
How to Configure
PowerCenter 10.2 HotFix
2 on Kubernetes

© Copyright Informatica LLC 2019. Informatica, the Informatica logo, and PowerCenter are trademarks or registered
trademarks of Informatica LLC in the United States and many jurisdictions throughout the world. A current list of
Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html

Abstract
You can configure PowerCenter on Kubernetes to optimize resource management and to enable load balancing for the
Informatica domain within the containerized environment. This article is written for the PowerCenter administrator
responsible for configuring PowerCenter 10.2 HotFix 2 on Kubernetes.

Supported Versions
• PowerCenter 10.2 HotFix 2

Table of Contents
How PowerCenter Works with Kubernetes. 2

Kubernetes Architecture. 4

Kubernetes Overview. 4

Kubernetes Master Node. 4

Kubernetes Worker Node. 5

Components in the Kubernetes Architecture. 6

Advanced Components in the Kubernetes Architecture. 7

Configuring PowerCenter on Kubernetes Overview. 8

Step 1. Complete the Prerequisites. 8

Verify Port Requirements. 9

Verify System Requirements. 10

Step 2. Create a Kubernetes Cluster on Google Cloud Platform. 10

Step 3. Create a Database with a Persistent Volume. 11

Step 4. Create a Network File System. 11

Step 5. Share the License Key for the Nodes on the NFS Mount. 12

Step 6. Create a Docker Image for PowerCenter. 12

Step 7. Create a Secret to Secure the Password and Key Pass Phrase. 12

Step 8. Create a Pod that Runs on the Informatica Services. 13

Step 9. Expose the Node Ports to Communicate with Informatica Server from Outside the Cluster. 13

Step 10. Connect to the Administrator Tool. 14

Step 11. Create a Pod that Runs on Informatica Gateway Node. 14

Step 12. Expose Node Ports for Informatica Services with Kubernetes Services. 15

Step 13. Connecting to the Domain from the PowerCenter Clients. 15

Troubleshooting. 16

How PowerCenter Works with Kubernetes
To create and deploy a self-contained PowerCenter application with a scalable and distributed environment, you can
integrate PowerCenter with Kubernetes.

To use PowerCenter with Kubernetes, you can host an NFS server to share a mount across all the nodes and to keep
the license key file available to the Informatica domain. If a database is not available, create a pod to host the

2

database. Create a pod for PowerCenter master gateway node and deploy the gateway nodes once the master
gateway node is up and running. You can connect through the PowerCenter clients as required when the configuration
setup is complete.

The following image displays the PowerCenter on Kubernetes cluster:

The diagram shows how a Kubernetes cluster comprises two PowerCenter gateway nodes that shares an NFS mount,
which is linked to the Informatica PowerCenter master node. The master gateway node is connected to the repository.
The Repository Service can be configured on any of the nodes. The Kubernetes cluster connects to the on-premises
applications or databases and also connect to the PowerCenter clients.

The following image shows the PowerCenter architecture on Kubernetes where the second level view that shows the
internal communication among pods:

The diagram shows several pods on separate Kubernetes cluster nodes. Each pod resides within a node. One node
contains a pod to store the database server and also a database persistent volume. The remaining nodes refer to
PowerCenter installation on Kubernetes that exposes the NodePort and helps to interact with the PowerCenter clients
with the internet network. One node connects to the PowerCenter installation on Kubernetes with the exposed ports
and contains an NFS server pod and also an NFS based persistent volume.

3

Kubernetes Architecture
Kubernetes (K8s) is an open source system for managing containerized applications across multiple hosts, providing
basic mechanisms for deployment, maintenance, and scaling of applications.

Kubernetes architecture comprises of kubectl, which is a command line interface that runs commands against the
Kubernetes clusters. Kubernetes also has an API server that runs on the master node. ETCD is a distributed key-value
store. The Kubernetes state is defined in ETCD. It is followed by one or more worker nodes where the workloads run.

You can specify declarative artifacts for Kubernetes, which are defined using yaml files and these yaml definitions are
submitted to the master. Depending on the definition, constraints, and rules, the Kubernetes master node schedules
pods or artifacts submitted in one of the nodes. Similar to any distributed computing architecture, the master manages
the front end operations and the nodes come together to form a cluster. The registry, either public or private, can
centrally stores the docker images, such as a docker hub or a Google container registry.

Kubernetes Overview
A Kubernetes engine is a cluster comprised of one or more master nodes and multiple worker nodes.

A node is a VM hosted on a platform or a server. The node is the component that provides the compute power to the
Kubernetes cluster. It is also possible to have a single node master and worker setup, where the master and worker are
the same node.

The following diagram illustrates the Kubernetes components, such as the Kubernetes master that connects to the
different nodes:

The diagram shows a Kubernetes engine with six VMs and two clusters. Each cluster contains three VMs. Kubernetes
resides on the VMs. You can use Kubernetes to determine the VMs to deploy the PowerCenter containers based on
storage and compute capability.

Kubernetes Master Node
The Kubernetes cluster master runs the Kubernetes control plane processes, including the Kubernetes API server,
scheduler, and core resource controllers.

The following master components are required on a Kubernetes cluster:
kube-apiserver

Master component that exposes the Kubernetes API for all operations.

4

The master is the unified endpoint for the cluster. All interactions with the cluster are done through the
Kubernetes API calls, and the master runs the Kubernetes API server process to handle those requests. The
cluster master's API server process is the hub of all communication for the cluster. The internal cluster
processes, such as the cluster nodes, system and components, and application controllers act as clients of
the API server.

kube-scheduler

Assigns pods to nodes. It also finds free nodes for any workloads before scheduling workloads to the node.

kube-controller-manager

Manages the cluster and interacts with the various APIs in the kube-apiserver.

The following diagram shows the Kubernetes master node components:

The diagram shows how all the services run on the Kubernetes master node. The Kubernetes dashboard or client,
kubectl interacts with the API server that runs on the master. The API makes specific calls that enables Kubernetes to
process scheduler and controller manager to perform specific tasks. Other than the API calls, you can also
communicate to the Kubernetes master through the Kubernetes CLI command known as kubectl.

A scheduler schedules the artifacts such as containers or pods across multiple nodes based on the constraints. A
controller is responsible for coordination and manages health of the entire cluster, such that the nodes are up and
running and the pods perform correctly in the desired configuration state. ETCD is similar to a database that stores
cluster state and configuration data accessed in key value pairs. ETCD can run either on the master or outside the
cluster based on the high availability needs.

Kubernetes Worker Node
The worker nodes run the workloads.

The worker node contains kubelet and kube-proxy that both connects to the pods within the docker. Informatica
processes along with different OS images that runs on the worker node.

The following node components are needed on a Kubernetes cluster and can also run on master node:

kubelet

A kubelet takes information from the master node and ensures that any pods assigned to it are running and
configured in the desired state. All Kubernetes nodes must have a kubelet. The kubelet creates a pod, makes
it container ready, probes, and performs a readiness check.

5

kube-proxy

Watches on all services and maintains the network configuration across all elements of the cluster.

Container runtime

Engine that runs the containers. Containers at runtime such as Docker or RKT are based on the setup
configured.

The following image shows the Kubernetes worker node components:

The image shows how the worker node contains the Kubelet and the kube-proxy that is connected to the pods. The
kubelet helps to control the state of the files. The docker image registry stores the images of the Informatica binaries,
Redhat operating system, and Microsoft SQL Server database. There are two pods that contain different images. Pod 1
contains Informatica domain and services with Red Hat operating system and Pod 2 contains the Microsoft SQL server
database. Both the pods resides in a Docker container runtime that you can run as a docker image or a service regular
on a system.

Components in the Kubernetes Architecture
The following components are integral to the Kubernetes architecture:

Pods

A group of one or more containers with shared resources and instructions on how to run containers. Pods
can communicate within the cluster using the service IP.

The following image shows the different pods and the various states in which a pod can exist:

Pod 1 contains a containerized application. Pod 2 contains a containerized application and the volume. Pod 3
contains two volumes and one containerized application. Pod 4 contains two volumes and three
containerized applications.

6

Services

An abstraction that defines a logical set of pods and a policy by which to access the pods. A service in
Kubernetes is a rest object that is similar to the pod. Kubernetes services support TCP and UDP for protocols,
where the default is TCP. Pods are ephemeral but the services are more stable and you can communicate
between different services. It is the Kubernetes service that routes traffic to the specific pod with the same
application label.

The following image displays a pod with a service targeting the pod using the application label:

The image shows how a pod with a service A targets the pod with the application label as app=A.

Volume

A directory that contains data that is accessible to the containers in the pod. A volume lasts longer any
containers that run within the pod and data is preserved across container restarts. It also helps maintain the
state within the cluster.

Namespaces

Separates workloads from each other along with the resource constraints on each. For example, the pod or
service can have multiple developers with a namespace for each developer. To provide a similar workload for
each developer, you can configure each namespace state to consume no more than 2 GB RAM.

Advanced Components in the Kubernetes Architecture
The following advanced components pertain to the Kubernetes architecture:
Replica Set or Replication Controller

Create similar pods in a cluster. Both replica set and controllers allow you to create more pods in a cluster
when you launch a pod based on availability.

Deployment

Most common form of deployment combines replica set and also helps to roll out or roll back images with a
continuous deployment scenario.

StatefulSet

Allows you to easily run databases or anything that requires some persistent state.

DaemonSet

Ensure that there is at least one pod running on each node. You can use daemon sets for logging drivers,
monitoring agents, or security agents that you want to run across your cluster.

7

Job

One or more tasks that you want to run. For example, you have some batch processing jobs to be done and
you want to run it once on that batch. After the jobs complete, the pods get destroyed.

Configuring PowerCenter on Kubernetes Overview
You can configure PowerCenter on Kubernetes to optimize resource management and to enable load balancing for the
Informatica domain within the containerized environment.

In a multi-node cluster environment, it can be difficult to manage containers that can exist on any of the nodes in a
cluster. It also becomes tedious to control and manage the creation of newer containers.

K8s controls the entire container management and orchestration. With K8s, you can package an application in a
container image. With K8s, the containers help to decouple the application from the infrastructure. You deploy
containers based on operating-system-level virtualization instead of hardware virtualization. With the application-
centric management, it raises the level of abstraction from running an operating system on virtual hardware to run an
application on an operating system using logical resources.

The containers are isolated from each other and from the host. The containers have their own file systems and you can
bind the computational resource usage. They are easier to build than VMs because the containers are decoupled from
the underlying infrastructure and from the host filesystem. The containers are portable across clouds and operating
system distributions, such as Ubuntu, RHEL, CoreOS, on-prem, and Google Kubernetes Engine.

When you run PowerCenter in a containerized environment and configure the Kubernetes setup, it helps to optimize the
resource management and provide horizontal scaling of pods based on the load provided on the domain.

To run PowerCenter on Kubernetes using Google Cloud Platform (GCP), complete the following steps:

1. Complete the prerequisites.

2. Create a Kubernetes cluster on GCP.

3. Create a database with a persistent volume.

4. Create a network file system.

5. Share the license key for the nodes on the NFS mount.

6. Create a docker image for PowerCenter.

7. Create a secret for securing the password and the key pass phrase.

8. Create a pod that runs on the Informatica services.

9. Expose the node ports to communicate with Informatica server from outside the cluster.

10. Connect to the Administrator tool.

11. Create a pod that runs on Informatica gateway node.

12. Expose node ports for Informatica services with Kubernetes services.

13. Connect to the domain from the PowerCenter clients.

Step 1. Complete the Prerequisites
Before you install Kubernetes on Google Cloud Platform (GCP), verify the pre-installation requirements.

Ensure that you meet the following installation prerequisites:

1. Install the unzip utility to create image with Informatica utility.

2. In GCP, specify ingress and egress rules to the firewall of the cluster VMs based on the supported port
requirements. For more information about the supported ports, see Verify Port Requirements.

8

For more information about firewalls, see the following GCP documentation link:

https://cloud.google.com/vpc/docs/firewalls

For more information about how VMs can communicate with each other, see the following GCP
documentation link:

https://cloud.google.com/vpc/docs/add-remove-network-tags

3. Enable RHEL subscription to create RHEL containers.

4. Download the files listed in the article from the following Informatica Knowledge Base link:
https://kb.informatica.com/h2l/HowTo%20Library/1/1316-PConKubernetes.zip

You also need to be familiar with the kubectl commands. For details on how kubectl interacts with the cluster, see the
following Kerbernetes documentation:

https://kubernetes.io/docs/reference/kubectl/overview/

You must also verify the port and system requirements.

Verify Port Requirements
The installer sets up the ports for components in the Informatica domain, and it designates a range of dynamic ports
to use for some application services.

You can specify the port numbers to use for the components and a range of dynamic port numbers to use for the
application services. Or, you can use the default port numbers provided by the installer. Verify that the port numbers are
available on the machines where you install the Informatica domain services.

The following table describes the port requirements:

Port Description

Database port number Port number for Microsoft SQL Server. Default is 1433.

Node port number Port number for the node created during installation. Default is 32005.

Service Manager port Port number used by the Service Manager on the node. The Service Manager listens for
incoming connection requests on this port. Client applications use this port to communicate
with the services in the domain. The Informatica command line programs use this port to
communicate to the domain. This is also the port for the SQL data service JDBC/ODBC driver.
Default is 32006.

Service Manager
Shutdown port

Port number that controls server shutdown for the domain Service Manager. The Service
Manager listens for shutdown commands on this port. Default is 32007.

Informatica
Administrator port

Port number used by Informatica Administrator. Default is 32008.

Informatica
Administrator shutdown
port

Port number that controls server shutdown for Informatica Administrator. Informatica
Administrator listens for shutdown commands on this port. Default is 32009.

Minimum port number Lowest port number in the range of dynamic port numbers that can be assigned to the
application service processes that run on this node. Default is 32014.

9

https://cloud.google.com/vpc/docs/firewalls
https://cloud.google.com/vpc/docs/add-remove-network-tags
https://kb.informatica.com/h2l/HowTo%20Library/1/1316-PConKubernetes.zip
https://kubernetes.io/docs/reference/kubectl/overview/

Port Description

Range of dynamic ports
for application services

Range of port numbers that can be dynamically assigned to application service processes as
they start up. When you start an application service that uses a dynamic port, the Service
Manager dynamically assigns the first available port in this range to the service process. The
number of ports in the range must be at least twice the number of application service processes
that run on the node. Default is 32014 to 32114.
The Service Manager dynamically assigns port numbers from this range to the Model Repository
Service.

Maximum port number Highest port number in the range of dynamic port numbers that can be assigned to the
application service processes that run on this node. Default is 32114.

Verify System Requirements
Verify that your environment meets the minimum system requirements for the installation process.

The following table lists the system requirements for the installation:

Requirements Value

Red Hat Enterprise Linux version 7

Disk Space 56 GB.
It is the required disk space on VM for image creation.

For more information about product requirements and supported platforms, see the Product Availability Matrix on
Informatica Network:

https://network.informatica.com/community/informatica-network/product-availability-matrices

Step 2. Create a Kubernetes Cluster on Google Cloud Platform
You can use the Google Cloud Platform (GCP) to create a Kubernetes cluster and use Kubernetes as a service with the
Google Kubernetes engine (GKE). GKE allows rapid application deployment and eliminates the need to install, manage,
and operate your own Kubernetes clusters.

1. Log in to the following Google Cloud Platform console with your Google account:

https://console.cloud.google.com/home/dashboard

2. Select a Google Cloud Platform project.

3. On the Navigation Menu of the Google Cloud Platform console, go to Compute Engine > Kubernetes Engine >
Clusters.

4. On the Kubernetes Engine page, click Create Cluster.

5. On the Create a Kubernetes cluster page, enter the cluster details, such as the name of the cluster, location
type of the cluster, zone or region, node pools, cluster version, machine type for the node, and cluster size.

6. Click Create.

10

https://network.informatica.com/community/informatica-network/product-availability-matrices
https://console.cloud.google.com/home/dashboard

Connect to the cluster page appears.

7. In the Connect to the cluster page, you must connect the cluster either by running the kubectl command in
the cloud shell or by authenticating the Google SDK and kubectl on the local machine.

8. On the Navigation Menu of the Google Cloud Platform console, go to Compute Engine > Kubernetes Engine >
Clusters, and select the created cluster and click Connect.

Step 3. Create a Database with a Persistent Volume
You can create a disk for the database creation. If a container goes down, the persisted data would be available on
another database.

1. On the Navigation Menu of the Google Cloud Platform (GCP) console, go to Compute Engine > Disks >
CREATE DISK

Alternatively, you can also create a disk with the Google SDK.

2. To create the database pod with the Microsoft SQL Server 2017 docker image, enter the required details in
the database.yaml file.

The Kubernetes service exposes the required pods for communication.

3. To set up the database server and create a database, complete the steps listed in the db_creation.txt file.

Step 4. Create a Network File System
You can create a Network File System (NFS), which is a common container location for the pods to store logs. You can
also persist the logs in case the container goes down.

To make license key available to all pods and to effectively run the Integration Service on a grid, create the following
entities before exposing the Kubernetes service to communicate among the pods:

• Persisted disk

• Persisted disk claim

11

• NFS server

For details on the entities, see the following link:

https://github.com/kubernetes/examples/tree/master/staging/volumes/nfs

To create the NFS volume, perform the following steps:

1. Update the 1-nfs-server-gce-pv.yaml file in the NFS_Server folder .

2. Update the 2-nfs-server-rc.yaml file in the NFS_Server folder.

3. Update the 3-nfs-server-service.yaml file in the NFS_Server folder.

4. Update the 4-nfs-pv.yaml file in the NFS_Server folder.

5. Update the 5-nfs-pvc.yaml file in the NFS_Server folder.

Step 5. Share the License Key for the Nodes on the NFS Mount

1. To ensure that the nfs-server pod runs, run the kubectl get pods -o command and verify the run state in
the status column.

2. Enter the following kubectl cp command to copy the license key file to the mount location:

kubectl cp <file_name> <nfs-server_pod_name>:/exports/<file_name>
The shared key becomes available for all the nodes with the NFS mount.

Step 6. Create a Docker Image for PowerCenter
You can create a docker image for PowerCenter using the multi stage docker file or the Informatica Docker utility.

1. To create a docker file with the multi stage docker file, use the Dockerfile to create an image. You can
support multi-stage docker builds from docker version 17.05. For more information about the multi stage
build, refer the following Docker documentation:
https://docs.docker.com/develop/develop-images/multistage-build/

2. To create a docker image with the docker utility, you must replace the Dockerfile_template after you unzip the
Informatica docker utility from the Dockerfile_template file. You must update the file in the IDU/source/
build/template path.

The template registers the image to RedHat, updates the base RHEL image, downloads the Microsoft SQL
Server client, installs and later de-registers the image from RedHat. To create an image with the Informatica
Docker Utility, see the Informatica How-To Library article "How to Install Informatica Using a Docker Utility":
How to Install Informatica Using a Docker Utility

3. Upload the image to the private registry where the Kubernetes engine can access it.

Step 7. Create a Secret to Secure the Password and Key Pass
Phrase
You can create a secret to secure the sensitive information, such as OAuth tokens and SSH keys. Instead of storing the
information in a pod definition or in a docker image, you can store the secret securely.

Ensure that you create the following secrets before using it with a pod:

• Domain password. Password for the domain administrator.

• Database password. Password for the database user account.

12

https://github.com/kubernetes/examples/tree/master/staging/volumes/nfs
https://docs.docker.com/develop/develop-images/multistage-build/
https://kb.informatica.com/h2l/HowTo Library/1/1315-InstallInformaticaUsingDockerUtility-H2L.pdf

• Encryption key pass phrase. Keyword to create an encryption key to secure the sensitive data in the domain.

1. Enter the following command in the Kubernetes command prompt:

kubectl create -f infasecret.yaml
2. Encode the passwords to base 64.

For example, enter the following value:

echo -n 'test_pass'|base64
dGVzdF9wYXNz

3. Use the encoded value as the corresponding password to the fields in the infasecret.yaml.

4. To authenticate your private image registry, create a secret and pass it in the YAML file required for
Informatica server pod creation.

For more details about the secure pod creation, refer the following Kubernetes documentation links:

https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod

https://kubernetes.io/docs/concepts/containers/images/#using-a-private-registry

Step 8. Create a Pod that Runs on the Informatica Services
Create a pod that runs on the Informatica services, set the environment variables, and ensure that the pod is available.

Before you create a pod, verify that the database server is running.

1. Configure the new-infaserver.yaml file.

2. Set the following environment variables in the yaml file:

DB_TYPE, DB_SERVICENAME, DB_PORT, DB_UNAME, DB_ADDRESS, DOMAIN_USER, and LICENSE_KEY_LOC.

3. Ensure that the node pods are available from 32005 to 32012. If the ports are unavailable, manually edit the
node ports with a constraint such that both the target ports and the node ports have a 1-to-1 mapping.
Otherwise, you cannot connect using the PowerCenter client.

For example:

- name : p1
protocol: TCP
port: 32005
targetPort: 32005
nodePort: 32005

After verifying that the pod is in a running state, monitor the installation process. You can do this by logging
into the pod and by checking the installation log present in the installation location:

/home/Informatica/10.2.0/
The installation log has the following convention:

Informatica_10.2.0_HotFix_2_Services_<TIME_STAMP>.log
After the installation completes successfully, the installation status shows as "SUCCESS".

Step 9. Expose the Node Ports to Communicate with Informatica
Server from Outside the Cluster
The Kubernetes service exposes certain ports. By default, the pod uses the node ports from 32005 to 32012, so ensure
these ports are available. If unavailable, the node ports have to be edited manually after ensuring that the target port
and node port has a one to one mapping. Otherwise, you cannot connect using the PowerCenter client.

The ports are available in the new-infaserver.yaml file.

13

https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod
https://kubernetes.io/docs/concepts/containers/images/#using-a-private-registry

Step 10. Connect to the Administrator Tool
To connect to the Administrator tool, you need the node IP on which the new-infaserver runs and the nodePort of the
pod.

1. Enter the following command to list the status of all pods:

kubectl get pod new-infaserver -o wide
The output displays the node name on which the infaserver runs.

2. To get the node's IP address, enter the following command:

kubectl get nodes -o wide
The output lists all the available nodes and the corresponding external IP. Note the IP address of the node
that has the new-infaserver pod running.

3. On the Windows machine, add the following entry to the hosts file in the C:\Windows\System32\drivers\etc
\hosts path, and save the file:

<Node_External_IP> <tab or space> <pod_name>
For example:

37.100.167.23 new-infaserver
4. To access the Administrator tool in a browser, enter the pod name followed by the NodePort number.

Use the following format: http://<pod-name>:<NodePort>

For example, http://new-infaserver:32005

Default Administrator tool node port number is 32008.

Step 11. Create a Pod that Runs on Informatica Gateway Node
Ensure that the Informatica master node is up and running.

1. To create a pod that runs the Informatica server, use the new-joingateway.yaml file.

2. Set the following environment variables in the yaml file:

MASTERNODE_HOST_ENTRY, DOMAIN_HOST_NAME, DOMAIN_PORT, DOMAIN_NAME, NODE_NAME, and
DOMAIN_USER.

3. Ensure that the pods are in a running state and an IP is assigned to it.

4. Enter the IP address in the /etc/hosts file in the pod where the master node runs.

5. To enter the IP address of the gateway pod, enter the following command:

kubectl get pods -o wide
6. Locate the IP address of the new gateway pod.

The IP address gets assigned when the container is created.

7. After verifying that the pod is in a running state, monitor the installation process.

You can monitor the installation by logging into the pod and by checking the installation log present in the
installation location:

/home/Informatica/10.2.0/
The installation log has the following convention:

<Informatica_10.2.0_HotFix_2_Services_<TIMESTAMP>.log
After the installation completes successfully, the installation status shows as "SUCCESS."

14

http://<pod-name>:<NodePort>
http://new-infaserver:32005

Step 12. Expose Node Ports for Informatica Services with
Kubernetes Services
By default, Informatica services sets the minimum and maximum of ports that the Informatica services uses to assign
port numbers to any new services created. For example, if the minimum and maximum port range is 30014 to 30114,
then the Informatica services assign ports within the mentioned range.

1. Run the Java program, ExposePort.jar so that the jar file creates the yaml files required to expose the ports
for the services required on the gateway and master nodes.

The default gateway node ports are from 30005 - 30012 and 30014 - 30114. The default master node ports
are from 32005 - 32012 and 32014 - 32114.

For example, enter the following command to expose the gateway node ports for the services required:

java -jar ExposePort.jar 30014 30114
If the specified NodePorts are unavailable, manually enter the NodePorts where the targetPort can
correspond with the NodePort.

For example, enter the following command to expose the master node ports for the services required:

java -jar ExposePort.jar 32014 32114
This creates the MintoMaxNodePortExpose.yaml file with the available ranges to expose.

2. Configure the following property in the MintoMaxNodePortExpose.yaml file on the gateway node:

purpose = infa-gateway
3. To expose the ports by creating the service, enter the following command:

kubectl create -f MinToMaxNodePortExpose

Step 13. Connecting to the Domain from the PowerCenter Clients
Add the nod and pod entries correctly to the C:\Windows\System32\drivers\etc\hosts file on the machine where the
PowerCenter client is installed. If the entries are not correct, you can perform the following steps to set the entry in the
hosts file.

1. Enter the following command to list the status of all the pods:

kubeclt get pod new -infaserver -o wide.
The output displays the node name on which it is running.

2. To get the node's IP address, enter the following command:

kubectl get nodes -o wide
The output lists all the available nodes and the external IP address.

3. Get the IP address of the node that has the new infaserver pod running.

4. On a Windows machine, add the following entry to the C:\Windows\System32\drivers\etc\hosts file:
<Node_External_IP> <tab or space> <pod_name>.
For example, 37.100.167.23 new-infaserver.

5. Save the file after adding all the entries.

To connect to the domain from the PowerCenter clients, perform the following steps:

1. Launch the PowerCenter client tool.

2. Select the Repositories node in the Navigator.

3. Click Repositories > Configure Domains to open the Configure Domains dialog box.

15

4. Click the Add button and in the Add Domain dialog box, enter the required domain name, gateway host name,
and gateway port number.

5. Click OK to add the domain connection.

6. After you add a domain connection, you can add repositories to the Navigator by selecting them in the list of
associated repositories to add to the navigator, and click OK.

7. Select the repository in the navigator and click Repository > Connect.

You can enter the required details, such as username and password, along with security domain.

8. Click OK, and then click Connect.

Troubleshooting

Unable to access Administrator tool or failed to connect the PowerCenter client to the domain

The firewall of the nodes of the cluster must allow the ports created to communicate outside the cluster. It must also
accept connections from the outside the cluster.

By default, the firewall setting might be restricted. Edit the firewall settings to allow the Administrator tool to be
accessible outside the cluster and also to enable the PowerCenter client to communicate with the Informatica domain
and services.

Gateway node fails to join to the master node

This issue occurs when the installer runs the ping gateway command before the entry of the gateway pod appears in
the /etc/hosts file of the master node.

You can start the node after the host entry of the gateway pod is added to the /etc/hosts file of the pod that runs the
master node.

To get the IP address of the gateway pod, run the following command:

kubectl get pods -o wide

Locate the IP address of the new gateway pod. The IP gets assigned once the container has been created.

Authors
Sujitha Alexander

Debjyoti Thakur

Ankur Vijayvargiya

16

	Abstract
	Supported Versions
	Table of Contents
	How PowerCenter Works with Kubernetes
	Kubernetes Architecture
	Kubernetes Overview
	Kubernetes Master Node
	Kubernetes Worker Node
	Components in the Kubernetes Architecture
	Advanced Components in the Kubernetes Architecture

	Configuring PowerCenter on Kubernetes Overview
	Step 1. Complete the Prerequisites
	Verify Port Requirements
	Verify System Requirements

	Step 2. Create a Kubernetes Cluster on Google Cloud Platform
	Step 3. Create a Database with a Persistent Volume
	Step 4. Create a Network File System
	Step 5. Share the License Key for the Nodes on the NFS Mount
	Step 6. Create a Docker Image for PowerCenter
	Step 7. Create a Secret to Secure the Password and Key Pass Phrase
	Step 8. Create a Pod that Runs on the Informatica Services
	Step 9. Expose the Node Ports to Communicate with Informatica Server from Outside the Cluster
	Step 10. Connect to the Administrator Tool
	Step 11. Create a Pod that Runs on Informatica Gateway Node
	Step 12. Expose Node Ports for Informatica Services with Kubernetes Services
	Step 13. Connecting to the Domain from the PowerCenter Clients
	Troubleshooting
	Authors

