
Informatica® PowerCenter
10.2

XML Guide

Informatica PowerCenter XML Guide
10.2
September 2017

© Copyright Informatica LLC 2002, 2022

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

Informatica, the Informatica logo, and PowerCenter are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout
the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be
trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © OSS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright © University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright© MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/
Consortium/Legal/2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http://forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/faq.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/
EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://
jdbc.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/lz4/; https://github.com/jedisct1/libsodium/blob/master/

LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe WaInes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, please report them to us in writing at
Informatica LLC 2100 Seaport Blvd. Redwood City, CA 94063.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2022-04-28

https://www.informatica.com/legal/patents.html

Table of Contents

Preface . 9
Informatica Resources. 9

Informatica Network. 9

Informatica Knowledge Base. 9

Informatica Documentation. 9

Informatica Product Availability Matrixes. 10

Informatica Velocity. 10

Informatica Marketplace. 10

Informatica Global Customer Support. 10

Chapter 1: XML Concepts. 11
XML Concepts Overview. 11

XML Files. 12

Validating XML Files with a DTD or Schema. 14

DTD Files. 15

DTD Elements. 16

DTD Attributes. 16

XML Schema Files. 17

Types of XML Metadata. 18

Namespace. 19

Name. 20

Hierarchy. 20

Cardinality. 20

Absolute Cardinality. 20

Relative Cardinality. 21

Simple and Complex XML Types. 22

Simple Types. 23

Complex Types. 24

Any Type Elements and Attributes. 26

anyType Elements. 26

anySimpleType Elements. 27

ANY Content Elements. 27

AnyAttribute Attributes. 28

Component Groups. 28

Element and Attribute Groups. 29

Substitution Groups. 29

XML Path. 30

Code Pages. 30

4 Table of Contents

Chapter 2: Using XML with PowerCenter. 32
Using XML with PowerCenter Overview. 32

Limitations. 33

Importing XML Metadata. 33

Importing Metadata from an XML File. 33

Importing Metadata from a DTD File. 35

Importing Metadata from an XML Schema. 36

Creating Metadata from Relational Definitions. 38

Creating Metadata from Flat Files. 38

Understanding XML Views. 39

Creating Custom XML Views. 39

Rules and Guidelines for XML Views. 39

Understanding Hierarchical Relationships. 40

Normalized Views. 40

Denormalized Views. 42

Understanding Entity Relationships. 43

Rules and Guidelines for Entity Relationships. 44

Type 1 Entity Relationship Example. 44

Type II Entity Relationship Example . 47

Using Substitution Groups in an XML Definition. 48

Working with Circular References. 49

Understanding View Rows. 51

Using XPath Query Predicates. 51

Rules and Guidelines for Using View Rows. 52

Pivoting Columns. 52

Using Multiple-Level Pivots. 54

Chapter 3: Working with XML Sources. 55
Working with XML Sources Overview. 55

Importing an XML Source Definition. 56

Multi-line Attributes Values. 57

Working with XML Views. 58

Importing Part of an XML Schema. 59

Generating Entity Relationships. 59

Generating Hierarchy Relationships. 60

Creating Custom XML Views. 60

Selecting Root Elements. 61

Reducing Metadata Explosion. 61

Synchronizing XML Definitions. 62

Editing XML Source Definition Properties. 62

Creating XML Definitions from Repository Definitions. 64

Troubleshooting XML Sources. 64

Table of Contents 5

Chapter 4: Using the XML Editor. 67
Using the XML Editor Overview. 67

XML Navigator. 68

XML Workspace. 69

Columns Window. 69

Creating and Editing Views. 69

Creating an XML View . 70

Adding Columns to a View . 70

Deleting Columns from a View. 72

Expanding a Complex Type. 72

Importing anyType Elements. 73

Applying Content to anyAttribute or ANY Elements. 73

Using anySimpleType in the XML Editor. 74

Adding a Pass-Through Port. 74

Adding a FileName Column. 74

Creating an XPath Query Predicate. 75

Querying the Value of an Element of Attribute. 75

Testing for Elements or Attributes. 76

XPath Query Predicate Rules and Guidelines. 76

Steps for Creating an XPath Query Predicate. 77

Maintaining View Relationships. 78

Creating a Relationship Between Views. 78

Creating a Type Relationship. 79

Re-Creating Entity Relationships. 79

Viewing Schema Components. 80

Updating a Namespace. 80

Navigating to Components. 81

Searching for Components. 81

Viewing a Simple or Complex Type Hierarchy. 82

Viewing XML Metadata. 82

Validating XML Definitions. 82

Setting XML View Options. 83

Generating All Hierarchy Foreign Keys. 83

Generating Rows in Circular Relationships. 84

Generating Hierarchy Relationship Rows. 85

Setting the Force Row Option. 87

Generating Rows for Views in Type Relationships. 88

Troubleshooting Working with the XML Editor. 90

Chapter 5: Working with XML Targets. 91
Working with XML Targets Overview. 91

Importing an XML Target Definition from an XML File . 92

6 Table of Contents

Creating a Target from an XML Source Definition. 92

Editing XML Target Definition Properties. 93

Validating XML Targets. 95

Hierarchy Relationship Validation. 95

Type Relationship Validation. 96

Inheritance Validation. 96

Using an XML Target in a Mapping. 96

Active Sources. 96

Selecting a Root Element. 97

Connecting Target Ports . 97

Connecting Abstract Elements. 97

Flushing XML Data to Targets. 98

Naming XML Files Dynamically. 98

Troubleshooting XML Targets. 99

Chapter 6: XML Source Qualifier Transformation. 101
XML Source Qualifier Transformation Overview. 101

Adding an XML Source Qualifier to a Mapping. 101

Creating an XML Source Qualifier Transformation by Default. 102

Creating an XML Source Qualifier Transformation Manually. 102

Editing an XML Source Qualifier Transformation. 102

Setting Sequence Numbers for Generated Keys. 103

Using the XML Source Qualifier in a Mapping. 104

XML Source Qualifier Transformation Example. 105

Troubleshooting XML Source Qualifier Transformations. 107

Chapter 7: Midstream XML Transformations. 108
Midstream XML Transformations Overview. 108

XML Parser Transformation. 109

XML Parser Input Validation. 110

Stream XML to the XML Parser Transformation. 112

XML Decimal Datatypes. 112

XML Generator Transformation. 113

Creating a Midstream XML Transformation. 113

Synchronizing a Midstream XML Definition. 113

Editing Midstream XML Transformation Properties. 114

Properties Tab. 114

Midstream XML Parser Tab. 115

Midstream XML Generator Tab. 116

Generating Pass-Through Ports. 117

Troubleshooting Midstream XML Transformations. 117

Table of Contents 7

Appendix A: XML Datatype Reference. 119
XML and Transformation Datatypes. 119

XML Date Format. 121

Appendix B: XPath Query Functions Reference. 123
XPath Query Functions Overview. 123

Function Quick Reference. 124

boolean. 125

ceiling. 126

concat. 127

contains. 128

false. 129

floor. 129

lang. 130

normalize-space. 131

not. 131

number. 132

round. 133

starts-with. 133

string. 134

string-length. 135

substring. 136

substring-after. 137

substring-before. 138

translate. 139

true. 140

Index. 141

8 Table of Contents

Preface
The XML Guide is written for developers and software engineers responsible for working with XML in a data
warehouse environment. Before you use the XML Guide, ensure that you have a solid understanding of XML
concepts, your operating systems, flat files, or mainframe system in your environment. Also, ensure that you
are familiar with the interface requirements for your supporting applications.

Informatica Resources

Informatica Network
Informatica Network hosts Informatica Global Customer Support, the Informatica Knowledge Base, and other
product resources. To access Informatica Network, visit https://network.informatica.com.

As a member, you can:

• Access all of your Informatica resources in one place.

• Search the Knowledge Base for product resources, including documentation, FAQs, and best practices.

• View product availability information.

• Review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to search Informatica Network for product resources such as
documentation, how-to articles, best practices, and PAMs.

To access the Knowledge Base, visit https://kb.informatica.com. If you have questions, comments, or ideas
about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
To get the latest documentation for your product, browse the Informatica Knowledge Base at
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx.

If you have questions, comments, or ideas about this documentation, contact the Informatica Documentation
team through email at infa_documentation@informatica.com.

9

HTTPS://NETWORK.INFORMATICA.COM/
http://kb.informatica.com
mailto:KB_Feedback@informatica.com
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx
mailto:infa_documentation@informatica.com

Informatica Product Availability Matrixes
Product Availability Matrixes (PAMs) indicate the versions of operating systems, databases, and other types
of data sources and targets that a product release supports. If you are an Informatica Network member, you
can access PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional
Services. Developed from the real-world experience of hundreds of data management projects, Informatica
Velocity represents the collective knowledge of our consultants who have worked with organizations from
around the world to plan, develop, deploy, and maintain successful data management solutions.

If you are an Informatica Network member, you can access Informatica Velocity resources at
http://velocity.informatica.com.

If you have questions, comments, or ideas about Informatica Velocity, contact Informatica Professional
Services at ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that augment, extend, or enhance your
Informatica implementations. By leveraging any of the hundreds of solutions from Informatica developers
and partners, you can improve your productivity and speed up time to implementation on your projects. You
can access Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through Online Support on Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
http://www.informatica.com/us/services-and-training/support-services/global-support-centers.

If you are an Informatica Network member, you can use Online Support at http://network.informatica.com.

10 Preface

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/
http://network.informatica.com

C h a p t e r 1

XML Concepts
This chapter includes the following topics:

• XML Concepts Overview, 11

• XML Files, 12

• DTD Files, 15

• XML Schema Files, 17

• Types of XML Metadata, 18

• Cardinality, 20

• Simple and Complex XML Types, 22

• Any Type Elements and Attributes, 26

• Component Groups, 28

• XML Path, 30

• Code Pages, 30

XML Concepts Overview
Extensible Markup Language (XML) is a flexible way to create common information formats and to share the
formats and data between applications and on the internet.

You can import XML definitions into PowerCenter® from the following file types:

• XML file. An XML file contains data and metadata. An XML file can reference a Document Type Definition
file (DTD) or an XML schema definition (XSD) for validation.

• DTD file. A DTD file defines the element types, attributes, and entities in an XML file. A DTD file provides
some constraints on the XML file structure but a DTD file does not contain any data.

• XML schema. An XML schema defines elements, attributes, and type definitions. Schemas contain simple
and complex types. A simple type is an XML element or attribute that contains text. A complex type is an
XML element that contains other elements and attributes.

Schemas support element, attribute, and substitution groups that you can reference throughout a schema.
Use substitution groups to substitute one element with another in an XML instance document. Schemas
also support inheritance for elements, complex types, and element and attribute groups.

11

XML Files
XML files contain tags that identify data in the XML file, but not the format of the data. The basic component
of an XML file is an element. An XML element includes an element start tag, element content, and element
end tag. All XML files must have a root element defined by a single tag at the top and bottom of the file. The
root element encloses all the other elements in the file.

An XML file models a hierarchical database. The position of an element in an XML hierarchy represents its
relationships to other elements. An element can contain child elements, and elements can inherit
characteristics from other elements.

For example, the following XML file describes a book:

<book>
 <title>Fun with XML</title>
 <chapter>
 <heading>Understanding XML</heading>
 <heading>Using XML</heading>
 </chapter>
 <chapter>
 <heading>Using DTD Files</heading>
 <heading>Fun with Schemas</heading>
 </chapter>
</book>

Book is the root element and it contains the title and chapter elements. Book is the parent element of title
and chapter, and chapter is the parent of heading. Title and chapter are sibling elements because they have
the same parent.

An element can have attributes that provide additional information about the element. In the following
example, the attribute graphic_type describes the content of picture:

<picture graphic_type="gif">computer.gif</picture>

12 Chapter 1: XML Concepts

The following figure shows the structure, elements, and attributes in an XML file:

1. Root element.
2. Element data.
3. Enclosure element.
4. Element tags.
5. Element data.
6. Attribute value.
7. Attribute tag.

An XML file has a hierarchical structure. An XML hierarchy includes the following elements:

• Child element. An element contained within another element.

• Enclosure element. An element that contains other elements but does not contain data. An enclosure
element can include other enclosure elements.

• Global element. An element that is a direct child of the root element. You can reference global elements
throughout an XML schema.

• Leaf element. An element that does not contain other elements. A leaf element is the lowest level element
in the XML hierarchy.

• Local element. An element that is nested in another element. You can reference local elements only
within the context of the parent element.

• Multiple-occurring element. An element that occurs more than once within its parent element. Enclosure
elements can be multiple-occurring elements.

• Parent chain. The succession of child-parent elements that traces the path from an element to the root.

• Parent element. An element that contains other elements.

XML Files 13

• Single-occurring element. An element that occurs once within its parent.

The following figure shows some elements in an XML hierarchy:

1. The encoding attribute identifies the code page.
2. The DOCTYPE identifies an associated DTD file.
3. Enclosure Element: Element Address encloses elements StreetAddress, City, State, and Zip. Element Address is also

a Parent element.
4. Leaf Element: Element Zip, along with all its sibling elements, is the lowest level element within element Address.
5. Multiple-occurring Element: Element Sales Region occurs more than once within element Product.
6. Single-occurring Element: Element PName occurs once within element Product.
7. Child Element: Element PName is a child of Product, which is a child of Store.

Validating XML Files with a DTD or Schema
A valid XML file conforms to the structure of an associated DTD or schema file.

To reference the location and name of a DTD file, use the DOCTYPE declaration in an XML file. The DOCTYPE
declaration also names the root element for the XML file.

For example, the following XML file references the location of the note.dtd file:

<?xml version="1.0"?>
<!DOCTYPE note SYSTEM
"http://www.w3schools.com/dtd/note.dtd">
<note>
 <body>XML Data</body>
</note>

14 Chapter 1: XML Concepts

To reference a schema, use the schemaLocation declaration. The schemaLocation contains the location and
name of a schema.

The following XML file references the note.xsd schema in an external location:

<?xml version="1.0"?>
<note xsi:SchemaLocation="http://www.w3schools.com note.xsd">
 <body>XML Data</body>
</note>

Unicode Encoding
An XML file contains an encoding attribute that indicates the code page in the file. The most common
encodings are UTF-8 and UTF-16. UTF-8 represents a character with one to four bytes, depending on the
Unicode symbol. UTF-16 represents a character as a 16-bit word.

The following example shows a UTF-8 attribute in an XML file:

<?xml version="1.0"encoding="UTF-8"?>
<note xsi:SchemaLocation="http://www.w3schools.com note.xsd">
 <body>XML Data</body>
</note>

DTD Files
A Document Type Definition (DTD) file defines the element types and attributes in an XML file. A DTD file also
provides some constraints on the XML file structure. A DTD file does not contain any data or element
datatypes.

DTD Files 15

The following figure shows elements and attributes in a DTD file:

1. Element
2. Attribute
3. Element list
4. Element occurrence
5. Attribute value option
6. Attribute name

DTD Elements
In the DTD file, an element declaration defines an XML element. An element declaration has the following
syntax:

<!ELEMENT product (#PCDATA)>
The DTD description defines the XML tag <product>. The description (#PCDATA) specifies parsed character
data. Parsed data is the text between the start tag and the end tag of an XML element. Parsed character data
is text without child elements.

The following example shows a DTD description of an element with two child elements:

<!ELEMENT boat (brand, type) >
<!ELEMENT brand (#PCDATA) >
<!ELEMENT type (#PCDATA) >

Brand and type are child elements of boat. Each child element can contain characters. In this example, brand
and type can occur once inside the element boat. The following DTD description specifies that brand must
occur one or more times for a boat:

<!ELEMENT boat (brand+) >

DTD Attributes
Attributes provide additional information about elements. In a DTD file, an attribute occurs inside the starting
tag of an element.

16 Chapter 1: XML Concepts

The following syntax describes an attribute in a DTD file:

<!ATTLIST element_name attribute_name attribute_type “default_value”>
The following parameters identify an attribute in a DTD file:

• Element_name. The name of the element that has the attribute.

• Attribute_name. The name of the attribute.

• Attribute_type. The kind of attribute. The most common attribute type is CDATA. A CDATA attribute is
character data.

• Default_value. The value of the attribute if no attribute value occurs in the XML file.

Use the following options with a default value:

- #REQUIRED. The XML file must contain the attribute value.

- #IMPLIED. The attribute value is optional.

- #FIXED. The XML file must contain the default value from the DTD file. A valid XML file can contain the
same attribute value as the DTD, or the XML file can have no attribute value. You must specify a default
value with this option.

The following example shows an attribute with a fixed value:

<!ATTLIST product product_name CDATA #FIXED “vacuum”>
The element name is product. The attribute is product_name. The attribute has a default value, vacuum.

XML Schema Files
An XML schema is a document that defines the valid content of XML files. An XML schema file, like a DTD
file, contains only metadata. An XML schema defines the structure and type of elements and attributes for an
associated XML file. When you use a schema to define an XML file, you can restrict data, define data formats,
and convert data between datatypes. An XML schema supports complex types and inheritance between
types. A schema provides a way to specify element and attribute groups, ANY content, and circular
references.

XML Schema Files 17

The following figure shows XML schema components:

1. Element name.
2. Attribute
3. Attribute type and null construction
4. Element datatype
5. Element data
6. Element list and occurrence
7. Element list and datatype

Related Topics:
• “Simple and Complex XML Types” on page 22

• “Component Groups” on page 28

Types of XML Metadata
You can create PowerCenter XML definitions from XML, DTD, or XML schema files. XML files provide data
and metadata. DTD files and XML schema files provide metadata.

18 Chapter 1: XML Concepts

PowerCenter extracts the following types of metadata from XML, DTD, and XML schema files:

• Namespace. A collection of elements and attribute names identified by a Uniform Resource Identifier
(URI) reference in an XML file. Namespace differentiates between elements that come from different
sources.

• Name. A tag that contains the name of an element or attribute.

• Hierarchy. The position of an element in relationship to other elements in an XML file.

• Cardinality. The number of times an element occurs in an XML file.

• Datatype. A classification of a data element, such as numeric, string, Boolean, or time. XML supports
custom datatypes and inheritance.

Namespace
A namespace contains a URI to identify schema location. A URI is a string of characters that identifies an
internet resource. A URI is an abstraction of a URL. A URL locates a resource, but a URI identifies a resource.
A DTD or schema file does not have to exist at the URI location.

An XML namespace identifies groups of elements. A namespace can identify elements and attributes from
different XML files or distinguish meanings between elements. For example, you can distinguish meanings
for the element “table” by declaring different namespaces, such as math:table and furniture:table. XML is
case sensitive. The namespace Math:table is different from the namespace math:table.

You can declare a namespace at the root level of an XML file, or you can declare a namespace inside any
element in an XML structure. When you declare multiple namespaces in the same XML file, you use a
namespace prefix to associate an element with a namespace. A namespace declaration appears in the XML
file as an attribute that starts with xmlns. Declare the namespace prefix with the xmlns attribute. You can
create a prefix name of any length.

The following example shows two namespaces in an XML instance document:

<example>
 xmlns:math = “http://www.mathtables.com”
 xmlns:furniture = “http://www.home.com”>
 <math:table>4X6</math:table>
 <furniture:table>Brueners </furniture:table>
</example>

One namespace has math elements, and the other namespace has furniture elements. Each namespace has
an element called “table,” but the elements contain different types of data. The namespace prefix
distinguishes between the math table and the furniture table.

The following text shows a common schema declaration:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.w3XML.com"
 xmlns="http://www.w3XML.com"
 elementFormDefault="qualified">...
...</xs:schema>

The following table describes each part of the namespace declaration:

Schema Declaration Description

xmlns:xs="http://www.w3.org/2001/XMLSchema" Namespace that contains the native XML schema and
datatypes. In this example, each schema component has the
prefix of “xs.”

targetNamespace="http://www.w3XML.com" Namespace that contains the schema.

Types of XML Metadata 19

Schema Declaration Description

xmlns="http://www.w3XML.com" Default namespace declaration. All elements in the schema
that have no prefix belong to the default namespace. Declare
a default namespace by using an xmlns attribute with no
prefix.

elementFormDefault="qualified" Specifies that any element in the schema must have a
namespace in the XML file.

Name
In an XML file, each tag is the name of an element or attribute. In a DTD file, the tag <!ELEMENT> specifies
the name of an element, and the tag <!ATTLIST> indicates the set of attributes for an element. In a schema
file, <element name> specifies the name of an element and <attribute name> specifies the name of an
attribute.

When you import an XML definition, the element tags become column names in the PowerCenter definition,
by default.

Hierarchy
An XML file models a hierarchical database. The position of an element in an XML hierarchy represents its
relationship to other elements. For example, an element can contain child elements, and elements can inherit
characteristics from other elements.

Cardinality
Element cardinality in a DTD or schema file is the number of times an element occurs in an XML file. Element
cardinality affects how you structure groups in an XML definition. Absolute cardinality and relative cardinality
of elements affect the structure of an XML definition.

Absolute Cardinality
The absolute cardinality of an element is the number of times an element occurs within its parent element in
an XML hierarchy. DTD and XML schema files describe the absolute cardinality of elements within the
hierarchy. A DTD file uses symbols, and an XML schema file uses the <minOccurs> and <maxOccurs>
attributes to describe the absolute cardinality of an element.

For example, an element has an absolute cardinality of once (1) if the element occurs once within its parent
element. However, the element might occur many times within an XML hierarchy if the parent element has a
cardinality of one or more (+).

The absolute cardinality of an element determines its null constraint. An element that has an absolute
cardinality of one or more (+) cannot have null values, but an element with a cardinality of zero or more (*)
can have null values. An attribute marked as fixed or required in an XML schema or DTD file cannot have null
values, but an implied attribute can have null values.

20 Chapter 1: XML Concepts

The following table describes how DTD and XML schema files represent cardinality:

Absolute Cardinality DTD Schema

Zero or once ? minOccurs=0 maxOccurs=1

Zero or one or more times * minOccurs=0 maxOccurs=unbounded
minOccurs=0 maxOccurs=n

Once - minOccurs=1 maxOccurs=1

One or more times + minOccurs=1 maxOccurs=unbounded
minOccurs=1 maxOccurs=n

Note: You can declare a maximum number of occurrences or an unlimited occurrences in a schema.

The following figure shows the absolute cardinality of elements in a sample XML file:

1. Element Address occurs more than once within Store. Its absolute cardinality is one or more(+).
2. Element City occurs once within its parent element Address. Its absolute cardinality is once(1).
3. Element Sales occurs zero or more times within its parent element Product. Its absolute cardinality is zero or

more(*).

Relative Cardinality
Relative cardinality is the relationship of an element to another element in the XML hierarchy. An element can
have a one-to-one, one-to-many, or many-to-many relationship to another element in the hierarchy.

Cardinality 21

An element has a one-to-one relationship with another element if every occurrence of one element can have
one occurrence of the other element. For example, an employee element can have one social security number
element. Employee and social security number have a one-to-one relationship.

An element has a one-to-many relationship with another element if every occurrence of one element can have
multiple occurrences of another element. For example, an employee element can have multiple email
addresses. Employee and email address have a one-to-many relationship.

An element has a many-to-many relationship with another element if an XML file can have multiple
occurrences of both elements. For example, an employee might have multiple email addresses and multiple
street addresses. Email address and street address have a many-to-many relationship.

The following figure shows the relative cardinality between elements in a sample XML file:

1. One-to-many relationship. For every occurrence of SNAME, there can be many occurrences of ADDRESS and,
therefore, many occurrences of CITY.

2. Many-to-many relationship. For every occurrence of STATE, there can be multiple occurrences of YTDSALES. For
every occurrence of YTDSALES, there can be many occurrences of STATE.

3. One-to-one relationship. For every occurrence of PNAME, there is one occurrence of PPRICE.

Simple and Complex XML Types
The XML schema language has over 40 built-in datatypes, including numeric, string, time, XML, and binary.
These datatypes are called simple types. They contain text but no other elements and attributes. You can
derive new simple types from the basic XML simple types.

22 Chapter 1: XML Concepts

You can create complex XML datatypes. A complex datatype is a datatype that contains more than one
simple type. A complex datatype can also contain other complex types and attributes.

For more information about XML datatypes, see the W3C specifications for XML datatypes at
http://www.w3.org/TR/xmlschema-2.

Simple Types
A simple datatype is an XML element or attribute that contains text. A simple type is indivisible. Simple types
cannot have attributes, but attributes are simple types.

PowerCenter supports the following simple types:

• Atomic types. A basic datatype such as Boolean, string, or integer.

• Lists. An array collection of atomic types.

• Unions. A combination of one or more atomic or list types that map to a simple type in an XML file.

Atomic Types
An atomic datatype is a basic datatype such as a Boolean, string, integer, decimal, or date. To define custom
atomic datatypes, add restrictions to an atomic datatype to limit the content. Use a facet to define which
values to restrict or allow.

A facet is an expression that defines minimum or maximum values, specific values, or a data pattern of valid
values. For example, a pattern facet restricts an element to an expression of data values. An enumeration
facet lists the legal values for an element.

The following example contains a pattern facet that restricts an element to a lowercase letter between a and
z:

<xs:element name="letter">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="[a-z]"/>
 </xs:restriction>
</xs:simpleType></xs:element>

The following example contains an enumeration facet that restricts a string to a, b, or c:

<xs:element name="letter">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="a"/>
 <xs:enumeration value=”b”/>
 <xs:enumeration value=”c”/>
 </xs:restriction>
</xs:simpleType></xs:element>

Lists
A list is an array collection of atomic types, such as a list of strings that represent names. The list itemType
defines the datatype of the list components.

The following example shows a list called names:

<xs:simpleType name="names">
 <xs:list itemType="xs:string" />
</xs:simpleType>

An XML file might contain the following data in the names list:

<names>Joe Bob Harry Atlee Will</names>

Simple and Complex XML Types 23

http://www.w3.org/TR/xmlschema-2

Unions
A union is a combination of one or more atomic or list types that map to one simple type in an XML file. When
you define a union type, you specify what types to combine. For example, you might create a type called size.
Size can include string data, such as S, M, and L, or size might contain decimal sizes, such as 30, 32, and 34.
If you define a union type element, the XML file can include a sizename type for string sizes, and a sizenum
type for numeric sizes.

The following figure shows a schema file containing a shoesize union that contains sizenames and sizenums
lists:

1. Sizename is a restricted string type.
2. The sizenames type accepts a list of strings.
3. The sizenums type accepts a list decimals.
4. The shoesize union accepts both the decimal and string lists.

The union defines sizenames and sizenums as union member types. Sizenames defines a list of string
values. Sizenums defines a list of decimal values.

Complex Types
A complex type aggregates a collection of simple types into a logical unit. For example, a customer type
might include the customer number, name, street address, town, city, and zip code. A complex type can also
reference other complex types or element and attribute groups.

XML supports complex type inheritance. When you define a complex type, you can create other complex
types that inherit the components of the base type. In a type relationship, the base type is the complex type
from which you derive another type. A derived complex type inherits elements from the base type.

24 Chapter 1: XML Concepts

An extended complex type is a derived type that inherits elements from a base type and includes additional
elements. For example, a customer_purchases type might inherit its definition from the customer complex
type, but the customer_purchases type adds item, cost, and date_sold elements.

A restricted complex type is a derived type that restricts some elements from the base type. For example,
mail_list might inherit elements from customer, but restrict the phone_number element by setting the
minoccurs and maxoccurs boundaries to zero.

The following figure shows derived complex types that restrict and extend the base complex type:

1. Base complex type
2. Extended complex type
3. Restricted complex type
4. Element reference

In the above figure, the base type is PublicationType. BookType extends PublicationType and includes the
ISBN and Publisher elements. Publication_Minimum restricts PublicationType. Publication_Minimum requires
between 1 and 25 Authors and restricts the date to the year.

Abstract Elements
Sometimes a schema contains a base type that defines the basic structure of a complex element but does
not contain all the components. Derived complex types extend the base type with more components. Since
the base type is not a complete definition, you might not want to use the base type in an XML file. You can
declare the base type element to be abstract. An abstract element is not valid in an XML file. Only the derived
elements are valid.

To define an abstract element, add an abstract attribute with the value “true.” The default is false.

Simple and Complex XML Types 25

For example, PublicationType is an abstract element. BookType inherits the elements in PublicationType, but
also includes ISBN and Publisher elements. Since PublicationType is abstract, a PublicationType element is
not valid in the XML file. An XML file can contain the derived type, BookType.

The following schema contains the PublicationType and BookType:

<xsd:complexType name="PublicationType" abstract="true">
 <xsd:sequence>
 <xsd:element name="Title" type="xsd:string"/>
 <xsd:element name="Author" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="Date" type="xsd:gYear"/>
 </xsd:sequence>
 </xsd:complexType>
<xsd:complexType name="BookType">
 <xsd:complexContent>
 <xsd:extension base="PublicationType" >
 <xsd:sequence>
 <xsd:element name="ISBN" type="xsd:string"/>
 <xsd:element name="Publisher" type="xsd:string"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>

Any Type Elements and Attributes
Some schema elements and attributes allow any type of data in an XML file. Use these elements and
attributes when you need to validate an XML file that has unidentified element and attribute types.

Use the following element and attributes that allow any type of data:

• anyType element. Allows an element to be any datatype in the associated XML file.

• anySimpleType element. Allows an element to be any simpleType in the associated XML file.

• ANY content element. Allows an element to be any element already defined in the schema.

• anyAttribute attribute. Allows an element to be any attribute already defined in the schema.

anyType Elements
An anyType element can be any datatype in an XML instance document. Declare an element to be anyType
when the element contains different types of data.

The following schema describes a person with a first name, last name, and an age element that is anyType:

<xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 <<xs:element name="age" type="xs:anyType"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The following XML instance document includes a date type and a number in the age element:

<person>
 <firstname>Danny</firstname>
 <lastname>Russell</lastname>
 <age>1959-03-03</age>
</person>
<person>

26 Chapter 1: XML Concepts

 <firstname>Carla</firstname>
 <lastname>Havers</lastname>
 <age>46</age>
</person>

Both types are valid for the schema. If you do not declare a datatype for an element in a schema, the element
defaults to anyType when you import the schema in the Designer.

anySimpleType Elements
An anySimpleType element can contain any atomic type. An atomic type is a basic datatype such as a
Boolean, string, integer, decimal, or date.

The following schema describes a person with a first name, last name, and other element that is
anySimpleType:

<xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 <xs:element name="other" type="xs:anySimpleType"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The following XML instance document substitutes the anySimpleType element with a string datatype:

<person>
 <firstname>Kathy</firstname>
 <lastname>Russell</lastname>
 <other>Cissy</other>
</person>

The following XML instance document substitutes the anySimpleType element with a numeric datatype:

<person>
 <firstname>Kathy</firstname>
 <lastname>Russell</lastname>
 <other>34</other>
</person>

ANY Content Elements
The ANY content element accepts any content in an XML file. When you declare an ANY content element in a
schema, you can substitute it for an element of any name and type in an XML instance document. The
substitute element must exist in the schema.

When you specify ANY content, you use the keyword ANY instead of an element name and element type.

The following schema describes a person with a first name, last name, and an element that is ANY content:

<xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 <xs:any minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name="son" type="xs:string"/>
<xs:element name=”daughter” type="xs:string"/>

Any Type Elements and Attributes 27

The schema includes a son element and a daughter element. You can substitute the ANY element for the son
or daughter element in the XML instance document:

<person>
 <firstname>Danny</firstname>
 <lastname>Russell</lastname>
 <son>Atlee</son>
</person>
<person>
 <firstname>Christine</firstname>
 <lastname>Slade</lastname>
 <daughter>Susie</daughter>
</person>

AnyAttribute Attributes
The anyAttribute attribute accepts any attribute in an XML file. When you declare an attribute as anyAttribute
you can substitute the anyAttribute element for any attribute in the schema.

The following schema describes a person with a first name, last name, and an attribute that is anyAttribute:

<xs:element name="person">
<xs:complexType>
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:sequence>
 <xs:anyAttribute/>
</xs:complexType>
</xs:element>

The following schema includes a gender attribute:

<xs:attribute name="gender">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="male|female"/>
 </xs:restriction>
</xs:simpleType>
</xs:attribute>

The following XML instance document substitutes anyAttribute with the gender attribute:

<person gender="female">
 <firstname>Anita</firstname>
 <lastname>Ficks</lastname>
</person>
<person gender="male">
 <firstname>Jim</firstname>
 <lastname>Geimer</lastname>
</person>

Component Groups
You can create the following groups of components in an XML schema:

• Element and attribute group. Group of elements or attributes that you can reference throughout a
schema.

• Substitution group. Group of elements that you can substitute with other elements from the same group.

28 Chapter 1: XML Concepts

Element and Attribute Groups
You can put elements and attributes in groups that you can reference in a schema. You must declare the
group of elements or attributes before you reference the group.

The following example shows the schema syntax for an element group:

<xs:group name="Songs">
 <xs:element name="songTitle" type="xs:string" />
 <xs:element name="artist" type="xs:string" />
 <xs:element name="publisher" type="xs:string" />
 </xs:group>

The following example shows the schema syntax for an attribute group:

<xs:attributeGroup name="Songs">
 <xs:attribute name="songTitle" type="xs:string" />
 <xs:attribute name="artist" type="xs:string" />
 <xs:attribute name="publisher" type="xs:string" />
</xs:attributeGroup>

The following element groups provide constraints on XML data:

• Sequence group. All elements in an XML file must occur in the order that the schema lists them. For
example, OrderHeader requires the customerName first, then orderNumber, and then orderDate:

<xs:group name="OrderHeader">
 <xs:sequence>
 <xs:element name="customerName" type="xs:string" />
 <xs:element name="orderNumber" type="xs:number" />
 <xs:element name="orderDate" type="xs:date" />
 </xs:sequence>
</xs:group>

• Choice group. One element in the group can occur in an XML file. For example, the CustomerInfo group
lists a choice of elements for the XML file:

<xs:group name="CustomerInfo">
 <xs:choice>
 <xs:element name="customerName" type="xs:string" />
 <xs:element name="customerID" type="xs:number" />
 <xs:element name="customerNumber" type="xs:integer" />
 </xs:choice>
</xs:group>

• All group. All elements must occur in the XML file or none at all. The elements can occur in any order. For
example, CustomerInfo requires all or none of the three elements:

<xs:group name="CustomerInfo">
 <xs:all>
 <xs:element name="customerName" type="xs:string" />
 <xs:element name="customerAddress" type="xs:string" />
 <xs:element name="customerPhone" type="xs:string" />
 </xs:all>
</xs:group>

Substitution Groups
Use substitution groups to replace one element with another in an XML file. For example, if you have
addresses from Canada and the United States, you can create an address type for Canada and another type
for the United States. You can create a substitution group that accepts either type of address.

The following schema fragment shows an Address base type and the derived types CAN_Address and
USA_Address:

<xs:complexType name="Address">
 <xs:sequence>
 <xs:element name="Name" type="xs:string" />
 <xs:element name="Street" type="xs:string"

Component Groups 29

 minOccurs="1" maxOccurs="3" />
 <xs:element name="City" type="xs:string" />
 </xs:sequence>
</xs:complexType>
<xs:element name="MailAddress" type="Address" />
<xs:complexType name="CAN_Address">
 <xs:complexContent>
 <xs:extension base="Address">
 <xs:sequence>
 <xs:element name="Province" type="xs:string" />
 <xs:element name="PostalCode" type="CAN_PostalCode"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:complexType name="USA_Address">
 <xs:complexContent>
 <xs:extension base="Address">
 <xs:sequence>
 <xs:element name="State" type="USPS_StateCode" />
 <xs:element name="ZIP" type="USPS_ZIP"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:element name="AddrCAN" type="CAN_Address"
substitutionGroup="MailAddress"/>
<xs:element name="AddrUSA" type="USA_Address"
substitutionGroup="MailAddress"/>

CAN_Address includes Province and PostalCode, and USA_Address includes State and Zip. The MailAddress
substitution group includes both address types.

Related Topics:
• “Using Substitution Groups in an XML Definition” on page 48

XML Path
XMLPath (XPath) is a language that describes a way to locate items in an XML file. XPath uses an addressing
syntax based on the route through the hierarchy from the root to an element or attribute. An XML path can
contain long schema component names.

XPath uses a slash (/) to distinguish between elements in the hierarchy. XML attributes are preceded by “@”
in the XPath.

You can create a query on an element or attribute XPath to filter XML data.

Related Topics:
• “Using XPath Query Predicates” on page 51

Code Pages
XML files contain an encoding declaration that indicates the code page used in the file. The most common
code pages in XML are UTF-8 and UTF-16. All XML parsers support these code pages. For information on the
XML character encoding specification, see the W3C website at http://www.w3c.org.

30 Chapter 1: XML Concepts

http://www.w3c.org

PowerCenter supports the same set of code pages for XML files that it supports for relational databases and
other flat files. PowerCenter does not support a user-defined code page.

When you create an XML source or target definition, the Designer assigns the PowerCenter Client code page
to the definition. If you import an XML schema that contains a code page assignment, the XML Wizard
displays the code page from the schema. However, the XML Wizard does not apply that code page to the
XML definition you create in the repository.

You can not configure the code page for an XML source definition. The Integration Service converts XML
source files to Unicode when it parses them.

You can configure the code page for a target XML definition in the Designer. You can also change the code
page for an XML target instance in session properties.

Code Pages 31

C h a p t e r 2

Using XML with PowerCenter
This chapter includes the following topics:

• Using XML with PowerCenter Overview, 32

• Importing XML Metadata, 33

• Understanding XML Views, 39

• Understanding Hierarchical Relationships, 40

• Understanding Entity Relationships, 43

• Working with Circular References, 49

• Understanding View Rows, 51

• Pivoting Columns, 52

Using XML with PowerCenter Overview
You can create an XML definition in PowerCenter from an XML file, DTD file, XML schema, flat file definition,
or relational table definition. When you create an XML definition, the Designer extracts XML metadata and
creates a schema in the repository. The schema provides the structure from which you edit and validate the
XML definition.

An XML definition can contain multiple groups. In an XML definition, groups are called views. The
relationship between elements in the XML hierarchy defines the relationship between the views.

When you create an XML definition, the Designer creates views for multiple-occurring elements and complex
types in a schema by default. The relative cardinality of elements in an XML hierarchy affects how
PowerCenter creates views in an XML definition. Relative cardinality determines if elements can be part of
the same view.

The Designer defines relationships between the views in an XML definition by keys. Source definitions do not
require keys, but target views must have them. Each view has a primary key that is an XML element or a
generated key.

When you create an XML definition, you can create a hierarchical model or an entity relationship model of the
XML data. When you create a hierarchical model, you create a normalized or denormalized hierarchy. A
normalized hierarchy contains separate views for multiple-occurring elements. A denormalized hierarchy has
one view with duplicate data for multiple-occurring elements.

If you create an entity model, the Designer creates views for complex types and multiple-occurring elements.
The Designer creates an XML definition that models the inheritance and circular relationships the schema
provides.

32

PowerCenter can work with XML schema that have less than 400 elements. The PowerCenter profile can
contain up to three hierarchy levels, and can contain the following complex type elements:

• Sequence

• Any

• Choice

The PowerCenter XML import wizard can create up to 400 views.

Limitations
The following limitations apply to XML handling in PowerCenter:

• The XML schema must be smaller than 400 elements.

• The XML schema file must be smaller than 100 KB.

• The XML file size must be 10 MB or smaller.

• The complexity profile is limited to three hierarchy levels.

• The XML Import Wizard creates a maximum of 400 views.

PowerCenter does not support the following functions:

• Concatenated columns. A column cannot be a concatenation of two elements. For example, you cannot
create a column FULLNAME that refers to a concatenation of two elements FIRSTNAME and LASTNAME.

• Composite keys. A key cannot be a concatenation of two elements. For example, you cannot create a key
CUSTOMERID that refers to a concatenation of two elements LASTNAME and PHONENUMBER.

• Parsed lists. PowerCenter stores a list type as one string that contains all array elements. PowerCenter
does not parse the respective simple types from the string.

To create a transformation with other element types, and to transform larger XML input files, use a Data
Processor transformation. For more information about how to create Data Processor transformations, see
the Informatica Data Transformation User Guide and the Informatica Data Transformation Getting Started
Guide.

Importing XML Metadata
When you import an XML definition, the Designer creates a schema in the repository for the definition. The
repository schema provides the structure from which you edit and validate the XML definition.

You can create metadata from the following file types:

• XML files

• DTD files

• XML schema files

• Relational tables

• Flat files

Importing Metadata from an XML File
In an XML file, a pair of tags marks the beginning and end of each data element. These tags are the basis for
the metadata that PowerCenter extracts from the XML file. If you import an XML file without an associated

Importing XML Metadata 33

DTD or XML schema, the Designer reads the XML tags to determine the elements, their possible occurrences,
and their position in the hierarchy. The Designer checks the data within the element tags and assigns a
datatype depending on the data representation. You can change the datatypes for these elements in the XML
definition.

The following figure shows a sample XML file:

The root element is Employees. Employee is a multiple occurring element. The Employee element contains
the LastName, FirstName, and Address. The Employee element also contains the multiple-occurring
elements: Phone and Email.

The Designer determines a schema structure from the XML data.

The following figure shows the default XML source definition with separate views for the root element and
the multiple-occurring elements:

When you import an XML file, you do not need all of the XML data to create an XML definition. You need
enough data to accurately show the hierarchy of the XML file.

34 Chapter 2: Using XML with PowerCenter

The Designer can create an XML definition from an XML file that references a DTD file or XML schema. If an
XML file has a reference to a DTD or an XML schema on another node, the node that hosts the PowerCenter
Client must have access to the node where the schema resides so the Designer can read the schema. The
XML file contains a universal resource identifier (URI) which is the address of the DTD or an XML schema.

Importing Metadata from a DTD File
A DTD file provides constraints on a XML document structure. A DTD file lists elements, attributes, entities,
and notations for an XML document. A DTD file specifies relationships between components. A DTD
specifies cardinality and null constraint. However, a DTD file does not contain any data or datatypes.

When you import a DTD file, you can change the datatypes for the elements in the XML definition. You can
change the null constraint, but you cannot change element cardinality.

If you import an XML file with an associated DTD, the Designer creates a definition based on the DTD
structure.

The following figure shows an example of an XML file where StoreInfo.dtd contains the Store element and
Product is one of the child elements of Store:

The following figure shows the associated DTD:

In the associated DTD, ProductInfo.xml, uses the Product element from StoreInfo.dtd. Product includes the
multiple-occurring Sales element.

Importing XML Metadata 35

The following figure shows the source definition that the Designer creates:

The ProductInfo definition contains the Product and Sales groups. The XML file determines what elements to
include in the definition. The DTD file determines the structure of the XML definition.

Importing Metadata from an XML Schema
A schema file defines the structure of elements and attributes in an XML file. A schema file contains
descriptions of the type of elements and attributes in the file. When you import an XML schema, the Designer
determines the data type, precision, and cardinality of the elements. You cannot change an element definition
in PowerCenter if the element definition comes from a schema.

When you import metadata from an XML schema, the .xsd file can contain import or include statements that
reference other .xsd files. When you import a schema that includes other schemas, the other schemas must
not reference the same namespace.

Example:

<IMPORT
schemaLocation="../../../administration/process/bo/LocationTextBO.xsd"
namespace="http://EnterpriseLibrary/com/acs/enterprise/common/program/administration/
process/bo">
<IMPORT
schemaLocation="../../../administration/process/bo/LineOfBusinessBO.xsd"
namespace="http://EnterpriseLibrary/com/acs/enterprise/common/program/administration/
process/bo">
<IMPORT
schemaLocation="../../../administration/process/bo/ClaimExceptionBO.xsd"
namespace="http://EnterpriseLibrary/com/acs/enterprise/common/program/administration/
process/bo">

You can replace multiple "import schemalocation" statements with one statement:

<xsd:import schemalocation="imported.xsd" namespace="http://EnterpriseLibrary/com/acs/
enterprise/common/program/administration/process/bo"/>

The imported.xsd file includes the other XSD files using the following syntax:

 <xsd:schema targetNamespace="http://EnterpriseLibrary/com/acs/enterprise/common/
program/administration/process/bo" elementFormDefault="qualified" >
 <xsd:include schemaLocation=" LocationTextBO.xsd" />
 <xsd:include schemaLocation=" LineOfBusinessBO.xsd" />
 <xsd:include schemaLocation=" ClaimExceptionBO.xsd" />
 </xsd:schema>

For more information, see Knowledge Base article 158334.

Each simple type definition in an XML schema is a restriction of another simple type definition in the schema
Atomic data types, such as Boolean, string, or integer, restrict the anySimpleType datatype. When you define
a simple data type in an XML schema, you derive a new datatype from an existing data type. For example, you
can derive a restricted integer type that holds only numbers from 1 to 20. The base type is integer.

36 Chapter 2: Using XML with PowerCenter

When you derive a complex data type from another data type, you create a new datatype that contains the
elements of the base type. You can add new elements to the derived type or create restrictions on the
inherited elements. The Designer creates views for derived types without duplicating the columns that
represent inherited components. This reduces metadata and decreases the size of the XML definition in the
repository.

The following image shows a schema with simple and complex derived types:

The MailAddress element is an Address type which is a complex type. A derived type, CAN_Address, inherits
the Name, City, and Street from the Address type, and extends Address by adding a Province and PostalCode.
PostalCode is a simple type called CAN_PostalCode.

When you import an XML schema, every simple type or attribute in a complex type can become a column in
an XML definition. Complex types become views.

The following figure shows an XML definition from the schema if you import the schema with the default
options:

The CAN_Address view contains the elements that are unique for its type. The root element is MailAddress.
The Address type contains Name, Street, and City. The CAN_Address has a foreign key to Address.
CAN_Address includes Province and PostalCode.

The view does not contain the Name, Street, and City that it inherits from MailAddress.

Importing XML Metadata 37

Creating Metadata from Relational Definitions
You can create an XML definition by selecting multiple relational definitions and creating relationships
between them. The Designer creates an XML view for each relational definition you import. The Designer
converts every column in the relational definition and generates primary key-foreign key relationships. You
can choose to create a root view.

The following figure shows a sample XML target definition from the relational definitions, Orders and
Order_Items:

The root is XRoot. XRoot encloses Orders and Order Items. Order_Items has a foreign key that points to
Orders.

Creating Metadata from Flat Files
You can create an XML definition by importing a flat file definition from the repository. If you import more
than one flat file definition, the Designer creates an XML definition with a view for each flat file. The views
have no relationship to each other in the XML definition. If you choose to create a root view, the Designer
creates the views with foreign keys to the root.

The following figure shows a sample XML source definition from flat files orders and products:

Products and Orders have a foreign key to the root view, and are highlighted.

38 Chapter 2: Using XML with PowerCenter

Understanding XML Views
The relationship between elements in the XML hierarchy defines the relationship between XML views in a
PowerCenter definition. In a source definition, a view does not have to be related to any other view. Therefore,
views in a source definition do not require primary or foreign keys. A denormalized view can be independent
of any other view. However, the Designer generates keys if you do not designate key columns when views are
related to other views.

Each view in a target definition must be related to at least one other group. Therefore, each view needs at
least one key to establish its relationship with another view. If you do not designate the keys, the Designer
generates primary and foreign keys in the target views. You can define primary and foreign keys for views if
you create the views and relationships in the XML Editor instead of allowing the Designer to create them for
you.

When the Designer creates a primary or foreign key column, it assigns a column name with a prefix. In an
XML definition, the prefixes are XPK_ for a generated primary key column and XFK_ for a generated foreign
key column. The Designer uses the prefix FK_ for a foreign key that points to a primary key.

For example, when the Designer creates a primary key column for the Sales group, the Designer names the
column XPK_Sales. When the Designer creates a foreign key column connecting a sales group to another
group, it names the column XFK_Sales. You can rename any column name that the Designer creates.

If a mapping contains an XML source, the Integration Service creates the values for the generated primary
key columns in the source definition when you run the session. You can configure start values for the
generated keys.

Creating Custom XML Views
Custom views are groups that you create with the XML Wizard or the XML Editor. If you use the XML Wizard
to create custom views, the wizard creates views containing all the components in the schema. If you use the
XML Editor, you can define each view and choose the components.

The elements in the views and the relationship between views are dependent on the schema the Designer
creates in the repository when you import the definition. The XML Editor validates XML definitions using the
rules for valid views.

Rules and Guidelines for XML Views
Consider the following rules and guidelines when you work with view keys and relationships:

• An PowerCenter XML definition can have up to 400 views.

• A view can have one primary key.

• A view can be related to several other views, and a view can have multiple foreign keys.

• A column cannot be both a primary key and a foreign key.

• A view in a source definition does not require a key.

• A view in a target definition requires at least one key.

- The target root view requires a primary key, but the target root does not require a foreign key.

- A target leaf view requires a foreign key, but the target leaf view does not require a primary key.

• An enclosure element cannot be a key.

• A foreign key always refers to a primary key in another group. You cannot use self-referencing keys.

• A generated foreign key column always refers to a generated primary key column.

Understanding XML Views 39

• The relative cardinality of elements in an XML hierarchy affects how PowerCenter creates views in an
XML definition. The following rules determine when elements can be part of the same view:

- Elements that have a one-to-one relationship can be part of the same view.

- Elements that have a one-to-many relationship can be part of the same normalized or denormalized
view.

- Elements that have a many-to-many relationship cannot be part of the same view.

Understanding Hierarchical Relationships
An XML definition with hierarchical view relationships has each element in the hierarchy appear under its
parent element in a view. Multiple-occurring elements can become views. Complex types do not become
views, and elements unique to derived complex types do not occur in any view.

You can generate the following types of hierarchical view:

• Normalized views. An XML definition with normalized views reduces redundancy by separating multiple-
occurring data into separate views. The views are related by primary and foreign keys.

• Denormalized views. An XML definition with a denormalized view has all the elements of the hierarchy
that are not unique to derived complex types in the view. A source or target definition can contain one
denormalized view.

Normalized Views
When the Designer generates a normalized view, it establishes the root element and the multiple-occurring
elements that become views in an XML definition.

The following figure shows a DTD file and the elements that become views in a normalized XML definition:

Store is the root element. Address, product, employee, and sales are multiple-occurring elements.

40 Chapter 2: Using XML with PowerCenter

The following figure shows a source definition based on the DTD file from the figure above:

The definition has normalized views. The root view is Store. The Address, Product, and Sales views have
foreign keys to Store. The Sales view has a foreign key to the Product view.

The following table shows the rows in a data preview for the Store view:

XPK_si_STORE si_SID si_NAME

1 BE1752 Mud and Sawdust Furniture Store

The following table shows the rows in a data preview for the Address view:

XPK_si_ADDRESS FK_si_ADDRESS si_STREETADDRESS si_CITY si_STAT
E

si_ZIP

1 1 335 Westshore Road Fausta City CA 95784

2 1 7415 Endless Loop Codeville CA 97412

The following table shows the rows in a data preview for the Product view:

XPK_si_PRODUCT FK_si_PRODUCT si_PNAME si_PRICE si_PID

1 1 Chair 5690.00 a1

1 1 Table 1240.00 a2

1 1 Bed 1364.99 a3

Understanding Hierarchical Relationships 41

The following table shows the rows in a data preview for the Sales view:

XPK_si_SALES FK_si_SALES si_REGION si_YTDSALES

1 a1 Northwest 4565.44

2 a2 South 8793.99

3 a3 East 23110.00

4 a4 South 5500.00

5 a5 Northwest 10095.34

6 a6 East 200.00

The following table shows the rows in a data preview for the Employee view:

XPK_si_EMPLOYEE FK_si_EMPLOYEE si_FIRSTNAME si_LASTNAME

1 1 James Bond

2 1 Austin Powers

3 1 Indiana Jones

4 1 Foxie Brown

5 1 Bonnie Bell

6 1 Laura Croft

Denormalized Views
When the Designer generates a denormalized view, it creates one view and puts all elements of the hierarchy
into the view. All the elements in a denormalized view belong to the same parent chain. Denormalized views,
like denormalized tables, generate duplicate data.

The Designer can generate denormalized views for XML definitions that contain more than one multiple-
occurring element if the multiple-occurring elements have a one-to-many relationship and are all part of the
same parent chain.

42 Chapter 2: Using XML with PowerCenter

The following figure shows a DTD file that contains multiple-occurring elements, in this case Product and
Sales:

Product and Sales are multiple-occurring elements. Because the multiple-occurring elements have a one-to-
many relationship, the Designer can create a single denormalized view that includes all elements.

The following figure shows the denormalized view for ProdAndSales.dtd in a source definition:

The Designer creates a single view for all the elements in the ProdAndSales hierarchy. Because a DTD file
does not define datatypes, the Designer assigns a datatype of string to all columns. The denormalized view
does not need a primary or foreign key.

The following figure shows a data preview for the denormalized view:

Understanding Entity Relationships
You can create entity relationships from an XML schema. When you create an XML definition that contains
entity relationships, the Designer generates separate views for multiple-occurring elements, element groups,
and complex types. The Designer includes views for all derived complex types. The Designer creates links
and keys between the views based on type and hierarchy relationships.

When you work with XML schemas, you can reference parts of the schema rather than repeat the same
information in schema components. A component can inherit the elements and attributes of another
component and restrict or extend the elements from the component. For example, you might use a complex

Understanding Entity Relationships 43

type as a base for creating a new complex type. You can add more elements to the new type to create an
extended complex type. Or, you might create a restricted complex type, which is a subset of another complex
type.

If you create views manually or re-create entity relationships in the XML Editor, you choose how you want to
structure the metadata. When you create an XML definition based on an XML schema that uses inheritance,
you can generate separate views for the base type and derived type. You might create inheritance
relationships if you plan to map the XML data to normalized relational tables.

An XML Type I inheritance relationship is a relationship between two views. Each view root is a global
complex type. One view is derived from the other.

You can create an inheritance relationship between a column and a view. This is an XML Type II inheritance
relationship.

The Designer generates separate views for substitution groups.

Rules and Guidelines for Entity Relationships
The Designer generates entities based on the following guidelines:

• An entity represents a portion of an XML, DTD, or XML schema hierarchy. This hierarchy does not need to
start at the root of the XML file.

• The Designer uses entities defined in a DTD file to create entity relationships.

• The Designer uses type structures defined in an XML schema to generate entity relationships.

• The Designer creates a new entity when it encounters a multiple-occurring element under a parent
element.

• The Designer generates a separate view for each member of a substitution group.

• The Designer generates primary keys and foreign keys to relate separate entities.

Type 1 Entity Relationship Example
An XML Type 1 entity relationship is a relationship between two views. Each view must be rooted as a global
complex type. One view must be derived from the other.

The following schema contains a PublicationType, BookType, and MagazineType. PublicationType is the base
type. A publication includes Title, Author, and Date. BookType and MagazineType are derived types that
extend the PublicationType. Book has ISBN and Publisher, and Magazine has Volume and Edition.

<xsd:complexType name="PublicationType">
 <xsd:sequence>
 <xsd:element name="Title" type="xsd:string"/>
 <xsd:element name="Author" type="xsd:string" maxOccurs="unbounded"/>
 <xsd:element name="Date" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:element name="Publication" type="PublicationType"/>
<xsd:complexType name="BookType">
 <xsd:complexContent>
 <xsd:extension base="PublicationType">
 <xsd:sequence>
 <xsd:element name="ISBN" type="xsd:string"/>
 <xsd:element name="Publisher" type="xsd:string
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="MagazineType">
 <xsd:complexContent>
 <xsd:extension base="PublicationType">

44 Chapter 2: Using XML with PowerCenter

 <xsd:sequence>
 <xsd:element name="Volume" type="xsd:string"/>
 <xsd:element name="Edition" type="xsd:string"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>
</xsd:schema>

When you create XML views as entities in an XML definition, the Title and Date metadata from
PublicationType do not repeat in BookType or MagazineType. Instead, these views contain the metadata that
distinguishes them from the PublicationType: ISBN and Publisher for BookType, and Volume and Edition for
MagazineType. They have foreign keys that link them to PublicationType.

This example uses reduced metadata explosion because none of the elements in the base type repeat in the
derived types.

Author is a multiple-occurring element in Publication. Author becomes an XML view.

The following figure shows the default views the Designer generates from the schema:

Understanding Entity Relationships 45

The following figure shows an XML file that has a publication, a magazine, and books:

If you process the sample XML file using the XML definition in the preceding figure, you create data in the
following views:

• PublicationType view. Contains the title and date for each publication.

The following figure shows the PublicationType view:

• BookType view. Contains the ISBN and publisher. BookType contains a foreign key to PublicationType.

The following figure shows the BookType view:

• MagazineType view. Contains volume and edition. MagazineType also contains a foreign key to the
PublicationType.

The following figure shows the MagazineType view:

• Author view. Contains authors for all the publications. The Designer generates a separate view for Author
because Author is a multiple-occurring element. Each publication can contain multiple authors.

The following figure shows the Author view:

46 Chapter 2: Using XML with PowerCenter

Type II Entity Relationship Example
You can create an inheritance relationship between a column and a complex type view. The column must be
an element of a local complex type. The view must be rooted at a global complex type. The local complex
type must be derived from the global complex type.

For example, the following schema defines a complex type called EmployeeType. EmployeeType contains
EmployeeNumber and EmployeeName elements.

EmployeeStatusType includes an element called Employee that extends EmployeeType. Employee includes
an EmployeeStatus element.

<xs:element name="Employee_Payroll">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="EmployeeStatus" type="EmpStatusType"
 maxOccurs="unbounded"></xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:complexType name="EmpStatusType">
 <xs:sequence>
 <xs:element name="Employee" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="EmployeeType">
 xs:sequence>
 <xs:element name="EmployeeStatus" type="xs:string">
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="EmployeeType">
 <xs:sequence>
 <xs:element name="EmployeeName" type="xs:string"></xs:element>
 <xs:element name="EmployeeNumber" type="xs:string"></xs:element>
 </xs:sequence>
</xs:complexType>
</xs:schema>

When you import the schema, the Designer creates a view for Employee_Payroll, EmployeeType, and
EmployeeStatus. The EmployeeStatus view contains the column called Employee. Employee derives from
EmployeeType.

Understanding Entity Relationships 47

The following figure shows the Employee_Payroll view, the EmployeeType view, and the EmployeeStatus XML
view:

The Employee_Payroll view contains the Employee_Payroll element and a primary key, PK_Employee_Payroll.
The Employee_Payroll view is connected to the EmployeeStatus view by a blue line that indicates a one- to-
many relationship between the views. Employee_Payroll contains multiple occurrences of EmployeeStatus.

The EmployeeStatus view contains an Employee element of type EmployeeType. The Employee element
extends EmployeeType by including an EmployeeStatus element. The EmployeeStatus view also contains a
foreign key to Employee_Payroll. The EmployeeStatus view is connected to an EmployeeType view with a
gray arrow. The arrow indicates a type relationship between the views.

The EmployeeType view contains an EmployeeType that consists of EmployeeName and EmployeeNumber.

Using Substitution Groups in an XML Definition
When you create an XML definition containing entity relationships, the Designer generates separate views for
element groups and complex types. When you import an XML schema that uses substitution groups, the
Designer imports each member of the substitution group as a separate entity. The Designer makes a
separate view for each group.

48 Chapter 2: Using XML with PowerCenter

The following figure shows a sample portion of an XML schema containing the substitution group
MailAddress:

The following figure shows an XML definition with a view for each member of the substitution group,
including AddrCAN, AddrGBR, AddrUSA, ShortAddress, and Street:

Working with Circular References
A circular relationship is a circular hierarchy relationship between two views in an XML definition or within a
single view in an XML definition. For example, a complex element called Part might contain an ID, part name,
and a reference to another part.

The following example shows the Part element components:

<xs:element name="Part">
<xs:complexType>
 <xs:sequence>
 <xs:element name="ID" type="xs:string"/>

Working with Circular References 49

 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Type" type="xs:string"/>
 <xs:element ref="Part" minOccurs="0" maxOccurs="unbounded"/>
 /xs:sequence>
</xs:complexType>
</xs:element>

The following figure shows a circular reference in the XML Editor workspace with a complex element called
Part:

You might use the Part XML definition to read the following XML file in a session:

<Part>
<ID>1</ID>
<Name>Big Part</Name>
<Type>L</Type>
 <Part>
 <ID>1.A</ID>
 <Name>Middle Part</Name>
 <Type>M</Type>
 <Part>
 <ID>1.A.B</ID>
 <Name>Small Part</Name>
 <Type>S</Type>
 </Part>
 </Part>
</Part>

In the XML file, Part 1 contains Part 1.A, and Part 1.A contains Part 1.A.B.

The following figure shows the data and the keys that a session might generate from the XML source:

Note: You cannot run a session that contains a circular XML reference if the session is enabled for
constraint-based loading. The session rejects all rows.

50 Chapter 2: Using XML with PowerCenter

Understanding View Rows
To extract data from an XML document, you specify the rows to generate, the columns of data to include, and
when to generate the rows. When you define a view in the XML Editor, you create the view row, an element or
a global complex type that the Integration Service requires to generate a row of data.

The Integration Service uses a view row to determine when to read and write data for an XML view. You can
set a view row at any single or multiple-occurring element. Once you set the view row, every element you add
to the view has a one-to-one correspondence with the view row.

For example, the Employees view contains elements Employee, Name, Firstname, and Lastname. When you
set the view row to Employee, the Integration Service extracts data using the following algorithm:

For every (Employees/Employee)
extract ./Name/Firstname/Lastname

An Employees XML schema might contain the following elements:

EMPLOYEES
 EMPLOYEE+
 ADDRESS+
 NAME
 FIRSTNAME
 LASTNAME
 EMAIL+

Employee, Address, and Email are multiple-occurring elements. You can create a view that contains the
following elements:

EMPLOYEE
 ADDRESS
 NAME

If you set the view row as Address, the Integration Service extracts a Name for every Employee/Address in
the XML data. You cannot add Email to this view because you would create a many-to-many relationship
between Address and Email.

You can add a pivoted multiple-occurring column to the view. A view row can contain the pivoted column.

For example, you can add one instance of Email as a pivoted column to the Employee view. The view would
contain the following elements:

EMPLOYEE
 ADDRESS
 NAME
 EMAIL[1]

The view might have the view row, EMPLOYEE/ADDRESS/EMAIL[1]. The Integration Service extracts data for the
first instance of Employee/Address/Email.

Using XPath Query Predicates
Use a query in an XML view to filter XML source data. The Integration Service extracts data from a source
XML file based on the query. If the query is true, the Integration Service extracts data for the view.

To create a query in an XML view, you create an XPath query predicate in the XML Editor. XPath is a language
that describes a way to locate items in an XML document. XPath uses an addressing syntax based on the
path through the XML hierarchy from a root component. You can create an XPath query predicate for
elements in the view row or elements and attributes that have an XPath that includes the view row.

An XPath query predicate includes an element or attribute to extract, and the query predicate that determines
the criteria. You can verify the value of an element or attribute, or you can verify that an element or attribute
exists in the source XML data.

Understanding View Rows 51

Rules and Guidelines for Using View Rows
Use the following rules and guidelines to use view rows in an XML definition:

• A view row must be a type or an element. A view row cannot be an attribute.

• Every view must have a view row, which must be an element or complex type.

• The view root is the top-level element in a view. The view root is the parent to all the other elements in the
view.

• The view row can be the same as the view root unless the view is denormalized.

• Two views can have the same view row in an XML source or XML Parser transformation.

• The view row element must be the lowest multiple-occurring element in the view. A view cannot contain
many-to-many relationships.

• If you add a multiple-occurring element to a view with no other multiple-occurring element, you change the
view row to the new element by default. If the view already has a multiple-occurring element, you cannot
add another multiple-occurring element.

• You do not need to specify a view row when you create an empty view. However, as soon as you add a
column to the view, the Designer creates the view row. This is true even if you add just the primary key.

• You can change a view row at a later time, but you cannot change a view root unless there are no schema
components in the view.

• You can specify a view row that consists of a pivoted element, such as:

Product/Order[2]/Customer
• An effective view row for a view is the path of view rows from the top of a hierarchy relationship down to

the view row in the view. A view can have multiple effective view rows because the view can have multiple
hierarchy relationships in the XML definition.

You can specify options in the XML Editor that affect how view rows and effective view rows affect data
output.

Pivoting Columns
Sometimes an element that occurs multiple times is a set of the same elements containing different values.
For example, an element called Sales that occurs 12 times might contain the sales figures for each month of
the year. Or, an element called Address that occurs twice might be a home address and an office address.

If you have this type of element in an XML source, use pivoting to treat occurrences of elements as separate
columns in a group. To pivot occurrences of an element in an XML view, create a column for each occurrence
you want to represent in the definition. In the monthly sales example, if you want to represent all 12
occurrences as columns, create 12 sales columns in the view. If you want to represent the sales of one
quarter, create three columns. When you run a session, the Integration Service ignores any XML data for the
occurrences that you do not include in the definition.

You can pivot columns when you add or edit a view in the XML source definition.

You can pivot simple types and complex types. You cannot pivot a primary key column. When you pivot
columns in a view, the resulting group structure must follow the rules for a valid normalized or denormalized
view. The Designer displays warnings and errors if the pivoted column invalidates a view.

Pivoting affects an element in the view where you pivot the element. When you pivot an element in a view,
you do not change same element in another view.

52 Chapter 2: Using XML with PowerCenter

Note: You cannot pivot columns in an XML target.

The following figure shows two occurrences of the Address element in the StoreInfo XML file:

First occurrence of Address pivots to home address columns with prefix HOM_. The second occurrence of
Address pivots to office address columns with prefix OFC_. XPath shows the two sets of columns that come
from the same elements.

The following figure shows the ADDRESS element of the StoreInfo XML file pivoted into two sets of address
columns:

In the following figure, the first and second address occurrences (with HOM_ and OFC_ prefixes) appear as
columns in the group:

Pivoting Columns 53

Using Multiple-Level Pivots
You can pivot more than one level of elements in a view by specifying fixed offsets for multiple-occurring
elements in the XPath for a column. For example, you might have the following elements in a view:

STORE
 PRODUCT+
 PNAME
 ORDER+
 ORDERNAME
 CUSTOMER+
 CUSTNAME

The XPath STORE/PRODUCT[2]/ORDER[1]/ORDERNAME refers to the ordername for the first order for the second
product in the store. The XPath STORE/PRODUCT[2]/ORDER/CUSTOMER[1]refers to the first customer for all
orders of the second product.

If you pivot a view row, any column in the XML view that occurs below the view row must have an XPath that
matches XPath of the view row.

For example, a view might have the following view row:

Transaction/Trade[1]
The following columns have the same occurrence of Trade in the XPath:

Transaction/Trade[1]/Date
Transaction/Trade[1]/Price
Transaction/Trade[1]/Person[1]/Firstname

You cannot create a column with the following XPath in the view:

Transaction/Trade[2]/Date

54 Chapter 2: Using XML with PowerCenter

C h a p t e r 3

Working with XML Sources
This chapter includes the following topics:

• Working with XML Sources Overview, 55

• Importing an XML Source Definition, 56

• Working with XML Views, 58

• Generating Entity Relationships, 59

• Generating Hierarchy Relationships, 60

• Creating Custom XML Views, 60

• Synchronizing XML Definitions, 62

• Editing XML Source Definition Properties, 62

• Creating XML Definitions from Repository Definitions, 64

• Troubleshooting XML Sources, 64

Working with XML Sources Overview
The Designer provides an XML Wizard that you can use to create XML definitions in the repository. You can
import files from a URL or local node to create an XML definition. You can also import relational or flat file
definitions from a PowerCenter repository. You can create XML definitions from the following file types:

• XML files

• XML schema files

• DTD files

• Relational definitions

• Flat file definitions

When you create XML definitions, you import files with the XML Wizard and organize metadata into XML
views. XML views are groups of columns containing the elements and attributes in the XML file. The wizard
can generate views for you, or you can create custom views.

You can create relationships between views in the XML Wizard. You can create hierarchy relationships or
entity relationships.

You can synchronize an XML definition against an XML schema file if the structure of the schema changes.

55

Importing an XML Source Definition
When you import a source definition from an XML schema or DTD file, the Designer can provide an accurate
definition of the data based on the description provided in the DTD or XML schema file. When you import a
source definition based on an XML file without an associated DTD or XML schema, the XML Wizard
determines the types and occurrences of the data based on data represented in the XML file. When you
create the XML definition, you can get unexpected results. For example, the Designer might define an
inaccurate scale attribute for string columns. If you export the XML source definition and import the
definition with the inaccurate scale attributes, errors occur.

After you create an XML source definition, you cannot change the source definition to any other source type.
Conversely, you cannot change other types of source definition to XML definitions.

The XML Wizard uses keys to relate the XML views and reconstruct the XML hierarchy. You can choose to
generate views and primary keys, or you can create views and specify keys. When you create custom views,
you can select roots and choose how to handle metadata expansion.

The XML Wizard saves the XML hierarchy and the view information as an XML schema in the repository.
When you import an XML definition, the ability to change the cardinality and datatype of the elements in the
hierarchy depends on the type of file you are importing. For example, DTD and XML files do not store
datatype information. When you import these files to create an XML definition, you can configure datatype,
precision, and scale in the Designer. If you import an XML schema, you can change the precision and scale.

You cannot create an XML source definition from an XML file of exported repository objects.When you import
a source definition, the Designer applies a default code page to the XML definition in the repository. The code
page is based on the PowerCenter Client code page. You cannot change the code page for an XML source
definition, but you can change the code page for an XML target definition after you create it.

Use the XML Wizard to import XML source definitions.

To import an XML file:

1. Click Sources > Import XML Definition.

The Import XML Definition dialog box appears.

2. Click Advanced Options.

The Change XML Views Creation and Naming Options dialog box appears. Select options to specify how
the Designer creates and names XML views.

The following table describes the XML view options:

Option Description

Override all infinite lengths You can specify a default length for components with undefined lengths,
such as strings. If you do not set a default length, the precision for these
components sets to infinite. Infinite precision can cause DTM buffer size
errors when you run a session with large files.

Analyze elements/attributes in
standalone XML as global
declarations

Choose this option to create global declarations of standalone XML
elements or attributes. You can reuse global elements by referencing them in
other parts of the schema. When you clear this option, the standalone XML is
a local declaration.

56 Chapter 3: Working with XML Sources

Option Description

Create an XML view for an
enclosure element

You can create a separate view for an enclosure element if the element can
occur more than once and the child elements can occur more than once. An
enclosure element is an element that has no text content or attributes but
has child elements.

Pivot elements into columns You can pivot leaf elements if they have an occurrence limit. You can pivot
elements in source definitions only.

Ignore fixed element and
attribute values

You can ignore fixed values in a schema and allow other element values in
the data.

Ignore prohibited attributes You can declare an attribute as prohibited in an XML schema. Prohibited
attributes restrict complex types. When you import the schema or file, you
can choose to ignore the prohibited attributes.

Generate names for XML
columns

You can choose to name XML columns with a sequence of numbers or with
the element or attribute name from the schema. If you use names, choose
from the following options:
- When the XMLColumn refers to an attribute, prefix it with the element

name. PowerCenter uses the following format for the name of the XML
column: NameOfElement_NameOfAttribute

- Prefix the XML view name for every XML column. PowerCenter uses the
following format for the name of the XML column:
NameOfView_NameOfElement

- Prefix the XML view name for every foreign-key column. PowerCenter uses
the following format for the name of a generated foreign key column:
FK_NameOfView_NameOfParentView_NameOfPKColumn

Maximum length for a column name is 80 characters. PowerCenter truncates
column names longer than 80 characters. If a column name is not unique,
PowerCenter adds a numeric suffix to keep the name unique.

3. Click OK to apply changes.

4. Choose the type of file to import. You can choose the following options:

• Import the definition from a local XML file or a URL. Create a source definition from an XML, DTD, or
XML schema file. If you import an XML file with an associated DTD or schema, the XML Wizard uses
the DTD or schema to generate the XML document.

• Import the definition from a non-XML source or target. Use this option to create a source definition
from flat file or relational definitions. The new source definition contains one group for each input
definition plus a root element group.

5. Click Next to complete the XML Wizard.

Multi-line Attributes Values
The XML Wizard does not allow attribute values that contain new line characters and span more than one
line. When you import a source or target definition from an XML file that contains an attribute with new line
characters, the XML Wizard displays an error and does not import the file.

Importing an XML Source Definition 57

Working with XML Views
The Designer displays views as groups in the source definition.

The XML Wizard provides options for creating views in the definition or you can create the views manually in
the XML Editor.

You can choose from the following options to create XML views:

• Generate entity relationships. If you create entity relationships, the XML Wizard generates views for
multiple-occurring or referenced elements and complex types.

• Generate hierarchy relationships. When you create hierarchical relationships, each reference to a
component expands under its parent element. You can generate normalized or denormalized XML views
in a hierarchy relationship.

- Normalized XML views. When you generate a normalized XML view, elements and attributes appear
once. Multiple-occurring elements, or elements in one-to-many relationships appear in different views
related by keys.

- Denormalized XML views. When you generate a denormalized XML view, all elements and attributes
appear in one view. The Designer does not model many-to-many relationships between elements and
attributes in an XML definition..

• Create a custom XML views. You can specify any global element as a root when creating a custom XML
view. You can choose to reduce metadata explosion for elements, complex types, and inherited complex
types.

• Synchronize XML definitions. You can update one or more XML definitions when their underlying
schemas change.

• Skip Create XML views. When you choose to skip creating the XML views, you can define them later in the
XML Editor. When you define views in the XML Editor you can define the views to match targets and
simplify the mapping.

• Create XML views for the elements and attributes in the XML file. When you import an XML file with an
associated schema, you can create XML views for just the elements and attributes in the XML file, instead
of all the components in the schema.

If you choose to generate entity or hierarchy relationships, the Designer chooses a default root and creates
the XML views. If the XML definition requires more than 400 views, a message appears that the definition is
too large. You can manually create views in the XML Editor. Import the XML definition and choose to create
custom views or skip generating XML views.

When you import a definition from a XML schema that has no global elements, the Designer cannot create a
root view in the XML definition. The Designer displays a message that there is no global element.

After you create an XML view, you cannot change the configuration options you set for the view. For example,
if you create a normalized XML view, you cannot change the view to denormalized. You must import a new
XML source definition and select the denormalized option.

For information about XML sizing in PowerCenter, see “Using XML with PowerCenter Overview” on page 32.
For more information about the limitations that apply to XML handling in PowerCenter, see “Limitations” on
page 33.

To create a transformation with other element types, and to transform larger XML input files, use a Data
Processor transformation. For more information about how to create Data Processor transformations, see
the Informatica Data Transformation User Guide and the Informatica Data Transformation Getting Started
Guide.

58 Chapter 3: Working with XML Sources

Importing Part of an XML Schema
When you import an XML schema, the Designer creates an XML definition that represents the entire schema.
If you import an XML file with an associated schema, you can create XML views for just the elements and
attributes in the XML file instead of all the components in the schema. The Designer creates a definition that
is limited to the components in the XML file.

To import part of a schema, import an XML file that references the schema. Select the option to create XML
views only for the elements and attributes in the XML file.

Rules and Guidelines for Importing Part of an XML Schema
Consider the following rules and guidelines to import a part of the schema:

• The Designer limits metadata to what is in the XML file. If you change the XML file and import the XML
schema again, the XML definition changes.

• If an element or attribute occurs once in the XML file hierarchy, but occurs in more than one part of the
schema hierarchy, the Designer includes all occurrences of the element or attribute in the XML definition.

For example, a schema might have two address elements, a Store/Address and an Employee/Address. If
you import an XML file with the schema, and the XML file has only Store/Address, the Designer creates all
Address elements, including the Store/Address and the Employee/Address elements.

• If the XML file contains a derived complex type, the Designer includes all the base types in the XML
definition as separate views. The Designer does not expand the derived type to include the base type in
the same view.

• The Designer does not expand circular references in the XML definition when the XML file has multiple
levels of circular references.

Generating Entity Relationships
You can generate an XML hierarchy as an entity relationship model. When you generate XML view entity
relationships, the Designer completes the following actions:

• Generates views for multiple-occurring and referenced elements and complex types.

• Creates relationships between the views.

When the Designer generates entity relationships, the Designer generates different entities for complex types,
global elements, and multiple-occurring elements based on the relationships in the schema.

If you want to create groups other than the default groups, or if you want to combine elements from different
complex types, you can create custom XML views.

When you view an XML source definition in the XML Editor, you can see the relationships between each
element in the XML hierarchy. For each relationship between views, the XML Editor generates links based on
the type of relationship between the views.

To generate entity relationships:

1. In the Source Analyzer, click Sources > Import XML Definition.

The XML Wizard opens.

2. Navigate to the source you want to import and click Open.

3. Enter a name for the file and click Next.

Generating Entity Relationships 59

4. Select Entity Relationships and click Finish.

The XML Wizard generates an XML definition that uses entity relationships.

Generating Hierarchy Relationships
When you create hierarchy relationships, each reference to a component is expanded under its parent
element. The XML Wizard selects the default root and uses default settings to create XML groups.

To generate hierarchy relationships:

1. In the Source Analyzer, click Sources > Import XML Definition.

The XML Wizard opens.

2. Navigate to the source you want to import and click Open.

3. Enter a name for the file and click Next.

4. Select Hierarchy Relationships.

5. Select Normalized XML Views or Denormalized XML Views and click Finish.

The XML Wizard generates XML views based on hierarchy relationships.

Creating Custom XML Views
You can create custom XML views using the XML Wizard. When you create custom views, you can choose
roots and specify how to generate metadata. You can choose to include or exclude global elements based on
whether the root information applies to the data you intend to process. For example, if the schema contains
information about stores and customers, you might want to create an XML definition that processes just the
customers.

You can specify how you want to generate metadata associated with the view. You can reduce metadata
explosion for elements, complex types, and inherited complex types by generating entity relationships. If you
do not reduce the metadata references, the Designer generates hierarchy relationships and expands all child
elements under their parent elements.

To create a custom view using the XML Wizard:

1. In the Source Analyzer, click Sources > Import XML Definition.

The XML Wizard opens.

2. Navigate to the source you want to import and click Open.

3. Enter a name for the file and click Next.

4. Select Create Custom XML Views and click Next.

Note: To manually create all the XML views in the XML Editor, select Skip Create XML Views. The XML
Wizard creates the schema in the repository, but does not create the XML views.

5. Select root elements from the list of global root elements and click Next.

6. Choose to reduce metadata for elements, complex types, or inherited complex types and click Finish.

60 Chapter 3: Working with XML Sources

Selecting Root Elements
When you create a custom view, you can choose from the global elements in the imported schema to set the
root for the XML instance document. Global elements are elements in an XML schema hierarchy that fall
directly beneath the top root element.

The following figure shows the Root Selection page:

In this example, Bookstore element is selected as the root and the Book123 element is cleared as the root
element.

Reducing Metadata Explosion
When the Designer creates an XML definition based on an XML schema that uses inheritance, the Designer
can expand the metadata for each referenced element or group within the view that references the metadata.
Or, the Designer can create a separate view for a referenced object and create relationships between the
object and other views.

If you use references within an XML schema, you might want to reduce the number of times the Designer
includes the metadata associated with a reference. The XML Wizard provides the following options to reduce
metadata references:

• Reduce element explosion. The Designer creates a view for any multiple-occurring element or any
element that is referenced by more than one other element. Each view can have multiple hierarchical
relationships with other views in the definition.

• Reduce complex type explosion. The Designer creates an XML view for each referenced complex type or
multiple-occurring element. The XML view can have multiple type relationships with other views. If the
schema uses inherited complex types, you can also reduce explosion of inherited complex types.

• Reduce complex type inheritance explosion. For any inherited type, the XML Wizard creates a type
relationship.

When you reduce metadata explosion, the Designer creates entity relationships between the XML views it
generates.

Creating Custom XML Views 61

Synchronizing XML Definitions
When you work with XML definitions, the files or sources you used to create the XML definition might change.
For example, you might add a new element or complex type to an XSD file. You can synchronize an XML
definition with any of the following repository definitions or files you used to create the XML definition:

• Relational source definitions

• Relational target definitions

• Flat files

• URLs

• XML files

• DTDs

• Schema files

When you synchronize an XML definition, the Designer updates the XML schema in the Schema Navigator.
but it does not update the views in the XML definition. You can manually update the views columns in the
XML Editor after you synchronize the XML definition.

Tip: Use schema files to synchronize XML definitions.

To synchronize XML source definitions:

1. In the Source Analyzer, click Sources > Import XML Definition.

The XML Wizard opens.

2. Navigate to the repository definition or file that you used to create the XML definition, and click Open.

3. In Step 1 of the wizard, click Next. The wizard ignores any change you make to the name.

4. In Step 2 of the XML Wizard, choose to synchronize the XML definition and click Next.

The XML Wizard skips to Step 5.

5. In Step 5 of the XML Wizard, choose the XML definition you want to synchronize.

The XML Wizard synchronizes the source with the selected definition.

Use this method to synchronize XML target definitions. If you modify an XML source definition, you might
also need to synchronize the target definition.

Note: Verify that you synchronize the XML definition with the source that you used to create the definition. If
you synchronize an XML definition with a source that you did not use to create the definition, the Designer
cannot synchronize the definitions and loses metadata. Click Edit > Revert to Saved to restore the XML
definition.

Editing XML Source Definition Properties
After you import an XML source definition, you can edit source definition properties, such as the definition
name. If you configure the session to read a file list, you can configure the mapping to write the source file
name to each target row. You can also add metadata extensions.

To edit XML source definition properties:

1. Right-click the top of the definition in the Source Analyzer workspace. Select Edit.

62 Chapter 3: Working with XML Sources

2. On the Table tab, edit the following settings:

Table Settings Description

Select Table Displays the source definition you are editing.

Business Name Descriptive name for the source definition. You can edit Business Name by clicking the
Rename button.

Owner Name Not applicable for XML files.

Description Description of the source. Character limit is 2,000 bytes/K, where K is the maximum
number of bytes for each character in the repository code page. Enter links to business
documentation.

Database Type Source or database type.

Code Page Read Only. Not applicable for XML source files. The Integration Service converts all XML
source files to Unicode.

3. Click the Columns tab.

On the Columns tab, you can view information about the columns in the definition. To change column
names or values, use the XML Editor.

You can view the following information:

Columns Settings Description

Select Table Source definition you are editing.

Column Name Name of the column.

Datatype PowerCenter datatypes.

Precision Length of the column.

Scale Number of decimal positions in numerical data.

Not Null Indicates whether the column can accept nulls.

Key Type Primary key, foreign key, or not a key.

XPath Path of the element referenced by the current column in the XML hierarchy. XPath does
not display for generated primary or foreign keys.

Business Name User-defined descriptive name for the column. If Business Name is not visible in the
window, scroll to the right to view or modify the column.

4. If you configure the session to read a file list, and you want to write the source file name to each target
row, click the Properties tab and select Add Currently Processed Flat File Name Port.

The Designer adds the CurrentlyProcessedFileName port to the Columns tab. It is the last column in the
first group. The Integration Service uses this port to return the source file name. The
CurrentlyProcessedFileName port is a string port with default precision of 256 characters.

Editing XML Source Definition Properties 63

To remove the CurrentlyProcessedFileName port, click the Properties tab and clear Add Currently
Processed Flat File Name Port.

5. Click the Metadata Extensions tab to create, edit, and delete user-defined metadata extensions.

6. Click OK.

7. Click Repository > Save to save changes to the repository.

Creating XML Definitions from Repository Definitions
You can import an XML source or target definition from relational or flat file definitions in the repository.
When you import an XML definition from a repository definition, the XML Wizard creates an XML hierarchy
from the relationships between the selected objects. The XML Wizard creates a root element for the
hierarchy. You can choose a root from the groups you create. Or, you can create a separate root and relate
the groups to it.

When you create an XML target definition, the XML Wizard generates keys to relate each group to the root.

To create an XML definition from repository sources or targets:

1. In the Source Analyzer, click Sources > Import XML Definition.

-or-

In the Warehouse Designer, click Targets > Import XML Definition.

2. In the XML Import dialog box, click Non-XML Sources or Non-XML Targets.

3. Select a definition from the list of sources or targets. Click the Arrow button to add the definition to the
selected source list.

You can select more than one input and more than one input type. If the definitions are related through
primary and foreign keys, the XML Wizard uses the keys to relate groups when it generates the hierarchy.

4. To create a separate group for the root element, enter the Optional XML Rootname.

The root name defaults to XRoot. The root group encloses all of the other groups. Remove the root name
if you want to use one of the other groups as the root. The XML Wizard creates a group for each input
source or target definition you select and generates a primary key in each group. The XML Wizard
creates a foreign key in each group. The foreign key points to the root group link key.

5. Click Open.

The XML Wizard appears.

6. Use the XML Wizard to generate the source or target groups.

Troubleshooting XML Sources

How can I put two multiple-occurring elements that both have the same parent element into one
view? For example, I need to put all the elements of EMPLOYEE in one view:

<!ELEMENT EMPLOYEE (EID, EMAIL+, PHONE+)>

64 Chapter 3: Working with XML Sources

EMAIL and PHONE belong to the same parent element, but they do not belong to the same parent chain. You
cannot put them in the same denormalized view. To put all the elements of employee in one view, you can
pivot one of the multiple occurring elements.

Follow these steps to add two multiple-occurring elements to the same view:

1. Create an EMPLOYEE view.

2. Add the EID and EMAIL elements to the EMPLOYEE view.

3. Pivot the number of occurrences of EMAIL that you want to include in the view. Each EMAIL occurrence
becomes a single occurring element in the view.

4. Add the PHONE element.

I have the following element definition in my DTD:
<!ELEMENT EMPLOYEE (EMPNO, SALARY)+>

How can I match the EMPNO and SALARY in the same view?

The DTD example is ambiguous. The definition is equivalent to the following:

<!ELEMENT EMPLOYEE (EMPNO+, SALARY+)>
In the DTD example, EMPLOYEE has multiple-occurring elements EMPNO and SALARY. You cannot have two
multiple-occurring elements in the same view.

Use one of the following solutions:

• Rewrite the element definition to make the definition unambiguous.

You might define the EMPLOYEE element as follows:

<!ELEMENT EMPLOYEES (EMPLOYEE+)>
<!ELEMENT EMPLOYEE (EMPNO, SALARY)>

When you use this syntax, you define one EMPNO and one SALARY for each EMPLOYEE. The EMPLOYEE
view contains both elements. Include EMPLOYEE as a multiple-occurring element in EMPLOYEES.

• Leave the elements in separate views and use the source definition twice in a mapping.

When EMPNO and SALARY are in different views, you can still combine the data in a mapping. Use two
instances of the same source definition and use a Joiner transformation.

I imported an XML file with the following structure:
<Bookstore>
 <Book>Book Name</Book>
 <Book>Book Name</Book>
 <ISBN>051022906630</ISBN>
</Bookstore>

When I import this XML file, the Designer drops the ISBN element. Why does this happen? How
can I get the Designer to include the ISBN element?

• Use the schema to import the XML definition. When you use an XML file to import an XML definition, the
Designer reads the first element as simple content because the element has no child elements. The
Designer discards the ISBN child element from the second Book instance. If you use a schema to import
the definition, the Designer uses the schema definition to determine how to read XML data.

• Verify the XML file accurately represents the associated schema. If you use an XML file to import a
source definition, verify the XML file is an accurate representation of the structure in the corresponding
XML schema.

For information about XML sizing in PowerCenter, see “Using XML with PowerCenter Overview” on page 32.
For information about the limitations that apply to XML handling in PowerCenter, see “Limitations” on page
33.

Troubleshooting XML Sources 65

To create a transformation with other element types, and to transform larger XML input files, use a Data
Processor transformation. For more information about how to create Data Processor transformations, see
the Informatica Data Transformation User Guide and the Informatica Data Transformation Getting Started
Guide.

66 Chapter 3: Working with XML Sources

C h a p t e r 4

Using the XML Editor
This chapter includes the following topics:

• Using the XML Editor Overview, 67

• Creating and Editing Views, 69

• Creating an XPath Query Predicate, 75

• Maintaining View Relationships, 78

• Viewing Schema Components, 80

• Setting XML View Options, 83

• Troubleshooting Working with the XML Editor, 90

Using the XML Editor Overview
When you import an XML definition in the Designer, you create an XML definition with default views, custom
views, or no views. After you create an XML definition, you use the XML Editor to make changes to the
definition.

Use the XML Editor to create views, modify components, add columns, and maintain view relationships in the
workspace. When you update an XML definition, the Designer propagates the changes to any mapping that
includes the source. Some changes to XML definitions can invalidate mappings.

Note: If you make significant changes to the source you used to create an XML definition, you can
synchronize the definition to the new source rather than editing the definition manually.

The XML Editor contains the following windows:

• Navigator

• XML Workspace

• Columns Window

67

The following figure shows the XML Editor:

1. Navigator
2. Columns Window
3. XML Workspace

The XML Editor uses icons to represent XML component types. To view a legend that describes the icons in
the XML Editor, click View > Legend.

XML Navigator
The Navigator displays the schema in a hierarchical form and provides information about selected
components. You can sort components in the Navigator by type, hierarchy, or namespace. You can also
expand a component to see components below the component in the hierarchy.

The Navigator toolbar provides shortcuts to most of the Navigator functions. The toolbar also provides
navigation arrows you can click to find previously displayed components in the hierarchy quickly.

The Navigator has the following tabs:

• Properties tab. Displays information about a selected component such as the component type, length,
and occurrence.

• Actions tab. Provides a list of options to view more information about the selected component.

Properties Tab
The Properties tab displays information about a component you select in the Navigator. If the component is a
complex element, you can view element properties in the schema, such as namespace, type, and content.
When you view a simple element or attribute, the Properties tab shows the type and length of the element.
The Properties tab also displays annotations.

If you import the definition from an XML file, you can edit the datatype and cardinality from the Properties
tab. If you create the definition from a DTD file, you can edit the component type.

68 Chapter 4: Using the XML Editor

If a schema uses a namespace, you can change the namespace, prefix, and schema location for the
namespace. The prefix identifies the elements or attributes that belong to a namespace. Elements and
attributes in a default namespace have no prefix. You can select a namespace as a default namespace for an
XML target.

Actions Tab
The Actions tab lists options you use to see more information about a selected component. You can also
reverse changes you make to components from the Actions tab.

The following options appear on the Actions tab, depending on the properties of the component you select:

• ComplexType references. Displays the schema components that are of this type.

• ComplexType hierarchy. Displays the complex types derived from the selected component.

• SimpleType reference. Displays all the components that are this type.

• Propagate SimpleType values. Propagates the length and scale values to all the components of this
SimpleType.

• Element references. Displays the components that reference the selected element.

• Child components. Displays the global schema components that the selected component uses.

• Revert simpleType. Changes the type, length, and precision values back to the original value if you have
changed them.

• XML view references. Displays all the XML views and columns that reference the selected component.

XML Workspace
The XML workspace displays the XML views and the relationships between the views. You can create XML
views in the workspace and define relationships between views.

The XML workspace toolbar provides shortcuts to most of the functions that you can do in the workspace.

You can modify the size of the XML workspace in the following ways:

• Hide the Columns window. Click View > Column Properties.

• Hide the Navigator. Click View > Navigator.

• Reduce the workspace. Click the Zoom button on the Workspace toolbar.

Columns Window
The Columns window displays the columns for a view in the workspace. Use the Columns window to name
columns that you add. If you use pivoted columns, you use the Columns window to select and rename
occurrences of multiple-occurring elements. You can also specify options, such as Not Null, Force Row,
Hierarchy or Type Relationship Row, and Non-Recursive Row. These options affect how the Integration
Service writes data to XML targets.

Creating and Editing Views
Use the XML Editor to create custom XML views or to edit XML views that you created with the XML Wizard.
To create a view, you define the view and specify the columns in the view. If the schema has multiple-
occurring elements, you can specify which element occurrences to include in the view. You can also create

Creating and Editing Views 69

special ports for XML target file names, and pass-through ports for XML Parser and XML Generator
transformations.

Complete the following tasks to create and edit XML views:

• Create an XML view. Add a view to the workspace.

• Add columns to a view. Create new columns in a view.

• Delete columns from a view. Delete columns from a view.

• Expand a complex type. Choose a derived complex type to add to a view.

• Import an anyType element. Import anyType elements.

• Apply content to an anyAttribute element. Define content for anyAttribute elements.

• Use an anySimpleType element. Use an anySimpleType element in an XML definition.

• Add a pass-through port. Add a port to pass non-XML data through an XML transformation.

• Add a FileName column. Add a column to generate a new file name for each XML target file.

Creating an XML View
You can create views in the XML workspace. When you create an XML definition with no views, the XML
Editor displays an empty workspace. You can create a view and add the columns and the view row to the
view.

To create a new XML view in the workspace:

1. Open the XML definition in the XML Editor.

2. Click XML Views > Create XML View.

The XML Editor creates a blank view in the workspace and displays empty columns in the Columns
window.

3. Enter a name for the view in the Columns window.

The name appears on the XML view in the workspace.

4. Highlight the node in the Schema Navigator from which you want to create a view.

5. Click Components > XPath Navigator.

The XPath Navigator appears in the Navigator window.

6. Set the Column Mode in the XPath Navigator to View Row Mode to add the view row.

7. Select the element in the Navigator and drag the element to the view in the workspace.

The XML Editor highlights the view row in blue.

The first time you add a column to a view, the Designer verifies the column can be a view row. This
occurs even if you do not specify to add a view row.

8. To change the view row to another column, right-click the appropriate row in the view and choose Set As
View Row.

Adding Columns to a View
You can add columns to an XML view inside the XML workspace. To add a column, select the column from
the XPath Navigator.

You can add a column to an XML view when the following conditions are true:

• The component path starts from the element in the schema that is the view root for that view.

70 Chapter 4: Using the XML Editor

• The component is not an enclosure element.

• The component does not violate normalization or pivoting rules. For example, you cannot add more than
one multiple-occurring element to a view.

• You can add mixed content elements as either simple or complex types.

• Two views can share the same column, and a view might contain multiple identical columns.

To add columns to a view:

1. Select an XML view in the workspace.

2. Highlight a parent element in the Navigator that contains the components you want to add.

3. Click Components > XPath Navigator.

The XPath Navigator appears in the Navigator window.

4. Click the Mode button and choose to add a column or a view row.

5. Choose Advanced to add a pivoted column to the view.

A pivoted column is an occurrence of a multiple-occurring element. You can add single-occurring
columns in Advanced Mode.

Note: You cannot create pivoted columns in XML target definitions.

6. Drag a column from the XPath Navigator to the appropriate view in the XML workspace. You can select
multiple columns at a time.

The XML Editor validates the column you add. If the column is invalid for the view, a message appears in
the status bar while you are dragging the column. New columns display as you add them to views.

Adding a Pivoted Column
A pivoted column in an XML definition is a multiple-occurring element that forms separate columns for the
element occurrences in a view. You can create pivoted columns from any multiple-occurring element in an
XML definition. You can also pivot elements in a view row.

If you add a pivoted column to a view, a default occurrence number appears in the Columns window. This
number indicates which occurrence of the element to use in the column. You can change the occurrence
number or add more occurrences of the element as new columns. If you do not rename the columns, the XML
Editor adds a sequence number to each pivoted column name.

Note: You cannot change a pivot value if the pivot value is part of a view row.

To add a pivoted column to a view:

1. Select the XML view in the workspace.

2. Highlight the element in the Navigator that you want to pivot.

Or, highlight any element in the parent chain of the element that you want to pivot.

3. Click Components > XPath Navigator.

4. Select Advanced Mode.

5. Drag the column to pivot from the XPath Navigator to the view in the XML workspace.

The Designer adds a default occurrence number in the Columns window. This number indicates which
occurrence of the element to use in the column.

Creating and Editing Views 71

In the following figure, the view contains two occurrences of Sales for the third occurrence of Product:

The first Sales occurrence is in the column called First_Half_Sales. The second Sales occurrence is
Second_Half_Sales. Region is an attribute.

6. Click the XPath link to change an element occurrence number.

The Specify Query Predicate for XPath window appears.

7. Select the multiple-occurring element to edit.

8. Change the occurrence number in the Edit Pivot box and click OK.

Deleting Columns from a View
You can delete columns from a view.

To delete a column from a view:

1. Right-click the column in the view in the workspace.

2. Select Delete This Column.

The XML Editor prompts you to confirm that you want to delete the column.

3. Click Yes to confirm.

The XML Editor removes the column from the view. However, the column remains in the XPath Navigator
hierarchy.

Deleting a Pivoted Column
To delete an occurrence of a pivoted column, select and delete the column from the Columns window.

To delete a pivoted column:

1. Right-click the column you want to delete in the Columns window.

2. Click Delete > Pivot.

3. Click Yes to confirm the delete.

Expanding a Complex Type
A schema can define a complex type that is a base type for more than one type. For example, a Publication
can be a Magazine or a Newspaper. When you create the XML view, you can choose to use Publication as a
Magazine or a Newspaper type.

When you view a complex type in the XPath Navigator, you can view the derived types.

To expand a complex type:

1. Highlight the complex type in the XPath Navigator.

The Expand Complex Types list shows derived types.

2. Select the type you want to use.

If you add the component to an XML definition, the definition contains the type you select.

72 Chapter 4: Using the XML Editor

Importing anyType Elements
You can import an XML schema that contains an anyType element. An element of type anyType can contain
any datatype that occurs in an XML document. For example, the following section of an XML schema
includes an element Document that is anyType:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="Publication" type="xsd:string"/>
 <xsd:element name="Date" type="xsd:string"/>
 <xsd:element name="Document" type="xsd:anyType"/>

When you import a schema with an anyType element, the anyType element appears in the Schema Navigator
as anyType. The Designer does not create a port for an element of the type anyType.

You must change the anyType element to a global complex type in the Designer to use the anyType element
in PowerCenter.

To change an anyType element to another global complex type:

1. Highlight the anyType element in the Schema Navigator.

The anyType property appears in the Properties tab of the Schema Navigator.

2. Click the anyType property.

If the schema does not contain a global complex type, the Designer displays an error that there are no
global complex types to choose from.

3. Select a complex type and click OK.

Applying Content to anyAttribute or ANY Elements
You can import an XML schema that contains the anyAttribute, or ANY content element. To use the element
in a view, you must define content for the element in the XML Editor. When you import a schema with an
anyAttribute or ANY content element, the element appears in the Schema Navigator with no properties. The
element does not appear in a view.

For example, the following schema element includes ANY content:

<xs:element name="person">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 <xs:any minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

To apply content to anyAttribute or ANY content:

1. Click the element content link in the Schema Navigator.

The Edit Any or anyAttribute Type Content dialog box appears.

2. Click Add Type.

A new row appears.

3. Choose an element from the list of valid elements in the schema for the XML definition.

4. Select a cardinality and click OK.

The substituted type appears in the Schema Navigator.

Creating and Editing Views 73

Using anySimpleType in the XML Editor
An anySimpleType element can contain any atomic datatype, such as string, integer, decimal, or date. Use
anySimpleType in a schema when you do not know the datatype of the element in an XML instance
document.

When you define an element as anySimpleType, the Designer creates an anySimpleType column for the
element when you import the schema. When you use the column in a mapping, the XML Source Qualifier
maps this type to a string.

Adding a Pass-Through Port
You can add a pass-through port to an XML Parser or XML Generator transformation to pass non-XML data
through the transformation. When you define the port in the transformation, you add the port to the DataInput
group in the XML Parser transformation or the DataOutput group in the XML Generator transformation.

Once you generate the pass-through port, you add another port to pass the data through the transformation.
This port is the reference port. In an XML Parser transformation, the pass-through port passes the data into
the transformation and the reference port passes the data out of the transformation. In an XML Generator,
the pass-through port passes the data out of the transformation and the reference port passes data into the
transformation.

If you have pass-through ports in an XML definition, you can determine the corresponding reference ports.

To determine the reference port for a pass-through port:

1. Right-click the pass-through port.

2. Select Navigate to > Referenced Column.

The XML Editor highlights the referenced column in the workspace.

Adding a FileName Column
When you run a session, the Integration Service outputs a new target XML file each time a new root value
occurs in the data. You can add a FileName column to an XML view to generate a unique file name for each
XML file. The file name overrides the default output file name in the session properties.

When you use the FileName column, you set up an Expression transformation or other transformation in the
mapping to generate the unique file names to pass to FileName column.

To create a FileName column in an XML view:

1. Right-click the view in the XML Editor.

2. Select Create FileName Column.

The XML Editor creates a new string column in the view.

3. Change the column name in Columns window.

4. Exit the XML Editor.

The column appears in the XML definition. The XPath is $Filename.

Note: When you use XML FileName ports, you need to specify the directory name for the file.

74 Chapter 4: Using the XML Editor

Creating an XPath Query Predicate
You can filter XML data in a session by creating an XPath query predicate on a view row or column beneath
the view row in an XML hierarchy. When you create an XPath query predicate, the XML Editor adds the XPath
query predicate to the view row XPath.

When you create an XPath query predicate in the XML Editor, the XML Editor provides elements, attributes,
operators, and functions to build the query. You can select the components, enter components, or copy
components into a query. The XML Editor validates each query that you create.

You can query the value of an element or attribute, or you can verify that an element or attribute exists.

Querying the Value of an Element of Attribute
You can create an XPath query predicate to filter element or attribute values in a view. For example, to extract
employees in department 100, create the following XPath query predicate:

EMPLOYEE [./DEPT = '100']
The query expression is in brackets. The XPath of Dept is abbreviated by “./” to indicate that the path is
continuing from Employee.

The following XPath query predicate extracts employees if the last name is Smith:

EMPLOYEE[./NAME/LASTNAME='SMITH']
Name is a child element of Employee and is the parent of Lastname.

Use Boolean or numeric operators in an XPath query predicate. You can also use string, numeric, and boolean
functions in a query.

Querying Mixed Content
An XML element has mixed content when it contains a value and it contains child elements. You can create
an XPath query predicate to filter element values that are divided by child elements. However, the Integration
Service does not evaluate predicates that occur after the first child element in mixed content.

For example, an XML file might contain a NAME element with mixed content:

<NAME>
 Kathy
 <MIDDLE> Mary </MIDDLE>
 Russell
</NAME>

Element NAME has the value “Kathy”, a child element “MIDDLE”, and a second value “Russell.” The NAME
column value is “KathyRussell.” However, the Integration Service evaluates the NAME “Kathy.”

The following query is false:

EMPLOYEE [./NAME = 'KathyRussell']
The following query is true:

EMPLOYEE [./NAME = 'Kathy']

Boolean Operators
Use the following Boolean operators in an XPath query predicate:

and or < <= > >= = !=

Creating an XPath Query Predicate 75

Use the following XPath query predicate to extract employees in department 100 with the last name Jones:

EMPLOYEE [./DEPT = '100' and ./ENAME/LASTNAME = 'JONES']

Numeric Operators
Use the following numeric operators in an XPath query predicate:

+ - * div mod
Use the following XPath query predicate to extract products when the price is greater than cost plus tax:

PRODUCT[./PRICE > ./COST + /.TAX]]

Functions
Use the following types of function in an XPath query predicate:

• String. Use string functions to test substring values, concatenate strings, or translate strings into other
strings. The following XPath query predicate determines if an employee’s full name is equal to the
concatenation of last name and first name:

EMPLOYEE[./FULLNAME=concat(./ENAME/LASTNAME,./ENAME/FIRSTNAME)]
• Numeric. Use numeric functions with element and attribute values. Numeric functions operate on

numbers and return integers. For example, the following XPath query predicate rounds discount and tests
if the result is greater than 15:

ORDER_ITEMS[round(./DISCOUNT > 15]
• Boolean. Boolean functions return either true or false. Use them to test elements, check the language

attribute, or force a true or false result. For example, a string is true if the string value is greater than zero:

boolean(string)

Testing for Elements or Attributes
You can determine if an element or attribute occurs in the XML data. The following XPath query predicate
determines if a department has a department name attribute:

COMPANY/DEPT[@DEPTNAME]/EMPLOYEE
Deptname is an attribute. Attributes are preceded by “@” in an XML query predicate expression.

When you run a session, the Integration Service extracts employee data from the XML source if the
employee’s department has a department name. Otherwise, the Integration Service does not extract the
employee data.

XPath Query Predicate Rules and Guidelines
Use the following rules and guidelines when you create an XPath query predicate:

• You can configure an XPath query predicate for any element in a view row.

For example, if a view row is Company/Dept, you can create the following XPath query predicate:

COMPANY[./DEPT=100]
• You can match content.

• You can add an XPath query predicate to a column if the column occurs below the view row in the view
XML hierarchy and the column XPath includes the view row.

For example, if the view row is Product/Toys[1], you can create the following XPath query predicate:

Product/Toys[1][./Sales > 100]

76 Chapter 4: Using the XML Editor

The following example shows an invalid XPath query predicate for the Product/Toys[1] view row:

Product/Toys[2][./Sales > 100]
Product/Toys[1] is the view row. You cannot use Product/Toys[2].

• Use a single-occurring element or attribute. You cannot create an XPath query predicate on a multiple-
occurring element.

• You cannot create an XPath predicate query on an enclosure element because an enclosure element
contains no values.

Steps for Creating an XPath Query Predicate
You can create an XPath query predicate for a view in an XML source definition.

To create an XPath query predicate:

1. Open an XML source definition in the XML Editor.

2. Select a view in the XML Editor workspace.

The view columns appear in the Columns window.

3. Click View Row XPath.

The Specify Query Predicate for XPath window appears. You can enter an XPath query predicate in the
XPath Predicate window, or you can choose elements, operators, and functions from the tabs in the
dialog box.

4. Click the Child Elements and Attributes tab to display the elements and attributes that you can add to an
XPath query predicate.

5. Double-click an element or attribute to add it to the XPath query predicate.

The component appears in the panel.

6. Click the Operators tab.

Use operators to create expressions. You can compare elements to values or other elements, or you can
create mathematical expressions.

The following table describes the operators you can add to an XPath query predicate:

Operator Description

+ Add

- Subtract

* Multiply

div Divide

mod Modulus

and Boolean and

or Boolean or

Creating an XPath Query Predicate 77

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= Equal

!= Not equal

7. Double-click an operator to add the operator to the XPath query predicate.

8. To add the PowerCenter XPath query predicate functions, click the Functions tab. Functions accept
arguments and return values.

9. Select another element or attribute from the Child Element and Attributes tab, or enter a value in the
XPath Predicate window to complete an expression.

10. Click Validate to validate the XPath query predicate.

Maintaining View Relationships
You can complete the following tasks to maintain view relationships in the XML Editor:

• Create a relationship between views. Define relationships between views in the workspace.

• Create a type relationship. Define a type relationship between a column in a view and a type view in the
workspace.

• Re-create entity relationships. Generate views and relationships using the same options as in the XML
Wizard.

Creating a Relationship Between Views
Use the XML Editor to create hierarchical or inheritance relationships between views. You cannot create a
relationship between an XML source and a non-XML source.

To create a relationship between XML views:

1. Right-click the top of the child XML view in the workspace.

2. Select Create Relationship.

3. Move the pointer to the parent view to establish a relationship.

As you move the pointer, a link appears between the views, and the XML Editor verifies that the
relationship is valid. If a relationship is not valid, an error message appears in the status bar.

4. If no error message appears, click the parent view to establish the relationship.

The XML Editor creates the relationship and adds the appropriate foreign key.

78 Chapter 4: Using the XML Editor

5. To view details about the relationship, place the cursor over the link between the views.

The Editor displays the relationship type and the primary and foreign keys.

Creating a Type Relationship
You can create a type relationship between a column in a view and a type view. If the column is pivoted, you
can choose occurrences to include in the relationship.

To create a type relationship:

1. Right-click the column in the view you want to use.

2. Select Create Relationship.

3. If the column is pivoted, select an occurrence to use.

4. Move the pointer to the type view to establish a relationship.

As you move the pointer, a link appears between the views, and the XML Editor verifies that the
relationship is valid. If a relationship is not valid, an error message appears in the status bar.

5. If no error message appears, click the parent view to establish the relationship.

The XML Editor creates the relationship.

Re-Creating Entity Relationships
You can re-create entity relationships for an XML definition. Use the Recreate Entity Relationships dialog box
to generate new XML views using the same options as in the XML Wizard. When you regenerate views, you
can choose to keep the existing views. The XML definition contains all the views.

To re-create entity relationships for an XML definition:

1. Open the XML definition in the XML Editor.

2. Highlight the XML root in the Navigator.

If you highlight another component, the XML Editor uses that component as the root.

3. Click XML Views > Create Entity Relationship.

4. Choose from the following options to reduce metadata explosion:

• Reduce element explosion. For any multiple-occurring or reference element, the XML Wizard creates
one XML view with multiple hierarchical relationships.

• Reduce complex type explosion. For any multiple-occurring or referenced complex type, the XML
Wizard creates one XML view with multiple type relationships. If the schema uses inherited complex
types, you can also reduce explosion of inherited complex types.

• Reduce complex type inheritance explosion. For any inherited type, the XML Wizard creates one XML
view using multiple type relationships.

• Share existing XML views. Do not remove existing XML views.

• Refresh shared XML views. Save existing views but update them.

5. Click Next.

The Recreate Entity Relationships dialog box appears.

6. To display a child component, select a shared element or complex type and click the name.

7. To exclude a child component, clear the element in the Exclude Child Components pane.

To generate a new view, select the element or complex type. When you create the new entity
relationships, you generate a view with that element as a view root.

Maintaining View Relationships 79

Viewing Schema Components
Complete the following tasks to view components in the Navigator and workspace:

• Update the namespace. Change the location of a schema or the default namespace in an XML target.

• Navigate to components. Find components by navigating from a component to another component or
area of the XML Editor window.

• Arrange views in the workspace. Arrange the views in the workspace hierarchically. You can organize the
views into a hierarchical arrangement in the workspace. To arrange views in the workspace, click Layout >
Arrange, or right-click the workspace and select Arrange.

• Search for components. Find components in the Navigator or in the workspace.

• Display the hierarchy of simple or complex types. View a hierarchy of the simple or complex types in the
XML schema.

• View XML metadata. View an XML file, schema, or DTD that the XML Editor creates from the XML
definition.

• Preview XML data. Display an XML view using sample data from an external XML file.

• Validate the XML definition. Validate the XML definition and view errors.

Updating a Namespace
When you create an XML definition, you can change the namespace prefix and schema location in the XML
Editor. You can also add a schema to the namespace.

If you create a target XML definition that has one or more namespaces, you can choose a default
namespace. When you run a session, the Integration Service writes the elements and attributes from the
default namespace without a namespace prefix.

Do not use “xml” or “xmlns” as a namespace prefix. An “xml” prefix points to the http://www.w3.org/XML
namespace by default. “Xmlns” links elements to namespaces in an XML schema.

Note: You cannot add a namespace using the XML Editor.

To update a namespace:

1. Select an element in the Navigator.

2. Click the Properties tab.

3. Click the Namespace link.

The Edit Namespace Prefix and Schema Location dialog box appears.

4. To change the prefix or schema location, select the text you want to change and enter the new value.

5. To add more than one schema to a namespace, select a schema location and click Add.

A blank schema appears in the namespace Schema Location.

6. To delete a schema, highlight the schema location and click Delete.

7. To create a default namespace in the XML target, select a namespace.

All the components from the namespace you select belong to the default namespace in the XML target.
When you run a session, the Integration Service does not write the default namespace prefix in the XML
target file.

80 Chapter 4: Using the XML Editor

Navigating to Components
To quickly find components, in large XML definitions select a workspace component to navigate from and
select a navigation option. For example, if you click a foreign key in a view, you can navigate to the
associated primary key or to the column in the Columns window. You can navigate between components in
the workspace, the Columns window, and the Navigator.

To navigate to components:

1. Right-click a component in the workspace or in the Columns window.

2. Select Navigate to.

3. Select an available option.

You can select from the following options, depending on the component you select to navigate from:

• Schema component. Highlights the component in the Navigator.

• PowerCenter column. Highlights the column in the Columns window.

• Primary key. Highlights the primary key associated with a selected foreign key.

• Referenced column. Highlights the referenced column associated with a pass-through port in an XML
Parser or Generator transformation.

• XPath Navigator. Displays the path to the selected the component.

• XML view. Highlights a view in the workspace that contains the selected column from the Columns
window.

Searching for Components
You can search for components in an XML definition. The XML Editor displays all occurrences of the
components. You can click a search result and the XML Editor highlights the component in the schema or
view. You can search the XML schema or the XML views in the workspace.

Searching the XML Schema
You can search for components by name, type, and namespace. You can specify properties to search for,
such as an annotation, a fixed or default value, or a length. You can search for legal values using the
enumeration property.

To search for components in the schema:

1. Click Edit > Search In Schema.

The Search Components dialog box appears.

2. To search by component properties, click the Advanced Options link to view the Properties you can
search for.

3. Enter a name, type, or property to search.

4. If you want to search in a specific namespace, click All, and select a namespace from the list.

5. Click Search.

The search results appear in the dialog box.

6. Click a search result to view the component in the Properties window.

Viewing Schema Components 81

Searching in XML Views
You can search for components and columns in the XML views. If you search by component name, you can
find all the associated columns in the definition. For example, if you search for a component “Number,” the
results contain the views and columns that contain the component “Number.”

To search using a partial key, enter the first few characters of the column or component name.

To search for components in XML views:

1. Click Edit > Search XML Views.

The Search XML Views and Columns dialog box appears.

2. Enter search criteria.

You can search for all column types, regular column types, generated keys, or other types. Other types
include FileName columns, reference ports, and pass-through fields.

3. Click Search.

The search results appear in the dialog box.

4. To clear search fields, click New Search.

Viewing a Simple or Complex Type Hierarchy
You can view a hierarchy of the XML simple types in the schema definition. To view a hierarchy of simple
types, click View > SimpleType Hierarchy. A window displays a hierarchy of the simple types.

You can display a hierarchy of the complex types in the schema definition. To view a hierarchy of complex
types, click View > ComplexType Hierarchy. A window displays a hierarchy of the complex types in the
schema. Select a component from the ComplexType Hierarchy window to navigate to the component in the
schema.

Viewing XML Metadata
You can view an XML definition as an XML, DTD, or XML schema file.

To view XML metadata:

1. To view the metadata as a sample XML document, choose a global component in the Navigator.

2. Click View > XML Metadata.

The View XML Metadata dialog box appears.

3. Choose to display the XML definition as an XML file, a DTD file, or an XML schema.

If you use multiple namespaces, choose the namespace to use.

A default application or text editor displays the metadata.

4. To save a copy of the XML, DTD, or XML schema file, click Save As.

5. Enter a new file name.

If the default display application is a text editor, you need to include the appropriate file suffix with the
file name. The suffix is .xml, .dtd, or .xsd, depending on what type of file you are working with.

Validating XML Definitions
You can validate an XML definition in the XML Editor.

82 Chapter 4: Using the XML Editor

To validate an XML definition:

1. Open the definition in the XML Editor.

2. Click inside the workspace.

3. Click XML Views > Validate XML Definition.

The Validate window displays the results.

Setting XML View Options
By default, the Integration Service generates rows for each view that has data in the view row. To change how
the Integration Service generates rows for some XML source definition views, select XML View Options in the
XML Columns window.

Use the following methods to determine when the Integration Service generates rows from an XML source:

• Generate all the foreign keys in a view. By default, the Integration Service generates values for one
foreign key in a view. If a view has more than one foreign key, the other foreign keys have null values. You
can generate values for all the foreign keys.

• Stop recursive reads in a circular relationship. By default, the Integration Service generates rows for all
occurrences of data in a circular relationship. You can generate a row for just the first occurrence of
recursive data.

• Generate a row for a child view if a parent exists. By default, the Integration Service creates rows for all
views with data in the view row. You can generate a row for a child view only when a parent view has data.

• Generate a row for a view without view row data. By default, the Integration Service generates data for a
view when the view row has data. You can generate a row for a view that has no data in the view row.

• Generate rows for specific complex types in a type relationship. By default, the Integration Service
generates rows for all views in the XML definition. You can generate rows for specific views in type
relationships.

Generating All Hierarchy Foreign Keys
By default, the Integration Service generates values for one foreign key in a view. If a view has more than one
foreign key, the other foreign keys have null values. You can choose to generate key values for all foreign
keys in a view. Select the All Hierarchy Foreign Keys option.

The following figure shows the Pedigree_View with two foreign keys, FK_Species and FK_Animal:

Setting XML View Options 83

If you select the All Hierarchy Foreign Keys option for the Pedigree_View, the Integration Service generates
key values for FK_Species and FK_Animal.

The following figure shows sample data for the Pedigree_View with the All Hierarchy Foreign Keys option:

If you clear the All Hierarchy Foreign Keys option, the Integration Service generates key values for one foreign
key column. In this example, the Integration Service generates values for FK_Species because Species_View
is the closest parent of Pedigree_View in the XML hierarchy. The FK_Animal foreign key has null values.

The following figure shows sample data for the Pedigree_View if you clear the All Hierarchy Foreign Key
option:

The Integration Service generates foreign keys to the closest parent.

Generating Rows in Circular Relationships
By default, the Integration Service generates rows for all occurrences of data in a circular relationship. You
can choose to create a row for only the first occurrence. Select the Non-Recursive row option.

The following XML file contains a Part element with a circular reference:

<?xml version="1.0" encoding="utf-8"?>
<Vehicle xmlns="http://www.PartInvoice.org"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.PartInvoice.org part.xsd">
<VehInfo>
 <make>Honda</make>
 <model>Civic</model>
 <type>Compact</type>
</VehInfo>
<Part>
 <ID>123</ID>
 <Name>Body</Name>
 <Type>Exterior</Type>
 <Part>
 <ID>111</ID>
 <Name>DoorFL</Name>
 <Type>Exterior</Type>
 <Part>
 <ID>1112</ID>
 <Name>KnobL</Name>
 <Type>Exterior</Type>
 </Part>
 <Part>
 <ID>1113</ID>
 <Name>Window</Name>

84 Chapter 4: Using the XML Editor

 <Type>Exterior</Type>
 </Part>
 </Part>
</Part>
</Vehicle>

The following figure shows that the Part element is the view row for the X_par_Part view in the XML
definition:

The following figure shows that the Integration Services generates rows for Part 123 and all of the
component parts when you run a session:

The following figure shows that the Integration Service reads the first occurrence of the Part element and
generates one row of data for Part 123 when you select NonRecursive Row:

Generating Hierarchy Relationship Rows
By default, the Integration Service creates rows for all views with data in the view row. Select Hierarchy
Relationship Row to generate a row for a child view if the parent view has corresponding data in a hierarchy
relationship. The parent view must have data to generate a row for the child view.

For example, an XML definition might have a hierarchy consisting of an Employee view and an Address view.
Employee is the parent view. The address data can include Employee\Addresses or Store\Addresses. You
can choose to output Employee\Address.

The following XML file has an Address within the Store element and an Address within the Employee element:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE STORE >
<STORE SID=”BE1752”>
 <SNAME>Mud and Sawdust Furniture Store</SNAME>
 <ADDRESS>
 <STREETADDRESS>335 Westshore Road</STREETADDRESS>
 <CITY>Fausta City</CITY>
 <STATE>CA</STATE>
 <ZIP>97584</ZIP>
 </ADDRESS>
 <EMPLOYEE DEPID=”34”>
 <ENAME>
 <LASTNAME>Bacon</LASTNAME>
 <FIRSTNAME>Allyn</FIRSTNAME>
 </ENAME>
 <ADDRESS>
 <STREETADDRESS>1000 Seaport Blvd</STREETADDRESS>

Setting XML View Options 85

 <CITY>Redwood City</CITY>
 <STATE>CA</STATE>
 <ZIP>94063</ZIP>
 </ADDRESS>
 <EPHONE>(408)226-7415</EPHONE>
 <EPHONE>(650)687-6831</EPHONE>
</EMPLOYEE>
</STORE>

The following figure shows a hierarchical relationship between the Employee view and the Address view:

The Employee view is connected to the Address view with a blue line that defines a one-to-one relationship
between the parent and the child view. The Employee view has a primary key, XPK_Employee, and an
Employee element consisting of LastName and FirstName. The Address view has a foreign key,
FK_Employee, and an Address element that consists of StreetAddress, City, State, and Zip.

By default, the Integration Service generates a row for each occurrence of the Address element. The
Integration Service generates one row for the Store\Address and another for Employee\Address.

The following figure shows the Address XML data if you clear the Hierarchy Relationship Row option:

When you select the Hierarchy Relationship Row option, the Integration Service generates rows in a session
as follows:

• The Integration Service generates a row for the Address view when the Employee view has corresponding
data in a session.

• The Integration Service generates a row representing the Employee\Address hierarchy relationship.

• The Integration Service does not generate a row for Store\Address.

The following shows the Address data if you select the Hierarchy Relationship Row option:

86 Chapter 4: Using the XML Editor

Setting the Force Row Option
By default, the Integration Service generates data for a view when the view row has data. Select Force Row to
generate a row for the XML view whether or not the view row element contains data. For example, if a view
row is address\zip, you can choose to output address, even if the view row has no zip data.

The following figure shows the zip element as the view row:

The zip element is highlighted at the bottom of the list, with the street, city and state element rows listed
above it.

By default, the Integration Service generates a row for every occurrence of the zip element within the address
element.

For example, you might process the following XML file in a session:

<?xml version="1.0" ?>
<company xmlns="http://www.example.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.org forcerow.xsd" >
<name>company1</name>
 <address>
 <street>stree1</street>
 <city>city1</city>
 <zip>1001</zip>
 </address>
<employee>
 <name>emp1</name>
 <address>
 <street>emp1_street</street>
 <city>empl_city</city>
 </address>
</employee>
<employee>
 <name>emp2</name>
 <address>
 <street>emp2_street</street>
 <city>emp2_city</city>
 <zip>2001</zip>
 </address>
</employee>
</company>

By default, the Integration Service generates the stree1 and emp2_street rows for the Address view.

The following figure shows the stree1 and emp2_street rows for the Address view:

The Integration Service does not generate a row for emp1, because the view row is zip, and emp1 has no data
for the zip element.

If you enable Force Row, you can output the street and city elements with or without the zip. The session
generates a row for emp1, even though emp1 does not have data for the zip element.

Setting XML View Options 87

The following figure shows the rows that the Integration Service generates when you enable Force Row:

Generating Rows for Views in Type Relationships
By default, the Integration Service generates rows for all views in a type relationship. Choose the Type
Relationship Row option to generate rows for a specific complex type in a type relationship. Set the Type
Relationship Row for each view that you want to output.

For example, a definition might have a hierarchy that includes BillToAddress and ShipToAddress. If you want
to generate rows for the BillToAddress, use the Type Relationship Row option.

Defining a Type Relationship
The following schema defines BillToAddress and ShipToAddress. BillToAddress is an AddressType, and
ShipToAddress is a USAddressType. USAddressType extends AddressType.

<xsd:sequence>
 <xsd:element name="Street" type="xsd:string" />
 <xsd:element name= "City" type="xsd:string" />
 <xsd:element name="State" type="xsd:string" />
 <xsd:element name="Zip" type="types:ZIPType" />
 <xsd:element name="Country" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
 <xsd:complexType name="USAddressType">
 <xsd:complexContent>
 <xsd:extension base="AddressType">
 <xsd:sequence>
 <xsd:element name="PostalCode" type="xsd:string" minOccurs="0"/>
 <xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>
<xsd:element name="BillToAddress" type="AddressType" />
<xsd:element name="ShipToAddress" type="USAddressType" />

The following figure shows a type relationship in the XML definition with the PartInvoice view showing the
BillToAddress element in the X_par_PartInvoice XML view and the related X-par_AddressType XML view
below:

The PartInvoice view contains invoice data. The view includes a BillToAddress. The type relationship in the
XML definition is between BillToAddress and AddressType.

88 Chapter 4: Using the XML Editor

To limit the AddressType data to BillToAddress, select the X_par_PartInvoice view in the XML Editor
workspace. Choose the Type Relationship Row option. When you run a session, the Integration Service
generates Address rows for BillToAddress but not ShipToAddress. ShipToAddress is not in the type
relationship.

Example
The following example shows how to limit data to specific types in a type relationship. The example uses the
PartInvoice view and the AddressType view.

The following XML file contains invoice data that includes the BillToAddress and ShipToAddress:

<xsd:complexType name="AddressType">
<?xml version="1.0" encoding="utf-8"?>
<Invoices xmlns="http://www.PartInvoice.org"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.PartInvoice.org Part.xsd">
<PartInvoice InvoiceNum="185" DateShipped="2005-01-01">
 <PartOrder>
 <PartID>HLG100</PartID>
 <PartName>Halogen Bulb</PartName>
 <Quantity>2</Quantity>
 <UnitPrice>35</UnitPrice>
 </PartOrder>
 <BillToAddress>
 <Street>2100 Seaport Blvd</Street>
 <City>Redwood City</City>
 <State>CA</State>
 <Zip>94063</Zip>
 <Country>USA</Country>
 </BillToAddress>
 <ShipToAddress xsi:type="USAddressType">
 <Street>3350 W Bayshore Rd</Street>
 <City>Palo Alto</City>
 <State>CA</State>
 <Zip>97890</Zip>
 <Country>USA</Country>
 <PostalCode>97890</PostalCode>
 </ShipToAddress>
 </PartInvoice>
</Invoices>

When you run a session, the Integration Service generates an X_par_AddressType row for each AddressType.

The following figure shows the BillToAddress and ShipToAddress rows that the Integration Service generates
by default:

To generate AddressType rows related to the PartInvoice view, set the Type Relationship Row Option for the
PartInvoice view.

The following figure shows the BillToAddress row that the Type Relationship Row Option generates:

It does not generate a row for ShipToAddress because ShipToAddress is not in the type relationship.

Setting XML View Options 89

Troubleshooting Working with the XML Editor

When I validate an XML definition, I get an error that says the XML definition is too large. Why
does this occur?

If you import an XML file that has components defined with infinite lengths, you can easily exceed the 500
MB limit for total column length. You can change the column lengths in the XML Editor, or you can set an
option to override all infinite lengths and reimport the file.

I cannot find the DTD or XML schema file that I created when I viewed XML metadata.

The DTD or XML schema file that you can view is a temporary file that the Designer creates for viewing. If you
want to use the file for other purposes, save the file with another name and directory when you view it.

When I add columns to XML source views, the hierarchy in the source XML file remains the same.

When you add columns to XML source views, you do not add elements to the underlying hierarchy. The XML
hierarchy that you import remains the same no matter how you create the views or how you map the columns
in a view to the elements in the hierarchy. You can modify the datatypes and the cardinality of the elements,
but you cannot modify the structure of the hierarchy.

For information about XML sizing in PowerCenter, see “Using XML with PowerCenter Overview” on page 32.
For more information about the limitations that apply to XML handling in PowerCenter, see “Limitations” on
page 33.

To create a transformation with other element types, and to transform larger XML input files, use a Data
Processor transformation. For more information about how to create Data Processor transformations, see
the Informatica Data Transformation User Guide and the Informatica Data Transformation Getting Started
Guide.

90 Chapter 4: Using the XML Editor

C h a p t e r 5

Working with XML Targets
This chapter includes the following topics:

• Working with XML Targets Overview, 91

• Importing an XML Target Definition from an XML File , 92

• Creating a Target from an XML Source Definition, 92

• Editing XML Target Definition Properties, 93

• Validating XML Targets, 95

• Using an XML Target in a Mapping, 96

• Troubleshooting XML Targets, 99

Working with XML Targets Overview
You can create XML target definitions in the following ways:

• Import the definition from an XML schema or file. You can create a target definition from an XML, DTD, or
XML schema file. You can import XML file definitions from a URL or a local node. If you import an XML file
with an associated DTD, the XML Wizard uses the DTD to generate the XML file.

• Create an XML target definition based on an XML source definition. You can drag an existing XML source
definition into the Target Designer. If you create an XML target definition, the Designer creates a target
definition based on the hierarchy of the XML definition.

• Create an XML target based on a relational file definition. You can import an XML target definition from a
relational or flat file repository definition.

In addition to creating XML target definitions, you can complete the following tasks with XML targets in the
Target Designer:

• Edit target properties. Edit an XML target definition to add comments documenting changes to target
XML, DTD, or XML schema files.

• Synchronize target definitions. You can synchronize the target XML definition to a schema if you need to
make changes. When you synchronize the definition, you update the XML definition instead of importing
the schema if the schema changes.

91

Importing an XML Target Definition from an XML File
You can import XML definitions from an XML schema, DTD file, or XML file. You can import local files or files
that you reference with a URL. To ensure that the Designer can provide an accurate definition of the data,
import a target definition from an XML schema.

You can choose from the following options to create XML views:

• Create entity relationships. Use this option to create views for multiple-occurring or referenced elements
and complex types. You create relationships between views instead of creating one large hierarchy.

• Create hierarchical relationships. Use this option to create a root and expand the XML components under
the root. You can choose to create normalized or denormalized views. If you choose normalized, every
element or attribute appears once. One-to-many relationships become separate XML views with keys to
relate the views. If you create denormalized XML views, all elements and attributes display in one
hierarchical group.

• Create custom XML views. Use this option to select multiple global elements as roots for XML views and
select options for reducing metadata explosion.

• Skip creating XML views. Use this option to import the definition without creating any views. If you
choose this option, use the XML Editor to create XML views in the workspace at a later time.

• Synchronize XML definitions. Use this option to update one or more XML definitions when their
underlying schemas change.

Tip: Import DTD or XML schema files instead of XML files. If you import an XML file with an associated
DTD, the XML Wizard uses the DTD.

To import XML target definitions:

1. In the Target Designer, click Targets > Import XML Definition.

The Import XML Definitions window opens. The local folder schema files appear by default.

2. Click Local File or URL to browse for XML files.

3. To browse for DTD or XML files, select the appropriate file extension from the Files of Type list.

Creating a Target from an XML Source Definition
When you want to create a target definition that closely resembles an existing source definition, you use the
source definition or a shortcut to the source definition to create the target definition. Drag the XML source
definition into the Target Designer to create an XML target definition or a relational target definition.

Use the following guidelines to create XML target definitions:

• When you create an XML target definition from an XML source definition, you create a duplicate of the
XML source definition.

• A valid XML source definition does not necessarily create a valid XML target definition. To ensure that you
create a valid target definition, validate the target definition.

Note: XML target definitions cannot contain pivoted columns.

92 Chapter 5: Working with XML Targets

Use the following guidelines to create relational target definitions:

• If you create a relational target definition, the Designer creates the relational target definitions based on
the groups in the XML source definition. Each group in the XML source definition becomes a target
definition.

• The Designer creates the same relationship between the target definitions as between the groups in the
source definition.

To create a target definition from an XML source definition:

1. Drag an XML source definition from the Navigator into the Target Designer workspace.

The XML Export dialog box appears.

2. Select to create a relational or XML target. Click OK.

The target definition appears in the Target Designer workspace. If you select relational targets, more
than one target definition might appear in the workspace, depending on the source.

Editing XML Target Definition Properties
After you create an XML target definition, you can edit the properties to reflect changes in the target data,
add business names and comments, or change the code page.

To edit XML target definition properties:

1. Open the XML target in the Target Designer.

2. Right-click and select Edit.

3. On the Table tab, edit the settings.

The following table describes the Table settings:

Table Settings Description

Select Table Name of the target definition. To change the name, click the Rename button.

Business Name Descriptive name for the target table. Edit the Business Name using the Rename button.

Constraints Not applicable to XML targets. Any entry is ignored.

Creation Options Not applicable to XML targets. Any entry is ignored.

Description Description of target table. Character limit is 2,000 bytes/K, where K is the maximum
number of bytes for each character in the repository code page. Enter links to business
documentation.

Code Page Select the code page to use in the target definition.

Database Type Indicates that the target definition is an XML target.

Keywords Use keywords to organize and identify targets. Keywords might include developer
names, mappings, or XML schema names.
Use keywords to perform searches in the Repository Manager.

Editing XML Target Definition Properties 93

4. On the Columns tab, you can view XML column definitions.

The following table describes the Columns settings:

Columns Settings Description

Select Table Displays the target definition you are editing. To choose a different definition to edit,
select one from the list of definitions you have available in the workspace.

Column Name Name of the column.

Datatype PowerCenter datatype for the column.

Precision Size of column. You can change precision for some datatypes, such as string.

Scale Maximum number of digits after the decimal point for numeric values.

Not Null Indicates if the column can have null values.

Key Type Type of key the XML Wizard generates to link the views.

XPath Path through the XML file hierarchy that locates an item.

5. On the Properties tab, you can modify the transformation attributes of the target definition.

If you use a source-based commit session or Transaction Control transformation with the XML target,
you can define how you want to flush data to the target.

The following table describes the attributes that you can edit:

Columns Settings Description

Select Table Displays the source definition you are editing. To choose a different source definition to
edit, select the source definition from the list.

Duplicate Group Row
Handling

Choose one of these options to handle processing duplicate rows in the target:
- First Row. The Integration Service passes the first duplicate row to the target. Rows

following with the same primary key are rejected.
- Last Row. The Integration Service passes the last duplicate row to the target.

- Error. The Integration Service passes the first row to the target. Rows with duplicate
primary keys increment the error count. The session fails when the error count
reaches the error threshold.

DTD Reference DTD or XML schema file name for the target XML file. The Integration Service adds the
document type declaration to the XML file when you create the XML file.

On Commit The Integration Service can generate multiple XML files or append to one XML file after
a commit. Use one of the following options:
- Ignore Commit. The Integration Service creates an XML file and writes to the XML file

at end of file.
- Create New Document. Creates a new XML file at each commit.

- Append to Document. Writes to the same XML file after each commit.

94 Chapter 5: Working with XML Targets

Columns Settings Description

Cache Directory Directory for the XML target cache files. Default is the $PMCacheDir service process
variable.

Cache Size Total size in bytes for the XML target cache. Default is auto.

6. On the Metadata Extensions tab, you can create, modify, delete, and promote non-reusable metadata
extensions, and update their values. You can also update the values of reusable metadata extensions.

7. Click OK.

8. Click Repository > Save.

Validating XML Targets
You can create customized XML views that describe how to extract data to an XML file. However, not all view
structures or relationships between views are valid in an XML definition. Some view structures might be valid
for an XML source, but not for an XML target. The Designer prevents you from creating ambiguous
definitions.

PowerCenter validates target XML views when you perform the following tasks:

• The Designer does limited validation when you save or fetch an XML target from the repository.

• The XML Editor validates each step when you edit XML in the XML workspace.

• You can choose to validate a target definition that you are editing in the XML Editor.

• The Designer validates XML target connections when the Designer validates mappings.

The Designer uses rules to validate hierarchy relationships, type relationships, and inheritance relationships.

Note: The Integration Service does not validate the target XML instance against a schema in a session. You
can set the Validate Target session property to validate simple types in the data.

Hierarchy Relationship Validation
The Designer uses the following rules to validate hierarchy relationships:

• A view that has a root at a type cannot be a standalone view. The view must be a child in an inheritance
relationship or the view must have a type relationship with another view. An XML target is invalid if the
XML target has no views that are rooted at an element.

• You must connect a view with a multiple-occurring view row to another view.

• Two views cannot have the same effective view row.

• An XML target is invalid if the XML target has no view root at an element.

• You can separate parent and child views by other elements, but if you have a choice of two parents for a
view, you must use the closest one. Determine the closest parent by the path of the effective view row.
One parent comes before the other in the path. Choose the view that comes second in the path.

• You must connect all views with the same view root in the same hierarchy. The definition cannot contain
multiple trees for the same view root.

• An XML view can have a hierarchical relationship to itself if the view row and the view root are identical
for the view.

Validating XML Targets 95

Type Relationship Validation
A type relationship is a relationship between a column and a view. A type relationship is not a relationship
between two views. The following rules apply to type relationships:

• A column in a view, V1, can have a type relationship to a view, V2, if the view roots are the same type, or
the V2 view root type is derived from the V1 view root. Both view roots must be global complex types.

• If a column in a view has a type relationship to another view, you cannot expand the column.

Inheritance Validation
You can create two types of inheritance relationship with XML views:

• View-to-view inheritance. A view is a derived type of another view. Both views must have global complex
view roots.

A view can have an inheritance relationship to another view if its view root is a complex type derived from
the view root type of the other view.

A view can be a parent in multiple inheritance relationships, but a view can be a child in just one
inheritance relationship.

• Column-to-view inheritance. The column is an element of a local complex type, Type1, and the view is
rooted at a global complex type, Type2. Type1 is derived from Type2.

A column in a view can have an inheritance relationship to another view if the column is a local complex
type and the type is derived from the view root type of the other view.

If a column in a view, V1, has an inheritance relationship to a view, V2, you cannot put the content of V2
into view V1.

Using an XML Target in a Mapping
When you add an XML target to a mapping, you need to following mapping guidelines for multigroup
transformations.

The following components affect how you map an XML target in a mapping:

• Active sources

• Root elements

• Target port connections

• Abstract elements

• Transaction control points

• FileName columns

Active Sources
An active source is a transformation that can return a different number of rows for each input row. The
Integration Service can load data from different active sources to an XML target. However, all ports within a
single group of the XML target must receive data from the same active source.

The following transformations are active sources:

• Aggregator

96 Chapter 5: Working with XML Targets

• Application Source Qualifier

• Custom, configured as an active transformation

• Java, configured as an active transformation

• Joiner

• MQ Source Qualifier

• Normalizer (VSAM or pipeline)

• Rank

• Sorter

• Source Qualifier

• SQL

• XML Source Qualifier

• Mapplet, if the mapplet contains one of the above transformations

Selecting a Root Element
If an XML definition has more than one possible root, you can specify a root element for a target instance.

To specify the root element:

1. Right-click the target definition in the Mapping Designer and select Edit.

2. Click the Properties tab.

3. Click the arrow in the Root Element value column.

The Select Root dialog box appears.

4. Select an element from the list.

Connecting Target Ports
You need to correctly connect XML target ports in a mapping so the Integration Service can create a valid
XML file during a session. When you save or validate a mapping with an XML target, the Designer validates
the target port connections.

Use the following guidelines when you connect ports in a mapping:

• If you connect one port in a group, you must connect both the foreign key and primary key ports for the
group.

• If you connect a foreign key port in a group, you must connect the associated primary key port in the other
group. If you do not connect the primary key port of the root group, you do not need to connect the
associated foreign key ports in the other groups.

• If you use an XML schema with a default attribute value, you must connect the attribute port to create the
default attribute in the target. If you pass a null value through the connected port, the Integration Service
writes the default value to the target.

Connecting Abstract Elements
An abstract element cannot occur directly in an XML instance file. Instead, you must use an element derived
from the abstract element. By default, the Designer creates a view for any abstract complex element. To
reduce metadata, elements from the abstract type do not repeat in any derived type. When you map data to
the abstract type, you need to also map data to at least one derived type.

Using an XML Target in a Mapping 97

During a session, if the Integration Service loads data to an abstract type, then the Integration Service should
also have data for a non-abstract derived type associated with the abstract type. If the derived type has no
data, then the Integration Service does not write the abstract element in the target XML file.

Flushing XML Data to Targets
You can flush data to an XML target at each commit point in a session. However, each input group must
receive data from the same transaction control point in the mapping. When you create a session based on
this mapping, you can append data to the XML file target at each commit or create a new file at each commit.
You can specify either option with the On Commit target property.

When you connect the XML target input groups to multiple transaction control points, the Integration Service
writes the data to the XML file target after it processes all source rows.

Naming XML Files Dynamically
You can add a FileName column to an XML target definition to dynamically create file names for XML files.
When the Integration Service passes data to the FileName column, the Integration Service overrides the
output file name in the target properties. For example, if you pass the string “Harry” to the FileName column,
the Integration Service names the XML file Harry.

Note: If you are creating a new XML file on each commit, you need to dynamically name each XML file you
create. If you do not dynamically name each XML file, the Integration Service overwrites the XML file from the
previous commit.

The Integration Service generates a new XML file for each distinct primary key value in the root group of the
target. You add a FileName column to set different names for each file. Each name overrides the output file
name in the session properties.

Example
The Expression transformation generates a file name from the Country XML element and passes the value to
the FileName column. The mapping passes a country to the target root, which is called Client. Whenever the
Client value changes, the Integration Service creates a new XML file. The Integration Service creates a list file
that contains each XML target file name. The Integration Service lists the absolute path to each file in the list.

The following figure shows a mapping containing an XML target with a FileName column:

The Integration Service passes the following rows to the target:

Country,Region,Revenue
USA,region1,1000
France,region1,10
Canada,region1,100
USA,region2,200
USA,region3,300

98 Chapter 5: Working with XML Targets

USA,region4,400
France,region2,20
France,region3,30
France,region4,40

The session produces the following files by country name:

Canada.xml
France.xml
USA.xml

The list file name is the output file name from the session properties:

revenue_file.xml.lst

Troubleshooting XML Targets

I imported a source definition from an XML file. Then I imported a target definition from the same
XML file. The default groups for the source and target definitions are not the same.

The XML Wizard does not always create the same group structure for a source definition and a target
definition if you change some of the options when you import the target.

For example, the ContactInfo element in the following DTD is an enclosure element. The enclosure element
has no text content, but has maxOccurs > 1. The child elements also have maxOccurs > 1.

<!ELEMENT HR (EMPLOYEE+)>
<!ELEMENT EMPLOYEE (LASTNAME,FIRSTNAME,ADDRESS+,CONTACTINFO+)>
<!ATTLIST EMPLOYEE EMPID CDATA #REQUIRED>
<!ELEMENT LASTNAME (#PCDATA)>
<!ELEMENT FIRSTNAME (#PCDATA)>
<!ELEMENT ADDRESS (STREETADDRESS,CITY,STATE,ZIP)>
<!ELEMENT STREETADDRESS (#PCDATA)>
<!ELEMENT CITY (#PCDATA)>
<!ELEMENT STATE (#PCDATA)>
<!ELEMENT ZIP (#PCDATA)>
<!ELEMENT CONTACTINFO (PHONE+,EMERGCONTACT+)>
<!ELEMENT PHONE (#PCDATA)>
<!ELEMENT EMERGCONTACT (#PCDATA)>

If you do not create XML views for the enclosure elements in the source definition, you do not create the
ContactInfo element in the source.

Troubleshooting XML Targets 99

The following figure shows the source and target definitions that the XML Wizard creates:

The source definition does not include the ContactInfo element. The target definition includes the
ContactInfo element. The wizard does not include the ContactInfo element in the source definition because
you chose not to create views for enclosure elements when you created the source. However, the wizard
includes the ContactInfo element in the target definition.

The XML target definition I created from my relational sources contains all elements, but no
attributes. How can I modify the target hierarchy so that I can mark certain data as attributes?

You cannot modify the component types that the wizard creates from relational tables. However, you can
view a DTD or an XML schema file of the target XML hierarchy. Save the DTD or XML schema file with a new
file name. Open this new file and modify the hierarchy, setting the attributes and elements. Then, use the file
to import a target definition with a new hierarchy.

100 Chapter 5: Working with XML Targets

C h a p t e r 6

XML Source Qualifier
Transformation

This chapter includes the following topics:

• XML Source Qualifier Transformation Overview, 101

• Adding an XML Source Qualifier to a Mapping, 101

• Editing an XML Source Qualifier Transformation, 102

• Using the XML Source Qualifier in a Mapping, 104

• Troubleshooting XML Source Qualifier Transformations, 107

XML Source Qualifier Transformation Overview
When you add an XML source definition to a mapping, you need to connect the source definition to an XML
Source Qualifier transformation. The XML Source Qualifier transformation defines the data elements that the
Integration Service reads during a session. The source qualifier determines how the PowerCenter reads the
source data. The XML Source Qualifier transformation is an active transformation.

You can manually add a source qualifier transformation, or you can create a source qualifier transformation
by default when you add a source definition to a mapping.

You can edit some of the properties and add metadata extensions to an XML Source Qualifier
transformation.

When you connect an XML Source Qualifier transformation in a mapping, you must follow rules to create a
valid mapping.

Adding an XML Source Qualifier to a Mapping
An XML Source Qualifier transformation has one input/output port for every column in the XML source. When
you create an XML Source Qualifier transformation for a source definition, the Designer links each port in the
XML source definition to a port in the XML Source Qualifier transformation. You cannot remove or edit any of
the links. If you remove an XML source definition from a mapping, the Designer also removes the
corresponding XML Source Qualifier transformation. You can link one XML source definition to one XML
Source Qualifier transformation.

101

You can link ports of one XML Source Qualifier group to ports of different transformations to form separate
data flows. However, you cannot link ports from more than one group in an XML Source Qualifier
transformation to ports in the same target transformation.

If you drag columns from more than one group to a transformation, the Designer copies the columns of all
the groups to the transformation. However, the Designer links only the ports of the first group to the
corresponding ports of the new columns in the transformation.

You can add an XML Source Qualifier transformation to a mapping by dragging an XML source definition into
the Mapping Designer workspace or by manually creating the source qualifier.

Creating an XML Source Qualifier Transformation by Default
When you drag an XML source definition into the Mapping Designer workspace, the Designer creates an XML
Source Qualifier transformation by default.

To create an XML Source Qualifier transformation by default:

1. In the Mapping Designer, create a new mapping or open an existing one.

2. Drag an XML source definition into the mapping.

The Designer creates an XML Source Qualifier transformation and links each port in the XML source
definition to a port in the XML Source Qualifier transformation.

Creating an XML Source Qualifier Transformation Manually
You can create an XML Source Qualifier transformation in a mapping if you have a mapping that contains
XML source definitions without Source Qualifiers or if you delete the XML Source Qualifier transformation
from a mapping.

To create an XML Source Qualifier transformation manually:

1. In the Mapping Designer, create a new mapping or open an existing one.

Note: There must be at least one XML source definition without a source qualifier in the mapping.

2. Click Transformation > Create.

The Create Transformation dialog box appears.

3. Select XML Source Qualifier transformation, and type a name for the transformation.

The naming convention for XML Source Qualifier transformations is XSQ_TransformationName.

4. Click Create.

The Designer lists all the XML source definitions in the mapping with no corresponding XML Source
Qualifier transformations.

5. Select a source definition and click OK.

The Designer creates an XML Source Qualifier transformation in the mapping and links each port of the
XML source definition to a port in the XML Source Qualifier transformation.

Editing an XML Source Qualifier Transformation
You can edit XML Source Qualifier transformation properties, such as transformation name and description.

102 Chapter 6: XML Source Qualifier Transformation

To edit an XML Source Qualifier transformation:

1. In the Mapping Designer, open the XML Source Qualifier transformation.

2. On the Transformation tab, edit the properties.

The following table describes the transformation properties:

Transformation Setting Description

Select Transformation Displays the transformation you are editing. To choose a different transformation to
edit, select the transformation from the list.

Rename Edits the name of the transformation.

Description Describes the transformation.

3. Click the Ports tab to view the XML Source Qualifier transformation ports.

Use the Sequence column to set start values for generated keys in XML groups. You can enter a different
value for each generated key. Sequence keys are of bigint datatype. Whenever you change these values,
the sequence numbers restart the next time you run a session.

4. Click the Properties tab to configure properties that affect how the Integration Service runs the mapping
during a session.

The following table describes the XML Source Qualifier properties:

Properties Setting Description

Select Transformation Displays the transformation you are editing. To choose a different transformation to
edit, select the transformation from the list.

Tracing Level Determines the amount of information about this transformation that the Integration
Service writes to the session log when it runs the workflow. You can override this
tracing level when you configure a session.

Reset At the end of a session, the Integration Service resets the start values to the start
values for the current session.

Restart At the beginning of a session, the Integration Service starts the generated key
sequence for all groups at one.

5. Click the Metadata Extensions tab to create, edit, and delete user-defined metadata extensions.

You can create, modify, delete, and promote non-reusable metadata extensions, and update their values.
You can also update the values of reusable metadata extensions.

6. Click OK.

Setting Sequence Numbers for Generated Keys
Each view in the XML Source Qualifier definition has a primary key and sequence value for the key. During a
session, the Integration Service generates keys from sequence values and increments the values.

At the end of the session, the Integration Service updates each sequence value in the repository to the
current value plus 1. These values become the start values the next time the Integration Service processes
the Sequence Generator transformation.

Editing an XML Source Qualifier Transformation 103

The repository maintains the following sequence values:

• Default value. The sequence value for a key that appears in the XML Source Qualifier when you first create
the source qualifier. The default is 1 for each key.

• Start value. A sequence number value for a key at the start of a session. You can view the start values in
the XML Source Qualifier transformation before you run a workflow.

• Current value. A sequence value for a key during a session.

The start values for the generated keys display in the Sequence column in the XML Source Qualifier.

Note: If you edit the sequence start values on the Ports tab, you must save the changes and exit the Designer
before you run a workflow.

Changing Sequence Start Values
You can change sequence start values before or after a session by using the following options on the XML
Source Qualifier transformation Properties tab:

• Reset. At the end of a session, the Integration Service resets the start values back to the start values for
the current session. For example, at the beginning of a session, the start value of a key is 2000. At the end
of a session, the current value is 2500. When the session completes, the start value in the repository
remains at 2000. You might use this option when you are testing and you want to generate the same key
numbers the next time you run a session.

• Restart. At the beginning of a session, the Integration Service restarts the start values using the default
value. For example, if the start value for a key is 1005, and you select Restart, the Integration Service
changes the start value to 1. You might use this option if the keys are getting large and you will have no
duplicate key conflicts if you restart numbering.

Using the XML Source Qualifier in a Mapping
Each group in an XML source definition is analogous to a relational table, and the Designer treats each group
within the XML Source Qualifier transformation as a separate source of data.

The Designer enforces concatenation rules when you connect objects in a mapping. Therefore, you need to
organize the groups in the XML source definition so that each group contains all the information you require
in one pipeline branch.

Consider the following rules when you connect an XML Source Qualifier transformation in a mapping:

• You can link ports from one group in an XML Source Qualifier transformation to ports in one input group
of another transformation. You can copy the columns of several groups to one transformation, but you
can link the ports of only one group to the corresponding ports in the transformation.

• You can link ports from one group in an XML Source Qualifier transformation to ports in more than one
transformation. Each group in an XML Source Qualifier transformation can be a source of data for more
than one pipeline branch. Data can pass from one group to several different transformations.

• You can link multiple groups from one XML Source Qualifier transformation to different input groups in a
transformation. You can link multiple groups from an XML Source Qualifier transformation to different
input groups in most multiple input group transformations, such as a Joiner or Custom transformations.
However, you can link multiple groups from one XML Source Qualifier transformation to one Joiner
transformation if the Joiner has sorted input. To connect two XML Source Qualifier transformation groups
to a Joiner transformation with unsorted input, you must create two instances of the same XML source.

104 Chapter 6: XML Source Qualifier Transformation

XML Source Qualifier Transformation Example
This section shows an example of an XML Source Qualifier transformation in a mapping. The example uses
an XML file containing store, product, and sales information.

The following figure shows the StoreInfo.xml file:

You might want to calculate the total YTD sales for each product in the XML file regardless of region. Besides
sales, you also want the names and prices of each product.

To do this, you need both product and sales information in the same transformation. However, when you
import the StoreInfo.xml file, the Designer creates separate groups for products and sales by default.

Using the XML Source Qualifier in a Mapping 105

The following figure shows the default groups for the StoreInfo file with the product and sales information in
separate groups:

Since you cannot link both the Product and the Sales groups to the same single input group transformation,
you can create the mapping in one of the following ways:

• Use a denormalized group containing all required information.

• Join the data from the two groups using a Joiner transformation.

Using One Denormalized Group
You can organize the groups in the source definition so all the information comes from the same group. For
example, you can combine the Product and Sales groups into one denormalized group in the source
definition. You can process all the information for the sales aggregation from the denormalized group
through one data flow.

The following figure shows a denormalized group Product_Sales containing a combination of columns from
both the Product and Sales groups:

To create the denormalized group, edit the source definition in the Source Analyzer. You can either create a
new group or modify an existing group. Add product and sales columns to the group in order to do the sales
calculation in the Aggregator transformation. Use the XML Editor to create the group and validate the group.

106 Chapter 6: XML Source Qualifier Transformation

Joining Two XML Source Qualifier Transformation Groups
You can join data from two source groups into one data flow. Join data from the groups using a Joiner
transformation. When you configure the Joiner transformation for sorted input, you can link two groups from
one XML Source Qualifier transformation instance to the Joiner transformation. When you use a Joiner
transformation configured for unsorted input, you must use two instances of the same XML source and link a
group from each XML Source Qualifier transformation instance to the Joiner transformation.

You can then send the data from the Joiner transformation to an Aggregator transformation to calculate the
YTDSales for each product.

The following figure shows how you can create two instances of the same XML source and join data from
two XML Source Qualifier transformations:

Troubleshooting XML Source Qualifier
Transformations

When I drag two groups from an XML Source Qualifier transformation to a transformation, the
Designer copies the columns but does not link all the ports.

You can link one group of an XML Source Qualifier transformation to one transformation. When you drag
more than one group to a transformation, the Designer copies all the column names to the transformation.
However, the Designer links the columns of only the first group.

I cannot break the link between the XML source definition and its source qualifier.

The XML Source Qualifier transformation columns match the corresponding XML source definition columns.
You cannot remove or modify the links between an XML source definition and its XML Source Qualifier
transformation. When you remove an XML source definition, the Designer removes its XML Source Qualifier
transformation.

Troubleshooting XML Source Qualifier Transformations 107

C h a p t e r 7

Midstream XML Transformations
This chapter includes the following topics:

• Midstream XML Transformations Overview, 108

• XML Parser Transformation, 109

• XML Generator Transformation, 113

• Creating a Midstream XML Transformation, 113

• Synchronizing a Midstream XML Definition, 113

• Editing Midstream XML Transformation Properties, 114

• Generating Pass-Through Ports, 117

• Troubleshooting Midstream XML Transformations, 117

Midstream XML Transformations Overview
XML definitions read or create XML data. However, sometimes you need to extract or generate XML inside a
pipeline. For example, you might want to send a message to a TIBCO target containing an XML document as
the data field. In this case, you need to generate an XML document before sending the message to TIBCO.
Use a XML transformation to generate the XML.

You can create the following types of midstream XML transformation:

• XML Parser transformation. The XML Parser transformation reads XML from one input port and outputs
data to one or more groups.

• XML Generator transformation. The XML Generator transformation reads data from one or more sources
and generates XML. The XML Generator transformation has a single output port.

Use a midstream XML transformation to extract XML data from messaging systems, such as TIBCO,
WebSphere MQ, or from other sources, such as files or databases. The XML transformation functionality is
similar to the XML source and target functionality, except the midstream XML transformation parses the XML
or generates the document in the pipeline.

Midstream XML transformations support the same XML schema components that the XML Wizard and XML
Editor support. In addition, XML transformations support the following functionality:

• Pass-through ports. Use pass-through ports to pass non-XML data through the midstream
transformation. These fields are not part of the XML schema definition, but you use them to generate
denormalized XML groups. You use these fields in the same manner as top-level XML elements. You can
also use a pass-through field as a primary key for the top-level group in the XML definition.

108

• Real-time processing. Use a midstream XML transformation to process data as BLOBs from messaging
systems.

• Support for multiple partitions. You can generate different XML documents for each partition.

XML Parser Transformation
When the Integration Service processes an XML Parser transformation, it reads a row of XML data, parses
the XML, and returns data through output groups. The XML Parser transformation returns non-XML data in
pass-through ports. You can parse XML messages from sources such as JMS or IBM WebSphere MQ . The
XML Parser transformation is an active transformation.

The XML Parser transformation has one input group and one or more output groups. The input group has one
input port, DataInput, which accepts an XML document in a string.

When you create an XML Parser transformation, use the XML Wizard to import an XML, DTD, or XML schema
file. For example, you can import the following Employee DTD file:

<!ELEMENT EMPLOYEES (EMPLOYEE+)>
<!ELEMENT EMPLOYEE (LASTNAME, FIRSTNAME, ADDRESS, PHONE+, EMAIL*, EMPLOYMENT)>
 <!ATTLIST EMPLOYEE EMPID CDATA #REQUIRED
 DEPTID CDATA #REQUIRED>
<!ELEMENT LASTNAME (#PCDATA)>
<!ELEMENT FIRSTNAME (#PCDATA)>
<!ELEMENT ADDRESS (STREETADDRESS, CITY, STATE, ZIP)>
<!ELEMENT STREETADDRESS (#PCDATA)>
<!ELEMENT CITY (#PCDATA)>
<!ELEMENT STATE (#PCDATA)>
<!ELEMENT ZIP (#PCDATA)>
<!ELEMENT PHONE (#PCDATA)>
<!ELEMENT EMAIL (#PCDATA)>
<!ELEMENT EMPLOYMENT (DATEOFHIRE, SALARY+)>
<!ATTLIST EMPLOYMENT EMPLSTAT (PF|PP|TF|TP|O) "PF">
<!ELEMENT DATEOFHIRE (#PCDATA)>
<!ELEMENT SALARY (#PCDATA)>

The XML Parser transformation shows the root view, X_Employees, with X_Employees shown as a parent of
X_Employee. X_Employee is a parent of X_Salary, X_Phone, and X_Email.

XML Parser Transformation 109

The following figure shows the XML Parser transformation that the Designer creates if you choose to create
entity relationships:

The Designer creates a root view, X_Employees. X_Employees is the parent of X_Employee. X_Employee is a
parent of X_Salary, X_Phone, and X_Email.

Each view in the XML Parser transformation has at least one key to establish its relationship with another
view. If you do not designate the keys in the XML Editor, the Designer creates the primary and foreign keys for
each view. The keys are of datatype bigint. The keys are called generated keys because the Integration
Service creates the key values each time it returns a row from the XML Parser transformation.

When the Designer creates a primary or foreign key column, it assigns a column name with a prefix. In an
XML definition, the prefix is XPK_ for a generated primary key column and XFK_ for a generated foreign key
column. A foreign key always refers to a primary key in another group. A generated foreign key column
always refers to a generated primary key column.

For example, the group X_Employee has the XPK_Employee primary key. The Designer creates foreign key
columns that connect the X_Phone, X_Email, and X_Salary to the X_Employee group. Each group has the
foreign key column XFK_Employee.

The repository stores the key values. You cannot change the values in the repository, but you can choose to
reset or restart the sequence numbers after a session.

XML Parser Input Validation
You can configure the XML Parser transformation to validate XML before parsing it. The XML Parser
transformation validates the XML against a schema. If the XML is not valid for the schema, a row error
occurs. The XML Parser transformation returns the XML and associated error messages to a separate output
group. You can pass the invalid XML and error message to a target.

For example, a real-time PowerCenter session reads XML messages from a WebSphere MQSeries source.
The session runs with a source-based commit. A message in the commit transaction has an invalid XML
payload. To prevent the commit from failing, you can configure the XML Parser transformation to return the
invalid XML to a separate output group from the valid data. The XML Parser transformation processes the
valid XML messages and completes the transaction.

110 Chapter 7: Midstream XML Transformations

The session log contains a message that indicates when Route Invalid Payload Through Data Flow is
enabled. When you set the session tracing level to Normal, the Integration Service writes a message to the
session log that indicates whether the validation is successful. The log message contains the location of the
schema the XML Parser accessed to validate the XML. When XML streaming is enabled and the XML is
invalid, the Integration Service truncates the XML and passes it to the Invalid_Payload port. The Integration
Service logs the invalid XML in the session log.

To configure the XML Parser transformation to validate the XML, enable the Route Invalid Payload Through
Data Flow option on the Midstream XML Parser tab. The Designer adds the following ports to the XML Parser
transformation:

• Invalid_Payload. Returns invalid XML messages to the pipeline. If the XML payload is valid, the
Invalid_Payload port contains a null value. This port has the same precision as the DataInput port.

• Error_Status. Contains the error string or status returned from the XML validation. If the XML is valid for
the current row, Error_Status contains a null value. This port has the same precision as the DataInput port.

The following figure shows an XML Parser transformation that routes invalid XML messages to an Errors
target table:

The mapping contains the following objects:

• MQSeries source definition. Contains employee XML data in the message data field.

• Source Qualifier transformation. Reads data from WebSphere MQ. Contains a set of ports that represent
the message header fields and the message data field.

• XML Parser transformation. Receives the XML message data in the DataInput port. When the XML is valid,
the XML Parser transformation returns the employee data and passes it to a target. When the XML is not
valid, the XML Parser transformation returns the XML in the Invalid_Payload port. It returns an error
message in the Error_Status port.

• Employees target definition. Receives rows of valid employee data.

• XML_Errors target definition. Receives invalid XML and error messages.

Configure the XML Schema Location attribute in the session properties for the transformation. Enter the
name and location of the schema to validate the XML against. You can configure workflow, session, or
mapping variables and parameters for the XML schema definition. You can configure multiple schemas for
validation if you separate them with semi-colons.

You can use a DTD for validation if you include it in the input XML payload. You cannot configure a DTD in the
XML Schema Location attribute or use it to route invalid XML data to the Invalid Payload port.

If you enable XML streaming, verify that the precision for the Invalid_Payload port matches the maximum
message size. If the port precision is less than the message size, the XML Parser transformation returns
truncated XML in the Invalid_Payload port, and writes an error in the session log.

XML Parser Transformation 111

Stream XML to the XML Parser Transformation
You can configure a session to stream the XML from an Unstructured Data transformation, JMS source, or
WebSphere MQ source to the XML Parser transformation. When the PowerCenter Integration Service streams
XML data, it splits XML data into multiple segments.

You can configure a smaller input port in the XML Parser transformation and reduce the amount of memory
that the XML Parser transformation requires to process large XML files. You can parse XML files that are
larger than 100 MB.

When you enable XML streaming, the XML Parser transformation receives data in segments that are less
than or equal to the port size. When the XML file is larger than the port size, the PowerCenter Integration
Service passes more than one row to the XML Parser transformation. Each XML row has a row type of
streaming. The last row has a row type of insert.

The input port precision must be equal to or greater than the output port precision of the object that passes
the XML to the XML Parser transformation. When most of the XML documents are small, but some messages
are large, set the XML Parser transformation port size to the size of the smaller messages for best
performance.

If you enable XML streaming, you must also enable XML streaming for the source or transformation that is
passing the XML data to the XML Parser transformation. If you do not enable streaming, the XML Parser
receives the XML in one row, which might slow performance.

To enable XML streaming in the XML Parser transformation, select Enable XML Input Streaming in the XML
Parser transformation session properties. If you enable XML streaming in the source or transformation, but
you do not enable it for the XML Parser transformation, the XML Parser transformation cannot process the
XML file.

When you enable XML streaming and an error occurs in the XML document, the PowerCenter Integration
Service writes the XML document to the session log by default. You can configure the session to write the
XML document to the error log file when an error occurs.

Enable Log Source Row Data in the session properties. When you enable logging, and an error occurs in the
XML document, the PowerCenter Integration Service generates a row error. The PowerCenter Integration
Service writes the XML document to the error log file and it increments the error count.

For information about XML sizing in PowerCenter, see “Using XML with PowerCenter Overview” on page 32.
For more information about the limitations that apply to XML handling in PowerCenter, see “Limitations” on
page 33.

To create a transformation with other element types, and to transform larger XML input files, use a Data
Processor transformation. For more information about how to create Data Processor transformations, see
the Informatica Data Transformation User Guide and the Informatica Data Transformation Getting Started
Guide.

XML Decimal Datatypes
When you define the precision of an XML decimal element to be greater than 34 digits, the Integration Service
calls an external function to convert the XML decimal datatype to a Double in the XML Parser transformation.
The function returns a Double with a precision length that is dependent on the node that is running the
Integration Service. On all platforms, the precision is guaranteed to be 17 digits before the number is
rounded, but the precision might be more on some platforms.

For example, on Windows 32-bit, the Integration Service rounds the number after 17 digits.

1234.567890123456789 is converted to 1234.567890123460800.
On HP-UX 32-bit, the Integration Service rounds the number after 34 digits.

112 Chapter 7: Midstream XML Transformations

XML Generator Transformation
Use an XML Generator transformation to combine input that comes from several sources to create an XML
document. For example, use the transformation to combine the XML data from two TIBCO sources into one
TIBCO target. One source might contain employee and salary information, and the other might have employee
phone and email information. The XML Generator transformation is an active and a connected
transformation.

The XML Generator transformation is similar to an XML target definition. When the Integration Service
processes an XML Generator transformation, it writes rows of XML data. The Integration Service can also
process pass-through fields containing non-XML data in the transformation.

The XML Generator transformation has one or more input groups and one output group. The output group
has one port, “DataOutput,” which generates a string data BLOB XML document. The output group contains
the pass-through port when you create pass-through fields.

Creating a Midstream XML Transformation
When you create a midstream XML transformation, you use the XML Wizard and XML Editor to define the
XML groups. You can create the transformation in the Transformation Developer and the Mapping Designer.

To create a midstream XML transformation:

1. Open the Transformation Developer or Mapping Designer.

2. Click Transformation > Create.

The Create Transformation dialog box appears.

3. Select the XML Parser or XML Generator transformation type.

4. Enter a transformation name, and click Create.

The Import XML Definition dialog box appears.

5. Choose a file to import, and click Open.

The XML Wizard appears.

6. Create the XML definitions using the XML Wizard.

7. Click Finish in the XML Wizard.

The midstream XML transformation appears in the workspace.

8. To edit the midstream XML transformation properties, double-click the transformation in the workspace.

Synchronizing a Midstream XML Definition
You can synchronize a midstream XML transformation using a different version of the schema or source file
that you imported to create the transformation. For example, you might add new elements to the schema file
you imported to create an XML Parser transformation. You can update the XML Parser transformation with
the new schema instead of deleting the transformation and re-creating the transformation.

To synchronize a midstream XML transformation, use the Transformation Developer or Mapping Designer.

XML Generator Transformation 113

To synchronize a midstream XML transformation:

1. Open the Transformation Developer or Mapping Developer.

2. Drag the midstream XML transformation or the mapping you want to update into the workspace.

3. Right-click the top of the midstream XML transformation.

4. Select Synchronize XML transformation.

The Import XML Definition dialog box appears.

5. Navigate to the repository definition or file that you used to create the XML Parser or XML Generator
transformation.

6. Click Open to update the transformation.

The Designer cannot synchronize a transformation with a file that you did not use to create the
transformation.

You use the Source Analyzer and Target Designer to synchronize source and target XML definitions.

Editing Midstream XML Transformation Properties
You can edit some of the midstream XML transformation properties. However, because you use the XML
Wizard and XML Editor to define the transformation, you must use these tools to change the XML definition.

When you create a midstream XML transformation in the Mapping Designer, the following rules apply:

• If you make the transformation reusable, you can change some of the transformation properties from the
Mapping Designer. You cannot add pass-through ports or metadata extensions.

• If you create a non-reusable transformation, you can edit the transformation from the Mapping Designer.

When you configure a midstream XML transformation, you can configure components on the following tabs:

• Transformation tab. Rename the transformation and add a description on the Transformation tab.

• Ports tab. Display the transformation ports and attributes that you create on the XML Parser or XML
Generator tab.

• Properties tab. Update the tracing level.

• Initialization Properties tab. Create run-time properties that an external procedure uses during
initialization.

• Metadata Extensions tab. Extend the metadata stored in the repository by associating information with
repository objects, such as an XML transformation.

• Port Attribute Definitions tab. Define port attributes that apply to all ports in the transformation.

• Midstream XML Parser or XML Generator tab. Create pass-through ports using this tab. Pass-through
ports enable you to pass non-XML data through the transformation. For the XML Parser transformation,
you can choose to reset sequence numbers if you use sequence numbering to generate XML column
names. For the XML Generator transformation, you can choose to create a new XML document on
commits.

Properties Tab
Configure the midstream XML transformation properties on the Properties tab.

114 Chapter 7: Midstream XML Transformations

The following table describes the options you can change on the Properties tab:

Transformation Description

Runtime Location Location that contains the DLL or shared library. Default is $PMExtProcDir. Enter a path
relative to the Integration Service node that runs the XML session.
If this property is blank, the Integration Service uses the environment variable defined on the
Integration Service node to locate the DLL or shared library.
You must copy all DLLs or shared libraries to the runtime location or to the environment
variable defined on the Integration Service node. The Integration Service fails to load the
procedure when it cannot locate the DLL, shared library, or a referenced file.

Tracing Level Amount of detail displayed in the session log for this transformation. Default is Normal.

Transformation
Scope

Indicates how the Integration Service applies the transformation logic to incoming data. You
can choose one of the following transformation scope values for the XML Parser
transformation:
- Row. Applies the transformation logic to one row of data at a time. Flushes the rows

generated for all the output groups before processing the next row.
- Transaction. Applies the transformation logic to all rows in a transaction. Flushes generated

rows at transaction boundaries, when output blocks fill up, and at end of file.
- All Input. Applies the transformation logic to all incoming data. Flush generated rows only

when the output blocks fill up and at end of file.
For the XML Generator transformation, the Designer sets the transformation scope to all input
when you set the On Commit setting to Ignore Commit. The Designer sets the transformation
scope to the transaction level if you set On Commit to Create New Doc.

Output is
Repeatable

Indicates if the order of the output data is consistent between session runs.
- Never. The order of the output data is inconsistent between session runs.
- Based On Input Order. The output order is consistent between session runs when the input

data order is consistent between session runs.
- Always. The order of the output data is consistent between session runs even if the order of

the input data is inconsistent between session runs.
Default is Based on Input Order for the XML Parser transformation. Default is Always for the
XML Generator transformation.

Requires Single
Thread per Partition

Indicates if the Integration Service must process each partition with one thread.

Output is
Deterministic

Indicates whether the transformation generates the same output data between session runs.
You must enable this property to perform recovery on sessions that use this transformation.
Default is enabled.

Warning: If you configure a transformation as repeatable and deterministic, it is your responsibility to ensure
that the data is repeatable and deterministic. If you try to recover a session with transformations that do not
produce the same data between the session and the recovery, the recovery process can result in corrupted
data.

Midstream XML Parser Tab
Use the Midstream XML Parser tab to modify the size of the DataInput port. You can also add pass-through
ports on this tab.

You can access the XML Editor from the Midstream XML Parser Tab. Click the XML Editor button.

Note: When you access the XML Editor, you cannot update Edit Transformations until you exit the XML Editor.

Editing Midstream XML Transformation Properties 115

The following table describes the options you can change on the Midstream XML Parser tab:

Transformation Description

Precision Length of the column. Default DataInput port precision is 64K. Default precision for a
pass-though port is 20. You can increase the precision.

Restart Always start the generated key sequence at 1. Each time you run a session, the key
sequence values in all groups of the XML definition start over at 1.

Reset At the end of a session, reset the value sequence for all generated keys in all groups.
Reset the sequence numbers back to where they were before the session.

Route Invalid Payload
Through Data Flow

Validate the XML against a schema. If the XML is not valid for the schema, a row error
occurs. The XML Parser transformation returns the XML and associated error
messages to a separate output group.

Description Describes the transformation.

Note: If you do not select Reset or Restart, the sequence numbers in the generated keys increase from
session to session. If you select the Restart or Reset option, you update the Restart or Reset property that
appears on the Initialization Properties tab. You cannot change these options from the Initialization
Properties tab, however.

Midstream XML Generator Tab
Use the XML Generator tab to modify the size of the DataOutput port. You can also add pass-through ports
on this tab.

You can access the XML Editor from the Midstream XML Generator Tab. Click the XML Editor button. When
you access the XML Editor, you cannot edit transformation properties until you exit the XML Editor.

The following table describes the options you can change on the XML Generator transformation tab:

Transformation
Setting

Description

Precision Length of the column. Default DataOutput port precision is 64K. Default precision for a pass-
though port is 20. You can increase the precision.

On Commit The Integration Service can generate multiple XML documents after a commit. Use one of the
following options:
- Ignore Commit. The Integration Service creates the XML document and writes data to the

document at end of file. Use this option if two different sources are connected to the XML
Generator transformation.

- Create New Document. Creates a new XML document at each commit. Use this option if
you are running a real-time session.

When a session uses multiple partitions, the Integration Service generates a separate XML
document for each partition, regardless of On Commit settings. If you select Create New
Document, the Integration Service creates new documents for each partition.

Description Describes the transformation.

Note: The Designer sets the transformation scope to all input when you set the On Commit setting to Ignore
Commit. The Designer sets the transformation scope to the transaction level if you set On Commit to Create
New Doc.

116 Chapter 7: Midstream XML Transformations

Generating Pass-Through Ports
Pass-through ports are columns that pass non-XML data through a midstream XML transformation. For
example, you can pass message IDs with XML for MQSeries sources and targets. Use the message ID to
correlate input and output messages for requests and replies.

When you define a pass-through port in the midstream transformation, you add the pass-through port to
either the DataInput group in the XML Parser transformation or the DataOutput group in the XML Generator
transformation.

Once you generate the port, you use the XML Editor to add a corresponding reference port to another view in
the XML definition. In the XML Parser transformation, the pass-through port is an input port, and the
corresponding reference port is an output port. In the XML Generator transformation, the pass-through port is
an output port and the associated reference port is an input port.

To create a pass-through port in a midstream XML transformation:

1. Open the transformation in the Transformation Developer or Mapping Designer.

2. Double-click the transformation to open Edit Transformations.

3. Click the Midstream XML Generator or Midstream XML Parser tab.

The DataInput or DataOutput port appears, depending on the transformation type.

4. Click the Add button to add an output port for the pass-through.

A default field appears in the Field Name column.

5. Modify the field name. You can also modify type, precision, and scale depending on the file you used to
create the definition.

6. Click XML Editor to open the XML definition for the transformation.

The XML views in the definition appear in the workspace.

7. Right-click the top of a view to add the reference port.

8. Select Add a Reference Port.

The Reference Port dialog box opens.

The dialog box lists the pass-through ports you added in the transformation.

9. Select the pass-through port that will correspond to the new reference port in the view and click OK.

The corresponding output reference port appears in the view. You can rename the port to a meaningful
name in the Columns window.

10. Click Apply Changes and exit the XML Editor.

11. Click OK in the transformation.

Non-XML data comes through the input port called Pass_thru_field and passes through the corresponding
COL_0 reference output port.

Troubleshooting Midstream XML Transformations

I need to extract XML files from a database table that contains an XML CLOB. Each XML file can
be up to 2 GB. If I create an XML Parser transformation, I need to define a fixed maximum length
for the CLOB column. However, the maximum length for the CLOB datatype is 104 MB.

Generating Pass-Through Ports 117

The XML data is too large to pass directly from the table to an XML Parser transformation. You need to stage
the CLOB table data to a flat file and create an XML source definition from the file.

For information about XML sizing in PowerCenter, see “Using XML with PowerCenter Overview” on page 32.
For more information about the limitations that apply to XML handling in PowerCenter, see “Limitations” on
page 33.

To create a transformation with other element types, and to transform larger XML input files, use a Data
Processor transformation. For more information about how to create Data Processor transformations, see
the Informatica Data Transformation User Guide and the Informatica Data Transformation Getting Started
Guide.

118 Chapter 7: Midstream XML Transformations

A p p e n d i x A

XML Datatype Reference
This appendix includes the following topic:

• XML and Transformation Datatypes, 119

XML and Transformation Datatypes
PowerCenter supports all XML datatypes specified in the W3C May 2, 2001 Recommendation. The following
table lists the XML datatypes and compares them to the transformation datatypes in the XML Source
Qualifier transformation. For more information about XML datatypes, see the W3C specifications for XML
datatypes at http://www.w3.org/TR/xmlschema-2.

You can change the datatypes in XML definitions and in midstream XML transformations if you import an
XML file to create the definition. You cannot change XML datatypes when you import them from an XML
schema. You cannot change the transformation datatypes for XML sources within a mapping.

The following table describes the XML and corresponding transformation datatypes:

Datatype Transformation Range

anySimpleType String 1 to 104,857,600 characters

anyURI String 1 to 104,857,600 characters

base64Binary Binary 1 to 104,857,600 bytes

boolean Small Integer Precision 5; scale 0

byte Small Integer Precision 5; scale 0

date Date/Time Jan 1, 0001 A.D. to Dec 31, 9999 A.D. (precision to the
nanosecond)

dateTime Date/Time Jan 1, 0001 A.D. to Dec 31, 9999 A.D. (precision to the
nanosecond)

decimal Decimal Precision 1 to 28; scale 0 to 28

double Double Precision 15, scale 0

duration String 1 to 104,857,600 characters

119

http://www.w3.org/TR/xmlschema-2

Datatype Transformation Range

ENTITIES String 1 to 104,857,600 characters

ENTITY String 1 to 104,857,600 characters

float Double Precision 15, scale 0

gDay Integer -2,147,483,648 to 2,147,483,647
Precision 10; scale 0

gMonth Integer -2,147,483,648 to 2,147,483,647
Precision 10; scale 0

gMonthDay Date/Time Jan 1, 0001 A.D. to Dec 31, 9999 A.D. (precision to the
nanosecond)

gYear Integer Precision 10; scale 0

gYearMonth Date/Time Jan 1, 0001 A.D. to Dec 31, 9999 A.D. (precision to the
nanosecond)

hexBinary Binary 1 to 104,857,600 bytes

ID String 1 to 104,857,600 characters

IDREF String 1 to 104,857,600 characters

IDREFS String 1 to 104,857,600 characters

int Bigint -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Precision 19; scale 0

integer Bigint -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Precision 19; scale 0

language String 1 to 104,857,600 characters

long Bigint -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Precision 19; scale 0

Name String 1 to 104,857,600 characters

Ncname String 1 to 104,857,600 characters

negativeInteger Bigint -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Precision 19; scale 0

NMTOKEN String 1 to 104,857,600 characters

NMTOKENS String 1 to 104,857,600 characters

nonNegativeInteger Bigint -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Precision 19; scale 0

120 Appendix A: XML Datatype Reference

Datatype Transformation Range

nonPositiveInteger Bigint -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Precision 19; scale 0

normalizedString String 1 to 104,857,600 characters

NOTATION String 1 to 104,857,600 characters

positiveInteger Bigint -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Precision 19; scale 0

QName String 1 to 104,857,600 characters

short Small Integer Precision 5; scale 0

string String 1 to 104,857,600 characters

time Date/Time Jan 1, 0001 A.D. to Dec 31, 9999 A.D. (precision to the
nanosecond)

token String 1 to 104,857,600 characters

unsignedByte Small Integer Precision 5; scale 0

unsignedInt Bigint -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Precision 19; scale 0

unsignedLong Bigint -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Precision 19; scale 0

unsignedShort Integer -2,147,483,648 to 2,147,483,647
Precision 10; scale 0

XML Date Format
PowerCenter supports the following format for date, time, and datetime datatypes:

CCYY-MM-DDThh:mm:ss:sss
Use this format or any portion of this format in an XML file. PowerCenter does not support negative dates for
datetime format.

Use a date, time, or datetime element in either of the following formats within a session:

CCYY-MM
- or -

CCYY-MM-DD/Thh
The format of the first datetime element in an XML file determines the format of all subsequent values of the
element. If the Integration Service reads a value for the same date, time, or datetime element that has a
different format, the Integration Service rejects the row.

For example, if the first value of a datetime element is in the following format:

CCYY-MM-DDThh:mm:ss

XML and Transformation Datatypes 121

The Integration Service rejects a row that contains the element in the following format:

CCYY-MM-DD
The XML parser converts the datetime value in the input XML to a value in the local time zone of the machine
that hosts the Integration Service. If you enable the option to adjust the clock for daylight saving changes on
Windows, the XML parser adds an hour to the datetime value. For consistent datetime value conversions, do
not enable the option on Windows to adjust the clock for daylight saving changes.

122 Appendix A: XML Datatype Reference

A p p e n d i x B

XPath Query Functions Reference
This appendix includes the following topics:

• XPath Query Functions Overview, 123

• Function Quick Reference, 124

• boolean, 125

• ceiling, 126

• concat, 127

• contains, 128

• false, 129

• floor, 129

• lang, 130

• normalize-space, 131

• not, 131

• number, 132

• round, 133

• starts-with, 133

• string, 134

• string-length, 135

• substring, 136

• substring-after, 137

• substring-before, 138

• translate, 139

• true, 140

XPath Query Functions Overview
XPath is a language that describes a way to locate items in an XML document. XPath uses an addressing
syntax based on the path through the XML hierarchy from a root component. You can create an XPath query
predicate for elements in the view row or a column that has an XPath that includes the view row.

123

Use an XPath query predicate in an XML view to filter XML source data. In a session, the Integration Service
extracts data from a source XML file based on the query. If all queries return TRUE, the Integration Service
extracts data for the view.

An XPath query predicate includes an element or attribute to extract, and the query that determines the
criteria. You can verify the value of an element or attribute, or you can verify that an element or attribute
exists in the source XML data.

This appendix describes each function used in an XPath query predicate. Functions accept arguments and
return values. When you create a function, you can include components from the elements and attributes in
the XML view, and you can add literal values. When you specify a literal, you must enclose the literal in single
or double quotes.

Function Quick Reference
Use the following types of function in an XPath query predicate:

• String. Use string functions to test substring values, concatenate strings, or translate strings into other
strings. For example, the following XPath query predicate determines if an employee’s full name is equal
to the concatenation of last name and first name:

EMPLOYEE[./FULLNAME=concat(./ENAME/LASTNAME,./ENAME/FIRSTNAME)]
• Numeric. Use numeric functions with element and attribute values. Numeric functions operate on

numbers and return integers. For example, the following XPath query predicate rounds discount and tests
if the result is greater than 15:

ORDER_ITEMS[round(./DISCOUNT) > 15]
• Boolean. Use Boolean functions to test elements, check the language attribute, or force a true or false

result. For example, the following XPath query predicate returns true if the value is greater than zero:

boolean(string)
The following table describes XPath query predicate string functions:

Function Syntax Description

concat concat (string1, string2) Concatenates two strings.

contains contains (string, substring) Determines a string contains another string.

normalize-space normalize-space (string) Strips leading and trailing white space from a string.

starts-with starts-with (string, substring) Determines if string1 starts with string2.

string string (value) Converts a number or Boolean to a string.

string-length string-length (string) Returns the number of characters in a string, including
trailing blanks.

substring substring (string, start [,length]) Returns a portion of a string starting at a specified
position.

substring-after substring-after (string, substring) Returns a portion of a string starting at a specified
position.

124 Appendix B: XPath Query Functions Reference

Function Syntax Description

substring-before substring-before (string, substring) Returns the characters in a string that occur before a
substring.

translate translate (string1, string2, string3) Converts the characters in a string to other characters.

The following table describes XPath query predicate number functions:

Function Syntax Description

ceiling ceiling (number) Rounds a number to the smallest integer that is greater
than or equal to the passed number.

floor floor (number) Rounds a number to the largest integer that is less than
or equal to the passed number.

number number (value) Converts a string or Boolean value to a number.

round round (number) Rounds a number to the nearest integer.

The following table describes XPath query predicate Boolean functions:

Function Syntax Description

boolean boolean (object) Converts an object to Boolean.

false false () Always returns FALSE.

lang lang (code) Determines if an element has an xml:lang attribute that
matches the code argument.

not not (condition) Returns TRUE if a Boolean condition is FALSE and
FALSE if the Boolean condition is TRUE.

true true () Always returns TRUE.

boolean
Converts a value to Boolean.

Syntax
boolean (object)

The following table describes the boolean argument:

Argument Description

object Numeric or character string datatype. Passes a number or string to test.

boolean 125

Return Value

Boolean.

The function returns a Boolean as follows:

• A string returns TRUE if its length is not zero, otherwise it returns FALSE.

• A number returns FALSE if it is zero or not a number (NaN), otherwise it returns TRUE.

Examples

The following example verifies that a name has characters:

boolean (NAME)
The following table includes example arguments and return values:

NAME RETURN VALUE

Lilah TRUE

- FALSE

The following example verifies that a zip code is numeric:

boolean (ZIP_CODE)
The following table includes example arguments and return values:

ZIP_CODE RETURN VALUE

94061 TRUE

94005 TRUE

9400g FALSE

ceiling
Rounds a number to the smallest integer that is greater than or equal to the passed number.

Syntax
ceiling (number)

The following table describes the argument for this function:

Argument Description

number Numeric value. The number you want to round.

Return Value

Integer.

126 Appendix B: XPath Query Functions Reference

Example

The following expression returns the price rounded to the smallest integer:

ceiling (PRICE)
The following table contains example arguments and return values:

PRICE RETURN VALUE

39.79 40

125.12 126

74.24 75

NULL NULL

-100.99 -100

100 100

concat
Concatenates two strings.

Syntax
concat (string1, string2)

The following table describes the arguments for this function:

Argument Description

string1 String datatype. Passes the first string to concatenate.

string2 String datatype. Passes the second string to concatenate.

Return Value

String.

If one of the strings is NULL, concat ignores it and returns the other string.

Example

The following expression concatenates FIRSTNAME and LASTNAME:

concat(FIRSTNAME, LASTNAME)
The following table includes example arguments and return values:

FIRSTNAME LASTNAME RETURN VALUE

John Baer JohnBaer

NULL Campbell Campbell

concat 127

FIRSTNAME LASTNAME RETURN VALUE

Greg NULL Greg

NULL NULL NULL

Tip

The concat function does not add spaces to strings. To add a space between two strings, you can write an
expression that contains nested concat functions. For example, the following expression adds a space to the
end of the first name and concatenates first name to the last name:

concat (concat (FIRST_NAME, " "), LAST_NAME)
The following table shows example arguments and return values:

FIRST_NAME LAST_NAME RETURN VALUE

John Baer John Baer

NULL Campbell Campbell (includes leading space)

Greg NULL Greg

contains
Determines if a string contains another string.

Syntax
contains(string, substring)

The following table describes the arguments for this function:

Argument Description

string String datatype. Passes the string to examine. The argument is case sensitive.

substring String datatype. Passes the string to search for in the string. The argument is case sensitive.

Return Value

Boolean.

Example

The following expressions returns TRUE if the NAME contains SHORTNAME:

contains(NAME, SHORTNAME)
The following table includes example arguments and return values:

NAME SHORTNAME RETURN VALUE

John Baer FALSE

SuzyQ Suzy TRUE

128 Appendix B: XPath Query Functions Reference

NAME SHORTNAME RETURN VALUE

WorldPeace World TRUE

CASE_SENSITIVE case FALSE

false
Always returns FALSE. Use this function to set a Boolean to FALSE.

Syntax
false ()

The false function does not accept arguments.

Return Value

FALSE.

Example

Combine the false function with other functions to force a FALSE result.

The following table includes expressions that return FALSE:

EXPRESSION RETURN VALUE

(salary) = false() FALSE

A/B = false () FALSE

starts-with (name, 'T') = false() FALSE

floor
Rounds a number to the largest integer that is less than or equal to the passed number.

Syntax
floor(number)

The following table describes arguments for this function:

Argument Description

number Numeric value. Use a numeric expression.

Return Value

Integer.

NULL if a value passed to the function is NULL.

false 129

Example

The following expression returns the largest integer less than or equal to the value in BANK_BALANCE:

floor(BANK_BALANCE)
The following table contains example arguments and return values:

BANK_BALANCE RETURN VALUE

39.79 39

NULL NULL

-100.99 -101

5 5

lang
Returns TRUE if the element has an xml:lang attribute that is the same language as the code argument. Use
the lang function to select XML by language. The xml:lang attribute is a code that identifies the language of
the element content. An element might include text in several languages.

Syntax
lang (code)

The following table describes arguments for this function:

Argument Description

code String datatype. Passes the element content language code.

Return Value

Boolean.

Example

The following expression examines the element content language code:

lang (‘en’)
The following table contains example arguments and return values:

XML RETURN VALUE

<Phrase xml:lang=”es”>
 El perro esta en la casa.
</Phrase>

FALSE

<Phrase xml:lang=”en”>
 The dog is in the house.
</Phrase>

TRUE

130 Appendix B: XPath Query Functions Reference

normalize-space
Removes leading and trailing white space from a string. White space contains characters that do not display,
such as the space character and the tab character. This function replaces sequences of white space with a
single space.

Syntax
normalize-space (string)

The following table describes the argument for this function:

Argument Description

string String datatype. Passes a string that contains white space.

Return Value

String.

NULL if the string is NULL.

Example

The following expression removes excess white space from a name:

normalize-space (NAME)
The following table contains example arguments and return values:

NAME RETURN VALUE

Jack Dog Jack Dog

 Harry Cat Harry Cat

not
Returns the inverse of a Boolean condition. The function returns TRUE if a condition is false, and returns
FALSE if a condition is true.

Syntax
not (condition)

The following table describes the argument for this function:

Argument Description

condition Boolean expression or value.

Return Value

Boolean.

NULL if the condition is NULL.

normalize-space 131

Example

The following expression returns the inverse of a Boolean condition:

not (EMPLOYEE = concat (FIRSTNAME, LASTNAME))
The following table contains example arguments and return values:

EMPLOYEE FIRSTNAME LASTNAME RETURN

Fullname Full Name FALSE

Lastname Lastname First TRUE

number
Converts a string or Boolean value to a number.

Syntax
number (value)

The following table describes the argument for this function:

Argument Description

value Use a Boolean or string value.

Return Value

The function returns a number for the following data:

• A string converts to a number if the string contains a numeric character. The string can contain white
space and include a minus sign followed by a number. White space can follow the number in the string.
Any other string is Not a Number (NaN).

• A Boolean TRUE converts to 1. A Boolean FALSE converts to 0.

If a value passed as an argument to the function is not a number, the function returns Not A Number (NaN).

Example

The following expression converts payment to a number:

number (PAYMENT)
The following table contains example arguments and return values:

PAYMENT RETURN VALUE

‘850.00’ 850.00

TRUE 1

FALSE 0

AB NaN

132 Appendix B: XPath Query Functions Reference

round
Rounds a number to the nearest integer. If the number is between two integers, round returns the higher
number.

Syntax
round (number)

The following table describes the argument for this function:

Argument Description

number Numeric value. Passes a numeric datatype or an expression that results in a number.

Return Value

Integer.

Example

The following expression rounds BANK_BALANCE:

round(BANK_BALANCE)
The following table contains example arguments and return values:

BANK_BALANCE RETURN VALUE

12.34 12

12.50 13

-18.99 -19

NULL NULL

starts-with
Returns TRUE if the first string starts with the second string. Otherwise, returns FALSE.

Syntax
starts-with (string, substring)

The following table describes the arguments for this function:

Argument Description

string String datatype. Passes the string to search. The string is case sensitive.

substring String datatype. Passes the substring to search for in the string. The substring is case sensitive.

Return Value

Boolean.

round 133

Example

The following expression determines if NAME starts with FIRSTNAME:

starts-with (NAME, FIRSTNAME)
The following table contains example arguments and return values:

NAME FIRSTNAME RETURN VALUE

Kathy Russell Kathy TRUE

Joe Abril Mark FALSE

string
Converts a number or Boolean to a string.

Syntax
string (value)

The following table describes the argument for this function:

Argument Description

value Numeric or Boolean value. Passes a number or Boolean value.

Return Value

String.

Returns an empty string if no value is passed. Returns NULL if a null value is passed.

The string function converts a number to a string as follows:

• If the number is an integer, the function returns a string in decimal form with no decimal point and no
leading zeros.

• If the number is not an integer, the function returns a string including a decimal point with at least one
digit before the decimal point, and at least one digit after the decimal point.

• If the number is negative, the function returns a string that contains a minus sign (-).

The string function converts a Boolean to a string as follows:

• If the Boolean is FALSE, the function returns the string “false.”

• If the Boolean is TRUE, the function returns the string “true.”

Example

The following expression returns a string from the numeric argument speed:

string(SPEED)
The following table contains example arguments and return values:

SPEED RETURN VALUE

10.99 ‘10.99’

134 Appendix B: XPath Query Functions Reference

SPEED RETURN VALUE

15.62567 ‘15.62567’

0 ‘0’

10 ‘10’

50 ‘50’

1.3 ‘1.3’

The following expression returns a string from the Boolean argument STATUS:

string(STATUS)
The following table shows example arguments and return values:

STATUS RETURN VALUE

TRUE ‘true’

FALSE ‘false’

NULL NULL

string-length
Returns the number of characters in a string, including trailing blanks.

Syntax
string-length (string)

The following table describes the argument for this function:

Argument Description

string String datatype. The string you want to evaluate.

Return Value

Integer.

NULL if a value passed to the function is NULL.

Example

The following expression returns the length of the customer name:

string-length (CUSTOMER_NAME)
The following table contains example arguments and return values:

CUSTOMER_NAME RETURN VALUE

Bernice Davis 13

string-length 135

CUSTOMER_NAME RETURN VALUE

NULL NULL

John Baer 9

substring
Returns a portion of a string starting at a specified position. Substring includes blanks as characters in the
string.

Syntax
substring (string, start [,length])

The following table describes arguments for this function:

Argument Description

string String datatype. The string to search.

start Integer datatype. Passes the position in the string to start counting. If the start position is a
positive number, substring locates the start position by counting from the beginning of the
string. The first character is one. If the start position is a negative number, substring locates the
start position by counting from the end of the string.

length Integer datatype. Must be greater than zero. Passes the number of characters to return in a
string. If you omit the length argument, substring returns all of the characters from the start
position to the end of the string.

Return Value

String.

When the string contains a numeric value, the function returns a character string.

If you pass a negative integer or zero, the function returns an empty string.

NULL if a value passed to the function is NULL.

Examples

The following expression returns the area code in PHONE:

substring(PHONE, 1, 3)

PHONE RETURN VALUE

809-555-3915 809

NULL NULL

The following expression returns the PHONE without the area code:

substring (phone, 5, 8)

136 Appendix B: XPath Query Functions Reference

The following table includes example arguments and return values without the area codes:

PHONE RETURN VALUE

808-555-0269 555-0269

NULL NULL

You can pass a negative start value to start from the right side of the string. The expression reads the source
string from left to right for the length argument:

substring (PHONE, -8, 3)
The following table includes example arguments and return values when the expression reads the source
string from left to right:

PHONE RETURN VALUE

808-555-0269 555

809-555-3915 555

357-687-6708 687

NULL NULL

When the length argument is longer than the string, substring returns all the characters from the start
position to the end of the string. For example:

substring ('abcd', 2, 8)
returns ‘bcd.’

substring ('abcd', -2, 8)
returns ‘cd.’

substring-after
Returns the characters in a string that occurs after a substring.

Syntax
substring-after (string, substring)

The following table describes the arguments for this function:

Argument Description

string String datatype. Passes the string to search.

substring String datatype. Passes a substring to search for in the string.

Return Value

String.

Empty string if the substring is not found.

substring-after 137

NULL if a value passed to the function is NULL.

Example

The following expression returns the string of characters in PHONE that occurs after the area code (415):

substring-after (PHONE, (415))
The following table includes examples of arguments and return values:

PHONE RETURN VALUE

(415)555-1212 555-1212

(408)368-4017 -

NULL NULL

(415)366-7621 366-7621

substring-before
Returns the part of a string that occurs before a substring.

Syntax
substring-before (string, substring)

The following table describes the arguments for this function:

Argument Description

string String datatype. Passes the string to search.

substring String datatype. Passes the substring to search for in the string.

Return Value

String.

Empty string if the substring is not found.

NULL if a value passed to the function is NULL.

Example

The following expression returns the number that occurs in a Third Street address:

substring-before (ADDRESS, Third Street)
The following table contains example attributes and return values:

ADDRESS RETURN VALUE

100 Third Street 100

250 Third Street 250

600 Third Street 600

138 Appendix B: XPath Query Functions Reference

ADDRESS RETURN VALUE

NULL NULL

translate
Converts the characters in a string to other characters. The function uses two other strings as translation
pairs.

Syntax
translate (string1, string2, string3)

The following table describes the arguments for this function:

Argument Description

string1 String datatype. Passes the string to translate.

string2 String datatype. Passes the string that defines which characters to translate. Translate replaces
each character in string1 with a number indicating its position in string2.

string3 String datatype. Passes the string that defines what the characters from encrypted string1 should
translate to. Translate replaces each character in encrypted string1 with a character in string3 at
the position number from string2.

Return Value

String.

Example

The following expression translates a string using two other strings:

translate (EXPRESSION, STRING2, STRING3)
The following table contains example arguments and return values:

EXPRESSION STRING2 STRING3 RETURN VALUE

A Space Odissei i y A Space Odyssey

rats tras TCAS CATS

bar abc ABC BAr

Translate does not change a character in EXPRESSION if the character does not occur in string2. If a
character occurs in EXPRESSION and string2, but does not occur in string3, the character does not occur in
the returned string.

translate 139

true
Always returns TRUE. Use this function to set a Boolean to TRUE.

Syntax
true ()

The true function does not accept arguments.

Return Value

Boolean TRUE.

Example

The following table contains example expressions that return TRUE:

EXPRESSION RETURN VALUE

(decision) = true () TRUE

A/B = true () TRUE

(starts-with (name, 'T'))= true TRUE

140 Appendix B: XPath Query Functions Reference

I n d e x

A
absolute cardinality

description 20
abstract elements

description 25
using in a mapping 97

advanced mode
setting the XPath Navigator 70

all group
description 29

ANY content elements
description 27

anyAttribute
description 28

anySimpleType
description 27
using in the XML Editor 74

anyType element type
description 26
using in the XML Editor 73

atomic types
description 23

attribute query
using XPath query predicates 75

attributes
DTD syntax 16
XML 57

B
boolean function

syntax 125
Boolean operators

description 75

C
cardinality

absolute 20
relative 21
types 20

ceiling function
description 124
syntax 126

characters
counting in a string 135

child element
overview 12

choice group
description 29

circular references
description 49
using constraint-based loading 49

circular references (continued)
using with schema subsets 59

CLOB
extracting large XML files 117

code pages
importing XML sources 56
XML file 15, 30

columns
adding to XML views 70
deleting from an XML view 72
generating names 56
pivoting 52

Columns window
description 70

complex types
creating type relationships 79
description 24
expanding 72
extended 24
in XML schemas 24
restricted 24
viewing the hierarchy 82

composite keys
description 33

concat (XPath)
description 124
syntax 127

concatenated columns
description 33

constraint-based loading
with XML circular references 49

contains function
description 124
syntax 128

creating
new XML views in workspace 70
relationships between XML views 78
XPath query predicates 75

custom XML groups
description 39
skip create view 60

D
DataInput port

description 109
DataOutput port

description 113
datatypes

rounding XML doubles 112
default values

DTD attributes 16
XML attributes 97

deleting
columns from XML view 72

141

denormalized views
generating 42

denormalized XML groups
description 42

deriving datatypes
description 36

DTD file
description 15

DTM buffer size errors
fixing 56

E
element query

using XPath query predicates 75
elements

description 12
DTD syntax 15

Enable Input Streaming
XML Parser transformation property 112

enclosure element
creating views for 56
XML hierarchy 12

encoding
declaration in XML 15

entity relationships
generating 43
generating XML views 59
in XML definitions 44
modeling 32
rules and guidelines 44

enumeration
description 23
searching for values 81

Error_Status port
XML Parser transformation 110

F
facets

description 23
false function

syntax 129
FileName column

adding to an XML view 74
passing to XML target 98

floor function
description 124
syntax 129

flushing data
XML targets 98

functions
using in XPath queries 76

G
generate names for XML columns

description 56
generated keys

description 39
sequence numbering 102

global declarations
option to create 56

global element
overview 12

H
hierarchical views

types 40
hierarchy

description 20
hierarchy relationships

element relationships 20
generating 40
model description 32
using circular references 49

I
#IMPLIED option

description 16
ignore fixed element

setting option 56
ignore prohibited attributes

setting options 56
infinite precision

overriding 56
Invalid_Payload port

XML Parser transformation 110

J
Joiner transformation

combining XML groups 105

K
keys

generated key sequence numbers 102
using in XML views 39
XML Parser transformation 109

L
lang function

description 124
syntax 130

leaf element
overview 12

legend
understanding XML Editor icons 67

limitations
using XML sources and targets 33

lists
description 23

local element
overview 12

M
mappings

connecting abstract elements 97
using XML targets 96
XML Source Qualifier transformation 104
XML target ports 97

message IDs
XML Generator transformations 117

142 Index

metadata explosion
description 44
reducing 61

metadata extensions
in XML source qualifiers 102
in XML sources 62
in XML targets 93

midstream XML transformation
creating 113
general properties 114
Generator properties 116
overview 108
Parser properties 115
reset generated key sequence 115

mode button
using the XPath Navigator 70

multiple-level pivots
description 54

multiple-occurring element
overview 12

N
name tag

description 20
namespace

description 19
updating in XML Editor 80

naming columns
option 56

Navigator
viewing simple and complex types 82

new line character
XML attributes 57

normalize-space function
description 124
syntax 131

normalized
XML groups, description 40

normalized views
generating 40

not function
description 124
syntax 131

null constraint
description 20

number function
description 124, 132
syntax 132

numeric operators
description 76

O
operators

adding in XPath query 77
options

for creating XML views 56

P
parent chain

description 12
parent element

description 12

pass-through ports
adding to XML views 115, 116
description 74
generating 117

passive transformations
XML Source Qualifier 101

pattern facet
description 23

pivoting
adding pivoted columns 70
deleting pivoted columns 72
in Advanced Options 56
setting multiple levels 54
XML columns 52

ports
XML Source Qualifier transformation 104
XML targets 97

precision
overriding infinite length 56

prefix
updating namespace 80

properties
midstream XML transformation 114
XML Generator transformation 116
XML Parser transformation 115

Q
query predicates

creating in XPath syntax 75
description 51

R
#REQUIRED option

description 16
reference ports

adding to views 117
relationship models

description 32
relative cardinality

description 21
reset

midstream generated key sequence 115
restart

midstream generated key sequence 115
root element

specifying in a target 97
round function

description 124
syntax 133

rounding
XML double datatypes 112

Route Invalid Payload Through Data Flow
XML Parser transformation 115

S
schema

changing namespace location 80
file definition (XSD) 17
simple types 23

sequence
numbering generated keys 102

Index 143

sequence group
description 29

simple types
description 23
viewing in a hierarchy 82

single-occurring element
overview 12

Skip Create XML Views
setting custom views 60

start value
generated keys 102

starts-with function
description 124
syntax 133

streaming XML
logging errors 112
XML Parser transformation 112

string function
description 124
syntax 134

string-length function
description 124
syntax 135

strings
counting characters 135
returning part of 136

substitution groups
description 48
in XML definitions 48
in XML schema files 29

substring function
description 124
syntax 136

substring-after function
description 124
syntax 137

substring-before function
description 124
syntax 138

synchronizing
midstream XML transformations 113
XML definitions 62

T
targets

specifying a root element 97
transaction control point

XML targets 98
transformation datatypes

comparing to XML 119
transformations

XML Source Qualifier 101
translate function

description 124
syntax 139

troubleshooting
XML Source Qualifier transformation 107
XML sources 64
XML targets 99

true function
syntax 140

type relationships
creating in the workspace 79

U
unions

description 24

V
validating

target rules 95
XML definitions 82
XPath queries 77

view row
description 51
guidelines for using 52

views
creating relationships 78
description 32
generating entity relationships 43
generating hierarchical relationships 40
setting options 56

X
XML

attributes 57
character encoding 30
code pages 30, 56
comparing datatypes to transformation 119
datatypes 119
description 12
extracting large XML files from a CLOB 117
path 30
synchronizing definitions with schemas 62

XML datatypes
rounding doubles 112

XML definitions
creating from flat files 64
creating from relational files 64
creating from repository definitions 64
synchronizing with sources 62

XML Editor
adding a pass-through port 74
adding columns to views 70
creating new views 70
creating type relationships 79
creating view relationships 78
creating XPath query predicates 75
deleting columns 72
expanding complex types 72
pass-through fields 115, 116
understanding the icons legend 67
updating namespace 80
using ANY content 73
using the Columns window 70
validating definitions 82

XML file
importing an XML target definition from 92
naming 74

XML Generator transformation
DataOutput port 113
example 113
overview 108
pass-through ports 117

XML groups
all group 29
choice group 29

144 Index

XML groups (continued)
creating custom 39
creating groups from relational tables 38
element and attribute groups 29
generating denormalized groups 42
generating normalized groups 40
modifying source groups 56
substitution groups 29
using substitution groups 48

XML hierarchy
child element 12
creating hierarchy relationships 60
enclosure element 12
global element 12
leaf element 12
local element 12
multiple-occurring element 12
parent chain 12
parent element 12
single-occurring element 12

xml lang attribute
description 124

XML metadata
cardinality 20
description of types 18
extracting from substitution groups 48
extracting from XML schemas 36
from substitution groups 29
hierarchy 20
name 20
null constraint 20
viewing 82

XML Parser transformation
Datainput port 109
Enable Log Source Row Data 112
Error_Status port 110
example 109
generated keys 109
input validation 110
Invalid_Payload port 110
overview 108
rounding Double datatypes 112
Route Invalid Payload Through Data Flow option 115
streaming XML files 112

XML Path
description 30

XML rules
pivoting groups 52
XML groups from relational tables 38
XML target port connections 97

XML schema
complex types 24
importing metadata from 36
setting default attributes 97

XML schema definition (XSD)
described 17

XML Source Qualifier transformation
adding to mapping 101

XML Source Qualifier transformation (continued)
creating by default 102
example 105
manually creating 102
overview 101
port connections 104
troubleshooting 107
using in a mapping 104

XML sources
creating a target from 92
limitations 33
overview 55, 67
troubleshooting 64

XML targets
active sources 96
creating groups from relational tables 38
editing target properties 93
flushing data 98
limitations 33
multi-line attributes 57
On Commit session property 98
port connections 97
setting default attributes 97
troubleshooting 99
using in mapping 96

XML views
adding columns 70
adding pass-through fields 115, 116
combining data 105
creating 58
creating hierarchy relationships 60
creating new views 70
creating relationships between 78
creating with XML Wizard 58
filtering data 75
generating custom views 60
generating entity relationships 59
pivoting columns 52
Skip Create XML View option 60

XML Wizard
generating custom XML views 60
generating entity relationships 59
generating hierarchy relationships 60
selecting root elements 61
synchronizing XML definitions 62

XPath
adding pivoted columns 70
adding query operators 77
creating a query predicate 75
description 30
expanding complex types 72
using query predicates 51
validating queries 77

XPath query predicate
functions 123

Index 145

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrixes
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: XML Concepts
	XML Concepts Overview
	XML Files
	Validating XML Files with a DTD or Schema

	DTD Files
	DTD Elements
	DTD Attributes

	XML Schema Files
	Types of XML Metadata
	Namespace
	Name
	Hierarchy

	Cardinality
	Absolute Cardinality
	Relative Cardinality

	Simple and Complex XML Types
	Simple Types
	Complex Types

	Any Type Elements and Attributes
	anyType Elements
	anySimpleType Elements
	ANY Content Elements
	AnyAttribute Attributes

	Component Groups
	Element and Attribute Groups
	Substitution Groups

	XML Path
	Code Pages

	Chapter 2: Using XML with PowerCenter
	Using XML with PowerCenter Overview
	Limitations

	Importing XML Metadata
	Importing Metadata from an XML File
	Importing Metadata from a DTD File
	Importing Metadata from an XML Schema
	Creating Metadata from Relational Definitions
	Creating Metadata from Flat Files

	Understanding XML Views
	Creating Custom XML Views
	Rules and Guidelines for XML Views

	Understanding Hierarchical Relationships
	Normalized Views
	Denormalized Views

	Understanding Entity Relationships
	Rules and Guidelines for Entity Relationships
	Type 1 Entity Relationship Example
	Type II Entity Relationship Example
	Using Substitution Groups in an XML Definition

	Working with Circular References
	Understanding View Rows
	Using XPath Query Predicates
	Rules and Guidelines for Using View Rows

	Pivoting Columns
	Using Multiple-Level Pivots

	Chapter 3: Working with XML Sources
	Working with XML Sources Overview
	Importing an XML Source Definition
	Multi-line Attributes Values

	Working with XML Views
	Importing Part of an XML Schema

	Generating Entity Relationships
	Generating Hierarchy Relationships
	Creating Custom XML Views
	Selecting Root Elements
	Reducing Metadata Explosion

	Synchronizing XML Definitions
	Editing XML Source Definition Properties
	Creating XML Definitions from Repository Definitions
	Troubleshooting XML Sources

	Chapter 4: Using the XML Editor
	Using the XML Editor Overview
	XML Navigator
	XML Workspace
	Columns Window

	Creating and Editing Views
	Creating an XML View
	Adding Columns to a View
	Deleting Columns from a View
	Expanding a Complex Type
	Importing anyType Elements
	Applying Content to anyAttribute or ANY Elements
	Using anySimpleType in the XML Editor
	Adding a Pass-Through Port
	Adding a FileName Column

	Creating an XPath Query Predicate
	Querying the Value of an Element of Attribute
	Testing for Elements or Attributes
	XPath Query Predicate Rules and Guidelines
	Steps for Creating an XPath Query Predicate

	Maintaining View Relationships
	Creating a Relationship Between Views
	Creating a Type Relationship
	Re-Creating Entity Relationships

	Viewing Schema Components
	Updating a Namespace
	Navigating to Components
	Searching for Components
	Viewing a Simple or Complex Type Hierarchy
	Viewing XML Metadata
	Validating XML Definitions

	Setting XML View Options
	Generating All Hierarchy Foreign Keys
	Generating Rows in Circular Relationships
	Generating Hierarchy Relationship Rows
	Setting the Force Row Option
	Generating Rows for Views in Type Relationships

	Troubleshooting Working with the XML Editor

	Chapter 5: Working with XML Targets
	Working with XML Targets Overview
	Importing an XML Target Definition from an XML File
	Creating a Target from an XML Source Definition
	Editing XML Target Definition Properties
	Validating XML Targets
	Hierarchy Relationship Validation
	Type Relationship Validation
	Inheritance Validation

	Using an XML Target in a Mapping
	Active Sources
	Selecting a Root Element
	Connecting Target Ports
	Connecting Abstract Elements
	Flushing XML Data to Targets
	Naming XML Files Dynamically

	Troubleshooting XML Targets

	Chapter 6: XML Source Qualifier Transformation
	XML Source Qualifier Transformation Overview
	Adding an XML Source Qualifier to a Mapping
	Creating an XML Source Qualifier Transformation by Default
	Creating an XML Source Qualifier Transformation Manually

	Editing an XML Source Qualifier Transformation
	Setting Sequence Numbers for Generated Keys

	Using the XML Source Qualifier in a Mapping
	XML Source Qualifier Transformation Example

	Troubleshooting XML Source Qualifier Transformations

	Chapter 7: Midstream XML Transformations
	Midstream XML Transformations Overview
	XML Parser Transformation
	XML Parser Input Validation
	Stream XML to the XML Parser Transformation
	XML Decimal Datatypes

	XML Generator Transformation
	Creating a Midstream XML Transformation
	Synchronizing a Midstream XML Definition
	Editing Midstream XML Transformation Properties
	Properties Tab
	Midstream XML Parser Tab
	Midstream XML Generator Tab

	Generating Pass-Through Ports
	Troubleshooting Midstream XML Transformations

	Appendix A: XML Datatype Reference
	XML and Transformation Datatypes
	XML Date Format

	Appendix B: XPath Query Functions Reference
	XPath Query Functions Overview
	Function Quick Reference
	boolean
	ceiling
	concat
	contains
	false
	floor
	lang
	normalize-space
	not
	number
	round
	starts-with
	string
	string-length
	substring
	substring-after
	substring-before
	translate
	true

	Index

