
Informatica® PowerCenter
10.5

Web Services Provider Guide

Informatica PowerCenter Web Services Provider Guide
10.5
March 2021

© Copyright Informatica LLC 1999, 2022

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

Informatica, the Informatica logo, and PowerCenter are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions throughout
the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product names may be
trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties, including without limitation: Copyright DataDirect Technologies. All rights
reserved. Copyright © Sun Microsystems. All rights reserved. Copyright © RSA Security Inc. All Rights Reserved. Copyright © Ordinal Technology Corp. All rights
reserved. Copyright © Aandacht c.v. All rights reserved. Copyright Genivia, Inc. All rights reserved. Copyright Isomorphic Software. All rights reserved. Copyright © Meta
Integration Technology, Inc. All rights reserved. Copyright © Intalio. All rights reserved. Copyright © Oracle. All rights reserved. Copyright © Adobe Systems Incorporated.
All rights reserved. Copyright © DataArt, Inc. All rights reserved. Copyright © ComponentSource. All rights reserved. Copyright © Microsoft Corporation. All rights
reserved. Copyright © Rogue Wave Software, Inc. All rights reserved. Copyright © Teradata Corporation. All rights reserved. Copyright © Yahoo! Inc. All rights reserved.
Copyright © Glyph & Cog, LLC. All rights reserved. Copyright © Thinkmap, Inc. All rights reserved. Copyright © Clearpace Software Limited. All rights reserved. Copyright
© Information Builders, Inc. All rights reserved. Copyright © OSS Nokalva, Inc. All rights reserved. Copyright Edifecs, Inc. All rights reserved. Copyright Cleo
Communications, Inc. All rights reserved. Copyright © International Organization for Standardization 1986. All rights reserved. Copyright © ej-technologies GmbH. All
rights reserved. Copyright © Jaspersoft Corporation. All rights reserved. Copyright © International Business Machines Corporation. All rights reserved. Copyright ©
yWorks GmbH. All rights reserved. Copyright © Lucent Technologies. All rights reserved. Copyright © University of Toronto. All rights reserved. Copyright © Daniel
Veillard. All rights reserved. Copyright © Unicode, Inc. Copyright IBM Corp. All rights reserved. Copyright © MicroQuill Software Publishing, Inc. All rights reserved.
Copyright © PassMark Software Pty Ltd. All rights reserved. Copyright © LogiXML, Inc. All rights reserved. Copyright © 2003-2010 Lorenzi Davide, All rights reserved.
Copyright © Red Hat, Inc. All rights reserved. Copyright © The Board of Trustees of the Leland Stanford Junior University. All rights reserved. Copyright © EMC
Corporation. All rights reserved. Copyright © Flexera Software. All rights reserved. Copyright © Jinfonet Software. All rights reserved. Copyright © Apple Inc. All rights
reserved. Copyright © Telerik Inc. All rights reserved. Copyright © BEA Systems. All rights reserved. Copyright © PDFlib GmbH. All rights reserved. Copyright ©
Orientation in Objects GmbH. All rights reserved. Copyright © Tanuki Software, Ltd. All rights reserved. Copyright © Ricebridge. All rights reserved. Copyright © Sencha,
Inc. All rights reserved. Copyright © Scalable Systems, Inc. All rights reserved. Copyright © jQWidgets. All rights reserved. Copyright © Tableau Software, Inc. All rights
reserved. Copyright© MaxMind, Inc. All Rights Reserved. Copyright © TMate Software s.r.o. All rights reserved. Copyright © MapR Technologies Inc. All rights reserved.
Copyright © Amazon Corporate LLC. All rights reserved. Copyright © Highsoft. All rights reserved. Copyright © Python Software Foundation. All rights reserved.
Copyright © BeOpen.com. All rights reserved. Copyright © CNRI. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/), and/or other software which is licensed under various
versions of the Apache License (the "License"). You may obtain a copy of these Licenses at http://www.apache.org/licenses/. Unless required by applicable law or
agreed to in writing, software distributed under these Licenses is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the Licenses for the specific language governing permissions and limitations under the Licenses.

This product includes software which was developed by Mozilla (http://www.mozilla.org/), software copyright The JBoss Group, LLC, all rights reserved; software
copyright © 1999-2006 by Bruno Lowagie and Paulo Soares and other software which is licensed under various versions of the GNU Lesser General Public License
Agreement, which may be found at http:// www.gnu.org/licenses/lgpl.html. The materials are provided free of charge by Informatica, "as-is", without warranty of any
kind, either express or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

The product includes ACE(TM) and TAO(TM) software copyrighted by Douglas C. Schmidt and his research group at Washington University, University of California,
Irvine, and Vanderbilt University, Copyright (©) 1993-2006, all rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (copyright The OpenSSL Project. All Rights Reserved) and
redistribution of this software is subject to terms available at http://www.openssl.org and http://www.openssl.org/source/license.html.

This product includes Curl software which is Copyright 1996-2013, Daniel Stenberg, <daniel@haxx.se>. All Rights Reserved. Permissions and limitations regarding this
software are subject to terms available at http://curl.haxx.se/docs/copyright.html. Permission to use, copy, modify, and distribute this software for any purpose with or
without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies.

The product includes software copyright 2001-2005 (©) MetaStuff, Ltd. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http://www.dom4j.org/ license.html.

This product includes software copyright © 1996-2006 Per Bothner. All rights reserved. Your right to use such materials is set forth in the license which may be found at
http:// www.gnu.org/software/ kawa/Software-License.html.

This product includes OSSP UUID software which is Copyright © 2002 Ralf S. Engelschall, Copyright © 2002 The OSSP Project Copyright © 2002 Cable & Wireless
Deutschland. Permissions and limitations regarding this software are subject to terms available at http://www.opensource.org/licenses/mit-license.php.

This product includes software developed by Boost (http://www.boost.org/) or under the Boost software license. Permissions and limitations regarding this software
are subject to terms available at http:/ /www.boost.org/LICENSE_1_0.txt.

This product includes software copyright © 1997-2007 University of Cambridge. Permissions and limitations regarding this software are subject to terms available at
http:// www.pcre.org/license.txt.

This product includes software copyright © 2007 The Eclipse Foundation. All Rights Reserved. Permissions and limitations regarding this software are subject to terms
available at http:// www.eclipse.org/org/documents/epl-v10.php and at http://www.eclipse.org/org/documents/edl-v10.php.

This product includes software licensed under the terms at http://www.tcl.tk/software/tcltk/license.html, http://www.bosrup.com/web/overlib/?License, http://
www.stlport.org/doc/ license.html, http://asm.ow2.org/license.html, http://www.cryptix.org/LICENSE.TXT, http://hsqldb.org/web/hsqlLicense.html, http://
httpunit.sourceforge.net/doc/ license.html, http://jung.sourceforge.net/license.txt , http://www.gzip.org/zlib/zlib_license.html, http://www.openldap.org/software/
release/license.html, http://www.libssh2.org, http://slf4j.org/license.html, http://www.sente.ch/software/OpenSourceLicense.html, http://fusesource.com/downloads/
license-agreements/fuse-message-broker-v-5-3- license-agreement; http://antlr.org/license.html; http://aopalliance.sourceforge.net/; http://www.bouncycastle.org/
licence.html; http://www.jgraph.com/jgraphdownload.html; http://www.jcraft.com/jsch/LICENSE.txt; http://jotm.objectweb.org/bsd_license.html; . http://www.w3.org/
Consortium/Legal/2002/copyright-software-20021231; http://www.slf4j.org/license.html; http://nanoxml.sourceforge.net/orig/copyright.html; http://www.json.org/
license.html; http://forge.ow2.org/projects/javaservice/, http://www.postgresql.org/about/licence.html, http://www.sqlite.org/copyright.html, http://www.tcl.tk/
software/tcltk/license.html, http://www.jaxen.org/faq.html, http://www.jdom.org/docs/faq.html, http://www.slf4j.org/license.html; http://www.iodbc.org/dataspace/
iodbc/wiki/iODBC/License; http://www.keplerproject.org/md5/license.html; http://www.toedter.com/en/jcalendar/license.html; http://www.edankert.com/bounce/
index.html; http://www.net-snmp.org/about/license.html; http://www.openmdx.org/#FAQ; http://www.php.net/license/3_01.txt; http://srp.stanford.edu/license.txt;
http://www.schneier.com/blowfish.html; http://www.jmock.org/license.html; http://xsom.java.net; http://benalman.com/about/license/; https://github.com/CreateJS/
EaselJS/blob/master/src/easeljs/display/Bitmap.js; http://www.h2database.com/html/license.html#summary; http://jsoncpp.sourceforge.net/LICENSE; http://
jdbc.postgresql.org/license.html; http://protobuf.googlecode.com/svn/trunk/src/google/protobuf/descriptor.proto; https://github.com/rantav/hector/blob/master/
LICENSE; http://web.mit.edu/Kerberos/krb5-current/doc/mitK5license.html; http://jibx.sourceforge.net/jibx-license.html; https://github.com/lyokato/libgeohash/blob/
master/LICENSE; https://github.com/hjiang/jsonxx/blob/master/LICENSE; https://code.google.com/p/lz4/; https://github.com/jedisct1/libsodium/blob/master/

LICENSE; http://one-jar.sourceforge.net/index.php?page=documents&file=license; https://github.com/EsotericSoftware/kryo/blob/master/license.txt; http://www.scala-
lang.org/license.html; https://github.com/tinkerpop/blueprints/blob/master/LICENSE.txt; http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/
intro.html; https://aws.amazon.com/asl/; https://github.com/twbs/bootstrap/blob/master/LICENSE; https://sourceforge.net/p/xmlunit/code/HEAD/tree/trunk/
LICENSE.txt; https://github.com/documentcloud/underscore-contrib/blob/master/LICENSE, and https://github.com/apache/hbase/blob/master/LICENSE.txt.

This product includes software licensed under the Academic Free License (http://www.opensource.org/licenses/afl-3.0.php), the Common Development and
Distribution License (http://www.opensource.org/licenses/cddl1.php) the Common Public License (http://www.opensource.org/licenses/cpl1.0.php), the Sun Binary
Code License Agreement Supplemental License Terms, the BSD License (http:// www.opensource.org/licenses/bsd-license.php), the new BSD License (http://
opensource.org/licenses/BSD-3-Clause), the MIT License (http://www.opensource.org/licenses/mit-license.php), the Artistic License (http://www.opensource.org/
licenses/artistic-license-1.0) and the Initial Developer’s Public License Version 1.0 (http://www.firebirdsql.org/en/initial-developer-s-public-license-version-1-0/).

This product includes software copyright © 2003-2006 Joe WaInes, 2006-2007 XStream Committers. All rights reserved. Permissions and limitations regarding this
software are subject to terms available at http://xstream.codehaus.org/license.html. This product includes software developed by the Indiana University Extreme! Lab.
For further information please visit http://www.extreme.indiana.edu/.

This product includes software Copyright (c) 2013 Frank Balluffi and Markus Moeller. All rights reserved. Permissions and limitations regarding this software are subject
to terms of the MIT license.

See patents at https://www.informatica.com/legal/patents.html.

DISCLAIMER: Informatica LLC provides this documentation "as is" without warranty of any kind, either express or implied, including, but not limited to, the implied
warranties of noninfringement, merchantability, or use for a particular purpose. Informatica LLC does not warrant that this software or documentation is error free. The
information provided in this software or documentation may include technical inaccuracies or typographical errors. The information in this software and documentation
is subject to change at any time without notice.

NOTICES

This Informatica product (the "Software") includes certain drivers (the "DataDirect Drivers") from DataDirect Technologies, an operating company of Progress Software
Corporation ("DataDirect") which are subject to the following terms and conditions:

1. THE DATADIRECT DRIVERS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.

2. IN NO EVENT WILL DATADIRECT OR ITS THIRD PARTY SUPPLIERS BE LIABLE TO THE END-USER CUSTOMER FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES ARISING OUT OF THE USE OF THE ODBC DRIVERS, WHETHER OR NOT INFORMED OF THE POSSIBILITIES
OF DAMAGES IN ADVANCE. THESE LIMITATIONS APPLY TO ALL CAUSES OF ACTION, INCLUDING, WITHOUT LIMITATION, BREACH OF CONTRACT, BREACH
OF WARRANTY, NEGLIGENCE, STRICT LIABILITY, MISREPRESENTATION AND OTHER TORTS.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2022-02-02

https://www.informatica.com/legal/patents.html

Table of Contents

Preface . 10
Informatica Resources. 10

Informatica Network. 10

Informatica Knowledge Base. 10

Informatica Documentation. 10

Informatica Product Availability Matrices. 11

Informatica Velocity. 11

Informatica Marketplace. 11

Informatica Global Customer Support. 11

Chapter 1: Web Service Concepts. 12
Web Service Concepts Overview. 12

Simple Object Access Protocol (SOAP). 13

Web Services Description Language (WSDL). 13

Chapter 2: Understanding the Web Services Provider. 15
Understanding the Web Services Provider Overview. 15

Web Services Hub. 15

Batch Web Services. 16

Real-time Web Services. 16

Web Services Provider Architecture. 17

Performance and Scalability. 18

Associating Multiple Repositories with a Web Services Hub. 18

Associating a Repository with Multiple Web Services Hub Services. 18

Running Multiple Instances of a Web Service Workflow. 18

Running Web Service Sessions or Workflows on a Grid. 19

Web Services Hub Security. 19

Web Services Hub Logs. 19

Configuring the Logs. 20

Viewing the Logs. 20

SOAP Fault Handling. 20

User-Defined Faults. 20

System Faults. 20

System Fault Schema. 21

Chapter 3: Using the Web Services Hub Console. 23
Using the Web Services Hub Console Overview. 23

Connecting to the Web Services Hub Console. 24

Understanding the Web Services Hub Console. 24

Navigator. 24

4 Table of Contents

Web Services and Operations Sections. 24

Properties Section. 26

Testing a Web Service. 27

Input Message. 27

Testing a Public Web Service or Batch Web Service Operation. 28

Testing a Protected Real-time Web Service. 28

Chapter 4: Batch Web Service Operations. 30
Batch Web Service Operations Overview. 30

Metadata Web Service Operations. 30

getAllDIServers. 31

getAllFolders. 31

getAllRepositories. 31

getAllTaskInstances. 31

getAllWorkflows. 32

Login. 32

Logout. 33

Data Integration Web Service Operations. 33

deinitializeDIServerConnection. 34

getDIServerProperties. 34

getNextLogSegment. 35

getSessionLog. 35

getSessionPerformanceData. 36

getSessionStatistics. 37

getTaskDetails. 37

getTaskDetailsEx. 38

getWorkflowDetails. 39

getWorkflowDetailsEx. 40

getWorkflowLog. 41

initializeDIServerConnection. 41

Login. 42

Logout. 42

monitorDIServer. 43

pingDIServer. 43

recoverWorkflow. 43

resumeWorkflow. 44

scheduleWorkflow. 46

startSessionLogFetch. 47

startTask. 47

startWorkflow. 48

startWorkflowEx. 49

startWorkflowFromTask. 50

startWorkflowLogFetch. 51

Table of Contents 5

stopTask. 52

stopWorkflow. 53

unscheduleWorkflow. 54

waitTillTaskComplete. 55

waitTillWorkflowComplete. 56

Chapter 5: Writing Client Applications. 58
Writing Client Applications Overview. 58

Client Applications for Batch Web Services. 58

Generating Client Proxy Classes. 59

Initialization. 59

Session Maintenance. 59

Operation Calls. 60

Resource Cleanup. 60

Error Handling. 60

Proxy Objects. 60

Java Client Application for Batch Web Services. 60

Generating Client Proxy Classes in Axis. 61

Initialization in Axis. 61

Session Maintenance in Axis. 62

Making Operation Calls in Axis. 63

Clean Up in Axis. 63

Error Handling in Axis. 63

C# Client Application for Batch Web Services. 63

Generating Client Proxy Classes in .NET. 64

Initialization in .NET. 64

Session Maintenance in .NET. 65

Making Operation Calls in .NET. 65

Error Handling in .NET. 65

Client Applications for Real-time Web Services. 66

Web Service Workflows. 66

Generating Client Proxy Classes. 66

Initialization. 67

Operation Calls. 67

Error Handling. 67

Java Client Application for Real-time Web Services. 67

Creating a Client Application for a Real-time Web Service. 68

Using Parameter Arrays. 69

Parameter Array Definition. 70

Rules and Guidelines for Using Parameter Arrays. 71

Adding Security to a Client Request. 72

UsernameToken in the SOAP Request. 72

Plain Text Password. 72

6 Table of Contents

Hashed Password. 73

Digested Password. 74

Chapter 6: Working with Web Service Sources and Targets. 76
Web Service Sources and Targets Overview. 76

Understanding Web Service Sources and Targets. 77

XML Views and Groups. 77

Source Definition. 77

Target Definition. 78

Rules and Guidelines for Importing or Creating Web Service Sources and Targets. 78

Importing a Web Service Source or Target Definition. 79

Import Modes. 80

Message ID. 80

Advanced Options. 80

Importing from a WSDL Without Creating XML Views. 81

Importing a Web Service Source or Target Definition from a WSDL. 81

Creating a Source or Target Definition. 82

Multiple Occurring Elements. 83

Message Ports. 83

Creating a Source or Target from a Relational or Flat File Source or Target. 84

Chapter 7: Editing Web Service Sources and Targets. 86
Editing Web Service Sources and Targets Overview. 86

Editing Definitions in the Designer Workspace. 86

Table Tab. 87

Columns Tab. 87

Attributes Tab. 87

Metadata Extensions Tab. 87

Web Service Definition Tab. 88

Editing Definitions in the WSDL Workspace. 88

Rules and Guidelines for the WSDL Workspace. 88

Chapter 8: Working with Web Service Mappings. 90
Working With Web Service Mappings Overview. 90

Types of Web Service Mappings. 91

Request-Response Mappings. 92

Staged Mappings. 92

Generating a Mapping from a WSDL. 93

Generating a Mapping from a Relational or Flat File Source or Target. 93

Generating a Mapping from a Transformation or Mapplet. 94

Generating a Mapping from a Reusable Transformation. 94

Generating a Mapping from a Mapplet. 95

Generating a Mapping from a Reusable Transformation or a Mapplet. 95

Table of Contents 7

Editing a Target Instance in a Web Service Mapping. 96

Load Scope. 96

Partial Load Recovery. 96

Attachments. 96

Flat File or XML Source and Target Attachments. 97

WSDL Attachments. 97

Chapter 9: Working with Web Service Workflows. 99
Working with Web Service Workflows Overview. 99

Creating and Configuring a Web Service Workflow. 100

Creating a Web Service Workflow. 100

Configuring the Web Service Workflow. 100

Concurrent Execution of Web Service Workflows. 102

Configuring the Web Services Provider Reader and Writer. 103

Configuring the Web Services Provider Reader. 103

Configuring the Web Services Provider Writer. 104

Configuring the Reader and Writer for XML and Flat File Sessions. 106

Configuring Partitions for Web Service Sessions. 106

Troubleshooting Web Service Workflows. 107

Appendix A: Web Service Sample Client Applications. 109
Web Service Sample Client Applications Overview. 109

Using the Batch Web Services Sample Programs. 109

Compiling the Batch Web Services Sample Programs. 110

Running the Batch Web Services Sample Programs. 111

Examples of Batch Web Services. 111

Browsing. 111

Data Integration. 113

Multiple Integration Services. 114

Multithreading. 115

Web Services Hub Test. 115

Using the Real-time Web Services Sample Programs. 116

Step 1. Create the Lookup Tables. 117

Step 2. Import the Mappings and Workflows. 118

Step 3. Modify the Database and Datatypes for the SQL Transformation 118

Step 4. Modify the Database Connection Settings. 119

Step 5. Compile the Real-time Web Service Sample Programs. 119

Step 6. Run the Real-time Web Service Sample Programs. 119

Examples of Real-time Web Services. 119

Multiple Row Lookup. 120

Single Row Lookup. 120

8 Table of Contents

Appendix B: Configure the Web Browser. 122
Configure the Web Browser. 122

Index. 123

Table of Contents 9

Preface
See the PowerCenter® Web Services Provider Guide for information about the Web Services Provider and the
PowerCenter web services hosted by the Web Services Hub. Use the guide to learn how to turn PowerCenter
workflows into web services and to see examples that create client applications that use the web services
available on the Web Services Hub.

Informatica Resources
Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Network
The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:

• Search the Knowledge Base for product resources.

• View product availability information.

• Create and review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

10

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://docs.informatica.com

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

Informatica Product Availability Matrices
Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and
select the eSupport option.

Preface 11

mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com

C h a p t e r 1

Web Service Concepts
This chapter includes the following topics:

• Web Service Concepts Overview, 12

• Simple Object Access Protocol (SOAP), 13

• Web Services Description Language (WSDL), 13

Web Service Concepts Overview
Web services are business functions that operate over the Web. They describe a collection of operations that
are network accessible through standardized XML messaging. The PowerCenter Web Services Provider lets
you integrate the PowerCenter metadata and data integration functionalities and expose them as web
services. You can write applications that can communicate with Integration Services in any language or
platform. You can embed these applications easily in existing components and products.

Web services are based on open standards, such as XML, SOAP, and WSDL, which offer greater
interoperability than traditional proprietary applications.

Examples of web services include business services, such as stock quotes, airline schedules, and credit
checks.

The components that enable web services include:

• Simple Object Access Protocol (SOAP). SOAP is the communications protocol for web services. It is the
specification that defines the XML format for web service messages.

• Web Service Definition Language (WSDL). WSDL is an XML document that describes web service
operations.

• Registry. Directory of published web services. Some web service providers publish services in Universal
Description, Discovery, and Integration (UDDI). Registering a web service in the UDDI is optional.

Note: The PowerCenter Web Services Provider does not use the UDDI registry.

To build a web service client for the PowerCenter Web Services Provider, you select the web service you want
to interface with and retrieve the WSDL for the selected web service. Use a web service tool kit such as Axis
to generate the client proxies. The client proxies contain all of the function calls required to interact with a
web service.

You can determine what functions a web service offers, the data the web service requires, and the location of
the service by examining the WSDL. The WSDL describes the web service interfaces and the operations
available for the service. Use the information in the WSDL to build a client application to use the services.

12

The following figure shows the building blocks of a web service:

Simple Object Access Protocol (SOAP)
SOAP is the communications protocol for web services. It defines the format for web services messages.
SOAP Encoding is used to tell the SOAP runtime environment how to translate from data structures, such as
Java, into SOAP XML. SOAP and the WSDL dictate the communication between web services and their
clients.

A SOAP message contains the following sections:

• SOAP envelope. The envelope defines the framework of the message, including the content of the
message, who or what should handle it, and whether it is optional or mandatory.

• SOAP header. The header is an element of the SOAP envelope that lets you add features to a SOAP
message in a decentralized manner.

• SOAP body. The body is the container for mandatory information that provides a mechanism for
exchanging information with the intended recipient.

Authentication and transaction management are typical examples of extensions that can be implemented as
header entries. The SOAP header helps to process the data in the body of the SOAP message. Information
related to authentication or transactions is usually contained in the header because this information
identifies the entity that sent the SOAP message body and the context in which it will be processed.

Use a SOAP toolkit to create and parse SOAP messages. A SOAP toolkit translates function calls from
another language to a SOAP message. For example, the Apache Axis toolkit translates Java function calls to
SOAP.

Use SOAP to implement web services on different platforms both inside and outside an organization. Each
SOAP implementation supports different function calls and parameters. Therefore, a function that works with
one toolkit may not work with another.

Web Services Description Language (WSDL)
The WSDL is an XML document that describes the protocols and formats used by a web service.

Simple Object Access Protocol (SOAP) 13

The WSDL contains a description of the data to be passed to the web service so that both the sender and the
receiver of the service request understand the data being exchanged. The WSDL elements also contain a
description of the operations to be performed on that data, so that the receiver of a message knows how to
process it, and a binding to a protocol or transport, so that the sender knows how to send it.

You can view and download the WSDL files for the web services hosted by the PowerCenter Web Services
Provider on the Web Services Hub Console.

Related Topics:
• “Using the Web Services Hub Console” on page 23

14 Chapter 1: Web Service Concepts

C h a p t e r 2

Understanding the Web Services
Provider

This chapter includes the following topics:

• Understanding the Web Services Provider Overview, 15

• Web Services Provider Architecture, 17

• Performance and Scalability, 18

• Web Services Hub Security, 19

• Web Services Hub Logs, 19

• SOAP Fault Handling, 20

Understanding the Web Services Provider Overview
The Web Services Provider is the provider entity of the PowerCenter web service framework that makes
PowerCenter workflows and data integration functionality accessible to external clients through web
services.

The Web Services Provider consists of the following components:

• Web Services Hub. An application service in the PowerCenter domain that uses the SOAP standard to
receive requests and send responses to web service clients. The Web Services Hub interacts with the
Integration Service and the Repository Service to process requests and generate responses.

• Batch web services. The Web Services Provider provides a set of web service operations that allow
access to the Integration Service processes and repository metadata.

• Real-time web services. When you enable PowerCenter workflows as web services, you create real-time
web services. When you transform PowerCenter workflows into web services, you can run the workflows
from web service clients.

Web Services Hub
The Web Services Hub is the web service gateway in the PowerCenter domain that allows client applications
access to PowerCenter functionality using web service standards and protocols. With the Web Services Hub,
you can enable PowerCenter workflows as web services. You can also monitor PowerCenter processes and
get repository information.

15

The Web Services Hub allows the data integration processes to remain within the PowerCenter framework,
but handles requests and responses using web service technologies. The Web Services Hub receives
requests from web service clients in the form of SOAP messages and passes them to the Integration Service.
The Integration Service works with the Repository Service to process the requests and sends the results to
the Web Services Hub. The Web Services Hub sends a response back to the web service client in the form of
SOAP messages.

The Web Services Hub provides a Web Services Hub Console where you can manage web services and view
and download the WSDL files for the web services. You can use the WSDL files to create client applications
to access the web services.

The PowerCenter installation includes the Web Services Hub. After you install PowerCenter, use Informatica
Administrator to create a Web Services Hub and enable it as you would other application services in the
domain.

Batch Web Services
The Web Services Provider provides web service operations that you can use to run and monitor workflows
and access metadata information. The web service operations are collectively known as batch web services.
Batch web service operations can provide information about the objects in the repository associated with the
Web Services Hub or connect to the Integration Service to manage the execution of workflows and tasks or
to get information about the workflows and sessions.

Batch web services fall into the following categories:

• Data Integration web services. Use the Data Integration web services to connect to the Integration Service
and run or monitor PowerCenter workflows. Data Integration web services provide operations that allow
you to get details on the Integration Service, schedule and run workflows, start and stop tasks in a
workflow, or monitor and get statistics on sessions.

• Metadata web services. Metadata web services provide operations that retrieve metadata from
PowerCenter repositories. Use the Metadata web services to get information about repository objects
such as folders, workflows, and workflow tasks to help you run and monitor workflows in a repository.

Real-time Web Services
When you initially start the Web Services Hub after installation, no real-time web services are available. You
create real-time web services when you expose PowerCenter workflows as web services. You can create
clients to run a web service workflow and get the results of the workflow process. The web service takes a
SOAP message request and produces a SOAP message response.

You can create a service mapping to receive a message from a web service client, transform it, and write it to
any target that PowerCenter supports. You can also create a web service mapping with both a web service
source and target definition to receive a message request from a web service client, transform the data, and
send the response back to the web service client. The source and target definitions represent service
operations. The source defines the user request and the target defines the response.

After you create a mapping, you can create a web service workflow to run the process defined in the web
service mapping. A web service workflow is a workflow enabled as a web service. Configure the web service
workflow, and add sessions to the workflow. When you save the workflow, the Web Services Hub publishes
the web service on the Web Services Hub Console. The Integration Service can perform parallel processing of
both request-response and one-way services.

16 Chapter 2: Understanding the Web Services Provider

Web Services Provider Architecture
The Web Services Provider consists of the Web Services Hub and the batch and real-time web services
hosted by the Web Services Hub. The Web Services Hub works with the Integration Service and the
Repository Service to process web service requests.

The following figure shows the Web Services Provider architecture:

The Web Services Hub processes requests for real-time web services and batch web services in similar ways.

The following process describes how the Web Services Hub processes web service requests:

1. A web service client sends a SOAP message to the Web Services Hub to run a web service.

2. For batch web services, the Web Services Hub authenticates the web service client based on the session
ID generated during the login.

For protected real-time web services, the Web Services Hub authenticates the web service client based
on the user name token.

3. The Web Services Hub generates a message ID for the request.

If the request is for a real-time web service, the Web Services Hub sends the message to the Integration
Service.

If the request is for a batch web service operation, the Web Services Hub sends the message to the
Integration Service or the Repository Service based on the type of request. For example, if the request is
to run a workflow or to start or stop the Integration Service, the Web Services Hub sends the message to
the Integration Service to process. If the request is to get a list of workflows in a the repository, the Web
Services Hub sends the message to the Repository Service to process.

4. The Integration Service or Repository Service processes the request.

If the request is for a real-time web service, the Integration Service sends the processed data to the Web
Services Hub which uses the message ID to correlate the request with the response.

5. The Web Services Hub sends a SOAP response to the web service client.

The Integration Service and Web Services Hub communicate with the Repository Service throughout the
process.

Web Services Provider Architecture 17

Performance and Scalability
You can run more than one Web Services Hub on a single node. When you run multiple Web Services Hub on
one node, you increase the number of web services that you can run on a node and maximize the use of your
resources.

When you configure the Web Services Hub to run web services in a domain, you can use the following options
to improve performance and provide flexibility and scalability:

• Associate multiple repositories with a Web Services Hub.

• Associate a repository with multiple Web Services Hubs.

• Run multiple instances of a web service workflow.

• Run web service sessions or workflows on a grid.

Associating Multiple Repositories with a Web Services Hub
You can associate more than one repository with a Web Services Hub. When you associate multiple
repositories with a Web Services Hub, the Web Services Hub can run web service workflows located in any of
the associated repositories. This allows you to use one Web Services Hub to run web services that might be
accessed by different users at different times, which maximizes the use of the Web Services Hub.

Associating a Repository with Multiple Web Services Hub Services
You can associate a repository with more than one Web Services Hub. When you associate one repository
with multiple Web Services Hub Services, multiple Web Services Hub Services can run the same web
services.

Use a third party load balancer to manage and distribute requests to the Web Services Hub Services so that
the service request load is balanced across the Web Services Hub Services. A hardware load balancer used in
a production environment can optimize the performance of web services. Set the URL for the load balancer
when you create a Web Services Hub Service in the Administrator tool.

When you use batch web services, the load balancer cannot distribute requests across multiple Web Services
Hub Services. The session ID that the Web Services Hub uses to authenticate the web service client is valid
only for the Web Services Hub where you invoke the login operation. Multiple Web Services Hub Services on
the same or another node cannot use the same session ID for the batch web services operations.

Running Multiple Instances of a Web Service Workflow
If you configure a workflow to run in more than one instance, the Web Services Hub can dynamically start
new instances of the web service to handle as many web service requests as possible. The Web Services Hub
monitors web service usage to determine resource usage and web service processing times. You can set a
threshold for the maximum time the Web Services Hub can take to process requests for a web service. When
processing time exceeds the threshold, the Web Services Hub starts another instance of the web service
workflow to process new requests.

When the number of service requests decreases, the Web Services Hub can dynamically shut down web
service instances to reduce resource usage.

18 Chapter 2: Understanding the Web Services Provider

Related Topics:
• “Concurrent Execution of Web Service Workflows” on page 102

Running Web Service Sessions or Workflows on a Grid
When a PowerCenter domain contains a grid, you can run a web service workflow on a grid. Create the grid
and associate an Integration Service with the grid in the Administrator tool. Then assign the Integration
Service to run the web service workflow.

To run a web service workflow on a grid from a client application, run the web service workflow on the
Integration Service associated with a grid.

You can also enable the session to run on a grid. When a session runs on a grid, the Integration Service
distributes the session threads across the nodes in a grid. To run a session on a grid, add a message ID to
the web service source and target definitions. The Integration Service uses the message ID to associate the
web service input and output messages across the nodes.

Web Services Hub Security
The Web Services Hub has the following levels of security:

• Encryption. The Web Services Hub encrypts the repository login information in the configuration file used
to connect to the repository. You can also run the Web Services Hub in secure mode and use the SSL
protocol for encryption of web service client requests.

• Authentication. For batch web services, the web service client application must call the Login operation
before it calls other operations. The Web Services Hub authenticates the request based on the session ID.

For protected real-time web services, the Web Services Hub authenticates the web service client based on
the user name token. The web service client must include the user name token in every SOAP request sent
to the Web Services Hub. The user name token can include a plain text, hashed, or digested password.

The Web Services Hub does not authenticate web service requests for a public real-time web service.

• Authorization. A web service client with repository access must have permission on a folder to run a
service. For protected real-time web services, a web service client with the appropriate permissions on a
folder can run a service in that folder based on service configuration. For example, if the service is not
runnable, a web service client cannot start the service, but it can invoke the service if the web service
workflow is running.

Related Topics:
• “Adding Security to a Client Request” on page 72

Web Services Hub Logs
The Web Services Hub creates a log for status and error messages related to tasks, such as service
initialization, task execution, and connection status. The logs include the IP address of the client, the service
the client invokes, and the associated workflow. You can troubleshoot problems by examining error
messages in this log.

Web Services Hub Security 19

You can view and configure the logs for the Web Services Hub on the Administrator tool.

Note: The Web Services Hub also writes messages in the fault element of a SOAP response when it cannot
process the request.

Related Topics:
• “SOAP Fault Handling” on page 20

Configuring the Logs
The Log Manager in the PowerCenter domain handles all logging functions for all services in the domain,
including the Web Services Hub.

In the Administrator tool, you can configure the size and location of the Web Services Hub logs and the error
level that would be included in the logs.

Viewing the Logs
You can view Web Services Hub log events on the Administration Console Log Viewer. You can filter log
events to get a list of only the log events for the Web Services Hub. When you view log events in the Log
Viewer, the Log Manager displays the log events from the generated files in the log directory set by the
domain administrator.

SOAP Fault Handling
The Web Services Hub sends error responses as SOAP fault messages. The Web Services Hub can generate
the following types of fault responses:

• User-defined faults

• System faults

User-Defined Faults
To send error data to the target, you can define fault views in the target definition. If the transformation logic
in the web service mapping sends error data to the target, the Integration Service writes messages to fault
targets. Send error data to the target when you want to catch and resolve specific errors. For example, you
expect the datatype of the response to be a string. If the web service workflow sends a numeric response,
you can send the response to the fault target. You can then evaluate the response and resolve the error.

System Faults
If the Web Services Hub encounters system errors, it generates a fault message based on the type of error
and sends the response to the web service client. The fault message is based on the task the Web Services
Hub performs when it encounters the error:

• If the Web Services Hub cannot process the header element of a SOAP request message, it returns error
information related to the header entries of the SOAP request message in a child element of the SOAP
response header element.

20 Chapter 2: Understanding the Web Services Provider

• If the Web Services Hub encounters any error with the header element of a SOAP request, it does not
process the body element. The SOAP response to the request contains the header fault element in the
SOAP header and a SOAP fault element without the detail element.

• If the Web Services Hub cannot process the contents of the body element, the SOAP fault element in the
SOAP response message contains a detail element with error information.

• The Web Services Hub generates a SOAP fault response with the error information in the detail element
when it encounters any of the following system errors:

- The Integration Service is not running and the Web Services Hub cannot process the input message.

- The Web Services Hub has timed out.

- The protected web service does not provide a valid user name token.

• The Web Services Hub does not return a response for a web service request in the following situations:

- The content of the service request is malformed or generates a parsing error.

- The workflow filters out the request.

System Fault Schema
By default, system fault messages contain a message code that includes a prefix and code number and the
message text. For example, the message code WSH_95002 is associated with an invalid request that
includes an empty workflow name.

The message code is the ErrorCode element in the detail element of a SOAP fault, and the message text is
the faultstring element of the SOAP fault.

SOAP Fault Header
The Web Services Hub reports header related errors in the header fault element of a SOAP response header.

The schema of this element is listed below:

<ns1:HeaderFault xmlns:ns1=”http://www.informatica.com/wsh”>
 <ErrorCode>
 error code
 </ErrorCode
 <ErrorMessage>
 error message
 </ErrorMessage>
</ns1:HeaderFault>

SOAP Fault Body
The SOAP fault body contains the following sub-elements:

• Faultcode. The faultcode determines if the error originates at the web service client or the Integration
Service. The error can originate at the web service client if the message has the wrong structure.

• Faultstring. The faultstring provides a description of the error. The faultstring value indicates whether the
error originated from the Integration Service, Web Services Hub, or Repository Service.

• Detail. The detail element contains error information that includes an error code, and the extended details
element provide detailed error information when the faultstring is a Web Services Hub or Repository
Service error.

The Web Services Hub uses the following SOAP fault schema:

<SOAP-ENV: Fault>
 <faultcode> Client/Server </faultcode>
 <faultstring>Brief Description of Error</faultstring>

SOAP Fault Handling 21

 <detail>
 <ns:WSHFaultDetails xmlns:ns="www.informatica.com/wsh">
 <ErrorCode>
 Error Code
 </ ErrorCode >
 <ExtendedDetails>
 Actual Error
 </ ExtendedDetails >
 </ns:WSHFaultDetails>
 </detail>
</SOAP-ENV: Fault>

22 Chapter 2: Understanding the Web Services Provider

C h a p t e r 3

Using the Web Services Hub
Console

This chapter includes the following topics:

• Using the Web Services Hub Console Overview, 23

• Connecting to the Web Services Hub Console, 24

• Understanding the Web Services Hub Console, 24

• Testing a Web Service, 27

Using the Web Services Hub Console Overview
The Web Services Hub Console is the PowerCenter application you use to view and test the real-time web
services and batch web services operations available in a Web Services Hub. Use the Web Services Hub
Console to perform the following tasks:

• View the properties of a real-time web service. You can view the description of the web service and
properties such as whether the web service is protected. You can also view the repository and folder that
contains the web service.

• View the WSDL for a real-time web service. To download the WSDL, save the WSDL to a file on the hard
disk.

• Test a real-time web service. Use the Try-It client application to run a valid web service and view the
response on the Web Services Hub Console. You can also test the operations for the batch web services.

• View the description of a batch web services operation. You can view the description of the batch web
services operation. You can use the Try-It application to view the parameter for the operation.

• View the WSDL for Data Integration and Metadata web services. To download the WSDL, save the WSDL
to a file on the hard disk.

• Test a batch web services operation. Use the Try-It application to run a batch web services operation and
view the response on the Web Services Hub Console.

Note: The Web Services Hub Console does not require authentication. You can access the Web Services Hub
Console without logging in. To ensure security, run the Web Services Hub within a secure network
environment.

23

Connecting to the Web Services Hub Console
You can connect to the Web Services Hub Console from any browser.

Use one of the following URLs to connect to the Web Services Hub Console:

http://<WebServicesHubHostName:PortNumber>/wsh
http://<WebServicesHubHostName:PortNumber>/PowerCenter

The context names /wsh and /PowerCenter are case sensitive.

The default port for a Web Services Hub running on HTTP is 7333. You can also configure the Web Services
Hub to use a secure connection with HTTPS. The default port for a Web Services Hub running on HTTPS is
7343. You can set the port number when you create the Web Services Hub in the Administrator tool.

You can also connect to the Web Services Hub Console from the Administrator tool. View the details of the
Web Services Hub and click the Service URL. You must enable the Web Services Hub to connect to the Web
Services Hub Console.

Understanding the Web Services Hub Console
The Web Services Hub Console consists of the following sections:

• Navigator. The Navigator displays the types of services that you can view on the Web Services Hub
Console.

• Web Services or Operations. For real-time web services, the Web Services section displays valid and
invalid web services. For batch web services, the Operations section displays the operations available for
metadata web services and data integration web services.

In the Web Services section, you can test a web service or view the WSDL for a web service.

In the Operations section, you can test the batch web services operations or view and save the batch web
services WSDL.

• Description. The Description section provides information on the type of web services selected in the
Navigator.

• Properties. The Properties section displays the properties of the web service or web service operation
selected in the Web Services or Operations section.

Navigator
In the Navigator, you can scroll and select the type of web service for which you want to display information.
The information displayed in the other sections of the console varies based on the type of web service you
select in the Navigator.

Web Services and Operations Sections
The Web Services Hub Console displays the Web Services section or the Operations section depending on
which type of web service you select in the Navigator.

When you select Valid Web Services or Invalid Web Services in the Navigator, the Web Services section
displays information about the real-time web services that run on the Web Services Hub.

When you select Metadata Web Services or Data Integration Web Services in the Navigator, the Operations
section displays the Batch web service operations available on the Web Services Hub.

24 Chapter 3: Using the Web Services Hub Console

You can sort the list of web services or operations. To sort the list of web services or operations, click the
label of the column by which you want to sort. The Web Services Hub Console lists the web services or
operations alphabetically based on the column you click. An arrow next to the column label shows the sort
order for the list, ascending or descending.

You can use the Try-It application to test a web service operation listed in the Web Services and Operations
section. To test a web service operation, enter the values for the parameters in the input message of the web
service operation and view the response.

In the Web Services section, you can display the WSDL for a web service. In the Operations section, you can
display the WSDL for the batch web services. The WSDL is published for the metadata web services or data
integration web services, not for an operation. If you select an operation and click WSDL, the Web Services
Hub displays the WSDL for the metadata web services or data integration web services. Use the WSDL to
write client applications that call the real-time web service or batch web service operation.

Web Services Section
You must create web service workflows to view real-time web services on the Web Services Hub Console.
When you configure a web service workflow to be visible, the Web Services Hub publishes the web service
and WSDL on the Web Services Hub Console.

When you select Valid Web Services or Invalid Web Services in the Navigator, the Web Services section
displays the list of real-time web services configured to be visible on the Web Services Hub Console.

If you have privileges to manage objects in a repository, you can view all web services associated with the
repository. You can view but cannot run web services created by other users. For example, you have Create,
Edit, and Delete privileges on the run-time objects for the TestRepo repository. On the Web Services Hub
Console for a Web Services Hub associated with the TestRepo repository, you can view all the web services
in the TestRepo repository. You can view but cannot run web services in the TestRepo repository created by
other users.

The following table describes the options available in the Web Services section:

Label Description

Try-It Client application you can use to test the selected web service. Click to run the selected web
service.
Not available for invalid web services.

WSDL WSDL for the selected web service. Click to view the WSDL for the selected web service. You
can click the WSDL button at the top of the section or in the same row as the selected web
service. To download the WSDL, view and save the WSDL to your local machine.
Not available for invalid web services.

Search Search for web services. Enter the string of text you want to search for and click Go. The Web
Services section lists any web service name, repository name, or workflow name that contains
the text.

Service Name Name of the web service that you can run on the Web Services Hub.

Repository Name Name of the repository associated with the web service.

Workflow Name Name of the workflow that comprises the web service.

Understanding the Web Services Hub Console 25

Operations Section
The Operations section displays a list of the batch web services operations available on the Web Services
Hub. You can call these operations from client applications to run and monitor workflows and access
PowerCenter metadata.

When you select metadata web services in the Navigator, the Operations section displays a list of the
available metadata web services operations. When you select data integration web services in the Navigator,
the Operations section displays a list of the available data integration web services operations.

The following table describes the icons and information in the Operations section:

Label Description

Try-It Application to test the selected operation. Click to run the selected metadata web services or
data integration web services operation.

WSDL WSDL for the metadata or data integration web services. Click to view the WSDL published by
the Web Services Hub for the selected type of web services. If you select metadata web
services in the Navigator, click WSDL to view the WSDL for the metadata web services. If you
select data integration web services in the Navigator, click WSDL to view the WSDL for the data
integration web services. To download the WSDL, view and save the WSDL to your local
machine.

Search Search for operations. Enter the string of text you want to search for and click Go. The
Operations section lists any operation name or description that contains the text.

Operation Name Name of the metadata web services or data integration web services operation.

Description Description of the metadata web services or data integration web services operation.

Properties Section
The Properties section displays information about the web service or web service operation selected on the
Web Services or Operations section.

Properties Section for Real-time Web Services
When you select a valid or invalid real-time web service in the Web Services section, the Properties section
displays the properties of the selected web service.

The following table describes the real-time web service properties:

Property Description

Service Name Name of the web service.

Domain Name Name of the PowerCenter domain that contains the Web Services Hub.

Repository Name Repository that contains the web service workflow.

Folder name Name of the folder that contains the web service workflow.

Workflow Name Name of the workflow associated with the web service.

Description Description of the web service.

26 Chapter 3: Using the Web Services Hub Console

Property Description

Is Runnable Indicates whether a web service can be started by a client application.
If True, a web service client can start the web service workflow or invoke the web service while
the workflow is running.
If False, a web service client can invoke the web service while the workflow is running, but
cannot start the workflow.

Is Protected Indicates whether the web service is protected or public.
If True, a web service client request must pass authentication. The SOAP request must include
a valid user name token in the header.
If False, any web service client can run web service requests without authentication.

Is One Way Indicates whether the web service uses one-way or request-response mapping.

Properties Section for Batch Web Services
When you select a metadata web services operation or a data integration web services operation in the
Operations section, the Properties section displays the name and description of the selected web service
operation.

Testing a Web Service
The Try-It application is a client application that you can use to run a real-time or batch web service operation
listed in the Web Services Hub Console. Use the Try-It application to test a valid web service operation and
view the results on the Web Services Hub Console. You can use the Try-It application if you are unsure what
parameters are required in the input message or you want to view the response for a specific input message.

You can use the Try-It application to run a web service or call an operation without needing to download the
WSDL and generate the client proxy classes for a client application. You can view the response on the
console and determine how a client application should process the response from the web service.

You can test a valid real-time web service application or a batch web service operation. You cannot use the
Try-It application to test a web service with a WSDL that contains a SOAP attachment.

Protected real-time web services require authentication. To test a protected web service operation, provide a
valid user name token to log in to the PowerCenter repository.

Input Message
The Try-It application provides two methods for creating a web service request:

• XML input

• Form input

Use the method that best fits the requirements of the request. For example, if the request includes multiple
occurring elements, use XML input to create the request message.

Testing a Web Service 27

XML Input
When you select the XML Input tab, the Web Services Hub displays a SOAP input message that contains the
elements needed to run the service request operation. Enter the values for the elements in the SOAP
message. Or, you can create a SOAP message outside the Web Services Hub console and paste it into the
XML input section.

The Web Services Hub uses the SOAP input message to run the web service. It displays the response as a
SOAP output message.

Form Input
When you select the Form Input tab, the Web Services Hub displays a list of the parameters for a web service
request. Enter the values for the parameters. If the web service request contains complex type elements, the
Form Input tab displays the input parameters in the correct hierarchy.

The Web Services Hub uses the parameter values you enter to create a SOAP input message and run the web
service. It displays the response as a SOAP output message.

Testing a Public Web Service or Batch Web Service Operation
To test a public or batch web service, select a web service operation and enter the values for the parameters
in the input message of the web service operation.

To test a public web service or batch web service operation:

1. In the Web Services or Operations section, select a valid real-time web service or an operation.

2. Click Try-It.

The Try-It application window displays a list of the web service operations that you can test and
instructions on how to run the Try-It application.

3. Select the operation you want to test.

The Try-It application window displays the parameters for the input message.

4. Click the XML Input tab to enter the input parameters in SOAP message format.

Or, click the Form Input tab to enter the input parameters in a parameter entry form.

5. Enter the values for the parameters.

The WSDL can contain user-defined datatypes. To avoid fault responses, enter the value for the
parameter according to the datatype.

6. Click Send.

The Web Services Hub runs the web service operation and displays the SOAP message response and a
message to indicate success or failure.

7. To clear the parameters and enter new values, click Reset.

8. Click the Close button of the web browser to exit the Try-It application window and return to the main
page of the Web Services Hub Console.

Testing a Protected Real-time Web Service
To test a protected real-time web service, include a valid user name token in the SOAP header. You can enter
the user name and password in the Form Input tab or modify the SOAP message to include all elements of
the user name token in the XML Input tab.

28 Chapter 3: Using the Web Services Hub Console

You can test a protected web service with a plain text or hashed password in the Form Input or XML Input
tab. To test a protected web service with a hashed password, encrypt the password with the MD5 or SHA-1
hash function before you test the web service. The encryption must be encoded in Base64. Use the resulting
hashed value as the password for the web service.

You can test a protected web service with a digested password in the XML Input tab. To test a protected web
service with a digested password, add the Password attribute and elements required in the UsernameToken
element for digested passwords.

To test a protected web service:

1. In the Web Services section for real-time web services, select the protected web service to run and click
Try-It.

2. In the Try-It application window, select the operation for the protected web service.

3. To use the Form Input to test the web service operation, click the Form Input tab.

In the SOAP header section, enter the user name and a plain text or hashed password.

In the SOAP body section, enter the values for the parameters required by the protected web service.

-or-

To use the XML Input to test the web service operation, click the XML Input tab and update the
UsernameToken element.

To test a protected web service that uses a plain text or hashed password, replace the value [string] in
the Username and Password child elements with a valid user name and password:

<UsernameToken>
 <Username>[string]</Username>
 <Password>[string]</Password>
</UsernameToken>

To test a protected web service that uses a digested password, replace the value [string] in the
Username element with a valid user name. Update the Password element and add Nonce and Created
elements with the appropriate value:

<UsernameToken>
 <Username>[string]</Username>
 <Password Type="PasswordDigest">[string]</Password>
 <Nonce>[NonceValue]</Nonce>
 <Created>[RequestCreationTimestamp]</Created>
</UsernameToken>

For more information about the UsernameToken element, see “UsernameToken in the SOAP Request” on
page 72.

In the SOAP body section, enter the values for the parameters required by the protected web service.

4. Click Send.

The Web Services Hub runs the protected web service operation and displays the SOAP message
response on the console.

5. Click the Close button of the web browser to exit the Try-It application window and return to the main
page of the Web Services Hub Console.

Testing a Web Service 29

C h a p t e r 4

Batch Web Service Operations
This chapter includes the following topics:

• Batch Web Service Operations Overview, 30

• Metadata Web Service Operations, 30

• Data Integration Web Service Operations, 33

Batch Web Service Operations Overview
You can schedule, start, or stop existing workflows and tasks using Batch web service operations. You can
get session statistics and performance data. You can retrieve workflow and session logs.

The batch web services consist of the following groups of services defined in separate WSDLs:

• Metadata web services. The operations for the Metadata web services are defined in the Metadata WSDL
available on the Batch Web Services page of the Web Services Hub Console.

• Data Integration web services. The operations for the Data Integration web services are defined in the
Data Integration WSDL available on the Batch Web Services page of the Web Services Hub Console.

This chapter explains the operations provided by the batch web services. For more information about the
request and response XML documents for these operations, refer to the WSDL files.

Note: Log segments obtained by batch web services operation calls are either in Integration Service code
page or in UTF-8.

Metadata Web Service Operations
Use the operations provided in the Metadata web services to retrieve metadata from the PowerCenter
repositories associated with the Web Services Hub.

You can use the operations to log in to a repository and get the list of the following repository objects:

• All folders in a repository associated with the Web Services Hub

• All workflows in a folder

• All worklets and Session tasks in a workflow

• All Integration Services associated with a repository

• All repositories associated with Web Services Hub

30

This section lists all operations available for the Metadata web services.

getAllDIServers
Use this operation to retrieve the names of all Integration Services associated with a repository.

You can associate one or more Integration Services with a repository to run workflows and sessions. In a
multiple Integration Service environment, it is important to enter descriptive service names for each
associated service to help users differentiate among Integration Services. Each Integration Service
associated with a repository must have a service name and a combination of host name and port number
that is unique among the services associated with the repository.

This operation returns the names of all Integration Services associated with a given repository.

Call the getAllDIServers operation with the SessionID parameter. The session ID is generated after you log in
to the repository.

getAllFolders
Use this operation to retrieve all folders in a repository.

Call the getAllFolders operation with the SessionID parameter. The session ID is generated after you log in to
the repository.

getAllRepositories
Use this operation to view all repositories associated with the Web Services Hub. The getAllRepositories
operation does not require a parameter.

Before a Web Services Hub client application can use a repository, you must associate the repository with the
Web Services Hub. Use the Administrator tool to associate a repository with a Web Services Hub.

Note: Since the getAllRepositories operation is not associated with a specific repository, you do not need to
log in to a repository to use the operation. You can call the getAllRepositories operation without calling the
Login operation.

getAllTaskInstances
Use this operation to get information about all worklets and session task instances in a workflow for a
specified depth. You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

Depth Required The number of levels within the workflow task hierarchy from which
to get information on task instances.

WorkflowName Required Name of the workflow that contains the worklets and sessions.

Metadata Web Service Operations 31

Parameter Name Required/
Optional

Description

FolderName Required Name of the folder containing the workflow.

IsValid Optional Specifies whether to get valid or invalid task instances. Set to True
to get valid task instances.

getAllWorkflows
Use this operation to get information about all workflows in a folder. A workflow is a set of instructions that
tells the Integration Service how to execute tasks, such as sessions, email notifications, and shell
commands. Workflow information includes the name of the workflow, the name of the folder in which the
workflow resides, and whether the workflow is valid.

You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

Name Required Name of the folder that contains the workflows.

Login
Use this operation to log in to a repository. The Login operation authenticates the user name and password
for a specified repository. The client application must call this operation before calling any other operations.
After calling the Login operation, the web service client application can call any Batch web service
operations.

The Login operation requires a repository name, user name, and password. It returns an encrypted session
ID. The repository must be in the same domain as the Web Services Hub.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

RepositoryName Required Name of the repository to log in to.

UserName Required User name used to log in to the repository.

Password Required Password for the user account used to log in to the repository.

RepositoryDomainName Optional Domain name for the Repository Service.

UserNameSpace Conditional The security domain of the user account used to log in to the
repository. Required if there is more than one security domain in the
PowerCenter domain.

32 Chapter 4: Batch Web Service Operations

Session Expiration Period

The session ID expires after a period of inactivity. Configure the SessionExpiryPeriod advanced property of
the Web Services Hub to specify the length of time allowed for inactivity before the session expires. You can
configure the Web Services Hub advanced properties in the Administrator tool.

The Web Services Hub caches the user name and password at the start of a session. The Web Services Hub
uses the cached user name and password for login authentication until the session expires. Changes to the
user account do not affect authentication until the session expires. If you delete or disable a user account,
the user account is not deleted or disabled until the session expires. If the user account is locked, the locked
user can send requests until the session expires.

Note: If the value of SessionExpiryPeriod is high, it takes a while for the user account changes to take effect.
To avoid a security breach, do not delete or modify a user account when the account is in use in a session.

Logout
Use this operation to log out of a repository. The Logout operation disconnects you from the repository and
the Integration Service. Call this operation at the end of a client application run to release resources and
prevent a possible memory leak in the Repository Service and Web Services Hub processes.

Call the Logout operation with the SessionID parameter. The session ID is generated after you log in to the
repository.

Data Integration Web Service Operations
You can perform the following tasks with Data Integration web services operations:

• Connect to the Repository Service. You can use the following operations to log in to and log out of the
repository:

- Login

- Logout

• Connect to and get details regarding the Integration Service. You can use the following operations to
verify that the Integration Service is running and connect to or get information about the Integration
Service:

- pingDIServer

- getDIServerProperties

- initializeDIServerConnection (deprecated)

- deinitializeDIServerConnection (deprecated)

• Schedule and run workflows. You can use the following operations to manage workflow runs:

- startWorkflow

- startWorkflowEx

- stopWorkflow

- scheduleWorkflow

- startWorkflowFromTask

- unscheduleWorkflow

Data Integration Web Service Operations 33

- waitTillWorkflowComplete

• Start and stop tasks in a workflow. You can use the following operations to control the tasks in a
workflows:

- recoverWorkflow

- resumeWorkflow (deprecated)

- startTask

- stopTask

- waitTillTaskComplete

• Get statistics on sessions. You can use the following operations to get details on a session or workflow
run:

- getNextLogSegment (deprecated)

- getSessionLog

- getSessionPerformanceData

- getSessionStatistics

- getTaskDetails

- getTaskDetailsEx

- getWorkflowDetails

- getWorkflowDetailsEx

- getWorkflowLog

- monitorDIServer

- startSessionLogFetch (deprecated)

- startWorkflowLogFetch (deprecated)

The Data Integration web services operations are defined in the di.wsdl.

deinitializeDIServerConnection
Deprecated operation. You do not need to explicitly disconnect the client application from the Integration
Service. The Logout operation releases connections to the Integration Service acquired by the client
application and performs cleanup operations.

This operation requires the initializeDIServerConnection the SessionID parameter. The session ID is
generated after you log in to the repository.

getDIServerProperties
Use this operation to get the properties of the Integration Service. You must log in to the repository before
you call this operation.

The Integration Service properties include the following information:

• Integration Service name

• Integration Service version

• Product name

• Integration Service startup time

• Name of the repository associated with the Integration Service

34 Chapter 4: Batch Web Service Operations

• Data movement mode (ASCII or Unicode)

• Whether the Integration Service can debug mappings

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

ServiceName Required Name of the Integration Service to get the properties of.

DomainName Optional Domain name for the Integration Service.

getNextLogSegment
Deprecated operation. This operation gets the information in a session or workflow log in increments.

The getNextLogSegment operation returns a portion of a session or workflow log. You must log in to the
repository before you call this operation.

Use this operation with the startSessionLogFetch or startWorkflowLogFetch operation. Call the
getNextLogSegment operation with the log handle generated by the startSessionLogFetch or
startWorkflowLogFetch operation until the end of log is reached.

To get session log information in one operation, use the getSessionLog operation. To get workflow log
information in one operation, use the getWorkflowLog operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

LogHandle Required Log ID generated by the startSessionLogFetch or
startWorkflowLogFetch operation. You must call the
startSessionLogFetch or startWorkflowLogFetch operation before
you call this operation.

Timeout Required Amount of time the client request keeps the connection to the Web
Services Hub during this operation. If the operation does not
complete within the timeout period, the operation fails. The timeout
period starts when you call the startSessionLogFetch or
startWorkflowLogFetch operation.

getSessionLog
Use this operation to get all the information in a session log in one operation. You must log in to the
repository before you call this operation.

When a service session runs, the Integration Service writes information to the session log, such as
initialization of processes, session validation, creation of SQL commands for reader and writer threads, errors
encountered, and load summary. The amount of detail in the session log depends on the tracing level that
you set. The getSessionLog operation returns the information in the session log.

Data Integration Web Service Operations 35

To get session log information in increments, use the getNextLogSegment operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow that contains the session.

TaskInstancePath Required Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter WorkletName.TaskName. Enter the taskInstancePath as a fully
qualified string.

Timeout Required Amount of time the client request keeps the connection to the Web
Services Hub during this operation. If the operation does not
complete within the timeout period, the operation fails.

ServiceName Required Name of the Integration Service that runs the workflow.

DomainName Optional Domain name for the Integration Service.

getSessionPerformanceData
Use this operation to retrieve the performance data of a session running on the Integration Service. The
performance details provide counters that help you understand the session and mapping efficiency.

You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow that contains the session.

TaskInstancePath Required Path specifying the location of the session. If the session is within
a workflow, enter the session name alone. If the session is within a
worklet, enter WorkletName.SessionName. Enter the
taskInstancePath as a fully qualified string.

ServiceName Required Name of the Integration Service that runs the workflow.

DomainName Optional Domain name for the Integration Service.

36 Chapter 4: Batch Web Service Operations

getSessionStatistics
Use this operation to get the statistics of a session running on the Integration Service. When the session is
not running, this operation provides the statistics of the most recently run session.

You must log in to the repository before you call this operation.

Session statistics includes the folder and workflow name, session and task run status, error information, the
number of successful and failed rows for source and target, and the number of applied, affected, and rejected
rows.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow that contains the session task.

TaskInstancePath Required Path specifying the location of the session. If the session is within
a workflow, enter the session name alone. If the session is within a
worklet, enter WorkletName.SessionName. Enter the
taskInstancePath as a fully qualified string.

ServiceName Required Name of the Integration Service that runs the workflow.

DomainName Optional Domain name for the Integration Service.

getTaskDetails
Use this operation to retrieve the details of a task from the Integration Service. If the parent workflow is
running and the task has already run, the operation returns the details of the current task in the running
workflow. If the parent workflow is not running, the operation returns the task details of the last workflow run.

You must log in to the repository before you call this operation.

The task detail information includes folder and workflow name, task name and type, start time, run status,
and run error codes and messages.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow that contains the task.

TaskInstancePath Required Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter <WorkletName>.<TaskName>. Enter the taskInstancePath as a
fully qualified string.

Data Integration Web Service Operations 37

Parameter Name Required/
Optional

Description

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance containing the task. This parameter
is not available.

WorkflowRunInstanceName Optional Name of the workflow run instance containing the task.

ParameterFileName Optional Name of the parameter file to use when running the workflow.

RequestMode Optional Indicates the recovery strategy for the session task:
- NORMAL. Restarts a session without recovery.
- RECOVERY. Recovers a session.

IsAbort Optional Indicates whether to abort a task. Not applicable to this operation.

DomainName Optional Domain name for the Integration Service.

ParameterScope Optional Scope of the parameter in a parameter array definition.

ParameterName Optional Name of the parameter in a parameter array definition.

ParameterValue Optional Value of the parameter in a parameter array definition.

getTaskDetailsEx
Use this operation to retrieve the details of a task from the Integration Service when multiple instances of a
workflow run concurrently.

The getTaskDetailsEx operation is similar to the getTaskDetails operation, but returns information about all
instances of a task. If the parent workflow is running and the task has already run, the operation returns the
details of all the instances of the task in the running workflow. If the parent workflow is not running, the
operation returns the details of the task instance in the last workflow run. The task details are included in the
Integration Service details returned by the operation.

You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow that contains the task.

TaskInstancePath Required Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter <WorkletName>.<TaskName>. Enter the taskInstancePath as a
fully qualified string.

38 Chapter 4: Batch Web Service Operations

Parameter Name Required/
Optional

Description

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunInstanceName Optional Name of the workflow run instance.

DomainName Optional Domain name for the Integration Service.

getWorkflowDetails
Use this operation to get the details of a given workflow. If the workflow is running, the operation returns the
details of the running workflow. If the workflow is not running, the operation returns the details of the last run
of this workflow.

Workflow details include the name of the folder, workflow, workflow log file, and the user that runs the
workflow. It includes workflow run type, log file code page, start and end time, run status, and run error codes
and messages.

You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow.

RequestMode Required Indicates the recovery strategy for the session task:
- NORMAL. Restarts a session without recovery.
- RECOVERY. Recovers a session.

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance.

WorkflowRunInstanceName Optional Name of the workflow run instance.

Reason Optional Describes the reason to start a workflow or task.

ParameterFileName Optional Name of the parameter file to use when running the workflow.

TaskInstancePath Optional Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter <WorkletName>.<TaskName>. Enter the taskInstancePath as a
fully qualified string.

IsAbort Optional Indicates whether to abort a task. Not applicable to this operation.

OSUser Optional Specifies the operating system profile assigned to the workflow.

Data Integration Web Service Operations 39

Parameter Name Required/
Optional

Description

DomainName Optional Domain name for the Integration Service.

AttributeName Optional Name of the attribute in the attribute name and value pair used to
start or schedule a workflow or task.

AttributeValue Optional Value of the attribute in the attribute name and value pair used to
start or schedule a workflow or task.

Key Optional Key to use to start a workflow or task.

MustUse Optional Indicates whether the key must be used to start the workflow or
task.

ParameterScope Optional Scope of the parameter in a parameter array definition.

ParameterName Optional Name of the parameter in a parameter array definition.

ParameterValue Optional Value of the parameter in a parameter array definition.

getWorkflowDetailsEx
Use this operation to get the details of a workflow when multiple instances of a workflow run concurrently.

This operation is similar to getWorkflowDetails operation, but returns information about all instances of a
workflow. If the workflow is running, the operation returns the details of all the instances of the running
workflow. If the workflow is not running, the operation returns the details of the last run of the workflow. The
workflow details are included in the Integration Service details returned by the operation.

You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow.

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance.

WorkflowRunInstanceName Optional Name of the workflow run instance.

DomainName Optional Domain name for the Integration Service.

40 Chapter 4: Batch Web Service Operations

getWorkflowLog
Use this operation to get all the information in the workflow log in one operation. You must log in to the
repository before you call this operation.

When the web service workflow runs, the Integration Service writes information to the workflow log, such as
initialization of processes, workflow task run information, errors encountered, and workflow run summary.
The amount of detail in the workflow log depends on the tracing level. The getWorkflowLog operation returns
the information in the workflow log.

To get workflow log information in increments, use the getNextLogSegment operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow.

Timeout Required Amount of time the client request keeps the connection to the Web
Services Hub during this operation. If the operation does not
complete within the timeout period, the operation fails.

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance.

WorkflowRunInstanceName Optional Name of the workflow run instance.

DomainName Optional Domain name for the Integration Service.

initializeDIServerConnection
Deprecated operation. You do not need to initialize a connection to the Integration Service.

You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

DIServerName Required Name of the folder containing the workflow.

LoginHandle Optional Same as the Session ID.

DIServerDomain Optional Domain name for the Integration Service.

Data Integration Web Service Operations 41

Login
The Login operation is included in Data Integration web services and Metadata web services.

Use this operation to log in to a repository. The Login operation authenticates the user name and password
for a specified repository. The client application must call this operation before calling any other operations.
After calling the Login operation, the web service client application can call any Batch web service
operations.

The Login operation requires a repository name, user name, and password. It returns an encrypted session
ID. The repository must be in the same domain as the Web Services Hub.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

RepositoryName Required Name of the repository to log in to.

UserName Required User name used to log in to the repository.

Password Required Password for the user account used to log in to the repository.

RepositoryDomainName Optional Domain name for the Repository Service.

UserNameSpace Conditional The security domain of the user account used to log in to the
repository. Required if there is more than one security domain in the
PowerCenter domain.

Session Expiration Period

The session ID expires after a period of inactivity. Configure the SessionExpiryPeriod advanced property of
the Web Services Hub to specify the length of time allowed for inactivity before the session expires. You can
configure the Web Services Hub advanced properties in the Administrator tool.

The Web Services Hub caches the user name and password at the start of a session. The Web Services Hub
uses the cached user name and password for login authentication until the session expires. Changes to the
user account do not affect authentication until the session expires. If you delete or disable a user account,
the user account is not deleted or disabled until the session expires. If the user account is locked, the locked
user can send requests until the session expires.

Note: If the value of SessionExpiryPeriod is high, it takes a while for the user account changes to take effect.
To avoid a security breach, do not delete or modify a user account when the account is in use in a session.

Logout
The Logout operation is included in Data Integration web services and Metadata web services.

Use this operation to log out of a repository. The Logout operation disconnects you from the repository and
the Integration Service. Call this operation at the end of a client application run to release resources and
prevent a possible memory leak in the Repository Service and Web Services Hub processes.

Call the Logout operation with the SessionID parameter. The session ID is generated after you log in to the
repository.

42 Chapter 4: Batch Web Service Operations

monitorDIServer
Use this operation to retrieve the status of the Integration Service, details of active and scheduled workflows,
details of the tasks and links within the workflows.

You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

MonitorMode Required Mode of the workflows to monitor:
- RUNNING. Returns status details for active workflows. Active

workflows include running, suspended, and suspending
workflows.

- SCHEDULED. Returns status details for scheduled workflows.
- ALL. Returns information for all scheduled and active workflows.

ServiceName Required Name of the Integration Service to monitor.

DomainName Optional Domain name for the Integration Service.

pingDIServer
Use this operation to determine whether an Integration Service is running. The return values are ALIVE or
FAIL. You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

Timeout Required Amount of time the client request keeps the connection to the Web
Services Hub during this operation. If the operation does not
complete within the timeout period, the operation fails.

ServiceName Required Name of the Integration Service to ping.

DomainName Optional Domain name for the Integration Service.

recoverWorkflow
Use this operation to recover suspended workflows. The Integration Service recovers the workflow from all
suspended and failed worklets and all suspended and failed Command, Email, and Session tasks.

You must log in to the repository before you call this operation.

Data Integration Web Service Operations 43

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow to recover.

RequestMode Required Indicates the recovery strategy for the session task:
- NORMAL. Restarts a session without recovery.
- RECOVERY. Recovers a session.

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance.

WorkflowRunInstanceName Optional Name of the workflow run instance.

Reason Optional Describes the reason to start a workflow or task.

ParameterFileName Optional Name of the parameter file to use when running the workflow.

TaskInstancePath Optional Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter <WorkletName>.<TaskName>. Enter the taskInstancePath as a
fully qualified string.

IsAbort Optional Indicates whether to abort a task. Not applicable to this operation.

OSUser Optional Specifies the operating system profile assigned to the workflow.

DomainName Optional Domain name for the Integration Service.

AttributeName Optional Name of the attribute in the attribute name and value pair used to
start or schedule a workflow or task.

AttributeValue Optional Value of the attribute in the attribute name and value pair used to
start or schedule a workflow or task.

Key Optional Key to use to start a workflow or task.

MustUse Optional Indicates whether the key must be used to start the workflow or
task.

ParameterScope Optional Scope of the parameter in a parameter array definition.

ParameterName Optional Name of the parameter in a parameter array definition.

ParameterValue Optional Value of the parameter in a parameter array definition.

resumeWorkflow
Deprecated operation. Use the recoverWorkflow operation instead.

44 Chapter 4: Batch Web Service Operations

You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow to resume.

RequestMode Required Indicates the recovery strategy for the session task:
- NORMAL. Restarts a session without recovery.
- RECOVERY. Recovers a session.

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance.

WorkflowRunInstanceName Optional Name of the workflow run instance.

Reason Optional Describes the reason to start a workflow or task.

ParameterFileName Optional Name of the parameter file to use when running the workflow.

TaskInstancePath Optional Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter <WorkletName>.<TaskName>. Enter the taskInstancePath as a
fully qualified string.

IsAbort Optional Indicates whether to abort a task. Not applicable to this operation.

OSUser Optional Specifies the operating system profile assigned to the workflow.

DomainName Optional Domain name for the Integration Service.

AttributeName Optional Name of the attribute in the attribute name and value pair used to
start or schedule a workflow or task.

AttributeValue Optional Value of the attribute in the attribute name and value pair used to
start or schedule a workflow or task.

Key Optional Key to use to start a workflow or task.

MustUse Optional Indicates whether the key must be used to start the workflow or
task.

ParameterScope Optional Scope of the parameter in a parameter array definition.

ParameterName Optional Name of the parameter in a parameter array definition.

ParameterValue Optional Value of the parameter in a parameter array definition.

Data Integration Web Service Operations 45

scheduleWorkflow
Use this operation to schedule a workflow. You can schedule any workflow that does not run on demand.

You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow to schedule.

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance.

WorkflowRunInstanceName Optional Name of the workflow run instance to schedule.

Reason Optional Describes the reason to start a workflow or task.

ParameterFileName Optional Name of the parameter file to use when running the workflow.

RequestMode Optional Indicates the recovery strategy for the session task:
- NORMAL. Restarts a session without recovery.
- RECOVERY. Recovers a session.

TaskInstancePath Optional Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter <WorkletName>.<TaskName>. Enter the taskInstancePath as a
fully qualified string.

IsAbort Optional Indicates whether to abort a task. Not applicable to this operation.

OSUser Optional Specifies the operating system profile assigned to the workflow.

DomainName Optional Domain name for the Integration Service.

AttributeName Optional Name of the attribute in the attribute name and value pair used to
schedule the workflow.

AttributeValue Optional Value of the attribute in the attribute name and value pair used to
schedule the workflow.

Key Optional Key to use to start a workflow or task.

MustUse Optional Indicates whether the key must be used to start the workflow or
task.

ParameterScope Optional Scope of the parameter in a parameter array definition.

ParameterName Optional Name of the parameter in a parameter array definition.

ParameterValue Optional Value of the parameter in a parameter array definition.

46 Chapter 4: Batch Web Service Operations

startSessionLogFetch
Deprecated operation. This operation starts to fetch the information in a session log incrementally.

The startSessionLogFetch generates a log handle for use with the getNextLogSegment operation. After you
call the startSessionLogFetch operation, call the getNextLogSegment operation with the log handle
generated by startSessionLogFetch until the end of log is reached.

You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow containing the session.

ServiceName Required Name of the Integration Service that runs the workflow.

startTask
Use this operation to start a specific task within a workflow. You must log in to the repository before you call
this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow containing the task.

RequestMode Required Indicates the recovery strategy for the session task:
- NORMAL. Restarts a session without recovery.
- RECOVERY. Recovers a session.

TaskInstancePath Required Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter <WorkletName>.<TaskName>. Enter the taskInstancePath as a
fully qualified string.

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance containing the task.

WorkflowRunInstanceName Optional Name of the workflow run instance containing the task.

ParameterFileName Optional Name of the parameter file to use when running the workflow.

Data Integration Web Service Operations 47

Parameter Name Required/
Optional

Description

IsAbort Optional Indicates whether to abort a task. Not applicable to this operation.

DomainName Optional Domain name for the Integration Service.

ParameterScope Optional Scope of the parameter in a parameter array definition.

ParameterName Optional Name of the parameter in a parameter array definition.

ParameterValue Optional Value of the parameter in a parameter array definition.

startWorkflow
Use this operation to start a workflow. You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow to run.

RequestMode Required Indicates the recovery strategy for the session task:
- NORMAL. Restarts a session without recovery.
- RECOVERY. Recovers a session.

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance.

WorkflowRunInstanceName Optional Name of the workflow run instance to run.

Reason Optional Describes the reason to start the workflow.

ParameterFileName Optional Name of the parameter file to use when running the workflow.

TaskInstancePath Optional Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter <WorkletName>.<TaskName>. Enter the taskInstancePath as a
fully qualified string.

IsAbort Optional Indicates whether to abort a task. Not applicable to this operation.

OSUser Optional Specifies the operating system profile assigned to the workflow.

DomainName Optional Domain name for the Integration Service.

AttributeName Optional Name of the attribute in the attribute name and value pair used to
start the workflow.

48 Chapter 4: Batch Web Service Operations

Parameter Name Required/
Optional

Description

AttributeValue Optional Value of the attribute in the attribute name and value pair used to
start the workflow.

Key Optional Key to use to start a workflow or task.

MustUse Optional Indicates whether the key must be used to start the workflow or
task.

ParameterScope Optional Scope of the parameter in a parameter array definition.

ParameterName Optional Name of the parameter in a parameter array definition.

ParameterValue Optional Value of the parameter in a parameter array definition.

startWorkflowEx
Use this operation to start a workflow. The startWorkflowEx operation returns the run instance ID of the
workflow. Use the startWorkflowEx operation instead of the startWorkflow operation to get the run ID of the
workflow started by the operation.

You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow to run.

RequestMode Required Indicates the recovery strategy for the session task:
- NORMAL. Restarts a session without recovery.
- RECOVERY. Recovers a session.

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunInstanceName Optional Name of the workflow run instance to run.

Reason Optional Describes the reason to start the workflow.

ParameterFileName Optional Name of the parameter file to use when running the workflow.

TaskInstancePath Optional Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter <WorkletName>.<TaskName>. Enter the taskInstancePath as a
fully qualified string.

OSUser Optional Specifies the operating system profile assigned to the workflow.

Data Integration Web Service Operations 49

Parameter Name Required/
Optional

Description

DomainName Optional Domain name for the Integration Service.

AttributeName Optional Name of the attribute in the attribute name and value pair used to
start the workflow.

AttributeValue Optional Value of the attribute in the attribute name and value pair used to
start the workflow.

Key Optional Key to use to start a workflow or task.

MustUse Optional Indicates whether the key must be used to start the workflow or
task.

ParameterScope Optional Scope of the parameter in a parameter array definition.

ParameterName Optional Name of the parameter in a parameter array definition.

ParameterValue Optional Value of the parameter in a parameter array definition.

startWorkflowFromTask
Use this operation to start a workflow from a task. When you start a workflow from a task, the Integration
Service runs the workflow from the selected task to the end of the workflow.

You must specify the task instance path for the task to start. The task instance path identifies a task
instance inside a workflow. A task within a workflow is identified by its task name alone. A task within a
worklet is identified by its worklet and task names separated by periods: WorkletName.TaskName. For
example, a workflow contains worklet A which contains another worklet, B. Task C is a task within worklet B.
The task instance path for task C is A.B.C.

You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow to run.

RequestMode Required Indicates the recovery strategy for the session task:
- NORMAL. Restarts a session without recovery.
- RECOVERY. Recovers a session.

TaskInstancePath Required Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter <WorkletName>.<TaskName>. Enter the taskInstancePath as a
fully qualified string.

50 Chapter 4: Batch Web Service Operations

Parameter Name Required/
Optional

Description

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance.

WorkflowRunInstanceName Optional Name of the workflow run instance to start.

Reason Optional Describes the reason to start the workflow.

ParameterFileName Optional Name of the parameter file to use when running the workflow.

IsAbort Optional Indicates whether to abort a task. Not applicable to this operation.

OSUser Optional Specifies the operating system profile assigned to the workflow.

DomainName Optional Domain name for the Integration Service.

AttributeName Optional Name of the attribute in the attribute name and value pair used to
start the workflow.

AttributeValue Optional Value of the attribute in the attribute name and value pair used to
start the workflow.

Key Optional Key to use to start a workflow or task.

MustUse Optional Indicates whether the key must be used to start the workflow or
task.

ParameterScope Optional Scope of the parameter in a parameter array definition.

ParameterName Optional Name of the parameter in a parameter array definition.

ParameterValue Optional Value of the parameter in a parameter array definition.

startWorkflowLogFetch
Deprecated operation. This operation starts to fetch the information in a workflow log incrementally.

The startWorkflowLogFetch generates a log handle for use with the getNextLogSegment operation. After you
call the startWorkflowLogFetch operation, call the getNextLogSegment operation with the log handle
generated by startWorkflowLogFetch until the end of log is reached.

You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

Data Integration Web Service Operations 51

Parameter Name Required/
Optional

Description

WorkflowName Required Name of the workflow.

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance.

WorkflowRunInstanceName Optional Name of the workflow run instance.

DomainName Optional Domain name for the Integration Service.

stopTask
Use this operation to stop a task running on an Integration Service. You can stop or abort a task, workflow, or
worklet at any time. When you stop a task in the workflow, the Integration Service stops processing the task
and all other tasks in its path.

You can also abort a running task by setting the isAbort parameter to true. Specify the task instance path for
the task to be aborted. Normally, you abort tasks only if the Integration Service fails to stop the task.

You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow containing the task.

TaskInstancePath Required Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter <WorkletName>.<TaskName>. Enter the taskInstancePath as a
fully qualified string.

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance containing the task.

WorkflowRunInstanceName Optional Name of the workflow run instance containing the task.

ParameterFileName Optional Name of the parameter file to use when running the workflow.

RequestMode Optional Indicates the recovery strategy for the session task:
- NORMAL. Restarts a session without recovery.
- RECOVERY. Recovers a session.

IsAbort Optional Indicates whether to abort a task. Set this parameter to True to
abort the task.

52 Chapter 4: Batch Web Service Operations

Parameter Name Required/
Optional

Description

DomainName Optional Domain name for the Integration Service.

ParameterScope Optional Scope of the parameter in a parameter array definition.

ParameterName Optional Name of the parameter in a parameter array definition.

ParameterValue Optional Value of the parameter in a parameter array definition.

Related Topics:
• “startWorkflowFromTask” on page 50

stopWorkflow
Use this operation to stop a running workflow. When you stop a workflow, the Integration Service tries to stop
all the tasks that are currently running in the workflow. If the workflow contains a worklet, the Integration
Service also tries to stop all the tasks that are currently running in the worklet.

In addition to stopping a workflow, you can abort a running workflow by setting the isAbort parameter to true.
Normally, you abort workflows only if the Integration Service fails to stop the workflow.

You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow to stop.

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance to stop.

WorkflowRunInstanceName Optional Name of the workflow run instance to stop.

Reason Optional Describes the reason to start a workflow or task.

ParameterFileName Optional Name of the parameter file to use when running the workflow.

RequestMode Optional Indicates the recovery strategy for the session task:
- NORMAL. Restarts a session without recovery.
- RECOVERY. Recovers a session.

TaskInstancePath Optional Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter <WorkletName>.<TaskName>. Enter the taskInstancePath as a
fully qualified string.

Data Integration Web Service Operations 53

Parameter Name Required/
Optional

Description

IsAbort Optional Indicates whether to abort the workflow. Set this parameter to True
to abort the workflow.

OSUser Optional Specifies the operating system profile assigned to the workflow.

DomainName Optional Domain name for the Integration Service.

AttributeName Optional Name of the attribute in the attribute name and value pair used to
start or schedule a workflow or task.

AttributeValue Optional Value of the attribute in the attribute name and value pair used to
start or schedule a workflow or task.

Key Optional Key to use to start a workflow or task.

MustUse Optional Indicates whether the key must be used to start the workflow or
task.

ParameterScope Optional Scope of the parameter in a parameter array definition.

ParameterName Optional Name of the parameter in a parameter array definition.

ParameterValue Optional Value of the parameter in a parameter array definition.

unscheduleWorkflow
Use this operation to unschedule a workflow. You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow to unschedule.

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance to unschedule.

WorkflowRunInstanceName Optional Name of the workflow run instance to unschedule.

Reason Optional Describes the reason to start a workflow or task.

ParameterFileName Optional Name of the parameter file to use when running the workflow.

RequestMode Optional Indicates the recovery strategy for the session task:
- NORMAL. Restarts a session without recovery.
- RECOVERY. Recovers a session.

54 Chapter 4: Batch Web Service Operations

Parameter Name Required/
Optional

Description

TaskInstancePath Optional Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter <WorkletName>.<TaskName>. Enter the taskInstancePath as a
fully qualified string.

IsAbort Optional Indicates whether to abort a task. Not applicable to this operation.

OSUser Optional Specifies the operating system profile assigned to the workflow.

DomainName Optional Domain name for the Integration Service.

AttributeName Optional Name of the attribute in the attribute name and value pair used to
start or schedule a workflow or task.

AttributeValue Optional Value of the attribute in the attribute name and value pair used to
start or schedule a workflow or task.

Key Optional Key to use to start a workflow or task.

MustUse Optional Indicates whether the key must be used to start the workflow or
task.

ParameterScope Optional Scope of the parameter in a parameter array definition.

ParameterName Optional Name of the parameter in a parameter array definition.

ParameterValue Optional Value of the parameter in a parameter array definition.

waitTillTaskComplete
Use this operation to wait for a task running on an Integration Service to complete. You must log in to the
repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow containing the task.

TaskInstancePath Required Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter <WorkletName>.<TaskName>. Enter the taskInstancePath as a
fully qualified string.

RequestMode Required Indicates the recovery strategy for the session task:
- NORMAL. Restarts a session without recovery.
- RECOVERY. Recovers a session.

Data Integration Web Service Operations 55

Parameter Name Required/
Optional

Description

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance containing the task.

WorkflowRunInstanceName Optional Name of the workflow run instance containing the task.

Reason Optional Describes the reason to start a workflow or task.

ParameterFileName Optional Name of the parameter file to use when running the workflow.

IsAbort Optional Indicates whether to abort a task. Not applicable to this operation.

OSUser Optional Specifies the operating system profile assigned to the workflow.

DomainName Optional Domain name for the Integration Service.

AttributeName Optional Name of the attribute in the attribute name and value pair used to
start or schedule a workflow or task.

AttributeValue Optional Value of the attribute in the attribute name and value pair used to
start or schedule a workflow or task.

Key Optional Key to use to start a workflow or task.

MustUse Optional Indicates whether the key must be used to start the workflow or
task.

ParameterScope Optional Scope of the parameter in a parameter array definition.

ParameterName Optional Name of the parameter in a parameter array definition.

ParameterValue Optional Value of the parameter in a parameter array definition.

waitTillWorkflowComplete
To run an operation or workflow only after another workflow completes, use this operation to get notification
when the other workflow completes. You must log in to the repository before you call this operation.

The following table describes the parameters for this operation:

Parameter Name Required/
Optional

Description

SessionID Required Session ID generated after log in.

FolderName Required Name of the folder containing the workflow.

WorkflowName Required Name of the workflow.

RequestMode Required Indicates the recovery strategy for the session task:
- NORMAL. Restarts a session without recovery.
- RECOVERY. Recovers a session.

56 Chapter 4: Batch Web Service Operations

Parameter Name Required/
Optional

Description

ServiceName Required Name of the Integration Service that runs the workflow.

WorkflowRunId Optional ID of the workflow run instance.

WorkflowRunInstanceName Optional Name of the workflow run instance.

Reason Optional Describes the reason to start a workflow or task.

ParameterFileName Optional Name of the parameter file to use when running the workflow.

TaskInstancePath Optional Path specifying the location of the task. If the task is within a
workflow, enter the task name alone. If the task is within a worklet,
enter <WorkletName>.<TaskName>. Enter the taskInstancePath as a
fully qualified string.

IsAbort Optional Indicates whether to abort a task. Not applicable to this operation.

OSUser Optional Specifies the operating system profile assigned to the workflow.

DomainName Optional Domain name for the Integration Service.

AttributeName Optional Name of the attribute in the attribute name and value pair used to
start or schedule a workflow or task.

AttributeValue Optional Value of the attribute in the attribute name and value pair used to
start or schedule a workflow or task.

Key Optional Key to use to start a workflow or task.

MustUse Optional Indicates whether the key must be used to start the workflow or
task.

ParameterScope Optional Scope of the parameter in a parameter array definition.

ParameterName Optional Name of the parameter in a parameter array definition.

ParameterValue Optional Value of the parameter in a parameter array definition.

Data Integration Web Service Operations 57

C h a p t e r 5

Writing Client Applications
This chapter includes the following topics:

• Writing Client Applications Overview, 58

• Client Applications for Batch Web Services, 58

• Java Client Application for Batch Web Services, 60

• C# Client Application for Batch Web Services, 63

• Client Applications for Real-time Web Services, 66

• Java Client Application for Real-time Web Services, 67

• Using Parameter Arrays, 69

• Adding Security to a Client Request, 72

Writing Client Applications Overview
This chapter provides an overview of how you can write client applications to use the web services offered by
the PowerCenter Web Services Provider. The general discussion on the steps to create a client application is
followed by examples of how to create client applications in the Java and .NET frameworks.

To create a client application for the PowerCenter web services, you need the web service WSDL and a web
service toolkit. Web services toolkits make it easy to create client applications by generating client-side proxy
classes from the web service WSDL. You can use the Microsoft .NET and Apache Axis web services toolkits
to write client applications for the PowerCenter web services.

You can create a client application to run PowerCenter batch or real-time web services. The application
development follows the same basic steps.

Note: The Web Services Hub can process chunked messages. To enable chunked transfer encoding in your
client request, add the following header to the SOAP message:

TRANSFER ENCODING=chunked

Client Applications for Batch Web Services
Developing a client application to access the batch web services available in the PowerCenter Web Services
Provider involves the following elements:

• Client proxy classes

58

• Initialization

• Session maintenance

• Operation calls

• Resource cleanup

• Error handling

• Proxy objects

Generating Client Proxy Classes
To use the batch web services operations available in the Web Services Hub, you need to generate client
proxy classes for the web service WSDL using a web services toolkit.

To generate client proxies, complete the following steps:

1. Select the web services toolkit for the platform and language in which you want to develop.

2. Download the WSDL files for the Metadata web services and Data Integration web services from the Web
Services Hub Console. By default, when you download the WSDL files from the Web Services Hub
Console, the endpoint URL is set to the Web Services Hub host name and port number. Before you
generate the proxy classes, verify that the WSDL files contain the correct endpoint URL.

3. Generate the client-side proxy classes from the WSDL files using the web service toolkit. Refer to the
web services toolkit documentation for details on generating proxy classes. Each toolkit generates the
client proxy classes in a specific way.

Initialization
The client application performs an initialization step before it makes calls to Metadata and Data Integration
web services operations.

To perform initialization, complete the following steps:

1. Instantiate the proxy class for the Metadata API.

In the example, the name of the Metadata API proxy object is MWSProxy. This section uses the name
MWSProxy to refer to the Metadata API proxy object.

2. Instantiate the proxy class for the Data Integration API.

In the example, the name of the Data Integration API proxy object is DIWSProxy. This section uses the
name DIWSProxy to refer to the Data Integration API proxy object.

3. Call the Login operation using the MWSProxy object.

The Login operation requires a repository name, user name, and password and returns a session ID. This
operation call associates the MWSProxy object with the repository name and user name pair. All
subsequent requests made to the batch web services operations using the MWSProxy object use these
repository and user names.

Session Maintenance
The Web Services Hub requires session maintenance to cache resources. The SOAP header in the SOAP
message carries the session information facilitating session maintenance.

Client Applications for Batch Web Services 59

To set up and perform session maintenance, complete the following steps:

1. Extract the header with the root element name Context and namespace http://
www.informatica.com/wsh from the response of the Login operation call. This SOAP header contains
the session ID sent by the Web Services Hub.

2. Set the SOAP header in the MWSProxy object after the Login operation call. This will send the session ID
in the SOAP header for all subsequent requests using the MWSProxy object.

3. Set the SOAP header in the DIWSProxy object with the same session ID so that the same session ID will
be sent for all subsequent requests made using the DIWSProxy object.

Operation Calls
You are now ready to call Metadata web service and Data Integration web service operations using the
MWSProxy and DIWSProxy objects. Use the MWSProxy object to call Metadata web service operations. Use
the DIWSProxy object to call Data Integration web service operations.

Resource Cleanup
The Web Services Hub implements session expiry for performance and resource cleanup. The Logout
operation releases the Web Services Hub resources acquired by client applications and performs cleanup
operations.

To release resources, call the Logout operation using the MWSProxy object.

If you log in to a repository but do not call the Logout operation, the Web Services Hub performs resource
cleanup after the session expiration period.

Error Handling
SOAP fault elements in the SOAP response contain the errors that occur during calls to web services.

While calling any of the batch web services operations, the client application should implement the
appropriate error handling scheme to retrieve the SOAP fault. This scheme varies according to the toolkit.

A web services toolkit provides an exception handling scheme to get the faultcode and faultstring field of a
fault element. However, you might need an XML parser to parse the detail element field to get the error code
and extended details.

Proxy Objects
The Login operation call creates a session for the repository and user name you provide. The session ID that
you get from the Login operation call identifies this session. The session ID corresponds to the Metadata
proxy object. The Metadata proxy object is valid as long as the session ID is valid. After you call the Logout
operation, the session ID becomes invalid along with the corresponding Metadata and Data Integration proxy
objects.

Java Client Application for Batch Web Services
This section highlights the steps to write a client application in Java using the Axis Web Services Toolkit.

60 Chapter 5: Writing Client Applications

Note: The sample code snippets in the following sections are taken from the Batch web services sample
programs shipped with the Web Services Hub. You can view the sample programs for the PowerCenter web
services in the following directory:

<PowerCenterInstallationDir>/server/samples/WebServices/samples/BatchWebServices/axis

Generating Client Proxy Classes in Axis
You can generate client proxy classes in Java using the Axis Web Services Toolkit. To use the toolkit, include
the axis.jar file in the CLASSPATH environment variable.

To generate client proxy classes in Java, complete the following steps:

1. Download the Metadata web services and Data Integration web services WSDL files from the Web
Services Hub Console.

Verify that the WSDLs have the correct host name and port number for the Web Services Hub in the
endpoint URL. If the endpoint URL is not correct, update the address element, which is available in the
definitions\service\port hierarchy in the WSDL.

2. Use the following command to generate the client proxy classes:

java org.apache.axis.wsdl.WSDL2Java --NStoPkg
http://www.informatica.com/wsh=ProxyClasses -W <WSDLFile>

The -W option turns off support for wrapped document literal services.

For example, for WSDL files named Metadata.wsdl and DataIntegration.wsdl, run the following
commands:

java org.apache.axis.wsdl.WSDL2Java --NStoPkg
http://www.informatica.com/wsh=ProxyClasses -W Metadata.wsdl
java org.apache.axis.wsdl.WSDL2Java --NStoPkg
http://www.informatica.com/wsh=ProxyClasses -W DataIntegration.wsdl

These commands generate the client proxy classes in the ProxyClasses package. The commands
generate the following proxy classes:

• MetadataInterface.java. Contains the interface for the Metadata web services.

• DataIntegrationInterface.java. Contains the interface for the Data Integration web services.

Initialization in Axis
The client application must perform an initialization step before it makes calls to Metadata web services and
Data Integration web services.

To perform initialization, complete the following steps:

1. Create MetadataService and DataIntegrationService objects by instantiating the service locator classes:

MetadataService mdService = new MetadataServiceLocator();
DataIntegrationService diService = new DataIntegrationServiceLocator();

2. Get a MetadataInterface object (MWSProxy) from the MetadataService object created in step 1.

If the Metadata service endpoint URL in the Metadata.wsdl has the correct URL, get the MWSProxy
object:

MWSProxy=mdService.getMetadata();
Otherwise, get the MWSProxy object:

MWSProxy=mdService.getMetadata(new java.net.URL(MWS_URL));
MWS_URL is a variable containing the endpoint URL for the Metadata web services.

Use the MWSProxy object to call Metadata web service operations.

Java Client Application for Batch Web Services 61

3. Get a DataIntegrationInterface object (DIWSProxy) from the DataIntegrationService object created in
step 1.

If the service endpoint URL in the DataIntegration.wsdl has the correct URL, get the DIWSProxy object:

DIWSProxy=diService.getDataIntegration();
Otherwise, get the DIWSProxy object:

DIWSProxy=diService.getDataIntegration(new java.net.URL(DIWS_URL));
DIWS_URL is a variable containing the endpoint URL for the Data Integration web services.

Use the DIWSProxy object to call Data Integration web service operations.

4. Call the Login operation with the MWSProxy object to create a session ID for the client application user
account. The Login operation takes a domain, repository, user name, and password, wrapped in an
object LoginRequest and returns a session ID.

LoginRequest loginReq = new LoginRequest();
loginReq.setRepositoryDomainName(REPO_DOMAIN_NAME);
loginReq.setRepositoryName(REPO_NAME);
loginReq.setUserName(USER_NAME);
loginReq.setPassword(PASSWORD);
String sessionID = MWSProxy.login(loginReq);

REPO_DOMAIN_NAME is a string containing a PowerCenter domain name, REPO_NAME is a string
containing the name of a repository in the domain, USER_NAME is a string containing a user name valid
for the repository, and PASSWORD is a string containing the password for the user to log in to the
repository.

5. Associate the MWSProxy and DIWSProxy objects with the repository and user name in the session ID. All
subsequent requests made to the batch web services using the MWSProxy or DIWSProxy object use the
repository and user name in the session ID.

((org.apache.axis.client.Stub)MWSProxy).setHeader(createSessionHeader(sessionID));
((org.apache.axis.client.Stub)DIWSProxy).setHeader(createSessionHeader(sessionID));

Session Maintenance in Axis
The Web Services Hub requires session maintenance to cache resources. The SOAP header in the SOAP
message carries the session information facilitating session maintenance.

To perform session maintenance, complete the following steps:

1. Extract the SOAP header with the root element name Context and the namespace http://
www.informatica.com/wsh from the response of the Login operation call using the MWSProxy object.
This SOAP header contains the session ID sent by the Web Services Hub.

/** Create session ID in the Soap message header **/
public static SOAPHeaderElement createSessionHeader(String sessID) throws
SOAPException
 {
 String WSSE_NS ="http://www.informatica.com/wsh";
 String WSSE_PREFIX = "infa";
 Name hdrname =
SOAPFactory.newInstance().createName("Context",WSSE_PREFIX,WSSE_NS);
 SOAPHeaderElement header = new SOAPHeaderElement(hdrname);
 SOAPElement token = header.addChildElement("SessionId","","");
 token.addTextNode(sessID);
 return header;
 }

2. Send this session ID in a SOAP header for all subsequent requests using the MWSProxy object. You set
the SOAP header once in the MWSProxy object after the Login operation call:

((org.apache.axis.client.Stub) MWSProxy).setHeader(createSessionHeader(sessionID));
3. Set the SOAP header in the DIWSProxy object with the same SOAP header:

((org.apache.axis.client.Stub) DIWSProxy).setHeader(createSessionHeader(sessionID));

62 Chapter 5: Writing Client Applications

Making Operation Calls in Axis
You are now ready to call Metadata web service and Data Integration web service operations using the
MWSProxy and DIWSProxy objects.

For example, you can call the getAllDIServers operation to get a list of Integration Services:

DIServerInfoArray servers = MWSProxy.getAllDIServers(null);
if (servers.getDIServerInfo() != null) {
 for(int i=0; i < servers.getDIServerInfo().length ; i++) {
 System.out.println("("+(i+1)+") "+servers.getDIServerInfo(i).getName());
 }
 }

You can call the pingDIServer operation to check the state of an Integration Service:

DIServiceInfo diInfo = new DIServiceInfo();
diInfo.setDomainName(DI_DOMAIN_NAME);
diInfo.setServiceName(SERVICE_NAME);
PingDIServerRequest pingReq = new PingDIServerRequest();
pingReq.setDIServiceInfo(diInfo);
pingReq.setTimeOut(100);
EPingState eps = DIWSProxy.pingDIServer(pingReq);

DI_DOMAIN_NAME is a variable containing the name of the domain that contains the Integration Service.
SERVICE_NAME is a variable containing the Integration Service name.

Clean Up in Axis
Clean up operations release the Web Services Hub resources acquired by client applications. To clean up and
release resources, call the Logout operation using the MWSProxy object:

MWSProxy.logout(null);

Error Handling in Axis
You can implement client application error handling in Axis by placing the code in a try block and catching the
FaultDetails object. The FaultDetails class is generated as part of the client proxies.

You can use the following code in a try block to catch the FaultDetails object:

try {
// Code for steps explained above.
}
catch(FaultDetails fault) {
// Display fault code
 System.out.println(“fault code : “ + fault.getFaultCode());
// Display fault string
 System.out.println(“fault string : “ + fault.getFaultString());
// Display error code
 System.out.println(“error code is : “ + fault.getErrorCode());
// Display extended details
 System.out.println(“extended detail is : “ + fault.getExtendedDetails());
}

C# Client Application for Batch Web Services
This section highlights the steps to write a client application in C# using the .NET Web Services Toolkit.

C# Client Application for Batch Web Services 63

Note: The sample code snippets in the following sections are taken from the Batch web services sample
programs. You can view the sample programs in the following directory:

<PowerCenterInstallationDir>\server\samples\WebServices\samples\BatchWebServices\dotnet
\csharp

Generating Client Proxy Classes in .NET
You can create client proxy classes for the Web Services Hub in C# using the Microsoft .NET Web Services
Toolkit.

To generate client proxies in C#, complete the following steps:

1. Download the Metadata web services and Data Integration web services WSDL files from the Web
Services Hub Console. Verify that the WSDLs have the correct host name and port number for the Web
Services Hub in the endpoint URL. If the endpoint URL is not correct, update the address element, which
is available in the definitions\service\port hierarchy in the WSDL.

2. Use the following command to generate the client proxy classes:

wsdl <WSDLFile>
For example, for WSDL files named Metadata.wsdl and DataIntegration.wsdl, run the following
commands:

wsdl Metadata.wsdl
wsdl DataIntegration.wsdl

The commands generate the following proxy classes:

• MetadataService.cs. Contains the interface for the Metadata web services.

• DataIntegrationService.cs. Contains the interface for the Data Integration web services.

Initialization in .NET
The client application must perform an initialization step before it makes calls to Metadata web services and
Data Integration web services.

To perform initialization, complete the following steps:

1. Instantiate a MetadaService class object (MWSProxy):

MWSProxy= new MetadaService();
If the Metadata service endpoint URL in the Metadata.wsdl does not have the correct URL, you can set
the URL with the following code:

MWSProxy.Url = MWS_URL;
MWS_URL is a variable containing the endpoint URL for the Metadata web services.

Use the MWSProxy object to call Metadata web service operations.

2. Instantiate a DataIntegrationService class object (DIWSProxy):

DIWSProxy= new DataIntegrationService ();
If the Data Integration service endpoint URL in the DataIntegration.wsdl does not have the correct URL,
you can set the URL with the following code:

DIWSProxy.Url = DIWS_URL;
DIWS_URL is a string containing the Data Integration web service endpoint URL.

Use the DIWSProxy object to call the Data Integration web service operations.

64 Chapter 5: Writing Client Applications

3. Call the Login operation using the MWSProxy object to create a session ID for the client application user
account. The Login operation takes a domain, repository, user name, and password, wrapped in an
object LoginRequest and returns a session ID.

LoginRequest loginReq = new LoginRequest();
loginReq.RepositoryDomainName = REPO_DOMAIN_NAME;
loginReq.RepositoryName = REPO_NAME;
loginReq.UserName = USER_NAME;
loginReq.Password = PASSWORD;
String sessID = MWSProxy.Login(loginReq);

REPO_DOMAIN_NAME is a string containing a PowerCenter domain name, REPO_NAME is a string
containing the name of a repository in the domain, USER_NAME is a string containing a user name valid
for the repository, and PASSWORD is a string containing the password for the user to log in to the
repository.

4. Associate the MWSProxy and DIWSProxy object with the repository and user name in the session ID. All
subsequent requests made to the batch web services using the MWSProxy or DIWSProxy object use the
repository and user name in the session ID.

MWSProxy.Context.SessionId = sessID;
DIWSProxy.Context.SessionId = sessID;

Session Maintenance in .NET
The Web Services Hub requires session maintenance to cache resources. The SOAP header in the SOAP
message carries the session information facilitating session maintenance.

You do not need to take additional steps. The .NET client proxy classes handle session maintenance for you.

Making Operation Calls in .NET
You are now ready to call Metadata web service and Data Integration web service operations using the
MWSProxy and DIWSProxy objects.

For example, you can call the getAllDIServers operation to get a list of Integration Services:

DIServerInfo[] servers = MWSProxy.GetAllDIServers(null);
if (servers != null) {
 for(int i=0; i < servers.Length ; i++) {
 Console.WriteLine("("+(i+1)+") "+servers[i].Name);
 }
 }

You can call the pingDIServer operation to check the state of an Integration Service:

PingDIServerRequest pingReq = new PingDIServerRequest();
pingReq.TimeOut = (PING_TIME_OUT);
DIServiceInfo diInfo1 = new DIServiceInfo();
diInfo1.DomainName = DI_DOMAIN_NAME;
diInfo1.ServiceName = DI_SERVICE_NAME1;
pingReq.DIServiceInfo = diInfo1;
EPingState pingResult = DIWSProxy1.pingDIServer(pingReq);

DI_DOMAIN_NAME is a variable containing the name of the domain that contains the Integration Service.
DI_SERVICE_NAME is a variable containing the Integration Service name.

Error Handling in .NET
You can implement client application error handling in .NET by placing the code in a try block and catching
the SOAP Exception object. The SOAP Exception class is part of the .NET framework SDK.

C# Client Application for Batch Web Services 65

You can use the following code in a try block to catch the SOAP Exception object:

try {
//Code for steps explained above.
}
catch(SoapException fault) {
// Display fault code
Console.WriteLine(“fault code is : “ + fault.Code);
// Display fault string
Console.WriteLine(“fault string is : “ + fault.Message);
// Parsing detail element
XmlNode detail = fault.Detail;
XmlElement WSHFaultDetails = detail[“WSHFaultDetails”, “http://www.informatica.com/
PowerCenter”];
 XmlElement ErrorCode= WSHFaultDetails [“ErrorCode”];
 XmlElement ExtendedDetails= WSHFaultDetails [“ExtendedDetails”];
// Display error code
 Console.WriteLine (“error code is : “ + ErrorCode.InnerText);
// Display extended details
 Console.WriteLine (“extended detail is : “ + ExtendedDetails.InnerText);
}

Client Applications for Real-time Web Services
Client applications for real-time web services involve the following elements:

• Web service workflows

• Client proxy classes

• Initialization

• Operation calls

• Error handling

Web Service Workflows
You build real-time web service client applications to run web services workflows. Before you create the
client application, create the mappings and workflows in PowerCenter. Enable the following options in the
workflow to allow a client application to run the workflow:

• Web Service. Enable the Web Service option to turn a workflow into a web service workflow.

• Runnable. Enable the Runnable option to allow a client application to run the web service workflow.

• Visible. Enable the Visible option so that the Web Services Hub publishes the WSDL for the web service in
the Web Services Hub Console.

Generating Client Proxy Classes
To use real-time web services you create in PowerCenter, you need to generate client proxy classes from the
WSDL of the web service you want to access.

To generate client proxies, complete the following steps:

1. Select the web services toolkit for the platform and language in which you want to develop.

2. Download the WSDL for the real-time web service from the Web Services Hub Console.

66 Chapter 5: Writing Client Applications

3. Generate the client-side proxy classes from the WSDL using the web service toolkit. Refer to the web
services toolkit documentation for details on generating proxy classes. Each toolkit generates the client
proxy classes in a specific way.

Initialization
The client application must instantiate the web service object in the client proxy classes and get the port for
the web service before the application can make calls to the web service operations.

Operation Calls
To invoke a web service operation, the client application must create a request object and pass it to the port
operation. When the web service sends back a response, the client application must handle the response as
needed.

Error Handling
Error handling in a real-time web services client application is the same as in a Batch web services client
application. SOAP fault elements in the SOAP response contain the errors that occur during calls to web
services. The client application should implement the appropriate error handling scheme to retrieve the SOAP
fault.

Java Client Application for Real-time Web Services
This section provides instructions for using the Axis Web Services Toolkit to create a Java client application
program that calls a PowerCenter real-time web service. For more information about using the Axis Web
Services Toolkit see the documentation on the Apache web site:

http://ws.apache.org/axis/java/user-guide.html
Before you create the client application that calls a PowerCenter web service workflow, you must first create
the web service workflow and generate the WSDL for the web service. You then create the client application
based on the web service WSDL.

To create a PowerCenter web service and generate the WSDL, complete the following steps:

1. Create a mapping for the web service workflow. You can create a mapping to receive a message from a
web service client, transform the data, and send the response back to the web service client or write it to
any target that PowerCenter supports.

2. Create a workflow and enable it as a web service. Create a workflow to run the mapping and enable the
Web Services option in the workflow properties. Select the Runnable option so that client applications
outside of PowerCenter can run the workflow.

3. Locate and download the WSDL for the web service workflow. When you create the web service
workflow, PowerCenter generates a WSDL for the web service. If you configure the web service to be
visible, you can view the WSDL on the console of the Web Services Hub associated with the web service.

After you create the web service, you can develop a client application to run the web service workflow.

Related Topics:
• “Creating and Configuring a Web Service Workflow” on page 100

• “Web Services Section ” on page 25

Java Client Application for Real-time Web Services 67

Creating a Client Application for a Real-time Web Service
To create a client application that calls a real-time web service, complete the following steps:

1. Generate the client proxy classes for the web service.

After you create the proxy classes, create the Java application to call the web service. Perform the next
steps within the Java application.

2. Initialize the web service objects.

3. Create the request object.

4. Pass the request object to the port operation and handle the response.

Note: The sample code snippets in the following sections are taken from the real-time web services sample
program for multiple row lookup. You can view the example in the following directory:

<PowerCenterInstallationDir>/server/samples/WebServices/samples/RealTimeWebServices/
UnprotectedWebServices/axis/CustomerLookup_MULTIPLEROW

Step 1. Generate Client Proxy Classes in Axis
You can use the Axis Web Services Toolkit to generate Java client proxy classes for the web service WSDL.
Specifically, you can run the WSDL2Java tool to generate the Java proxy class files.

Verify that the WSDL has the correct host name and port number for the web service in the endpoint URL. If
the endpoint URL is not correct, update the address element, which is available in the \definitions\service
\port hierarchy in the WSDL.

Use the following command to generate the client proxy classes:

java org.apache.axis.wsdl.WSDL2Java -W <WSDLFile>
For example, for WSDL named SampleWS.wsdl, run the following command:

java org.apache.axis.wsdl.WSDL2Java -W SampleWS.wsdl
The -W option turns off support for wrapped document literal services.

WSDL2Java generates a class for each data type defined in the WSDL. By default, WSDL2Java generates
package names based on the namespaces in the WSDL. Typically, if the namespace is of the form http://
x.y.com or urn:x.y.com, the corresponding package will be com.y.x.

Step 2. Initialize the Web Service Objects
Before you call any web service operation, you must create the web service object in the client proxy classes
and get the port for the web service.

To create the web service object, instantiate the service locator classes. In the sample program, the following
code instantiates the service locator:

CustomerLookup_MULTIPLEROW service = new CustomerLookup_MULTIPLEROWLocator();
To get the port for the web service, use the proxy class created for the port type. In the sample program, the
following code gets the port for the web service:

CustomerLookup_MULTIPLEROWPort port =
 service.getCustomerLookup_MULIPLEROWPort(new java.net.URL(END_POINT_URL);

The variable END_POINT_URL contains the URL of the WSDL.

68 Chapter 5: Writing Client Applications

Step 3. Create the Request Object
You must create a request object and any required parameter to be passed to the web service. In the sample
client application, the following code creates a lookup request object:

CustomerLookupRequest request = new CustomerLookupRequest();
request.setCustomerID_in(CustomerID);

Step 4. Send the Request and Handle the Response
After you create the request object, pass it to the port operation. The web service sends back a response.
You can handle the response based on your requirements.

In the sample client application, the following code passes the request object to the port and displays the
response:

CustomerLookupResponse[] response =
port.customerLookup_MULTIPLEROWOperation(requestOperation);
System.out.println();
if (response[0].getCustomerID_out() == 0)
 {
 System.out.println("Customer(s) with the ID as " + CustomerID + " does not
exist!!!");
 }
else
 {
 System.out.println("***** Customer(s) that matches with the Customer ID is/are ...");
 for (int i = 0; i < response.length; i++)
 {
 System.out.println("***** Customer ID: " + response[i].getCustomerID_out());
 System.out.println("***** Customer Name: " + response[i].getCustomerName_out());
 System.out.println("***** Customer Age: " + response[i].getCustomerAge_out());
 System.out.println("***** Customer Gender: " +
 response[i].getCustomerGender_out());
 System.out.println("***** Customer Address: " +
 response[i].getCustomerAddress_out());
 if (i < response.length - 1) System.out.println ();
 }
 }

Using Parameter Arrays
In PowerCenter, a parameter represents a value you can change between sessions, such as a database
connection or a source or target file. You can create parameters associated with a workflow or session to
provide flexibility each time you run a workflow or session.

For a web service client application, you can define the values for parameters associated with a workflow or
session in a parameter file or a parameter array. To use the parameters in a parameter file, specify the
parameter file name in the client application. The parameter file must be accessible to the Integration
Service. To use a parameter array, provide the parameter values in the elements of the parameter array in the
client application.

For example, a request to start a workflow or task can specify the parameters associated with the workflow
or task with the name of a parameter file or the list of parameters and values in parameter array.

Using Parameter Arrays 69

Parameter Array Definition
The parameter definition in a SOAP request consists of the scope, name, and value of the parameter. When
the Integration Service runs the workflow or task, it uses the parameters in an array the same way it uses
parameters in a parameter file.

The WSDL contains the following definition for the parameter array elements:

<complexType name="Parameter">
 <sequence>
 <element name="Scope" type="xsd:string" />
 <element name="Name" type="xsd:string" />
 <element name="Value" type="xsd:string" />
 </sequence>
</complexType>

<complexType name="ParameterArray">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="Parameters"
 nillable="true" type="impl:Parameter" />
 </sequence>
</complexType>

For example, a parameter file has the following parameters:

[s_m_A]
$a=1
$b=2
$c=3
[WSH_Folder.s_m_B]
$d=4

The SOAP request for a web service call to the StartWorkflow operation with the same parameters in a
parameter array would include the following elements:

<StartWorkflow>
…
 <Parameters>
 <Parameter>
 <Scope>s_m_A</Scope>
 <Name>$a</Name>
 <Value>1</Value>
 </Parameter>
 <Parameter>
 <Scope>s_m_A</Scope>
 <Name>$b</Name>
 <Value>2</Value>
 </Parameter>
 <Parameter>
 <Scope>s_m_A</Scope>
 <Name>$c</Name>
 <Value>3</Value>
 </Parameter>
 <Parameter>
 <Scope>WSH_Folder.s_m_B</Scope>
 <Name>$d</Name>
 <Value>4</Value>
 </Parameter>
…
</StartWorkflow>

The WorkflowRequest and TaskRequest types contain ParameterArray elements. You can specify any number
of parameters in a parameter array.

The following sample code from a web service client application in Axis shows how to create the parameter
array in a WorkflowRequest:

Parameter[] parameters = new Parameter[4];

Parameter param1 = new Parameter();

70 Chapter 5: Writing Client Applications

Param1.setScope(“s_m_A”);
Param1.setName($a”);
Param1.setValue(“1”);
Parameters[0] = param1;

Parameter param2 = new Parameter();
Param2.setScope(“s_m_A”);
Param2.setName(“$b”);
Param2.setValue(“2”);
Parameters[1] = param2;

Parameter param3 = new Parameter();
Param3.setScope(“s_m_A”);
Param3.setName(“$c”);
Param3.setValue(“3”);
Parameters[2] = param3;

Parameter param4 = new Parameter();
Param4.setScope(“WSH_Folder.s_m_B”);
Param4.setName(“$d”);
Param4.setValue(“4”);
Parameters[3] = param4;

WorkflowRequest wfReq = new WorkflowRequest();
wfReq.setParameters(parameters);

You can use parameter arrays in the following operations:

• startWorkflow

• startWorkflowFromTask

• recoverWorkflow

• startTask

Rules and Guidelines for Using Parameter Arrays
Use the following rules and guidelines when you use a parameter array in a web service request:

• Use a parameter file OR a parameter array. Do not specify a parameter file name and a parameter array in
the SOAP request when you make a web service operation call. If you specify both a parameter file and
parameter array in the SOAP request, the Web Services Hub returns a fault message warning that the
request specifies a parameter list and a parameter file.

• When a parameter file and a parameter array are defined, the Integration Service uses the value of the
parameter from the parameter array in a SOAP request. The Integration Service uses the value of the
parameter defined in the parameter array when the following conditions are true:

- You specify a parameter array in a web service request to start a workflow.

- The workflow has an associated parameter file defined in the workflow properties.

Using Parameter Arrays 71

Adding Security to a Client Request
The Web Services Hub uses the following types of security for web services:

• User credential. To get credentials for a request, the client must log in to the PowerCenter repository that
contains the web service to run. The login generates a session ID that the web service client must include
in the SOAP request.

The Web Services Hub uses this security option for batch web services. A client application that calls a
batch web service must log in to the repository before calling any other operation.

• User name token. Web service security that uses a user name token and is based on the OASIS web
service security standards, which includes a set of SOAP extensions to ensure content integrity and
security for SOAP messages.

User name token is the default security option for protected web services. By default, WSDLs generated by
the Web Services Hub for protected web services contain a security header with the UsernameToken
element.

For more information about the OASIS web service security standards, read the web services security
specifications on the OASIS web site:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-sx
Note: If a client application sends a login request to run a web service, send an explicit logout request after
the response is received. Login requests without corresponding logout requests can cause a memory leak in
the Repository Service and Web Services Hub processes.

UsernameToken in the SOAP Request
When you build a client application based on the WSDL generated by the Web Services Hub, the request
object contains the UsernameToken element in the header by default.

The UsernameToken element in the SOAP request can have one of the following password security:

• Plain text password. Includes a password in plain text.

• Hashed password. Includes an encrypted password hashed using the MD5 or SHA-1 hash function.

• Digested password. Includes an encrypted password that is hashed with a nonce value and a timestamp.

Include the user password in the Password element of the UsernameToken.

The Password element has a Type attribute to indicate the type of password security used. If the Type
attribute is omitted, the password type defaults to PasswordText.

Note: If the Informatica domain uses Kerberos network authentication, you cannot use hashed or digested
passwords in the SOAP request.

Plain Text Password
The UsernameToken element includes the following child elements:

• Username element. Contains a user name that can be found in the PowerCenter Native security domain or
any LDAP security domain. The default security domain is the Native security domain. If the user name
belongs to the Native security domain, the Username element does not require the name of the security
domain. If the user name belongs to an LDAP security domain, the user name must be preceded by the
name of the security domain and a slash (/).

72 Chapter 5: Writing Client Applications

The following table of Username element examples shows the format to use to indicate the security
domain of the user account:

Value of the Username Element Security Domain

<UsernameToken>
 <Username>Native/Administrator</Username>
 <Password>Administrator</Password>
</UsernameToken>

Native

<UsernameToken>
 <Username>/Administrator</Username>
 <Password>Administrator</Password>
</UsernameToken>

Native

<UsernameToken>
 <Username>Administrator</Username>
 <Password>Administrator</Password>
</UsernameToken>

Native

<UsernameToken>
 <Username>LDAPAdm/Administrator</Username>
 <Password>Administrator</Password>
</UsernameToken>

LDAP security domain named LDAPAdm.

• Password element. Contains the password in plain text. The Type attribute of the Password element can
be omitted or set to PasswordText.

Hashed Password
The UsernameToken element includes the following child elements:

• Username element. Contains a user name that can be found in the PowerCenter Native security domain.

• Password element. Contains a hashed password. The password must be hashed with the MD5 or SHA-1
hash function and encoded to Base64. The Type attribute of the Password element can be omitted or set
to “PasswordText”.

The following code shows an example of the security header for a request that uses a hashed password:

<soapenv:Header>
 <!-- UsernameTokens -->
 <inf:Security>
 <UsernameToken>
 <Username>Native/Administrator</Username>
 <Password>Ntm58Cxf7SBOQAz3OlsTq1nv-D7</Password>
 </UsernameToken>
 </inf:Security>
</soapenv:Header>

Using Third-Party Tools to Create a Hashed Password
You can use third-party tools, such as OpenSSL and the Java MessageDigest class, to create a hashed
password.

Adding Security to a Client Request 73

OpenSSL on UNIX

To use OpenSSL to create a hashed password on a UNIX machine, run OpenSSL with the message digest
command dgst.

The following example shows how to create a hashed password for the password string Administrator
using the MD5 hash function and encoded in Base64:

echo -n "Administrator" | openssl dgst -md5 -binary | openssl base64

The following example shows how to create a hashed password for the password string Administrator
using the SHA-1 hash function and encoded in Base64:

echo -n "Administrator" | openssl dgst -sha1 -binary | openssl base64

Note: The echo command in these examples adds a newline character to the string. The -n option in the
commands removes the newline character.

OpenSSL on Windows

To use OpenSSL to create a hashed password on a Windows machine, run OpenSSL with the message
digest command dgst.

The following example shows how to create a hashed password using the SHA-1 hash function and
encoded in Base64:

openssl dgst -sha1 -binary -out <output file name> <input file name>
openssl enc –base64 –in <output file name>

The input file contains the password string that you want to hash. OpenSSL writes the hashed password
to the output file.

Java MessageDigest

The following example shows how to use the Java MessageDigest class to create a hashed password
using the MD5 hash function and encoded in Base64:

public static String md5hash(String password) throws Exception{
 MessageDigest digest = java.security.MessageDigest.getInstance("MD5");
 digest.reset();
 digest.update(password.getBytes());
 byte[] hash = digest.digest();
 return new String(org.apache.commons.codec.binary.Base64.encodeBase64(hash));
}

The following example shows how to use the Java MessageDigest class to create a hashed password
using the SHA-1 hash function and encoded in Base64:

public static String sha1hash(String password) throws Exception{
 MessageDigest digest = java.security.MessageDigest.getInstance("SHA-1");
 digest.reset();
 digest.update(password.getBytes());
 byte[] hash = digest.digest();
 return new String(org.apache.commons.codec.binary.Base64.encodeBase64(hash));
}

Digested Password
The UsernameToken element includes the following child elements:

• Username element. Contains a user name that can be found in the PowerCenter Native security domain.

• Password element. Contains a digested password. The password is the value generated from hashing the
password concatenated with the nonce value of the Nonce element and the timestamp in the Created
element. The password must be hashed with the SHA-1 hash function and encoded to Base64.

74 Chapter 5: Writing Client Applications

For digested password security, the Type attribute of the Password element must be set to
PasswordDigest.

• Nonce element. Contains a nonce value, which is a random value that can be used only once.

• Created element. Contains a timestamp value that indicates the time when the request was created. The
timestamp uses the UTC format, yyyy-MM-dd'T'HH:mm:ss.SSS'Z'. For example:
2008-08-11T18:06:32.425Z.

The nonce value you include in a SOAP request can be used only once. By default, it is valid for 300 seconds
(five minutes) after the time that the request is created, as indicated by the value in the Created element. The
client application must send the request within the time that the nonce value is valid. For example, the
Created value indicates that the request was created at 10:00 a.m. The request is valid from 10:00 a.m. to
10:05 a.m. If the client application sends the request to the Web Services Hub before 10:00 a.m. or after
10:05 a.m., then the request and the nonce value are not valid and the request will fail.

The digested password uses the standard OASIS password digest algorithm:

Password_Digest = Base64 (SHA-1 (nonce + created + password))
You can use any tool to generate the nonce value, timestamp, and the digested password.

The following code shows an example of the security header for a request that uses a digested password:

<soapenv:Header>
 <!-- UsernameTokens -->
 <inf:Security>
 <UsernameToken>
 <Username>Administrator</Username>
 <Password Type="PasswordDigest"> Xty5lCAf5SVO0AY3OtsYq7nv/DI=</Password>
 <Nonce>KjsaeiuDFKJEwkr4332rL=</Nonce>
 <Created>2008-08-12T01:11:47.013Z</Created>
 </UsernameToken>
 </inf:Security>
</soapenv:Header>

Using Third-Party Tools to Create a Digested Password
You can use a third-party tool such as the Java MessageDigest class to create a digested password.

The following example shows how to use the Java MessageDigest class to create a digested password with
a timestamp and nonce value and encoded in Base64 :

public static String oasisDigest(String password, String nonce) throws Exception{
 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS'Z'");
 String created = sdf.format(new Date());
 System.out.println("Created : " + created);
 System.out.println("Nonce : " + new
String(org.apache.commons.codec.binary.Base64.encodeBase64(nonce.getBytes())));
 String toDigest = nonce + created + password;
 MessageDigest digest = java.security.MessageDigest.getInstance("SHA-1");
 digest.reset();
 digest.update(toDigest.getBytes());
 byte[] hash = digest.digest();
 return new String(org.apache.commons.codec.binary.Base64.encodeBase64(hash));
}

If you use a web service testing tool such as soapUI to test client applications, you can use the tool to
generate the digested password for the client request.

Adding Security to a Client Request 75

C h a p t e r 6

Working with Web Service
Sources and Targets

This chapter includes the following topics:

• Web Service Sources and Targets Overview, 76

• Understanding Web Service Sources and Targets, 77

• Importing a Web Service Source or Target Definition, 79

• Creating a Source or Target Definition, 82

Web Service Sources and Targets Overview
When you create a mapping to use in a web service workflow, the source and target for the mapping must
define the web service input and output messages. The web service source defines the input message of a
web service operation and represents the metadata for a web service SOAP request. The web service target
defines the output message of a web service operation and represents the metadata for a web service SOAP
response.

The Web Services Description Language (WSDL) describes the input and output message of the web service.
If you have a WSDL for the web service workflow you want to create, you can import the source and target
definitions from the WSDL. If you do not have a WSDL, you can create the input and output messages based
on columns in a relational or flat file source or target. Or you can create the input and output messages from
columns that you define.

Use the Designer to create the web service source and target definitions. You can create the web service
source and target definitions in the following ways:

• Import definitions from a WSDL. Import the source or target definition for an operation defined in a WSDL.
When you import a source definition, the Designer imports the definition of the input message. When you
import a target definition, the Designer imports the definition of the output and fault messages.

• Create definitions from relational or flat file sources and targets. You can create the web service source
and target definitions based on relational or flat file source and target definitions defined in the folder.
You can also manually define the columns and specify the datatype and column size. You do not need a
WSDL when you create the web service source and target definitions from relational or flat file sources
and targets or when you manually define columns.

76

Understanding Web Service Sources and Targets
Similar to XML sources and targets, web service source and target definitions are organized into XML views.
XML views are groups of columns that represent the elements and attributes defined in the input and output
messages.

When you import source and target definitions, the Designer generates XML views based on the elements in
the input or output messages defined in the WSDL. It also generates views for mime attachments to the input
or output messages.

When you create web service source and target definitions, the Designer creates XML views based on the
columns defined in the relational or flat file sources or targets or the columns that you manually define.

XML Views and Groups
The web service source and target definitions can contain the following views:

• Envelope. XML view that corresponds to the SOAP envelope and body elements. The Envelope view is the
main view that contains a primary key and the ports for the input or output message.

If the body message parts are simple, the Designer generates an envelope view.

If the body message parts are complex, the Designer can generate additional body views:

- Element. View created if the input or output message contains a multiple occurring element. The
Designer generates an element view for each multiple occurring element in the input or output message.
The element view has an n:1 relationship with the envelope view.

- Type. View created if the input or output message contains a definition of a complex type. The Designer
generates a type view for each complex type element in the input or output message. The type view has
an n:1 relationship with the envelope view.

The Designer generates a type view for web service source and target definitions imported in entity
relationship mode.

• Header. XML view that corresponds to a SOAP header element. If the header message parts are complex,
the Designer can split the header view into separate element and type views.

• Fault. View created if a fault message is defined for the output message of the operation. The Designer
generates a fault view for each fault message defined for the operation. The fault view has an n:1
relationship with the envelope view. Only web service target definitions contain fault views.

The Designer generates a fault view for web service target definitions imported in normalized hierarchical
relationship mode or entity relationship mode.

• Attachment. Attachment view generated for a WSDL that contains a mime attachment. The attachment
view has an n:1 relationship with the envelope view.

The Designer generates an attachment view for a web service source or target definition based on a
WSDL that contains an element definition for a mime attachment.

Related Topics:
• “WSDL Attachments” on page 97

Source Definition
The Designer generates XML views for the web service source definition based on the definition of the input
message.

Understanding Web Service Sources and Targets 77

The following table shows the XML views the Designer can generate for a web service source definition:

Import Mode Envelope Element Type Fault Attachment

Entity Relationship yes yes yes no yes

Normalized Hierarchical
Relationship

yes yes no no yes

Target Definition
When you create a target definition for an operation in a WSDL, the Designer imports the output message and
any fault message associated with the operation. If the function within an operation results in different faults,
the Designer creates multiple fault views in the target definition. A fault message represents an error
processing the request.

The following table shows the XML views the Designer can generate for a web service target definition:

Import Mode Envelope Element Type Fault Attachment

Entity Relationship yes yes yes yes yes

Normalized Hierarchical
Relationship

yes yes no yes yes

Note: To create separate target definitions for fault messages, configure the web services option in the
PowerCenter Designer.

Rules and Guidelines for Importing or Creating Web Service
Sources and Targets

Use the following rules and guidelines when you import or create web service sources and targets:

• Use a WSDL for elements with complex relationships. To create a web service source or target with a
complex element relationship, first create a WSDL to define the element hierarchy, and then import the
source or target from the WSDL. Use a WSDL to create a web service source or target that contain
multiple occurrences of elements or that contain elements of complex type.

• Manually define simple web service source or target definitions. To create a web service source or target
with a simple set of columns and without nested elements, create the definition manually or use a
relational or flat file source or target definition. You can specify that all columns in the web service source
or target definition occur multiple times.

• Create the source and target definitions in the same process.Create a web service target definition from
a relational or flat file source or target at the same time you create the source definition. To create the
source and target of a web service mapping at the same time, verify that the Create Source and Create
Target options are selected on Create Web Service Definition window. For example, in the Source
Analyzer, select Sources > Web Service Provider > Create Web Service Definition. On the Create Web
Service Definition window, select the Create Target option.

• Use the same method to create the source and target definitions for a request-response mapping. If you
create a request-response web service mapping, create the source and target definitions using the same
method. For example, if you import the source definition from a WSDL, import the target definition from

78 Chapter 6: Working with Web Service Sources and Targets

the same operation in the WSDL. If you create the source definition by defining the columns or by using
relational or flat file sources and targets, create the target definition using the same method.

• Use a WSDL to create targets with fault views. If you want the target definition to have fault views for
specific data error, use a WSDL to create the web service target definition. You cannot define fault views
in a target definition if you create it based on a flat file or relational source or target. If you define a web
service target definition based on a flat file or relational source or target, the Web Services Hub can
generate fault messages for system faults only.

• The input and output message in the WSDL must have the same encoding style. If you import web
service sources and targets from a WSDL, the encoding style for the input and output messages must be
the same. If the input message uses the RPC/SOAP Encoded style, the output message must also use the
RPC/SOAP Encoded style. If the input message uses the Document/Literal style, the output message
must also use the Document/Literal style.

If you create the web service source or target definition manually or based on relational or flat file sources
or targets, the Designer uses the Document/Literal encoding style for the input and output messages.

• Elements in the WSDL cannot refer to a standard W3C XML schema. You cannot import web service
source and target definitions from a WSDL that contains an element that refers to a standard W3C XML
schema.

• Import a WSDL with empty complexType elements in entity relationship mode. If the WSDL contains
complexType elements that will not contain values in the input message of the web service request,
import the source and target definitions from the WSDL in entity relationship mode. If the source and
target definitions are imported from the WSDL in normalized hierarchical mode, the web service generates
a fault response if you send a request with an empty complexType element.

• Import sources and targets from a WSDL with valid XML syntax. If you import from an invalid WSDL, the
Designer cannot correctly display the WSDL definition in the Web Services Wizard. In some cases, the
Designer does not generate error messages but partially parses the WSDL and displays only the services
and operations that were successfully parsed. If you import from a WSDL and the Web Services Wizard
does not display the correct WSDL definition, open the WSDL as an XML file and verify that the syntax is
correct.

• Define a two dimensional array with the correct syntax. If you define a complexType element in the WSDL
as a two dimensional array of string, use the following syntax:

wsdl:arrayType="xsd:string[][]"
You cannot import web service source and target definitions from a WSDL that contains a two
dimensional array defined using a different syntax.

• You cannot import web service sources and targets from a WSDL that generates a large number of XML
views. The limit for the number of XML views that can be generated from a WSDL file is 400. To create
web service sources or targets with more than 400 XML views, create the groups manually in the WSDL
workspace.

Related Topics:
• “SOAP Fault Handling” on page 20

Importing a Web Service Source or Target Definition
If you have a WSDL that defines the input and output messages of a web service you want to create, you can
import the source and target definitions from the WSDL. You can use the Web Services wizard to import the
web service source or target definition from the WSDL. You can import the source and target definitions in
the same process.

Importing a Web Service Source or Target Definition 79

Import Modes
You can create XML views for a web service source or target definition based on the mode in which you
import the WSDL:

• Entity relationship. This is the default import mode for source or target definitions imported from a WSDL.
Use this import mode to create relationships between views instead of one large hierarchy. When you
create a web service source or target with an entity relationship, the Designer generates separate views
for multiple-occurring elements and complex types. The Designer includes views for all derived complex
types.

• Normalized hierarchical relationship. In a normalized hierarchical view, every element or attribute
appears once. One-to-many relationships become separate XML views with keys to relate the views.

• Do not generate XML views. Use this import mode to create the source or target definition without
defining the XML views. You can use the WSDL workspace to add the XML views and ports.

Related Topics:
• “Importing from a WSDL Without Creating XML Views” on page 81

Message ID
To use web service source and target definitions in a staged mapping, you must include a message ID in the
web source and target definitions. The Web Services Hub uses a message ID as a primary key to bind the
requests and responses for a web service. For example, the first session reads from a web service source
and writing to a relational target. The second session uses the relational target as a source and writes to a
web service target. The Web Services Hub uses the message ID to associate the input message of the
request in the first session to the output message in the response of the second session.

You must also include a message ID in the web source and target definitions when you run a web service
session on a grid. When you run a web service session on a grid, the Integration Service distributes session
threads to multiple DTM processes on nodes in the grid. The Integration Service uses the message ID to
associate the web service input and output messages across the nodes.

If you add the message ports when you create a web service source or target definition, the Designer adds
message ID and client ports to the envelope view.

The following table describes the message ID and client ports added to the envelope view:

Port Name Description

MessageID Web Services Hub generates the message ID when it receives a request. It uses this ID to
correlate the incoming request with the outgoing response.

ClientIP TCP/IP address of the web service client.

Advanced Options
When you import a web service source or target from a WSDL, you can specify the length of fields with
undefined length and the naming convention for the XML columns.

80 Chapter 6: Working with Web Service Sources and Targets

The following table shows the advanced options you can set when you import a web service source or target
from a WSDL:

Option Description

Override all infinite lengths You can specify a default length for fields with undefined lengths, such as strings.
By default, this option is selected.

Generate names for XML
columns

You can choose to name XML columns with a sequence of numbers or with the
element or attribute name from the schema. If you use names, choose from the
following options:
- When the XML column refers to an attribute, prefix it with the element name.

PowerCenter uses the following format for the name of the XML column:
NameOfElement_NameOfAttribute

- Prefix the XML view name for every XML column. PowerCenter uses the following
format for the name of the XML column: NameOfView_NameOfElement

- Prefix the XML view name for every foreign-key column. PowerCenter uses the
following format for the name of a generated foreign key column:
FK_NameOfView_NameOfParentView_NameOfPKColumn

Maximum length for a column name is 80 characters. PowerCenter truncates
column names longer than 80 characters. If a column name is not unique,
PowerCenter adds a numeric suffix to keep the name unique.

Default length for anyType
element mapped to string

Default length of the string port created for an element of type anyType. You can
create a port of type string for an element of type anyType. By default, the length of
the string is the value you set here.
To change the length of the string, edit the web service source or target definition in
the WSDL workspace. Default is 10,000.

Importing from a WSDL Without Creating XML Views
When you import a source or target definition from a WSDL and you want to manually define the XML views
and ports, you can create an empty source or target definition.

For example, you have a WSDL that defines ten elements in the input message but you want to include only
two of the elements in your source definition. You can create an empty source definition and manually define
the two elements. The target definition is not affected. You can import the target definition and create the
XML views.

To import a source or target definition from a WSDL without creating XML views, select Do Not Generate XML
views in Step 2 of the import process. After you create an empty source or target definition, use the WSDL
workspace to define XML views and ports, and the relationship between views. Right-click the title of the
source or target definition and select WSDL Workspace.

Related Topics:
• “Editing Definitions in the WSDL Workspace” on page 88

Importing a Web Service Source or Target Definition from a WSDL
Follow the same steps to import a web service source or target definition from a WSDL. Since the source and
target definitions represent different elements in the WSDL, the source definition created by the Designer
differs from the target definition.

You can import a web service source or target from a WSDL that you can access locally or through a URL.
You can import definitions from a WSDL with RPC/SOAP Encoded or Document/Literal encoding style.

Importing a Web Service Source or Target Definition 81

Note: When the Designer imports a web service target definition, it names the definition based on the
operation and the target type, such as output or target. If you rename the definition after the import, you can
verify the target type on the Metadata Extensions tab.

To import a web service source or target definition from a WSDL:

1. To import a source definition, in the Source Analyzer, click Sources > Web Service Provider > Import
From WSDL. To import a target definition, in the Target Designer, click Targets > Web Service Provider >
Import From WSDL.

2. Click Advanced Options.

The XML Views Creation and Naming Options window appears.

3. Specify the default length for fields with undefined lengths and select how to generate the names of the
XML columns.

4. Choose to import from a local file or a URL.

If you import from a URL, type a URL or select a URL from the Address list and click Open.

If you import from a local file, select a WSDL file in a local folder and click Open.

5. Select the operation defined in the WSDL for which you want to create the source or target definition.

Note: If you import from a WSDL that contains errors, the Web Services Wizard (Step 1) window cannot
correctly display the list of services, bindings, ports, or operations defined in the WSDL. The window
displays an empty or partial WSDL definition tree. For example, if the WSDL contains an error in a type
definition, the window displays an empty WSDL definition tree.

6. Click Next.

The Web Services Definition Creation Options dialog box appears.

7. Select the import mode.

The import mode determines the type of XML views to generate. You can generate XML views as entity
relationships or as hierarchical relationships. The default import mode is entity relationship.

8. To create a source or target definition without any views or ports defined, select Do not generate XML
views.

If you do not generate the XML views, the Designer creates an empty source or target definition. The
source or target definition contains no views or ports. You must use the WSDL workspace to manually
add the views and ports for the source or target definition.

9. Select whether to add message and header ports to the source or target definition.

For more information, see “Message ID” on page 80.

10. To generate source and target definitions in the same import process, select both the Create Source and
Create Target options.

The Designer creates the source and target definitions based on the selected options.

11. Click Finish.

The web service source or target definition appears in the workspace.

Creating a Source or Target Definition
If you do not have a WSDL from which to import a web service source or target definition, you can create the
definition from a relational or flat file source or target. You can also manually define the ports for the source
or target and specify the datatype and the occurrence.

82 Chapter 6: Working with Web Service Sources and Targets

When you create web service source and target definitions from other sources and targets or from manually
defined columns, the Designer creates the views in the entity relationship mode. You cannot create web
service sources or targets from other sources or targets in hierarchical relationship mode.

You can create web service source and target definitions from relational sources and targets created from
the following relational databases:

• Oracle

• DB2

• Informix

• Teradata

• Microsoft SQL Server

• Sybase

When you create a web service source or target definition from relational or flat file sources or targets, the
Designer lists the sources and targets available in the folder, including shortcuts to sources and targets.

Create the source and target definitions in the same process. After you create a web service source or target
based on relational or flat file source or target, you can edit the columns of the source or target definition in
the Designer workspace.

When you import a web service source or target definition from a WSDL, you can select the following options:

• Multiple-occurring Elements

• Message Ports

Related Topics:
• “Editing Definitions in the Designer Workspace” on page 86

Multiple Occurring Elements
When you create web service source and target definitions from a relational or flat file source or target, you
must indicate whether the columns in the source or target definitions occur multiple times. Selecting the
Multiple Occurring Elements option indicates that the columns as a group occur multiple times. The columns
in the list represent an array.

When you edit the web service source or target created with this option, you cannot change the multiple
occurring property of the columns of the source or target definition.

Message Ports
You can include a message ID in the web source and target definitions. The Web Services Hub uses a
message ID as a primary key to bind the requests and responses for a web service.

Note: When you edit the web service source or target definition in the Designer workspace, the message and
client ports do not appear in the Web Service Definition tab. You cannot modify the message and client ports.

Related Topics:
• “Message ID” on page 80

• “Web Service Definition Tab” on page 88

Creating a Source or Target Definition 83

Creating a Source or Target from a Relational or Flat File Source or
Target

Use this procedure to create a web service source or target in one of the following ways:

• From a flat file source or target

• From a relational source or target

• By manually adding a column and specifying its name, datatype, and precision

To create a web service source or target from a relational or flat file source or target:

1. To create a web service source, in the Source Analyzer, click Sources > Web Services Provider > Create
Web Service Definition. To create a web service target, in the Target Designer, click Targets > Web
Services Provider > Create Web Service Definition.

2. Enter a name for the web service mapping where you plan to use the source and target definition.

The Designer uses the web service definition name as the name of the source and target definitions. It
adds the suffix _input to the source definition name or _output to the target definition name.

If you know the columns you want to include in the web service source or target definition, you can add
them directly to the source or target definition. If you have relational or flat file sources or targets in the
folder, you can create the source or target definition based on the relational or flat file columns.

3. To add a column to the list, click the Add button and specify the column name, datatype, and precision.

The Web Services Hub ignores the Not Null property when you create a web service source with multiple
occurring elements or when you create a web service target.

4. To create a web service source or target based on the columns in a relational or flat file source or target
definition, click the Import from Source/Target button and select a source or target definition.

The Designer lists the columns found in the selected source or target.

5. Click OK.

6. Edit the column names and the precision of string columns if necessary.

You can add columns to the definition and define their data types and properties. You can delete
columns you do not want to use.

You can specify whether the columns you define in the source or target definition occur once or multiple
times.

7. If the columns occur multiple times, select Multiple occurring elements.

This option indicates that the columns as a group occur more than once. When you select this option,
the Designer generates an element view that contains all the columns.

8. If you are creating a source definition and you also want to create the target definition, click Create
Target and repeat steps 3 to 7 to add the ports to the target definition.

If you are creating a target definition and you also want to create the source definition, click Create
Source and repeat steps 3 to 7 to add the ports to the source definition.

9. To add message and client ports to the source or target definition, click Add message ports.

The Designer adds the message and client ports to the envelope view of the source or target definition.
If you are creating source and target definitions in the same process, the Designer adds the message
and client ports to the envelope views of the source and target definitions.

10. Click OK.

The Designer creates the web service source or target definition.

Review the XML views in the source and target definitions to verify that the views and ports match your web
service mapping requirements. To add, delete, or modify the columns, edit the source or target definition in
the Designer workspace.

84 Chapter 6: Working with Web Service Sources and Targets

Related Topics:
• “Multiple Occurring Elements” on page 83

• “Message ID” on page 80

• “Editing Definitions in the Designer Workspace” on page 86

Creating a Source or Target Definition 85

C h a p t e r 7

Editing Web Service Sources and
Targets

This chapter includes the following topics:

• Editing Web Service Sources and Targets Overview, 86

• Editing Definitions in the Designer Workspace, 86

• Editing Definitions in the WSDL Workspace, 88

Editing Web Service Sources and Targets Overview
You can edit the web service source or target definition based on how you create it:

• Source or target definition imported from a WSDL. If you import the web service source or target
definition from a WSDL, you can edit the source or target definition in the WSDL workspace. You can use
the WSDL workspace to add, modify, or delete views in the source or target definition.

You can view the definition and edit some properties in the Designer workspace.

• Source or target definition created from a relational or flat file source and target. If you create a web
service source or target definition based on a relational or flat file target, you can edit the columns in the
Designer workspace.

You can view the source or target definition in the WSDL workspace. You cannot edit the source or target
definition in the WSDL workspace.

Note: You can edit web service sources and targets created in PowerCenter version 9.0.1 or later. To avoid
errors when you run web service workflows, do not edit web service sources and targets upgraded from
previous versions. To update a web service source or target from previous versions of PowerCenter, re-create
the source or target in PowerCenter version 9.0.1 or later.

Editing Definitions in the Designer Workspace
In the Designer workspace, you can add descriptions or specify links to business documentation for a web
service source or target definition at any time. If you create a source or target definition manually or based
on a relational or flat file target, you can modify the list of columns in the source or target definition. When
you make changes to the columns, the changes are immediately reflected in the XML views.

86

To view or edit the properties of a source or target definition, double-click the source definition in the Source
Analyzer or the target definition in the Target Designer. Or you can right-click the title of the source or target
definition and select Edit.

You can view or edit the web service source and target definition in the following tabs:

• Table. On the Table tab, you can provide the owner name and description, and you can change the name
of the definition. You cannot change the table type.

• Columns. On the Columns tab, you can edit the precision for String datatypes. You can also add business
names and column descriptions.

• Attributes. On the Attributes tab, you can view attribute values for each column in a source or target
definition.

• Metadata Extensions. On the Metadata Extensions tab, you can view the Web Services Domain metadata
extensions. You can also add metadata extensions in the User Defined Metadata Domain.

• Web Service Definition. This tab appears if you edit a source or target definition created from a relational
or flat file target. You can add, edit, or delete a column in the source or target definition. The changes you
make immediately appear in the Columns tab.

Table Tab
The Table tab displays the table information for the source or target definition. You can change the name of
the source or target definition. You can modify the owner and description of the source or target definition.

Columns Tab
The Columns tab displays the XML views in the web service source or target definition. You can edit the
precision for String and Binary datatypes, and you can add business names and column descriptions.

The default precision for the String datatype is the value at which the precision of infinite length data is set
during the WSDL import process. You can set the precision for the String datatype when you import a source
or target definition from a WSDL. You can set the precision for individual columns when you edit the
definition.

Note: The Mapping Designer invalidates mappings that use source and target web service definitions with a
total column length greater than 500 MB.

Attributes Tab
The Attributes tab is a read-only tab that displays the XPath and XMLDataType values for each field in the
web service source or target definition. If the definition has an Attachment group, the Attributes tab displays
the MIME type in the data field.

Metadata Extensions Tab
You can create metadata extensions on the Metadata Extensions tab. You can also view the vendor-defined
extensions in the Web Services Provider Domain. These metadata extensions identify the message type,
which can be input, output, or fault.

For more information about metadata extensions, see the PowerCenter Repository Guide .

Editing Definitions in the Designer Workspace 87

Web Service Definition Tab
The Web Service Definition tab appears for web service source or target definitions that are manually defined
or are based on relational or flat file sources or targets. You can add or delete columns in the source or target
definition. You can change the names and datatypes of the columns and modify the precision and scale for
specific datatypes. You can also specify whether the columns occurs once or multiple times.

When you make changes to the columns in the Web Service Definition tab, the changes are reflected in the
Columns tab.

Editing Definitions in the WSDL Workspace
If you import a source or target definition from a WSDL and create XML views, you can edit the XML views,
ports, and relationships in the WSDL workspace. If you import a source or target definition from a WSDL but
do not generate XML views, you can use the WSDL workspace to create views, modify components, add
columns, and maintain view relationships in the workspace. When you update a source or target definition,
the Designer propagates the changes to any mapping that includes the source or target.

To view or edit a source or target definition in the WSDL workspace, right-click the title of the source
definition in the Source Analyzer or the target definition in the Target Designer. Then select WSDL
Workspace.

The WSDL workspace is equivalent to the XML Editor. You use the WSDL workspace the same way you use
the XML Editor. However, the WSDL workspace performs validation on changes to the views specific to web
service source and target definitions. Also, you cannot perform some tasks in the WSDL workspace that are
allowed in the XML workspace.

You cannot perform the following tasks in the WSDL workspace:

• Pivot columns when you add or edit an XML view in a web service source or target definition.

• Create XPath query predicates to filter elements or attributes in an XML view.

• Preview XML data.

• Add a FileName column to an XML view.

• Add a reference port.

• Recreate entity relationships.

• Set XML view options in the Columns window.

Rules and Guidelines for the WSDL Workspace
Use the following rules and guidelines when you add or edit XML views to web service source or target
definitions in the WSDL workspace:

• The source and target definitions for a web service mapping must contain an envelope view equivalent to
the SOAP:envelope for the web service request, response, and fault messages.

• A source definition must define views for an input message. It cannot define views for an output or fault
message.

• The name for the root group and the primary key of the root group for a source or target definition must
use the following naming convention, where <NameString> can be any alphanumeric string:

- The root group must be named Message or X_<NameString>_Envelope.

88 Chapter 7: Editing Web Service Sources and Targets

- The primary key for the root group must be named PK_Message or PK_<NameString>_Envelope.

- The <NameString> for the root group and its primary key must be the same.

• A target definition must define views for an output or fault message. It cannot define views for an input
message.

• You can define elements with the type anyType or any. You can create a string port for an element of type
anyType or map it to an element of type complexType.

• The envelope view in a target definition must contain a view root and a view row as the envelope node.

• You cannot change the type definition of the soap:Body and soap:Header elements in the source or target
definition.

• You can set the default namespace and change the prefix for the namespaces defined in the views of the
source or target definition. You cannot change the namespaces. You cannot use any of the following
strings as a namespace prefix:

- mime

- wsdl

- soap

- soapenc

- http

Editing Definitions in the WSDL Workspace 89

C h a p t e r 8

Working with Web Service
Mappings

This chapter includes the following topics:

• Working With Web Service Mappings Overview, 90

• Types of Web Service Mappings, 91

• Generating a Mapping from a WSDL, 93

• Generating a Mapping from a Relational or Flat File Source or Target, 93

• Generating a Mapping from a Transformation or Mapplet, 94

• Editing a Target Instance in a Web Service Mapping, 96

• Attachments, 96

Working With Web Service Mappings Overview
After you create the web service source and target definitions, create the mapping to determine how the
Integration Service handles the data received in the web service request and send out the web service
response. A web service mapping receives the input message as a SOAP request, transforms the data, and
sends the output message as a SOAP response.

You can create a web service mapping in the Mapping Designer in the same way you create other
PowerCenter mappings. Add the web service source and target definitions and transformations to the
mapping.

You can also generate a mapping that includes the web service source definition, Source Qualifier
transformation, and web service target definition. The PowerCenter Designer provides several ways to
generate a web service mapping.

You can generate a web service mapping in the following ways:

• By importing source and target definitions from a WSDL. You can create a mapping from a WSDL in the
same way you create a web service source or target from a WSDL.

• From a relational or flat file source or target definition. You can create a mapping from a relational or flat
file source or target in the same way you create a web service source or target from a relational or flat file
source or target.

• From a transformation or mapplet. You can create a mapping from a reusable transformation or a
mapplet with a single input and a single output.

90

After you generate the mapping, you can add more transformations, links, and any other mapping objects you
require to complete the web service mapping.

Types of Web Service Mappings
You can create a mapping to receive a message from a web service client, transform the data, and send the
response back to the web service client or write it to any target PowerCenter supports. Based on the source
and target definitions, the Integration Service can receive and send an attachment as part of the SOAP
request.

You can also create a mapping with flat file or XML sources and targets and use it in a web service workflow.
This allows you to receive message data through a SOAP call by attachment instead of by reading it from a
file.

The mapping you create depends on the type of web service that you want to run:

• Request-response web service. A request-response web service receives an incoming request from the
web service client, transforms the data, and sends the response back to the web service client. A request-
response web service uses both a web service source and a web service target.

You can create one mapping or multiple mappings to process a request-response web service:

- One mapping. Create one mapping that contains both the web service source and web service target
definitions. The Integration Service receives an incoming request, transform the data, and send the
response back in a single session.

- Multiple mappings. Create multiple mappings to stage data before sending a response back to the web
service client. You can create a workflow that contains a session for each mapping.

• One-way web service. If you receive updates and notifications from a web service client, but do not need
to send back a response, you can create a one-way mapping. A one-way mapping uses a web service
client for the source. The Integration Service loads data to a target, often triggered by a real-time event
through a web service request.

The web service source and target definitions you include in the mapping depend on the type of mapping you
create.

The following table describes the web service source and target definitions you use based on the mapping
type:

Mapping Type Web Service Source Web Service Target

Request-Response Must have one instance of a web
service source definition.

Must have one instance of a web service target
definition.
Can have multiple fault views in the target definition.

One-way Must have one instance of a web
service source definition.

Contains no web service target definition.

Types of Web Service Mappings 91

Related Topics:
• “Attachments” on page 96

Request-Response Mappings
A request-response mapping uses a web service source and a web service target.

If you create a request-response mapping, use source and target definitions created in the same method. If
you import the source definition from a WSDL, import the target definition from the same operation in the
WSDL. If you create the source definition by defining the columns or by using relational or flat file sources
and targets, create the target definition using the same method.

To ensure that the web service source and target definitions are created using the same method, create the
source and target definitions in one process.

Note: If you do not import source and target definitions from the same operation in the WSDL or if you do not
create them using the same method, you can get unexpected results.

You can use an SQL transformation to update a database or to retrieve multiple database rows in a request-
response mapping. The SQL transformation can return multiple database rows to the target. When database
errors occur in processing, the SQL transformation receives the errors from the database and sends the error
text to the target.

For an example of a web service that uses an SQL transformation to get multiple rows, see the real-time web
services examples shipped with PowerCenter. By default, the real-time web services sample programs are
installed in the following directory:

/<PowerCenterInstallDir>/server/samples/WebServices/samples/RealTimeWebServices

Related Topics:
• “Creating a Source or Target Definition” on page 82

Staged Mappings
If you want to run a request-response session, but you need to stage the data first, you can create multiple
mappings to process the data.

For example, you receive message data that you need to process. You must make an asynchronous call to an
external system through WebSphere MQ. You create the following mappings:

1. Create a request mapping with a web service source definition. This mapping writes to a flat file target
and a WebSphere MQ target. You write all message data to both targets.

An external application receives messages from the WebSphere MQ target, processes them, and sends
messages to another WebSphere MQ queue.

2. Create a response mapping with a web service target definition. This mapping uses the flat file target in
the first mapping as a source. It also uses the WebSphere MQ queue with the processed data as a
source.

The Web Services Hub uses a message ID to connect the requests and responses in a staged mappings. To
use web service source and target definitions in a staged mapping, you must include a message ID in the web
source and target definitions.

92 Chapter 8: Working with Web Service Mappings

Related Topics:
• “Message ID” on page 80

Generating a Mapping from a WSDL
You can generate a web service mapping by importing the web service source or target from a WSDL that you
can access locally or through a URL.

When you generate a web service mapping by importing source and target definitions from a WSDL, the
Designer creates the source definition from the input message of the operation you select. It creates the
target definition from the output message of the operation you select.

The web service mapping generated from a WSDL contains the following objects:

• Web service source definition

• Source qualifier

• Web service target definition

The Designer links the ports from the source instance through the target instance. To complete the mapping,
add the transformations and other mapping component necessary for the web service you want to create.

To generate a mapping from a WSDL:

1. In the PowerCenter Designer, open the Mapping Designer.

2. Click Mappings > Create Web Service Mappings > Import from WSDL.

The procedure to generate a web service mapping by importing sources and targets from a WSDL is the
same as the procedure to create web service sources or target definitions from a WSDL. For more
information, see “Importing a Web Service Source or Target Definition” on page 79.

3. Save the mapping to the repository.

Generating a Mapping from a Relational or Flat File
Source or Target

You can generate a web service mapping based on a relational or flat file source or target. Use the relational
or flat file source or target to define the columns in the web service source and target definitions.

When you generate a mapping from a relational or flat file source or target, the web service mapping
generated contains the following objects:

• Web service source definition

• Source qualifier

• Web service target definition

The Designer links the ports from the source instance through the target instance. To complete the mapping,
add the transformations and other mapping component necessary for the web service you want to create.

Note: When you generate a mapping from a relational or flat file source or target, create the web service
source and target in the same process. When you run a workflow that contains a mapping with the web
service source and target created at different times, the workflow can fail.

Generating a Mapping from a WSDL 93

To generate a mapping from a relational or flat file source or target:

1. In the PowerCenter Designer, open the Mapping Designer.

2. Click Mappings > Create Web Service Mappings > Use Source/Target definitions.

The procedure to generate a web service mapping from a relational or flat file source or target is the
same as the procedure to create web service source and target definitions from relational or flat file
sources or targets. For more information, see “Creating a Source or Target Definition” on page 82.

3. Save the mapping to the repository.

Generating a Mapping from a Transformation or
Mapplet

You can generate a mapping from a reusable transformation or a mapplet. The Designer uses the ports in the
transformation or mapplet to generate the web service source and target definitions.

Note: When you generate a mapping from a transformation or mapplet, create the web service source and
target in the same process. When you run a workflow that contains a mapping with the web service source
and target created at different times, the workflow can fail.

Generating a Mapping from a Reusable Transformation
The following table describes the types of transformation from which you can generate a web service
mapping:

Transformation Type Group

Expression Passive Single

HTTP Passive One input and one output

Java Active or passive One input and one output

Lookup Passive Single

SQL Active or passive One input and one output

Stored Procedure Passive Single

The transformation you use to generate a web service mapping must be a reusable transformation. When you
generate a web service mapping based on a transformation, the Designer lists the reusable transformations
and shortcuts to reusable transformations available in the folder.

When you generate a web service mapping from a transformation, the Designer uses the ports in the
transformation to define the columns for the source and target definitions. It then creates a mapping that
contains a source with XML views that reflect the transformation input ports and a target definition with XML
views that reflect the transformation output ports.

The web service mapping generated from a transformation contains the following objects:

• Web service source definition

94 Chapter 8: Working with Web Service Mappings

• Source qualifier

• Transformation used to generate the mapping

• Web service target definition

The Designer links the ports from the source instance through the target instance.

Generating a Mapping from a Mapplet
You can generate a web service mapping from the following types of mapplets:

• Mapplets that contains one input transformation and one output transformation

• Mapplets that contains no active transformation

When you generate a web service mapping from a mapplet, the Designer lists the mapplets and shortcuts to
mapplets that are permitted for the process.

When you generate a web service mapping from a mapplet, the Designer uses the ports in the mapplet to
define the columns for the source and target definitions. It then creates a mapping that contains a source
with XML views that reflect the mapplet input ports and a target definition with XML views that reflect the
mapplet output ports.

The web service mapping generated from a mapplet contains the following objects:

• Web service source definition

• Source qualifier

• Mapplet used to generate the mapping

• Web service target definition

The Designer links the ports from the source instance through the target instance.

Generating a Mapping from a Reusable Transformation or a
Mapplet

You use the same procedure to generate a web service mapping from a reusable transformation or from a
mapplet.

To generate a web service mapping from a reusable transformation or mapplet:

1. In the Mapping Designer, click Mappings > Create Web Service Mapping > Use Transformation/Mapplet
definitions.

2. Select the transformation or mapplet you want to use for the web service mapping.

The Designer displays the list of input ports and the datatype, precision, and scale.

You can specify whether the columns in the source and target definitions in the mapping occur once or
multiple times.

3. If the columns occur multiple times, select Source and Target are Multiple Occurring Objects.

This option indicates that the columns in the source and target are arrays. The columns as a group occur
multiple times.

4. To add message and client ports to the source or target definition, click Add Message Ports.

The Designer adds the message and client ports to the envelope view of the source and target
definitions.

Generating a Mapping from a Transformation or Mapplet 95

5. Click OK.

The Designer creates the web service mapping and displays a message that the mapping was created
successfully. It uses the transformation or mapplet name as the name of the source and target
definitions prefixed with m_. It adds the suffixes _input to the source definition name and _output to the
target definition name.

Editing a Target Instance in a Web Service Mapping
After you generate the web service mapping, you can edit the target instance in the mapping. When you edit
the target instance in the Mapping Designer, you can edit properties that are not available in the Target
Designer.

To edit the target definition in a web service mapping, double-click the target definition instance in the
Mapping Designer.

You can edit the following transformation attributes on the Properties tab:

• Load scope

• Partial load recovery

Load Scope
The load scope attribute specifies the load scope for the target. The load scope in a web service target
definition is similar to the transformation scope in a transformation.

You can set the load scope to the following values:

• Transaction. When you set the load scope to transaction, the Integration Service generates a response
when it receives all data in the transaction. All groups in the target must receive data from the same
transaction generator.

• All Input. When you set the load scope to All Input, the Integration Service generates a response after it
receives all incoming data. Different groups in the target can receive data from different transaction
generators. The Integration Service ignores commits when the load scope is All Input.

Default is transaction. For more information about the transformation scope, see the PowerCenter Advanced
Workflow Guide .

Partial Load Recovery
The partial load recovery attribute specifies how the target handles a previous partial load during recovery.

For a web service target, use the default value of None. You cannot specify recovery for a web service.

Attachments
You can configure PowerCenter web service workflows to use attachments in the following ways:

• Using a flat file or XML source or target as attachments to a SOAP message

• Using a WSDL with MIME attachments

96 Chapter 8: Working with Web Service Mappings

Flat File or XML Source and Target Attachments
You can receive or send data as an attachment to a SOAP message request or response. The source or target
can be a flat file or an XML document. For example, you periodically use FTP to access a flat file containing
messages from a web service application. Instead of using FTP, you can create a web service workflow to
receive the data from the flat file as an attachment to a SOAP request.

To receive data as attachment to a SOAP message request, use a flat file or XML source definition in the
mapping. To use a flat file as a source for a web service, configure the reader to use a Web Services Provider
Reader for Flat Files. Edit the web service session that runs the mapping. In the session properties, click the
Mapping tab and select the source. Change the reader from Flat File Reader to Web Services Provider Reader
for Flat Files.

To send data as attachment to a SOAP message response, use a flat file or XML target definition in the
mapping. To use a flat file as a target for a web service, configure the writer to use a Web Services Provider
Writer for Flat Files. Edit the web service session that runs the mapping. In the session properties, click the
Mapping tab and select the target. Change the writer from Flat File Writer to Web Services Provider Writer for
Flat Files.

WSDL Attachments
Based on the source and target definitions, you can receive and send an attachment as part of the SOAP
request. The attachment must be a text file such as an XML document. You cannot attach binary documents
such as JPEG, GIF, or PDF files. For example, you can extract an XML document from an Oracle database and
pass it to a web service client as an attachment to a response message.

To use a binary file as a source, convert the file into hexbinary or base64binary before you pass it to the web
service source. A hexbinary or base64binary files is treated as a text file. Similarly, you can convert the text
file response generated by the web service target to a binary file.

The following table describes the attachment group ports in a web service definition:

Port Name Description

FK_Att_Name Generated foreign key pointing to PK_Message in the root group.

Att_Data_Name Contains the attachment. You can view the MIME type for the attachment on the Attributes
tab.

Att_Index_Name Unique identifier for each attachment in the message.

Att_Type_Name Type of attachment.

Rules and Guidelines for Using a WSDL with MIME Attachments
Use the following rules and guidelines when you work with attachments:

• A request or response can contain one attachment.

• The attachment must be a text file and use the UTF-8 code page or a code page that is a subset of the
UTF-8 code page.

• To pass an attachment through requests or responses, you must connect all ports in the attachment
group.

• If a definition in the mapping contains an attachment group, but you do not want to send or receive
attachments, do not connect any of the ports in the group.

Attachments 97

• If you receive messages from other sources, and each message contains an attachment, use a Sequence
Generator transformation to generate a unique index for each attachment you send in a response.

• To send or receive an attachment, use a toolkit that supports MIME attachments to create the client
application.

98 Chapter 8: Working with Web Service Mappings

C h a p t e r 9

Working with Web Service
Workflows

This chapter includes the following topics:

• Working with Web Service Workflows Overview, 99

• Creating and Configuring a Web Service Workflow, 100

• Configuring the Web Services Provider Reader and Writer, 103

• Configuring Partitions for Web Service Sessions, 106

• Troubleshooting Web Service Workflows, 107

Working with Web Service Workflows Overview
Use the Workflow Manager to create a web service workflow. To create a web service workflow, enable the
Web Service option for the workflow and then configure the web service properties.

When you create a session in a web service workflow, the session is called a web service session. You can
include the following types of mappings in a web service session:

• Web service mapping

• Flat file mapping

• XML mapping

A web service session uses a Web Services Provider reader and writer. If a web service mapping contains a
web service source and target, the session uses the Web Services Provider reader and writer by default. If a
web service mapping contains a flat file or XML source or target, you must change the reader and writer type
to the Web Services Provider reader or writer.

When a web service session contains XML or flat file sources or targets, the client application sends a
request to the Web Services Hub as a MIME attachment to the SOAP message. To send or receive
attachments, a client application must be created using a toolkit that supports MIME attachments.

When the Web Services Hub receives a SOAP message request to run a web service workflow, it passes the
request to the Integration Service. After the Integration Service runs the web service request, it passes the
response to the Web Services Hub. The Web Services Hub generates a SOAP message response and passes
it back to the web service client.

You can set up multiple partitions in a session that contains web service source and target definitions. The
Integration Service creates a connection to the Web Services Hub based on the number of sources, targets,
and partitions in the session.

99

Note: Before you can run a web service workflow, you must create and configure a Web Services Hub in the
Administrator tool and associate it with the repository that contains the web service workflow you want to
run.

Creating and Configuring a Web Service Workflow
To create a web service workflow, configure a workflow to process a web service mapping and enable the
Web Services option in the workflow properties. You can configure the web service to allow web service
clients to run the workflow.

To create and configure a web service workflow, complete the following tasks:

• Create a web service workflow.

• Configure the web service.

Creating a Web Service Workflow
To create a web service workflow, enable the Web Services option for a workflow. Then configure the web
service and add web service sessions to the workflow. A web service session is based on a web service
mapping.

In most cases, a web service workflow contains one web service source for the input message and one web
service target for the output message. The session can write to multiple fault views in a target. A one-way
web service does not send a response and does not require a web service target.

Ensure that you specify an Integration Service when you create a web service workflow. Use the Browse
Integration Service button to select from a list of available Integration Services.

After you create the web service workflow, you can add a session to run a web service mapping. You create
and add a session to the web service workflow the same way you create and add a session to any workflow.

Note: Do not use the Workflow Wizard to create a web service workflow. You cannot select the Web Service
option when you use the Workflow Wizard.

To create a web service workflow:

1. In the Workflow Manager, open the Workflow Designer and click Workflows > Create.

2. Enter the name for the workflow.

3. To select the Integration Service to run the workflow, click the Browse Integration Service button and
select from the list.

4. Enable the Web Services option and click Config Service to configure the web service workflow.

When you enable the Web Services option, the Configure Concurrent Execution option is enabled by
default. The web service workflow configuration properties include settings for concurrent execution of
the web service.

5. Configure the web service workflow properties as necessary.

6. Click OK.

Configuring the Web Service Workflow
When you configure a web service workflow, you can assign which Web Services Hub runs the web service
workflow and configure the options for running and accessing the web service.

100 Chapter 9: Working with Web Service Workflows

The following table describes the properties you can configure for a web service:

Property Description

Service Name Name of the web service. The Web Services Hub publishes this name when you check in
the workflow and the service is visible. The default name is a concatenation of the
repository name, folder name, and workflow name. This name must be unique.

Timeout (Seconds) Maximum amount of time the Web Services Hub can take to process a request and
generate a SOAP response before the request times out. If the Web Services Hub is
unable to generate a response within the timeout period, it sends a fault message to the
web service client and drops the connection.
Default is 60 seconds. Set to 0 to disable the timeout period.

Service Time Threshold
(Milliseconds)

Maximum amount of time the Web Services Hub can take to process requests before it
starts another instance to process the next request. The service time period starts from
the time the Web Services Hub receives a SOAP request to the time it generates a SOAP
response. If the average time it takes the Web Services Hub to process a request
exceeds the service time, the Web Services Hub starts a new instance of the web service
to process new requests.
For example, the service time is set to 1000 milliseconds. If the Web Services Hub
cannot process requests within 1000 milliseconds, the Web Services Hub starts another
instance of the web service to process the next SOAP request.
Default is 1000.
Note: To avoid a decline in performance, do not set the service time threshold to lower
than 100 milliseconds.

Web Services Hubs Web Services Hub Service to run the workflow. Click the Browse button to select one or
more Web Services Hub Service to run the web service workflow. By default, the web
service workflow can run on any Web Services Hub Service associated with the
repository.
Note: If you plan to start the workflow manually, select a Web Services Hub to run the
workflow. Do not select Run on All Hubs. Before you start the web service workflow,
verify that the Web Services Hub is enabled.

Maximum Run Count Per
Hub

Maximum number of web service instances that can be started by a Web Services Hub.
All instances of the web service workflow running on the Web Services Hub are included
in the count, whether the instance is started dynamically or manually. The Web Services
Hub cannot start another web service instance after the maximum is reached.

Protected Requires authentication before the web service can be run. The Web Services Hub
authenticates the request based on the user name token. You can choose to protect the
service or make it public.
Any PowerCenter user who can run a workflow can run a protected web service workflow
using the Workflow Manager, pmcmd, or LMAPI. If a web service is not protected, any
web service client can start the service without authentication.
For more information, see “Adding Security to a Client Request” on page 72.

Creating and Configuring a Web Service Workflow 101

Property Description

Visible Makes the web service visible in the Web Services Hub Console. When you make the
service visible, the Web Services Hub publishes the web service and the WSDL on the
Web Services Hub Console. You can test the web service and view and download the
WSDL from the Web Services Hub Console.
If the service is not visible, the Web Services Hub does not publish the web service
WSDL.

Runnable Allows a web service client to start the workflow by sending a request to the Web
Services Hub. If the web service workflow is runnable, a web service client request can
start the workflow or run the web service while the workflow is running. If you want a
web service client to start the workflow, schedule the workflow to run on demand. If the
web service workflow is not runnable, a web service client can invoke the web service
while the workflow is running, but cannot start the workflow. If disabled, you can start
the workflow through the Workflow Manager, LMAPI, or pmcmd.

Concurrent Execution of Web Service Workflows
The Web Services Hub determines when to start a new instance of a web service workflow based on the
availability of resources and values you set for the properties of the web service. It determines when to shut
down an instance of a web service workflow based on values you set for the properties of the Web Services
Provider Reader.

Starting a New Instance
The Web Services Hub determines when to start another instance of a web service workflow based on the
current resource usage and the following properties of the web service workflow:

• Service time threshold. If the average time that it takes the Web Services Hub to process a web service
exceeds the service time threshold, the Web Services Hub starts another instance of the web service.

• Maximum run count per hub. The Web Services Hub starts an instance of the web service until the
number of instances reach the maximum run count for the hub. If the maximum run count is reached, the
Web Services Hub does not start a new instance of the web service even if the average service time
threshold.

Shutting Down an Instance
The Web Services Hub shuts down a web service workflow instance based on the current resource usage and
the following properties of the Web Services Provider Reader:

• Idle time. If a workflow instance does not receive any request within the idle time period, the Web
Services Hub shuts down the workflow instance.

• Message count. When the number of messages received by a workflow instance reaches the maximum
number of messages the Integration Service is configured to read within a session, the Web Services Hub
shuts down the workflow instance.

• Reader time limit. When the Integration Service reaches the maximum amount of time it can read input
messages from the Web Services Hub, the Integration Service stops reading input messages from the
Web Services Hub. The Web Services Hub shuts down the workflow instance.

If any of these properties reaches the threshold value configured for the workflow, the Web Services Hub
shuts down the web service workflow instance.

102 Chapter 9: Working with Web Service Workflows

Related Topics:
• “Configuring the Web Service Workflow” on page 100

• “Configuring the Web Services Provider Reader” on page 103

Configuring the Web Services Provider Reader and
Writer

When you configure a web service session, you can configure the session reader and writer. By default, a web
service session with web service sources and targets uses a Web Services Provider reader and writer.

If a web service session contains a flat file or XML source or target, you must configure the session to use
the Web Services Provider reader or writer. The Web Services Hub sends requests and responses as MIME
attachments to the SOAP message.

When you configure the reader for a web service session, you configure terminating conditions, such as idle
time and message count.

When you configure the writer for a web service session, you configure caching information that the
Integration Service uses to cache target data. You can also configure the output format for the target data.

Use the Workflow Manager to configure a web service session. In the Workflow Designer, edit the session of
a web service workflow. To configure the Web Services Provider reader, click the Mapping tab and select a
source. To configure the Web Services Provider writer, select a target.

Related Topics:
• “Attachments” on page 96

Configuring the Web Services Provider Reader
The properties you configure for a Web Services Provider reader depend on the source type used in the
mapping.

Configuring the Web Services Provider Reader and Writer 103

The following table describes the source properties you configure for the web service session:

Property Reader Type Description

Idle Time - Web Service
- Web Services Provider

Reader Flat File
- Web Services Provider

Reader XML File

Amount of time in seconds the Integration Service waits
to receive messages before the it stops reading from the
source and the Web Services Hub shuts down the
workflow instance.
The session stops when it meets the condition of this
property.
Default is 180.

Message Count - Web Service
- Web Services Provider

Reader Flat File
- Web Services Provider

Reader XML File

The number of messages the Integration Service reads
before the Web Services Hub shuts down the workflow
instance. A value of -1 indicates an infinite number of
messages. If the session uses flat file or XML targets,
always configure the message count to 1. For more
information, see “Configuring the Reader and Writer for
XML and Flat File Sessions” on page 106.
The session stops when it meets the condition of this
property.
Default is -1.

Reader Time Limit - Web Service
- Web Services Provider

Reader Flat File
- Web Services Provider

Reader XML File

Amount of time in seconds that the Integration Service
reads source messages from the Web Services Hub. For
example, if you set the reader time limit to 10, the
Integration Service stops reading from the Web Services
Hub after 10 seconds.
The session stops when it meets the condition of this
property.
Default is 0 and indicates an infinite period of time.

Treat Empty Content as Null Web Services Provider
Reader XML File

Treats empty strings as null values. By default, empty
content is not null.

Recovery Cache Folder n/a This property is not used by the Web Services Provider.

Configuring the Web Services Provider Writer
When you configure session properties for a Web Services Provider writer, you configure cache size and
cache directory.

104 Chapter 9: Working with Web Service Workflows

The following table describes the target properties you configure for the web service session:

Property Writer Type Description

XML DateTime Format Web Services
Provider Writer XML
File

Datetime format for the data passed to the service target.
Precision to the nanosecond.
Select from the following datetime formats:
- Local Time. The time according to the Integration Service

server time zone.
- Local Time with Time Zone. The difference in hours between

the Integration Service time zone and Greenwich Mean Time.
- UTC. Greenwich Mean Time.

Null Content
Representation

Web Services
Provider Writer XML
File

Determines how null content is represented in the target.
Select from the following options:
- No Tag. Do not output a tag.
- Tag with Empty Content. Output just the tag.
Default is No Tag.

Empty String Content
Representation

Web Services
Provider Writer XML
File

Determines how an empty string is represented in the target.
Select from the following options:
- No Tag. Do not output a tag.
- Tag with Empty Content. Output just the tag.
Default is Tag with Empty Content.

Duplicate Group Row
Handling

Web Services
Provider Writer XML
File

Determines how the Integration Service handles duplicate group
rows during a session.
Select from the following options:
- First Row. The Integration Service passes the first duplicate

row to the target. The Integration Service rejects rows with the
same primary key that it processes after this row.

- Last Row. The Integration Service passes the last duplicate
row to the target.

- Error. The Integration Service passes the first row to the
target. Rows that follow with duplicate primary keys increment
the error count. The session fails when the error count exceeds
the error threshold.

Default is Error.

Orphan Row Handling Web Services
Provider Writer XML
File

Determines how the Integration Service handles orphan rows
during a session.
Select from the following options:
- Ignore. The Integration Service ignores orphan rows.
- Error. The session fails when the error count exceeds the error

threshold.

Configuring the Web Services Provider Reader and Writer 105

Property Writer Type Description

Cache Size - Web Service
- Web Services

Provider Writer
XML File

Total size in bytes for the memory cache used by writer.
It includes a primary key and a foreign key index cache for each
group in the target instance and one data cache for all groups.
The total cache requirement is the sum of the data cache and
index cache requirements for each target group.
Default is 10,000,000 bytes.

Cache Directory - Web Service
- Web Services

Provider Writer
XML File

Directory for the target cache files. Default is the $PMCacheDir
service process variable.

Use the following rules and guidelines when you change the writer type to a Web Services Provider writer:

• When you change the writer type for a flat file target, the Integration Service does not cache the target
messages.

• When you change the writer type for a flat file or an XML target, use the target as a web service output
message, but not as a fault message.

• When you change the writer type for an XML target, you still configure XML writer properties.

Configuring the Reader and Writer for XML and Flat File Sessions
To create a web service session based on a mapping that contains XML or flat file sources and targets, set
the reader or writer type to Web Services Provider reader or writer. To run a web service workflow with an
XML or flat file reader, a client application sends a request to the Web Services Hub as a MIME attachment to
the SOAP message. The Web Services Hub passes the SOAP message with the attachment to the Integration
Service, which processes the attachment.

If the web service workflow is configured with an XML or flat file writer, the Integration Service generates a
response and passes the response to the Web Services Hub. The Web Services Hub sends the response back
to the web service client as a MIME attachment to a SOAP message.

Use the following rules and guidelines when you configure a request-response web service session with flat
file or XML source or targets:

• Set the message count to 1 in the reader properties.

• Include one session in a workflow where you change the reader or writer type to Web Services Provider.

• If you change the reader or writer type to Web Services Provider reader or writer in the session properties,
you must create a client application using a toolkit that supports MIME attachments.

Configuring Partitions for Web Service Sessions
When you set up multiple partitions in a session that contains web service source and target definitions, the
Integration Service creates a connection to the Web Services Hub based on the number of sources, targets,
and partitions in the session. For example, if you configure three partitions in a session that contains one
source and one target, the Integration Service creates six connections to the Web Services Hub, three for the
source and three for the target. The partitions allow for concurrent execution of web service requests.

106 Chapter 9: Working with Web Service Workflows

When you run a multi-partitioned session, the Web Services Hub uses a source connection to pass a request
to the Integration Service. The Integration Service uses a target connection to send a response to the Web
Services Hub. The Web Services Hub and the Integration Service use the source and target connections in a
round-robin fashion.

When you configure partitions for a web service mapping, you can configure pass-through partitions for web
service sources and targets.

Troubleshooting Web Service Workflows

I am trying to run the Debugger against a web service session, but the session fails, and the
session log contains an error message indicating that the workflow context is required to run the
session.

If you want to debug a web service session, you must run the Debugger against the web service workflow.
You cannot run the Debugger against a web service mapping or a reusable session without the workflow.

I updated the source WSDL and reimported my source and target definitions. The workflow is
valid, but the service WSDL is not updated.

Changes to a mapping are not dynamically reflected in the Web Services Hub. To generate the WSDL to
reflect the mapping changes, you need to edit and save the workflow. When you save the workflow, the Web
Services Hub generates the WSDL for the service.

My web service workflow was valid in the Workflow Manager, but became invalid when I started
the Web Services Hub.

After you start the Web Services Hub, it validates each web service workflow according to its own validation
rules in addition to those of the Workflow Manager.

The Web Services Hub validates web service workflows according to the following rules:

• There can be no more than one web service source definition in the mapping.

• There can be no more than one web service target definition in the mapping.

• If there are no web service target definitions in the mapping, the Web Services Hub treats the web service
as a one-way service.

• A Repository Service must be associated with the Web Services Hub.

• An Integration Service must be associated with the workflow.

See the Validate tab in the Workflow Manager for Web Services Hub error messages, and correct the problem
indicated by the error message.

While trying to fetch a workflow on a Web Services Hub, I received error messages indicating that
there is no Integration Service specified for the service workflow and the service workflow is
invalid.

You must assign an Integration Service when you create a web service workflow. For more information, see
“Configuring the Web Service Workflow” on page 100.

Troubleshooting Web Service Workflows 107

I sent a request to a web service workflow that is configured to run more than one instance on the
Web Services Hub. After I sent the request, I stopped the web service workflow. I received a fault
response.

The Web Services Hub periodically checks the status of a workflow. It generates a fault response when it
sends a request to the workflow before it registers that the workflow is not running. If a workflow is
configured to run more than one instance, the Web Services Hub starts another instance of the workflow.
However, since the Web Services Hub does not cache requests, it cannot resend the request to the new
instance of the workflow.

I made changes to a real-time web service workflow in a versioned repository. When I ran the
workflow, the changes were not in effect.

When you modify a real-time web service workflow in a versioned repository, you must check in the workflow
for the changes to take effect.

For example, you modify a real-time web service workflow to associate it with a different PowerCenter
Integration Service. If you check in the changes, the Web Services Hub uses the new Integration Service to
run the workflow. If you do not check in the changes, the Web Services Hub does not use the new Integration
Service unless you restart the Web Services Hub.

108 Chapter 9: Working with Web Service Workflows

A p p e n d i x A

Web Service Sample Client
Applications

This appendix includes the following topics:

• Web Service Sample Client Applications Overview, 109

• Using the Batch Web Services Sample Programs, 109

• Examples of Batch Web Services, 111

• Using the Real-time Web Services Sample Programs, 116

• Examples of Real-time Web Services, 119

Web Service Sample Client Applications Overview
Informatica ships sample client application programs that demonstrate how to use PowerCenter web
services. The examples include programs in Java and C#. The Java sample programs use proxy classes
generated by the Axis Web Services Toolkit. The C# sample programs use proxy classes generated for
the .NET platform with the wsdl.exe tool. The sample programs work with the PowerCenter batch web
services and real-time web services.

The web services sample programs are installed in the following directory:

/<PowerCenterInstallDir>/server/samples/WebServices
Before running the web services sample programs, create and enable a Web Services Hub on the
PowerCenter domain. Use the Administrator tool to create, configure, and enable a Web Services Hub.

Using the Batch Web Services Sample Programs
Before you use the batch web services sample programs, PowerCenter must be installed and running. The
PowerCenter domain must contain a Web Services Hub associated with a Repository Service.

The batch web services sample programs are installed in the following directory:

/<PowerCenterInstallDir>/server/samples/WebServices

109

The following table describes the files and directories in the /WebServices directory:

Directory Description

/lib Contains the library files needed to run the sample programs.

/ssl Contains a sample keystore for running client applications in
secure mode (HTTPS).

/samples/BatchWebServices/axis/
<SampleProgramDirectory>

Contains the Java sample programs. The source file for each
batch web services sample program can be found in a
separate directory. The name of the directory indicates the
batch web services operations demonstrated in the sample
program. For example, the sample program in the /
multiservers directory demonstrates logging in to more than
one Integration Service associated with a Repository Service.
This directory also contains the batch and script files to
compile and run the sample programs.

/samples/BatchWebServices/axis/proxyclasses Contains the proxy classes for the Java sample programs.

/samples/BatchWebServices/dotnet/csharp/
<SampleProgramDirectory>

Contains the C# sample programs. The source file for each
batch web services sample program can be found in a
separate directory. The name of the directory indicates the
batch web services operations demonstrated in the sample
program. For example, the sample program in the /
multiservers directory demonstrates logging in to more than
one Integration Service associated with a Repository Service.
Each sample program directory also contains the batch files to
compile the sample programs.

/samples/BatchWebServices/dotnet/csharp/
proxyclasses

Contains the proxy classes for the C# sample programs. This
directory also contains the batch files to compile the proxy
classes.

Compiling the Batch Web Services Sample Programs
The steps to compile the batch web services sample programs are determined by the programming
language.

Compiling the Sample Java Programs
To compile the sample Java programs, go to the sample program directory and run the compile batch or
script file. Run the batch or script file that matches the name of the sample program you want to compile.

For example, to compile Sample1.java program in the /axis/multithreaded directory, go to the directory and
run CompileSample1.bat (Windows) or CompileSample1.sh (UNIX). The compile process creates a .class file
for the sample program in the same directory.

Compiling the Sample C# Programs
To compile the sample C# programs, complete the following steps:

1. Go to the /dotnet/csharp/proxyclasses directory and run the compile.bat.

The compile process creates a dynamic link library named WebServicesHub.dll in the following directory:

/dotnet/csharp/bin directory.

110 Appendix A: Web Service Sample Client Applications

2. Go to the sample program directory and run the compile batch file that matches the name of the sample
program you want to compile.

The compile process creates an executable file with the name of the compiled program file and a .exe
extension.

Running the Batch Web Services Sample Programs
The Web Services Hub must be running when you run a client application.

Run the sample programs with the required parameters. The steps to run the batch web services sample
programs are determined by the programming language.

Running the Sample Java Programs
To run the sample Java programs, go to the sample program directory and run the batch or script file that
matches the name of the sample program you want to run. For example, to run the Sample1.java program in
the /axis/multithreaded directory, go to the directory and run RunSample1.bat (Windows) or RunSample1.sh
(UNIX).

Running the Sample C# Programs
To run the sample C# programs, go to the sample program directory and run the executable file for the
sample program you want to run.

Examples of Batch Web Services
The following table lists the directories that contain sample programs:

Platform Directory

Java /WebServices/samples/BatchWebServices/axis/<SampleProgramDirectory>

C# /WebServices/samples/BatchWebServices/dotnet/csharp/<SampleProgramDirectory>

The same set of sample programs are shipped for Java and C#. Each platform has the same directories and
each directory contains sample programs that demonstrate a different usage for web services. This section
describes the Java and C# sample programs.

Browsing
The sample programs in the /browsing directory demonstrate the use of web services operations that get
information from the repository.

Sample1.java and Sample1.cs
This sample program logs in to a repository and then uses Metadata web services operations to get
information about folders, workflows, and tasks in the repository and the Integration Services registered with
the repository.

Examples of Batch Web Services 111

Directory: /browsing

File to compile Java and C# samples: CompileSample1.bat or CompileSample1.sh

File to run Java sample: RunSample1.bat or RunSample1.sh

File to run C# sample: Sample1.exe

The following table describes the parameters you use to run the Sample1 application:

Parameter Description

Security mode Indicates the security mode in which to run the application. Pass the argument -
ns to run the application in unsecure mode (HTTP).
The examples do not support secure mode (HTTPS).

Host name Name or IP address of the machine on which the Web Services Hub is running.

Port number Port number on which the Web Services Hub is running.

Repository domain name Name of the domain that contains the Repository Service.

Repository name Name of the Repository Service.

User name User name to log in to the repository.

Password Password for the user name to log in to the repository.

Sample2.java and Sample2.cs
This sample program logs in to a repository and connects to the associated Integration Service. It uses
Metadata and Data Integration web services operations to access a folder in the repository and start and
stop the first workflow found in the folder.

Directory: /browsing

File to compile Java and C# samples: CompileSample2.bat or CompileSample2.sh

File to run Java sample: RunSample2.bat or RunSample2.sh

File to run C# sample: Sample2.exe

The following table describes the parameters you use to run the Sample2 application:

Parameter Description

Security mode Indicates the security mode in which to run the application. Pass the argument
-ns to run the application in unsecure mode (HTTP).
The examples do not support secure mode (HTTPS).

Host name Name or IP address of the machine on which the Web Services Hub is running.

Port number Port number on which the Web Services Hub is running.

Repository domain name Name of the domain that contains the Repository Service.

Repository name Name of the Repository Service.

112 Appendix A: Web Service Sample Client Applications

Parameter Description

User name User name to log in to the repository.

Password Password for the user name to log in to the repository

Integration Service domain name Name of the domain that contains the Integration Service.

Integration Service name Name of the Integration Service.

Data Integration
The sample program in the /dataintegration directory demonstrates the use of the workflow and task
operations available in the Data Integration web services.

Sample1.java and Sample1.cs
This sample program logs in to a repository and connects to the associated Integration Service. It uses Data
Integration web services operations to start and stop a workflow running on the Integration Service.

Directory: /dataintegration

File to compile Java and C# samples: CompileSample1.bat or CompileSample1.sh

File to run Java sample: RunSample1.bat or RunSample1.sh

File to run C# sample: Sample1.exe

The following table describes the parameters you use to run the Sample1 application:

Parameter Description

Security mode Indicates the security mode in which to run the application. Pass the argument
-ns to run the application in unsecure mode (HTTP).
The examples do not support secure mode (HTTPS).

Host name Name or IP address of the machine on which the Web Services Hub is running.

Port number Port number on which the Web Services Hub is running.

Repository domain name Name of the domain that contains the Repository Service.

Repository name Name of the Repository Service.

User name User name to log in to the repository.

Password Password for the user name to log in to the repository.

Integration Service domain name Name of the domain that contains the Integration Service.

Integration Service name Name of the Integration Service.

Folder name Name of a folder in the repository.

Examples of Batch Web Services 113

Parameter Description

Workflow name Name of the workflow that contains the session.

Task name Name of the task to start.

Multiple Integration Services
The sample program in the /multiservers directory demonstrates logging in to more than one Integration
Service associated with a Repository Service. You can use the same technique to simultaneously access any
number of Integration Services associated with a Repository Service.

Sample1.java and Sample1.cs
This sample program logs in to a repository and connects to two of the Integration Services associated with
the repository. It uses Data Integration web services operations to get the properties of both Integration
Services.

Note: As the example shows, you must create two proxy objects for the Data Integration web services to log
in to two Integration Services. Create one proxy object for each Integration Service that you want to log in to.

Directory: /multiservers

File to compile Java and C# samples: CompileSample1.bat or CompileSample1.sh

File to run Java sample: RunSample1.bat or RunSample1.sh

File to run C# sample: Sample1.exe

The following table describes the parameters you use to run the Sample1 application:

Parameter Description

Security mode Indicates the security mode in which to run the application. Pass the argument
-ns to run the application in unsecure mode (HTTP).
The examples do not support secure mode (HTTPS).

Host name Name or IP address of the machine on which the Web Services Hub is running.

Port number Port number on which the Web Services Hub is running.

Repository domain name Name of the domain that contains the Repository Service.

Repository name Name of the Repository Service.

User name User name to log in to the repository.

Password Password for the user name to log in to the repository.

Integration Service domain name Name of the domain that contains the Integration Service.

Integration Service name 1 Name of the an Integration Service associated with the repository.

Integration Service name 2 Name of a second Integration Service associated with the repository.

114 Appendix A: Web Service Sample Client Applications

Multithreading
The sample program in the /multithreaded directory demonstrates the use of proxy objects in multiple
threads to perform operations in parallel. You can use the same technique to enable a client application to
continue running and calling other operations as it waits for an operation to complete. For example, if a client
application calls the WaitTillWorkflowComplete operation on thread, the application can continue to perform
other operations on other threads.

Sample1.java and Sample1.cs
This sample program logs in to a repository and connects to the associated Integration Service. It starts two
threads and passes the Data Integration web service proxy object to both threads. On one thread, it starts a
workflow on the Integration Service and waits until it completes. On the other thread, it gets the properties of
the Integration Service. Similarly, you can use a Metadata web services proxy object in multiple threads.

Directory: /multithreaded

File to compile Java and C# samples: CompileSample1.bat or CompileSample1.sh

File to run Java sample: RunSample1.bat or RunSample1.sh

File to run C# sample: Sample1.exe

The following table describes the parameters you use to run the Sample1 application:

Parameter Description

Security mode Indicates the security mode in which to run the application. Pass the argument
-ns to run the application in unsecure mode (HTTP).
The examples do not support secure mode (HTTPS).

Host name Name or IP address of the machine on which the Web Services Hub is running.

Port number Port number on which the Web Services Hub is running.

Repository domain name Name of the domain that contains the Repository Service.

Repository name Name of the Repository Service.

User name User name to log in to the repository.

Password Password for the user name to log in to the repository.

Integration Service domain name Name of the domain that contains the Integration Service.

Integration Service name Name of the Integration Service.

Folder name Name of the folder in the repository that contains the workflow.

Workflow name Name of a workflow in the repository.

Web Services Hub Test
The sample program in the /testsamples directory demonstrates how to verify that a valid Web Services Hub
is running in a PowerCenter domain.

Examples of Batch Web Services 115

Sample1.java and Sample1.cs
This sample program logs in to a repository and connects to the associated Integration Service. It uses
Metadata and Data Integration web services operations to get the information about the Repository Service
and Integration Service.

Directory: /testsamples

File to compile Java and C# samples: CompileSample1.bat or CompileSample1.sh

File to run Java sample: RunSample1.bat or RunSample1.sh

File to run C# sample: Sample1.exe

The following table describes the parameters you use to run the Sample1 application:

Parameter Description

Security mode Indicates the security mode in which to run the application. Pass the argument
-ns to run the application in unsecure mode (HTTP).
The examples do not support secure mode (HTTPS).

Host name Name or IP address of the machine on which the Web Services Hub is running.

Port number Port number on which the Web Services Hub is running.

Repository domain name Name of the domain that contains the Repository Service.

Repository name Name of the Repository Service.

User name User name to log in to the repository.

Password Password for the user name to log in to the repository.

Integration Service domain name Name of the domain that contains the Integration Service.

Integration Service name Name of the Integration Service.

Using the Real-time Web Services Sample Programs
Before you use the real-time web services sample programs, PowerCenter must be installed and running. The
PowerCenter domain must contain a Web Services Hub associated with a Repository Service.

The real-time web services sample programs are installed in the following directory:

/<PowerCenterInstallDir>/server/samples/WebServices
The real-time web services examples include the files to create the lookup tables and web service workflows
to be used by the sample programs.

116 Appendix A: Web Service Sample Client Applications

The following table lists files and directories in the /RealTimeWebServices directory:

Directory Description

/samples/RealTimeWebServices/ImportXML Contains the web service workflows called by the real-time web
services sample programs. To use the sample programs, import
the XML files into a repository and set up the database
connections for the SQL and Lookup transformations in the web
service workflows.

/lib Contains the library files needed to run the sample programs.

/samples/RealTimeWebServices/SQLScripts /
SINGLEROWLOOKUP

Contains the SQL scripts for creating the lookup tables used in
the sample program for single row lookup. Run the SQL scripts
to create the tables in a database you select.

/samples/RealTimeWebServices/SQLScripts /
MULTIPLEROWLOOKUP

Contains the SQL scripts for creating the lookup tables used in
the sample program for multiple row lookup. Run the SQL scripts
to create the tables in a database you select.

/samples/RealTimeWebServices/Unprotected
WebServices/axis/<SampleProgramDirectory>

Contains the Java sample programs. The source file for each
real-time web services sample program can be found in a
separate directory. Each directory contains the batch and script
files to compile and run the sample program and subfolders for
the proxy classes used by the sample program.

To use the real-time web services examples, you must complete the following steps:

1. Create the database tables that the sample programs will use as lookup tables.

2. Import the mappings and web service workflows into the repository associated with the Web Services
Hub.

3. Modify the database and datatypes for the SQL transformation in the
m_CustomerLookup_MULTIPLEROW mapping.

4. Set up the database connection settings in the sample workflows.

5. Compile the real-time web services sample programs.

6. Run the real-time web services sample programs.

Step 1. Create the Lookup Tables
Use the SQL script files shipped with the batch web services sample programs to create the lookup tables on
a relational database. You can create the lookup tables in the following databases:

• IBM DB2

• Informix

• Microsoft SQL Server

• Oracle

• Sybase

• Teradata

Note: If you create the lookup tables in Teradata, you must set the default mode of the database server to
ANSI.

Using the Real-time Web Services Sample Programs 117

The following table describes the SQL scripts:

Script File Name Description

CustomerLookup_SINGLEROW_<Database>.sql Creates a customer table named SINGLEROWLOOKUP for
use with the sample program for single row lookup.

CustomerLookup_MULTIPLEROW_<Database>.sql Creates a customer table named MULTIPLEROWLOOKUP
for use with the sample program for multiple row lookup.

Note: the database connection settings. After you import the sample workflows into a repository, you need to
modify the database connection settings of the transformations in the workflows to match your database
settings.

Step 2. Import the Mappings and Workflows
The real-time web services sample programs run the sample web service workflows. To use the sample
programs, import the sample mappings and workflows into the repository associated with the Web Services
Hub.

The following table describes the XML files:

Script File Name Description

wf_CustomerLookup_SINGLEROW.XML Contains a web service workflow with a Lookup
transformation for use with the sample program for single
row lookup.

wf_CustomerLookup_MULTIPLEROW.XML Contains a web service workflow with an SQL
transformation for use with the sample program for
multiple row lookup.

Step 3. Modify the Database and Datatypes for the SQL
Transformation

The web service example that demonstrates multiple row lookup uses an SQL transformation. The database
you use determines the native datatypes available for the ports in an SQL transformation. You must configure
the SQL transformation to use the appropriate database and set the ports to use the appropriate native
datatype.

To modify the database and datatypes for the SQL transformation, complete the following steps:

1. In the PowerCenter Designer, open the m_CustomerLookup_MULTIPLEROW mapping in Mapping
Designer and edit the sql_Customer transformation instance.

2. In the Edit Transformations window, go to the SQL Settings tab and set the value of the Database Type
attribute to the database you are using for the example.

3. Go to the SQL Ports tab and verify that the datatypes of the ports are mapped to the correct native
datatype.

For most databases, the default native datatype mapping is correct. For Microsoft SQL Server and
Sybase, map the string datatype to the varchar native datatype.

4. Save the changes to the m_CustomerLookup_MULTIPLEROW mapping.

After you modify the mappings, refresh the workflows that run the mappings.

118 Appendix A: Web Service Sample Client Applications

5. In the PowerCenter Workflow Manager, open the workflows that run the mappings and refresh the
mappings.

Step 4. Modify the Database Connection Settings
The SQL and Lookup transformations in the imported workflows must be able to connect to the sample
lookup tables that you created in Step 1.

The import process does not import the connection object for the transformations in the sample workflows.
You must create a connection object and use it in the session.

To update the connection settings for the transformations, complete the following steps:

1. In the PowerCenter Workflow Manager, create a connection object to connect to the sample tables.

2. Edit the s_m_CustomerLookup_SINGLEROW session and update the relational connection information in
the lkp_Customer transformation.

Set the relational connection to the name of the new connection object. Save the session with the new
settings.

3. Edit the s_m_CustomerLookup_MULTIPLEROW session and update the relational connection information
in the sql_Customer transformation.

Set the relational connection to the name of your connection object. Save the session with the new
settings.

Step 5. Compile the Real-time Web Service Sample Programs
To compile the sample Java programs, go to the sample program directory and run the compile batch or
script file. Run the batch or script file that matches the name of the sample program you want to compile.

For example, to compile Sample.java program in the /axis/CustomerLookup_SINGLEROW directory, go to the
directory and run CompileSample.bat (Windows) or CompileSample.sh (UNIX).

The compile process creates a .class file for the sample program in the same directory.

Step 6. Run the Real-time Web Service Sample Programs
You must have Java version 1.5.0_11-b03 installed on the machine where you run the sample programs. The
Web Services Hub must be running when you run a sample program.

To run the sample Java programs, go to the sample program directory and run the batch or script file for the
sample program you want to run. For example, to run the Sample.java program in the /axis/
CustomerLookup_MULTIPLEROW directory, go to the directory and run RunSample.bat (Windows) or
RunSample.sh (UNIX).

Run the sample program with the required parameters.

Examples of Real-time Web Services
This section describes the sample programs for real-time web services. Each directory contains a sample
program that demonstrates a different way to use real-time web services.

Examples of Real-time Web Services 119

Multiple Row Lookup
The sample program in the /CustomerLookup_MULTIPLEROW directory demonstrates how a client
application can run a web service workflow to perform a lookup and handle a response with multiple rows of
data.

Sample.java
This sample program calls a PowerCenter web service workflow that looks up a customer ID in a database
and prints out the customer information. The workflow uses an SQL transformation to retrieve multiple rows
from the database.

Directory: /CustomerLookup_MULTIPLEROW

File to compile Java sample: CompileSample.bat or CompileSample.sh

File to run Java sample: RunSample.bat or RunSample.sh

The following table describes the parameters you use to run the Sample application:

Parameter Description

Customer ID ID for the customer to look up. Pass the customer ID as an integer.

EndPoint URL URL where the web service can be found. Pass the endpoint URL as a string.
The endpoint URL for a real-time web service can be found in the soap:address location element of
the service element in the web service WSDL. The default endpoint URL for the sample web service
is http://<WSHHostName>:<WSHPort>/wsh/services/ts/CustomerLookup_MULTIPLEROW.
If the Web Services Hub is running on HTTPS, the endpoint URL starts with HTTPS.

Single Row Lookup
The sample program in the /CustomerLookup_SINGLEROW directory demonstrates how a client application
can run a web service workflow to perform a lookup and handle a response with single row of data.

Sample.java
This sample program calls a PowerCenter web service workflow that looks up a customer ID in a database
and prints out the customer information. The mapping uses a Lookup transformation to retrieve one row
from the database.

Directory: /CustomerLookup_SINGLEROW

File to compile Java samples: CompileSample.bat or CompileSample.sh

File to run Java sample: RunSample.bat or RunSample.sh

120 Appendix A: Web Service Sample Client Applications

The following table describes the parameters you use to run the Sample application:

Parameter Description

Customer ID ID for the customer to look up. Pass the customer ID as an integer.

EndPoint URL URL where the web service can be found. Pass the endpoint URL as a string.
The endpoint URL for a real-time web service can be found in the soap:address location element of
the service element in the Web service WSDL. The default endpoint URL for the sample web service
is http://<WSHHostName>:<WSHPort>/wsh/services/ts/CustomerLookup_SINGLEROW.
If the Web Services Hub is running on HTTPS, the endpoint URL starts with HTTPS.

Examples of Real-time Web Services 121

A p p e n d i x B

Configure the Web Browser
This appendix includes the following topic:

• Configure the Web Browser, 122

Configure the Web Browser
You can use Microsoft Internet Explorer or Google Chrome to launch the Web Services Hub Console in the
Informatica platform.

To run the Web Services Hub Console, configure the following options in your browser:

Scripting and ActiveX

Enable the following controls on Microsoft Internet Explorer:

• Active scripting

• Allow programmatic clipboard access

• Run ActiveX controls and plug-ins

• Script ActiveX controls marked safe for scripting

To configure the controls, click Tools > Internet options > Security > Custom level.

Trusted sites

If the Informatica domain runs on a network with Kerberos authentication, you must configure the
browser to allow access to the Informatica web applications. In Microsoft Internet Explorer, Microsoft
Edge, and Google Chrome, add the URL of the Informatica web application to the list of trusted sites. In
Safari, add the certificate of the Informatica web application to the keychain. If you are using Chrome
version 86.0.42x or later on Windows, you must also set the AuthServerWhitelist and
AuthNegotiateDelegateWhitelist policies.

122

I n d e x

A
attachments

flat file mappings 97
SOAP messages 99
WSDL 97
XML mappings 97

B
batch web services

compiling sample programs 110
description 16
running sample programs 111
sample programs 109

C
compiling

batch web service sample programs 110
concurrent execution

shutting down web service instances 102
starting web service instances 102

configuring
web service provider reader 103
web service provider writer 104
web service workflows 100

Created element
user name token security 74

D
Data Integration web services

description 16
deinitializeDIServerConnection

deprecated operation 34
deprecated operations

deinitializeDIServerConnection 34
getNextLogSegment 35
initializeDIServerConnection 41
resumeWorkflow 44
startSessionLogFetch 47
startWorkflowLogFetch 51

digested password
example 75
web service security 72, 74

F
flat files

mappings with attachments 97

G
getNextLogSegment

deprecated operation 35

H
hashed password

example 73
web service security 72, 73

I
initializeDIServerConnection

deprecated operation 41

M
mappings

flat or XML with attachments 97
one-way 91
request-response 91
staged 92
types of web service mappings 91
WSDL with attachment 97
XML with attachments 97

maximum run count per hub
web service workflow property 100

message ports
configuring 80

Metadata web services
description 16

N
nonce

user name token security 74

O
OASIS

web service security standard 72
one-way mappings

description 91

P
partitions

web service sessions 106

123

passwords
digested 72, 74
hashed 72, 73
plain text 72

plain text password
web service security 72

protected
web service workflow property 100

R
reader

configuring web service session 103
real-time web services

description 16
sample programs 116

request-response mappings
description 91
using a SQL transformation 92

resumeWorkflow
deprecated operation 44

runnable
web service workflow property 100

running
batch web service sample programs 111

S
sample programs

batch web services 109
real-time web services 116

service name
web service workflow property 100

service time threshold
web service workflow property 100

SOAP
attachments 99

SQL transformation
request-response mappings 92

staged mapping
description 92

startSessionLogFetch
deprecated operation 47

startWorkflowLogFetch
deprecated operation 51

T
timeout

web service workflow property 100

U
user credential

web service security 72
user name token

Created element 74

user name token (continued)
nonce 74
web service security 72

UsernameToken element
web service security 72

V
visible

web service workflow property 100

W
web service hubs

web service workflow property 100
web service instances

shutting down 102
starting 102

web service provider reader
configuring 103

web service provider writer
configuring 104

web service security
OASIS standard 72
user credential 72
user name token 72

web service source
configuring message ports 80

web service targets
configuring message ports 80

web service workflow properties
maximum run count per hub 100
protected 100
runnable 100
service name 100
service time threshold 100
timeout 100
visible 100
web service hubs 100

web service workflows
configuring 100
creating 100
troubleshooting 107

web services
Batch 16
Data Integration 16
Metadata 16
Real-time 16
types of mappings 91

Web Services Hub
description 15

Web Services Provider
architecture 17
description 15

workflows
web service 100

writer
configuring web service session 104

124 Index

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Web Service Concepts
	Web Service Concepts Overview
	Simple Object Access Protocol (SOAP)
	Web Services Description Language (WSDL)

	Chapter 2: Understanding the Web Services Provider
	Understanding the Web Services Provider Overview
	Web Services Hub
	Batch Web Services
	Real-time Web Services

	Web Services Provider Architecture
	Performance and Scalability
	Associating Multiple Repositories with a Web Services Hub
	Associating a Repository with Multiple Web Services Hub Services
	Running Multiple Instances of a Web Service Workflow
	Running Web Service Sessions or Workflows on a Grid

	Web Services Hub Security
	Web Services Hub Logs
	Configuring the Logs
	Viewing the Logs

	SOAP Fault Handling
	User-Defined Faults
	System Faults
	System Fault Schema

	Chapter 3: Using the Web Services Hub Console
	Using the Web Services Hub Console Overview
	Connecting to the Web Services Hub Console
	Understanding the Web Services Hub Console
	Navigator
	Web Services and Operations Sections
	Properties Section

	Testing a Web Service
	Input Message
	Testing a Public Web Service or Batch Web Service Operation
	Testing a Protected Real-time Web Service

	Chapter 4: Batch Web Service Operations
	Batch Web Service Operations Overview
	Metadata Web Service Operations
	getAllDIServers
	getAllFolders
	getAllRepositories
	getAllTaskInstances
	getAllWorkflows
	Login
	Logout

	Data Integration Web Service Operations
	deinitializeDIServerConnection
	getDIServerProperties
	getNextLogSegment
	getSessionLog
	getSessionPerformanceData
	getSessionStatistics
	getTaskDetails
	getTaskDetailsEx
	getWorkflowDetails
	getWorkflowDetailsEx
	getWorkflowLog
	initializeDIServerConnection
	Login
	Logout
	monitorDIServer
	pingDIServer
	recoverWorkflow
	resumeWorkflow
	scheduleWorkflow
	startSessionLogFetch
	startTask
	startWorkflow
	startWorkflowEx
	startWorkflowFromTask
	startWorkflowLogFetch
	stopTask
	stopWorkflow
	unscheduleWorkflow
	waitTillTaskComplete
	waitTillWorkflowComplete

	Chapter 5: Writing Client Applications
	Writing Client Applications Overview
	Client Applications for Batch Web Services
	Generating Client Proxy Classes
	Initialization
	Session Maintenance
	Operation Calls
	Resource Cleanup
	Error Handling
	Proxy Objects

	Java Client Application for Batch Web Services
	Generating Client Proxy Classes in Axis
	Initialization in Axis
	Session Maintenance in Axis
	Making Operation Calls in Axis
	Clean Up in Axis
	Error Handling in Axis

	C# Client Application for Batch Web Services
	Generating Client Proxy Classes in .NET
	Initialization in .NET
	Session Maintenance in .NET
	Making Operation Calls in .NET
	Error Handling in .NET

	Client Applications for Real-time Web Services
	Web Service Workflows
	Generating Client Proxy Classes
	Initialization
	Operation Calls
	Error Handling

	Java Client Application for Real-time Web Services
	Creating a Client Application for a Real-time Web Service

	Using Parameter Arrays
	Parameter Array Definition
	Rules and Guidelines for Using Parameter Arrays

	Adding Security to a Client Request
	UsernameToken in the SOAP Request
	Plain Text Password
	Hashed Password
	Digested Password

	Chapter 6: Working with Web Service Sources and Targets
	Web Service Sources and Targets Overview
	Understanding Web Service Sources and Targets
	XML Views and Groups
	Source Definition
	Target Definition
	Rules and Guidelines for Importing or Creating Web Service Sources and Targets

	Importing a Web Service Source or Target Definition
	Import Modes
	Message ID
	Advanced Options
	Importing from a WSDL Without Creating XML Views
	Importing a Web Service Source or Target Definition from a WSDL

	Creating a Source or Target Definition
	Multiple Occurring Elements
	Message Ports
	Creating a Source or Target from a Relational or Flat File Source or Target

	Chapter 7: Editing Web Service Sources and Targets
	Editing Web Service Sources and Targets Overview
	Editing Definitions in the Designer Workspace
	Table Tab
	Columns Tab
	Attributes Tab
	Metadata Extensions Tab
	Web Service Definition Tab

	Editing Definitions in the WSDL Workspace
	Rules and Guidelines for the WSDL Workspace

	Chapter 8: Working with Web Service Mappings
	Working With Web Service Mappings Overview
	Types of Web Service Mappings
	Request-Response Mappings
	Staged Mappings

	Generating a Mapping from a WSDL
	Generating a Mapping from a Relational or Flat File Source or Target
	Generating a Mapping from a Transformation or Mapplet
	Generating a Mapping from a Reusable Transformation
	Generating a Mapping from a Mapplet
	Generating a Mapping from a Reusable Transformation or a Mapplet

	Editing a Target Instance in a Web Service Mapping
	Load Scope
	Partial Load Recovery

	Attachments
	Flat File or XML Source and Target Attachments
	WSDL Attachments

	Chapter 9: Working with Web Service Workflows
	Working with Web Service Workflows Overview
	Creating and Configuring a Web Service Workflow
	Creating a Web Service Workflow
	Configuring the Web Service Workflow
	Concurrent Execution of Web Service Workflows

	Configuring the Web Services Provider Reader and Writer
	Configuring the Web Services Provider Reader
	Configuring the Web Services Provider Writer
	Configuring the Reader and Writer for XML and Flat File Sessions

	Configuring Partitions for Web Service Sessions
	Troubleshooting Web Service Workflows

	Appendix A: Web Service Sample Client Applications
	Web Service Sample Client Applications Overview
	Using the Batch Web Services Sample Programs
	Compiling the Batch Web Services Sample Programs
	Running the Batch Web Services Sample Programs

	Examples of Batch Web Services
	Browsing
	Data Integration
	Multiple Integration Services
	Multithreading
	Web Services Hub Test

	Using the Real-time Web Services Sample Programs
	Step 1. Create the Lookup Tables
	Step 2. Import the Mappings and Workflows
	Step 3. Modify the Database and Datatypes for the SQL Transformation
	Step 4. Modify the Database Connection Settings
	Step 5. Compile the Real-time Web Service Sample Programs
	Step 6. Run the Real-time Web Service Sample Programs

	Examples of Real-time Web Services
	Multiple Row Lookup
	Single Row Lookup

	Appendix B: Configure the Web Browser
	Configure the Web Browser

	Index

