4;» Informatica

Informatica® PowerCenter
10.2 HotFix 1

ransformation Guide

Informatica PowerCenter Transformation Guide
10.2 HotFix 1
June 2018

© Copyright Informatica LLC 1999, 2022

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

Informatica, the Informatica logo, and PowerCenter are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout
the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be
trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © 0SS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright © University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright® MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o0. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/Igpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (®) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http:/
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antir.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/
Consortium/Legal/2002/copyright-software-20021231; http://www.slIf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http:/forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sglite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/fag.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/
EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http:/jsoncpp.sourceforge.net/LICENSE; http://
jdbe.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/Iz4/; https://github.com/jedisct1/libsodium/blob/master/

LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cddI1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http:/
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsgl.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe Walnes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1.THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2.IN'NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2022-01-26

https://www.informatica.com/legal/patents.html

Table of Contents

4

Preface .. .o e e 22
Informatica Resources. 22
Informatica Network. L 22
Informatica Knowledge Base. 22
Informatica Documentation. 22
Informatica Product Availability Matrixes. 23
Informatica Velocity. e 23
Informatica Marketplace. 23
Informatica Global Customer Support. 23
Chapter 1: Working with Transformations.......... ceeees ceeees ceeees ceeees .. 24
Transformations OVerview. e 24
Active Transformations. 24
Passive Transformations. 25
Unconnected Transformations. 25
Native and Non-native Transformations. 25
Transformation Descriptions. e 26
Creating a Transformation. e 28
Configuring Transformations. 29
Renaming Transformations. 29
Transformation POrts. 29
Create Ports. 29
Configure POrts. e 30
Linking Ports. e 30
Multi-Group Transformations. 30
Working with EXpressions. 31
Using the Expression Editor. 32
Evaluate EXpressions. e 34
Evaluating an EXpression. 35
Evaluate Expression Restrictions. 35
Local Variables. 35
Temporarily Store Data and Simplify Complex Expressions. 36
Store Values ACTOSS ROWS. L 36
Capture Values from Stored Procedures. 37
Guidelines for Configuring Variable Ports. 37
Default Values for Ports. e 38
User-Defined Default Values. 39
User-Defined Default Input Values. 41
User-Defined Default Output Values 42
General Rules for Default Values. 44

Table of Contents

Default Value Validation. e 45

Configuring Tracing Level in Transformations. 45
Reusable Transformations. L 46
Instances and Inherited Changes. 46
Mapping Variables in EXpressions. 47
Creating Reusable Transformations. 47
Promoting Non-Reusable Transformations. 47
Creating Non-Reusable Instances of Reusable Transformations. 48
Adding Reusable Transformations to Mappings. 48
Modifying a Reusable Transformation., 48

Chapter 2: Aggregator Transformation......................cccovieeeao.... 50

Aggregator Transformation Overview. e 50
Components of the Aggregator Transformation. 51
Configuring Aggregator Transformation Properties. 51
Configuring Aggregator TransformationPorts. 52
Configuring Aggregate Caches. 52
Aggregate EXpressions. L 53
Aggregate FUNCLiONS. 53
Nested Aggregate Functions. e 53
Conditional Clauses. e 54
Non-Aggregate Functions. e 54
Null Values in Aggregate Functions. 54
Group By Ports. e 54
Non-Aggregate EXpressions. 56
Default Values. 56
Using Sorted Input. 56
Sorted Input Conditions. 56
Sorting Data. 57
Creating an Aggregator Transformation. 58
Tips for Aggregator Transformations. 58
Troubleshooting Aggregator Transformations. 59
Chapter 3: Custom Transformation.................cooiiiiiiiiiiiiiinian... 60
Custom Transformation Overview. 60
Working with Transformations Built On the Custom Transformation. 61
Code Page Compatibility. e 61
Distributing Custom Transformation Procedures. 62
Creating Custom Transformations. e 62
Rules and Guidelines for Custom Transformations. 62
Custom Transformation Components. 63
Working with Groups and Ports. e 63
Creating Groups and Ports. 63

Table of Contents

5

6

Editing Groups and Ports e 64

Defining Port Relationships. 64
Working with Port Attributes. 65
Editing Port Attribute Values. e 65
Custom Transformation Properties. e 65
Setting the Update Strategy. e 67
Working with Thread-Specific Procedure Code 67
Working with Transaction Control. 68
Transformation SCope. 68
Generate Transaction. 68
Working with Transaction Boundaries. 69
Blocking Input Data. 69
Writing the Procedure CodetoBlockData. 70
Configuring Custom Transformations as Blocking Transformations. 70
Validating Mappings with Custom Transformations. 70
Working with Procedure Properties. e 71
Creating Custom Transformation Procedures. 71
Step 1. Create the Custom Transformation. 72
Step 2. Generatethe CFiles. e 74
Step 3. Fill Out the Code with the Transformation Logic. 75
Step 4. Buildthe Module. e 80
Step 5. Create a Mapping. o o e 82
Step 6. Run the Sessionina Workflow. 82
Chapter 4: Custom Transformation Functions........................cooal 83
Custom Transformation Functions Overview. 83
Working with Handles. 83
Function Reference. 84
Working with ROWS. e 87
Rules and Guidelines for Row-Based and Array-Based Data AccessMode. 88
Generated FUNCEIONS. 88
Initialization Functions. L 89
Notification Functions. 90
Deinitialization Functions. 92
APLFUNClions. 93
Set Data Access Mode Function. L 94
Navigation FUNCHIONS. e 95
Property Functions. 97
Rebind Datatype Functions. 104
Data Handling Functions (Row-Based Mode). 106
Set Pass-Through Port Function. e 108
Output Notification Function. 109
Data Boundary Output Notification Function. 110

Table of Contents

Error Functions. e 110

Session Log Message Functions. 110
Increment Error Count Function. 111
Is Terminated Function. 112
Blocking Functions. e 112
Pointer Functions. 113
Change String Mode Function. e 114
Set Data Code Page Function. e 114
Row Strategy Functions (Row-Based Mode). 115
Change Default Row Strategy Function. 116
Array-Based API FUNCLIONS. e 117
Maximum Number of Rows Functions. 117
Number of Rows Functions. 118
IsRow Valid Function. 119
Data Handling Functions (Array-Based Mode). 120
Row Strategy Functions (Array-Based Mode). 122
Set Input Error Row Functions. e 123
Chapter 5: Data Masking Transformation........................cooiaal 126
Data Masking Transformation. e 126
Masking Properties. e 127
Locale. 127
Masking Types. e 127
Repeatable Output. 128
Seed. . . 128
Mapping Parameters. e 128
Associated O/P. 129
Key Masking. e 129
Masking String Values. 129
Masking Numeric Values. 130
Masking Datetime Values. e 131
Substitution Masking. e 131
Dictionaries. 131
Storage Tables. 132
Substitution Masking Properties. 133
Relational Dictionary. e 134
Connection Requirements. e 134
Rules and Guidelines for Substitution Masking. 134
Dependent Masking. e 134
Dependent Masking Example. 135
Repeatable Dependent Masking. 136
Random Masking. 136
Masking Numeric Values. e 137

Table of Contents 7

8

Masking String Values. e 137

Masking Date Values e 137
Applying Masking Rules. 138
Mask Format. 138
Source String Characters. e 139
Result String Replacement Characters. e 140
Range. . . . e 140
BIUMTING. . . . o 141
Expression Masking. 142
Repeatable Expression Masking. 142
Rules and Guidelines for Expression Masking. 143
Special Mask Formats. e 144
Social Security Number Masking. 144
Social Security Number Format. 144
Area Code Requirement. e 145
Repeatable Social Security Number Masking. L. 145
Credit Card Number Masking. e 145
Phone Number Masking. e 146
Email Address Masking. e 146
Advanced Email Masking. 146
Social Insurance Number Masking. L 148
SIN Start Digit. e 148
Repeatable SIN Numbers. e 148
IP Address Masking. 148
URL Address Masking. e 148
Default Value File. 149
Data Masking Transformation Session Properties. 149
Rules and Guidelines for Data Masking Transformations. 150

Chapter 6: Data Masking Examples.............cccoiiiiiiiiiiiiiinenenne.... 151

Name and Address Lookup Files. 151
Substituting Data with the Lookup Transformation. 151
Masking Data with an Expression Transformation. 154

Chapter 7: Expression Transformation.........................ccoiia. ... 157

Expression Transformation Overview. e 157
Expression Transformation Components. e 157
Configuring Ports. 158

Calculating Values. e 158
Creating an Expression Transformation. 159
Chapter 8: External Procedure Transformation............................. 160
External Procedure Transformation Overview. 160

Table of Contents

Code Page Compatibility. 161

External Procedures and External Procedure Transformations. 161
External Procedure Transformation Properties. 161
COM Versus Informatica External Procedures. 162
The BankSoft Example. e 162
Configuring External Procedure Transformation Properties. 162
Developing COM Procedures. e e e e 164
Steps for Creatinga COM Procedure. e 164
COM External Procedure Server Type. o it i e e e e 164
Using Visual C++ to Develop COM Procedures. it 165
Developing COM Procedures with Visual Basic. 170
Developing Informatica External Procedures. 171
Step 1. Create the External Procedure Transformation. 172
Step 2. Generatethe C++ Files. 174
Step 3. Fill Out the Method Stub with Implementation. 176
Step 4. Buildingthe Module. e 177
Step 5. Create a Mapping. o e 178
Step 6. Runthe Session. L 178
Distributing External Procedures. 179
Distributing COM Procedures. e 179
Distributing Informatica Modules. 180
Development NOtes. e 180
COM Datatypes. o o e 180
Row-Level Procedures. 181
Return Values from Procedures. 181
Exceptionsin Procedure Calls. e 182
Memory Management for Procedures. 182
Wrapper Classes for Pre-Existing C/C++ Libraries or VB Functions. 182
Generating Error and Tracing Messages. oottt it 182
Unconnected External Procedure Transformations. 184
Initializing COM and InformaticaModules. 185
Other Files Distributed and Used in TX. 186
Service Process Variables in Initialization Properties. 187
External Procedure Interfaces. L 187
Dispatch Function. e 188
External Procedure Function. L 188
Property Access FUNCLIONS. 188
Parameter Access Functions. 189
Code Page Access Functions. 191
Transformation Name Access Functions. 191
Procedure Access FUNCLIONS. 192
Partition Related Functions. 192

Table of Contents 9

10

Tracing Level Function. e 192

Chapter 9: Filter Transformation................cciiiiiiiiiiiiiiiiiae.... 194

Filter Transformation Overview. 194
Filter Transformation Components. 195

Configuring Filter Transformation Ports. 195
Filter Condition. 195

Filtering Rows with Null Values. e 196
Steps to Create a Filter Transformation. 196
Tips for Filter Transformations. e 196

Chapter 10: HTTP Transformation...............ccciiiiiiiiiiiiiiee..... 198

HTTP Transformation Overview. e e e 198
Authentication. 199
Connectingtothe HTTP Server. e e e e 199

Creating an HTTP Transformation. 199

Configuring the Properties Tab. 200

Configuringthe HTTP Tab. e e 201
Selectinga Method. 201
Configuring Groups and POItS. 201
Configuringa URL. e 203

EXamples. . . . e 204
GET Example.o e 204
POST Example. 205
SIMPLE POST Example. 206

Chapter 11: Identity Resolution Transformation............................ 208

Identity Resolution Transformation Overview. e 208

Create and Configure the Transformation. 208
Search Server Connection. e 209
System and Search Configuration. 209
View Selection. 210

Identity Resolution Transformation Tabs 211

Groups and Ports. 211
Input Groups and Ports 212
Output Groups and Ports. e 212

Chapter 12: Java Transformation..................ccoiiiiiiiiiiiiinien. ... 213

Java Transformation Overview. 213
Steps to Define a Java Transformation. 214
Active and Passive Java Transformations. o . 214
Data Type CONVErSioN. e e e e e e 214

UsingtheJavaCode Tab. 216

Table of Contents

Configuring Ports. e 217

Creating Groups and Ports. 217
Setting Default Port Values. 217
Configuring Java Transformation Properties. 218
Working with Transaction Control. 219
Setting the Update Strategy. e 220
DevelopingJava Code. e 221
Creating Java Code Snippets. e 221
Importing Java Packages. e 222
Defining Helper Code. e 223
Onlinput Row Tab. 223
OnEndofDataTab. 224
On Receiving Transaction Tab. e 224
Using Java Codeto Parsea FlatFile. 225
Configuring Java Transformation Settings. 225
Configuringthe Classpath. 225
Enabling High Precision. 227
Processing Subseconds. L 227
Compiling a Java Transformation. 228
Fixing Compilation Errors. e 228
Locating the Source of Compilation Errors. 228
Identifying the Source of Compilation Errors. 229

Chapter 13: Java Transformation API Reference............................ 230

Java Transformation APl Methods Overview. 230
COMMIL. . . L L 231
defineJEXPression. e 232
failSession. 233
generateROW. 233
getlinROWTYpe. . . . 234
getMetadata. e 234
incrementErrorCount. 235
INVOKEJEXPresSion. 236
ISNUIL L 237
IOQEITOr. .« . e e 237
logInfo. 238
resetNotification. 238
rollBack. 239
setNUIl .« 240
SEtOUTROWTYPE. 240
storeMetadata. 241

Table of Contents

11

12

Chapter 14: Java EXpressions.ccoviiiiiiniiineneieeneeeeeneanananns 243

Java EXpressions OVerview. 243
Expression Function Types. 244
Using the Define ExpressionDefine Function Dialog Box to Define an Expression. 244
Step 1. Configurethe Function. 245
Step 2. Create and Validate the Expression. 245
Step 3. Generate Java Code forthe Expression. 245
Creating an Expression and Generating Java Code by Using the Define ExpressionDefine
Function Dialog BOX. 245
Java Expression Templates. 246
Working with the Simple Interface. e 246
INVOKEJEXPreSSION. 246
Simple Interface Example. e 247
Working with the Advanced Interface. 248
Invoking an Expression with the Advanced Interface. 248
Rules and Guidelines for Working with the Advanced Interface. 248
EDataType Class. oo e 249
JExprParamMetadata Class. 249
defineJEXPression. e 250
JEXpression Class. 251
Advanced Interface Example. 251
JExpression Class APl Reference. e 252
getBytes. . . . e 252
getDouble. e 253
getint. . . . e 253
getloNg. e 253
getResultDataType.o e e 253
getResultMetadata. e 253
getStringBuffer. e 254
INVOKE. . . . 254
isResultNull. 254

Chapter 15: Java Transformation Example.....................coiiiii. ... 256

Java Transformation Example Overview. 256
Step 1. Importthe Mapping. 257
Step 2. Create Transformation and Configure Ports. 257
Step 3. EnterJava Code. 258
Import Packages Tab. e 258
Helper Code Tab. e 259
Oninput Row Tab. 259
Step 4. Compilethe Java Code. e 261
Step 5. Create a Session and Workflow. 261

Table of Contents

Sample Data. 261

Chapter 16: Joiner Transformation.....................cciiiiiiiiiiiao.... 263

Joiner Transformation Overview. 263
Working with the Joiner Transformation. 264
Joiner Transformation Properties. e 264
Defining a Join Condition. 265
Definingthe Join Type. e 266
Normal Join. 266
Master Outer Join. 267
Detail Outer Join. e 268
Full Outer Join. L 268
Using Sorted Input. e 268
Configuringthe Sort Order. e 269
Adding Transformations to the Mapping. 269
Configuring the Joiner Transformation. 270
Defining the Join Condition. e 270
Joining Data from a Single Source. 271
Joining Two Branches of the Same Pipeline. 271
Joining Two Instances of the Same Source. 272
Guidelines for Joining Data from a Single Source. 272
Blocking the Source Pipelines. e 273
Unsorted Joiner Transformation. L 273
Sorted Joiner Transformation. 273
Working with Transactions. e 273
Preserving Transaction Boundaries for a Single Pipeline. 274
Preserving Transaction Boundaries in the Detail Pipeline. 275
Dropping Transaction Boundaries for Two Pipelines. 275
Creating a Joiner Transformation. 275
Tips for Joiner Transformations. 276

Chapter 17: Lookup Transformation..................cccoiiiiiiiiaia.... 278

Lookup Transformation Overview. e 278
LOOKUP SOUICE TYPES. . . . v o i e e e e e e e e e 279
Relational LOOKUPS. 279
Flat File LOOKUPS. e 279
Pipeline LOOKUPS. o e 281
Connected and Unconnected Lookups. e 282
Connected LOOKUPS. e 283
Unconnected LOOKUPS. e 283
Lookup COmMPONENtS. o e 284
LOOKUP SOUICE. e e e e 284
Lookup Ports. . . . o o e 285

Table of Contents

13

14

Lookup Properties. 285

Lookup Condition. e 285
Lookup Properties. 286
Configuring Lookup Propertiesina Session. 290
LOOKUP QUETY. . . . o e 292
Default Lookup QUEryY. 292
Overriding the Lookup Query. 292
SQL Override for Uncached Lookup. 294
Lookup Source Filter. e 295
Lookup Condition. e 296
Uncached or Static Cache. e 297
Dynamic Cache. e 297
Handling Multiple Matches. e 297
Lookup Caches. e 298
Return Multiple RoOws. 298
Rules and Guidelines for Returning Multiple Rows. 299
Configuring Unconnected Lookup Transformations. 299
Step 1. Add Input Ports. e 299
Step 2. Add the Lookup Condition. 300
Step 3. Designate aReturn Value. 300
Step 4. Call the Lookup Through an Expression. 301
Database Deadlock Resilience. L 302
Creating a Lookup Transformation. e 302
Creating a Reusable Pipeline Lookup Transformation. 303
Creating a Non-Reusable Pipeline Lookup Transformation. 303
Tips for Lookup Transformations. 304
Chapter 18: Lookup Caches..........cccciiniiiiiiiiiiiiiiiiiiiiiiiiiiennen, 305
Lookup Caches OVerview. e 305
Cache Comparison. e 307
Building Connected Lookup Caches. e 307
Sequential Caches. e 308
Concurrent Caches. 308
Using a Persistent Lookup Cache. e 309
Using a Non-Persistent Cache. 309
Using a Persistent Cache. 309
Rebuilding the Lookup Cache. e 309
Working with an Uncached Lookup or StaticCache. 310
Sharing the Lookup Cache. 311
Sharing an Unnamed Lookup Cache. 311
Sharing a Named Lookup Cache. e 313
Tips for Lookup Caches. 317

Table of Contents

Chapter 19: Dynamic Lookup Cache............cociiiiiiiiiiiiiinininnnn.. 318

Dynamic Lookup Cache OVerview. 318
Dynamic Lookup Properties. 319
NewLOOKUPROWS. e 320
Associated EXpression. e 320
Null Values. 321
Ignore Ports in Comparison. e 322
SQLOverride. e 323
Lookup Transformation Values. e 323
Initial Cache Values. 324
Input Values. e 324
Lookup Values. e 325
Output Values. 325
Dynamic Lookup Cache Updates. 326
Insert Else Update. e 326
Update Else Insert. 327
Mappings with Dynamic Lookups. 328
Configuring the Upstream Update Strategy Transformation. 328
Configuring Downstream Transformations. 329
Configuring Sessions with a Dynamic Lookup Cache. 330
Conditional Dynamic Cache Updates. 330
SeSSIiON Processing. 331
Configuring a Conditional Dynamic Cache Lookup. 331
Dynamic Cache Update with Expression Results. 331
Null Expression Values. e 332
Session Processing. e 332
Configuring an Expression for Dynamic Cache Updates. 332
Synchronizing Cache with the Lookup Source. 333
NewLOOKUPROW. 333
Configuring Dynamic Cache Synchronization. 334
Dynamic Lookup Cache Example. e 334
Rules and Guidelines for Dynamic Lookup Caches. 335
Chapter 20: Normalizer Transformation.......................oooii.n. 337
Normalizer Transformation Overview. 337
Normalizer Transformation Components. e 338
Ports Tab. 338
Properties Tab. e 339
Normalizer Tab. 339
Normalizer Transformation Generated Keys. i 341
Storing Generated Key Values. 341
Changing the Generated Key Values. i 341

Table of Contents

15

16

VSAM Normalizer Transformation. 341

VSAM Normalizer Ports Tab. 343
VSAM Normalizer Tab. 344
Steps to Create a VSAM Normalizer Transformation. 345
Pipeline Normalizer Transformation. 346
Pipeline Normalizer Ports Tab. 347
Pipeline Normalizer Tab. 348
Steps to Create a Pipeline Normalizer Transformation. 349
Using a Normalizer Transformationina Mapping., 350
Generating Key Values. 352
Troubleshooting Normalizer Transformations. 353
Chapter 21: Rank Transformation.................cooiiiiiiiiiiiiiiiiiaa... 355
Rank Transformation Overview. 355
Ranking String Values. 356
Rank Caches. 356
Rank Transformation Properties. 356
Ports in a Rank Transformation. 356
Rank Index. o 357
Defining GroUPS. o o ot e e e 357
Creating a Rank Transformation. 358

Chapter 22: Router Transformation....................ccoiiiiiiiiiii..... 360

Router Transformation Overview. 360
Working With Groups. o e 362
INPUL GroUP. o e 362
OUtPUL GrOUPS. . . . o o e e e 362
Using Group Filter Conditions. e 362
Adding Groups. oo 364
Working with Ports. 364
Connecting Router Transformationsina Mapping. 365
Creating a Router Transformation. 365
Chapter 23: Sequence Generator Transformation........................... 366
Sequence Generator Transformation Overview. 366
Sequence Generator POrtS. e 367
Pass-Through Ports. e 367
NEXTVAL Port. . . . 367
CURRVAL. . . e 371
Sequence Generator Transformation Properties. 372
Start Value. 374
Increment By. 374
End Value. 375

Table of Contents

Increment Value. e 375

Cycle Througha Range of Values. e 375
CurrentValue. 375
Number of Cached Values. 376
Non-Reusable Sequence Generators. 377
Reusable Sequence Generators. 377
Reset. . 378
Maintain Row Order. 378
Sequence Data Object. 378
Creating a Sequence Data Object. 379
Creating a Sequence Generator Transformation. 380
Creating a Sequence Generator Transformation. 381
Frequently Asked Questions. 382

Chapter 24: Sorter Transformation..................c.coiiiiiiiiiieo..... 383

Sorter Transformation Overview. 383
Sorting Data. 383
Sorter Transformation Properties. 384
Sorter Cache Size. 385
Case Sensitive. 385
Work DIrectory. 385
Distinct OUtpUt ROWS. e 385
Tracing Level. e 386
Null Treated Low. 386
Transformation Scope. e 386
Creating a Sorter Transformation. e 386
Chapter 25: Source Qualifier Transformation............................... 388
Source Qualifier Transformation Overview. 388
Transformation Datatypes. 389
Target Load Order. e 389
Datetime Values. 389
Parameters and Variables. 390
Source Qualifier Transformation Properties. e 390
Default QUETY. 391
Viewing the Default Query. 392
Overriding the Default Query. e 392
Joining Source Data. 393
Default Join. 393
Custom Joins. 394
Heterogeneous JOiNS. 394
Creating Key Relationships. 394
Adding an SQL QUErY. e 395

Table of Contents

17

Entering a User-Defined Join. L 396

Outer Join SUPPOIt. e 397
Informatica Join Syntax. 397
Creatingan Outer Join. 402
Common Database Syntax Restrictions. 403

Entering a Source Filter. e 404

Using Sorted Ports. e 405

Select DistinCt. 406
Overriding Select Distinctinthe Session. 406

Adding Pre- and Post-Session SQL Commands. 406

Creating a Source Qualifier Transformation. 407
Creating a Source Qualifier Transformation Manually. 407
Configuring Source Qualifier Transformation Options. 407

Troubleshooting Source Qualifier Transformations. 408

Chapter 26: SQL Transformation..............cciiiiiiiiiiiiiiiiiinnnnn.. 410

SQL Transformation Overview. 410

Script Mode. 411
Example. e 411
Rules and Guidelines for Script Mode. 412

Query Mode. L 412
Using Static SQL QUEries. e 413
Using Dynamic SQL QUEries. 414
Pass-Through Ports Configuration. 416
Passive Mode Configuration. 416
Rules and Guidelines for Query Mode. e 417

Connectingto Databases. 417
Using a Static Database Connection. 418
Passing a Logical Database Connection. 418
Passing Full Connection Information. 418
Rules and Guidelines for Database Connections. 420

SesSioN ProCcessing. o 421
Transaction Control. L 421
High Availability. 422
SQLQUENY LOG. . . . o o 424

Input Row to Output Row Cardinality. 424
Query Statement Processing. 424
Number of Rows Affected. e 425
Maximum Output Row Count. 426
Understanding Error ROWS. e 426
Continuingon SQL Error. e 428

SQL Transformation Properties. e 428
Properties Tab. e 428

18 Table of Contents

SQL Settings Tab. 430

SQL Ports Tab. e 430
SQL Statements. 431
Creating an SQL Transformation. e 432

Chapter 27: Using the SQL Transformation in a Mapping.................... 434

SQL Transformation Example Overview. e 434
Dynamic Update Example. e 434
Definingthe Source File. 435
Creating a Target Definition. 436
Creatingthe Database Table. 436
Configuring the Expression Transformation. 437
Defining the SQL Transformation. 437
Configuring Session Attributes. 439
Target Data Results. 439
Dynamic Connection Example. e 439
Definingthe Source File. e 440
Creating a Target Definition. 440
Creating the Database Tables. 441
Creating the Database Connections. i 441
Configuring the Expression Transformation. 441
Defining the SQL Transformation. 442
Configuring Session Attributes. 443
Target Data Results. 443

Chapter 28: Stored Procedure Transformation.............................. 444

Stored Procedure Transformation Overview. i 444
Inputand Output Data. 445
Connected and Unconnected. 446
Specifying when the Stored Procedure Runs. 447

Using a Stored Procedureina Mapping. e 448

Writing a Stored Procedure. 448
Sample Stored Procedure. 448

Creating a Stored Procedure Transformation. 450
Importing Stored Procedures. e 451
Manually Creating Stored Procedure Transformations. 452
Setting Options for the Stored Procedure. 453
Changing the Stored Procedure. e 454

Configuring a Connected Transformation. 454

Configuring an Unconnected Transformation. 455
Calling a Stored Procedure From an Expression. 455
Calling a Pre- or Post-Session Stored Procedure. 458

Error Handling. e 459

Table of Contents

19

20

Pre-Session Errors. 459

Post-Session Errors. 459
Session Errors. 460
Supported Databases. e 460
SQL Declaration. 460
Parameter TYpes. o 460
Input/Output Port in Mapping. 460
Type of Return Value Supported. e 460
Expression Rules. e 461
Tips for Stored Procedure Transformations. 461
Troubleshooting Stored Procedure Transformations. 462
Chapter 29: Transaction Control Transformation........................... 463
Transaction Control Transformation Overview. 463
Transaction Control Transformation Properties. 464
Properties Tab. e 464
EXample. . . . e 465
Using Transaction Control Transformations in Mappings. 466
Sample Transaction Control Mappings with Multiple Targets. 466
Mapping Guidelines and Validation. 467
Creating a Transaction Control Transformation. 468

Chapter 30: Union Transformation....................coiiiiiiiiiiiia..... 469

Union Transformation Overview. 469
Rules and Guidelines for Union Transformations. 469
Union Transformation Components.t 470

Working with Groups and Ports. e 470

Creating a Union Transformation. e 470

Using a Union Transformationina Mapping. 471

Chapter 31: Unstructured Data Transformation............................. 472

Unstructured Data Transformation Overview. i 472

Configuring the Unstructured Data Option. i 473
Configuring the Data Transformation Repository Directory. 474

Data Transformation Service Types. 474

Unstructured Data Transformation Components. 474
Properties Tab. e 475
UDT Settings Tab. o 476
Viewing Status Tracing Messages. e 477

Unstructured Data Transformation Ports. 477
Input and Output Types. o o o 478
Additional Unstructured Data Transformation Ports. 479
Creating Ports From a Data Transformation Service. 479

Table of Contents

Unstructured Data Transformation Service Names. 479

Relational Hierarchies. 480
Exporting the Hierarchy Schema. 480
MapPiNgS. . . o e 481
Parsing Word Documents for Relational Tables. 481
Creating an Excel Sheet from XML. 482
Split XML File Qutput. 482
Rules and Guidelines for Unstructured Data Mappings. 483
Creating an Unstructured Data Transformation. 483
Chapter 32: Update Strategy Transformation............................... 485
Update Strategy Transformation Overview. 485
Setting the Update Strategy. e 485
Flagging Rows Withina Mapping. e e e 486
Forwarding Rejected ROWS. 486
Update Strategy EXpressions. e 486
Aggregator and Update Strategy Transformations. 487
Lookup and Update Strategy Transformations. 487
Setting the Update Strategy fora Session. 488
Specifying an Operation for AllRows. 488
Specifying Operations for Individual Target Tables. 489
Update Strategy Checklist. e 489

Chapter 33: XML Transformations............cccoiiiiiiiiiiiiiennnnen..... 491

XML Source Qualifier Transformation. 491
XML Parser Transformation. e 491
XML Generator Transformation. 492

3T =) P 1 X |

Table of Contents

21

Preface

The PowerCenter® Transformation Guide is written for the developers and software engineers responsible for
implementing your data warehouse. The PowerCenter Transformation Guide assumes that you have a solid
understanding of your operating systems, relational database concepts, and the database engines, flat files,
or mainframe system in your environment. This guide also assumes that you are familiar with the interface
requirements for your supporting applications.

Informatica Resources

22

Informatica Network

Informatica Network hosts Informatica Global Customer Support, the Informatica Knowledge Base, and other
product resources. To access Informatica Network, visit https://network.informatica.com.

As a member, you can:

¢ Access all of your Informatica resources in one place.

e Search the Knowledge Base for product resources, including documentation, FAQs, and best practices.
¢ View product availability information.

e Review your support cases.

e Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base

Use the Informatica Knowledge Base to search Informatica Network for product resources such as
documentation, how-to articles, best practices, and PAMs.

To access the Knowledge Base, visit https://kb.informatica.com. If you have questions, comments, or ideas
about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation

To get the latest documentation for your product, browse the Informatica Knowledge Base at
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx.

If you have questions, comments, or ideas about this documentation, contact the Informatica Documentation
team through email at infa_documentation@informatica.com.

HTTPS://NETWORK.INFORMATICA.COM/
http://kb.informatica.com
mailto:KB_Feedback@informatica.com
https://kb.informatica.com/_layouts/ProductDocumentation/Page/ProductDocumentSearch.aspx
mailto:infa_documentation@informatica.com

Informatica Product Availability Matrixes

Product Availability Matrixes (PAMSs) indicate the versions of operating systems, databases, and other types
of data sources and targets that a product release supports. If you are an Informatica Network member, you
can access PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity

Informatica Velocity is a collection of tips and best practices developed by Informatica Professional
Services. Developed from the real-world experience of hundreds of data management projects, Informatica
Velocity represents the collective knowledge of our consultants who have worked with organizations from
around the world to plan, develop, deploy, and maintain successful data management solutions.

If you are an Informatica Network member, you can access Informatica Velocity resources at
http://velocity.informatica.com.

If you have questions, comments, or ideas about Informatica Velocity, contact Informatica Professional
Services at ips@informatica.com.

Informatica Marketplace

The Informatica Marketplace is a forum where you can find solutions that augment, extend, or enhance your
Informatica implementations. By leveraging any of the hundreds of solutions from Informatica developers
and partners, you can improve your productivity and speed up time to implementation on your projects. You
can access Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support

You can contact a Global Support Center by telephone or through Online Support on Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
http://www.informatica.com/us/services-and-training/support-services/global-support-centers.

If you are an Informatica Network member, you can use Online Support at http://network.informatica.com.

Preface 23

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
http://www.informatica.com/us/services-and-training/support-services/global-support-centers/
http://network.informatica.com

CHAPTER 1

Working with Transformations

This chapter includes the following topics:

e Transformations Overview, 24

e Creating a Transformation, 28

e Configuring Transformations, 29

e Transformation Ports, 29

e Multi-Group Transformations, 30

e Working with Expressions, 31

e Local Variables, 35

e Default Values for Ports, 38

e Configuring Tracing Level in Transformations, 45

e Reusable Transformations, 46

Transformations Overview

A transformation is a repository object that generates, modifies, or passes data. The Designer provides a set
of transformations that perform specific functions. For example, an Aggregator transformation performs
calculations on groups of data.

Transformations in a mapping represent the operations the Integration Service performs on the data. Data
passes through transformation ports that you link in a mapping or mapplet.

Transformations can be of the following types:

e Active or Passive
e Connected or Unconnected

e Native or Non-native

Active Transformations

An active transformation can perform any of the following actions:

e Change the number of rows that pass through the transformation. For example, the Filter transformation
is active because it removes rows that do not meet the filter condition. All multi-group transformations
are active because they might change the number of rows that pass through the transformation.

24

¢ Change the transaction boundary. For example, the Transaction Control transformation is active because
it defines a commit or roll back transaction based on an expression evaluated for each row.

e Change the row type. For example, the Update Strategy transformation is active because it flags rows for
insert, delete, update, or reject.

The Designer does not allow you to connect multiple active transformations or an active and a passive
transformation to the same downstream transformation or transformation input group because the
Integration Service may not be able to concatenate the rows passed by active transformations. For example,
one branch in a mapping contains an Update Strategy transformation that flags a row for delete. Another
branch contains an Update Strategy transformation that flags a row for insert. If you connect these
transformations to a single transformation input group, the Integration Service cannot combine the delete
and insert operations for the row.

The Sequence Generator transformation is an exception to the rule. The Designer does allow you to connect
a Sequence Generator transformation and an active transformation to the same downstream transformation
or transformation input group. A Sequence Generator transformation does not receive data. It generates
unique numeric values. As a result, the Integration Service does not encounter problems concatenating rows
passed by a Sequence Generator transformation and an active transformation.

Passive Transformations

A passive transformation does not change the number of rows that pass through the transformation,
maintains the transaction boundary, and maintains the row type.

You can connect multiple transformations to the same downstream transformation or to the same
transformation input group when all transformations in the upstream branches are passive. The
transformation that originates the branch can be active or passive.

Unconnected Transformations

Transformations can be connected to the data flow, or they can be unconnected. An unconnected
transformation is not connected to other transformations in the mapping. An unconnected transformation is
called within another transformation, and returns a value to that transformation.

Native and Non-native Transformations

Native transformations are a set of transformations that the Designer provides. Non-native transformations
are transformations that you create using the Custom transformation. The Designer also provides some non-
native transformations such as Java, SQL, and Union transformations. Rules that apply to Custom
transformations also apply to non-native transformations that are built using the Custom transformation.

Transformations Overview 25

26

Transformation Descriptions

The following table provides a brief description of each transformation:

Transformation

Type

Description

Aggregator

- Active
- Connected
- Native

Performs aggregate calculations.

Application Source Qualifier

- Active
- Connected
- Non-native

Represents the rows that the Integration Service reads from an
application, such as an ERP source, when it runs a session.

Custom

- Active or
Passive

- Connected

- Non-native

Calls a procedure in a shared library or DLL.

Data Masking

- Passive
- Connected
- Non-native

Replaces sensitive production data with realistic test data for
non-production environments.

Expression

- Passive
- Connected
- Native

Calculates a value.

External Procedure

- Passive

- Connected or
Unconnected

- Native

Calls a procedure in a shared library or in the COM layer of
Windows.

Filter

- Active
- Connected
- Native

Filters data.

HTTP

- Passive
- Connected
- Non-native

Connects to an HTTP server to read or update data.

Input

- Passive
- Connected
- Native

Defines mapplet input rows. Available in the Mapplet Designer.

Java

- Active or
Passive

- Connected

- Non-native

Executes user logic coded in Java. The byte code for the user
logic is stored in the repository.

Joiner

- Active
- Connected
- Native

Joins data from different databases or flat file systems.

Lookup

- Active or
Passive

- Connected or
Unconnected

- Native

Look up and return data from a flat file, relational table, view, or
synonym.

Chapter 1: Working with Transformations

Transformation

Type

Description

Normalizer

- Active
- Connected
Native

Source qualifier for COBOL sources. Can also use in the
pipeline to normalize data from relational or flat file sources.

Output

Passive
- Connected
Native

Defines mapplet output rows. Available in the Mapplet
Designer.

Rank

- Active
- Connected
Native

Limits records to a top or bottom range.

Router

- Active
- Connected
Native

Routes data into multiple transformations based on group
conditions.

Sequence Generator

Passive
- Connected
Native

Generates primary keys.

Sorter

- Active
- Connected
Native

Sorts data based on a sort key.

Source Qualifier

- Active
- Connected
Native

Represents the rows that the Integration Service reads from a
relational or flat file source when it runs a session.

SQL

- Active or
Passive

- Connected
Non-native

Executes SQL queries against a database.

Stored Procedure

Passive

- Connected or
Unconnected
Native

Calls a stored procedure.

Transaction Control

- Active
- Connected
Native

Defines commit and rollback transactions.

Union

- Active
- Connected
Non-native

Merges data from different databases or flat file systems.

Unstructured Data

- Active or
Passive

- Connected
Non-native

Transforms data in unstructured and semi-structured formats.

Update Strategy

- Active
- Connected
Native

Determines whether to insert, delete, update, or reject rows.

Transformations Overview 27

Transformation Type Description
XML Generator - Active Reads data from one or more input ports and outputs XML
- Connected through a single output port.
Native
XML Parser - Active Reads XML from one input port and outputs data to one or
- Connected more output ports.
Native
XML Source Qualifier - Active Represents the rows that the Integration Service reads from an
- Connected XML source when it runs a session.
Native

When you build a mapping, you add transformations and configure them to handle data according to a
business purpose. Complete the following tasks to incorporate a transformation into a mapping:

1.

Create the transformation. Create it in the Mapping Designer as part of a mapping, in the Mapplet
Designer as part of a mapplet, or in the Transformation Developer as a reusable transformation.

Configure the transformation. Each type of transformation has a unique set of options that you can
configure.

Link the transformation to other transformations and target definitions. Drag one port to another to link
them in the mapping or mapplet.

Creating a Transformation

28

You can create transformations using the following Designer tools:

Mapping Designer. Create transformations that connect sources to targets. Transformations in a
mapping cannot be used in other mappings unless you configure them to be reusable.

Transformation Developer. Create individual transformations, called reusable transformations, that use in
multiple mappings.

Mapplet Designer. Create and configure a set of transformations, called mapplets, that you use in
multiple mappings.

Use the same process to create a transformation in the Mapping Designer, Transformation Developer, and
Mapplet Designer.

To create a transformation:

1.

2
3.
4

Open the appropriate Designer tool.

In the Mapping Designer, open or create a Mapping. In the Mapplet Designer, open or create a Mapplet.
Click Transformation > Create and select the type of transformation you want to create.

Drag across the portion of the mapping where you want to place the transformation.

The new transformation appears in the workspace. Next, you need to configure the transformation by
adding any new ports to it and setting other properties.

Chapter 1: Working with Transformations

Configuring Transformations

After you create a transformation, you can configure it. Every transformation contains the following common
tabs:

¢ Transformation. Name the transformation or add a description.
e Port. Add and configure ports.
o Properties. Configure properties that are unique to the transformation.

Some transformations might include other tabs, such as the Condition tab, where you enter conditions in a
Joiner or Normalizer transformation.

When you configure transformations, you might complete the following tasks:

e Add ports. Define the columns of data that move into and out of the transformation.

o Add groups. In some transformations, define input or output groups that define a row of data entering or
leaving the transformation.

o Enter expressions. Enter SQL-like expressions in some transformations that transform the data.
* Define local variables. Define local variables in some transformations that temporarily store data.

e Override default values. Configure default values for ports to handle input nulls and output
transformation errors.

* Enter tracing levels. Choose the amount of detail the Integration Service writes in the session log about a
transformation.

Renaming Transformations

To rename transformations, click the Rename button and enter a descriptive name for the transformation,
and click OK.

Transformation Ports

After you create a transformation, define the ports. Create the ports and define the port properties.

When you create some transformations, you do not have to create all of the ports manually. For example, you
might create a Lookup transformation and reference a lookup table. If you view the transformation ports, you
can see that the transformation has an output port for each column in the table that you referenced. You do
not need to define those ports.

Create Ports

When you create some transformations, you do not have to create all of the ports manually. For example, you
might create a Lookup transformation and reference a lookup table. If you view the transformation ports, you
can see that the transformation has an output port for each column in the table that you referenced. You do
not need to define those ports.

Create a port in the following ways:

* Drag a port from another transformation. When you drag a port from another transformation the Designer
creates a port with the same properties, and it links the two ports. Click Layout > Copy Columns to enable
copying ports.

Configuring Transformations 29

e Click the Add button on the Ports tab. The Designer creates an empty port you can configure.

Configure Ports

When you define the transformation ports, you define port properties. Port properties include the port name,
the data type, the port type, and the default value.

Configure the following port properties:

¢ Port name. The name of the port. Use the following conventions while naming ports:
- Begin with a single- or double-byte letter or single- or double-byte underscore (_).

- Port names can contain any of the following single- or double-byte characters: a letter, number,
underscore (_), $, #, or @.

« Datatype, precision, and scale. If you plan to enter an expression or condition, verify that the datatype
matches the return value of the expression.

e Port type. Transformations can contain a combination of input, output, input/output, and variable port
types.

o Default value. Assign a default value for a port that contains null values or an output transformation error.
You can override the default value in some ports.

o Description. A description of the port.

o Other properties. Some transformations have properties specific to that transformation, such as
expressions or group by properties.

Linking Ports

After you add and configure a transformation in a mapping, you link it to targets and other transformations.
You link mapping objects through the ports. Data passes into and out of a mapping through the following
ports:

¢ Input ports. Receive data.
e Output ports. Pass data.
¢ Input/output ports. Receive data and pass it unchanged.

To link ports, drag between ports in different mapping objects. The Designer validates the link and creates
the link only when the link meets validation requirements.

Multi-Group Transformations

A transformation can have multiple input and output groups. A group is a set of ports that define a row of
incoming or outgoing data.

A group is analogous to a table in a relational source or target definition. Most transformations have one
input and one output group. However, some have multiple input groups, multiple output groups, or both. A
group is the representation of a row of data entering or leaving a transformation.

All multi-group transformations are active transformations. You cannot connect multiple active
transformations or an active and a passive transformation to the same downstream transformation or
transformation input group.

30 Chapter 1: Working with Transformations

Some multiple input group transformations require the Integration Service to block data at an input group
while the Integration Service waits for a row from a different input group. A blocking transformation is a
multiple input group transformation that blocks incoming data. The following transformations are blocking
transformations:

e Custom transformation with the Inputs May Block property enabled
e Joiner transformation configured for unsorted input

When you save or validate a mapping, some mappings that contain active or blocking transformations might
not be valid.

Working with Expressions

You can enter expressions using the Expression Editor in some transformations. Create expressions with the
following functions:

* Transformation language functions. SQL-like functions designed to handle common expressions.

o User-defined functions. Functions you create in PowerCenter based on transformation language
functions.

e Custom functions. Functions you create with the Custom Function API.

Enter an expression in a port that uses the value of data from an input or input/output port. For example, you
have a transformation with an input port IN_SALARY that contains the salaries of all the employees. You
might use the values from the IN_SALARY column later in the mapping, and the total and average salaries you
calculate through this transformation. For this reason, the Designer requires you to create a separate output
port for each calculated value.

The following table lists the transformations in which you can enter expressions:

Transformation Expression Return Value

Aggregator Performs an aggregate calculation based on all data Result of an aggregate calculation for
passed through the transformation. Alternatively, you a port.

can specify a filter for records in the aggregate
calculation to exclude certain kinds of records. For
example, you can find the total number and average
salary of all employees in a branch office using this
transformation.

Data Masking Performs a calculation based on the value of input or Result of a row-level calculation using
output ports for a row. An expression is a method to input or output ports.

mask production data in the Data Masking
transformation.

Expression Performs a calculation based on values within a Result of a row-level calculation for a
single row. For example, based on the price and port.

quantity of a particular item, you can calculate the
total purchase price for that line item in an order.

Working with Expressions 31

32

use this transformation when you want to control
updates to a target, based on some condition you
apply. For example, you might use the Update
Strategy transformation to flag all customer rows for
update when the mailing address has changed, or flag
all employee rows for reject for people who no longer
work for the company.

Transformation Expression Return Value

Filter Specifies a condition used to filter rows passed TRUE or FALSE, depending on whether
through this transformation. For example, if you want | a row meets the specified condition.
to write customer data to the BAD_DEBT table for Only rows that return TRUE are passed
customers with outstanding balances, you could use through this transformation. The
the Filter transformation to filter customer data. transformation applies this value to

each row passed through it.

Rank Sets the conditions for rows included in a rank. For Result of a condition or calculation for
example, you can rank the top 10 salespeople who are | a port.
employed with the company.

Router Routes data into multiple transformations based ona | TRUE or FALSE, depending on whether
group expression. For example, use this a row meets the specified group
transformation to compare the salaries of employees expression. Only rows that return
at three different pay levels. You can do this by TRUE pass through each user-defined
creating three groups in the Router transformation. group in this transformation. Rows
For example, create one group expression for each that return FALSE pass through the
salary range. default group.

Update Strategy Flags a row for update, insert, delete, or reject. You Numeric code for update, insert,

delete, or reject. The transformation
applies this value to each row passed
through it.

Transaction
Control

Specifies a condition used to determine the action the
Integration Service performs, either commit, roll back,
or no transaction change. You use this transformation
when you want to control commit and rollback
transactions based on a row or set of rows that pass
through the transformation. For example, use this
transformation to commit a set of rows based on an
order entry date.

One of the following built-in variables,
depending on whether or not a row
meets the specified condition:

- TC_CONTINUE_TRANSACTION
- TC_COMMIT_BEFORE

- TC_COMMIT_AFTER

- TC_ROLLBACK_BEFORE

- TC_ROLLBACK_AFTER

The Integration Service performs
actions based on the return value.

Using the Expression Editor

Use the Expression Editor to build SQL-like statements. Although you can enter an expression manually, use
the point-and-click method. Select functions, ports, variables, and operators from the point-and-click interface
to minimize errors when you build expressions. The maximum number of characters that you can include in
an expression is 32,767.

You can evaluate expressions that you configure in the Expression Editor of an Expression transformation.

When you test an expression, you can enter sample data and then evaluate the expression. Evaluate
expressions in reusable transformations in the Transformation Designer. Evaluate expressions in non-
reusable transformations in the Mapping Designer. Some functions do not support evaluating an expression
when you set the port data type to either Binary or Date/Time.

Chapter 1: Working with Transformations

Entering Port Names into an Expression

For connected transformations, if you use port names in an expression, the Designer updates that expression
when you change port names in the transformation. For example, you write a valid expression that
determines the difference between two dates, Date_Promised and Date_Delivered. Later, if you change the
Date_Promised port name to Due_Date, the Designer changes the Date_Promised port name to Due_Date in
the expression.

Note: You can propagate the name Due_Date to other non-reusable transformations that depend on this port
in the mapping.

Adding Comments

You can add comments to an expression to give descriptive information about the expression or to specify a
valid URL to access business documentation about the expression.

You can add comments in one of the following ways:

e To add comments within the expression, use -- or // comment indicators.

e To add comments in the dialog box, click the Comments button.

Validating Expressions

Use the Validate button to validate an expression. If you do not validate an expression, the Designer validates
it when you close the Expression Editor. If the expression is invalid, the Designer displays a warning. You can
save the invalid expression or modify it. You cannot run a session against a mapping with invalid
expressions.

Expression Editor Display

The Expression Editor can display syntax expressions in different colors for better readability. If you have the
latest Rich Edit control, riched20.dll, installed on the system, the Expression Editor displays expression
functions in blue, comments in grey, and quoted strings in green.

You can resize the Expression Editor. Expand the dialog box by dragging from the borders. The Designer
saves the new size for the dialog box as a client setting.

Adding Expressions to a Port

In the Data Masking transformation, you can add an expression to an input port. For all other
transformations, add the expression to an output port.

Complete the following steps to add an expression to a port:
1. Inthe transformation, select the port and open the Expression Editor.
2. Enter the expression.
Use the Functions and Ports tabs and the operator keys.
3. Add comments to the expression.
Use comment indicators -- or //.
4. Validate the expression.

Use the Validate button to validate the expression.

Working with Expressions 33

34

Defining Expression Strings in Parameter Files

The Integration Service expands the mapping parameters and variables in an expression after it parses the
expression. If you have an expression that changes frequently, you can define the expression string in a
parameter file so that you do not have to update the mappings that use the expression when the expression
changes.

To define an expression string in a parameter file, you create a mapping parameter or variable to store the
expression string, and set the parameter or variable to the expression string in the parameter file. The
parameter or variable you create must have IsExprVar set to true. When IsExprVar is true, the Integration
Service expands the parameter or variable before it parses the expression.

For example, to define the expression I1F (color="red’,5) in a parameter file, perform the following steps:
1. Inthe mapping that uses the expression, create a mapping parameter SSExp. Set IsExprVar to true and
set the datatype to String.
2. Inthe Expression Editor, set the expression to the name of the mapping parameter as follows:
$SExp
3. Configure the session or workflow to use a parameter file.

4. Inthe parameter file, set the value of $SExp to the expression string as follows:
$SExp=IIF (color=‘red’,5)

Evaluate Expressions

You can evaluate expressions that you configure in the Expression Editor of an Expression transformation.
When you test an expression, you can enter sample data and then evaluate the expression.

If you edit an expression condition, you must select Refresh in the test panel before you can evaluate test
data. If you do not enter a valid expression, the test panel fails to populate ports. When you specify system-
defined parameters, the value that you enter is not a run-time value.

The following image displays how to evaluate a sample expression within an Expression Editor of an
Expression transformation:

B Expression Editor: O_COMCAT - t_Exp_Character (Expression) *x
Functions | ports | varizbles | 4 [+ W =4 B X Vaiidate Refrech
0 All Functions
2 character CONCAT(CONCAT(I_FIRST_NAME. '), |_LAST_NAME) _ Type B 0
{20 Conversion I_LAST_NAME |sting |Carter
[Data Cleansing I_FIRST_NAME ‘slnng |Jnhn |
0 pate
- Encoding
‘0 Finandial
‘0 Mumerical
‘0 sdentific
‘0 spedal
0 Test
‘0] User Defined Functions
‘0] Variables
Functions in the All Functions group. W
John Carter
oK ‘ Cancel ‘ Comments Help

Note: You cannot evaluate expressions of the Date/Time or Binary data types.

Example

You need to calculate promotional offers based on the total number of orders received for each customer
before loading all the results to the target. You develop a mapping to calculate offers by defining an

Chapter 1: Working with Transformations

expression within the Expression transformation. You evaluate the expression to verify the result before the
operator runs the mapping.

Evaluating an Expression

You can test and verify expressions in the Expression Editor of an Expression transformation.
1. Inthe Expression Editor of an Expression transformation, enter an expression.
2. To validate the expression, click Validate.

3. Toreflect the latest changes from the expression condition in the test expression section in the right
pane, click Refresh.

4. Inthe right pane, enter sample values for the input ports used within the expression.

5. To evaluate the expression, click Evaluate.

Evaluate Expression Restrictions

Local

Certain restrictions apply when you evaluate an expression.

Consider the following restrictions when you evaluate expressions:
Transformation restrictions

You cannot evaluate expressions in the following transformations:
e Aggregator
e Data Masking
o Filter
e Rank
e Router
e Stored Procedure
e Transaction Control
e Update Strategy
Data type restrictions

You cannot evaluate an expression if the input port type or the return function contains a Binary or a
Date/Time data type.

Port restrictions

You cannot evaluate an expression that uses the Lookup or Stored Procedure port.

Variables

Use local variables in Aggregator, Expression, and Rank transformations to improve performance. You can
reference variables in an expression or use them to temporarily store data.

You might use variables to complete the following tasks:

e Temporarily store data.

e Simplify complex expressions.

Local Variables 35

e Store values from prior rows.
e Capture multiple return values from a stored procedure.
e Compare values.

e Store the results of an unconnected Lookup transformation.

Temporarily Store Data and Simplify Complex Expressions

Variables increase performance when you enter multiple related expressions in the same transformation. You
can define components as variables instead of parsing and validating the same expression components
mulitple times in the transformation.

For example, if an Aggregator transformation uses the same filter condition before calculating sums and
averages, you can define this condition as a variable, and then reuse the condition in both aggregate
calculations.

You can simplify complex expressions. If an Aggregator includes the same calculation in multiple
expressions, you can increase performance by creating a variable to store the results of the calculation.

For example, you might create the following expressions to find both the average salary and the total salary
with the same data:

AVG(SALARY, ((JOB_STATUS
SUM(SALARY, ((JOB_STATUS

'Full-time') AND (OFFICE ID
'Full-time') AND (OFFICE ID

1000)))
1000)))

Instead of entering the same arguments for both calculations, you might create a variable port for each
condition in this calculation, and then change the expression to use the variables.

The following table shows how to use variables to simplify complex expressions and temporarily store data:

Port Value

V_CONDITION1 JOB_STATUS = ‘Full-time’

V_CONDITION2 OFFICE_ID = 1000

AVG_SALARY AVG(SALARY, (V_CONDITIONT AND V_CONDITION2))
SUM_SALARY SUM(SALARY, (V_CONDITIONT AND V_CONDITION2))

Store Values Across Rows

You can configure variables in transformations to store data from source rows. You can use the variables in
transformation expressions.

For example, a source file contains the following rows:

California
California
California
Hawaii

Hawaii

New Mexico
New Mexico
New Mexico

36 Chapter 1: Working with Transformations

Each row contains a state. You need to count the number of rows and return the row count for each state:

California,3

Hawaii , 2

New Mexico, 3
You can configure an Aggregator transformation to group the source rows by state and count the number of
rows in each group. Configure a variable in the Aggregator transformation to store the row count. Define
another variable to store the state name from the previous row.

The Aggregator transformation has the following ports:

Port Port Expression Description
Type

State Pass- n/a The name of a state. The source rows are grouped
through by the state name. The Aggregator transformation

returns one row for each state.

State_Count Variable IIF (PREVIOUS STATE = The row count for the current State. When the
STATE, STATE_COUNT value of the current State column is the same as
1, 1) the Previous_State column, the Integration Service

increments State_Count. Otherwise, it resets the
State_Count to 1.

Previous_State Variable State The value of the State column in the previous row.
When the Integration Service processes a row, it
moves the State value to Previous_State.

State_Counter Output State_Count The number of rows the Aggregator transformation
processed for a state. The Integration Service
returns State_Counter once for each state.

Capture Values from Stored Procedures

Variables provide a way to capture multiple columns of return values from stored procedures.

Guidelines for Configuring Variable Ports

Consider the following factors when you configure variable ports in a transformation:

e Port order. The Integration Service evaluates ports by dependency. The order of the ports in a
transformation must match the order of evaluation: input ports, variable ports, output ports.

o Datatype. The datatype you choose reflects the return value of the expression you enter.

e Variable initialization. The Integration Service sets initial values in variable ports, where you can create
counters.

Port Order

The Integration Service evaluates the input ports first. The Integration Service evaluates the variable ports
next, and the output ports last.

The Integration Service evaluates ports in the following order:

1. Input ports. The Integration Service evaluates all input ports first since they do not depend on any other
ports. Therefore, you can create input ports in any order. The Integration Service does not order input
ports because input ports do not reference other ports.

Local Variables 37

2. Variable ports. Variable ports can reference input ports and variable ports, but not output ports. Because
variable ports can reference input ports, the Integration Service evaluates variable ports after input ports.
Variables can reference other variables, so the display order for variable ports is the same as the order in
which the Integration Service evaluates each variable.

For example, if you calculate the original value of a building and then adjust for depreciation, you might
create the original value calculation as a variable port. This variable port needs to appear before the port
that adjusts for depreciation.

3. Output ports. The Integration Service evaluates output ports last, because output ports can reference
input ports and variable ports. The display order for output ports does not matter beause output ports
cannot reference other output ports. Be sure output ports display at the bottom of the list of ports.

Data Type

When you configure a port as a variable, you can enter any expression or condition in it. The data type you
choose for this port reflects the return value of the expression you enter. If you specify a condition through
the variable port, any numeric data type returns the values for TRUE (non-zero) and FALSE (zero).

Variable Initialization

The Integration Service does not set the initial value for variables to NULL.

The Integration Service uses the following guidelines to set initial values for variables:
e Zero for numeric ports

e Empty strings for string ports

e 01/01/0001 for Date/Time ports

Therefore, use variables as counters, which need an initial value. For example, you can create a numeric
variable with the following expression:

VARL + 1

This expression counts the number of rows in the VAR1 port. If the initial value of the variable were set to
NULL, the expression would always evaluate to NULL. This is why the initial value is set to zero.

Default Values for Ports

38

All transformations use default values that determine how the Integration Service handles input null values
and output transformation errors.

Input, output, and input/output ports have a system default value that you can sometimes override with a
user-defined default value. Default values have different functions in different types of ports:

¢ Input port. The system default value for null input ports is NULL. The default value appears as a blank in
the transformation. If an input value is NULL, the Integration Service leaves it as NULL.

e Output port. The system default value for output transformation errors is ERROR. The default value
appears in the transformation as ERROR(‘transformation error’). If a transformation error occurs, the
Integration Service skips the row. The Integration Service notes all input rows that the ERROR function
skips in the log file.

Chapter 1: Working with Transformations

The following errors are transformation errors:

- Data conversion errors, such as passing a number to a date function.
- Expression evaluation errors, such as dividing by zero.

- Calls to an ERROR function.

¢ Pass-through port. The system default value for null input is the same as input ports, NULL. The system
default value appears as a blank in the transformation. The default value for output transformation errors
is the same as output ports. The default value for output transformation errors does not display in the
transformation.

Note: The Java Transformation converts PowerCenter® datatypes to Java datatypes, based on the Java
Transformation port type. Default values for null input differ based on the Java datatype.

The following table shows the system default values for ports in connected transformations:

Port Type Default Integration Service Behavior User-Defined Default
Value Value Supported

Input, Pass- NULL Integration Service passes all input null values as Input, Input/Output
through NULL.
Output, Pass- ERROR Integration Service calls the ERROR function for Output
through output port transformation errors. The Integration

Service skips rows with errors and writes the input

data and the error message in the log file.

Variable ports do not support default values. The Integration Service initializes variable ports according to
the datatype.

You can override some of the default values to change the Integration Service behavior when it encounters
null input values and output transformation errors.

User-Defined Default Values

You can override the system default values with user-defined default values for supported input, pass-
through, and output ports within a connected transformation.

Use the following rules and guidelines to override the system default values for ports:

¢ Input ports. You can enter user-defined default values for input ports if you do not want the Integration
Service to treat null values as NULL. If NULL is passed to the input port, the Integration Service replaces
NULL with the default value.

e Output ports. You can enter user-defined default values for output ports if you do not want the Integration
Service to skip the row or if you want the Integration Service to write a specific message with the skipped
row to the log. If you define a default value in the output port, the Integration Service replaces the row with
the default value when the output port has a transformation error.

o Pass-through ports. You can enter user-defined default values for pass-through ports if you do not want
the Integration Service to treat null values as NULL. You cannot enter user-defined default values for
output transformation errors in a pass-through port.

Note: The Integration Service ignores user-defined default values for unconnected transformations. For
example, if you call a Lookup or Stored Procedure transformation through an expression, the Integration
Service ignores any user-defined default value and it applies the system default value.

Default Values for Ports 39

40

Use the following options to enter user-defined default values:

¢ Constant value. Use any constant (numeric or text), including NULL.

e Constant expression. You can include a transformation function with constant parameters.

e ERROR. Generate a transformation error. Write the row and a message in the session log or row error log.
o ERROR. Generate a transformation error. Write the row and a message in the mapping log or row error log.
e ABORT. Abort the session.

e ABORT. Abort the mapping.

Constant Values
You can enter any constant value as a default value. The constant value must match the port datatype.

For example, a default value for a numeric port must be a numeric constant. Some constant values include:

0

9999

NULL

'Unknown Value'
'Null input data'

Constant Expressions

A constant expression is any expression that uses transformation functions (except aggregate functions) to
write constant expressions. You cannot use values from input, input/output, or variable ports in a constant
expression.

Some valid constant expressions include:

500 * 1.75

TO DATE ('January 1, 1998, 12:05 AM', 'MONTH DD, YYYY, HH:MI AM')
ERROR ('Null not allowed')

ABORT ('Null not allowed')

SESSSTARTTIME

You cannot use values from ports within the expression because the Integration Service assigns default
values for the entire mapping when it initializes the session.

You cannot use values from ports within the expression because the Integration Service assigns default
values for the entire mapping when it initializes the mapping.

The following examples are not valid because they use values from ports:

AVG (IN_SALARY)
IN _PRICE * IN QUANTITY
:LKP (LKP_DATES, DATE SHIPPED)

Note: You cannot call a stored procedure or lookup table from a default value expression.

ERROR and ABORT Functions

Use the ERROR and ABORT functions for input and output port default values, and input values for input/
output ports. The Integration Service skips the row when it encounters the ERROR function. It aborts the
session when it encounters the ABORT function.

Use the ERROR and ABORT functions for input and output port default values, and input values for input/
output ports. The Integration Service skips the row when it encounters the ERROR function. It aborts the
mapping when it encounters the ABORT function.

Chapter 1: Working with Transformations

User-Defined Default Input Values

You can enter a user-defined default input value if you do not want the Integration Service to treat null values

as NULL.

To override null values, complete one of the following tasks:

e Replace the null value with a constant value or constant expression.

e Skip the null value with an ERROR function.

e Abort the mapping with the ABORT function.

e Abort the session with the ABORT function.

The following table summarizes how the Integration Service handles null input for input and input/output

ports:

Default Value

Default Value
Type

Description

NULL (displays blank)

System

Integration Service passes NULL.

Constant or Constant
expression

User-Defined

Integration Service replaces the null value with the value of the
constant or constant expression.

ERROR

User-Defined

Integration Service treats this as a transformation error:

- Increases the transformation error count by 1.

- Skips the row, and writes the error message to the log file or row
error log.

The Integration Service does not write rows to the reject file.

ABORT

User-Defined

Session aborts when the Integration Service encounters a null input
value. The Integration Service does not increase the error count or
write rows to the reject file.

The mapping aborts when the Integration Service encounters a null

input value. The Integration Service does not increase the error count

or write rows to the reject file.

Replace Null Values

Use a constant value or expression to substitute a specified value for null values in a port.

For example, if an input string port is called DEPT_NAME and you want to replace null values with the string

‘UNKNOWN DEPT’, you could set the default value to ‘UNKNOWN DEPT'. Depending on the transformation,
the Integration Service passes ‘UNKNOWN DEPT’ to an expression or variable within the transformation or to

the next transformation in the data flow.

For example, the Integration Service replaces all null values in a port with the string ‘UNKNOWN DEPT.’

DEPT_NAME REPLACED VALUE

Housewares
NULL
Produce

Housewares
UNKNOWN DEPT
Produce

Default Values for Ports

41

42

Skip Null Records

Use the ERROR function as the default value when you do not want null values to pass into a transformation.
For example, you might want to skip a row when the input value of DEPT_NAME is NULL. You could use the
following expression as the default value:

ERROR('Error. DEPT is NULL')

When you use the ERROR function as a default value, the Integration Service skips the row with the null value.
The Integration Service writes all rows skipped by the ERROR function into the log file. It does not write these
rows to the reject file.

DEPT_NAME RETURN VALUE

Housewares Housewares

NULL 'Error. DEPT is NULL' (Row is skipped)
Produce Produce

The following log shows where the Integration Service skips the row with the null value:

TE 11019 Port [DEPT NAME]: Default value is: ERROR(<<Transformation Error>> [error]:
Error. DEPT is NULL
. error ('Error. DEPT is NULL'")
).
CMN 1053 EXPTRANS: : ERROR: NULL input column DEPT NAME: Current Input data:
CMN:1053 Input row from SRCTRANS: Rowdata: (RowType=4 Src Rowid=2 Targ Rowid=2
DEPT ID (DEPT ID:Int:): "2"
DEPT NAME (DEPT NAME:Char.25:): "NULL"
MANAGER ID (MANAGER_ID:Int:): "
)

Abort the Session

Use the ABORT function to abort a session when the Integration Service encounters null input values.

User-Defined Default Output Values

You can create user-defined default values to override the system default values for output ports.

You can enter user-defined default values for output ports if you do not want the Integration Service to skip
rows with errors or if you want the Integration Service to write a specific message with the skipped row to the
log. You can enter default values to complete the following functions when the Integration Service
encounters output transformation errors:

e Replace the error with a constant value or constant expression. The Integration Service does not skip the
row.

e Abort the session with the ABORT function.
e Abort the mapping with the ABORT function.
o Write specific messages in the log for transformation errors.

You cannot enter user-defined default output values for input/output ports.

Chapter 1: Working with Transformations

The following table summarizes how the Integration Service handles output port transformation errors and
default values in transformations:

Default Value Default Value Description
Type
Transformation Error System When a transformation error occurs and you did not override the

default value, the Integration Service performs the following tasks:

- Increases the transformation error count by 1.

- Skips the row, and writes the error and input row to the session log
file or row error log, depending on session configuration.

The Integration Service does not write the row to the reject file.

Constant or Constant User-Defined Integration Service replaces the error with the default value.

Expression The Integration Service does not increase the error count or write a
message to the log.

ABORT User-Defined Session aborts and the Integration Service writes a message to the
session log.

Mapping aborts and the Integration Service writes a message to the
log.

The Integration Service does not increase the error count or write rows
to the reject file.

Replace Errors

If you do not want the Integration Service to skip a row when a transformation error occurs, use a constant or
constant expression as the default value for an output port.

For example, if you have a numeric output port called NET_SALARY and you want to use the constant value
‘9999’ when a transformation error occurs, assign the default value 9999 to the NET_SALARY port. If there is
any transformation error (such as dividing by zero) while computing the value of NET_SALARY, the
Integration Service uses the default value 9999.

Aborting the Session

Use the ABORT function as the default value in an output port if you do not want to allow transformation
errors.

Write Messages in the Session Log or Row Error Logs

You can enter a user-defined default value in the output port if you want the Integration Service to write a
specific message in the session log with the skipped row. The system default is ERROR (‘transformation
error’), and the Integration Service writes the message ‘transformation error’ in the session log along with the
skipped row. You can replace ‘transformation error’ if you want to write a different message.

When you enable row error logging, the Integration Service writes error messages to the error log instead of
the session log and the Integration Service does not log Transaction Control transformation rollback or
commit errors. If you want to write rows to the session log in addition to the row error log, you can enable
verbose data tracing.

ERROR Functions in Output Port Expressions

If you enter an expression that uses the ERROR function, the user-defined default value for the output port
might override the ERROR function in the expression.

Default Values for Ports 43

For example, you enter the following expression that instructs the Integration Service to use the value
‘Negative Sale’ when it encounters an error:

IIF(TOTAL SALES>0, TOTAL SALES, ERROR ('Negative Sale'))
The following examples show how user-defined default values may override the ERROR function in the
expression:
¢ Constant value or expression. The constant value or expression overrides the ERROR function in the
output port expression.

For example, if you enter ‘0’ as the default value, the Integration Service overrides the ERROR function in
the output port expression. It passes the value 0 when it encounters an error. It does not skip the row or
write ‘Negative Sale’ in the log.

e ABORT. The ABORT function overrides the ERROR function in the output port expression.

If you use the ABORT function as the default value, the Integration Service aborts the when a
transformation error occurs. The ABORT function overrides the ERROR function in the output port
expression.

¢ ERROR. If you use the ERROR function as the default value, the Integration Service includes the following
information in the log:

- Error message from the default value
- Error message indicated in the ERROR function in the output port expression
- Skipped row
For example, you can override the default value with the following ERROR function:
ERROR('No default value')

The Integration Service skips the row, and includes both error messages in the log.

TE 7007 Transformation Evaluation Error; current row skipped...
TE:7007 [<<Transformation Error>> [error]: Negative Sale
. error ('Negative Sale')
1
Sun Sep 20 13:57:28 1998
TE 11019 Port [OUT SALES]: Default value is: ERROR(<<Transformation Error>> [error]:
No default value
. error('No default value')

General Rules for Default Values

Use the following rules and guidelines when you create default values:

e The default value must be either a NULL, a constant value, a constant expression, an ERROR function, or
an ABORT function.

e For input/output ports, the Integration Service uses default values to handle null input values. The output
default value of input/output ports is always ERROR(‘Transformation Error’).

e Variable ports do not use default values.
¢ You can assign default values to group by ports in the Aggregator and Rank transformations.

¢ Not all port types in all transformations allow user-defined default values. If a port does not allow user-
defined default values, the default value field is disabled.

* Not all transformations allow user-defined default values.

« If atransformation is not connected to the mapping data flow, the Integration Service ignores user-
defined default values.

e |[f any input port is unconnected, its value is assumed to be NULL and the Integration Service uses the
default value for that input port.

44 Chapter 1: Working with Transformations

e If an input port default value contains the ABORT function and the input value is NULL, the Integration
Service immediately stops the session. Use the ABORT function as a default value to restrict null input
values. The first null value in an input port stops the session.

o |f an output port default value contains the ABORT function and any transformation error occurs for that
port, the session immediately stops. Use the ABORT function as a default value to enforce strict rules for
transformation errors. The first transformation error for this port stops the session.

e If an input port default value contains the ABORT function and the input value is NULL, the Integration
Service immediately stops the mapping. Use the ABORT function as a default value to restrict null input
values. The first null value in an input port stops the mapping

o |f an output port default value contains the ABORT function and any transformation error occurs for that
port, the mapping immediately stops. Use the ABORT function as a default value to enforce strict rules for
transformation errors. The first transformation error for this port stops the mapping

e The ABORT function, constant values, and constant expressions override ERROR functions configured in
output port expressions.

Default Value Validation

You can validate default values as you enter them. The Designer includes a Validate button so you can ensure
valid default values. A message appears indicating if the default is valid.

The Designer also validates default values when you save a mapping. If you enter an invalid default value, the
Designer marks the mapping as not valid.

The Developer tool validates default values as you enter them.

The Developer tool validates default values when you save a mapping. If you enter a default value that is not
valid, the Developer tool marks the mapping as not valid.

Configuring Tracing Level in Transformations

When you configure a transformation, you can set the amount of detail the Integration Service writes in the

session log.

The following table describes the session log tracing levels:

Tracing Level

Description

Normal Integration Service logs initialization and status information, errors encountered, and skipped
rows due to transformation row errors. Summarizes session results, but not at the level of
individual rows.

Terse Integration Service logs initialization information and error messages and notification of

rejected data.

Configuring Tracing Level in Transformations 45

Tracing Level Description

Verbose In addition to normal tracing, Integration Service logs additional initialization details, names of
Initialization index and data files used, and detailed transformation statistics.
Verbose Data In addition to verbose initialization tracing, Integration Service logs each row that passes into

the mapping. Also notes where the Integration Service truncates string data to fit the precision
of a column and provides detailed transformation statistics.

Allows the Integration Service to write errors to both the session log and error log when you
enable row error logging.

When you configure the tracing level to verbose data, the Integration Service writes row data
for all rows in a block when it processes a transformation.

By default, the tracing level for every transformation is Normal. Change the tracing level to a Verbose setting
only when you need to debug a transformation that is not behaving as expected. To add a slight performance
boost, you can also set the tracing level to Terse, writing the minimum of detail to the session log when
running a workflow containing the transformation.

When you configure a session, you can override the tracing levels for individual transformations with a single
tracing level for all transformations in the session.

Reusable Transformations

46

Mappings can contain reusable and non-reusable transformations. Non-reusable transformations exist within
a single mapping. Reusable transformations can be used in multiple mappings.

For example, you might create an Expression transformation that calculates value-added tax for sales in
Canada, which is useful when you analyze the cost of doing business in that country. Rather than perform the
same work every time, you can create a reusable transformation. When you need to incorporate this
transformation into a mapping, you add an instance of it to the mapping. Later, if you change the definition of
the transformation, all instances of it inherit the changes.

The Designer stores each reusable transformation as metadata separate from any mapping that uses the
transformation. If you review the contents of a folder in the Navigator, you see the list of all reusable
transformations in that folder.

Each reusable transformation falls within a category of transformations available in the Designer. For
example, you can create a reusable Aggregator transformation to perform the same aggregate calculations in
multiple mappings, or a reusable Stored Procedure transformation to call the same stored procedure in
multiple mappings.

You can create most transformations as a non-reusable or reusable. However, you can only create the
External Procedure transformation as a reusable transformation.

When you add instances of a reusable transformation to mappings, you must be careful that changes you
make to the transformation do not invalidate the mapping or generate unexpected data.

Instances and Inherited Changes

When you add a reusable transformation to a mapping, you add an instance of the transformation. The
definition of the transformation still exists outside the mapping, while an instance of the transformation
appears within the mapping.

Chapter 1: Working with Transformations

Since the instance of a reusable transformation is a pointer to that transformation, when you change the
transformation in the Transformation Developer, its instances reflect these changes. Instead of updating the
same transformation in every mapping that uses it, you can update the reusable transformation once, and all
instances of the transformation inherit the change. Note that instances do not inherit changes to property
settings, only modifications to ports, expressions, and the name of the transformation.

Mapping Variables in Expressions

Use mapping parameters and variables in reusable transformation expressions. When the Designer validates
the parameter or variable, it treats it as an Integer datatype. When you use the transformation in a mapplet or
mapping, the Designer validates the expression again. If the mapping parameter or variable does not exist in
the mapplet or mapping, the Designer logs an error.

Creating Reusable Transformations

You can create a reusable transformation using the following methods:

¢ Design it in the Transformation Developer. In the Transformation Developer, you can build new reusable
transformations.

¢ Promote a non-reusable transformation from the Mapping Designer. After you add a transformation to a
mapping, you can promote it to the status of reusable transformation. The transformation designed in the
mapping then becomes an instance of a reusable transformation maintained elsewhere in the repository.

If you promote a transformation to reusable status, you cannot demote it. However, you can create a non-
reusable instance of it.

Note: Sequence Generator transformations must be reusable in mapplets. You cannot demote reusable
Sequence Generator transformations to non-reusable in a mapplet.

To create a reusable transformation:

1. Inthe Designer, switch to the Transformation Developer.

2. Click the button on the Transformation toolbar corresponding to the type of transformation you want to
create.

Drag within the workbook to create the transformation.
Double-click the transformation title bar to open the dialog displaying its properties.
Click the Rename button and enter a descriptive name for the transformation, and click OK.

Click the Ports tab, then add any input and output ports you need for this transformation.

N o o w

Set the other properties of the transformation, and click OK.

These properties vary according to the transformation you create. For example, if you create an
Expression transformation, you need to enter an expression for one or more of the transformation output
ports. If you create a Stored Procedure transformation, you need to identify the stored procedure to call.

Promoting Non-Reusable Transformations

The other technique for creating a reusable transformation is to promote an existing transformation within a
mapping. By checking the Make Reusable option in the Edit Transformations dialog box, you instruct the
Designer to promote the transformation and create an instance of it in the mapping.

To promote a non-reusable transformation:

1. Inthe Designer, open a mapping and double-click the title bar of the transformation you want to
promote.

Reusable Transformations 47

48

2. Select the Make Reusable option.
3. When prompted whether you are sure you want to promote the transformation, click Yes.
4. Click OK to return to the mapping.

Now, when you look at the list of reusable transformations in the folder you are working in, the newly
promoted transformation appears in this list.

Creating Non-Reusable Instances of Reusable Transformations

You can create a non-reusable instance of a reusable transformation within a mapping. Reusable
transformations must be made non-reusable within the same folder. If you want to have a non-reusable
instance of a reusable transformation in a different folder, you need to first make a non-reusable instance of
the transformation in the source folder, and then copy it into the target folder.

To create a non-reusable instance of a reusable transformation:

1. Inthe Designer, open a mapping.

2. Inthe Navigator, select an existing transformation and drag the transformation into the mapping
workspace. Hold down the Ctrl key before you release the transformation.

The status bar displays the following message:
Make a non-reusable copy of this transformation and add it to this mapping.

3. Release the transformation.

The Designer creates a non-reusable instance of the existing reusable transformation.

Adding Reusable Transformations to Mappings

After you create a reusable transformation, you can add it to mappings.
To add a reusable transformation:

1. Inthe Designer, switch to the Mapping Designer.
2. Open or create a mapping.

3. Inthe list of repository objects, drill down until you find the reusable transformation you want in the
Transformations section of a folder.

4. Drag the transformation from the Navigator into the mapping.
A copy (or instance) of the reusable transformation appears.

5. Link the new transformation to other transformations or target definitions.

Modifying a Reusable Transformation

Changes to a reusable transformation that you enter through the Transformation Developer are immediately
reflected in all instances of that transformation. While this feature is a powerful way to save work and
enforce standards, you risk invalidating mappings when you modify a reusable transformation.

To see what mappings, mapplets, or shortcuts may be affected by changes you make to a transformation,
select the transformation in the workspace or Navigator, right-click, and select View Dependencies.

If you make any of the following changes to the reusable transformation, mappings that use instances of it
may be invalidated:

o When you delete a port or multiple ports in a transformation, you disconnect the instance from part or all
of the data flow through the mapping.

Chapter 1: Working with Transformations

* When you change a port datatype, you make it impossible to map data from that port to another port
using an incompatible datatype.

 When you change a port name, expressions that refer to the port are no longer valid.

e When you enter an invalid expression in the reusable transformation, mappings that use the
transformation are no longer valid. The Integration Service cannot run sessions based on invalid
mappings.

Reverting to Original Reusable Transformation

If you change the properties of a reusable transformation in a mapping, you can revert to the original
reusable transformation properties by clicking the Revert button.

Reusable Transformations 49

CHAPTER 2

Aggregator Transformation

This chapter includes the following topics:

e Aggregator Transformation Overview, 50

e Components of the Aggregator Transformation, 51

e Configuring Aggregate Caches, 52

e Aggregate Expressions, 53

e Group By Ports, 54

e Using Sorted Input, 56

e Creating an Aggregator Transformation, 58

o Tips for Aggregator Transformations, 58

e Troubleshooting Aggregator Transformations, 59

Aggregator Transformation Overview

The Aggregator transformation performs aggregate calculations, such as averages and sums. The
Integration Service performs aggregate calculations as it reads and stores data group and row data in an
aggregate cache. The Aggregator transformation is an active transformation.

The Aggregator transformation is unlike the Expression transformation, in that you use the Aggregator
transformation to perform calculations on groups. The Expression transformation permits you to perform
calculations on a row-by-row basis.

When you use the transformation language to create aggregate expressions, you can use conditional clauses
to filter rows, providing more flexibility than SQL language.

After you create a session that includes an Aggregator transformation, you can enable the session option,
Incremental Aggregation. When the Integration Service performs incremental aggregation, it passes source
data through the mapping and uses historical cache data to perform aggregation calculations incrementally.

50

Components of the Aggregator Transformation

The Aggregator is an active transformation that changes the number of rows in the pipeline. The Aggregator
transformation has the following components and options:

e Aggregate cache. The Integration Service stores data in the aggregate cache until it completes aggregate
calculations. The Integration Service stores group values in an index cache and it stores row data in the

data cache.

* Aggregate expression. Enter an expression in an output port. The expression can include nonaggregate
expressions and conditional clauses.

¢ Group by port. Indicate how to create groups. You can configure an input, input/output, output, or variable
port for the group. When grouping data, the Aggregator transformation outputs the last row of each group
unless otherwise specified.

e Sorted input. Select this option to improve session performance. To use sorted input, you must pass data
to the Aggregator transformation sorted by group by port, in ascending or descending order.

You can configure the Aggregator transformation components and options on the Properties and Ports tab.

Configuring Aggregator Transformation Properties

Modify the Aggregator Transformation properties on the Properties tab.

Configure the following options:

Aggregator Setting

Description

Cache Directory

Local directory where the Integration Service creates the index and data cache files. By
default, the Integration Service uses the directory entered in the Workflow Manager for the
process variable SPMCacheDir. If you enter a new directory, make sure the directory exists
and contains enough disk space for the aggregate caches.

If you have enabled incremental aggregation, the Integration Service creates a backup of
the files each time you run the session. The cache directory must contain enough disk
space for two sets of the files.

Tracing Level

Amount of detail displayed in the session log for this transformation.

Sorted Input

Indicates input data is presorted by groups. Select this option only if the mapping passes
sorted data to the Aggregator transformation.

Aggregator Data Cache
Size

Data cache size for the transformation. Default cache size is 2,000,000 bytes. If the total
configured session cache size is 2 GB (2,147,483,648 bytes) or greater, you must run the
session on a 64-bit Integration Service. You can use a numeric value for the cache, you
can use a cache value from a parameter file or you can configure the Integration Service to
set the cache size by using the Auto setting. If you configure the Integration Service to
determine the cache size, you can also configure a maximum amount of memory for the
Integration Service to allocate to the cache.

Components of the Aggregator Transformation 51

Aggregator Setting Description

Aggregator Index Cache | Index cache size for the transformation. Default cache size is 1,000,000 bytes. If the total
Size configured session cache size is 2 GB (2,147,483,648 bytes) or greater, you must run the
session on a 64-bit Integration Service. You can use a numeric value for the cache, you
can use a cache value from a parameter file or you can configure the Integration Service to
set the cache size by using the Auto setting. If you configure the Integration Service to
determine the cache size, you can also configure a maximum amount of memory for the
Integration Service to allocate to the cache.

Transformation Scope Specmes how the Integration Service applies the transformation logic to incoming data:
Transaction. Applies the transformation logic to all rows in a transaction. Choose
Transaction when a row of data depends on all rows in the same transaction, but does
not depend on rows in other transactions.

- All Input. Applies the transformation logic on all incoming data. When you choose All
Input, the PowerCenter drops incoming transaction boundaries. Choose All Input when a
row of data depends on all rows in the source.

Configuring Aggregator Transformation Ports

To configure ports in the Aggregator transformation, complete the following tasks:

e Enter an expression in any output port, using conditional clauses or non-aggregate functions in the port.
e Create multiple aggregate output ports.

e Configure any input, input/output, output, or variable port as a group by port.

¢ Improve performance by connecting only the necessary input/output ports to subsequent
transformations, reducing the size of the data cache.

e Use variable ports for local variables.

e Create connections to other transformations as you enter an expression.

Configuring Aggregate Caches

When you run a session that uses an Aggregator transformation, the Integration Service creates the index
and the data caches in memory to process the transformation. If the Integration Service requires more space,
it stores overflow values in cache files.

You can use a numeric value for the cache, you can use a cache value from a parameter file or you can
configure the Integration Service to set the cache size by using the Auto setting.

Note: The Integration Service uses memory to process an Aggregator transformation with sorted ports. The
Integration Service does not use cache memory. You do not need to configure cache memory for Aggregator
transformations that use sorted ports.

52 Chapter 2: Aggregator Transformation

Aggregate Expressions

The Designer allows aggregate expressions only in the Aggregator transformation. An aggregate expression
can include conditional clauses and nonaggregate functions. The expression can also include one aggregate
function within another aggregate function, such as:

MAX (COUNT(ITEM))

The result of an aggregate expression varies based on the group by ports in the transformation. For example,
when the Integration Service calculates the following aggregate expression with no group by ports defined, it
finds the total quantity of items sold:

SUM(QUANTITY)

However, if you use the same expression, and you group by the ITEM port, the Integration Service returns the
total quantity of items sold, by item.

You can create an aggregate expression in any output port and use multiple aggregate ports in a
transformation.

RELATED ToOPICS:

e “Working with Expressions” on page 31

Aggregate Functions

Use the following aggregate functions within an Aggregator transformation. You can nest one aggregate
function within another aggregate function.

The transformation language includes the following aggregate functions:

e AVG

e COUNT

e FIRST

e LAST

¢ MAX

e MEDIAN

¢ MIN

e PERCENTILE
e STDDEV

e SUM

e VARIANCE

When you use any of these functions, you must use them in an expression within an Aggregator
transformation.

Nested Aggregate Functions

You can include multiple single-level or multiple nested functions in different output ports in an Aggregator
transformation. However, you cannot include both single-level and nested functions in an Aggregator
transformation. Therefore, if an Aggregator transformation contains a single-level function in any output port,
you cannot use a nested function in any other port in that transformation. When you include single-level and
nested functions in the same Aggregator transformation, the Designer marks the mapping or mapplet invalid.
If you need to create both single-level and nested functions, create separate Aggregator transformations.

Aggregate Expressions 53

Conditional Clauses

Use conditional clauses in the aggregate expression to reduce the number of rows used in the aggregation.
The conditional clause can be any clause that evaluates to TRUE or FALSE.

For example, use the following expression to calculate the total commissions of employees who exceeded
their quarterly quota:

SUM(COMMISSION, COMMISSION > QUOTA)

Non-Aggregate Functions

You can also use non-aggregate functions in the aggregate expression.

The following expression returns the highest number of items sold for each item (grouped by item). If no
items were sold, the expression returns 0.

IIF(MAX(QUANTITY) > 0, MAX(QUANTITY), 0))

Null Values in Aggregate Functions

When you configure the Integration Service, you can choose how you want the Integration Service to handle
null values in aggregate functions. You can choose to treat null values in aggregate functions as NULL or
zero. By default, the Integration Service treats null values as NULL in aggregate functions.

Group By Ports

54

The Aggregator transformation lets you define groups for aggregations, rather than performing the
aggregation across all input data. For example, rather than finding the total company sales, you can find the
total sales grouped by region.

To define a group for the aggregate expression, select the appropriate input, input/output, output, and
variable ports in the Aggregator transformation. You can select multiple group by ports to create a new group
for each unique combination. The Integration Service then performs the defined aggregation for each group.

When you group values, the Integration Service produces one row for each group. If you do not group values,
the Integration Service returns one row for all input rows. The Integration Service typically returns the last row
of each group (or the last row received) with the result of the aggregation. However, if you specify a
particular row to be returned (for example, by using the FIRST function), the Integration Service then returns
the specified row.

When selecting multiple group by ports in the Aggregator transformation, the Integration Service uses port
order to determine the order by which it groups. Since group order can affect the results, order group by ports
to ensure the appropriate grouping. For example, the results of grouping by ITEM_ID then QUANTITY can vary
from grouping by QUANTITY then ITEM_ID, because the numeric values for quantity are not necessarily
unique.

Chapter 2: Aggregator Transformation

The following Aggregator transformation groups first by STORE_ID and then by ITEM:

=1l
4 | Name Expression Group By
i*| ORDERID ORDER_ID vk
g*| STORE_ID STORE_ID Yes CJ3
i+ ITEM ITEM Yes vE
v ary aty Bl
H TOTAL_QTY SUMATY) vE
i*| PRICE PRICE Cl3
1 SALES_PER_STORE_ITEM SUM{QTY*PRICE} vE

« [1l = »

If you send the following data through this Aggregator transformation:

STORE_ID ITEM QTY PRICE
101 'battery' 3 2.99
101 'battery' 1 3.19
101 'battery' 2 2.59
101 'ARA' 2 2.45
201 'battery' 1 1.99
201 'battery' 4 1.59
301 'battery' 1 2.45

The Integration Service performs the aggregate calculation on the following unique groups:

STORE_ID ITEM
101 'battery’
101 'AARA'
201 'battery’
301 'battery’

The Integration Service then passes the last row received, along with the results of the aggregation, as
follows:

STORE_ID ITEM TOTAL QTY SALES PER STORE ITEM
101 'AAR' 2 4.90
101 'battery' 6 17.34
201 'battery’ 5 8.35
301 'battery' 1 2.45

Group By Ports

Non-Aggregate Expressions

Use non-aggregate expressions in group by ports to modify or replace groups. For example, if you want to
replace ‘AAA battery’ before grouping, you can create a new group by output port, named CORRECTED_ITEM,
using the following expression:

IIF(ITEM = 'AAA battery', battery, ITEM)

Default Values

Define a default value for each port in the group to replace null input values. This allows the Integration
Service to include null item groups in the aggregation.

RELATED TOPICS:

o “Default Values for Ports” on page 38

Using Sorted Input

56

You can improve Aggregator transformation performance by using the sorted input option. When you use
sorted input, the Integration Service assumes all data is sorted by group and it performs aggregate
calculations as it reads rows for a group. When necessary, it stores group information in memory. To use the
Sorted Input option, you must pass sorted data to the Aggregator transformation. You can gain performance
with sorted ports when you configure the session with multiple partitions.

When you do not use sorted input, the Integration Service performs aggregate calculations as it reads. Since
the data is not sorted, the Integration Service stores data for each group until it reads the entire source to
ensure all aggregate calculations are accurate.

For example, one Aggregator transformation has the STORE_ID and ITEM group by ports, with the sorted
input option selected. When you pass the following data through the Aggregator, the Integration Service
performs an aggregation for the three rows in the 101/battery group as soon as it finds the new group, 201/

battery:

STORE_ID ITEM QTY PRICE
101 'battery’ 3 2.99
101 'battery' 1 3.19
101 'battery' 2 2.59
201 'battery' 4 1.59
201 'battery' 1 1.99

If you use sorted input and do not presort data correctly, you receive unexpected results.

Sorted Input Conditions

Do not use sorted input if either of the following conditions are true:

e The aggregate expression uses nested aggregate functions.

e The session uses incremental aggregation.

Chapter 2: Aggregator Transformation

If you use sorted input and do not sort data correctly, the session fails.

Sorting Data

To use sorted input, you pass sorted data through the Aggregator.
Data must be sorted in the following ways:

e By the Aggregator group by ports, in the order they appear in the Aggregator transformation.

e Using the same sort order configured for the session. If data is not in strict ascending or descending order
based on the session sort order, the Integration Service fails the session. For example, if you configure a
session to use a French sort order, data passing into the Aggregator transformation must be sorted using
the French sort order.

For relational and file sources, use the Sorter transformation to sort data in the mapping before passing it to
the Aggregator transformation. You can place the Sorter transformation anywhere in the mapping prior to the
Aggregator if no transformation changes the order of the sorted data. Group by columns in the Aggregator
transformation must be in the same order as they appear in the Sorter transformation.

If the session uses relational sources, you can also use the Number of Sorted Ports option in the Source
Qualifier transformation to sort group by columns in the source database. Group by columns must be in the
same order in both the Aggregator and Source Qualifier transformations.

The following mapping shows a Sorter transformation configured to sort the source data in ascending order

by ITEM_NO:
am| RDES-] fﬂ an; Sany an
e Qua. 4 "
Y = -
ORDER_NO v *+| ORDER_NO 3 *| ORDER_NO ORDER_NO -—b ORDER_NO
LINE_NO i3 " LINE_NO i i LINE_NO LINE_NO J— LINE_NO
ITEM_NO r 3 ITEM_NO O O ITEM_NO Yes ! ITEM_NO —— ITEM_NO
ITEM_NAME » 3 ITEM_NAME » » ITEM_NAME ITEM_NAME ITEM_NAME H ITEM_NAME
QTY v Hoary 3 ¢ oQrr > ary QY e Qry
PRICE " *| PRICE > *| PRICE Ad D TOTAL_QTY SUM@TY) —r TOTAL_QTY
4 » 4 » ‘4 » PRICE PRICE * — PRICE
INCOME_PER. SUM@TY"PRICE) | * mm—p | INCOME_PER_ITEM
4 » < »
The Sorter transformation sorts the data as follows:
ITEM NO ITEM_NAME QTY PRICE
345 Soup 4 2.95
345 Soup 1 2.95
345 Soup 2 3.25
546 Cereal 1 4.49
546 Cereal 2 5.25

With sorted input, the Aggregator transformation returns the following results:

ITEM_NO ITEM_NAME TOTAL_QTY INCOME PER_ITEM
345 Soup 7 21.25
546 Cereal 3 14.99

Using Sorted Input 57

Creating an Aggregator Transformation

To use an Aggregator transformation in a mapping, add the Aggregator transformation to the mapping. Then
configure the transformation with an aggregate expression and group by ports.

To create an Aggregator transformation:
1. Inthe Mapping Designer, click Transformation > Create. Select the Aggregator transformation.
2. Enter a name for the Aggregator, click Create. Then click Done.
The Designer creates the Aggregator transformation.
3. Drag the ports to the Aggregator transformation.
The Designer creates input/output ports for each port you include.
4. Double-click the title bar of the transformation to open the Edit Transformations dialog box.
5. Select the Ports tab.
6. Click the group by option for each column you want the Aggregator to use in creating groups.
Optionally, enter a default value to replace null groups.
7. Click Add to add an expression port.
The expression port must be an output port. Make the port an output port by clearing Input ().
8. Optionally, add default values for specific ports.

If the target database does not handle null values and certain ports are likely to contain null values,
specify a default value.

9. Configure properties on the Properties tab.

Tips for Aggregator Transformations

Use sorted input to decrease the use of aggregate caches.

Sorted input reduces the amount of data cached during the session and improves session performance. Use
this option with the Sorter transformation to pass sorted data to the Aggregator transformation.

The Aggregator transformation might not provide sorted output.
To sort output from an Aggregator transformation, use a Sorter transformation.

Limit connected input/output or output ports.

Limit the number of connected input/output or output ports to reduce the amount of data the Aggregator
transformation stores in the data cache.

Filter the data before aggregating it.

If you use a Filter transformation in the mapping, place the transformation before the Aggregator
transformation to reduce unnecessary aggregation.

58 Chapter 2: Aggregator Transformation

Troubleshooting Aggregator Transformations

| selected sorted input but the workflow takes the same amount of time as before.

You cannot use sorted input if any of the following conditions are true:
¢ The aggregate expression contains nested aggregate functions.
e The session uses incremental aggregation.

e Source data is data driven.

When any of these conditions are true, the Integration Service processes the transformation as if you do not
use sorted input.

A session using an Aggregator transformation causes slow performance.

The Integration Service may be paging to disk during the workflow. You can increase session performance by
increasing the index and data cache sizes in the transformation properties.

| entered an override cache directory in the Aggregator transformation, but the Integration Service
saves the session incremental aggregation files somewhere else.

You can override the transformation cache directory on a session level. The Integration Service notes the
cache directory in the session log. You can also check the session properties for an override cache directory.

Troubleshooting Aggregator Transformations 59

CHAPTER 3

Custom Transformation

This chapter includes the following topics:

e Custom Transformation Overview, 60

e Creating Custom Transformations, 62

e Working with Groups and Ports, 63

e Working with Port Attributes, 65

e Custom Transformation Properties, 65

e Working with Transaction Control, 68

e Blocking Input Data, 69

e Working with Procedure Properties, 71

e Creating Custom Transformation Procedures, 71

Custom Transformation Overview

60

Custom transformations operate in conjunction with procedures you create outside of the Designer interface
to extend PowerCenter functionality. You can create a Custom transformation and bind it to a procedure that
you develop using the Custom transformation functions. The Custom transformation can be an active or
passive transformation.

Use the Custom transformation to create transformation applications, such as sorting and aggregation,
which require all input rows to be processed before outputting any output rows. To support this process, the
input and output functions occur separately in Custom transformations compared to External Procedure
transformations.

The Integration Service passes the input data to the procedure using an input function. The output function is
a separate function that you must enter in the procedure code to pass output data to the Integration Service.
In contrast, in the External Procedure transformation, an external procedure function does both input and
output, and its parameters consist of all the ports of the transformation.

You can also use the Custom transformation to create a transformation that requires multiple input groups,
multiple output groups, or both. A group is the representation of a row of data entering or leaving a
transformation. For example, you might create a Custom transformation with one input group and multiple
output groups that parses XML data. Or, you can create a Custom transformation with two input groups and
one output group that merges two streams of input data into one stream of output data.

Working with Transformations Built On the Custom
Transformation

You can build transformations using the Custom transformation. Some of the PowerCenter transformations
are built using the Custom transformation. The following transformations that ship with Informatica products

are native transformations and are not built using the Custom transformation:

e Aggregator transformation

e Expression transformation

e External Procedure transformation
¢ Filter transformation

e Joiner transformation

e Lookup transformation

¢ Normalizer transformation

e Rank transformation

e Router transformation

e Sequence Generator transformation
e Sorter transformation

e Source Qualifier transformation

e Stored Procedure transformation

¢ Transaction Control transformation
e Update Strategy transformation

All other transformations are built using the Custom transformation. Rules that apply to Custom
transformations, such as blocking rules, also apply to transformations built using Custom transformations.
For example, when you connect a Custom transformation in a mapping, you must verify that the data can
flow from all sources in a target load order group to the targets without the Integration Service blocking all
sources. Similarly, you must also verify this for transformations built using a Custom transformation.

Code Page Compatibility

When the Integration Service runs in ASCII mode, it passes data to the Custom transformation procedure in
ASCII. When the Integration Service runs in Unicode mode, it passes data to the procedure in UCS-2.

Use the INFA_CTChangeStringMode() and INFA_CTSetDataCodePagelD() functions in the Custom
transformation procedure code to request the data in a different format or in a different code page.

The functions you can use depend on the data movement mode of the Integration Service:

e ASCII mode. Use the INFA_CTChangeStringMode() function to request the data in UCS-2. When you use
this function, the procedure must pass only ASCII characters in UCS-2 format to the Integration Service.

You cannot use the INFA_CTSetDataCodePagelD() function to change the code page when the Integration

Service runs in ASCIl mode.

e Unicode mode. Use the INFA_CTChangeStringMode() function to request the data in MBCS (multi-byte

character set). When the procedure requests the data in MBCS, the Integration Service passes data in the

Integration Service code page. Use the INFA_CTSetDataCodePagelD() function to request the data in a
different code page from the Integration Service code page. The code page you specify in the
INFA_CTSetDataCodePagelD() function must be two-way compatible with the Integration Service code
page.

Custom Transformation Overview

61

Note: You can also use the INFA_CTRebindInputDataType() function to change the format for a specific port
in the Custom transformation.

Distributing Custom Transformation Procedures

You can copy a Custom transformation from one repository to another. When you copy a Custom
transformation between repositories, you must verify that the Integration Service machine the target
repository uses contains the Custom transformation procedure.

Creating Custom Transformations

62

You can create reusable Custom transformations in the Transformation Developer, and add instances of the
transformation to mappings. You can create non-reusable Custom transformations in the Mapping Designer
or Mapplet Designer.

Each Custom transformation specifies a module and a procedure name. You can create a Custom
transformation based on an existing shared library or DLL containing the procedure, or you can create a
Custom transformation as the basis for creating the procedure. When you create a Custom transformation to
use with an existing shared library or DLL, make sure you define the correct module and procedure name.

When you create a Custom transformation as the basis for creating the procedure, select the transformation
and generate the code. The Designer uses the transformation properties when it generates the procedure
code. It generates code in a single directory for all transformations sharing a common module name.

The Designer generates the following files:

m_<module_name>.c. Defines the module. This file includes an initialization function,
m_<module_name>_modulelnit() that lets you write code you want the Integration Service to run when it
loads the module. Similarly, this file includes a deinitialization function,
m_<module_name>_moduleDeinit(), that lets you write code you want the Integration Service to run before
it unloads the module.

p_<procedure_name>.c. Defines the procedure in the module. This file contains the code that implements
the procedure logic, such as data cleansing or merging data.

makefile.aix, makefile.aix64, makefile.hpparisc64, makefile.linux, makefile.sol, and makefile.sol64.
Make files for the UNIX platforms except zLinux. Use makefile.aix64 for 64-bit AIX platforms and
makefile.sol64 for 64-bit Solaris platforms.

Note: For zLinux, you need to update the makefile.linux. Add -m64 to the FLAGS section. For example,
FLAGS=-Wall -fPIC -DUNIX -m64.

Rules and Guidelines for Custom Transformations

Use the following rules and guidelines when you create a Custom transformation:

Custom transformations are connected transformations. You cannot reference a Custom transformation
in an expression.

You can include multiple procedures in one module. For example, you can include an XML writer
procedure and an XML parser procedure in the same module.

You can bind one shared library or DLL to multiple Custom transformation instances if you write the
procedure code to handle multiple Custom transformation instances.

Chapter 3: Custom Transformation

* When you write the procedure code, you must make sure it does not violate basic mapping rules.
e The Custom transformation sends and receives high precision decimals as high precision decimals.

e Use multi-threaded code in Custom transformation procedures.

Custom Transformation Components

When you configure a Custom transformation, you define the following components:

o Transformation tab. You can rename the transformation and add a description on the Transformation tab.

e Ports tab. You can add and edit ports and groups to a Custom transformation. You can also define the
input ports an output port depends on.

¢ Port Attribute Definitions tab. You can create user-defined port attributes for Custom transformation
ports.

* Properties tab. You can define transformation properties such as module and function identifiers,
transaction properties, and the runtime location.

« Initialization Properties tab. You can define properties that the external procedure uses at runtime, such
as during initialization.

* Metadata Extensions tab. You can create metadata extensions to define properties that the procedure
uses at runtime, such as during initialization.

Working with Groups and Ports

A Custom transformation has both input and output groups. It also can have input ports, output ports, and
input/output ports. You create and edit groups and ports on the Ports tab of the Custom transformation. You
can also define the relationship between input and output ports on the Ports tab.

Creating Groups and Ports

You can create multiple input groups and multiple output groups in a Custom transformation. You must
create at least one input group and one output group. To create an input group, click the Create Input Group
icon. To create an output group, click the Create Output Group icon. You can change the existing group
names by typing in the group header. When you create a passive Custom transformation, you can only create
one input group and one output group.

When you create a port, the Designer adds it below the currently selected row or group. A port can belong to
the input group and the output group that appears immediately above it. An input/output port that appears
below the input group it is also part of the output group. An input/output port that appears below the output
group it is also part of the input group.

Groups that share ports are called a coupled group. Adjacent groups of opposite type can share ports. One
group can be part of more than one coupled group. For example, in the figure in “Step 1. Create the Custom
Transformation” on page 72, InputGroup1 and OutputGroup1 is a coupled group that shares ORDER_ID1

If the transformation has a Port Attribute Definitions tab, you can edit the attributes for each port.

Working with Groups and Ports 63

64

Editing Groups and Ports

Use the following rules and guidelines when you edit ports and groups in a Custom transformation:

e You can change group names by typing in the group header.
e You can only enter ASCII characters for port and group names.

e Once you create a group, you cannot change the group type. If you need to change the group type, delete
the group and add a new group.

e When you delete a group, the Designer deletes all ports of the same type in that group. However, all input/
output ports remain in the transformation, belong to the group above them, and change to input ports or
output ports, depending on the type of group you delete. For example, an output group contains output
ports and input/output ports. You delete the output group. The Designer deletes the output ports. It
changes the input/output ports to input ports. Those input ports belong to the input group with the header
directly above them.

e To move a group up or down, select the group header and click the Move Port Up or Move Port Down
button. The ports above and below the group header remain the same, but the groups to which they
belong might change.

e To create an input/output port, the transformation must have an input group and an output group.

Defining Port Relationships

By default, an output port in a Custom transformation depends on all input ports. However, you can define the
relationship between input and output ports in a Custom transformation. When you do this, you can view link
paths in a mapping containing a Custom transformation and you can see which input ports an output port
depends on. You can also view source column dependencies for target ports in a mapping containing a
Custom transformation.

To define the relationship between ports in a Custom transformation, create a port dependency. A port
dependency is the relationship between an output or input/output port and one or more input or input/output
ports. When you create a port dependency, base it on the procedure logic in the code.

To create a port dependency, click Custom Transformation on the Ports tab and choose Port Dependencies.

For example, create a external procedure that parses XML data. You create a Custom transformation with
one input group containing one input port and multiple output groups containing multiple output ports.
According to the external procedure logic, all output ports depend on the input port. You can define this
relationship in the Custom transformation by creating a port dependency for each output port. Define each
port dependency so that the output port depends on the one input port.

To create a port dependency:

1. Onthe Ports tab, click Custom Transformation and choose Port Dependencies.

2. Inthe Output Port Dependencies dialog box, select an output or input/output port in the Output Port field.

w

In the Input Ports pane, select an input or input/output port on which the output port or input/output port
depends.

Click Add.

Repeat steps 3 to 4 to include more input or input/output ports in the port dependency.
To create another port dependency, repeat steps 2 to 5.

Click OK.

N o a &

Chapter 3: Custom Transformation

Working with Port Attributes

Ports have attributes, such as datatype and precision. When you create a Custom transformation, you can
create user-defined port attributes. User-defined port attributes apply to all ports in a Custom transformation.

For example, you create a external procedure to parse XML data. You can create a port attribute called “XML
path” where you can define the position of an element in the XML hierarchy.

Create port attributes and assign default values on the Port Attribute Definitions tab of the Custom
transformation. You can define a specific port attribute value for each port on the Ports tab.

When you create a port attribute, define the following properties:
* Name. The name of the port attribute.

o Datatype. The datatype of the port attribute value. You can choose Boolean, Numeric, or String.

¢ Value. The default value of the port attribute. This property is optional. When you enter a value here, the
value applies to all ports in the Custom transformation. You can override the port attribute value for each
port on the Ports tab.

You define port attributes for each Custom transformation. You cannot copy a port attribute from one
Custom transformation to another.

Editing Port Attribute Values

After you create port attributes, you can edit the port attribute values for each port in the transformation. To
edit the port attribute values, click Custom Transformation on the Ports tab and choose Edit Port Attribute.

You can change the port attribute value for a particular port by clicking the Open button. This opens the Edit
Port Attribute Default Value dialog box. Or, you can enter a new value by typing directly in the Value column.

You can filter the ports listed in the Edit Port Level Attributes dialog box by choosing a group from the Select
Group field.

Custom Transformation Properties

Properties for the Custom transformation apply to both the procedure and the transformation. Configure the
Custom transformation properties on the Properties tab of the Custom transformation.

The following table describes the Custom transformation properties:

Option Description

Language Language used for the procedure code. You define the language when you create the
Custom transformation. If you need to change the language, create a new Custom
transformation.

Module Identifier Module name. Applies to Custom transformation procedures developed using C or C++.
Enter only ASCII characters in this field. You cannot enter multibyte characters.

This property is the base name of the DLL or the shared library that contains the
procedure. The Designer uses this name to create the C file when you generate the
external procedure code.

Working with Port Attributes 65

66

Option

Description

Function Identifier

Name of the procedure in the module. Applies to Custom transformation procedures
developed using C.

Enter only ASCII characters in this field. You cannot enter multibyte characters.
The Designer uses this name to create the C file where you enter the procedure code.

Class Name

Class name of the Custom transformation procedure. Applies to Custom transformation
procedures developed using C++ or Java.

Enter only ASCII characters in this field. You cannot enter multibyte characters.

Runtime Location

Location that contains the DLL or shared library. Default is SPMExtProcDir. Enter a path
relative to the Integration Service node that runs the Custom transformation session.

If this property is blank, the Integration Service uses the environment variable defined on
the Integration Service node to locate the DLL or shared library.

You must copy all DLLs or shared libraries to the runtime location or to the environment
variable defined on the Integration Service node. The Integration Service fails to load the
procedure when it cannot locate the DLL, shared library, or a referenced file.

Tracing Level

Amount of detail displayed in the session log for this transformation. Default is Normal.

Is Partitionable

Indicates if you can create multiple partitions in a pipeline that uses this transformation:

- No. The transformation cannot be partitioned. The transformation and other
transformations in the same pipeline are limited to one partition.

- Locally. The transformation can be partitioned, but the Integration Service must run all
partitions in the pipeline on the same node. Choose Local when different partitions of
the Custom transformation must share objects in memory.

- Across Grid. The transformation can be partitioned, and the Integration Service can
distribute each partition to different nodes.

Default is No.

Inputs Must Block

Indicates if the procedure associated with the transformation must be able to block
incoming data. Default is enabled.

Is Active Indicates if this transformation is an active or passive transformation.
You cannot change this property after you create the Custom transformation. If you need
to change this property, create a new Custom transformation and select the correct
property value.

Update Strategy Indicates if this transformation defines the update strategy for output rows. Default is

Transformation

disabled. You can enable this for active Custom transformations.

Transformation Scope

Indicates how the Integration Service applies the transformation logic to incoming data:

- Row
- Transaction

- All Input

When the transformation is passive, this property is always Row. When the
transformation is active, this property is All Input by default.

Generate Transaction

Indicates if this transformation can generate transactions. When a Custom
transformation generates transactions, it generates transactions for all output groups.

Default is disabled. You can only enable this for active Custom transformations.

Chapter 3: Custom Transformation

Option Description

Output is Repeatable Indicates if the order of the output data is consistent between session runs.

- Never. The order of the output data is inconsistent between session runs. This is the
default for active transformations.

- Based On Input Order. The output order is consistent between session runs when the
input data order is consistent between session runs. This is the default for passive
transformations.

- Always. The order of the output data is consistent between session runs even if the
order of the input data is inconsistent between session runs.

Requires Single Thread Indicates if the Integration Service processes each partition at the procedure with one
Per Partition thread. When you enable this option, the procedure code can use thread-specific
operations. Default is enabled.

Output is Deterministic Indicates whether the transformation generates consistent output data between session
runs. Enable this property to perform recovery on sessions that use this transformation.

Warning: If you configure a transformation as repeatable and deterministic, it is your responsibility to ensure
that the data is repeatable and deterministic. If you try to recover a session with transformations that do not
produce the same data between the session and the recovery, the recovery process can result in corrupted
data.

Setting the Update Strategy

Use an active Custom transformation to set the update strategy for a mapping at the following levels:

« Within the procedure. You can write the external procedure code to set the update strategy for output
rows. The external procedure can flag rows for insert, update, delete, or reject.

¢ Within the mapping. Use the Custom transformation in a mapping to flag rows for insert, update, delete,
or reject. Select the Update Strategy Transformation property for the Custom transformation.

* Within the session. Configure the session to treat the source rows as data driven.

If you do not configure the Custom transformation to define the update strategy, or you do not configure the
session as data driven, the Integration Service does not use the external procedure code to flag the output
rows. Instead, when the Custom transformation is active, the Integration Service flags the output rows as
insert. When the Custom transformation is passive, the Integration Service retains the row type. For example,
when a row flagged for update enters a passive Custom transformation, the Integration Service maintains the
row type and outputs the row as update.

Working with Thread-Specific Procedure Code

Custom transformation procedures can include thread-specific operations. A thread-specific operation is
code that performs an action based on the thread that is processing the procedure.

You can configure the Custom transformation so the Integration Service uses one thread to process the
Custom transformation for each partition using the Requires Single Thread Per Partition property.

When you configure a Custom transformation to process each partition with one thread, the Integration
Service calls the following functions with the same thread for each partition:

e p_<proc_name>_partitionInit()
e p_<proc_name>_partitionDeinit()

e p_<proc_name>_inputRowNotification()

Custom Transformation Properties 67

e p_<proc_name>_dataBdryRowNotification()
¢ p_<proc_name>_eofNotification()

You can include thread-specific operations in these functions because the Integration Service uses the same
thread to process these functions for each partition. For example, you might attach and detach threads to a
Java Virtual Machine.

Note: When you configure a Custom transformation to process each partition with one thread, the Workflow
Manager adds partition points depending on the mapping configuration.

Working with Transaction Control

68

You can define transaction control for Custom transformations using the following transformation
properties:

* Transformation Scope. Determines how the Integration Service applies the transformation logic to
incoming data.

¢ Generate Transaction. Indicates that the procedure generates transaction rows and outputs them to the
output groups.

Transformation Scope

You can configure how the Integration Service applies the transformation logic to incoming data. You can
choose one of the following values:

e Row. Applies the transformation logic to one row of data at a time. Choose Row when the results of the
procedure depend on a single row of data. For example, you might choose Row when a procedure parses
a row containing an XML file.

e Transaction. Applies the transformation logic to all rows in a transaction. Choose Transaction when the
results of the procedure depend on all rows in the same transaction, but not on rows in other transactions.
When you choose Transaction, you must connect all input groups to the same transaction control point.
For example, you might choose Transaction when the external procedure performs aggregate calculations
on the data in a single transaction.

o All Input. Applies the transformation logic to all incoming data. When you choose All Input, the Integration
Service drops transaction boundaries. Choose All Input when the results of the procedure depend on all
rows of data in the source. For example, you might choose All Input when the external procedure performs
aggregate calculations on all incoming data, or when it sorts all incoming data.

Generate Transaction

You can write the external procedure code to output transactions, such as commit and rollback rows. When
the external procedure outputs commit and rollback rows, configure the Custom transformation to generate
transactions. Select the Generate Transaction transformation property. You can enable this property for
active Custom transformations.

When the external procedure outputs a commit or rollback row, it outputs or rolls back the row for all output
groups.

When you configure the transformation to generate transactions, the Integration Service treats the Custom
transformation like a Transaction Control transformation. Most rules that apply to a Transaction Control
transformation in a mapping also apply to the Custom transformation. For example, when you configure a

Chapter 3: Custom Transformation

Custom transformation to generate transactions, you cannot concatenate pipelines or pipeline branches
containing the transformation.

When you edit or create a session using a Custom transformation configured to generate transactions,
configure it for user-defined commit.

Working with Transaction Boundaries

The Integration Service handles transaction boundaries entering and leaving Custom transformations based
on the mapping configuration and the Custom transformation properties.

The following table describes how the Integration Service handles transaction boundaries at Custom

transformations:

Transformation
Scope

Generate Transactions Enabled

Generate Transactions Disabled

Row

Integration Service drops incoming transaction
boundaries and does not call the data boundary
notification function.

It outputs transaction rows according to the
procedure logic across all output groups.

When the incoming data for all input groups
comes from the same transaction control
point, the Integration Service preserves
incoming transaction boundaries and
outputs them across all output groups.
However, it does not call the data boundary
notification function.

When the incoming data for the input groups
comes from different transaction control
points, the Integration Service drops
incoming transaction boundaries. It does
not call the data boundary notification
function. The Integration Service outputs all
rows in one open transaction.

Transaction

Integration Service preserves incoming
transaction boundaries and calls the data
boundary notification function.

However, it outputs transaction rows according
to the procedure logic across all output groups.

Integration Service preserves incoming
transaction boundaries and calls the data
boundary notification function.

It outputs the transaction rows across all
output groups.

All Input

Integration Service drops incoming transaction
boundaries and does not call the data boundary
notification function. The Integration Service
outputs transaction rows according to the
procedure logic across all output groups.

Integration Service drops incoming

transaction boundaries and does not call
the data boundary notification function. It
outputs all rows in one open transaction.

Blocking Input Data

By default, the Integration Service concurrently reads sources in a target load order group. However, you can
write the external procedure code to block input data on some input groups. Blocking is the suspension of
the data flow into an input group of a multiple input group transformation.

To use a Custom transformation to block input data, you must write the procedure code to block and unblock
data. You must also enable blocking on the Properties tab for the Custom transformation.

Blocking Input Data 69

70

Writing the Procedure Code to Block Data

You can write the procedure to block and unblock incoming data. To block incoming data, use the
INFA_CTBIocklInputFlow() function. To unblock incoming data, use the INFA_CTUnblockInputFlow() function.

You might want to block input data if the external procedure needs to alternate reading from input groups.
Without the blocking functionality, you would need to write the procedure code to buffer incoming data. You
can block input data instead of buffering it which usually increases session performance.

For example, you need to create an external procedure with two input groups. The external procedure reads a
row from the first input group and then reads a row from the second input group. If you use blocking, you can
write the external procedure code to block the flow of data from one input group while it processes the data
from the other input group. When you write the external procedure code to block data, you increase
performance because the procedure does not need to copy the source data to a buffer. However, you could
write the external procedure to allocate a buffer and copy the data from one input group to the buffer until it
is ready to process the data. Copying source data to a buffer decreases performance.

RELATED ToOPICS:

e “Blocking Functions” on page 112

Configuring Custom Transformations as Blocking Transformations

When you create a Custom transformation, the Designer enables the Inputs Must Block transformation
property by default. This property affects data flow validation when you save or validate a mapping. When
you enable this property, the Custom transformation is a blocking transformation. When you clear this
property, the Custom transformation is not a blocking transformation.

Configure the Custom transformation as a blocking transformation when the external procedure code must
be able to block input data.

You can configure the Custom transformation as a non-blocking transformation when one of the following
conditions is true:

e The procedure code does not include the blocking functions.

e The procedure code includes two algorithms, one that uses blocking and the other that copies the source
data to a buffer allocated by the procedure instead of blocking data. The code checks whether or not the
Integration Service allows the Custom transformation to block data. The procedure uses the algorithm
with the blocking functions when it can block, and uses the other algorithm when it cannot block. You
might want to do this to create a Custom transformation that you use in multiple mapping configurations.

Note: When the procedure blocks data and you configure the Custom transformation as a non-blocking
transformation, the Integration Service fails the session.

Validating Mappings with Custom Transformations

When you include a Custom transformation in a mapping, both the Designer and Integration Service validate
the mapping. The Designer validates the mapping you save or validate and the Integration Service validates
the mapping when you run the session.

Validating at Design Time

When you save or validate a mapping, the Designer performs data flow validation. When the Designer does
this, it verifies that the data can flow from all sources in a target load order group to the targets without
blocking transformations blocking all sources. Some mappings with blocking transformations are invalid.

Chapter 3: Custom Transformation

Validating at Runtime

When you run a session, the Integration Service validates the mapping against the procedure code at runtime.
When the Integration Service does this, it tracks whether or not it allows the Custom transformations to block
data:

¢ Configure the Custom transformation as a blocking transformation. The Integration Service always
allows the Custom transformation to block data.

e Configure the Custom transformation as a non-blocking transformation. The Integration Service allows
the Custom transformation to block data depending on the mapping configuration. If the Integration
Service can block data at the Custom transformation without blocking all sources in the target load order
group simultaneously, it allows the Custom transformation to block data.

You can write the procedure code to check whether or not the Integration Service allows a Custom
transformation to block data. Use the INFA_CT_getInternalProperty() function to access the
INFA_CT_TRANS_MAY_BLOCK_DATA property ID. The Integration Service returns TRUE when the Custom
transformation can block data, and it returns FALSE when the Custom transformation cannot block data.

Working with Procedure Properties

You can define property name and value pairs in the Custom transformation that the procedure can use when
the Integration Service runs the procedure, such as during initialization time. You can create user-defined
properties on the following tabs of the Custom transformation:

* Metadata Extensions. You can specify the property name, datatype, precision, and value. Use metadata
extensions for passing information to the procedure.

o Initialization Properties. You can specify the property name and value.

While you can define properties on both tabs in the Custom transformation, the Metadata Extensions tab lets
you provide more detail for the property. Use metadata extensions to pass properties to the procedure.

For example, you create a Custom transformation external procedure that sorts data after transforming it.
You could create a boolean metadata extension named Sort_Ascending. When you use the Custom
transformation in a mapping, you can choose True or False for the metadata extension, depending on how
you want the procedure to sort the data.

When you define a property in the Custom transformation, use the get all property names functions, such as
INFA_CTGetAllPropertyNamesM(), to access the names of all properties defined on the Initialization
Properties and Metadata Extensions tab. Use the get external property functions, such as
INFA_CT_getExternalPropertyM(), to access the property name and value of a property ID you specify.

Note: When you define a metadata extension and an initialization property with the same name, the property
functions only return information for the metadata extension.

Creating Custom Transformation Procedures

You can create Custom transformation procedures that run on 32-bit or 64-bit Integration Service machines.
Use the following steps as a guideline when you create a Custom transformation procedure:

1. Inthe Transformation Developer, create a reusable Custom transformation. Or, in the Mapplet Designer
or Mapping Designer, create a non-reusable Custom transformation.

Working with Procedure Properties 71

2. Generate the template code for the procedure.

When you generate the procedure code, the Designer uses the information from the Custom
transformation to create C source code files and makefiles.

3. Modify the C files to add the procedure logic.

4. Use a C/C++ compiler to compile and link the source code files into a DLL or shared library and copy it to
the Integration Service machine.

5. Create a mapping with the Custom transformation.
6. Run the session in a workflow.

This section includes an example to demonstrate this process. The steps in this section create a Custom
transformation that contains two input groups and one output group. The Custom transformation procedure
verifies that the Custom transformation uses two input groups and one output group. It also verifies that the
number of ports in all groups are equal and that the port datatypes are the same for all groups. The
procedure takes rows of data from each input group and outputs all rows to the output group.

Step 1. Create the Custom Transformation

To create a Custom transformation:

1. Inthe Transformation Developer, click Transformation > Create.

2. Inthe Create Transformation dialog box, choose Custom transformation, enter a transformation name,
and click Create.

In the Union example, enter CT_Inf Union as the transformation name.

3. Inthe Active or Passive dialog box, create the transformation as a passive or active transformation, and
click OK.

In the Union example, choose Active.
4. Click Done to close the Create Transformation dialog box.
Open the transformation and click the Ports tab. Create groups and ports.

You can edit the groups and ports later, if necessary.

72 Chapter 3: Custom Transformation

6.

The following figure shows an example of a Union transformation with two groups:

Edit Transformations B3

Transformation Ports |Pr0perties| Initialization Propertiesl Metadata Extensionsl Port Attribute Definitions

Select transformation: Iﬂ.ﬂ CT_Inf_Union

Transformation type: IEustom Transformation [Feuszable)

oD% BB+

Custom Transformation +

=l

Po Da o B
(ORDER_ID inkeger 10 1] =il
CORDER_DATEL date/time 19 1] =il
TOTAL_PRICEL decimal 10 2 =il
CRDER_IDZ inkeger 10 1] =il
CORDER_DATEZ date/time 19 1] =il
TOTAL_PRICEZ decimal 10 2 =il
CRDER_ID_oUT integer 10 i e
CRDER_DATE_OUT date/time 19 1] Il
TOTAL_PRICE_QUT decimal 10 2 Il —
-
Default value: I v
Description: ;I
=
oK I Cancel | Apply | Help l
|

In the Union example, create the groups InputGroup1 and InputGroup2. Create the following ports for

InputGroup1:
Port Name Datatype Precision Scale
ORDER_ID1 integer 10 0
ORDER_DATE1 date/time 19 0
TOTAL_PRICE1 decimal 10 2

Create the following ports for InputGroup2:
Port Name Datatype Precision Scale Input/Output
ORDER_ID2 integer 10 0 Input
ORDER_DATE2 date/time 19 0 Input
TOTAL_PRICE2 decimal 10 2 Input
ORDER_ID_OUT integer 10 0 Output
ORDER_DATE_OUT date/time 19 0 Output
TOTAL_PRICE_OUT decimal 10 2 Output

Select the Properties tab and enter a module and function identifier and the runtime location. Edit other
transformation property attributes, such as the Tracing Level, Is Partitionable, Inputs Must Block, Is

Creating Custom Transformation Procedures

73

Active, Update Strategy Transformation, Transformation Scope and Generate Transaction values/

checkboxes.

In the Union example, configure the following properties:

Property Name Value
Module Identifier UnionDemo
Function Identifier Union

Runtime Location

SPMExtProcDir

Tracing Level Normal
Is Partitionable No
Inputs Must Block No

Is Active Yes
Update Strategy Transformation No
Transformation Scope All Input
Generate Transaction No

7. Click the Metadata Extensions tab to enter metadata extensions, such as properties the external
procedure might need for initialization.

In the Union example, do not create metadata extensions.
8. Click the Port Attribute Definitions tab to create port attributes, if necessary.
In the Union example, do not create port attributes.

After you create the Custom transformation that calls the procedure, the next step is to generate the C files.

Step 2. Generate the C Files

After you create a Custom transformation, you generate the source code files. The Designer generates file
names in lower case.

To generate the code for a Custom transformation procedure:

1. Inthe Transformation Developer, select the transformation and click Transformation > Generate Code.

2. Select the procedure you just created. The Designer lists the procedures as
<module_name>.<procedure_name>.

In the Union example, select UnionDemo.Union.
3. Specify the directory where you want to generate the files, and click Generate.

In the Union example, select <client_installation_directory>/TX.

74 Chapter 3: Custom Transformation

The Designer creates a subdirectory, <module_name>, in the directory you specified. In the Union
example, the Designer creates <client_installation_directory>/TX/UnionDemao. It also creates the
following files:

e m_UnionDemo.c
e m_UnionDemo.h
e p_Union.c
e p_Union.h

o makefile.aix (32-bit), makefile.aix64 (64-bit), makefile.hp (32-bit), makefile.hp64 (64-bit),
makefile.hpparisc64, makefile.linux (32-bit), and makefile.sol (32-bit).

Step 3. Fill Out the Code with the Transformation Logic

You must code the procedure C file. Optionally, you can also code the module C file. In the Union example,
you fill out the procedure C file only. You do not need to fill out the module C file.

To code the procedure C file:

1. Open p_<procedure_name>.c for the procedure.
In the Union example, open p_Union.c.

2. Enter the C code for the procedure.

3. Save the modified file.

In the Union example, use the following code:
/**

* Custom Transformation p_union Procedure File

This file contains code that functions that will be called by the main
server executable.

for more information on these files,

see $(INFA HOME) /ExtProc/include/Readme.txt

*
*
*
*
*
*
****‘k****‘k***‘k*‘k**‘k********‘k****‘k***‘k****‘k********‘k****‘k********‘k****‘k****/

* INFORMATICA 'UNION DEMO' developed using the API for custom
transformations.

*

File Name: p Union.c
An example of a custom transformation ('Union') using PowerCenter

The purpose of the 'Union' transformation is to combine pipelines with the
same row definition into one pipeline (i.e. union of multiple pipelines).
[Note that it does not correspond to the mathematical definition of union
since it does not eliminate duplicate rows.]

This example union transformation allows N input pipelines (each
corresponding to an input group) to be combined into one pipeline.

To use this transformation in a mapping, the following attributes must be
true:
a. The transformation must have >= 2 input groups and only one output group.
b. In the Properties tab set the following properties:

i. Module Identifier: UnionDemo

ii. Function Identifier: Union

iii. Inputs May Block: Unchecked

iv. Is Active: Checked

V. Update Strategy Transformation: Unchecked *

vi. Transformation Scope: All

vii. Generate Transaction: Unchecked *

L S e S i S e T S S S

Creating Custom Transformation Procedures

75

* This version of the union transformation does not provide code for
changing the update strategy or for generating transactions.

c. The input groups and the output group must have the same number of ports
and the same datatypes. This is verified in the initialization of the
module and the session is failed if this is not true.

d. The transformation can be used in multiple number of times in a Target
Load Order Group and can also be contained within multiple partitions.

L S

/

/**

Includes
**/

include <stdlib.h>
#include "p union.h"

/**

Forward Declarations
**/

INFA STATUS validateProperties(const INFA CT PARTITION HANDLE* partition);

/**

Functions
**/

/**

Function: p_union procInit

Description: Initialization for the procedure. Returns INFA SUCCESS if
procedure initialization succeeds, else return INFA FAILURE.

Input: procedure - the handle for the procedure
Output: None
Remarks: This function will get called once for the session at

initialization time. It will be called after the moduleInit function.
**/

INFA STATUS p_union procInit(INFA CT PROCEDURE HANDLE procedure)
{
const INFA CT TRANSFORMATION HANDLE* transformation = NULL;
const INFA CT PARTITION HANDLE* partition = NULL;
size t nTransformations = 0, nPartitions =0, i = 0;

/* Log a message indicating beginning of the procedure initialization */
INFA CTLogMessageM(eESL LOG,
"union demo: Procedure initialization started ...");

INFA CTChangeStringMode (procedure, eASM MBCS);

/* Get the transformation handles */

transformation = INFA CTGetChildrenHandles(procedure,
snTransformations,
TRANSFORMATIONTYPE) ;

/* For each transformation verify that the Oth partition has the correct
* properties. This does not need to be done for all partitions since rest
* of the partitions have the same information */
for (i = 0; i < nTransformations; i++)
{

/* Get the partition handle */

partition = INFA CTGetChildrenHandles (transformation[i],

&nPartitions, PARTITIONTYPE);

if (validateProperties(partition) != INFA SUCCESS)
{
INFA CTLogMessageM(eESL ERROR,
"union demo: Failed to validate attributes of "
"the transformation");

76 Chapter 3: Custom Transformation

return INFA FAILURE;

}

INFA CTLogMessageM(eESL_LOG,
"union demo: Procedure initialization completed.");

return INFA SUCCESS;
}

/**

Function: p union procDeinit

Description: Deinitialization for the procedure. Returns INFA SUCCESS if
procedure deinitialization succeeds, else return INFA FAILURE.

Input: procedure - the handle for the procedure

Output: None

Remarks: This function will get called once for the session at
deinitialization time. It will be called before the moduleDeinit

function.
**/

INFA STATUS p_union procDeinit (INFA CT PROCEDURE HANDLE procedure,
INFA_STATUS sessionStatus)
{
/* Do nothing ... */
return INFA SUCCESS;
}

/**

Function: p union partitionInit

Description: Initialization for the partition. Returns INFA SUCCESS if
partition deinitialization succeeds, else return INFA FAILURE.

Input: partition - the handle for the partition
Output: None
Remarks: This function will get called once for each partition for each

transformation in the session.
**/

INFA STATUS p union partitionInit(INFA CT PARTITION HANDLE partition)
{

/* Do nothing ... */

return INFA SUCCESS;
}

/**

Function: p union partitionDeinit

Description: Deinitialization for the partition. Returns INFA SUCCESS if
partition deinitialization succeeds, else return INFA FAILURE.

Input: partition - the handle for the partition
Output: None
Remarks: This function will get called once for each partition for each

transformation in the session.
**/

INFA STATUS p_union partitionDeinit(INFA CT PARTITION HANDLE partition)
{

/* Do nothing ... */

return INFA SUCCESS;
}

/**

Function: p union_ inputRowNotification

Description: Notification that a row needs to be processed for an input

Creating Custom Transformation Procedures

77

group in a transformation for the given partition. Returns INFA ROWSUCCESS
if the input row was processed successfully, INFA ROWFAILURE if the input
row was not processed successfully and INFA FATALERROR if the input row
causes the session to fail.

Input: partition - the handle for the partition for the given row
group - the handle for the input group for the given row

Output: None

Remarks: This function is probably where the meat of your code will go,

as it is called for every row that gets sent into your transformation.
**/

INFA ROWSTATUS p union inputRowNotification(INFA CT PARTITION HANDLE partition,
INFA CT_ INPUTGROUP HANDLE inputGroup

const INFA CT OUTPUTGROUP HANDLE* outputGroups = NULL;
const INFA CT INPUTPORT HANDLE* inputGroupPorts NULL;
const INFA CT OUTPUTPORT HANDLE* outputGroupPorts = NULL;
size t nNumInputPorts = 0, nNumOutputGroups = 0,
nNumPortsInOutputGroup = 0, i = 0;

/* Get the output group port handles */

outputGroups = INFA CTGetChildrenHandles (partition,
&nNumOutputGroups,
OUTPUTGROUPTYPE) ;

outputGroupPorts = INFA CTGetChildrenHandles (outputGroups[0],
&nNumPortsInOutputGroup,
OUTPUTPORTTYPE) ;

/* Get the input groups port handles */

inputGroupPorts = INFA CTGetChildrenHandles (inputGroup,
&nNumInputPorts,
INPUTPORTTYPE) ;

/* For the union transformation, on receiving a row of input, we need to
* output that row on the output group. */
for (i = 0; i < nNumInputPorts; i++)
{
INFA CTSetData (outputGroupPorts[i],
INFA CTGetDataVoid (inputGroupPorts[i]));

INFA CTSetIndicator (outputGroupPorts[i],
INFA CTGetIndicator (inputGroupPorts[i]));

INFA CTSetLength (outputGroupPorts[i],
INFA CTGetLength (inputGroupPorts[i]));
}

/* We know there is only one output group for each partition */
return INFA CTOutputNotification (outputGroups[0]);
}

/**‘k‘k*‘k‘k‘k‘k**‘k‘k‘k**‘k‘k*‘k‘k‘k‘k**‘k‘k***‘k‘k**‘k‘k‘k**‘k‘k*‘k‘k‘k‘k**‘k‘k**********************‘k*

Function: p union eofNotification

Description: Notification that the last row for an input group has already
been seen. Return INFA FAILURE if the session should fail as a result of
seeing this notification, INFA SUCCESS otherwise.

Input: partition - the handle for the partition for the notification
group - the handle for the input group for the notification
Output: None

**********************************‘k**************‘k************************/

INFA STATUS p union eofNotification(INFA CT PARTITION HANDLE partition,
INFA CT INPUTGROUP_ HANDLE group)
{
INFA CTLogMessageM(eESL LOG,

78 Chapter 3: Custom Transformation

"union demo: An input group received an EOF notification");

return INFA SUCCESS;
}

/**

Function: p union dataBdryNotification

Description: Notification that a transaction has ended. The data
boundary type can either be commit or rollback.

Return INFA FAILURE if the session should fail as a result of
seeing this notification, INFA SUCCESS otherwise.

Input: partition - the handle for the partition for the notification
transactionType - commit or rollback

Output: None
**/

INFA STATUS p union dataBdryNotification (INFA CT PARTITION HANDLE partition,
INFA CT DATABDRY TYPE transactionType)
{
/* Do nothing */
return INFA SUCCESS;
}

/* Helper functions */

/**

Function: validateProperties

Description: Validate that the transformation has all properties expected
by a union transformation, such as at least one input group, and only

one output group. Return INFA FAILURE if the session should fail since the
transformation was invalid, INFA SUCCESS otherwise.

Input: partition - the handle for the partition
Output: None

**/

INFA STATUS validateProperties(const INFA CT PARTITION HANDLE* partition)
{

const INFA CT INPUTGROUP HANDLE* inputGroups = NULL;

const INFA CT OUTPUTGROUP HANDLE* outputGroups = NULL;

size t nNumInputGroups = 0, nNumOutputGroups = 0;

const INFA CT INPUTPORT HANDLE** allInputGroupsPorts = NULL;

const INFA CT OUTPUTPORT HANDLE* outputGroupPorts = NULL;

size t nNumPortsInOutputGroup = 0;

size t i = 0, nTempNumInputPorts = 0;

/* Get the input and output group handles */

inputGroups = INFA CTGetChildrenHandles (partition[0],
&nNumInputGroups,
INPUTGROUPTYPE) ;

outputGroups = INFA CTGetChildrenHandles (partition[O0],
&nNumOutputGroups,
OUTPUTGROUPTYPE) ;

/* 1. Number of input groups must be >= 2 and number of output groups must
* be equal to one. */
if (nNumInputGroups < 1 || nNumOutputGroups != 1)

INFA CTLogMessageM(eESL ERROR,
"UnionDemo: There must be at least two input groups "
"and only one output group");
return INFA FAILURE;
}

/* 2. Verify that the same number of ports are in each group (including
* output group). */

Creating Custom Transformation Procedures

79

outputGroupPorts = INFA CTGetChildrenHandles (outputGroups[0],
&nNumPortsInOutputGroup,
OUTPUTPORTTYPE) ;

/* Allocate an array for all input groups ports */
allInputGroupsPorts = malloc(sizeof (INFA CT INPUTPORT HANDLE*) *
nNumInputGroups) ;

for (i = 0; i < nNumInputGroups; i++)
{
allInputGroupsPorts[i] = INFA CTGetChildrenHandles (inputGroups[i],
&nTempNumInputPorts,
INPUTPORTTYPE) ;

if (nNumPortsInOutputGroup != nTempNumInputPorts)
{
INFA CTLogMessageM(eESL ERROR,
"UnionDemo: The number of ports in all input and "
"the output group must be the same.");
return INFA FAILURE;
}
free(allInputGroupsPorts);
/* 3. Datatypes of ports in input group 1 must match data types of all other
* groups.
TODO: */

return INFA SUCCESS;

Step 4. Build the Module

You can build the module on a Windows or UNIX platform.

The following table lists the library file names for each platform when you build the module:

Platform Module File Name
Windows <module_identifier>.dll
AIX lib<module_identifier>.a
Linux lib<module_identifier>.so
Solaris lib<module_identifier>.so

Building the Module on Windows
On Windows, use Microsoft Visual C++ to build the module.
To build the module on Windows:
1. Start Visual C++.
2. Click File > New.
3. Inthe New dialog box, click the Projects tab and select the Win32 Dynamic-Link Library option.
4. Enterits location.
In the Union example, enter <client_installation_directory>/TX/UnionDemo.

5. Enter the name of the project.

80 Chapter 3: Custom Transformation

10.
11.
12.

13.

You must use the module name specified for the Custom transformation as the project name. In the
Union example, enter UnionDemo.

Click OK.
Visual C++ creates a wizard to help you define the project components.

In the wizard, select An empty DLL project and click Finish. Click OK in the New Project Information
dialog box.

Visual C++ creates the project files in the directory you specified.
Click Project > Add To Project > Files.

Navigate up a directory level. This directory contains the procedure files you created. Select all .c files
and click OK.

In the Union example, add the following files:

e m_UnionDemo.c

e p_Union.c

Click Project > Settings.

Click the C/C++ tab, and select Preprocessor from the Category field.

In the Additional Include Directories field, enter the following path and click OK:
..; <PowerCenter install dir>\extproc\include\ct

Click Build > Build <module_name>.dll or press F7 to build the project.

Visual C++ creates the DLL and places it in the debug or release directory under the project directory.

Building the Module on UNIX

On UNIX, use any C compiler to build the module.

To build the module on UNIX:

1.

Copy all C files and makefiles generated by the Designer to the UNIX machine.

Note: If you build the shared library on a machine other than the Integration Service machine, you must
also copy the files in the following directory to the build machine:

<PowerCenter_install_dir>\ExtProc\include\ct
In the Union example, copy all files in <client_installation_directory>/TX/UnionDemo.
Set the environment variable INFA_HOME to the Integration Service installation directory.

Note: If you specify an incorrect directory path for the INFA_HOME environment variable, the Integration
Service cannot start.

Enter a command from the following table to make the project:

UNIX Version Command

AIX (32-bit) make -f makefile.aix
AIX (64-bit) make -f makefile.aix64
Linux make -f makefile.linux
Solaris make -f makefile.sol

Creating Custom Transformation Procedures 81

82

Step 5. Create a Mapping

In the Mapping Designer, create a mapping that uses the Custom transformation.

In this mapping, two sources with the same ports and datatypes connect to the two input groups in the
Custom transformation. The Custom transformation takes the rows from both sources and outputs them all
through its one output group. The output group has the same ports and datatypes as the input groups.

In the Union example, create a mapping similar to the one in the following figure:

3 er
Mame Datatype

|*|ORDER_ID integer | b= | * [ORDER_ID1 integer | |

¥ | DATE dateftime | ¥ fe=—pe| ¥ |ORDER_DATET dateftime | |

¥ |PRICE decimal | |» e P [TOTAL_PRICE1 decimal
ORDERS (Micro ORDER D2 t_ —
soft SAL Server 2 -] = Imeger —

ORDER_DATEZ dateftime

EEE

) = g . ||
MName Datatype TOTAL_PRICEZ !:Iemmal ||
ORDER 1D int | |ORDER_ID_OUT integer | = ¢ % ORDER_ID
E-(EE e | |ORDER_DATE_OUT datefime | » f=—p|»| ORDER_DATE
i » »
PRICE decimal | |TOTAL_PRICE_OUT decimal | P = TOTAL_FRICE 14
i Kl
ORDERSA (Micr 4 vl

ozoft QL Serv
er)

Step 6. Run the Session in a Workflow

When you run the session, the Integration Service looks for the shared library or DLL in the runtime location
you specify in the Custom transformation.

To run a session in a workflow:

1. Inthe Workflow Manager, create a workflow.

2. Create a session for this mapping in the workflow.

3. Copy the shared library or DLL to the runtime location directory.
4. Run the workflow containing the session.

When the Integration Service loads a Custom transformation bound to a procedure, it loads the DLL or
shared library and calls the procedure you define.

Chapter 3: Custom Transformation

CHAPTER 4

Custom Transformation
Functions

This chapter includes the following topics:

e Custom Transformation Functions Overview, 83

e Function Reference, 84

e Working with Rows, 87

e Generated Functions, 88
e API Functions, 93

e Array-Based API Functions, 117

Custom Transformation Functions Overview

Custom transformations operate in conjunction with procedures you create outside of the Designer to extend
PowerCenter functionality. The Custom transformation functions allow you to develop the transformation
logic in a procedure you associate with a Custom transformation. PowerCenter provides two sets of
functions called generated and API functions. The Integration Service uses generated functions to interface
with the procedure. When you create a Custom transformation and generate the source code files, the
Designer includes the generated functions in the files. Use the API functions in the procedure code to develop
the transformation logic.

When you write the procedure code, you can configure it to receive a block of rows from the Integration
Service or a single row at a time. You can increase the procedure performance when it receives and
processes a block of rows.

Working with Handles

Most functions are associated with a handle, such as INFA_CT_PARTITION_HANDLE. The first parameter for
these functions is the handle the function affects. Custom transformation handles have a hierarchical
relationship to each other. A parent handle has a 1:n relationship to its child handle.

83

The following figure shows the Custom transformation handles:

INFA_CT_MODULE_HANDLE ‘ -t—— Parent handle to INFA_CT_PROC_HANDLE

contains n l T contains 1

INFA_CT_PROC_HANDLE ‘ ~<— Child handle to INFA_CT_MODULE_HANDLE

contains n l T contains 1

INFA_CT_TRANS_HANDLE ‘

contains n l T contains 1

INFA_CT_PARTITION_HANDLE

INFA_CT_OUTPUTGROUP_HANDLE

contains 1
contains n containg n
contains 1

‘ INFA_CT_INPUTGROUP_HANDLE

contains n l T contains 1

contains n l T contains 1

| INFA_CT_INPUTPORT_HANDLE

l | INFA_CT_OUTPUTPORT_HANDLE ‘

The following table describes the Custom transformation handles:

Handle Name

Description

INFA_CT_MODULE_HANDLE

Represents the shared library or DLL. The external procedure can only
access the module handle in its own shared library or DLL. It cannot
access the module handle in any other shared library or DLL.

INFA_CT_PROC_HANDLE

Represents a specific procedure within the shared library or DLL.

You might use this handle when you need to write a function to affect a
procedure referenced by multiple Custom transformations.

INFA_CT_TRANS_HANDLE

Represents a specific Custom transformation instance in the session.

INFA_CT_PARTITION_HANDLE

Represents a specific partition in a specific Custom transformation
instance.

INFA_CT_INPUTGROUP_HANDLE

Represents an input group in a partition.

INFA_CT_INPUTPORT_HANDLE

Represents an input port in an input group in a partition.

INFA_CT_OUTPUTGROUP_HANDLE

Represents an output group in a partition.

INFA_CT_OUTPUTPORT_HANDLE

Represents an output port in an output group in a partition.

Function Reference

The Custom transformation functions include generated and API functions.

84 Chapter 4: Custom Transformation Functions

The following table lists the Custom transformation generated functions:

Function

Description

m_<module_name>_modulelnit()

Module initialization function.

p_<proc_name>_proclnit()

Procedure initialization function.

p_<proc_name>_partitionInit()

Partition initialization function.

p_<proc_name>_inputRowNotification()

Input row notification function.

p_<proc_name>_dataBdryNotification()

Data boundary notification function.

p_<proc_name>_eofNotification()

End of file notification function.

p_<proc_name>_partitionDeinit()

Partition deinitialization function.

p_<proc_name>_procedureDeinit()

Procedure deinitialization function.

m_<module_name>_moduleDeinit()

Module deinitialization function.

The following table lists the Custom transformation API functions:

Function

Description

INFA_CTSetDataAccessMode()

Set data access mode function.

INFA_CTGetAncestorHandle()

Get ancestor handle function.

INFA_CTGetChildrenHandles()

Get children handles function.

INFA_CTGetInputPortHandle()

Get input port handle function.

INFA_CTGetOutputPortHandle()

Get output port handle function.

INFA_CTGetInternalProperty<datatype>()

Get internal property function.

INFA_CTGetAllPropertyNamesM()

Get all property names in MBCS mode function.

INFA_CTGetAllPropertyNamesU()

Get all property names in Unicode mode function.

INFA_CTGetExternalProperty<datatype>M()

Get external property in MBCS function.

INFA_CTGetExternalProperty<datatype>U()

Get external property in Unicode function.

INFA_CTRebindInputDataType()

Rebind input port datatype function.

INFA_CTRebindOutputDataType()

Rebind output port datatype function.

INFA_CTGetData<datatype>()

Get data functions.

INFA_CTSetData()

Set data functions.

INFA_CTGetIndicator()

Get indicator function.

Function Reference

85

86

Function

Description

INFA_CTSetIndicator()

Set indicator function.

INFA_CTGetLength()

Get length function.

INFA_CTSetLength()

Set length function.

INFA_CTSetPassThruPort()

Set pass-through port function.

INFA_CTOutputNotification()

Output notification function.

INFA_CTDataBdryOutputNotification()

Data boundary output notification function.

INFA_CTGetErrorMsgU()

Get error message in Unicode function.

INFA_CTGetErrorMsgM()

Get error message in MBCS function.

INFA_CTLogMessageU()

Log message in the session log in Unicode function.

INFA_CTLogMessageM()

Log message in the session log in MBCS function.

INFA_CTIncrementErrorCount()

Increment error count function.

INFA_CTIsTerminateRequested()

Is terminate requested function.

INFA_CTBlockInputFlow()

Block input groups function.

INFA_CTUnblockInputFlow()

Unblock input groups function.

INFA_CTSetUserDefinedPtr()

Set user-defined pointer function.

INFA_CTGetUserDefinedPtr()

Get user-defined pointer function.

INFA_CTChangeStringMode()

Change the string mode function.

INFA_CTSetDataCodePagelD()

Set the data code page ID function.

INFA_CTGetRowStrategy()

Get row strategy function.

INFA_CTSetRowStrategy()

Set the row strategy function.

INFA_CTChangeDefaultRowStrategy()

Change the default row strategy of a transformation.

The following table lists the Custom transformation array-based functions:

Function

Description

INFA_CTAGetInputRowMax()

Get maximum number of input rows function.

INFA_CTAGetOutputRowMax()

Get maximum number of output rows function.

INFA_CTASetOutputRowMax()

Set maximum number of output rows function.

Chapter 4:

Custom Transformation Functions

Function Description

INFA_CTAGetNumRows() Get number of rows function.
INFA_CTASetNumRows() Set number of rows function.
INFA_CTAIsRowValid() Is row valid function.
INFA_CTAGetData<datatype>() Get data functions.
INFA_CTAGetIndicator() Get indicator function.
INFA_CTASetData() Set data function.
INFA_CTAGetRowStrategy() Get row strategy function.
INFA_CTASetRowStrategy() Set row strategy function.
INFA_CTASetInputErrorRowM() Set input error row function for MBCS.
INFA_CTASetInputErrorRowU() Set input error row function for Unicode.

Working with Rows

The Integration Service can pass a single row to a Custom transformation procedure or a block of rows in an
array. You can write the procedure code to specify whether the procedure receives one row or a block of
rows. You can increase performance when the procedure receives a block of rows:

e You can decrease the number of function calls the Integration Service and procedure make. The
Integration Service calls the input row notification function fewer times, and the procedure calls the
output notification function fewer times.

e You can increase the locality of memory access space for the data.
e You can write the procedure code to perform an algorithm on a block of data instead of each row of data.

By default, the procedure receives a row of data at a time. To receive a block of rows, you must include the
INFA_CTSetDataAccessMode() function to change the data access mode to array-based. When the data
access mode is array-based, you must use the array-based data handling and row strategy functions to
access and output the data. When the data access mode is row-based, you must use the row-based data
handling and row strategy functions to access and output the data.

All array-based functions use the prefix INFA_CTA. All other functions use the prefix INFA_CT.
Use the following steps to write the procedure code to access a block of rows:

1. Call INFA_CTSetDataAccessMode() during the procedure initialization, to change the data access mode
to array-based.

2. When you create a passive Custom transformation, you can also call INFA_CTSetPassThruPort() during
procedure initialization to pass through the data for input/output ports.

When a block of data reaches the Custom transformation procedure, the Integration Service calls
p_<proc_name>_inputRowNotification() for each block of data. Perform the rest of the steps inside this
function.

Working with Rows 87

Call INFA_CTAGetNumRows() using the input group handle in the input row notification function to find
the number of rows in the current block.

Call one of the INFA_CTAGetData<datatype>() functions using the input port handle to get the data for a
particular row in the block.

Call INFA_CTASetData to output rows in a block.

Before calling INFA_CTOutputNotification(), call INFA_CTASetNumRows() to notify the Integration
Service of the number of rows the procedure is outputting in the block.

Call INFA_CTOutputNotification().

Rules and Guidelines for Row-Based and Array-Based Data Access
Mode

Use the following rules and guidelines when you write the procedure code to use either row-based or array-
based data access mode:

In row-based mode, you can return INFA_ROWERROR in the input row notification function to indicate the
function encountered an error for the row of data on input. The Integration Service increments the internal
error count.

In array-based mode, do not return INFA_ROWERROR in the input row notification function. The Integration
Service treats that as a fatal error. If you need to indicate a row in a block has an error, call the
INFA_CTASetInputErrorRowM() or INFA_CTASetInputErrorRowU() function.

In row-based mode, the Integration Service only passes valid rows to the procedure.

In array-based mode, an input block may contain invalid rows, such as dropped, filtered, or error rows. Call
INFA_CTAIsRowValid() to determine if a row in a block is valid.

In array-based mode, do not call INFA_CTASetNumRows() for a passive Custom transformation. You can
call this function for active Custom transformations.

In array-based mode, call INFA_CTOutputNotification() once.
In array-based mode, you can call INFA_CTSetPassThruPort() only for passive Custom transformations.

In array-based mode for passive Custom transformations, you must output all rows in an output block,
including any error row.

Generated Functions

88

When you use the Designer to generate the procedure code, the Designer includes a set of functions called
generated functions in the m_<module_name>.c and p_<procedure_name>.c files. The Integration Service
uses the generated functions to interface with the procedure. When you run a session, the Integration Service
calls these generated functions in the following order for each target load order group in the mapping:

1.
2.
3.

Initialization functions
Notification functions

Deinitialization functions

Chapter 4: Custom Transformation Functions

Initialization Functions

The Integration Service first calls the initialization functions. Use the initialization functions to write
processes you want the Integration Service to run before it passes data to the Custom transformation.
Writing code in the initialization functions reduces processing overhead because the Integration Service runs
these processes only once for a module, procedure, or partition.

The Designer generates the following initialization functions:
e m_<module_name>_modulelnit()
e p_<proc_name>_proclnit()

e p_<proc_name>_partitionInit()

Module Initialization Function

The Integration Service calls the m_<module_name>_modulelnit() function during session initialization,
before it runs the pre-session tasks. It calls this function, once for a module, before all other functions.

If you want the Integration Service to run a specific process when it loads the module, you must include it in
this function. For example, you might write code to create global structures that procedures within this
module access.

Use the following syntax:
INFA STATUS m_<module_name>_moduleInit(INFA_CT_MODULE_HANDLE module) ;

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
module INFA_CT_MODULE_HANDLE Input Module handle.

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.
When the function returns INFA_FAILURE, the Integration Service fails the session.

Procedure Initialization Function

The Integration Service calls p_<proc_name>_proclnit() function during session initialization, before it runs
the pre-session tasks and after it runs the module initialization function. The Integration Service calls this
function once for each procedure in the module.

Write code in this function when you want the Integration Service to run a process for a particular procedure.
You can also enter some API functions in the procedure initialization function, such as navigation and
property functions.

Use the following syntax:
INFA STATUS p <proc name> procInit (INFA CT PROCEDURE HANDLE procedure);

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
procedure INFA_CT_PROCEDURE_HANDLE Input Procedure handle.

Generated Functions 89

90

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.
When the function returns INFA_FAILURE, the Integration Service fails the session.

Partition Initialization Function

The Integration Service calls p_<proc_name>_partitionInit() function before it passes data to the Custom
transformation. The Integration Service calls this function once for each partition at a Custom transformation
instance.

If you want the Integration Service to run a specific process before it passes data through a partition of the
Custom transformation, you must include it in this function.

Use the following syntax:
INFA STATUS p_<proc name> partitionInit (INFA CT PARTITION HANDLE transformation);

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
transformation INFA_CT_PARTITION_HANDLE Input Partition handle.

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.
When the function returns INFA_FAILURE, the Integration Service fails the session.

Note: When the Custom transformation requires one thread for each partition, you can include thread-specific
operations in the partition initialization function.

Notification Functions

The Integration Service calls the notification functions when it passes a row of data to the Custom
transformation.

The Designer generates the following notification functions:
e p_<proc_name>_inputRowNotification()

e p_<proc_name>_dataBdryRowNotification()

e p_<proc_name>_eofNotification()

Note: When the Custom transformation requires one thread for each partition, you can include thread-specific
operations in the notification functions.

Input Row Notification Function

The Integration Service calls the p_<proc_name>_inputRowNotification() function when it passes a row or a
block of rows to the Custom transformation. It notes which input group and partition receives data through
the input group handle and partition handle.

Use the following syntax:

INFA ROWSTATUS p <proc name> inputRowNotification (INFA CT PARTITION HANDLE Partition,
INFA CT INPUTGROUP HANDLE group);

Chapter 4: Custom Transformation Functions

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output

partition INFA_CT_PARTITION_HANDLE Input Partition handle.

group INFA_CT_INPUTGROUP_HANDLE Input Input group handle.

The datatype of the return value is INFA_LROWSTATUS. Use the following values for the return value:

o INFA_ROWSUCCESS. Indicates the function successfully processed the row of data.

* INFA_ROWERROR. Indicates the function encountered an error for the row of data. The Integration Service
increments the internal error count. Only return this value when the data access mode is row.

If the input row notification function returns INFA_ROWERROR in array-based mode, the Integration
Service treats it as a fatal error. If you need to indicate a row in a block has an error, call the
INFA_CTASetInputErrorRowM() or INFA_CTASetInputErrorRowU() function.

o INFA_FATALERROR. Indicates the function encountered a fatal error for the row of data or the block of
data. The Integration Service fails the session.

Data Boundary Notification Function

The Integration Service calls the p_<proc_name>_dataBdryNotification() function when it passes a commit or
rollback row to a partition.

Use the following syntax:

INFA STATUS p <proc name> dataBdryNotification (INFA CT PARTITION HANDLE transformation,
INFA CTDataBdryType dataBoundaryType) ;

The following table describes the arguments for this function:

Argument Datatype Input/ Description

Output
transformation INFA_CT_PARTITION_HANDLE Input Partition handle.
dataBoundaryType INFA_CTDataBdryType Input Integration Service uses one of the

following values for the
dataBoundaryType parameter:
- eBT_COMMIT

- eBT_ROLLBACK

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.
When the function returns INFA_FAILURE, the Integration Service fails the session.

End Of File Notification Function

The Integration Service calls the p_<proc_name>_eofNotification() function after it passes the last row to a
partition in an input group.

Use the following syntax:

INFA STATUS p_<proc name> eofNotification (INFA CT PARTITION HANDLE transformation,
INFA CT INPUTGROUP_ HANDLE group);

Generated Functions 91

92

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output

transformation INFA_CT_PARTITION_HANDLE Input Partition handle.

group INFA_CT_INPUTGROUP_HANDLE Input Input group handle.

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.
When the function returns INFA_FAILURE, the Integration Service fails the session.

Deinitialization Functions

The Integration Service calls the deinitialization functions after it processes data for the Custom
transformation. Use the deinitialization functions to write processes you want the Integration Service to run
after it passes all rows of data to the Custom transformation.

The Designer generates the following deinitialization functions:
e p_<proc_name>_partitionDeinit()

e p_<proc_name>_procDeinit()

e m_<module_name>_moduleDeinit()

Note: When the Custom transformation requires one thread for each partition, you can include thread-specific
operations in the initialization and deinitialization functions.

Partition Deinitialization Function

The Integration Service calls the p_<proc_name>_partitionDeinit() function after it calls the
p_<proc_name>_eofNotification() or p_<proc_name>_abortNotification() function. The Integration Service
calls this function once for each partition of the Custom transformation.

Use the following syntax:
INFA STATUS p <proc name> partitionDeinit (INFA CT PARTITION HANDLE partition);

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
partition INFA_CT_PARTITION_HANDLE Input Partition handle.

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.
When the function returns INFA_FAILURE, the Integration Service fails the session.

Note: When the Custom transformation requires one thread for each partition, you can include thread-specific
operations in the partition deinitialization function.

Procedure Deinitialization Function

The Integration Service calls the p_<proc_name>_procDeinit() function after it calls the
p_<proc_name>_partitionDeinit() function for all partitions of each Custom transformation instance that uses
this procedure in the mapping.

Chapter 4: Custom Transformation Functions

Use the following syntax:

INFA STATUS p <proc name> procDeinit (INFA CT PROCEDURE HANDLE procedure, INFA STATUS
sessionStatus);

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
procedure INFA_CT_PROCEDURE_HANDLE Input Procedure handle.
sessionStatus INFA_STATUS Input Integration Service uses one of the following

values for the sessionStatus parameter:

- INFA_SUCCESS. Indicates the session
succeeded.

- INFA_FAILURE. Indicates the session
failed.

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.
When the function returns INFA_FAILURE, the Integration Service fails the session.

Module Deinitialization Function

The Integration Service calls the m_<module_name>_moduleDeinit() function after it runs the post-session
tasks. It calls this function, once for a module, after all other functions.

Use the following syntax:

INFA STATUS m_<module_name>_moduleDeinit(INFA_CT_MODULE_HANDLE module, INFA STATUS
sessionStatus);

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
module INFA_CT_MODULE_HANDLE Input Module handle.
sessionStatus INFA_STATUS Input Integration Service uses one of the following

values for the sessionStatus parameter:

- INFA_SUCCESS. Indicates the session
succeeded.

- INFA_FAILURE. Indicates the session failed.

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.
When the function returns INFA_FAILURE, the Integration Service fails the session.

APl Functions

PowerCenter provides a set of API functions that you use to develop the transformation logic. When the
Designer generates the source code files, it includes the generated functions in the source code. Add API
functions to the code to implement the transformation logic. The procedure uses the API functions to

API Functions

93

94

interface with the Integration Service. You must code API functions in the procedure C file. Optionally, you
can also code the module C file.

Informatica provides the following groups of API functions:

e Set data access mode

e Navigation

e Property

¢ Rebind datatype

e Data handling (row-based mode)
e Set pass-through port

e Qutput notification

e Data boundary output notification
e Error

e Session log message

e Increment error count

e [sterminated

e Blocking

e Pointer

e Change string mode

e Set data code page

e Row strategy (row-based mode)
e Change default row strategy

Informatica also provides array-based API Functions.

Set Data Access Mode Function

By default, the Integration Service passes data to the Custom transformation procedure one row at a time.
However, use the INFA_CTSetDataAccessMode() function to change the data access mode to array-based.
When you set the data access mode to array-based, the Integration Service passes multiple rows to the
procedure as a block in an array.

When you set the data access mode to array-based, you must use the array-based versions of the data
handling functions and row strategy functions. When you use a row-based data handling or row strategy
function and you switch to array-based mode, you will get unexpected results. For example, the DLL or shared
library might crash.

You can only use this function in the procedure initialization function.

If you do not use this function in the procedure code, the data access mode is row-based. However, when you
want the data access mode to be row-based, include this function and set the access mode to row-based.

Use the following syntax:

INFA STATUS INFA CTSetDataAccessMode(INFA CT PROCEDURE HANDLE procedure,
INFA CT DATA ACCESS_MODE mode);

Chapter 4: Custom Transformation Functions

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output

procedure INFA_CT_PROCEDURE_HANDLE Input Procedure name.

mode INFA_CT_DATA_ACCESS_MODE Input Data access mode.

Use the following values for the mode
parameter:

- eDA_ROW

- eDA_ARRAY

Navigation Functions

Use the navigation functions when you want the procedure to navigate through the handle hierarchy.

PowerCenter provides the following navigation functions:

e INFA_CTGetAncestorHandle()
e INFA_CTGetChildrenHandles()
¢ INFA_CTGetInputPortHandle()
e INFA_CTGetOutputPortHandle()

Get Ancestor Handle Function

Use the INFA_CTGetAncestorHandle() function when you want the procedure to access a parent handle of a

given handle.

Use the following syntax:

INFA CT HANDLE INFA CTGetAncestorHandle (INFA CT HANDLE handle, INFA CTHandleType
returnHandleType) ;

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output

handle INFA_CT_HANDLE Input Handle name.

returnHandleType INFA_CTHandleType Input Return handle type.

Use the following values for the returnHandleType
parameter:

- PROCEDURETYPE

- TRANSFORMATIONTYPE
- PARTITIONTYPE

- INPUTGROUPTYPE

- OUTPUTGROUPTYPE

- INPUTPORTTYPE

- OUTPUTPORTTYPE

API Functions

95

96

The handle parameter specifies the handle whose parent you want the procedure to access. The Integration
Service returns INFA_CT_HANDLE if you specify a valid handle in the function. Otherwise, it returns a null
value.

To avoid compilation errors, you must code the procedure to set a handle name to the return value.

For example, you can enter the following code:

INFA_CT_MODULE_HANDLE module = INFA CTGetAncestorHandle (procedureHandle,
INFA CT HandleType);

Get Children Handles Function

Use the INFA_CTGetChildrenHandles() function when you want the procedure to access the children handles
of a given handle.

Use the following syntax:

INFA CT HANDLE* INFA CTGetChildrenHandles (INFA CT HANDLE handle, size t*
pnChildrenHandles, INFA CTHandleType returnHandleType);

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
handle INFA_CT_HANDLE Input Handle name.
pnChildrenHandles size_t* Output Integration Service returns an array of children

handles. The pnChildrenHandles parameter indicates
the number of children handles in the array.

returnHandleType INFA_CTHandleType Input Use the following values for the returnHandleType
parameter:

- PROCEDURETYPE

- TRANSFORMATIONTYPE
- PARTITIONTYPE

- INPUTGROUPTYPE

- OUTPUTGROUPTYPE

- INPUTPORTTYPE

- OUTPUTPORTTYPE

The handle parameter specifies the handle whose children you want the procedure to access. The Integration
Service returns INFA_CT_HANDLE* when you specify a valid handle in the function. Otherwise, it returns a null
value.

To avoid compilation errors, you must code the procedure to set a handle name to the returned value.

For example, you can enter the following code:

INFA CT PARTITION HANDLE partition = INFA CTGetChildrenHandles (procedureHandle,
pnChildrenHandles, INFA CT PARTITION HANDLE TYPE);

Get Port Handle Functions

The Integration Service associates the INFA_CT_INPUTPORT_HANDLE with input and input/output ports, and
the INFA_LCT_OUTPUTPORT_HANDLE with output and input/output ports.

Chapter 4: Custom Transformation Functions

PowerCenter provides the following get port handle functions:

INFA_CTGetInputPortHandle(). Use this function when the procedure knows the output port handle for an
input/output port and needs the input port handle.
Use the following syntax:

INFA_CTINFA_CT_INPUTPORT_HANDLE INFA_CTGetInputPortHandle(INFA_CT_OUTPUTPORT_HANDLE
outputPortHandle) ;

The following table describes the argument for this function:

Argument Datatype Input/ Description
Output
outputPortHandle INFA_CT_OUTPUTPORT_HANDLE input Output port handle.

INFA_CTGetOutputPortHandle(). Use this function when the procedure knows the input port handle for an
input/output port and needs the output port handle.

Use the following syntax:

INFA CT OUTPUTPORT HANDLE INFAiCTGetOutputPortHandle(INFA7CT71NPUTPORT7HANDLE
inputPortHandle) ;

The following table describes the argument for this function:

Argument Datatype Input/ Description
Output
inputPortHandle INFA_CT_INPUTPORT_HANDLE input Input port handle.

The Integration Service returns NULL when you use the get port handle functions with input or output ports.

Property Functions

Use the property functions when you want the procedure to access the Custom transformation properties.
The property functions access properties on the following tabs of the Custom transformation:

Ports

Properties

Initialization Properties
Metadata Extensions

Port Attribute Definitions

Use the following property functions in initialization functions:

INFA_CTGetInternalProperty<datatype>()
INFA_CTGetAllPropertyNamesM()
INFA_CTGetAllPropertyNamesU()
INFA_CTGetExternalProperty<datatype>M()
INFA_CTGetExternalProperty<datatype>U()

API Functions 97

Get Internal Property Function

PowerCenter provides functions to access the port attributes specified on the ports tab, and properties
specified for attributes on the Properties tab of the Custom transformation.

The Integration Service associates each port and property attribute with a property ID. You must specify the
property ID in the procedure to access the values specified for the attributes. For the handle parameter,
specify a handle name from the handle hierarchy. The Integration Service fails the session if the handle name
is invalid.

Use the following functions when you want the procedure to access the properties:

e INFA_CTGetInternalPropertyStringM(). Accesses a value of type string in MBCS for a given property ID.

Use the following syntax:

INFA STATUS INFA CTGetInternalPropertyStringM(INFA CT HANDLE handle, size t propIld,
const char** psPropValue);

e INFA_CTGetInternalPropertyStringU(). Accesses a value of type string in Unicode for a given property ID.

Use the following syntax:

INFA STATUS INFA CTGetInternalPropertyStringU(INFA CT HANDLE handle, size t propld,
const INFA UNICHAR** psPropValue);

e INFA_CTGetInternalPropertylnt32(). Accesses a value of type integer for a given property ID.

Use the following syntax:

INFA STATUS INFA CTGetInternalPropertyInt32(INFA CT HANDLE handle, size t propId,
INFA INT32* pnPropValue);

e INFA_CTGetInternalPropertyBool(). Accesses a value of type Boolean for a given property ID.

Use the following syntax:

INFA STATUS INFA CTGetInternalPropertyBool(INFA CT HANDLE handle, size t propId,
INFA BOOLEN* pbPropValue);

e INFA_CTGetInternalPropertyINFA_PTR(). Accesses a pointer to a value for a given property ID.

Use the following syntax:

INFA STATUS INFA CTGetInternalPropertyINFA PTR(INFA CT HANDLE handle, size t propId,
INFA PTR* pvPropValue);

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.

Port and Property Attribute Property IDs

The following tables list the property IDs for the port and property attributes in the Custom transformation.
Each table lists a Custom transformation handle and the property IDs you can access with the handle in a
property function.

The following table lists INFA_CT_MODULE _HANDLE property IDs:

Handle Property ID Datatype Description

INFA_CT_MODULE_NAME String Specifies the module name.
INFA_CT_SESSION_INFA_VERSION String Specifies the Informatica version.
INFA_CT_SESSION_CODE_PAGE Integer Specifies the Integration Service code page.

98 Chapter 4: Custom Transformation Functions

Handle Property ID Datatype Description
INFA_CT_SESSION_DATAMOVEMENT_MODE Integer Specifies the data movement mode. The

Integration Service returns one of the following

values:

- eASM_MBCS

- eASM_UNICODE
INFA_CT_SESSION_VALIDATE_CODEPAGE Boolean Specifies whether the Integration Service

enforces code page validation.
INFA_CT_SESSION_PROD_INSTALL_DIR String Specifies the Integration Service installation

directory.
INFA_CT_SESSION_HIGH_PRECISION_MODE Boolean Specifies whether session is configured for

high precision.
INFA_CT_MODULE_RUNTIME_DIR String Specifies the runtime directory for the DLL or

shared library.
INFA_CT_SESSION_IS_UPD_STR_ALLOWED Boolean Specifies whether the Update Strategy

Transformation property is selected in the

transformation.
INFA_CT_TRANS_OUTPUT_IS_REPEATABLE Integer Specifies whether the Custom transformation

produces data in the same order in every

session run. The Integration Service returns one

of the following values:

- eOUTREPEAT_NEVER =1

- eOUTREPEAT_ALWAYS =2

- eOUTREPEAT_BASED_ON_INPUT_ORDER =3
INFA_CT_TRANS_FATAL_ERROR Boolean Specifies if the Custom Transformation caused

a fatal error. The Integration Service returns
one of the following values:

- INFA_TRUE
- INFA_FALSE
The following table lists INFA_CT_PROC_HANDLE property IDs:
Handle Property ID Datatype Description
INFA_CT_PROCEDURE_NAME String Specifies the Custom transformation

procedure name.

API Functions 99

The following table lists INFA_LCT_TRANS_HANDLE property IDs:

Handle Property ID Datatype Description
INFA_CT_TRANS_INSTANCE_NAME String Specifies the Custom transformation instance name.
INFA_CT_TRANS_TRACE_LEVEL Integer Specifies the tracing level. The Integration Service

returns one of the following values:
- eTRACE_TERSE

- eTRACE_NORMAL

- eTRACE_VERBOSE_INIT

- eTRACE_VERBOSE_DATA

INFA_CT_TRANS_MAY_BLOCK_DATA Boolean Specifies if the Integration Service allows the procedure
to block input data in the current session.
INFA_CT_TRANS_MUST_BLOCK_DATA Boolean Specifies if the Inputs Must Block Custom
transformation property is selected.
INFA_CT_TRANS_ISACTIVE Boolean Specifies whether the Custom transformation is an
active or passive transformation.
INFA_CT_TRANS_ISPARTITIONABLE Boolean Specifies if you can partition sessions that use this
Custom transformation.
INFA_CT_TRANS_IS_UPDATE_STRATEGY Boolean Specifies if the Custom transformation behaves like an
Update Strategy transformation.
INFA_CT_TRANS_DEFAULT_UPDATE_STRAT | Integer Specifies the default update strategy.
EGY - eDUS_INSERT

- eDUS_UPDATE
- eDUS_DELETE
- eDUS_REJECT
- eDUS_PASSTHROUGH

INFA_CT_TRANS_NUM_PARTITIONS Integer Specifies the number of partitions in the sessions that
use this Custom transformation.

INFA_CT_TRANS_DATACODEPAGE Integer Specifies the code page in which the Integration Service
passes data to the Custom transformation. Use the set
data code page function if you want the Custom
transformation to access data in a different code page.

INFA_CT_TRANS_TRANSFORM_SCOPE Integer Specifies the transformation scope in the Custom
transformation. The Integration Service returns one of
the following values:

- eTS_ROW
- eTS_TRANSACTION

- eTS_ALLINPUT

INFA_CT_TRANS_GENERATE_TRANSACT Boolean Specifies if the Generate Transaction property is
enabled. The Integration Service returns one of the
following values:

- INFA_TRUE

- INFA_FALSE

100 Chapter 4: Custom Transformation Functions

Handle Property ID

Datatype

Description

INFA_CT_TRANS_OUTPUT_IS_REPEATABLE

Integer

Specifies whether the Custom transformation produces
data in the same order in every session run. The
Integration Service returns one of the following values:

- eOUTREPEAT_NEVER =1
- eOUTREPEAT_ALWAYS =2

- eOUTREPEAT_BASED_ON_INPUT_ORDER = 3

INFA_CT_TRANS_FATAL_ERROR

Boolean

Specifies if the Custom Transformation caused a fatal
error. The Integration Service returns one of the
following values:

- INFA_TRUE

- INFA_FALSE

The following table lists INFA_CT_INPUT_GROUP_HANDLE and INFA_CT_OUTPUT_GROUP_HANDLE property

IDs:

Handle Property ID

Datatype

Description

INFA_CT_GROUP_NAME

String

Specifies the group name.

INFA_CT_GROUP_NUM_PORTS

Integer

Specifies the number of ports in the group.

INFA_CT_GROUP_ISCONNECTED

Boolean

Specifies if all ports in a group are connected to
another transformation.

INFA_CT_PORT_NAME

String

Specifies the port name.

INFA_CT_PORT_CDATATYPE

Integer

Specifies the port datatype. The Integration Service
returns one of the following values:

- eINFA_CTYPE_SHORT

- eINFA_CTYPE_INT32

- eINFA_CTYPE_CHAR

- eINFA_CTYPE_RAW

- eINFA_CTYPE_UNICHAR

- eINFA_CTYPE_TIME

- eINFA_CTYPE_FLOAT

- eINFA_CTYPE_DOUBLE

- eINFA_CTYPE_DECIMAL18_FIXED
- eINFA_CTYPE_DECIMAL28_FIXED
- eINFA_CTYPE_INFA_CTDATETIME

INFA_CT_PORT_PRECISION

Integer

Specifies the port precision.

INFA_CT_PORT_SCALE

Integer

Specifies the port scale (if applicable).

INFA_CT_PORT_IS_MAPPED

Boolean

Specifies whether the port is linked to other
transformations in the mapping.

API Functions 101

Handle Property ID Datatype Description

INFA_CT_PORT_STORAGESIZE Integer Specifies the internal storage size of the data for a
port. The storage size depends on the datatype of the
port.

INFA_CT_PORT_BOUNDDATATYPE Integer Specifies the port datatype. Use instead of

INFA_CT_PORT_CDATATYPE if you rebind the port
and specify a datatype other than the default.

The following table lists INFA_LCT_INPUTPORT_HANDLE and INFA_CT_OUTPUT_HANDLE property IDs:

Handle Property ID

Datatype

Description

INFA_CT_PORT_NAME

String

Specifies the port name.

INFA_CT_PORT_CDATATYPE

Integer

Specifies the port datatype. The Integration Service
returns one of the following values:

- eINFA_CTYPE_SHORT

- eINFA_CTYPE_INT32

- eINFA_CTYPE_CHAR

- eINFA_CTYPE_RAW

- eINFA_CTYPE_UNICHAR

- eINFA_CTYPE_TIME

- eINFA_CTYPE_FLOAT

- eINFA_CTYPE_DOUBLE

- eINFA_CTYPE_DECIMAL18_FIXED
- eINFA_CTYPE_DECIMAL28_FIXED
- eINFA_CTYPE_INFA_CTDATETIME

INFA_CT_PORT_PRECISION

Integer

Specifies the port precision.

INFA_CT_PORT_SCALE

Integer

Specifies the port scale, if applicable.

INFA_CT_PORT_IS_MAPPED

Boolean

Specifies whether the port is linked to other
transformations in the mapping.

INFA_CT_PORT_STORAGESIZE

Integer

Specifies the internal storage size of the data for a
port. The storage size depends on the datatype of the
port.

INFA_CT_PORT_BOUNDDATATYPE

Integer

Specifies the port datatype. Use instead of
INFA_CT_PORT_CDATATYPE if you rebind the port
and specify a datatype other than the default.

Get All External Property Names (MBCS or Unicode)

PowerCenter provides two functions to access the property names defined on the Metadata Extensions tab,
Initialization Properties tab, and Port Attribute Definitions tab of the Custom transformation.

102 Chapter 4: Custom Transformation Functions

Use the following functions when you want the procedure to access the property names:

e INFA_CTGetAllPropertyNamesM(). Accesses the property names in MBCS.

Use the following syntax:

INFA STATUS INFA CTGetAllPropertyNamesM(INFA CT HANDLE handle, const char*const**
paPropertyNames, size t* pnProperties);

The following table describes the arguments for this function:

Argument Datatype Input/ Description

Output
handle INFA_CT_HANDLE Input Specify the handle name.
paPropertyNames const char*const** Output Specifies the property name. The

Integration Service returns an array of
property names in MBCS.

pnProperties size_t* Output Indicates the number of properties in the
array.

o INFA_CTGetAllPropertyNamesU(). Accesses the property names in Unicode.
Use the following syntax:

INFA STATUS INFA CTGetAllPropertyNamesU(INFA CT HANDLE handle, const
INFA UNICHAR*const** pasPropertyNames, size t* pnProperties);

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
handle INFA_CT_HANDLE Input Specify the handle name.
paPropertyNames const Output Specifies the property name. The
INFA_UNICHAR*const** Integration Service returns an array of

property names in Unicode.

pnProperties size_t* Output Indicates the number of properties in the
array.

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.

Get External Properties (MBCS or Unicode)

PowerCenter provides functions to access the values of the properties defined on the Metadata Extensions
tab, Initialization Properties tab, or Port Attribute Definitions tab of the Custom transformation.

You must specify the property names in the functions if you want the procedure to access the values. Use the
INFA_CTGetAllPropertyNamesM() or INFA_CTGetAllPropertyNamesU() functions to access property names.
For the handle parameter, specify a handle name from the handle hierarchy. The Integration Service fails the
session if the handle name is invalid.

Note: If you define an initialization property with the same name as a metadata extension, the Integration
Service returns the metadata extension value.

API Functions 103

Use the following functions when you want the procedure to access the values of the properties:

¢ INFA_CTGetExternalProperty<datatype>M(). Accesses the value of the property in MBCS.

The following table shows the syntax:

Syntax Property
Datatype
INFA STATUS INFA CTGetExternalPropertyStringM(INFA CT HANDLE handle, String

const char* sProEName, const char** psPropValue);

INFA STATUS INFA CTGetExternalPropertyINT32M(INFA CT HANDLE handle, const Integer
char* sPropName, INFA INT32* pnPropValue);

INFA STATUS INFA CTGetExternalPropertyBoolM(INFA CT HANDLE handle, const Boolean
char* sPropName, INFA BOOLEN* pbPropValue);

o INFA_CTGetExternalProperty<datatype>U(). Accesses the value of the property in Unicode.

The following table shows the syntax:

Syntax Property
Datatype
INFA STATUS INFA CTGetExternalPropertyStringU(INFA CT HANDLE handle, String

INFA UNICHAR* sPropName, INFA UNICHAR** psPropValue);

INFA STATUS INFA CTGetExternalPropertyStringU(INFA CT HANDLE handle, Integer
INFA UNICHAR* sPropName, INFA INT32* pnPropValue);

INFA STATUS INFA CTGetExternalPropertyStringU(INFA CT HANDLE handle, Boolean
INFA UNICHAR* sPropName, INFA BOOLEN* pbPropValue);

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.

Rebind Datatype Functions

You can rebind a port with a datatype other than the default datatype with PowerCenter. Use the rebind
datatype functions if you want the procedure to access data in a datatype other than the default datatype.
You must rebind the port with a compatible datatype.

You can only use these functions in the initialization functions.
Consider the following rules when you rebind the datatype for an output or input/output port:

¢ You must use the data handling functions to set the data and the indicator for that port. Use the
INFA_CTSetData() and INFA_CTSetlIndicator() functions in row-based mode, and use the
INFA_CTASetData() function in array-based mode.

e Do not call the INFA_CTSetPassThruPort() function for the output port.

104 Chapter 4: Custom Transformation Functions

The following table lists compatible datatypes:

Default Datatype

Compatible With

Char

Unichar

Unichar

Char

Date

INFA_DATETIME
Use the following syntax:

struct INFA DATETIME
{

int nYear;

int nMonth;

int nDay;

int nHour;

int nMinute;

int nSecond;

int nNanoSecond;

}

Dec18

Char, Unichar

Dec28

Char, Unichar

PowerCenter provides the following rebind datatype functions:

¢ INFA_CTRebindInputDataType(). Rebinds the input port. Use the following syntax:

INFA STATUS INFA CTRebindInputDataType (INFA CT INPUTPORT HANDLE portHandle,

INFA_CDATATYPE datatype);

¢ INFA_CTRebindOutputDataType(). Rebinds the output port. Use the following syntax:

INFA STATUS INFA CTRebindOutputDataType (INFA CT OUTPUTPORT HANDLE portHandle,

INFA_CDATATYPE datatype);

API Functions

105

106

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
portHandle INFA_CT_OUTPUTPORT _HANDLE Input Output port handle.
datatype INFA_CDATATYPE Input The datatype with which you rebind the port.
Use the following values for the datatype
parameter:

- eINFA_CTYPE_SHORT

- eINFA_CTYPE_INT32

- eINFA_CTYPE_CHAR

- eINFA_CTYPE_RAW

- eINFA_CTYPE_UNICHAR

- eINFA_CTYPE_TIME

- eINFA_CTYPE_FLOAT

- eINFA_CTYPE_DOUBLE

- eINFA_CTYPE_DECIMAL18_FIXED
- eINFA_CTYPE_DECIMAL28_FIXED
- eINFA_CTYPE_INFA_CTDATETIME

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.

Data Handling Functions (Row-Based Mode)

When the Integration Service calls the input row notification function, it notifies the procedure that the
procedure can access a row or block of data. However, to get data from the input port, modify it, and set data
in the output port, you must use the data handling functions in the input row notification function. When the
data access mode is row-based, use the row-based data handling functions.

Include the INFA_CTGetData<datatype>() function to get the data from the input port and INFA_CTSetData()
function to set the data in the output port. Include the INFA_CTGetIndicator() or INFA_CTGetLength() function
if you want the procedure to verify before you get the data if the port has a null value or an empty string.

PowerCenter provides the following data handling functions:

INFA_CTGetData<datatype>()
o INFA_CTSetData()

¢ INFA_CTGetlIndicator()

e INFA_CTSetIndicator()

e INFA_CTGetLength()

e INFA_CTSetLength()

Get Data Functions (Row-Based Mode)
Use the INFA_CTGetData<datatype>() functions to retrieve data for the port the function specifies.

You must modify the function name depending on the datatype of the port you want the procedure to access.

Chapter 4: Custom Transformation Functions

The following table lists the INFA_CTGetData<datatype>() function syntax and the datatype of the return

value:
Syntax Return Value
Datatype
void* INFA CTGetDataVoid (INFA CT INPUTPORT HANDLE dataHandle); Data void

pointer to the
return value

char* INFA CTGetDataStringM(INFA CT INPUTPORT HANDLE dataHandle);

String (MBCS)

IUNICHAR* INFA CTGetDataStringU(INFA CT INPUTPORT HANDLE dataHandle); String
(Unicode)
INFA INT32 INFA CTGetDataINT32 (INFA CT INPUTPORT HANDLE dataHandle); Integer
double INFA CTGetDataDouble (INFA CT INPUTPORT HANDLE dataHandle); Double
INFA CT RAWDATE INFA CTGetDataDate (INFA CT INPUTPORT HANDLE dataHandle); Raw date
INFA CT RAWDEC18 INFA CTGetDataRawDecl8(INFA CT INPUTPORT HANDLE Decimal BLOB

dataﬁanale);

(precision 18)

INFA_CT_RAWDEC28 INFA_CTGetDataRawDec28(INFA_CT_INPUTPORT_HANDLE
dataHandle) ;

Decimal BLOB
(precision 28)

INFA_CT_DATETIME INFA_CTGetDataDateTime(INFA_CT_INPUTPORT_HANDLE
dataHandle) ;

Datetime

Set Data Function (Row-Based Mode)

Use the INFA_CTSetData() function when you want the procedure to pass a value to an output port.

Use the following syntax:

INFA STATUS INFA CTSetData (INFA CT OUTPUTPORT HANDLE dataHandle, void* data);

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.

Note: If you use the INFA_CTSetPassThruPort() function on an input/output port, do not use set the data or
indicator for that port.

Indicator Functions (Row-Based Mode)

Use the indicator functions when you want the procedure to get the indicator for an input port or to set the
indicator for an output port. The indicator for a port indicates whether the data is valid, null, or truncated.

PowerCenter provides the following indicator functions:

INFA_CTGetIndicator(). Gets the indicator for an input port. Use the following syntax:
INFA INDICATOR INFA CTGetIndicator (INFA CT INPUTPORT HANDLE dataHandle);

The return value datatype is INFA_LINDICATOR. Use the following values for INFA_LINDICATOR:

- INFA_DATA_VALID. Indicates the data is valid.
- INFA_NULL_DATA. Indicates a null value.

API Functions

107

108

- INFA_DATA_TRUNCATED. Indicates the data has been truncated.

e INFA_CTSetIndicator(). Sets the indicator for an output port. Use the following syntax:

INFA STATUS INFA CTSetIndicator (INFA CT OUTPUTPORT HANDLE dataHandle, INFA INDICATOR

indicator);

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
dataHandle INFA_CT_OUTPUTPORT_HANDLE Input Output port handle.
indicator INFA_INDICATOR Input The indicator value for the output port. Use

one of the following values:

- INFA_DATA_VALID. Indicates the data is
valid.
- INFA_NULL_DATA. Indicates a null value.

- INFA_DATA_TRUNCATED. Indicates the
data has been truncated.

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.

Note: If you use the INFA_CTSetPassThruPort() function on an input/output port, do not set the data or

indicator for that port.

Length Functions

Use the length functions when you want the procedure to access the length of a string or binary input port, or

to set the length of a binary or string output port.

Use the following length functions:

e INFA_CTGetLength(). Use this function for string and binary ports only. The Integration Service returns the
length as the number of characters including trailing spaces. Use the following syntax:

INFA UINT32 INFA CTGetLength (INFA CT INPUTPORT HANDLE dataHandle);

The return value datatype is INFA_UINT32. Use a value between zero and 2GB for the return value.

e INFA_CTSetLength(). When the Custom transformation contains a binary or string output port, you must
use this function to set the length of the data, including trailing spaces. Verify you the length you set for
string and binary ports is not greater than the precision for that port. If you set the length greater than the
port precision, you get unexpected results. For example, the session may fail.

Use the following syntax:

INFA STATUS INFA CTSetLength (INFA CT OUTPUTPORT HANDLE dataHandle, IUINT32 length);
The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.

Set Pass-Through Port Function

Use the INFA_CTSetPassThruPort() function when you want the Integration Service to pass data from an
input port to an output port without modifying the data. When you use the INFA_CTSetPassThruPort()
function, the Integration Service passes the data to the output port when it calls the input row notification

function.

Consider the following rules and guidelines when you use the set pass-through port function:

e Only use this function in an initialization function.

Chapter 4: Custom Transformation Functions

e [f the procedure includes this function, do not include the INFA_CTSetData(), INFA_CTSetLength,
INFA_CTSetIndicator(), or INFA_CTASetData() functions to pass data to the output port.

¢ Inrow-based mode, you can only include this function when the transformation scope is Row. When the
transformation scope is Transaction or All Input, this function returns INFA_FAILURE.

¢ In row-based mode, when you use this function to output multiple rows for a given input row, every output
row contains the data that is passed through from the input port.

¢ |n array-based mode, you can only use this function for passive Custom transformations.

You must verify that the datatype, precision, and scale are the same for the input and output ports. The
Integration Service fails the session if the datatype, precision, or scale are not the same for the input and
output ports you specify in the INFA_CTSetPassThruPort() function.

Use the following syntax:

INFA STATUS INFA CTSetPassThruPort (INFA CT OUTPUTPORT HANDLE outputport,
INFA CT INPUTPORT HANDLE inputport)

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.

Output Notification Function

When you want the procedure to output a row to the Integration Service, use the INFA_CTOutputNotification()
function. Only include this function for active Custom transformations. For passive Custom transformations,
the procedure outputs a row to the Integration Service when the input row notification function gives a return
value. If the procedure calls this function for a passive Custom transformation, the Integration Service
ignores the function.

Note: When the transformation scope is Row, you can only include this function in the input row notification
function. If you include it somewhere else, it returns a failure.

Use the following syntax:
INFA ROWSTATUS INFA CTOutputNotification (INFA CT OUTPUTGROUP HANDLE group);

The following table describes the argument for this function:

Argument Datatype Input/ Description
Output
group INFA_CT_OUTPUT_GROUP_HANDLE Input Output group handle.

The return value datatype is INFA_ROWSTATUS. Use the following values for the return value:

o INFA_ROWSUCCESS. Indicates the function successfully processed the row of data.

e INFA_ROWERROR. Indicates the function encountered an error for the row of data. The Integration Service
increments the internal error count.

o INFA_FATALERROR. Indicates the function encountered a fatal error for the row of data. The Integration
Service fails the session.

Note: When the procedure code calls the INFA_CTOutputNotification() function, you must verify that all
pointers in an output port handle point to valid data. When a pointer does not point to valid data, the
Integration Service might shut down unexpectedly.

API Functions 109

Data Boundary Output Notification Function

Include the INFA_CTDataBdryOutputNotification() function when you want the procedure to output a commit
or rollback transaction.

When you use this function, you must select the Generate Transaction property for this Custom
transformation. If you do not select this property, the Integration Service fails the session.

Use the following syntax:

INFA_STATUS INFA_CTDataBdryOutputNotification(INFA_CT_PARTITION_HANDLE handle,
INFA CTDataBdryType dataBoundaryType) ;

The following table describes the arguments for this function:

Argument Datatype Input/ Description

Output
handle INFA_CT_PARTITION_HANDLE Input Handle name.
dataBoundaryType INFA_CTDataBdryType Input The transaction type.

Use the following values for the
dataBoundaryType parameter:

- eBT_COMMIT

- eBT_ROLLBACK

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.

Error Functions

Use the error functions to access procedure errors. The Integration Service returns the most recent error.
PowerCenter provides the following error functions:

e INFA_CTGetErrorMsgM(). Gets the error message in MBCS. Use the following syntax:
const char* INFA CTGetErrorMsgM() ;

o INFA_CTGetErrorMsgU(). Gets the error message in Unicode. Use the following syntax:
const IUNICHAR* INFA CTGetErrorMsqU();

Session Log Message Functions

Use the session log message functions when you want the procedure to log a message in the session log in
either Unicode or MBCS.

PowerCenter provides the following session log message functions:

e INFA_CTLogMessageU(). Logs a message in Unicode.

Use the following syntax:

void INFA CTLogMessageU(INFA CT ErrorSeverityLevel errorseveritylLevel, INFA UNICHAR*
msg)

Chapter 4: Custom Transformation Functions

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
errorSeverityLevel INFA_CT_ErrorSeverityLevel Input Severity level of the error message that

you want the Integration Service to write
in the session log. Use the following
values for the errorSeverityLevel
parameter:

- eESL_LOG
- eESL_DEBUG

- eESL_ERROR

msg INFA_UNICHAR* Input Enter the text of the message in Unicode
in quotes.

e INFA_CTLogMessageM(). Logs a message in MBCS.
Use the following syntax:
void INFA CTLogMessageM(INFA CT ErrorSeveritylLevel errorSeveritylLevel, char* msgq)
The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
errorSeverityLevel INFA_CT_ErrorSeverityLevel Input Severity level of the error message that

you want the Integration Service to write
in the session log. Use the following
values for the errorSeverityLevel
parameter:

- eESL_LOG
- eESL_DEBUG

- eESL_ERROR

msg char* Input Enter the text of the message in MBCS in
quotes.

Increment Error Count Function

Use the INFA_CTIncrementErrorCount() function when you want to increase the error count for the session.

Use the following syntax:

INFA STATUS INFA_CTIncrementErrorCount(INFA_CT_PARTITION_HANDLE transformation, size_t
nErrors, INFA STATUS* pStatus);

API Functions 111

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
transformation INFA_CT_PARTITION_HANDLE Input Partition handle.
nErrors size_t Input Integration Service increments the error

count by nErrors for the given
transformation instance.

pStatus INFA_STATUS* Input Integration Service uses INFA_FAILURE for
the pStatus parameter when the error
count exceeds the error threshold and fails
the session.

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.

Is Terminated Function

Use the INFA_CTIsTerminated() function when you want the procedure to check if the PowerCenter Client has
requested the Integration Service to stop the session. You might call this function if the procedure includes a
time-consuming process.

Use the following syntax:
INFA CTTerminateType INFA CTIsTerminated(INFA CT PARTITION HANDLE handle);

The following table describes the argument for this function:

Argument Datatype Input/ Description
Output
handle INFA_CT_PARTITION_HANDLE input Partition handle.

The return value datatype is INFA_CTTerminateType. The Integration Service returns one of the following
values:

o eTT_NOTTERMINATED. Indicates the PowerCenter Client has not requested to stop the session.
o eTT_ABORTED. Indicates the Integration Service aborted the session.

o eTT_STOPPED. Indicates the Integration Service failed the session.

Blocking Functions

When the Custom transformation contains multiple input groups, you can write code to block the incoming
data on an input group.

Consider the following rules when you use the blocking functions:

e You can block at most n-1 input groups.

e You cannot block an input group that is already blocked.

e You cannot block an input group when it receives data from the same source as another input group.

e You cannot unblock an input group that is already unblocked.

112 Chapter 4: Custom Transformation Functions

PowerCenter provides the following blocking functions:

¢ INFA_CTBIlocklInputFlow(). Allows the procedure to block an input group.
Use the following syntax:
INFA_STATUS INFA CTBlockInputFlow (INFA CT INPUTGROUP HANDLE group);
e INFA_CTUnblockinputFlow(). Allows the procedure to unblock an input group.
Use the following syntax:
INFA STATUS INFA CTUnblockInputFlow (INFA CT INPUTGROUP HANDLE group);
The following table describes the argument for this function:

Argument Datatype Input/ Description
Output
group INFA_CT_INPUTGROUP_HANDLE Input Input group handle.

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.

Verify Blocking

When you use the INFA_CTBlockInputFlow() and INFA_CTUnblockInputFlow() functions in the procedure
code, verify the procedure checks whether or not the Integration Service allows the Custom transformation to
block incoming data. To do this, check the value of the INFA_CT_TRANS_MAY_BLOCK_DATA proplID using the
INFA_CTGetInternalPropertyBool() function.

When the value of the INFA_CT_TRANS_MAY_BLOCK_DATA propID is FALSE, the procedure should either not
use the blocking functions, or it should return a fatal error and stop the session.

If the procedure code uses the blocking functions when the Integration Service does not allow the Custom
transformation to block data, the Integration Service might fail the session.

Pointer Functions

Use the pointer functions when you want the Integration Service to create and access pointers to an object or
a structure.

PowerCenter provides the following pointer functions:
¢ INFA_CTGetUserDefinedPtr(). Allows the procedure to access an object or structure during run time.
Use the following syntax:

void* INFA CTGetUserDefinedPtr (INFA CT HANDLE handle)

The following table describes the argument for this function:

Argument Datatype Input/ Description
Output
handle INFA_CT_HANDLE Input Handle name.

o INFA_CTSetUserDefinedPtr(). Allows the procedure to associate an object or a structure with any handle
the Integration Service provides. To reduce processing overhead, include this function in the initialization
functions.

API Functions 113

Use the following syntax:
void INFA CTSetUserDefinedPtr (INFA CT HANDLE handle, void* pPtr)
The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output

handle INFA_CT_HANDLE Input Handle name.

pPtr void* Input User pointer.

You must substitute a valid handle for INFA_CT_HANDLE.

Change String Mode Function

When the Integration Service runs in Unicode mode, it passes data to the procedure in UCS-2 by default.
When it runs in ASCIl mode, it passes data in ASCII by default. Use the INFA_CTChangeStringMode() function
if you want to change the default string mode for the procedure. When you change the default string mode to
MBCS, the Integration Service passes data in the Integration Service code page. Use the
INFA_CTSetDataCodePagelD() function if you want to change the code page.

When a procedure includes the INFA_CTChangeStringMode() function, the Integration Service changes the
string mode for all ports in each Custom transformation that use this particular procedure.

Use the change string mode function in the initialization functions.

Use the following syntax:

INFA_STATUS INFA_CTChangeStringMode(INFA_CT_PROCEDURE_HANDLE procedure,
INFA CTStringMode stringMode);

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
procedure INFA_CT_PROCEDURE_HANDLE Input Procedure handle name.
stringMode INFA_CTStringMode Input Specifies the string mode that you want the

Integration Service to use. Use the following

values for the stringMode parameter:
eASM_UNICODE. Use this when the
Integratlon Service runs in ASCIl mode and
you want the procedure to access data in
Unicode.

- eASM_MBCS. Use this when the Integration
Service runs in Unicode mode and you want
the procedure to access data in MBCS.

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.

Set Data Code Page Function

Use the INFA_CTSetDataCodePagelD() when you want the Integration Service to pass data to the Custom
transformation in a code page other than the Integration Service code page.

114 Chapter 4: Custom Transformation Functions

Use the set data code page function in the procedure initialization function.

Use the following syntax:

INFA STATUS INFA CTSetDataCodePageID(INFA CT TRANSFORMATION HANDLE transformation, int

dataCodePagelID) ;

The following table describes the arguments for this function:

Argument Datatype Input/ Description

Output
transformation INFA_CT_TRANSFORMATION_HANDLE Input Transformation handle name.
dataCodePagelD int Input Specifies the code page you want

the Integration Service to pass
datain.

For valid values for the
dataCodePagelD parameter, see
“Code Pages” in the Administrator
Guide.

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.

Row Strategy Functions (Row-Based Mode)

The row strategy functions allow you to access and configure the update strategy for each row.

PowerCenter provides the following row strategy functions:

¢ INFA_CTGetRowsStrategy(). Allows the procedure to get the update strategy for a row.

Use the following syntax:

INFA STATUS INFA CTGetRowStrategy (INFA CT INPUTGROUP HANDLE group,
INFA CTUpdateStrategy updateStrategy);

The following table describes the arguments for this function:

Argument Datatype Input/ Description

Output
group INFA_CT_INPUTGROUP_HANDLE Input Input group handle.
updateStrategy INFA_CT_UPDATESTRATEGY Input Update strategy for the input port.

The Integration Service uses the
following values:

- eUS_INSERT =0
- eUS_UPDATE =1
- eUS_DELETE =2
- eUS_REJECT =3

¢ INFA_CTSetRowStrategy(). Sets the update strategy for each row. This overrides the
INFA_CTChangeDefaultRowStrategy function.

Use the following syntax:

INFA STATUS INFA CTSetRowStrategy (INFA CT OUTPUTGROUP HANDLE group,

INFA_CT UPDATESTRATEGY updateStrategy);

API Functions 115

116

The following table describes the arguments for this function:

Argument Datatype Input/ Description

Output
group INFA_CT_OUTPUTGROUP_HANDLE Input Output group handle.
updateStrategy INFA_CT_UPDATESTRATEGY Input Update strategy you want to set for

the output port. Use one of the
following values:

- eUS_INSERT =0
- eUS_UPDATE =1
- eUS_DELETE =2
- eUS_REJECT =3

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.

Change Default Row Strategy Function

By default, the row strategy for a Custom transformation is pass-through when the transformation scope is
Row. When the transformation scope is Transaction or All Input, the row strategy is the same value as the
Treat Source Rows As session property by default.

For example, in a mapping you have an Update Strategy transformation followed by a Custom transformation
with Row transformation scope. The Update Strategy transformation flags the rows for update, insert, or
delete. When the Integration Service passes a row to the Custom transformation, the Custom transformation
retains the flag since its row strategy is pass-through.

However, you can change the row strategy of a Custom transformation with PowerCenter. Use the
INFA_CTChangeDefaultRowStrategy() function to change the default row strategy at the transformation level.
For example, when you change the default row strategy of a Custom transformation to insert, the Integration
Service flags all the rows that pass through this transformation for insert.

Note: The Integration Service returns INFA_FAILURE if the session is not in data-driven mode.

Use the following syntax:

INFA STATUS INFA CTChangeDefaultRowStrategy(INFA CT TRANSFORMATION HANDLE
transformation, INFA CT DefaultUpdateStrategy defaultUpdateStrategy);

Chapter 4: Custom Transformation Functions

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
transformation INFA_CT_TRANSFORMATION_HAND Input Transformation handle.
LE
defaultUpdateStrategy INFA_CT_DefaultUpdateStrategy Input Specifies the row strategy you want

the Integration Service to use for the
Custom transformation.

- eDUS_PASSTHROUGH. Flags the
row for passthrough.

- eDUS_INSERT. Flags rows for
insert.

- eDUS_UPDATE. Flags rows for
update.

- eDUS_DELETE. Flags rows for
delete.

The return value datatype is INFA_STATUS. Use INFA_SUCCESS and INFA_FAILURE for the return value.

Array-Based API Functions

The array-based functions are API functions you use when you change the data access mode to array-based.

Informatica provides the following groups of array-based API functions:

e Maximum number of rows

e Number of rows

e Isrow valid

¢ Data handling (array-based mode)

e Row strategy

e Set input error row

Maximum Number of Rows Functions

By default, the Integration Service allows a maximum number of rows in an input block and an output block.
However, you can change the maximum number of rows allowed in an output block.

Use the INFA_CTAGetInputNumRowsMax() and INFA_CTAGetOutputNumRowsMax() functions to determine
the maximum number of rows in input and output blocks. Use the values these functions return to determine
the buffer size if the procedure needs a buffer.

You can set the maximum number of rows in the output block using the INFA_CTASetOutputRowMax()
function. You might use this function if you want the procedure to use a larger or smaller buffer.

You can only call these functions in an initialization function.

Array-Based API Functions 117

PowerCenter provides the following functions to determine and set the maximum number of rows in blocks:
¢ INFA_CTAGetInputNumRowsMax(). Use this function to determine the maximum number of rows allowed
in an input block.
Use the following syntax:
IINT32 INFA CTAGetInputRowMax(INFA CT INPUTGROUP HANDLE inputgroup);

The following table describes the argument for this function:

Argument Datatype Input/ Description
Output
inputgroup INFA_CT_INPUTGROUP_HANDLE Input Input group handle.

¢ INFA_CTAGetOutputNumRowsMax(). Use this function to determine the maximum number of rows
allowed in an output block.

Use the following syntax:
IINT32 INFA CTAGetOutputRowMax (INFA CT OUTPUTGROUP HANDLE outputgroup);

The following table describes the argument for this function:

Argument Datatype Input/ Description
Output
outputgroup INFA_CT_OUTPUTGROUP_HANDLE Input Output group handle.

e INFA_CTASetOutputRowMax(). Use this function to set the maximum number of rows allowed in an
output block.
Use the following syntax:

INFA STATUS INFA CTASetOutputRowMax(INFA CT OUTPUTGROUP HANDLE outputgroup,
INFA INT32 nRowMax);

The following table describes the arguments for this function:

Argument Datatype Input/ Description

Output
outputgroup INFA_CT_OUTPUTGROUP_HANDLE Input Output group handle.
nRowMax INFA_INT32 Input Maximum number of rows you

want to allow in an output block.

You must enter a positive
number. The function returns a
fatal error when you use a non-
positive number, including zero.

Number of Rows Functions

Use the number of rows functions to determine the number of rows in an input block, or to set the number of
rows in an output block for the specified input or output group.

118 Chapter 4: Custom Transformation Functions

PowerCenter provides the following number of rows functions:

o INFA_CTAGetNumRows(). You can determine the number of rows in an input block.
Use the following syntax:
INFA INT32 INFA CTAGetNumRows(INFA CT INPUTGROUP HANDLE inputgroup);

The following table describes the argument for this function:

Argument Datatype Input/ Description
Output
inputgroup INFA_CT_INPUTGROUP_HANDLE Input Input group handle.

e INFA_CTASetNumRows(). You can set the number of rows in an output block. Call this function before
you call the output notification function.

Use the following syntax:
void INFA CTASetNumRows(INFA CT OUTPUTGROUP HANDLE outputgroup, INFA INT32 nRows);
The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
outputgroup INFA_CT_OUTPUTGROUP_HANDLE Input Output port handle.
nRows INFA_INT32 Input Number of rows you want to define

in the output block. You must enter
a positive number. The Integration
Service fails the output notification
function when specify a non-
positive number.

Is Row Valid Function

Some rows in a block may be dropped, filter, or error rows. Use the INFA_CTAIsRowValid() function to
determine if a row in a block is valid. This function returns INFA_TRUE when a row is valid.

Use the following syntax:
INFA BOOLEN INFA CTAIsRowValid(INFA CT INPUTGROUP HANDLE inputgroup, INFA INT32 iRow);

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
inputgroup INFA_CT_INPUTGROUP_HANDLE Input Input group handle.
iRow INFA_INT32 Input Index number of the row in the block. The

index is zero-based.

You must verify the procedure only passes
an index number that exists in the data
block. If you pass an invalid value, the
Integration Service shuts down
unexpectedly.

Array-Based API Functions 119

Data Handling Functions (Array-Based Mode)

When the Integration Service calls the p_<proc_name>_inputRowNotification() function, it notifies the
procedure that the procedure can access a row or block of data. However, to get data from the input port,
modify it, and set data in the output port in array-based mode, you must use the array-based data handling
functions in the input row notification function.

Include the INFA_CTAGetData<datatype>() function to get the data from the input port and
INFA_CTASetData() function to set the data in the output port. Include the INFA_CTAGetIndicator() function if
you want the procedure to verify before you get the data if the port has a null value or an empty string.

PowerCenter provides the following data handling functions for the array-based data access mode:

e INFA_CTAGetData<datatype>()
¢ INFA_CTAGetIndicator()
e INFA_CTASetData()

Get Data Functions (Array-Based Mode)

Use the INFA_CTAGetData<datatype>() functions to retrieve data for the port the function specifies. You
must modify the function name depending on the datatype of the port you want the procedure to access. The
Integration Service passes the length of the data in the array-based get data functions.

The following table lists the INFA_CTGetData<datatype>() function syntax and the datatype of the return

value:
Syntax Return Value
Datatype
void* INFA CTAGetDataVoid(INFA CT INPUTPORT HANDLE inputport, Data void pointer to
INFA INT32 iRow, INFA UINT32* pLength); the return value
char* INFA CTAGetDataStringM(INFA CT INPUTPORT HANDLE inputport, String (MBCS)
INFA INT32 iRow, INFA UINT32* pLength);
IUNICHAR* INFA CTAGetDataStringU(INFA CT INPUTPORT HANDLE inputport, String (Unicode)
INFA INT32 iRow, INFA UINT32* pLength);
INFA INT32 INFA CTAGetDataINT32(INFA CT INPUTPORT HANDLE inputport, Integer
INFA INT32 iRow);
double INFA CTAGetDataDouble(INFA CT INPUTPORT HANDLE inputport, Double
INFA INT32 iRow);
INFA CT RAWDATETIME INFA CTAGetDataRawDate(INFA CT_ INPUTPORT HANDLE Raw date
inputport, INFA INT32 iRow);
INFA CT DATETIME INFA CTAGetDataDateTime(INFA CT INPUTPORT HANDLE Datetime
inputport, INFA INT32 iRow);
INFA CT RAWDEC18 INFA CTAGetDataRawDecl8(INFA CT INPUTPORT HANDLE Decimal BLOB
inputport, INFA INT32 iRow); (precision 18)
INFA CT RAWDEC28 INFA CTAGetDataRawDec28(INFA CT INPUTPORT HANDLE Decimal BLOB
inputport, INFA INT32 iRow); (precision 28)

120 Chapter 4: Custom Transformation Functions

Get Indicator Function (Array-Based Mode)
Use the get indicator function when you want the procedure to verify if the input port has a null value.

Use the following syntax:

INFA INDICATOR INFA7CTAGetIndicator(INFA CT INPUTPORT HANDLE inputport, INFAfINT32
iRow);

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
inputport INFA_CT_INPUTPORT_HANDLE Input Input port handle.
iRow INFA_INT32 Input Index number of the row in the block. The

index is zero-based.

You must verify the procedure only passes
an index number that exists in the data
block. If you pass an invalid value, the
Integration Service shuts down
unexpectedly.

The return value datatype is INFA_LINDICATOR. Use the following values for INFA_INDICATOR:

o INFA_DATA_VALID. Indicates the data is valid.
e |INFA_NULL_DATA. Indicates a null value.
o INFA_DATA_TRUNCATED. Indicates the data has been truncated.

Set Data Function (Array-Based Mode)

Use the set data function when you want the procedure to pass a value to an output port. You can set the
data, the length of the data, if applicable, and the indicator for the output port you specify. You do not use
separate functions to set the length or indicator for the output port.

Use the following syntax:

void INFA CTASetData(INFA CT OUTPUTPORT HANDLE outputport, INFA INT32 iRow, void*
pData, INFA UINT32 nLength, INFA INDICATOR indicator);

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
outputport INFA_CT_OUTPUTPORT_HANDLE Input Output port handle.
iRow INFA_INT32 Input Index number of the row in the block. The

index is zero-based.

You must verify the procedure only passes an
index number that exists in the data block. If
you pass an invalid value, the Integration
Service shuts down unexpectedly.

pData void* Input Pointer to the data.

Array-Based API Functions 121

Argument Datatype Input/ Description
Output

nLength INFA_UINT32 Input Length of the port. Use for string and binary
ports only.

You must verify the function passes the
correct length of the data. If the function
passes a different length, the output
notification function returns failure for this
port.

Verify the length you set for string and binary
ports is not greater than the precision for the
port. If you set the length greater than the port
precision, you get unexpected results. For
example, the session may fail.

indicator INFA_INDICATOR Input Indicator value for the output port. Use one of

the following values:

- INFA_DATA_VALID. Indicates the data is
valid.

- INFA_NULL_DATA. Indicates a null value.

- INFA_DATA_TRUNCATED. Indicates the data
has been truncated.

Row Strategy Functions (Array-Based Mode)

The array-based row strategy functions allow you to access and configure the update strategy for each row in
a block.

PowerCenter provides the following row strategy functions:

e INFA_CTAGetRowStrategy(). Allows the procedure to get the update strategy for a row in a block.

Use the following syntax:

INFA_CT_UPDATESTRATEGY INFA_CTAGetRowStrategy(INFA_CT_INPUTGROUP_HANDLE inputgroup,
INFA_INT32 iRow);

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
inputgroup INFA_CT_INPUTGROUP_HANDLE Input Input group handle.
iRow INFA_INT32 Input Index number of the row in the block. The

index is zero-based.

You must verify the procedure only passes
an index number that exists in the data
block. If you pass an invalid value, the
Integration Service shuts down
unexpectedly.

¢ INFA_CTASetRowStrategy(). Sets the update strategy for a row in a block.

122 Chapter 4: Custom Transformation Functions

Use the following syntax:

void INFA CTASetRowStrategy(INFA CT OUTPUTGROUP HANDLE
INFA_CT UPDATESTRATEGY updateStrategy);

The following table describes the arguments for this function:

outputgroup, INFA INT32 iRow,

Argument Datatype Input/ Description
Output

outputgroup INFA_CT_OUTPUTGROUP_HANDLE Input Output group handle.

iRow INFA_INT32 Input Index number of the row in the block.
The index is zero-based.
You must verify the procedure only
passes an index number that exists in
the data block. If you pass an invalid
value, the Integration Service shuts
down unexpectedly.

updateStrate INFA_CT_UPDATESTRATEGY Input Update strategy for the port. Use one

gy of the following values:

- eUS_INSERT =0
- eUS_UPDATE =1
- eUS_DELETE =2
- eUS_REJECT =3

Set Input Error Row Functions

When you use array-based access mode, you cannot return INFA_ROWERROR in the input row notification
function. Instead, use the set input error row functions to notify the Integration Service that a particular input

row has an error.

PowerCenter provides the following set input row functions in array-based mode:

INFA_CTASetInputErrorRowM(). You can notify the Integration Service that a row in the input block has an
error and to output an MBCS error message to the session log.

Use the following syntax:

INFA STATUS INFA_CTASetInputErrorROWM(INFA CT INPUTGROUP_HANDLE inputGroup,
INFA INT32 iRow, size t nErrors, INFA MBCSCHAR* sErrMsg);

Array-Based API Functions

123

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
inputGroup INFA_CT_INPUTGROUP_HANDLE Input Input group handle.
iRow INFA_INT32 Input Index number of the row in the block. The

index is zero-based.

You must verify the procedure only passes
an index number that exists in the data
block. If you pass an invalid value, the
Integration Service shuts down
unexpectedly.

nErrors size_t Input Use this parameter to specify the number
of errors this input row has caused.

sErrMsg INFA_MBCSCHAR* Input MBCS string containing the error message
you want the function to output. You must
enter a null-terminated string.

This parameter is optional. When you
include this argument, the Integration
Service prints the message in the session
log, even when you enable row error

logging.

¢ INFA_CTASetInputErrorRowU(). You can notify the Integration Service that a row in the input block has an
error and to output a Unicode error message to the session log.
Use the following syntax:

INFA STATUS INFA CTASetInputErrorRowU(INFA CT INPUTGROUP HANDLE inputGroup,
INFA INT32 iRow, size t nErrors, INFA UNICHAR* sErrMsg);

The following table describes the arguments for this function:

Argument Datatype Input/ Description
Output
inputGroup INFA_CT_INPUTGROUP_HANDLE Input Input group handle.
iRow INFA_INT32 Input Index number of the row in the block.

The index is zero-based.

You must verify the procedure only
passes an index number that exists in
the data block. If you pass an invalid
value, the Integration Service shuts down
unexpectedly.

124 Chapter 4: Custom Transformation Functions

Argument Datatype Input/ Description
Output
nErrors size_t Input Use this parameter to specify the number
of errors this output row has caused.
sErrMsg INFA_UNICHAR* Input Unicode string containing the error

message you want the function to
output. You must enter a null-terminated
string.

This parameter is optional. When you
include this argument, the Integration
Service prints the message in the
session log, even when you enable row
error logging.

Array-Based API Functions 125

CHAPTER 5

Data Masking Transformation

This chapter includes the following topics:

e Data Masking Transformation, 126

e Masking Properties, 127

e Key Masking, 129
e Substitution Masking, 131

e Dependent Masking, 134
e Random Masking, 136

e Applying Masking Rules, 138

e Expression Masking, 142

e Special Mask Formats, 144

e Social Security Number Masking, 144
e Credit Card Number Masking, 145

e Phone Number Masking, 146

e Email Address Masking, 146

e Social Insurance Number Masking, 148
e |P Address Masking, 148

e URL Address Masking, 148

e Default Value File, 149

e Data Masking Transformation Session Properties, 149

e Rules and Guidelines for Data Masking Transformations, 150

Data Masking Transformation

126

Use the Data Masking transformation to change sensitive production data to realistic test data for non-
production environments. The Data Masking transformation modifies source data based on masking rules
that you configure for each column. Create masked data for software development, testing, training, and data
mining. You can maintain data relationships in the masked data and maintain referential integrity between
database tables. The Data Masking transformation is a passive transformation.

The Data Masking transformation provides masking rules based on the source datatype and masking type
you configure for a port. For strings, you can restrict the characters in a string to replace and the characters
to apply in the mask. For numbers and dates, you can provide a range of numbers for the masked data. You

can configure a range that is a fixed or percentage variance from the original number. The Integration Service
replaces characters based on the locale that you configure with the masking rules.

You can apply the following types of masking with the Data Masking transformation:
¢ Key masking. Produces deterministic results for the same source data, masking rules, and seed value.
o Substitution masking. Replaces a column of data with similar but unrelated data from a dictionary.

* Dependent masking. Replaces the values of one source column based on the values of another source
column.

o Shuffle masking. Replaces the values of one column of data with other values from the same column.
* Random masking. Produces random, non-repeatable results for the same source data and masking rules.
* Expression masking. Applies an expression to a port to change the data or create data.

* Special mask formats. Applies special mask formats to common types of sensitive data. You can mask
social security numbers, social insurance numbers, credit card numbers, phone numbers, URL addresses,
email addresses, or IP addresses.

RELATED TOPICS:

o “Default Values for Ports” on page 38

e “Applying Masking Rules” on page 138

e “Default Value File” on page 149

Masking Properties

Define the input ports and configure masking properties for each port on the Masking Properties tab. The
type of masking you can select is based on the port datatype. When you choose a masking type, the Designer
displays the masking rules for the masking type.

Locale

The locale identifies the language and region of the characters in the data. Choose a locale from the list. The
Data Masking transformation masks character data with characters from the locale that you choose. The
source data must contain characters that are compatible with the locale that you select.

If your locale is not in the list, select a locale that has a similar or matching code page. You cannot select
Unicode for locale.

Masking Types

The masking type is the type of data masking to apply to the selected column. Select one of the following
masking types:

e Key masking. Produces deterministic results for the same source data, masking rules, and seed value.
e Substitution masking. Replaces a column of data with similar but unrelated data from a dictionary.

¢ Dependent masking. Replaces the values of one source column based on the values of another source
column.

e Random masking. Produces random results for the same source data and masking rules.

e Expression masking. Applies an expression to a port to change the data or create data.

Masking Properties 127

128

e Special mask formats. Applies special mask formats to common types of sensitive data. You can mask
social security numbers, social insurance numbers, credit card numbers, phone numbers, URL addresses,
email addresses, or IP addresses.

e Substitution. Replaces a column of data with similar but unrelated data from a dictionary.
e No Masking. The Data Masking transformation does not change the source data.

Default is No Masking.

Repeatable Output

Repeatable output is the consistent set of values returned by the Data Masking transformation.

Repeatable output returns deterministic values. For example, you configure repeatable output for a column of
first names. The Data Masking transformation returns the same masked values every time you include the
transformation in a workflow.

You can configure repeatable masking for all the data masking types. To configure repeatable masking click
Repeatable Output and select Seed Value.

Seed

The seed value is a starting point to generate masked values.

The Data Masking transformation creates a default seed value that is a random number between 1 and 1,000.
You can enter a different seed value or apply a mapping parameter value. Apply the same seed value to a
column to return the same masked data values in different source data. For example, if you have the same
Cust_ID column in four tables, and you want all of them to output the same masked values, set all four
columns to the same seed value.

Mapping Parameters

You can use a mapping parameter to define a seed value. Create a mapping parameter for each seed value
that you want to add to the transformation. The mapping parameter value is a number between 1 and 1,000.

When you configure data masking for a column, select Mapping Parameter for the seed. The Designer
displays a list of the mapping parameters. Select a mapping parameter from the list. Before you run a
session, you can change the mapping parameter value in a parameter file for the session.

Create the mapping parameters before you create the Data Masking transformation. If you choose to
parametrize the seed value and the mapping has no mapping parameters, an error appears. If you select a
port with a masking rule that references a deleted mapping parameter, the Designer generates a new random
seed value for the port. The seed value is not a mapping parameter. A message appears that the mapping
parameter is deleted and the Designer creates a new seed value.

The Integration Service applies a default seed value in the following circumstances:
¢ The mapping parameter option is selected for a column but the session has no parameter file.
e You delete the mapping parameter.

e A mapping parameter seed value is not between 1 and 1,000.

The Integration Service applies masked values from the default value file. You can edit the default value file
to change the default values.

The default value file is an XML file in the following location:

<PowerCenter Installation Directory>\infa shared\SrcFiles\defaultValue.xml

Chapter 5: Data Masking Transformation

The name-value pair for the seed is
default seed = "500".

If the seed value in the default value file is not between 1 and 1,000, the Integration Service assigns a value of
725 to the seed and writes a message in the session log.

RELATED TOPICS:

o “Default Value File” on page 149

Associated O/P

The Associated O/P is the associated output port for an input port. The Data Masking transformation creates
an output port for each input port. The naming convention is out_<port name>. The associated output port is
a read-only port.

Key Masking

A column configured for key masking returns deterministic masked data each time the source value and seed
value are the same. The Data Masking transformation returns unique values for the column.

When you configure a column for key masking, the Data Masking transformation creates a seed value for the
column. You can change the seed value to produce repeatable data between different Data Masking
transformations. For example, configure key masking to enforce referential integrity. Use the same seed
value to mask a primary key in a table and the foreign key value in another table.

You can define masking rules that affect the format of data that the Data Masking transformation returns.
Mask string and numeric values with key masking.

Masking String Values

You can configure key masking for strings to generate repeatable output. Configure a mask format to define
limitations for each character in the output string, define a mask format. Configure source string characters
and result string replacement characters that define the source characters to mask and the characters to
mask them with.

Key Masking 129

130

The following figure shows key masking properties for a string datatype:

Edit Transformations [%]

TransForrmation I Ports I Properties Masking Properties |

Locale : IEninsh {United States) j

Port Hame Data Type Mazking Aszzociated O/P
i E rployes string 10 1] Mo maszking out_Employes
2l [epartrment_Mame string 10 0 Key j out_Department_Mame

Set the masking rules For the selected string port with key masking

Seed: (% Value Bz 4 " Mapping Parameter j

Mask Format

{ Characters allowed :4,0,M,R,%,+) I DED+AABAAA

¥ source String Characters
IMask all except VI Characters : I#

™ Result String Replacement Characters

IUse orily VI Characters : I

OF I Cancel | Apply | Help L

You can configure the following masking rules for key masking string values:

Seed. Apply a seed value to generate deterministic masked data for a column. Select one of the following
options:

- Value. Accept the default seed value or enter a number between 1 and 1,000.

- Mapping Parameter. Use a mapping parameter to define the seed value. The Designer displays a list of
the mapping parameters that you create for the mapping. Choose the mapping parameter from the list to
use as the seed value.

Mask Format. Define the type of character to substitute for each character in the input data. You can limit
each character to an alphabetic, numeric, or alphanumeric character type.

Source String Characters. Define the characters in the source string that you want to mask. For example,
mask the number sign (#) character whenever it occurs in the input data. The Data Masking
transformation masks all the input characters when Source String Characters is blank. The Data Masking
transformation does not always return unique data if the number of source string characters is less than
the number of result string characters.

Result String Characters. Substitute the characters in the target string with the characters you define in
Result String Characters. For example, enter the following characters to configure each mask to contain
all uppercase alphabetic characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Masking Numeric Values

Chapter 5: Data Masking Transformation

Configure key masking for numeric source data to generate deterministic output. When you configure a
column for numeric key masking, you assign a random seed value to the column. When the Data Masking
transformation masks the source data, it applies a masking algorithm that requires the seed.

You can change the seed value for a column to produce repeatable results if the same source value occurs in
a different column. For example, you want to maintain a primary-foreign key relationship between two tables.
In each Data Masking transformation, enter the same seed value for the primary-key column as the seed
value for the foreign-key column. The Data Masking transformation produces deterministic results for the
same numeric values. The referential integrity is maintained between the tables.

Masking Datetime Values

When you can configure key masking for datetime values, the Data Masking transformation requires a
random number as a seed. You can change the seed to match the seed value for another column in order to
return repeatable datetime values between the columns.

The Data Masking transformation can mask dates between 1753 and 2400 with key masking. If the source
year is in a leap year, the Data Masking transformation returns a year that is also a leap year. If the source
month contains 31 days, the Data Masking transformation returns a month that has 31 days. If the source
month is February, the Data Masking transformation returns February.

The Data Masking transformation always generates valid dates.

RELATED TOPICS:

e “Date Range " on page 141

Substitution Masking

Substitution masking replaces a column of data with similar but unrelated data. Use substitution masking to
replace production data with realistic test data. When you configure substitution masking, define the
dictionary that contains the substitute values.

The Data Masking transformation performs a lookup on the dictionary that you configure. The Data Masking
transformation replaces source data with data from the dictionary. Dictionary files can contain string data,
datetime values, integers, and floating point numbers. Enter datetime values in the following format:

mm/dd/yyyy

You can substitute data with repeatable or non-repeatable values. When you choose repeatable values, the
Data Masking transformation produces deterministic results for the same source data and seed value. You
must configure a seed value to substitute data with deterministic results.The Integration Service maintains a
storage table of source and masked values for repeatable masking.

You can substitute more than one column of data with masked values from the same dictionary row.
Configure substitution masking for one input column. Configure dependent data masking for the other
columns that receive masked data from the same dictionary row.

Dictionaries

A dictionary is a flat file or relational table that contains the substitute data for each row in the file. The Data
Masking transformation generates a number to retrieve a dictionary row. The Data Masking transformation
generates a hash key for repeatable substitution masking or a random number for non-repeatable masking.
You can configure an additional lookup condition.

Substitution Masking 131

You can configure a dictionary to mask more than one port in the Data Masking transformation.

The following example shows a flat file dictionary that contains first name and gender:

SNO, GENDER, FIRSTNAME

1,M,Adam

2,M,Adeel

3,M,Adil

4,F,Alice

5,F,Alison
In this dictionary, the first field in the row is the serial number, and the second field is gender. You can add
gender as a lookup condition. The Integration Service retrieves a row from the dictionary using a hash key,
and it finds a row with a gender that matches the gender in the source data.

Use the following rules and guidelines when you create a dictionary:

e The first row of a flat file dictionary must have column labels to identify the fields in each record. The
fields are separated by commas. If the first row does not contain column labels, the Integration Service
takes the values of the fields in the first row as column names.

o A flat file dictionary must be in the SPMLookupFileDir lookup file directory. By default, this directory is in
the following location:
<PowerCenter Installation Directory>\server\infa shared\LkpFiles
¢ |f you create a flat file dictionary on Windows and copy it to a UNIX machine, verify that the file format is
correct for UNIX. For example, Windows and UNIX use different characters for the end of line marker.

¢ If you configure substitution masking for more than one port, all relational dictionaries must be in the
same database schema.

¢ The line sequential buffer length of a flat file dictionary must be less than or equal to 600 characters.

e You cannot change the dictionary type or the substitution dictionary name in session properties.

Storage Tables

The Data Masking transformation maintains storage tables for repeatable substitution between sessions. A
storage table row contains the source column and a masked value pair. Each time the Data Masking
transformation masks a value with a repeatable substitute value, it searches the storage table by dictionary
name, locale, column name, input value, and seed. If it finds a row, it returns the masked value from the
storage table. If the Data Masking transformation does not find a row, it retrieves a row from the dictionary
with a hash key.

The dictionary name format in the storage table is different for a flat file dictionary and a relational
dictionary. A flat file dictionary name is identified by the file name. The relational dictionary name has the
following syntax:

<Connection object> <dictionary table name>

Informatica provides scripts that you can run to create a relational storage table. The scripts are in the
following location:

<PowerCenter Client installation directory>\client\bin\Extensions\DataMasking

The directory contains a script for Sybase, Microsoft SQL Server, IBM DB2, and Oracle databases. Each script
is named Substitution_<database type>. You can create a table in a different database if you configure the
SQL statements and the primary key constraints.

You need to encrypt storage tables for substitution masking when you have unencrypted data in the storage
and use the same seed value and dictionary to encrypt the same columns.

132 Chapter 5: Data Masking Transformation

Encrypting Storage Tables for Substitution Masking

You can use transformation language encoding functions to encrypt storage tables. You need to encrypt
storage tables when you have enabled storage encryption.

1.

2
3.
4

Create a mapping with the IDM_SUBSTITUTION_STORAGE storage table as source.
Create a Data Masking transformation.

Apply the substitution masking technique on the input value and the masked value ports.
Use the following expression on the INPUTVALUE port:

Enc Base64 (AES Encrypt (INPUTVALUE, Key))

Use the following expression on the MASKEDVALUE port:

Enc Base64 (AES Encrypt (MASKEDVALUE, Key))

Link the ports to the target.

Substitution Masking Properties

You can configure the following masking rules for substitution masking:

Repeatable Output. Returns deterministic results between sessions. The Data Masking transformation
stores masked values in the storage table.

Seed. Apply a seed value to generate deterministic masked data for a column. Select one of the following
options:

- Value. Accept the default seed value or enter a number between 1 and 1,000.

- Mapping Parameter. Use a mapping parameter to define the seed value. The Designer displays a list of
the mapping parameters that you create for the mapping. Choose the mapping parameter from the list to
use as the seed value.

- Unique Output. Force the Data Masking transformation to create unique output values for unique input
values. No two input values are masked to the same output value. The dictionary must have enough
unique rows to enable unique output.

When you disable unique output, the Data Masking Transformation might not mask input values to
unique output values. The dictionary might contain fewer rows.

Dictionary Information. Configure the flat file or relational table that contains the substitute data values.

- Relational Table. Select Relational Table if the dictionary is in a database table. Click Select Table to
configure the database and table.

- Flat File. Select Flat File if the dictionary is in flat file delimited by commas. Click Select Flat File to
browse for and choose a file.

- Dictionary Name. Displays the flat file or relational table name that you selected.
- Output Column. Choose the column to return to the Data Masking transformation.

Lookup condition. Configure a lookup condition to further qualify what dictionary row to use for
substitution masking. The lookup condition is similar to the WHERE clause in an SQL query. When you
configure a lookup condition you compare the value of a column in the source with a column in the
dictionary.

For example, you want to mask the first name. The source data and the dictionary have a first name
column and a gender column. You can add a condition that each female first name is replaced with a
female name from the dictionary. The lookup condition compares gender in the source to gender in the
dictionary.

- Input port. Source data column to use in the lookup.

Substitution Masking 133

- Dictionary column. Dictionary column to compare the input port to.

Relational Dictionary

When you choose a relational table as a dictionary, configure the database table that contains the dictionary.
When you define the table, the Designer connects to the table and displays the columns in the table.

To select a database, click Select Table on the Data Masking transformation Masking Properties tab.
Configure the following fields in the Select Table dialog box:

 ODBC data source. ODBC data source that connects to the database that contains the dictionary.

e User Name. A database user name to connect to the database. The user name must have the database
permissions to view the tables.

e Owner Name. If the user name is not the owner of the dictionary table, enter the table owner.
e Password. The password for the database user name.
* Search for tables named. Optional. Limits the number of tables that appear in the dialog box.

When you click Connect, the Designer connects to the data source and displays the tables. Scroll through the
list of tables and select the table you want to use for the dictionary. The table name appears in the Dictionary
Name field of the Masking Properties tab.

Connection Requirements

You must configure a database connection for the storage table and relational dictionary if you use them with
substitution masking.

Configure the database connections in the Workflow Manager. Select a relational connection object for the
IDM_Dictionary connection and the IDM_Storage connection on the Mapping tab of the session properties.

Rules and Guidelines for Substitution Masking

Use the following rules and guidelines for substitution masking:

o If a storage table does not exist for a unique repeatable substitution mask, the session fails.
¢ |f the dictionary contains no rows, the Data Masking transformation returns an error message.

¢ When the Data Masking transformation finds an input value with the locale, dictionary, and seed in the
storage table, it retrieves the masked value, even if the row is no longer in the dictionary.

¢ |f you delete a connection object or modify the dictionary, truncate the storage table. Otherwise, you might
get unexpected results.

o If the number of values in the dictionary is less than the number of unique values in the source data, the
Data Masking Transformation cannot mask the data with unique repeatable values. The Data Masking
transformation returns an error message.

Dependent Masking

Dependent masking substitutes multiple columns of source data with data from the same dictionary row.

When the Data Masking transformation performs substitution masking for multiple columns, the masked
data might contain unrealistic combinations of fields. You can configure dependent masking in order to

134 Chapter 5: Data Masking Transformation

substitute data for multiple input columns from the same dictionary row. The masked data receives valid
combinations such as, "New York, New York" or "Chicago, lllinois."

When you configure dependent masking, you first configure an input column for substitution masking.
Configure other input columns to be dependent on that substitution column. For example, you choose the ZIP
code column for substitution masking and choose city and state columns to be dependent on the ZIP code
column. Dependent masking ensures that the substituted city and state values are valid for the substituted
ZIP code value.

Note: You cannot configure a column for dependent masking without first configuring a column for
substitution masking.

Configure the following masking rules when you configure a column for dependent masking:
Dependent column

The name of the input column that you configured for substitution masking. The Data Masking
transformation retrieves substitute data from a dictionary using the masking rules for that column. The
column you configure for substitution masking becomes the key column for retrieving masked data from
the dictionary.

Output column

The name of the dictionary column that contains the value for the column you are configuring with
dependent masking.

Dependent Masking Example

A data masking dictionary might contain address rows with the following values:

SNO, STREET,CITY, STATE, ZIP, COUNTRY

1,32 Apple Lane,Chicago,IL,61523,US
2,776 Ash Street,Dallas,TX,75240,US
3,2229 Big Square,Atleeville,TN,38057,US
4,6698 Cowboy Street, Houston,TX,77001,US

You need to mask source data with valid combinations of the city, state, and ZIP code from the Address
dictionary.

Configure the ZIP port for substitution masking.

Enter the following masking rules for the ZIP port:

Rule Value

Dictionary FileType Flat file or relational table
Dictionary Name Address.dic

Output Column ZIP

Configure the City port for dependent masking.

Dependent Masking 135

Enter the following masking rules for the City port:

Rule Value
Dependent Column ZIP
Output Column City

Configure the State port for dependent masking.

Enter the following masking rules for the State port:

Rule Value
Dependent Column ZIP
Output Column State

When the Data Masking transformation masks the ZIP code, it returns the correct city and state for the ZIP
code from the dictionary row.

Repeatable Dependent Masking

When you configure multiple input fields to receive masked data from the same dictionary row, you need to
decide which field to configure for substitution masking. With repeatable masking, select a column that
uniquely identifies the source data. The Data Masking transformation uses the key field to determine if a row
already exists in storage for repeatable masking.

Note: When the source data has a primary key, you can configure the primary key column for substitution
masking. Configure another column for dependent masking.

For example, if you mask employee data, you might configure the EmployeelD for substitution masking, and
configure FirstName and LastName for dependent masking.

When you configure repeatable masking, the following rows receive different masked data:
EmployeeID FirstName LastName

111 John Jones
222 Radhika Jones

If you choose LastName as the key field for repeatable dependent masking, each row with the last name
Jones receives the same mask data.

Random Masking

136

Random masking generates random nondeterministic masked data. The Data Masking transformation
returns different values when the same source value occurs in different rows. You can define masking rules
that affect the format of data that the Data Masking transformation returns. Mask numeric, string, and date
values with random masking.

Chapter 5: Data Masking Transformation

Masking Numeric Values

When you mask numeric data, you can configure a range of output values for a column. The Data Masking

transformation returns a value between the minimum and maximum values of the range depending on port
precision. To define the range, configure the minimum and maximum ranges or configure a blurring range

based on a variance from the original source value.

You can configure the following masking parameters for numeric data:
Range

Define a range of output values. The Data Masking transformation returns numeric data between the
minimum and maximum values.

Blurring Range

Define a range of output values that are within a fixed variance or a percentage variance of the source
data. The Data Masking transformation returns numeric data that is close to the value of the source
data. You can configure a range and a blurring range.

Masking String Values

Configure random masking to generate random output for string columns. To configure limitations for each
character in the output string, configure a mask format. Configure filter characters to define which source
characters to mask and the characters to mask them with.

You can apply the following masking rules for a string port:
Range

Configure the minimum and maximum string length. The Data Masking transformation returns a string of
random characters between the minimum and maximum string length.

Mask Format

Define the type of character to substitute for each character in the input data. You can limit each
character to an alphabetic, numeric, or alphanumeric character type.

Source String Characters

Define the characters in the source string that you want to mask. For example, mask the number sign (#)
character whenever it occurs in the input data. The Data Masking transformation masks all the input
characters when Source String Characters is blank.

Result String Replacement Characters

Substitute the characters in the target string with the characters you define in Result String Characters.
For example, enter the following characters to configure each mask to contain uppercase alphabetic
characters A - Z:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Masking Date Values

To mask date values with random masking, either configure a range of output dates or choose a variance.
When you configure a variance, choose a part of the date to blur. Choose the year, month, day, hour, minute,
or second. The Data Masking transformation returns a date that is within the range you configure.

You can configure the following masking rules when you mask a datetime value:

Random Masking 137

Range
Sets the minimum and maximum values to return for the selected datetime value.
Blurring

Masks a date based on a variance that you apply to a unit of the date. The Data Masking transformation
returns a date that is within the variance. You can blur the year, month, day, hour, minute, or second.
Choose a low and high variance to apply.

Applying Masking Rules
Apply masking rules based on the source datatype. When you click a column property on the Masking

Properties tab, the Designer displays masking rules based on the datatype of the port.

The following table describes the masking rules that you can configure based on the masking type and the
source datatype:

Masking Types Source Datatype | Masking Rules Description

Random and Key | String Mask Format Mask that limits each character in an output string to an
alphabetic, numeric, or alphanumeric character.

Random and Key | String Source String Set of source characters to mask or to exclude from
Characters masking.
Random and Key | String Result String A set of characters to include or exclude in a mask.
Replacement
Characters
Random Numeric Range A range of output values.
String - Numeric. The Data Masking transformation returns
Date/Time numeric data between the minimum and maximum
values.

- String. Returns a string of random characters between
the minimum and maximum string length.

Date/Time. Returns a date and time within the
minimum and maximum datetime.

Random Numeric Blurring Range of output values with a fixed or percent variance
Date/Time from the source data. The Data Masking transformation
returns data that is close to the value of the source data.
Datetime columns require a fixed variance.

Mask Format

Configure a mask format to limit each character in the output column to an alphabetic, numeric, or
alphanumeric character. Use the following characters to define a mask format:

A, D, N, X, +, R

Note: The mask format contains uppercase characters. When you enter a lowercase mask character, the Data
Masking transformation converts the character to uppercase.

138 Chapter 5: Data Masking Transformation

The following table describes mask format characters:

Character Description

A Alphabetical characters. For example, ASCII characters a to z and A to Z.

D Digits 0 to 9. The data masking transformation returns an "X" for characters other than digits 0 to 9.

N Alphanumeric characters. For example, ASCII characters a to z, A to Z, and 0-9.

X Any character. For example, alphanumeric or symbol.

+ No masking.

R Remaining characters. R specifies that the remaining characters in the string can be any character
type. R must appear as the last character of the mask.

For example, a department name has the following format:
nnn-<department name>

You can configure a mask to force the first three characters to be numeric, the department name to be
alphabetic, and the dash to remain in the output. Configure the following mask format:

DDD+AAAAAAAAAAAAAAAA

The Data Masking transformation replaces the first three characters with numeric characters. It does not
replace the fourth character. The Data Masking transformation replaces the remaining characters with
alphabetical characters.

If you do not define a mask format, the Data Masking transformation replaces each source character with
any character. If the mask format is longer than the input string, the Data Masking transformation ignores the
extra characters in the mask format. If the mask format is shorter than the source string, the Data Masking
transformation masks the remaining characters with format R.

Note: You cannot configure a mask format with the range option.

Source String Characters

Source string characters are source characters that you choose to mask or not mask. The position of the
characters in the source string does not matter. The source characters are case sensitive.

You can configure any number of characters. When Characters is blank, the Data Masking transformation
replaces all the source characters in the column.

Select one of the following options for source string characters:
Mask Only

The Data Masking transformation masks characters in the source that you configure as source string
characters. For example, if you enter the characters A, B, and c, the Data Masking transformation
replaces A, B, or ¢ with a different character when the character occurs in source data. A source
character that is not an A, B, or ¢ does not change. The mask is case sensitive.

Mask All Except

Masks all characters except the source string characters that occur in the source string. For example, if
you enter the filter source character “-” and select Mask All Except, the Data Masking transformation
does not replace the “-" character when it occurs in the source data. The rest of the source characters
change.

Applying Masking Rules 139

140

Source String Example

A source file has a column named Dependents. The Dependents column contains more than one name
separated by commas. You need to mask the Dependents column and keep the comma in the test data to
delimit the names.

“n

For the Dependents column, select Source String Characters. Choose Don’t Mask and enter “,” as the source
character to skip. Do not enter quotes.

The Data Masking transformation replaces all the characters in the source string except for the comma.

Result String Replacement Characters

Result string replacement characters are characters you choose as substitute characters in the masked data.
When you configure result string replacement characters, the Data Masking transformation replaces
characters in the source string with the result string replacement characters. To avoid generating the same
output for different input values, configure a wide range of substitute characters, or mask only a few source
characters. The position of each character in the string does not matter.

Select one of the following options for result string replacement characters:

Use Only

Mask the source with only the characters you define as result string replacement characters. For
example, if you enter the characters A, B, and c, the Data Masking transformation replaces every
character in the source column with an A, B, or ¢c. The word “horse” might be replaced with “BAcBA.”

Use All Except

Mask the source with any characters except the characters you define as result string replacement
characters. For example, if you enter A, B, and c result string replacement characters, the masked data
never has the characters A, B, or c.

Result String Replacement Characters Example

To replace all commas in the Dependents column with semicolons, complete the following tasks:
1. Configure the comma as a source string character and select Mask Only.

The Data Masking transformation masks only the comma when it occurs in the Dependents column.
2. Configure the semicolon as a result string replacement character and select Use Only.

The Data Masking transformation replaces each comma in the Dependents column with a semicolon.

Range

Define a range for numeric, date, or string data. When you define a range for numeric or date values the Data
Masking transformation masks the source data with a value between the minimum and maximum values.
When you configure a range for a string, you configure a range of string lengths.

String Range

When you configure random string masking, the Data Masking transformation generates strings that vary in
length from the length of the source string. Optionally, you can configure a minimum and maximum string
width. The values you enter as the maximum or minimum width must be positive integers. Each width must
be less than or equal to the port precision.

Chapter 5: Data Masking Transformation

Numeric Range

Set the minimum and maximum values for a numeric column. The maximum value must be less than or equal
to the port precision. The default range is from one to the port precision length.

Date Range

Set minimum and maximum values for a datetime value. The minimum and maximum fields contain the
default minimum and maximum dates. The default datetime format is MM/DD/YYYY HH24:MI:SS. The
maximum datetime must be later than the minimum datetime.

Blurring

Blurring creates an output value within a fixed or percent variance from the source data value. Configure
blurring to return a random value that is close to the original value. You can blur numeric and date values.

Blurring Numeric Values

Select a fixed or percent variance to blur a numeric source value. The low blurring value is a variance below
the source value. The high blurring value is a variance above the source value. The low and high values must
be greater than or equal to zero. When the Data Masking transformation returns masked data, the numeric
data is within the range that you define.

The following table describes the masking results for blurring range values when the input source value is 66:

Blurring Type Low High Result

Fixed 0 10 Between 66 and 76
Fixed 10 0 Between 56 and 66
Fixed 10 10 Between 56 and 76
Percent 0 50 Between 66 and 99
Percent 50 0 Between 33 and 66
Percent 50 50 Between 33 and 99

Blurring Date Values

Mask a date as a variance of the source date by configuring blurring. Select a unit of the date to apply the
variance to. You can select the year, month, day, or hour. Enter the low and high bounds to define a variance
above and below the unit in the source date. The Data Masking transformation applies the variance and
returns a date that is within the variance.

For example, to restrict the masked date to a date within two years of the source date, select year as the unit.
Enter two as the low and high bound. If a source date is 02/02/2006, the Data Masking transformation
returns a date between 02/02/2004 and 02/02/2008.

By default, the blur unit is year.

Applying Masking Rules 141

Expression Masking

142

Expression masking applies an expression to a port to change the data or create new data. When you
configure expression masking, create an expression in the Expression Editor. Select input and output ports,
functions, variables, and operators to build expressions.

You can concatenate data from multiple ports to create a value for another port. For example, you need to
create a login name. The source has first name and last name columns. Mask the first and last name from
lookup files. In the Data Masking transformation, create another port called Login. For the Login port,
configure an expression to concatenate the first letter of the first name with the last name:

SUBSTR (FIRSTNM, 1,1) | | LASTNM

When you configure expression masking for a port, the port name appears as the expression by default. To
access the Expression Editor, click the open button. The Expression Editor displays input ports and the output
ports which are not configured for expression masking. You cannot use the output from an expression as
input to another expression. If you manually add the output port name to the expression, you might get
unexpected results.

Select functions, ports, variables, and operators from the point-and-click interface to minimize errors when
you build expressions.

When you create an expression, verify that the expression returns a value that matches the port datatype. The
Data Masking transformation returns zero if the data type of the expression port is numeric and the data type
of the expression is not the same. The Data Masking transformation returns null values if the data type of the
expression port is a string and the data type of the expression is not the same.

Repeatable Expression Masking

Configure repeatable expression masking when a source column occurs in more than one table and you need
to mask the column from each table with the same value.

When you configure repeatable expression masking, the Data Masking transformation saves the results of an
expression in a storage table. If the column occurs in another source table, the Data Masking transformation
returns the masked value from the storage table instead of from the expression.

Dictionary Name

When you configure repeatable expression masking you must enter a dictionary name. The dictionary name
is a key that allows multiple Data Masking transformations to generate the same masked values from the
same source values. Define the same dictionary name in each Data Masking transformation. The dictionary
name can be any text.

Storage Table

The storage table contains the results of repeatable expression masking between sessions. A storage table
row contains the source column and a masked value pair. The storage table for expression masking is a
separate table from the storage table for substitution masking.

Each time the Data Masking transformation masks a value with a repeatable expression, it searches the
storage table by dictionary name, locale, column name and input value. If it finds a row in the storage table, it
returns the masked value from the storage table. If the Data Masking transformation does not find a row, it
generates a masked value from the expression for the column.

You need to encrypt storage tables for expression masking when you have unencrypted data in the storage
and use the same dictionary name as key.

Chapter 5: Data Masking Transformation

Encrypting Storage Tables for Expression Masking

You can use transformation language encoding functions to encrypt storage tables. You need to encrypt
storage tables when you have enabled storage encryption.

1. Create a mapping with the IDM_EXPRESSION_STORAGE storage table as source.
2. Create a Data Masking transformation.
3. Apply the expression masking technique on the masked value ports.
4. Use the following expression on the MASKEDVALUE port:
Enc_Base64 (AES_Encrypt (MASKEDVALUE, Key))

5. Link the ports to the target.

Example

For example, an Employees table contains the following columns:

FirstName
LastName
LoginID

In the Data Masking transformation, mask LoginID with an expression that combines FirstName and
LastName. Configure the expression mask to be repeatable. Enter a dictionary name as a key for repeatable
masking.

The Computer_Users table contains a LoginID, but no FirstName or LastName columns:
Dept
LoginID
Password

To mask the LoginID in Computer_Users with the same LoginID as Employees, configure expression masking
for the LoginID column. Enable repeatable masking and enter the same dictionary name that you defined for
the LoginID Employees table. The Integration Service retrieves the LoginID values from the storage table.

Create a default expression to use when the Integration Service cannot find a row in the storage table for
LoginID. The Computer_Users table does not have the FirstName or LastName columns, so the expression
creates a less meaningful LoginID.

Storage Table Scripts

Informatica provides scripts that you can run to create the storage table. The scripts are in the following
location:

<PowerCenter installation directory>\client\bin\Extensions\DataMasking

The directory contains a script for Sybase, Microsoft SQL Server, IBM DB2, and Oracle databases. Each script
is named <Expression_<database type>.

Rules and Guidelines for Expression Masking

Use the following rules and guidelines for expression masking:

¢ You cannot use the output from an expression as input to another expression. If you manually add the
output port name to the expression, you might get unexpected results.

e Use the point-and-click method to build expressions. Select functions, ports, variables, and operators from
the point-and-click interface to minimize errors when you build expressions.

* |f the Data Masking transformation is configured for repeatable masking, and the storage table does not
exist, the Integration Service substitutes the source data with default values.

Expression Masking 143

RELATED TOPICS:

e “Using the Expression Editor” on page 32

Special Mask Formats

The following types of masks retain the format of the original data:

e Social Security numbers
e Credit card numbers

e Phone numbers

e URL addresses

e Email addresses

o |P addresses

e Social Insurance numbers

The Data Masking transformation replaces sensitive data with masked values in a realistic format. For
example, when you mask an SSN, the Data Masking transformation returns an SSN that is in the correct
format but is not valid.

When the source data format or datatype is invalid for a mask, the Integration Service applies a default mask
to the data. The Integration Service applies masked values from the default value file. You can edit the
default value file to change the default values.

RELATED ToOPICS:

e “Default Value File” on page 149

Social Security Number Masking

The Data Masking transformation generates a Socail Security Number that is not valid based on the latest
High Group List from the Social Security Administration. The High Group List contains valid numbers that the
Social Security Administration has issued. The Data Masking transformation accesses the latest High Group
List from the following location:

<Installation Directory>\infa shared\SrcFiles\highgroup.txt

The Data Masking transformation generates SSN numbers that are not on the High Group List. The Social
Security Administration updates the High Group List every month. Download the latest version of the list from
the following location:

http://www.socialsecurity.gov/employer/ssns/highgroup.txt

Social Security Number Format

The Data Masking transformation accepts any SSN format that contains nine digits. The digits can be
delimited by any set of characters. For example, the Data Masking transformation accepts the following
format: +=54-%99445#789-,* () ".

144 Chapter 5: Data Masking Transformation

Area Code Requirement

The Data Masking transformation returns a Social Security Number that is not valid with the same format as

the source. The first three digits of the SSN define the area code. The Data Masking transformation does not
mask the area code. It masks the group number and serial number. The source SSN must contain a valid area
code. The Data Masking transformation locates the area code on the High Group List and determines a range
of unused numbers that it can apply as masked data. If the SSN is not valid, the Data Masking transformation
does not mask the source data.

Repeatable Social Security Number Masking

You can configure repeatable masking for Social Security numbers. To configure repeatable masking for
Social Security numbers, click Repeatable Output and choose Seed Value or Mapping Parameter.

When you choose Seed Value, the Designer assigns a random number as the seed. To produce the same
Social Security number in different source data, change the seed value in each Data Masking transformation
to match the seed value for the Social Security number in the other transformations. If you defined the Data
Masking transformation in a mapping, you can configure a mapping parameter for the seed value.

The Data Masking transformation returns deterministic Social Security numbers with repeatable masking.
The Data Masking transformation cannot return all unique Social Security numbers because it cannot return
valid Social Security numbers that the Social Security Administration has issued.

Credit Card Number Masking

Credit card masking applies a built-in mask format to disguise credit card numbers. You can input multiple
credit card number formats. Optionally, you can replace the credit card issuer.

The PowerCenter Integration Service generates a logically valid credit card number when it masks a valid
credit card number. The length of the source credit card number must be from 13 through 19 digits. The input
credit card number must have a valid checksum based on credit card industry rules.

The source credit card number can contain numbers, spaces, and hyphens. If the credit card has incorrect
characters or is the wrong length, the Integration Service writes an error to the session log. The PowerCenter
Integration Service applies a default credit card number mask when the source data is not valid.

You can configure credit card masking to keep or replace the first six digits of a credit card number.
Together, these digits identify the credit card issuer. If you replace the credit card issuer, you can specify
another credit card issuer. You can specify the following credit card issuers:

e American Express
e Discover

e JCB

e MasterCard

e Visa

e Any

If you select Any, the Data Masking transformation returns a combination of all the credit card issuers. If you
mask the credit card issuer, the Data Masking transformation can return nonunique values.

Credit Card Number Masking 145

For example, the CUSTOMER table has the following credit card numbers:

2131 0000 0000 0008
5500 0000 0000 0004
6334 0000 0000 0004

If you select a single credit card issuer, the credit card numbers share all but the last digit. To generate valid
credit card numbers, the Data Masking transformation sets the last digit of each credit card to the same
value.

Phone Number Masking

Email

The Data Masking transformation masks a phone number without changing the format of the original phone
number. For example, the Data Masking transformation can mask the phone number (408)382 0658 as
(607)256 3106.

The source data can contain numbers, spaces, hyphens, and parentheses. The Integration Service does not
mask alphabetic or special characters.

The Data Masking transformation can mask string, integer, and bigint data.

Address Masking

Use the Data Masking transformation to mask the email address that contains string value. The Data
Masking transformation can mask an email address with random ASCII characters or replace the email
address with a realistic email address.

You can apply the following types of masking with email address:
Standard email masking

The Data Masking transformation returns random ASCII characters when it masks an email address. For
example, the Data Masking transformation can mask Georgesmith@yahoo.com as
KtrlupQAPyk@vdSKh.BIC. Default is standard.

Advanced email masking

The Data Masking transformation masks the email address with another realistic email address derived
from the transformation output ports or dictionary columns.

Advanced Email Masking

With advanced email masking, you can mask the email address with another realistic email address. The
Data Masking transformation creates the email address from the dictionary columns or from the
transformation output ports.

You can create the local part in the email address from mapping output ports. Or you can create the local
part in the email address from relational table or flat file columns.

The Data Masking transformation can create the domain name for the email address from a constant value
or from a random value in the domain dictionary.

You can create an advanced email masking based on the following options:

146 Chapter 5: Data Masking Transformation

Email Address Based on a Mapping

You can create an email address based on the Data Masking transformation output ports. Select the
transformation output ports for the first name and the last name column. The Data Masking
transformation masks the first name, the last name, or both names based on the values you specify for
the first and last name length.

Email Address Based on a Dictionary

You can create an email address based on the columns from a dictionary. The dictionary can be a
relational table or flat file.

Select the dictionary columns for the first name and the last name. The Data Masking transformation
masks the first name, the last name, or both names based on the values you specify for the first and last
name length. You can also configure an expression to mask the email address. If you configure an
expression, then the Data Masking transformation does not mask based on the length of the first name
or last name column.

Configuration Parameters for an Advanced Email Address Masking Type
Specify configuration parameters when you configure advanced email address masking.

You can specify the following configuration paramters:

Delimiter

You can select a delimiter, such as a dot, hyphen, or underscore, to separate the first name and last
name in the email address. If you do not want to separate the first name and last name in the email
address, leave the delimiter as blank.

FirstName Column

Select a Data Masking transformation output port or a dictionary column to mask the first name in the
email address.

LastName Column

Select a Data Masking transformation output port or a dictionary column to mask the last name in the
email address.

Length for the FirstName or LastName columns

Restricts the character length to mask for the first name and the last name columns. For example, the
input data is Timothy for the first name and Smith for the last name. Select 5 as the length of the first
name column. Select 1 as the length of the last name column with a dot as the delimiter. The Data
Masking transformation generates the following email address:

timot.s@<domain name>
DomainName

You can use a constant value, such as gmail.com, for the domain name. Or, you can specify another
dictionary file that contains a list of domain names. The domain dictionary can be a flat file or a
relational table.

Expressions for the Advanced Email Address Masking Type
You can use expression functions when you select dictionary columns to create an email address.

To configure an expression for the advanced email masking type, choose columns to form the email address
from the dictionary. You can then configure the expression with the dictionary columns, the transformation
ports, or with both the dictionary columns and the transformation ports.

Email Address Masking 147

The dictionary ports are listed in the following syntax in the Expression Editor:

<Input string mapping port> Dictionary <dictionary column name>

Social Insurance Number Masking

The Data Masking transformation masks a Social Insurance number that is nine digits. The digits can be
delimited by any set of characters.

If the number contains no delimiters, the masked number contains no delimiters. Otherwise the masked
number has the following format:

XXX -XXX-XXX

SIN Start Digit

You can define the first digit of the masked SIN.

Enable Start Digit and enter the digit. The Data Masking transformation creates masked SIN numbers that
start with the number that you enter.

Repeatable SIN Numbers

You can configure the Data Masking transformation to return repeatable SIN values. When you configure a
port for repeatable SIN masking, the Data Masking transformation returns deterministic masked data each
time the source SIN value and seed value are the same.

To return repeatable SIN numbers, enable Repeatable Values and enter a seed number. The Data Masking
transformation returns unique values for each SIN.

IP Address Masking

The Data Masking transformation masks an IP address as another IP address by splitting it into four
numbers, separated by a period. The first number is the network. The Data Masking transformation masks
the network number within the network range.

The Data Masking transformation masks a Class A IP address as a Class A IP Address and a 10.x.x.x address
as a 10.x.x.x address. The Data Masking transformation does not mask the class and private network
address. For example, the Data Masking transformation can mask 11.12.23.34 as 75.32.42.52. and
10.23.24.32 as 10.61.74.84.

Note: When you mask many IP addresses, the Data Masking transformation can return nonunique values
because it does not mask the class or private network of the IP addresses.

URL Address Masking

148

Chapter 5: Data Masking Transformation

The Data Masking transformation parses a URL by searching for the “://’ string and parsing the substring to
the right of it. The source URL must contain the "://’ string. The source URL can contain numbers and
alphabetic characters.

The Data Masking transformation does not mask the protocol of the URL. For example, if the URL is
http://www.yahoo.com, the Data Masking transformation can return http://MgL.aHjCa.VsD/. The Data
Masking transformation can generate a URL that is not valid.

Note: The Data Masking transformation always returns ASCII characters for a URL.

Default Value File

When the source data format or datatype is not valid for a mask, the Integration Service applies a default
mask to the data. The Integration Service applies masked values from the default value file. You can edit the
default value file to change the default values.

The default value file is an XML file in the following location:
<PowerCenter Installation Directory>\infa shared\SrcFiles\defaultValue.xml
The defaultValue.xml file contains the following name-value pairs:

<?xml version="1.0" standalone="yes" ?>
<defaultValue

default char = "X"

default digit = "9"

default date = "11/11/1111 00:00:00"
default email = "abc@xyz.com"
default ip = "99.99.9.999"

default url = "http://www.xyz.com"
default phone = "999999999"

default ssn = "999-99-9999"

default cc = "9999 9999 9999 9999"
default seed = "500"
/>

Data Masking Transformation Session Properties

You can configure Data Masking transformation session properties to increase performance.
Configure the following session properties:
Cache Size

The size of the dictionary cache in main memory. Increase the memory size in order to improve
performance. Minimum recommended size is 32 MB for 100,000 records. Default is 8 MB.

Cache Directory

The location of the dictionary cache. You must have write permissions for the directory. Default is
$PMCacheDir.

Shared Storage Table

Enables sharing of the storage table between Data Masking transformation instances. Enable Shared
Storage Table when two Data Masking transformation instances use the same dictionary column for the
database connection, seed value, and locale. You can also enable the shared storage table when two
ports in the same Data Masking transformation use the same dictionary column for the connection,

Default Value File 149

seed, and locale. Disable the shared storage table when Data Masking transformations or ports do not
share the dictionary column. Default is disabled.

Storage Commit Interval

The number of rows to commit at a time to the storage table. Increase the value to increase
performance. Configure the commit interval when you do not configure the shared storage table. Default
is 100,000.

Encrypt Storage

Encrypts storage tables, such as IDM_SUBSTITUTION_STORAGE and IDM_EXPRESSION_STORAGE.
Verify that you have encrypted data in storage tables before you enable the encrypt storage property.
Clear this option if you do not want to encrypt the storage tables. Default is disabled.

Storage Encryption Key

The Data Masking transformation encrypts the storage based on the storage encryption key. Use the
same encryption key for each session run of the same Data Masking transformation instance.

Rules and Guidelines for Data Masking
Transformations

Use the following rules and guidelines when you configure a Data Masking transformation:

¢ The Data Masking transformation does not mask null values. If the source data contains null values, the
Data Masking transformation returns null values. To replace null values, add an upstream transformation
that allows user-defined default values for input ports.

* When the source data format or datatype is not valid for a mask, the Integration Service applies a default
mask to the data. The Integration Service applies masked values from a default values file.

¢ The Data Masking transformation returns an invalid Social Security number with the same format and
area code as the source. If the Social Security Administration has issued more than half of the numbers
for an area, the Data Masking transformation might not be able to return unique invalid Social Security
numbers with key masking.

150 Chapter 5: Data Masking Transformation

CHAPTER 6

Data Masking Examples

This chapter includes the following topics:

e Name and Address Lookup Files, 151

e Substituting Data with the Lookup Transformation, 151

e Masking Data with an Expression Transformation, 154

Name and Address Lookup Files

The Data Masking installation includes several flat files that contain names, addresses, and company names

for masking data. You can configure a Lookup transformation to retrieve random first names, last names, and
addresses from these files.

When you install the Data Masking server component, the installer places the following files in the server
\infa_ shared\LkpFiles folder:

e Address.dic. Flat file of addresses. Each record has a serial number, street, city, state, zip code, and
country.

e Company_names.dic. Flat file of company names. Each record has a serial number and company name.
e Firstnames.dic. Flat file of first names. Each record has a serial number, name, and gender code.

e Surnames.dic. Flat file of last names. Each record has a serial number and a last name.

Substituting Data with the Lookup Transformation

You can substitute a column of data with similar but unrelated data. Substitution is an effective way to mask
sensitive data with a realistic looking data.

The following example shows how to configure multiple Lookup transformations to retrieve test data and
substitute it for source data. Create a Data Masking mapping to mask the sensitive fields in
CUSTOMERS_PROD table.

The example includes the following types of masking:

¢ Name and address substitution from Lookup tables
¢ Key masking

e Blurring

151

e Special mask formats

Note: This example is the M_CUSTOMERS_MASKING.xml| mapping that you can import to your repository
from the client\samples folder.

A customer database table called Customers_Prod contains sensitive data. You want to use the customer
data in a test scenario, but you want to maintain security. You mask the data in each column and write the
test data to a target table called Customers_Test.

The Customers_Prod table contains the following columns:

Column Datatype
CustID Integer
FullName String
Address String
Phone String
Fax String
CreatedDate Date
Email String
SSN String
CreditCard String

You can create a mapping that looks up substitute values in dictionary files. The Data Masking
transformation masks the customer data with values from the dictionary files. The files include a first name
file, a surname file, and an address file.

The following table lists the files that are located in the server\infa shared\LkpFiles folder:

File Number of Fields Description
Records
Firstnames.dic 21,000 SNO, Gender, Alphabetical list of first names. The serial number
Firstname goes from 1 to 21,000. Gender indicates whether the

name is male or female.

Surnames.dic 81,000 SNO, Surname Alphabetical list of last names. The serial number goes
from 1 to 81,000.

Address.dic 13,000 SNO, Street, List of complete addresses. The serial number goes
City, State, Zip, from 1 to 13,000.
Country

Note: Informatica includes the gender column in the Firstnames.dic file so you can create separate lookup
source files by gender. You can use the gender column in a lookup condition if you need to mask with a male
name and a female name with a female name.

152 Chapter 6: Data Masking Examples

The following figure shows the mapping that you can import:

LEP_FIRSTHA
MES

LKP_SURMAME

aie S i
- -4
[rata_tasking CUSTOMERS_

@ TEST [Qracle)
o

LKP_ADDRESS

EXFTRANS

CUSTOMERS_ SO0_CUSTOME
PROD (Dracle) R5_FROD

The mapping has the following transformations along with a source and target:

e Source Qualifier. Passes customer data to the Data Masking transformation. It passes the CustID column
to multiple ports in the transformation:

- CustID. Customer number.

- Randid1. Random number generator for first name lookups.
- Randid2. Random number generator for last name lookups.
- Randid3. Random number generator for address lookups.

+ Data Masking transformation. Creates random numbers to look up the replacement first name, last name,
and address. Applies special mask formats to the phone number, fax, email address, and credit card
number. The Data Masking transformation masks the following columns:

Input Port Masking Masking Rules Description Output Destination
Type
CustID Key Seed =934 CustID is the primary key Customers_Test
column. It must be masked
with a random number that is
repeatable and deterministic.
Randid1 Random Range Random number for first name LKUP_Firstnames
Minimum = 0 lookup in the LKUP_Firstnames
Maximum = 21000 transformation.
Randid2 Random Range Random number for last name LKUP_Surnames
Minimum = 0 lookup in the LKUP_Surnames
Maximum = 13000 transformation.
Randid3 Random Range Random number for address LKUP_Address
Minimum = 0 lookup in the LKUP_Address
Maximum = 81000 transformation.
Phone Phone Phone number has the same Customers_Test
format as the source phone
number.

Substituting Data with the Lookup Transformation 153

Input Port Masking Masking Rules Description Output Destination
Type
Fax Phone - Phone number has the same Customers_Test
format as the source phone
number.
CreatedDate Random Blurring Random date that is within a Customers_Test
Unit = Year year of the source year.
Low Bound =1
High Bound =1
Email Email - Email address has the same Customers_Test
Address format as the original.
SSN SSN - SSN is not in the highgroup.txt Customers_Test
file.
CreditCard Credit Card - Credit card has the same first Customers_Test
six digits as the source and has
a valid checksum.

o LKUP_Firstnames. Performs a flat file lookup on Firstnames.dic. The transformation retrieves the record
with the serial number equal to the random number Randid1. The lookup condition is:

SNO = out RANDIDI
The LKUP_Firstnames transformation passes the masked first name to the Exptrans Expression
transformation.

e LKUP_Surnames. Performs a flat file lookup on the Surnames.dic file. It retrieves the record with the serial
number equal to Randid2. The LKUP_Firstnames transformation passes a masked last name to the
Exptrans Expression transformation.

e Exptrans. Combines the first and last name and returns a full name. The Expression transformation
passes the full name to the Customers_Test target.
The Expression to combine the first and last names is:
FIRSTNAME || ' ' || SURNAME

o LKUP_Address. Performs a flat file lookup on the Address.dic file. It retrieves the address record with the
serial number equal to Randid3. The Lookup transformation passes the columns in the address to the
target.

You can use the Customer_Test table in a test environment.

Masking Data with an Expression Transformation

154

Use the Expression transformation with the Data Masking transformation to maintain a relationship between
two columns after you mask one of the columns.

For example, when you mask account information that contains start and end dates for insurance policies,
you want to maintain the policy length in each masked record. Use a Data Masking transformation to mask
all data except the end date. Use an Expression transformation to calculate the policy length and add the
policy length to the masked start date.

Chapter 6: Data Masking Examples

This example includes the following types of masking:
o Key

e Date blurring

e Number blurring

e Mask formatting

Note: This example is the M_CUSTOMER_ACCOUNTS_MASKING.xm| mapping that you can import to your
repository from the client\samples folder.

A customer database table called Customers_Prod contains sensitive data. You mask the data in each
column and write the test data to a target table called Customers_Test.

Mask the following Customer_Accounts_Prod columns:

Column Datatype
AcctID String
CustID Integer
Balance Double
StartDate Datetime
EndDate Datetime

The following figure shows the mapping that you can import:

[rata_tasking

CUSTOMER_& SO_CUSTOME
CCOUNTS_PR R_ACCOUNTS_
0D [Oracle] FROD

ExXP_MASKEND CUSTOMER_&
DATE CCOUNTS_TES
T [Oracle]

The mapping has following transformations along with a source and target:

e Source Qualifier. Passes the AcctID, CustID, Balance, and Start_Date to the Data Masking transformation.

It passes Start_Date and End_Date columns to an Expression transformation.

« Data Masking transformation. Masks all the columns except End_Date. The Data Masking transformation
passes the masked columns to the target. It passes the policy start date, end date, and the masked start

date to the Expression transformation.

Masking Data with an Expression Transformation

155

156

The Data Masking transformation masks the following columns:

Input Port Masking Masking Rules Description Output Destination
Type
AcctID Random Mask format The first two characters Customer_Account_Test
AA+DDDDD are uppercase alphabetic | target
Result Stri characters. The third
Resf tString character is a dash and
Cﬁp acement is not masked. The last
aracters five characters are
ABCDEFGHIJKLMNO | numbers.
PQRSTUVWXYZ
CustID Key Seed = 934 The seed is 934. The Customer_Account_Test
CustID mask is target
deterministic.
Balance Random Blurring The masked balance is Customer_Account_Test
Percent within ten percent of the | target
Low bound = 10 source balance.
High bound = 10
Start_Date Random Blurring The masked start_date is | Customer_Account_Test
Unit = Year within two years of the target
Low Bound = 2 source date. Exp_MaskEndDatetransform
High Bound = 2 ation

¢ Expression transformation. Calculates the masked end date. It calculates the time between the start and

end dates. It adds the time to the masked start date to determine the masked end date.

The expressions to generate the masked end date are:

DIFF =

DATE DIFF (END DATE,START DATE, 'DD')

out END DATE = ADD_TO DATE (out START DATE, 'DD',DIFF)

The Expression transformation passes out_END_DATE to the target.

Chapter 6: Data Masking Examples

CHAPTER 7

Expression Transformation

This chapter includes the following topics:

e Expression Transformation Overview, 157

e Expression Transformation Components, 157

e Configuring Ports, 158

e Creating an Expression Transformation, 159

Expression Transformation Overview

Use the Expression transformation to calculate values in a single row. For example, you might need to adjust
employee salaries, concatenate first and last names, or convert strings to numbers. You can also use the
Expression transformation to test conditional statements before you pass the results to a target or other
transformations. The Expression transformation is a passive transformation.

Use the Expression transformation to perform non-aggregate calculations. To perform calculations involving
multiple rows, such as sums or averages, use the Aggregator transformation.

The following figure shows a simple mapping with an Expression transformation used to concatenate the
first and last names of employees from the EMPLOYEES table:

Mame Expreszion

FIRST_MAME

LAST_MWAME

EMPLOYEE_MAME | COMCAT(FIRST
IN_OFFICE_PHOME
OUT_OFFICE_PHO... REG_MATCH [I.

-

|| EMPLOVEES_T
1 I Iz‘ [Oracle]

EMPLOYEES [0 SG_EMPLOYEE
racle] 5

You can evaluate expressions that you configure in the Expression Editor.

Expression Transformation Components

You can create an Expression transformation in the Transformation Developer or the Mapping Designer.

157

An Expression transformation contains the following tabs:

Transformation. Enter the name and description of the transformation. The naming convention for an
Expression transformation is EXP_TransformationName. You can also make the transformation reusable.

Ports. Create and configure ports.

Properties. Configure the tracing level to determine the amount of transaction detail reported in the
session log file.

Metadata Extensions. Specify the extension name, datatype, precision, and value. You can also create
reusable metadata extensions.

Configuring Ports

158

You can create and modify ports on the Ports tab.

Configure the following components on the Ports tab:

Port name. Name of the port.
Datatype, precision, and scale. Configure the datatype and set the precision and scale for each port.

Port type. A port can be input, output, input/output, or variable. The input ports receive data and output
ports pass data. The input/output ports pass data unchanged. Variable ports store data temporarily and
can store values across the rows.

Expression. Use the Expression Editor to enter expressions. Expressions use the transformation language,
which includes SQL-like functions, to perform calculations.

Default values and description. Set default value for ports and add description.

Calculating Values

To calculate values for a single row using the Expression transformation, you must include the following
ports:

Input or input/output ports. Provides values used in a calculation. For example, if you need to calculate
the total price for an order, create two input or input/output ports. One port provides the unit price and the
other provides the quantity ordered.

Output ports. Provides the return value of the expression. You enter the expression as a configuration
option for the output port. You can also configure a default value for each port.

You can enter multiple expressions in a single Expression transformation by creating an expression for each
output port. For example, you might want to calculate different types of withholding taxes from each
employee paycheck, such as local and federal income tax, Social Security and Medicare. Since all of these
calculations require the employee salary, the withholding category, and may require the corresponding tax
rate, you can create input/output ports for the salary and withholding category and a separate output port for
each calculation.

Chapter 7: Expression Transformation

Creating an Expression Transformation

Use the following procedure to create an Expression transformation:

1.

2
3.
4

11.
12.
13.
14.

15.
16.
17.
18.

© v © N o

In the Mapping Designer, open a mapping.
Click Transformation > Create. Select Expression transformation.
Enter a name and click Done.

Select and drag the ports from the source qualifier or other transformations to add to the Expression
transformation.

You can also open the transformation and create ports manually.

Double-click on the title bar and click on Ports tab. You can create output and variable ports within the
transformation.

Assign the port datatype, precision, and scale to match the expression return value.
In the Expression section of an output or variable port, open the Expression Editor.
Enter an expression.

Click Validate to verify the expression syntax.

To reflect the latest changes from the expression condition in the test expression section in the right
pane, click Refresh.

In the right pane, enter sample values for the input ports used within the expression.
To evaluate the expression, click Evaluate.

Click OK.

Create reusable transformations on the Transformation tab.

Note: After you make the transformation reusable, you cannot copy ports from the source qualifier or
other transformations. You can create ports manually within the transformation.

Configure the tracing level on the Properties tab.
Add metadata extensions on the Metadata Extensions tab.
Click OK.

Connect the output ports to a downstream transformation or target.

Creating an Expression Transformation

159

CHAPTER 8

External Procedure
Transformation

This chapter includes the following topics:

e External Procedure Transformation Overview, 160

e Configuring External Procedure Transformation Properties, 162

e Developing COM Procedures, 164

e Developing Informatica External Procedures, 171

o Distributing External Procedures, 179

e Development Notes, 180

e Service Process Variables in Initialization Properties, 187

e External Procedure Interfaces, 187

External Procedure Transformation Overview

160

External Procedure transformations operate in conjunction with procedures you create outside of the
Designer interface to extend PowerCenter functionality.

Although the standard transformations provide you with a wide range of options, there are occasions when
you might want to extend the functionality provided with PowerCenter. For example, the range of standard
transformations, such as Expression and Filter transformations, may not provide the functionality you need. If
you are an experienced programmer, you may want to develop complex functions within a dynamic link
library (DLL) or UNIX shared library, instead of creating the necessary Expression transformations in a
mapping.

To get this kind of extensibility, use the Transformation Exchange (TX) dynamic invocation interface built into
PowerCenter. Using TX, you can create an Informatica External Procedure transformation and bind it to an
external procedure that you have developed. You can bind External Procedure transformations to two kinds
of external procedures:

e COM external procedures (available on Windows only)
¢ Informatica external procedures (available on Windows, AlX, Linux, and Solaris)

To use TX, you must be an experienced C, C++, or Visual Basic programmer.

Use multi-threaded code in external procedures.

Code Page Compatibility

When the Integration Service runs in ASCII mode, the external procedure can process data in 7-bit ASCII.
When the Integration Service runs in Unicode mode, the external procedure can process data that is two-way
compatible with the Integration Service code page.

Configure the Integration Service to run in Unicode mode if the external procedure DLL or shared library
contains multibyte characters. External procedures must use the same code page as the Integration Service
to interpret input strings from the Integration Service and to create output strings that contain multibyte
characters.

Configure the Integration Service to run in either ASCIl or Unicode mode if the external procedure DLL or
shared library contains ASCII characters only.

External Procedures and External Procedure Transformations

There are two components to TX: external procedures and External Procedure transformations.

An external procedure exists separately from the Integration Service. It consists of C, C++, or Visual Basic
code written by a user to define a transformation. This code is compiled and linked into a DLL or shared
library, which is loaded by the Integration Service at runtime. An external procedure is “bound” to an External
Procedure transformation.

An External Procedure transformation is created in the Designer. It is an object that resides in the Informatica
repository and serves several purposes:

1. It contains the metadata describing the following external procedure. It is through this metadata that the
Integration Service knows the “signature” (number and types of parameters, type of return value, if any)
of the external procedure.

2. It allows an external procedure to be referenced in a mapping. By adding an instance of an External
Procedure transformation to a mapping, you call the external procedure bound to that transformation.

Note: You can create a connected or unconnected External Procedure.

3. When you develop Informatica external procedures, the External Procedure transformation provides the
information required to generate Informatica external procedure stubs.

External Procedure Transformation Properties

Create reusable External Procedure transformations in the Transformation Developer, and add instances of
the transformation to mappings. You cannot create External Procedure transformations in the Mapping
Designer or Mapplet Designer.

External Procedure transformations return one or no output rows for each input row.

On the Properties tab of the External Procedure transformation, only enter ASCII characters in the Module/
Programmatic Identifier and Procedure Name fields. You cannot enter multibyte characters in these fields.
On the Ports tab of the External Procedure transformation, only enter ASCII characters for the port names.
You cannot enter multibyte characters for External Procedure transformation port names.

External Procedure Transformation Overview 161

COM Versus Informatica External Procedures

The following table describes the differences between COM and Informatica external procedures:

CoM Informatica
Technology Uses COM technology Uses Informatica proprietary technology
Operating System Runs on Windows only Runs on all platforms supported for the Integration

Service: Windows, AlX, HP, Linux, Solaris

Language C, C++, VC++, VB, Perl, VJ++ Only C++

The BankSoft Example

The following sections use an example called BankSoft to illustrate how to develop COM and Informatica
procedures. The BankSoft example uses a financial function, FV, to illustrate how to develop and call an
external procedure. The FV procedure calculates the future value of an investment based on regular
payments and a constant interest rate.

Configuring External Procedure Transformation
Properties

Configure transformation properties on the Properties tab.

The following table describes the External Procedure transformation properties:

Property Description

Type Type of external procedure. Use the following types:
- COM
- Informatica

Default is Informatica.

Module/Programmatic A module is a base name of the DLL (on Windows) or the shared object (on UNIX) that
Identifier contains the external procedures. It determines the name of the DLL or shared object on
the operating system.

Enter ASCII characters only.

A programmatic identifier, or ProglD, is the logical name for a class. In the Designer, you
refer to COM classes through ProgIDs. Internally, classes are identified by numeric
CLSID's. For example:

{33B17632-1D9F-11D1-8790-0000C044ACF9}

The standard format of a ProglID is Project.Class][. Version].
Enter ASCII characters only.

Procedure Name Name of the external procedure. Enter ASCII characters only.

162 Chapter 8: External Procedure Transformation

Property Description

Runtime Location Location that contains the DLL or shared library. Enter a path relative to the Integration
Service node that runs the External Procedure session. If you enter SPMExtProcDir, then
the Integration Service looks in the directory specified by the process variable
SPMExtProcDir to locate the library.

If this property is blank, the Integration Service uses the environment variable defined on
the on the Integration Service node to locate the DLL or shared library.

You can hard code a path as the Runtime Location. This is not recommended since the
path is specific to a single machine only.

You must copy all DLLs or shared libraries to the runtime location or to the environment
variable defined on the Integration Service node. The Integration Service fails to load the
procedure when it cannot locate the DLL, shared library, or a referenced file.

Default is SPMExtProcDir.

Tracing Level Amount of transaction detail reported in the session log file. Use the following tracing
levels:

- Terse

- Normal

- Verbose Initialization
- Verbose Data
Default is Normal.

Is Partitionable Indicates if you can create multiple partitions in a pipeline that uses this transformation.
Use the following values:

- No. The transformation cannot be partitioned. The transformation and other
transformations in the same pipeline are limited to one partition.

- Locally. The transformation can be partitioned, but the Integration Service must run all
partitions in the pipeline on the same node. Choose Local when different partitions of the
BAPI/RFC transformation must share objects in memory.

- Across Grid. The transformation can be partitioned, and the Integration Service can
distribute each partition to different nodes.

Default is No.

Output is Repeatable Indicates whether the transformation generates rows in the same order between session
runs. The Integration Service can resume a session from the last checkpoint when the
output is repeatable and deterministic. Use the following values:

- Always. The order of the output data is consistent between session runs even if the
order of the input data is inconsistent between session runs.

- Based on Input Order. The transformation produces repeatable data between session
runs when the order of the input data from all input groups is consistent between
session runs. If the input data from any input group is not ordered, then the output is
not ordered.

- Never. The order of the output data is inconsistent between session runs. You cannot
configure recovery to resume from the last checkpoint if a transformation does not
produce repeatable data.

Default is Based on Input Order.

Output is Deterministic Indicates whether the transformation generates consistent output data between session
runs. You must enable this property to perform recovery on sessions that use this
transformation.

Default is disabled.

Warning: If you configure a transformation as repeatable and deterministic, it is your responsibility to ensure
that the data is repeatable and deterministic. If you try to recover a session with transformations that do not

Configuring External Procedure Transformation Properties 163

Developing COM Procedures

164

produce the same data between the session and the recovery, the recovery process can result in corrupted
data.

The following table describes the environment variables the Integration Service uses to locate the DLL or
shared object on the various platforms for the runtime location:

Table 1. Environment Variables

Operating System

Environment Variable

Windows PATH

AIX LIBPATH

HPUX SHLIB_PATH

Linux LD_LIBRARY_PATH
Solaris LD_LIBRARY_PATH

You can develop COM external procedures using Microsoft Visual C++ or Visual Basic. The following sections
describe how to create COM external procedures using Visual C++ and how to create COM external

procedures using Visual Basic.

Steps for Creating a COM Procedure

To create a COM external procedure, complete the following steps:

1.
2.

w

© N o o &

Using Microsoft Visual C++ or Visual Basic, create a project.

Define a class with an IDispatch interface.

Add a method to the interface. This method is the external procedure that will be invoked from inside the

Integration Service.

Compile and link the class into a dynamic link library.

Register the class in the local Windows registry.

Import the COM procedure in the Transformation Developer.

Create a mapping with the COM procedure.

Create a session using the mapping.

COM External Procedure Server Type

The Integration Service only supports in-process COM servers, which have Server Type: Dynamic Link Library.
This is done to enhance performance. It is more efficient when processing large amounts of data to process
the data in the same process, instead of forwarding it to a separate process on the same machine or a

remote machine.

Chapter 8: External Procedure Transformation

Using Visual C++ to Develop COM Procedures

C++ developers can use Visual C++ version 5.0 or later to develop COM procedures. The first task is to create
a project.

RELATED ToOPICS:

e “Distributing External Procedures” on page 179

e “Wrapper Classes for Pre-Existing C/C++ Libraries or VB Functions” on page 182

Step 1. Create an ATL COM AppWizard Project

Launch Visual C++ and click File > New.
In the dialog box that appears, select the Projects tab.
Enter the project name and location.

In the BankSoft example, you enter COM_VC_Banksoft as the project name, and ¢:\COM_VC_Banksoft as
the directory.

Select the ATL COM AppWizard option in the projects list box and click OK.

A wizard used to create COM projects in Visual C++ appears.

Set the Server Type to Dynamic Link Library, select the Support MFC option, and click Finish.
The final page of the wizard appears.

Click OK to return to Visual C++.

Add a class to the new project.

On the next page of the wizard, click the OK button. The Developer Studio creates the basic project files.

Step 2. Add an ATL Object to a Project

1.

In the Workspace window, select the Class View tab, right-click the tree item COM_VC_BankSoft.BSoftFin
classes, and choose New ATL Object from the local menu that appears.

Highlight the Objects item in the left list box and select Simple Object from the list of object types.
Click Next.
In the Short Name field, enter a short name for the class you want to create.

In the BankSoft example, use the name BSoftFin, since you are developing a financial function for the
fictional company BankSoft. As you type into the Short Name field, the wizard fills in suggested names in
the other fields.
Enter the programmatic identifier for the class.
In the BankSoft example, change the ProglID (programmatic identifier) field to
COM_VC_BankSoft.BSoftFin.
A programmatic identifier, or ProglD, is the human-readable name for a class. Internally, classes are
identified by numeric CLSID's. For example:

{33B17632-1D9F-11D1-8790-0000C044ACF9}

The standard format of a ProgID is Project.Class][.Version]. In the Designer, you refer to COM classes
through ProgIDs.

Select the Attributes tab and set the threading model to Free, the interface to Dual, and the aggregation
setting to No.

Click OK.

Developing COM Procedures 165

Now that you have a basic class definition, you can add a method to it.

Step 3. Add the Required Methods to the Class

1. Return to the Classes View tab of the Workspace Window.

2. Expand the tree view.
For the BankSoft example, you expand COM_VC_BankSoft.

3. Right-click the newly-added class.
In the BankSoft example, you right-click the IBSoftFin tree item.

4. Click the Add Method menu item and enter the name of the method.
In the BankSoft example, you enter FV.

5. Inthe Parameters field, enter the signature of the method.

For FV, enter the following:

] double Rate,

] long nPeriods,

] double Payment,

] double PresentValue,
] long PaymentType,
ut, retval] double* FV

[in
[in
[in
[in
[in
[o

This signature is expressed in terms of the Microsoft Interface Description Language (MIDL). For a
complete description of MIDL, see the MIDL language reference. Note that:

e [in] indicates that the parameter is an input parameter.
o [out] indicates that the parameter is an output parameter.
¢ [out, retval] indicates that the parameter is the return value of the method.

Also, all [out] parameters are passed by reference. In the BankSoft example, the parameter FV is a
double.

6. Click OK.
The Developer Studio adds to the project a stub for the method you added.

Step 4. Fill Out the Method Stub with an Implementation

1. In the BankSoft example, return to the Class View tab of the Workspace window and expand the
COM_VC_BankSoft classes item.

2. Expand the CBSoftFin item.
3. Expand the IBSoftFin item under the above item.
4. Right-click the FV item and choose Go to Definition.
5. Position the cursor in the edit window on the line after the TODO comment and add the following code:
double v = pow((l + Rate), nPeriods);
*FV = - (
(PresentValue * v) +
(Payment * (1 + (Rate * PaymentType))) * ((v - 1) / Rate)

)i
Since you refer to the pow function, you have to add the following preprocessor statement after all other
include statements at the beginning of the file:

#include <math.h>

The final step is to build the DLL. When you build it, you register the COM procedure with the Windows
registry.

166 Chapter 8: External Procedure Transformation

Step 5. Build the Project

1. Pull down the Build menu.
2. Select Rebuild All.

As Developer Studio builds the project, it generates the following output:

Performing MIDL step
Microsoft (R) MIDL Compiler Version 3.01.75
Copyright (c) Microsoft Corp 1991-1997. All rights reserved.
Processing .\COM VC BankSoft.idl
COM VC BankSoft.idl
Processing C:\msdev\VC\INCLUDE\oaidl.idl
oaidl.idl
Processing C:\msdev\VC\INCLUDE\objidl.idl
objidl.idl
Processing C:\msdev\VC\INCLUDE\unknwn.idl
unknwn.idl
Processing C:\msdev\VC\INCLUDE\wtypes.idl
wtypes.idl
Processing C:\msdev\VC\INCLUDE\ocidl.idl
ocidl.idl
Processing C:\msdev\VC\INCLUDE\oleidl.idl
oleidl.idl
Compiling resources...
Compiling...
StdAfx.cpp
Compiling...
COM_VC BankSoft.cpp
BSoftFin.cpp
Generating Code...
Linking...

Creating library Debug/COM VC BankSoft.lib and object Debug/COM VC BankSoft.exp
Registering ActiveX Control...

RegSvr32: DllRegisterServer in .\Debug\COM VC BankSoft.dll succeeded.
COM VC BankSoft.dll - 0 error(s), 0 warning(s)

Notice that Visual C++ compiles the files in the project, links them into a dynamic link library (DLL) called
COM_VC_BankSoft.DLL, and registers the COM (ActiveX) class COM_VC_BankSoft.BSoftFin in the local
registry.

Developing COM Procedures 167

168

Once the component is registered, it is accessible to the Integration Service running on that host.

Step 6. Register a COM Procedure with the Repository

1. Open the Transformation Developer.
2. Click Transformation > Import External Procedure.
The Import External COM Method dialog box appears.
3. Click the Browse button.
4. Select the COM DLL you created and click OK.
In the Banksoft example, select COM_VC_Banksoft.DLL.
5. Under Select Method tree view, expand the class node (in this example, BSoftFin).
6. Expand Methods.
7. Select the method you want (in this example, FV) and press OK.
The Designer creates an External Procedure transformation.
8. Open the External Procedure transformation, and select the Properties tab.
Enter the Module/Programmatic Identifier and Procedure Name fields.
9. Click the Ports tab.
10. Enter the Port names.
11. Click OK.

Step 7. Create a Source and a Target for a Mapping

Use the following SQL statements to create a source table and to populate this table with sample data:

create table FVInputs(
Rate float,
nPeriods int,
Payment float,
PresentValue float,
PaymentType int

)

insert into FVInputs values (.005,10,-200.00,-500.00,1)
insert into FVInputs values (.01,12,-1000.00,0.00,0)

insert into FVInputs values (.11/12,35,-2000.00,0.00,1)
insert into FVInputs values (.005,12,-100.00,-1000.00,1)

Use the following SQL statement to create a target table:

create table FVOutputs(
FVin ext proc float,
)

Use the Source Analyzer and the Target Designer to import FVInputs and FVOutputs into the same folder as
the one in which you created the COM_BSFV transformation.

Step 8. Create a Mapping to Test the External Procedure Transformation
Now create a mapping to test the External Procedure transformation:

1. Inthe Mapping Designer, create a mapping named Test_BSFV.
2. Drag the source table FVInputs into the mapping.
3. Drag the target table FVOutputs into the mapping.

Chapter 8: External Procedure Transformation

4. Drag the transformation COM_BSFV into the mapping.

5. Connect the Source Qualifier transformation ports to the External Procedure transformation ports as
appropriate.

6. Connect the FV port in the External Procedure transformation to the FVIn_ext_proc target column.
7. Validate and save the mapping.

The following figure shows the complete mapping:

FYinputs (Micro
=oft SGL Server

Datat...

MName

Datat...
Rate double [P =—p*| Rate double Fyin_ext_proc float
nPeriods integer | * #|*| nPeriods integer
Fayment double [*] #|*| Payment douhle
Presentvalue double || #|*| Presentyalue double
PaymentType integer || #|*| PaymentType integer

F double

Step 9. Start the Integration Service

Start the Integration Service. The service must be started on the same host as the one on which the COM
component was registered.

Step 10. Run a Workflow to Test the Mapping
When the Integration Service runs the session in a workflow, it performs the following functions:

e Uses the COM runtime facilities to load the DLL and create an instance of the class.

e Uses the COM IDispatch interface to call the external procedure you defined once for every row that
passes through the mapping.

Note: Multiple classes, each with multiple methods, can be defined within a single project. Each of these
methods can be invoked as an external procedure.

To run a workflow to test the mapping:

1. Inthe Workflow Manager, create the session s_Test_BSFV from the Test_BSFV mapping.
2. Create a workflow that contains the session s_Test_BSFV.

3. Run the workflow. The Integration Service searches the registry for the entry for the
COM_VC_BankSoft.BSoftFin class. This entry has information that allows the Integration Service to
determine the location of the DLL that contains that class. The Integration Service loads the DLL, creates
an instance of the class, and invokes the FV function for every row in the source table.

When the workflow finishes, the FVOutputs table should contain the following results:
FVIn _ext proc
2581.403374

12682.503013

Developing COM Procedures 169

170

FVIn ext proc
82846.246372

2301.401830

Developing COM Procedures with Visual Basic

Microsoft Visual Basic offers a different development environment for creating COM procedures. While the
Basic language has different syntax and conventions, the development procedure has the same broad
outlines as developing COM procedures in Visual C++.

RELATED TOPICS:

o “Distributing External Procedures” on page 179

e “Wrapper Classes for Pre-Existing C/C++ Libraries or VB Functions” on page 182

Step 1. Create a Visual Basic Project with a Single Class

1. Launch Visual Basic and click File > New Project.

2. Inthe dialog box that appears, select ActiveX DLL as the project type and click OK.
Visual Basic creates a new project named Project1.
If the Project window does not display, type Ctrl+R, or click View > Project Explorer.
If the Properties window does not display, press F4, or click View > Properties.

3. Inthe Project Explorer window for the new project, right-click the project and choose Project1 Properties
from the menu that appears.

4. Enter the name of the new project.

In the Project window, select ProjectT and change the name in the Properties window to
COM_VB_BankSoft.

Step 2. Change the Names of the Project and Class

1. Inside the Project Explorer, select the “Project — Project1” item, which should be the root item in the tree
control. The project properties display in the Properties Window.

2. Select the Alphabetic tab in the Properties Window and change the Name property to COM_VB_BankSoft.
This renames the root item in the Project Explorer to COM_VB_BankSoft (COM_VB_BankSoft).

3. Expand the COM_VB_BankSoft (COM_VB_BankSoft) item in the Project Explorer.

4. Expand the Class Modules item.

5. Select the Class1 (Class1) item. The properties of the class display in the Properties Window.
6. Select the Alphabetic tab in the Properties Window and change the Name property to BSoftFin.

By changing the name of the project and class, you specify that the programmatic identifier for the class you
create is “COM_VB_BankSoft.BSoftFin.” Use this ProgID to refer to this class inside the Designer.

Step 3. Add a Method to the Class

Place the pointer inside the Code window and enter the following text:

Public Function FV(_

Chapter 8: External Procedure Transformation

Rate As Double,
nPeriods As Long, _
Payment As Double, _
PresentValue As Double,
PaymentType As Long _

) As Double
Dim v As Double

v = (1 + Rate) "~ nPeriods
