mapping or a workflow and click OK.

A list of parameters from the mapping or workflow appears.

44 Chapter 3: Workflow Parameters

L

™

(&) Add Parameters - | X
Select the objects to associate:

m_Customer_Order
Key Values:

MName Value Type Select All

M_Minimum_Order_Parm 75.00 decimal

. Deselect All

4 | 1 ' 3

@) oK] [Cancel

7. Select the parameters to include in the parameter set and then click OK.

The mapping or the workflow name and the path appears in the parameter set. Each parameter that you
selected appears beneath the object.

*QOrders_Parameter_Set &2
Overview

General

Name: Orders_Parameter_Set

Description:

Parameter Set

Bt BREDTSE

&l

Object Name Parameter Name Value type
=]

Path

M_Minimum_Order_Parm 75.00 decimal

To add a parameter that is not yet in a workflow or mapping, right-click a mapping or object name and
select Parameter insert.

The Developer tool creates a parameter beneath the workflow or mapping. Change the parameter name,
the value, and the type.

Note: You must add the parameter to the mapping or workflow before you use the parameter set.

Running a Workflow with a Parameter Set

Use the startWorkflow command to run a workflow with a parameter set. The -ps argument specifies the
parameter set name.

When you deploy a workflow with a parameter set, you can use a different parameter set at run time by
including the parameter set argument in the command.

Parameter Sets 45

For example, the following command runs the workflow myWorkflow with the parameter set
"MyParameterSet:"

infcmd wfs startWorkflow -dn MyDomain -sn MyDataIntSvs -un MyUser -d MyPassword -a
MyApplication -wf MyWorkflow -ps MyParameterSet

Parameter Files

46

A parameter file is an XML file that lists user-defined parameters and their assigned values. Parameter files
provide the flexibility to change parameter values each time you run a workflow from the command line.

The parameter values define properties for a workflow or for a mapping or a mapplet included in a Mapping
task that the workflow runs. The Data Integration Service applies these values when you run a workflow from
the command line and specify a parameter file.

The parameter values define properties for a mapping or a mapplet. The Data Integration Service applies
these values when you run a mapping from the command line and specify a parameter file.

You can define mapping parameters and workflow parameters in a parameter file. You cannot define system
parameter values in a parameter file.

You can define parameters for multiple workflows in a single parameter file. You can also create multiple
parameter files and then use a different file each time you run a workflow. The Data Integration Service reads
the parameter file at the start of the workflow run to resolve the parameters.

You can export a parameter file from the Developer tool. Export the file from the mapping or the workflow
Parameters tab. The Developer tool generates a parameter file that contains the mapping or workflow
parameters and the default parameter values. You can specify the parameter file name and choose where to
save the file.

You can also use the infacmd wfs ListWorkflowParams command to list the parameters used in a workflow
with the default values. You can use the output of this command as a parameter file template.

Use the wfs StartWorkflow command to run a workflow with a parameter file.

Note: Parameter files for mappings and workflows use the same structure. You can define parameters for
deployed mappings and for deployed workflows in a single parameter file.

Sample Parameter File for a Workflow

You can create a parameter file for a workflow by running the ListWorkflowParams infacmd. The workflow
parameter file does not contain mapping parameters. You can manually add mapping parameters to the file.

<?xml version="1.0" encoding="UTF-8"?>
<root xmlns="http://www.informatica.com/Parameterization/1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema"><!--Specify deployed application
specific parameters here.--><!--"M
<application name="a2">
<workflow name="w2"/>
</application>--><project name="Orders">
<folder name="integer op">
<folder name="Workflows">
<workflow name="wf Orders">
<parameter name="wfStringParam">verboseData</parameter>
<parameter name="wfConnectionParam">OracleDB</parameter>
</workflow>
</folder>
</folder>

Chapter 3: Workflow Parameters

</project>
</root>

Sample Parameter File
The following example shows a sample parameter file that you can create for a mapping.

<?xml version "1.0" encodin="UTF-8?>
<root xmlns="http://www.informatica.com/Parameterization/1.0"
xmlns:xsl="http://www.w3.0rg/2001/XMLSchema">
<project name="sample project"
<mapping name="m myMapping"
<parameter name="srcConnect">RelationalConnect</parameter>
<parameter name="srcDirectory">C:\Srcfiles</parameter>
<parameter name="wrkDirectory">C:\TempFiles</parameter>
</mapping>
</project>

</root>

Rules and Guidelines for Parameter Files

Certain rules and guidelines apply when you create parameter files.
Use the following rules when you create a parameter file:

e You can reference mapping-level parameters in a parameter file. You cannot reference transformation-
level parameters.

e Parameter values cannot be empty. For example, the Data Integration Service fails the workflow run if the
parameter file contains the following entry:

<parameter name="Paraml"> </parameter>

e Within an element, artifact names are not case-sensitive. Therefore, the Data Integration Service interprets
<parameter name="SrcDir"> and <parameter name="Srcdir"> as the same application.

¢ A parameter that identifies a reference table must use a forward-slash (/) to separate folder names in a
repository folder path.

Export a Parameter File

You can export a mapping parameter file or a workflow parameter file from the Developer tool. Define the
parameters in the Developer tool and then export them to a file. The Developer tool creates a parameter file
in .XML format.

You can export a parameter file that contains mapping parameters or workflow parameters. You can export
parameters from the mapping Parameters tab or from the workflow Parameters tab. The Developer tool
exports all the parameters from the Parameters tab.

To export a parameter file, perform the following steps:

1. Define the parameters and the parameter defaults for a mapping or a workflow.

2. On the Parameters tab of the mapping or workflow Properties, click the Export Parameter File option.

Parameter Files 47

48

3. Enter a name for the parameter file and browse for a location to put the file.
4. Click Save.

The following image shows the Export Parameter File option on the Parameters tab for a workflow:

= Properties &7 &4 Data Viewer w Alerts @ Validation Log Z - = 8
hetdBBET pdl)

Parameters Name o Type Precision Scale Default Value Description Export Parameter File
1 Workflow_Parm String 1000 100 #]

When you export a parameter file, the Developer tool creates a parameter file with either mapping parameters
or workflow parameters in it. The Developer tool does not export mapping and workflow parameters to the
same file.

For example, when you export the workflow parameter, Workflow_Parm, the Developer tool creates the
following parameter file:

<?xml version="1.0" encoding="UTF-8"?>
-<root version="2.0" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema" xmlns="http://
www.informatica.com/Parameterization/1.0">
-<project name="Orders">
-<workflow name="Customer Workflow">
<parameter name="Workflow Parm">100</parameter>
</workflow>
</project>
</root>

Creating a Parameter File from infacmd ms ListMappingParams

The infacmd wfs ListWorkflowParams command lists the parameters for a workflow in a deployed
application and the default value for each parameter. Use the output of this command to create a parameter
file.

1. Run the infacmd wfs ListWorkflowParams command to list the parameters for a workflow and the
default value for each parameter.

The -0 argument sends command output to an XML file.
For example, the following command lists the parameters in workflow MyWorkflow in file
"MyOutputFile.xml":

infacmd wfs ListWorkflowParams -dn MyDomain -sn MyDataIntSvs -un MyUser -pd
MyPassword -a MyApplication -wf MyWorkflow -o MyOutputFile.xml

For example, the following command lists the parameters in mapping MyMapping in file
"MyOutputFile.xml":

infacmd ms ListMappingParams -dn MyDomain -sn MyDataIntSvs -un MyUser -pd MyPassword
-a MyApplication -m MyMapping -o MyOutputFile.xml

The Data Integration Service lists all mapping parameters with their default values.

2. If you did not specify the -o argument, you can copy the command output to an XML file and save the
file.

3. Edit the XML file and replace the parameter default values with the values you want to use when you run
the workflow.

4. Save the XML file.

Chapter 3: Workflow Parameters

Running a Workflow with a Parameter File

Use the infacmd wfs StartWorkflow command to run a workflow with a parameter file. The -pf argument
specifies the parameter file name.

For example, the following command runs the workflow MyWorkflow using the parameter file
"MyParamFile.xml":

infacmd wfs StartWorkflow -dn MyDomain -sn MyDataIntSvs -un MyUser -pd MyPassword -a
MyApplication -wf MyWorkflow -pf MyParamFile.xml

For example, the following command runs the mapping MyMapping using the parameter file
"MyParamFile.xml":

infacmd ms RunMapping -dn MyDomain -sn MyDataIntSvs -un MyUser -pd MyPassword -a
MyApplication -m MyMapping -pf MyParamFile.xml

The Data Integration Service fails the workflow when you run it with a parameter file and the parameter file is
not valid. The Data Integration Service fails the workflow if it cannot find the parameter file or it cannot
access the parameter file.

Parameter Files 49

CHAPTER 4

Command Task

This chapter includes the following topics:

e Command Task Overview, 50

e Command Syntax, 50

e Command Task Input, 51

e Command Task Output, 52

e Command Task Advanced Properties, 53

e Troubleshooting Command Tasks, 53

Command Task Overview

A Command task runs a single shell command or starts an external executable program during the workflow.

You might specify a shell command to delete reject files, copy a file, or archive target files. You can use
workflow parameters and variables in the command.

When you run a workflow, the workflow passes input data to a Command task in parameters and variables.
The Command task uses the input data to run the command. When the Command task finishes running, the
task passes output data back to the workflow in variables.

When you configure a Command task, you specify the command to run, the input data needed by the task,
and the output data that the task passes to the workflow. You also set the advanced properties that the task
uses when it runs the command.

Command Syntax

The command syntax depends on whether the Data Integration Service runs on UNIX or Windows.

When the Data Integration Service runs on UNIX, you can use any valid UNIX command or shell script. The
service runs the following command during the workflow where <command> is the command that you enter in
the Command task:

/bin/sh -c "<command>"

50

When the Data Integration Service runs on Windows, you can use any valid DOS or batch file. The service runs
the following command during the workflow where <command> is the command that you enter in the
Command task:

cmd.exe /c "<command>"

For example, you might use a shell command to copy a file from one directory to another. For Windows, enter
the following shell command to copy the SALES_ ADJ file from the source directory, L, to the target, H:

copy L:\sales\sales adj H:\marketing\
For UNIX, enter the following command to perform a similar operation:
cp sales/sales adj marketing/

Use the following rules and guidelines when you enter a command:

e The command cannot contain a carriage return character or line feed character.

e To run an external executable program from the command, enter the fully qualified path to the program.
For example, to run a custom application named myCustomApp.exe, use the following command:

c:\myCustomApp.exe

When you run an external program from the Command task, the task remains in a running state until the
program closes.

e Each Command task runs in the same environment as the Data Integration Service. To change the
environment settings, create a script or batch file that changes the settings and includes the command to
run. Then use the following command to run the file:

c:\mybatfile.bat

Parameters and Variables in a Command

You can include workflow parameters and variables in a command.

You can select a workflow parameter or variable from Inputs tab in the Command tab, or you can type the
parameter or variable name in the command using the required syntax.

For example, the following command uses a workflow parameter named SourceDirectory to define the source
directory from which the command copies a file:

copy ${par:SourceDirectory} H:\marketing\

RELATED ToOPICS:

e “Parameter Names in Expressions and Strings” on page 39

e “Variable Names in Expressions and Strings” on page 32

Command Task Input

Command task input is the data that passes into a Command task from workflow parameters and variables.

Assign a Command task configuration property to task input to define the value of the property in a workflow
parameter or variable. The Advanced tab lists the Command task configuration properties.

For example, you assign the working directory to the same workflow parameter for all Command tasks in the
workflow. You want each Command task to run the same command executable. In the parameter file, you set
the workflow parameter value to the directory where the executable is located in the development
environment. When you deploy the workflow to the production environment, each Command task must use

Command Task Input 51

the command executable located in the production environment. You change the value of the workflow
parameter in the parameter file instead of editing each Command task in the Developer tool.

Note: The Command task does not validate the working directory path. In the workflow context, a Command
task can run successfully when the working directory path is not valid.

RELATED TOPICS:

e “Assigning Workflow Parameters to Task Input” on page 38

e “Assigning Variables to Task Input” on page 31

Command Task Output

52

Command task output is the data that passes from a Command task into workflow variables. Command task
outputs include general outputs and task specific outputs.

When you configure a Command task, you specify the task output values that you want to assign to workflow
variables on the Output tab. The Data Integration Service copies the Command task output values to
workflow variables when the Command task completes.

If the task fails, the Data Integration Service copies the general task output values but not the task specific
output values to workflow variables. If the task aborts, the Data Integration Service does not copy any task
output values to workflow variables.

For example, a Command task produces an exit code output value that indicates whether the command ran
successfully. The workflow cannot directly access this Command task output data. To use the data in the
remainder of the workflow, you assign the exit code output to a workflow variable named CommandExitCode.
Then use the CommandExitCode workflow variable in an expression for a conditional sequence flow. The
Data Integration Service runs the next object in the workflow if the command ran successfully.

General outputs include output data produced by all tasks such as the task start time, end time, and whether
the task successfully ran.

Command task outputs include data produced by the Command task when it runs the command.

The following table describes the output data produced by the Command task:

Output Data Datatype | Description

Exit Code Integer Exit code returned by the command. A successful command returns 0. An unsuccessful
command returns a non-zero value.

Standard Error | String Standard error message returned by the command. By default, the first 1,024
characters of the error are returned. You can change the length of the standard error in
the Command task advanced configuration properties.

Standard String Standard output returned by the command. By default, the first 1,024 characters of the
Output output are returned. Yo