
Informatica® PowerExchange for MongoDB
10.2 HotFix 2

User Guide 



Informatica PowerExchange for MongoDB User Guide
10.2 HotFix 2
April 2019

© Copyright Informatica LLC 2013, 2019

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be 
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

Informatica, the Informatica logo, and PowerExchange are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions 
throughout the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product 
names may be trade names or trademarks of their respective owners.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial 
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, 
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the 
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at 
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE 
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF 
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2019-06-12



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
Informatica Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Informatica Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Informatica Knowledge Base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Informatica Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

Informatica Product Availability Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Informatica Velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Informatica Marketplace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Informatica Global Customer Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Chapter 1: Introduction to PowerExchange for MongoDB. . . . . . . . . . . . . . . . . . . . . .  7
PowerExchange for MongoDB Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Introduction to MongoDB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

PowerExchange for MongoDB Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

Chapter 2: PowerExchange for MongoDB Configuration. . . . . . . . . . . . . . . . . . . . . .  11
PowerExchange for MongoDB Configuration Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

Prerequisites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

PowerExchange for MongoDB Upgrade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Informatica MongoDB ODBC Driver Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12

Configuring the Informatica MongoDB ODBC Driver on Linux. . . . . . . . . . . . . . . . . . . . . . .  12

Data Source Name Configuration on Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

MongoDB ODBC Connection Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Advanced Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

Chapter 3: Schema Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Schema Definition Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

Schema Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Collection Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

Column Metadata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

Virtual Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

Virtual Table Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

Virtual Tables - An Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

Metadata Caching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

Defining the Schema for a Collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

Updating the Schema File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

Chapter 4: MongoDB Read Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
MongoDB Read Operations Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Example: Data Migration to MongoDB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

Table of Contents        3



Chapter 5: MongoDB Write Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
MongoDB Write Operations Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

MongoDB as an Operation Data Store – An Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

Appendix A: Datatype Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
MongoDB, ODBC, and Transformation Datatypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

4        Table of Contents



Preface
The Informatica PowerExchange® for MongoDB User Guide describes how to use PowerExchange for 
MongoDB with Informatica Data Services to extract data from and load data to MongoDB. The guide is 
written for database administrators and developers who are responsible for developing mappings and 
workflows. This guide assumes that you have knowledge of MongoDB and Informatica.

Informatica Resources
Informatica provides you with a range of product resources through the Informatica Network and other online 
portals. Use the resources to get the most from your Informatica products and solutions and to learn from 
other Informatica users and subject matter experts.

Informatica Network
The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and 
Informatica Global Customer Support. To enter the Informatica Network, visit 
https://network.informatica.com.

As an Informatica Network member, you have the following options:

• Search the Knowledge Base for product resources.

• View product availability information.

• Create and review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video 
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or 
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at 
KB_Feedback@informatica.com.

Informatica Documentation
Use the Informatica Documentation Portal to explore an extensive library of documentation for current and 
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

5

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://docs.informatica.com


Informatica maintains documentation for many products on the Informatica Knowledge Base in addition to 
the Documentation Portal. If you cannot find documentation for your product or product version on the 
Documentation Portal, search the Knowledge Base at https://search.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica 
Documentation team at infa_documentation@informatica.com.

Informatica Product Availability Matrices
Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of 
data sources and targets that a product release supports. You can browse the Informatica PAMs at 
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services 
and based on real-world experiences from hundreds of data management projects. Informatica Velocity 
represents the collective knowledge of Informatica consultants who work with organizations around the 
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions, 
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at 
ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that extend and enhance your 
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and 
partners on the Marketplace to improve your productivity and speed up time to implementation on your 
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at 
the following link: 
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and 
select the eSupport option.

6        Preface

https://search.informatica.com
mailto:infa_documentation@informatica.com
https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com


C h a p t e r  1

Introduction to PowerExchange 
for MongoDB

This chapter includes the following topics:

• PowerExchange for MongoDB Overview, 7

• Introduction to MongoDB, 8

• PowerExchange for MongoDB Implementation, 8

PowerExchange for MongoDB Overview
PowerExchange for MongoDB provides connectivity between Informatica and MongoDB. Use PowerExchange 
for MongoDB to extract and load MongoDB documents through the Data Integration Service.

You can use PowerExchange for MongoDB to integrate and migrate data from diverse data sources that are 
incompatible with MongoDB architecture.

You can use PowerExchange for MongoDB for the following data integration scenarios:

• Create a MongoDB data warehouse. You can aggregate data from MongoDB and other source systems, 
transform the data, and write the data to MongoDB.

• Migrate data from a relational database or other data sources to MongoDB. For example, you want to 
migrate data from a relational database to MongoDB. You can write data from multiple relational 
database tables with different schemas to the same MongoDB collection. A MongoDB collection contains 
the data in a MongoDB database.

• Move data between operational data stores to synchronize data. For example, an online marketplace uses 
a relational database as the operational data store. You want to use MongoDB instead of the relational 
database. However, you want to maintain the relational database along with MongoDB for a period of 
time. You can use PowerExchange for MongoDB to synchronize data between the relational data store 
and the MongoDB data store.

• Migrate data from MongoDB to a data warehouse for reporting. For example, your organization uses a 
business intelligence tool that does not support MongoDB. You must migrate the data from MongoDB to a 
data warehouse so that the business intelligence tool can use the data to generate reports.

7



Introduction to MongoDB
MongoDB is an open source, document based, NoSQL database that maintains dynamic schema. You can 
maintain more than one database on a MongoDB server.

A MongoDB database contains a set of collections. A collection is a set of documents and is similar to a 
table in a relational database. MongoDB stores records as documents that are similar to rows in a relational 
database. A document contains fields that are similar to columns in a relational database. A document can 
have a dynamic schema. A document in a collection does not need to have the same set of fields or structure 
as another document in the same collection. A document can also contain nested documents.

The following schema provides a sample MongoDB document from the collection called Product:

{
  sku: "111445GB3",
  title: "CM Phone",
  description: "The best in the world.",

  manufacture_details: {
    model_number: "CMP",
    release_date: new ISODate("2011-07-17T22:14:15.656Z")
  },

  shipping_details: {
    weight: 350,
    width: 10,
    height: 10,
    depth: 1
  },

  quantity: 99,

  pricing: [
    {region: "North America",
                    cost_price: 1000,
                 sale_price:    1200},
                {region: "Europe",
                    cost_price: 1200,
                 sale_price:    1500}
        ]

}
In the example, sku, title, description, quantity, manufacture_details, shipping_details, and pricing are fields. 
The fields manufacture_details and shipping_details are nested document type fields and pricing is an array 
type field.

PowerExchange for MongoDB Implementation
To extract and load MongoDB data, create a MongoDB data object in the Developer tool. You can include the 
data object as a source or target in a mapping. You can run the mapping or add the mapping to a workflow to 
process the data.

PowerExchange for MongoDB includes the Informatica MongoDB ODBC driver that connects to the MongoDB 
server. PowerExchange for MongoDB supports the MMAPv1 storage engine in MongoDB. You can create an 
ODBC connection to extract data from or load data to a MongoDB database. You can also configure the 
replica sets for the MongoDB server so that the Data Integration Service can access the secondary servers if 
the primary server is not available.

8       Chapter 1: Introduction to PowerExchange for MongoDB



The Developer tool uses the schema of a collection, or you can define the schema for the collection before 
you import a data object. The Developer tool flattens the schema if there is any hierarchical element in the 
collection and retains the original schema of the collection when you import it.

The Developer tool imports a document based on the schema that you set for the collection. If a document 
contains hierarchical elements like arrays or nested documents, the Developer tool imports them as columns 
at the same level as other columns.

For example, you need to import the collection product_details with the following schema:

{
  sku: "sku_name",
  title: "product_name",
  description: "description",

  manufacture_details: {
    model_number: "model_number",
    release_date: new ISODate("date")
  },

  shipping_details: {
    weight: <value>,
    width: <value>,
    height: <value>,
    depth: <value>
  },

  quantity: <value>,

  pricing: [
    {region: "North America",
                    cost_price: 1000,
                 sale_price:    1200},
                {region: "Europe",
                    cost_price: 1200,
                 sale_price:    1500}
        ]
}

The Developer tool imports the collection schema into a tabular format. You can identify arrays and nested 
documents with the naming convention of the column. The naming convention of a nested document is <top 
level element name>.<nested document name>.<nested document element name>. The naming convention 
of an array is <array name>.<element number>.

If a column name in a document or a key name in an array element exceed 128 characters, the Developer tool 
truncates the column name or key name to 128 characters. When multiple column names exceed 128 
characters each, multiple columns are truncated. As a result, duplicate column might be created, and data 
preview failure might occur. To prevent failure of data preview, ensure that duplicate column names do not 
occur.

PowerExchange for MongoDB Implementation       9



The following figure shows the source definition when you import the collection into the Informatica 
Developer and the delimiter is a period (.):

When you run a mapping, the Data Integration Service uses the MongoDB ODBC data source name in the 
machine that runs the Data Integration Service to extract data from or load data to a MongoDB database.

10       Chapter 1: Introduction to PowerExchange for MongoDB



C h a p t e r  2

PowerExchange for MongoDB 
Configuration

This chapter includes the following topics:

• PowerExchange for MongoDB Configuration Overview , 11

• Prerequisites, 11

• Informatica MongoDB ODBC Driver Configuration, 12

• Data Source Name Configuration on Windows, 13

PowerExchange for MongoDB Configuration 
Overview

You can use PowerExchange for MongoDB on Windows or Linux. You must configure PowerExchange for 
MongoDB before you can extract data from or load data to MongoDB database.

Prerequisites
You must complete the prerequisites before you can use PowerExchange for MongoDB.

Complete the following prerequisites:

• Install or upgrade Informatica.

• Ensure that you have the PowerExchange for MongoDB license file. You do not require a separate ODBC 
license to use PowerExchange for MongoDB.

• On Windows, download and install the Microsoft Visual C++ 2010 Redistributable Package in server and 
client machines from the Microsoft website. For example, download the vc_redist_x86.exe file.

For more information about product requirements and supported platforms, see the Product Availability 
Matrix on Informatica Network: 
https://network.informatica.com/community/informatica-network/product-availability-matrices

11

https://network.informatica.com/community/informatica-network/product-availability-matrices


PowerExchange for MongoDB Upgrade
Before you upgrade to Informatica 10.2 HF2, back up the odbc.ini file.

After you upgrade to Informatica 10.2 HF2, perform the following steps:

• For the Simba MongoDB ODBC 64-bit driver running on a Linux or SUSE machine, replace the odbc.ini file 
with the backup copy of the odbc.ini file, and verify if the MongoDB driver name in the odbc.ini file is 
libinformaticamongodbodbc64.so.

• To use the Schema Editor for the Simba MongoDB ODBC driver, running on a Windows machine, apply the 
Informatica EBF-13871.
For more information about applying the EBF-13871, contact Informatica Global Customer Service.

Informatica MongoDB ODBC Driver Configuration
The Informatica MongoDB ODBC driver is installed on the machines where you install Informatica services 
and clients. Configure the Informatica MongoDB ODBC driver on those machines.

The Developer tool uses the Informatica MongoDB ODBC driver to import MongoDB collections as source or 
target definitions. The Data Integration Service uses the driver to extract data from or load data to the 
MongoDB database. Create ODBC data source names to connect to the MongoDB database.

Configuring the Informatica MongoDB ODBC Driver on Linux
You must configure the Informatica MongoDB ODBC driver with details of the MongoDB database and ODBC 
driver manager before you can run MongoDB mappings.

Edit the odbc.ini file to configure the driver in the following location: <INFA_HOME>/tools/mongodb/Setup

1. Enter the correct ODBCInstLib for the ODBC Driver Manager in all the .ini files. 

2. Replace <INSTALL_DIR> with the path to the Informatica services installation directory in all the .ini files. 

3. Add the following information to the LD_LIBRARY_PATH environment variable: 

• <INFA_HOME>/tools/mongodb/lib

• 64-bit library directory of the ODBC Driver Manager

4. Add the path of the odbc.ini file to the ODBCINI environment variable. 

5. Add entries for all the MongoDB data sources in the odbc.ini file. 

The following section shows a sample entry in the odbc.ini file:

[Sample Informatica MongoDB DSN]
Description=Informatica MongoDB ODBC Driver DSN
Driver=]<INFA_HOME>/tools/mongodbodbc/lib/libinformaticamongodbodbc64.so
Host=[Host]
Port=[Port]
Database=[Database]
ReadPreference=primary
ReplicaSetName=""
SecondaryServers=""
UseReplicaSet=0
VirtualTableDetection=0
VTAnyMatchColumnsDetection=0
VTAnyMatchString=ANY
VTAnyMatchTableNameSuffix=any
VTArrayCountPrefix=Number of

12       Chapter 2: PowerExchange for MongoDB Configuration



VTHideRealTables=0
VTIndexColSuffix=index
VTInsertUpdateSafeMode=0
VTKeyColumnSeparator=.
VTMainTableNameSeparator=main
VTMainTableShowArrayCounts=0
VTTableNameSeparator=_vt_
DefaultBinaryColumnLength=32767
DefaultContainerColumnLength=511
DefaultJSONColumnLength=1023
DefaultStringColumnLength=255
CheckGetLastError=1
OmitColumns=1
TruncateDocument=0
UpdateMultipleRows=1
NestedColumnSeparator=__
SchemaDetectRealColumnsMax=10000
SchemaDetectSampleSize=100
SchemaDetectSampleStrategy=End
SchemaDetectShowContainerColumns=0
ArrayColumnMax=5
AuthenticationDatabase=
CacheMetadata=1
ExportMetadataToFile=
ExportSchemaMapTo=
ExtendedJSON=0
ImportSchemaMapFrom=
LocalMetadataFile=
ResetFileFromMetadata=
RowsFetchedPerBlock=4096
UpsertOnUpdate=0
UseJsonColumn=0

Data Source Name Configuration on Windows
Configure the connection properties, advanced properties, and schema when you configure a data source 
name.

You must create a data source name in the ODBC datasource administrator to extract data from and load 
data to a MongoDB database. The connection properties provide information for the MongoDB server and the 
database. The advanced properties are read and write operations. You can also define a schema after you 
create a database.

You can find the ODBC datasource administrator in the Control Panel on Windows. Configure the ODBC data 
source name in the 64-bit ODBC datasource administrator in the client and the machines where you install 
the Informatica services. You can access the 64-bit ODBC datasource administrator, odbcad32.exe, in 64-bit 
Windows from the following location: C:\Windows\System32

Data Source Name Configuration on Windows       13



MongoDB ODBC Connection Properties
You must configure a MongoDB ODBC data source before you can import MongoDB data sources.

The following table describes the MongoDB ODBC connection properties:

Property Description

Data Source Name Name of the data source name.

Description Description to identify a data source name.

Host Host name of the MongoDB server.

Port Port from which you can access MongoDB.

Database MongoDB database in the server that you want to access.

Username Optional. MongoDB user name.

Replica Set Name Optional. Name of the replica set of the database.

Additional Servers Optional. Host names of the secondary MongoDB servers.

Advanced Properties
Configure the advanced properties when you create a data source name.

The following table describes the advanced properties in the Informatica MongoDB ODBC driver:

Property Description

Documents fetched per 
block

The maximum number of documents that the Data Integration Service reads for every 
call to the MongoDB database.
Default is 4096.

Nested column separator Separator character for arrays and nested documents. The nested column separator 
must be consistent across connections used in a mapping. For example, if one 
connection uses the period (.) as the nested column separator and another connection 
in the same mapping uses the underscore (_) as the separator, then the mapping fails.
You can use either the underscore (_) or the period (.) as the nested column separator. 
Default is period (.).

Maximum number of 
columns to flatten

The maximum number of array elements that the ODBC driver flattens into multiple 
nested columns.
Default is 5.

14       Chapter 2: PowerExchange for MongoDB Configuration



Property Description

Read preference Server that you prefer to read data from if you configure replica sets. You can select one 
of the following server options:
- Primary. The Data Integration Service reads data from the primary server. If the 

primary server is offline, the session fails.
- Primary Preferred. The Data Integration Service reads data from the primary server if 

the primary server is available. If the primary server is offline, the Data Integration 
Service reads data from the secondary server.

- Secondary. The Data Integration Service reads data from the secondary server. If the 
secondary server is offline, the session fails.

- Secondary Preferred. The Data Integration Service reads data from the secondary 
server if the secondary server is available. If the secondary server is offline, the Data 
Integration Service reads data from the primary server.

- Nearest. The Data Integration Service reads data from the nearest available server.
Default is primary.

Sampling strategy Number of rows to scan in the schema definition. You can select one of the following 
sampling strategies:
- Start. Scans the specified number of rows from the start.
- End. Scans the specified number of rows from the end.
- Random. Scans the specified number of rows in random order.
Default is End.

Documents to sample (0 to 
sample all documents)

Number of documents to scan.
Default is 100.

String Columns Lengths The string column length to use for the fields. You can select one of the following string 
column lengths:
- Standard. The string column length to use for the standard fields. Default is 255.
- Container. The string column length to use for the container fields. Default is 511.
- DocumentAsJSON. The string column length to use for the documentAsJSON fields. 

Default is 1023.

Use SQL_WVVARCHAR for 
String datatype

The Data Integration Service maps the String datatype to SQL_WVARCHAR ODBC instead 
of SQL_VARCHAR.
Default is disabled.

Enable reading/writing as 
JSON document.

Read or write data as a JSON document. If enabled, the driver reports a special column 
named documentAsJSON that retrieves or stores whole documents as JSON formatted 
strings.
Default is disabled.
Note: For a MongoDB connection, if you toggle between enabling and disabling this 
option, the metadata cache might lose its integrity. Instead of changing the Enable 
reading/writing as JSON document property for a MongoDB connection, create separate 
connections with this property.

Show container columns 
when generating metadata

Show the container columns when the Integration Service generates the metadata.
Default is disabled.

Enable SSL Not Applicable.

Check GetLastError on 
writes

Calls the MongoDB CheckGetLastError() function to check for failures after a write 
operation.
Default is enabled.

Data Source Name Configuration on Windows       15



Property Description

Enable Updating Multiple 
Rows

The Informatica MongoDB ODBC driver updates multiple rows for each Data Integration 
Service write call.
If enabled, the driver updates all rows that match the filter condition. If disabled, the 
driver updates only the first row that matches the filter condition.
Default is disabled.

Omit default NULL column 
on insert

The Data Integration Service does not write columns with NULL value to a MongoDB 
target.
Default is enabled.

Truncate documents larger 
than 16 MB

Truncate the document size to 16 MB when you load data to MongoDB.
Default is disabled.

Active Metadata Location Read metadata changes from the MongoDB database or from a local file. Required if 
you choose to store the metadata in a local file.
Default is database.

16       Chapter 2: PowerExchange for MongoDB Configuration



C h a p t e r  3

Schema Definition
This chapter includes the following topics:

• Schema Definition Overview, 17

• Schema Editor, 17

• Virtual Tables, 19

• Metadata Caching, 22

• Defining the Schema for a Collection, 23

Schema Definition Overview
You can define the schema for a MongoDB collection that you want to import as a data object in the 
Developer tool. You can define the schema for multiple collections with the same ODBC data source name.

A collection in MongoDB might contain several fields that you do not want to import. When you define the 
schema you can limit metadata that you import. The driver dynamically detects the collection schema of a 
MongoDB database. It flattens the MongoDB schema and displays the keys in the a tabular format with each 
key as a column in the Schema Editor.

You can export the collection to an external schema definition file and edit the schema definition in the 
Schema Editor. After you modify the collection properties and column metadata, you can save the 
modifications in the schema definition file. The driver does not modify the schema of the actual MongoDB 
collection. You can choose to store the modifications in the MongoDB database or as a file.

If you enable virtual table detection in the Informatica MongoDB ODBC driver, the driver creates virtual tables 
in the schema if the collection contains arrays. You can import the virtual table as a data object in the 
Developer tool.

Schema Editor
Use the Schema Editor to view or edit the MongoDB collection schema that you want to import.

You can access the Schema Editor from the ODBC Data Source Administrator when you configure the 
Informatica MongoDB ODBC Driver DSN. You can also find the Schema Editor in the following location: 
$INFA_HOME/clients/tools/mongodb/Tools

When you define a schema in the Informatica MongoDB ODBC driver DSN, you must specify a schema 
definition file. You can use an existing schema definition file or create a new one. After you specify a schema 

17



definition file, you can import the collections in the database to the schema definition file. You can import all 
the collections in the database or a particular collection. You can use a JSON filter to filter records on a 
collection. You can also export those collections that are missing in the schema definition file.

When you open the Schema Editor, all the databases and collections in the schema definition file appear. 
When you select a collection, the collection properties and document properties appear on the right pane. 
You can modify the properties and save the schema. You can also save the schema changes to a new 
schema definition file.

Collection Properties
Before you import a collection, you can view or edit the properties associated with the collection in the 
Schema Editor.

You can view or edit the following collection properties in the Schema Editor:

ODBC Table Name

The name of the collection to use for the schema. Default is the same as source table name. You can 
modify this value to match the name that you require when you import the ODBC data source in the 
Developer tool.

ODBC Catalog Name

The name of the catalog that to use for the schema. Default is the same as source catalog name. You 
can modify this value to match the name that you require when you import the ODBC data source in the 
Developer tool.

Source Table Name

The name of the collection in the source database. You cannot modify this value.

Source Catalog Name

The name of the source database. You cannot modify this value.

Virtual Type

Indicates whether the collection is a virtual collection or not. Reserved for future use.

Permissions

The permissions assigned to you. Reserved for future use.

Column Metadata
When you select a collection in the Schema Editor, you can view or modify the column metadata of the 
collection.

The following fields are available in the column metadata:
ODBC Column Name

The name of the column that you want to use in the database schema. Default is the source column 
name. You can modify this value to match the name that you require when you import the ODBC data 
source in the Developer tool.

SQL Type

The ODBC data type of the column. The Data Integration Service uses the SQL type when you run the 
session that uses the ODBC data source. You can modify the datatype based on your requirement.

Source Column Name

The name of the column in the source database. You cannot modify this value.

18       Chapter 3: Schema Definition



Source Type

The data type of the column in the source database. The Data Integration Service uses the SQL type 
when you run the session that uses the ODBC data source. You can modify the datatype based on your 
requirement.

Hide Column

You can choose to hide the column so that it does not appear in the schema.

Behavior

The behavior field shows whether the column is scalar or a container. Scalar columns contain a single 
value like an integer or a string. Container columns have multiple values. Arrays and documents are 
examples of container columns.

Note: Container columns do not support transformations.

Key Type

The key type field shows whether the column is a key column.

The following values are possible for the key type:

• Primary key

• Foriegn key

• Not a key

You cannot modify the key type of a column.

ODBC Type Hint

The ODBC type hit field shows the possible ODBC datatype of the column. You can choose the SQL type 
of a column based on the hint.

Source Nesting Level

The source nesting level field displays the level at which the column is nested in the document 
metadata. You can use the MongoDB ODBC driver to read up to five levels of nested columns and write 
up to three levels of nested columns.

Alternate Source Type

The alternate source type field displays the alternate data type of the column in the source database.

Virtual Tables
You can configure the Informatica MongoDB ODBC driver to create virtual tables in the schema if the 
collection contains arrays.

Virtual tables depict the normalized view of a MongoDB collection. You can import virtual tables as an ODBC 
data object and create mappings.

To configure virtual table creation, open the Informatica MongoDB ODBC Driver DSN. In the Schema 
Definition dialog box, click Virtual Table Options.

If you enable virtual table creation, the driver creates the following virtual tables:
Main virtual table

The main virtual table contains all the data from the original MongoDB collection except the data in the 
arrays. The driver replaces the cells that contain arrays with the number of arrays in the cell.

Virtual Tables       19



The main virtual table use the following naming convention by default: <original collection 
name>_vt_main
The columns that contain arrays use the following naming convention by default: Number of <original 
column name>

Virtual table for array columns

The driver creates a virtual table for each column that contain arrays.

The virtual table for an array column uses the following naming convention by default:<original 
collection name>_vt_<original column name>
Each virtual table has a key column that references back to the primary key column in the original 
collection. The key column uses the following naming convention by default: <original collection 
name>.<primary key column name>.
The virtual table has an index column that shows the position of the data within the original array. The 
index column uses the following naming convention by default: <original column name>.index
Other columns in the virtual table represent the elements in the array and are named after the array 
element. If the array is of scalar type, the data column uses the following naming convention by 
default:<original column name>.value

Note: You cannot use a DD_DELETE strategy in an Update Strategy transformation to delete rows from a 
virtual table. You also cannot use the MongoDB ODBC driver to add an array element to an existing array 
index because of a limitation from the C API used by the MongoDB driver.

Virtual Table Options
Configure the virtual table options to create virtual tables for a collection that contains arrays.

The following table describes the virtual table options in the Informatica MongoDB ODBC driver:

Property Description

Enable Virtual Table 
Detection

The driver creates virtual tables if the collection contains arrays.
Default is disabled.

Virtual Main Table Suffix The suffix for the main virtual table.
Default is main.

Virtual Key Column 
Separator

The separator for the key columns in a virtual table. The virtual key column separator 
must be consistent across connections used in a mapping. For example, if one 
connection uses the period (.) as the virtual key column separator and another 
connection in the same mapping uses the underscore (_) as the separator, then the 
mapping fails.
You can use either the underscore (_) or the period (.) as the virtual key column 
separator. Default is period (.).

Virtual Table Name 
Separator

The separator in the virtual table name.
Default is _vt_.
Note: If tables in the MongoDB database and virtual tables have the same names, 
metadata import might be corrupted. To avoid importing corrupted metadata, do not use 
table names that contain the virtual table separator in the MongoDB database.

Virtual Table Index 
Column Suffix

The suffix for the virtual table index column.
Default is index.

20       Chapter 3: Schema Definition



Property Description

Hide Real Table if Virtual 
Tables Created

Hide the real tables if the corresponding virtual tables are created.
Default is disabled.

Show Array Counts In 
Virtual Main Table

The virtual tables contain columns that show the array count.
Default is disabled.

Virtual Table Array Count 
Prefix

The prefix for the virtual table array count column.
Default is Number of.

Enable Any Match 
Columns Detection

The driver filters the data and selects rows where a value in a top-level array matches a 
specified expression and then returns the results as columns in a virtual table.

Any Match Table Name 
Prefix

The prefix for naming the array column in an any match virtual table.

Any Match Column 
Separator

The separator for naming the columns in an any match virtual table.

Virtual Tables - An Example
The collection CustomerTable contains arrays. You want to create virtual tables from the arrays and import 
the virtual tables as data objects in the Developer tool.

The following table shows the schema of CustomerTable collection:

id Customer 
Name

Invoices Service 
Level

Contacts Ratings

1111 John [{invoice_id=123,item=toaster, 
price=456,discount=0.2},
{invoice_id=124,item=oven, 
price=12345, discount=0.3}]

Silver [{type=primary,name="John 
Johnson"},
{type=invoicing,name="Jane 
Johnson"}]

[7,8]

2222 Jane [{invoice_id=125,item=blender, 
price=7456,discount=0.5},

Gold [{type=primary,name="Jane 
Johnson"}

[5,6]

If you enable virtual table detection, the driver creates the following virtual tables:
CustomerTable_vt_main

The following table shows the schema of CustomerTable_vt_main virtual table:

id Customer Name Number of 
Invoices

Service Level Number of 
Contacts

Number of Ratings

1111 John 2 Silver 2 2

2222 Jane 1 Gold 1 2

Virtual Tables       21



CustomerTable_vt_Invoices

The following table shows the schema of CustomerTable_vt_Invoices virtual table:

CustomerTable.id Invoices_index invoice_id item price discount

1111 1 123 toaster 456 0.2

1111 2 124 oven 12345 0.3

2222 1 125 blender 7456 0.5

CustomerTable_vt_Contacts

The following table shows the schema of CustomerTable_vt_Contacts virtual table:

CustomerTable.id Contacts_index type name

1111 1 primary John Johnson

1111 2 invoicing Jane Johnson

2222 1 primary Jane Johnson

CustomerTable_vt_Ratings

The following table shows the schema of CustomerTable_vt_Ratings virtual table:

CustomerTable.id Ratings_index Ratings_value

1111 1 7

1111 2 8

2222 1 5

2222 2 6

Metadata Caching
The Informatica MongoDB ODBC driver caches the schema in the MongoDB database or a flat file. After you 
define a schema for the collection, you can store the modifications in the MongoDB database or a file so that 
the Developer tool uses the modifications each time you import a definition.

You must modify the schema definition if there are updates to the documents that require a change in the 
definitions that you created in the Developer tool.

If you store the schema modification in a file, ensure that the file is available in the location that you 
configure in the ODBC data source name when you import a data object. If you store the schema 
modification in the MongoDB database, PowerExchange for MongoDB stores the schema modification in a 
collection called Mersenne_Collection_Metadata. If you edit Mersenne_Collection_Metadata, you may lose 
the schema modifications.

22       Chapter 3: Schema Definition



Note: If you clear the metadata cache, you must re-create or re-import the source and target objects with the 
same metadata that the existing mapping objects use.

Defining the Schema for a Collection
You can modify and define the schema for a collection that you want to import as data object in the 
Developer tool.

1. Open the ODBC Data Source Administrator. 

2. Select the Informatica MongoDB ODBC Driver DSN. 

3. Click Configure. 

4. Click Schema Definition. 

The Schema Definition dialog box appears.

5. Click Browse and select a schema definition file. 

You can also enter a file name in the file selection dialog box to create and use a new schema definition 
file.

6. Choose one of the following collection export options to the schema definition file: 

• Export all the collections in the MongoDB database.

• Export the tables that are missing from the schema definition file and available in the MongoDB 
database.

• Select a particular collection in the MongoDB database. Optionally, you can enter a JSON filter 
statement to filter records.

7. Click Launch Schema Editor. 

The Schema Editor application appears.

8. Select a collection and define the schema in the Schema Editor according to the requirement. 

9. Close the schema editor after you save the changes. 

You can also save the schema changes to a different schema definition file.

10. Select whether to store the metadata in the MongoDB database or in a local file. 

11. Click Import File to store metadata definition from the schema definition file. 

If you read the metadata from a file instead of the MongoDB database, place the schema definition file in 
the same folder as the metadata file.

Updating the Schema File
You can update the schema file to reflect metadata changes in the MongoDB database or make changes in 
the imported metadata.

1. Open the schema definition by using the Informatica MongoDB ODBC Driver DSN. 

2. Click Browse and select a schema definition file. 

You can also enter a file name in the file selection dialog box to create and use a new schema definition 
file.

Defining the Schema for a Collection       23



3. Export the metadata to the SSD file. 

a. To export the metadata imported by using the MongoDB ODBC driver, click Export Existing. 

b. To export metadata sampled from the MongoDB database, click Generate All. 

c. To export any missing tables and add metadata, click Generate Missing. 

4. From the Database source table list, select the table to be updated. 

5. Click Generate Table to update the schema of the table from the database. 

6. Click Edit Schema File to open the schema file that you exported. 

7. In the Schema Editor, make the required modifications in the schema file to reflect the metadata 
changes. 

Note: When you update metadata, press Enter and then click Save to ensure that the changes to the 
metadata are saved.

8. Save the schema file and close the Schema Editor dialog box. 

9. In the Schema Definition dialog box, click Update Metadata to replace the metadata with the metadata 
from the SSD file. 

24       Chapter 3: Schema Definition



C h a p t e r  4

MongoDB Read Operations
This chapter includes the following topics:

• MongoDB Read Operations Overview, 25

• Example: Data Migration to MongoDB, 26

MongoDB Read Operations Overview
You can import a MongoDB collection as an ODBC data object in the Developer tool and use it as a source in 
a mapping.

When you run a MongoDB mapping, the Data Integration Service uses the Informatica MongoDB ODBC data 
source to extract data from MongoDB.

You can configure the optimization levels at the following locations:

• Mapping runtime configuration in the Developer tool

• Data viewer runtime configuration in the Developer tool

• Mapping deployment in application settings in the Developer tool

• Mapping configuration of an application in the Data Integration Service through the Administrator tool

You can configure advanced reader properties for the Informatica MongoDB ODBC Driver in the ODBC driver 
properties.

You can configure the following read options in the ODBC driver properties:
Read Preference

MongoDB server that you prefer to read data from if you configure replica sets.

You can select one of the following MongoDB server options:

• Primary. The Data Integration Service reads data from the primary MongoDB server. If the primary 
MongoDB server is offline, the session fails.

• Primary Preferred. The Data Integration Service reads data from the primary MongoDB server if the 
primary MongoDB server is available. If the primary MongoDB server is offline, the Data Integration 
Service reads data from the secondary MongoDB server.

• Secondary. The Data Integration Service reads data from the secondary MongoDB server. If the 
secondary MongoDB server is offline, the session fails.

25



• Secondary Preferred. The Data Integration Service reads data from the secondary MongoDB server if 
the secondary MongoDB server is available. If the secondary MongoDB server is offline, the Data 
Integration Service reads data from the primary MongoDB server.

• Nearest. The Data Integration Service reads data from the nearest available MongoDB server.

Enable Reading/Writing as JSON

Reads MongoDB datasource as a JSON document. If you select the option, a column with 
documentAsJSON appears in the collection when you read data from MongoDB from which you can read 
data as JSON.

Documents fetched per block

The maximum number of documents fetched from the MongoDB server for every read request. If more 
documents are available for a query, the Data Integration Service makes further read requests to the 
MongoDB server. Default is 4096.

Example: Data Migration to MongoDB
A media store uses flat files with comma-separated values to store details of the store inventory with a 
unique flat file for each type of media. The file FF_Music_Collection stores the details of audio CDs and 
FF_Movie_Collection stores the details of movie DVDs and Blu-ray disks.

You want to use a MongoDB database to store all inventory details. Create a mapping to extract data from 
FF_Music_Collection and FF_Movie_Collection and load it to the MongoDB collection MDB_Inventory.

Create a mapping with two flat file source definitions to read the records from the flat files. Include the 
MongoDB target definition to write data from the flat files. Use a Join transformation to join the columns 
before writing to the corresponding MongoDB columns.

The following figure shows the mapping:

26       Chapter 4: MongoDB Read Operations



FF_Music_Data Source

The following table describes the contents of FF_Music_Collection:

Field Datatype

Name String

Artist String

Units Integer

Cost Price Integer

Sale Price Integer

FF_Movies_Data Source

The following table describes the contents of FF_Movies_Collection:

Field Datatype

Name String

Director String

Artist1 String

Artist2 String

Type String

Units Integer

Cost Price Integer

Sale Price Integer

MDB_Inventory Target

The collection MDB_Inventory stores audio CD information and movies disks information.

The following sample document shows an audio CD document in the collection:

{
  "Name" : "Happy Birthday",
  "Artist" : ["Patty Hill", "Mildred J. Hill", "Derek Underhill"],
  "Units" : 1000,
  "Price" : {
    "Cost_Price" : 1,
    "Sale_Price" : 3
  }
}

The following sample document shows a movie disk document in the collection:

{
  "Name" : "City Lights",
        "Type" : "Blu-ray",
        "Director" : "Charlie Chaplin"

Example: Data Migration to MongoDB       27



  "Artist" : ["Charle Chaplin", "Mildred J. Hill", "Derek Underhill"],
  "Units" : 1000,
  "Price" : {
    "Cost_Price" : 10,
    "Sale_Price" : 15
  }
}

The following figure shows the data object that you import in the Developer tool:

28       Chapter 4: MongoDB Read Operations



C h a p t e r  5

MongoDB Write Operations
This chapter includes the following topics:

• MongoDB Write Operations Overview, 29

• MongoDB as an Operation Data Store – An Example, 30

MongoDB Write Operations Overview
You can import a MongoDB collection as an ODBC data object and create mappings to write data to 
MongoDB in the Developer tool.

You must configure the ODBC driver and define the MongoDB schema before you import MongoDB 
collections.

When you run a MongoDB mapping, the Data Integration Service uses the Informatica MongoDB ODBC data 
source to load data to the MongoDB database.

When you run MongoDB mappings, ensure that the optimization level is set to none. If you do not set the 
optimization level as none, the mappings may fail.

You can configure the optimization levels at the following locations:

• Mapping runtime configuration in the Developer tool

• Data viewer runtime configuration in the Developer tool

• Mapping deployment in application settings in the Developer tool

• Mapping configuration of an application in the Data Integration Service through the Administrator tool

You can configure advanced write options for the Informatica MongoDB ODBC Driver in the ODBC driver 
properties.

You can configure the following write options in the ODBC driver properties:
Omit default null columns on insert

Drops columns with null values. Default is enabled.

Truncate documents larger than 16 MB

Truncates a document if the size is more than 16 MB in a writer mapping. MongoDB documents have a 
size restriction of 16 MB. If enabled, the Data Integration Service truncates the document that exceeds 
16 MB when writing to MongoDB. If you disable the option when you run a write session, the Data 
Integration Service rejects the document that exceeds 16 MB. Default is disabled.

29



Enable Reading/Writing as JSON

Writes the JSON format of the data to the MongoDB document. If you select the option, a column with 
the field documentAsJSON appears in the collection when you write data to MongoDB. You cannot write 
into individual columns if you select this option. Default is disabled.

Enable updating multiple rows

Updates multiple rows in the MongoDB collection for every write operation. If there are multiple 
documents to update, the Data Integration Service updates multiple documents in the MongoDB 
collection for every write operation. If you clear this option and multiple documents require update, the 
Data Integration Service initiates write operation for each document update. Default is disabled.

Check GetLastError on writes

Calls the MongoDB CheckGetLastError() function to check for failures after each insert or update 
operation. Select this option to include fault tolerance in write operations. Clear this option to speed up 
the write operation. Default is enabled.

Note: If the source and target data objects in the mapping contains container columns, connect either the 
container columns or the individual columns. If both the container columns and the corresponding individual 
columns are connected to the target data object, the Data Integration Service inserts duplicate columns in 
the MongoDB database.

MongoDB as an Operation Data Store – An Example
A large online music store, Moose, uses MongoDB as the operational data store for the business inventory 
details.

The business analysts at Moose use a business intelligence tool that does not support reading data from 
MongoDB. The tool requires the input data to be in a relational database or a flat file.

The data warehouse includes a collection called Music_Contents. The collection Music_Contents contains a 
catalog of all of the songs in the store. You must move the data in the collection to a flat file to use the data 
for business analysis. You must also remove those records with zero units to ensure that the data is current.

The following table describes the structure of Music_Contents:

Field Dataype

Name String

Type Array of strings

Artist Array of strings

Units Int

Price Nested document

30       Chapter 5: MongoDB Write Operations



The following table describes the structure of the nested document, Price:

Field Datatype

Cost_Price Int

Sale_Price Int

The following document is a sample from the collection, Music_Contents:

{
  "Name" : "Happy Birthday",
  "type" : ["Folk", "Traditional"],
  "Artist" : ["Patty Hill", "Mildred J. Hill", "Derek Underhill"],
  "Units" : 1000,
  "Price" : {
    "Cost_Price" : 1,
    "Sale_Price" : 3
  }
}

Create a mapping with a MongoDB data object as the read transformation to read the records from the 
collection. Include a flat file data object as the target in the mapping so that the business intelligence tool 
can consume the data. Use a Filter transformation to remove the documents that have zero units.

Create a mapping that has a MongoDB data object in read mode, a Filter transformation, and a flat file data 
object in write mode. The MongoDB reader mapping contains the following components:
MongoDB ODBC Data Object

Import the collection Store_Catalog as an ODBC data object.

MongoDB as an Operation Data Store – An Example       31



The following figure shows the data object created from the collection:

32       Chapter 5: MongoDB Write Operations



Filter transformation

The filter transformation applies a filter on the Units field and writes those records that have one or more 
units in the Units field.

Flat file data object

The flat file data objec,t ff_Music_Collection, in the write mode, contains the same columns as in the 
MongoDB ODBC Source Definition.

The following figure shows the mapping:

MongoDB as an Operation Data Store – An Example       33



A p p e n d i x  A

Datatype Reference
This appendix includes the following topic:

• MongoDB, ODBC, and Transformation Datatypes, 34

MongoDB, ODBC, and Transformation Datatypes
When you define the schema in the Informatica MongoDB ODBC driver, you can view the ODBC datatypes and 
edit the datatypes. When you import a MongoDB collection as a data object, the transformation datatypes 
corresponding to the ODBC datatypes appear in the Developer tool .

The Informatica MongoDB ODBC driver reads MongoDB data and converts the MongoDB datatypes to ODBC 
datatypes. The Data Integration Service converts the ODBC datatypes to transformation datatypes.

The following table lists the MongoDB datatypes and the corresponding ODBC and transformation datatypes:

MongoDB 
Datatypes

ODBC Datatypes Transformation Datatypes Range and Description

String Varchar String 1 to 104,857,600 characters

Boolean Bit String Precision of 1

NumberLong BigInt Decimal Precision 1 to 28 digits, scale 0 
to 28

NumberInt Int Integer Precision 10, scale 0

NumberDouble Double Double Precision 15

BinData Binary Binary 1 to 104,857,600 bytes

Date Timestamp Date/Time Jan 1, 0001 A.D. to Dec 31, 9999 
A.D. (precision to second)

jstOID Varchar String 1 to 104,857,600 characters

34



I n d e x

I
Introduction 

MongoDB 8
PowerExchange for MongoDB 8

R
read property 

Enable Reading/Writing as JSON 25
Read Preference 25
Rows fetched per block 25

35


	Table of Contents
	Preface 
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support


	Chapter 1: Introduction to PowerExchange for MongoDB
	PowerExchange for MongoDB Overview
	Introduction to MongoDB
	PowerExchange for MongoDB Implementation

	Chapter 2: PowerExchange for MongoDB Configuration
	PowerExchange for MongoDB Configuration Overview
	Prerequisites
	PowerExchange for MongoDB Upgrade

	Informatica MongoDB ODBC Driver Configuration
	Configuring the Informatica MongoDB ODBC Driver on Linux

	Data Source Name Configuration on Windows
	MongoDB ODBC Connection Properties
	Advanced Properties


	Chapter 3: Schema Definition
	Schema Definition Overview
	Schema Editor
	Collection Properties
	Column Metadata

	Virtual Tables
	Virtual Table Options
	Virtual Tables - An Example

	Metadata Caching
	Defining the Schema for a Collection
	Updating the Schema File


	Chapter 4: MongoDB Read Operations
	MongoDB Read Operations Overview
	Example: Data Migration to MongoDB

	Chapter 5: MongoDB Write Operations
	MongoDB Write Operations Overview
	MongoDB as an Operation Data Store – An Example

	Appendix A: Datatype Reference
	MongoDB, ODBC, and Transformation Datatypes

	Index

