
Informatica® PowerExchange for HDFS
10.4.0

User Guide

Informatica PowerExchange for HDFS User Guide
10.4.0
December 2019

© Copyright Informatica LLC 2012, 2020

This software and documentation are provided only under a separate license agreement containing restrictions on use and disclosure. No part of this document may be
reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise) without prior consent of Informatica LLC.

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial
computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, duplication, disclosure, modification, and adaptation is subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License.

Informatica, the Informatica logo, and PowerExchange are trademarks or registered trademarks of Informatica LLC in the United States and many jurisdictions
throughout the world. A current list of Informatica trademarks is available on the web at https://www.informatica.com/trademarks.html. Other company and product
names may be trade names or trademarks of their respective owners.

Portions of this software and/or documentation are subject to copyright held by third parties. Required third party notices are included with the product.

The information in this documentation is subject to change without notice. If you find any problems in this documentation, report them to us at
infa_documentation@informatica.com.

Informatica products are warranted according to the terms and conditions of the agreements under which they are provided. INFORMATICA PROVIDES THE
INFORMATION IN THIS DOCUMENT "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY OR CONDITION OF NON-INFRINGEMENT.

Publication Date: 2020-02-16

Table of Contents

Preface . 6
Informatica Resources. 6

Informatica Network. 6

Informatica Knowledge Base. 6

Informatica Documentation. 6

Informatica Product Availability Matrices. 7

Informatica Velocity. 7

Informatica Marketplace. 7

Informatica Global Customer Support. 7

Chapter 1: Introduction to PowerExchange for HDFS. 8
PowerExchange for HDFS Overview. 8

Chapter 2: PowerExchange for HDFS Configuration. 9
PowerExchange for HDFS Configuration Overview. 9

Prerequisites. 9

Chapter 3: HDFS Connections. 11
HDFS Connections Overview. 11

HDFS Connection Properties. 11

Creating an HDFS Connection. 12

Chapter 4: HDFS Data Objects. 14
HDFS Data Objects Overview. 14

Generate the Source File Name for HDFS Data Objects. 14

FileName Port Overview. 15

Working with FileName Port. 15

Rules and Guidelines for Using FileName Port. 15

Flat File Data Objects. 17

Compression and Decompression for Flat File Sources and Targets. 17

Rules and Guidelines for Flat File Data Objects. 18

Configuring a Flat File Data Object with an HDFS Connection. 19

Naming Convention for Flat File Targets. 19

Complex File Data Objects. 19

Complex File Data Object Overview Properties. 20

Compression and Decompression for Complex File Sources and Targets. 20

Parameterization of Complex File Data Objects. 21

Complex File Data Object Output Parsing. 22

Creating a Complex File Data Object. 22

Creating a Complex File Object Read or Write Operation. 24

Table of Contents 3

Rules and Guidelines for Creating a Complex File Data Object Operation. 24

Custom Formats. 25

Custom Formats Configuration. 25

Chapter 5: HDFS Data Extraction. 26
HDFS Data Extraction Overview. 26

Flat File Data Object Read Properties. 26

Complex Files Partitioning. 27

Complex File Data Object Read Properties. 27

Wildcard Characters for Reading Data from Complex Files. 28

General Properties. 28

Ports Properties. 29

Schema Properties. 29

Sources Properties. 30

Advanced Properties. 31

Chapter 6: HDFS Data Load. 33
HDFS Data Load Overview. 33

Flat File Data Object Write Properties. 33

Complex File Streaming. 34

Complex Files Output Collection Mode. 35

Complex File Data Object Write Properties. 36

Overwriting Complex File Targets. 36

General Properties. 37

Port Properties. 37

Schema Properties. 37

Target Properties. 38

Advanced Properties. 39

Chapter 7: HDFS Mappings. 41
HDFS Mappings Overview. 41

Complex Files Target Creation. 42

Creating a Complex File Target from an Existing Transformation . 42

Mapping Validation and Run-time Environments. 43

Rules and Guidelines for Complex File Sources and Targets in a Mapping. 43

HDFS Data Extraction Mapping Example. 43

HDFS Data Load Mapping Example. 45

HDFS Avro Read Mapping Example. 46

Appendix A: Data Type Reference. 50
Data Type Reference Overview. 50

Flat File and Transformation Data Types. 51

Complex File and Transformation Data Types. 52

4 Table of Contents

Avro Data Types and Transformation Data Types. 52

JSON Data Types and Transformation Data Types. 54

ORC Data Types and Transformation Data Types. 54

Parquet Data Types and Transformation Data Types. 56

Rules and Guidelines for Data Types. 57

Index. 59

Table of Contents 5

Preface
Use the Informatica® PowerExchange® for HDFS User Guide to learn how to read from or write to Hadoop
Distributed File System by using the Developer tool. Learn to create a connection, develop and run mappings
and dynamic mappings in the native environment and Hadoop environments.

Informatica Resources
Informatica provides you with a range of product resources through the Informatica Network and other online
portals. Use the resources to get the most from your Informatica products and solutions and to learn from
other Informatica users and subject matter experts.

Informatica Network
The Informatica Network is the gateway to many resources, including the Informatica Knowledge Base and
Informatica Global Customer Support. To enter the Informatica Network, visit
https://network.informatica.com.

As an Informatica Network member, you have the following options:

• Search the Knowledge Base for product resources.

• View product availability information.

• Create and review your support cases.

• Find your local Informatica User Group Network and collaborate with your peers.

Informatica Knowledge Base
Use the Informatica Knowledge Base to find product resources such as how-to articles, best practices, video
tutorials, and answers to frequently asked questions.

To search the Knowledge Base, visit https://search.informatica.com. If you have questions, comments, or
ideas about the Knowledge Base, contact the Informatica Knowledge Base team at
KB_Feedback@informatica.com.

Informatica Documentation
Use the Informatica Documentation Portal to explore an extensive library of documentation for current and
recent product releases. To explore the Documentation Portal, visit https://docs.informatica.com.

If you have questions, comments, or ideas about the product documentation, contact the Informatica
Documentation team at infa_documentation@informatica.com.

6

https://network.informatica.com
http://search.informatica.com
mailto:KB_Feedback@informatica.com
https://docs.informatica.com
mailto:infa_documentation@informatica.com

Informatica Product Availability Matrices
Product Availability Matrices (PAMs) indicate the versions of the operating systems, databases, and types of
data sources and targets that a product release supports. You can browse the Informatica PAMs at
https://network.informatica.com/community/informatica-network/product-availability-matrices.

Informatica Velocity
Informatica Velocity is a collection of tips and best practices developed by Informatica Professional Services
and based on real-world experiences from hundreds of data management projects. Informatica Velocity
represents the collective knowledge of Informatica consultants who work with organizations around the
world to plan, develop, deploy, and maintain successful data management solutions.

You can find Informatica Velocity resources at http://velocity.informatica.com. If you have questions,
comments, or ideas about Informatica Velocity, contact Informatica Professional Services at
ips@informatica.com.

Informatica Marketplace
The Informatica Marketplace is a forum where you can find solutions that extend and enhance your
Informatica implementations. Leverage any of the hundreds of solutions from Informatica developers and
partners on the Marketplace to improve your productivity and speed up time to implementation on your
projects. You can find the Informatica Marketplace at https://marketplace.informatica.com.

Informatica Global Customer Support
You can contact a Global Support Center by telephone or through the Informatica Network.

To find your local Informatica Global Customer Support telephone number, visit the Informatica website at
the following link:
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html.

To find online support resources on the Informatica Network, visit https://network.informatica.com and
select the eSupport option.

Preface 7

https://network.informatica.com/community/informatica-network/product-availability-matrices
http://velocity.informatica.com
mailto:ips@informatica.com
https://marketplace.informatica.com
https://www.informatica.com/services-and-training/customer-success-services/contact-us.html
http://network.informatica.com

C h a p t e r 1

Introduction to PowerExchange
for HDFS

This chapter includes the following topic:

• PowerExchange for HDFS Overview, 8

PowerExchange for HDFS Overview
PowerExchange for HDFS provides connectivity to the Hadoop Distributed File System (HDFS). You can use
PowerExchange for HDFS to read data from and write data to HDFS. You can also use PowerExchange for
HDFS to read data from and write data to the local file system.

The Data Integration Service uses the Hadoop API infrastructure to connect to HDFS. It connects to the
NameNode to read data from and write data to HDFS.

With PowerExchange for HDFS, you can read and write fixed-width text files, delimited text files, and the
industry-standard file formats, such as Avro, Parquet, ORC, JSON, and XML files. You can read and write
hierarchical data present in the Avro, Parquet, ORC, JSON, and XML files. In addition to the industry-standard
file formats, you can also read from intelligent structure sources.

With PowerExchange for HDFS, you can read and write files as binary and write them to a target. When you
select the file type as binary for a complex file source or target, PowerExchange for HDFS can process the
mapping with or without using the Data Processor transformation.

You can read and write compressed files. You can configure custom formats to process data in input, output,
and compression formats that Hadoop supports.

8

C h a p t e r 2

PowerExchange for HDFS
Configuration

This chapter includes the following topics:

• PowerExchange for HDFS Configuration Overview, 9

• Prerequisites, 9

PowerExchange for HDFS Configuration Overview
PowerExchange for HDFS is installed with Informatica Data Services. You enable PowerExchange for HDFS
with a license key.
Note: To read or write data with a complex file data object, you will also need the Unstructured Data license
key.

Prerequisites
Before you use PowerExchange for HDFS to access data in HDFS, perform the following tasks:

• Install and configure Informatica Services. Verify that the domain has a Data Integration Service and a
Model Repository Service.

• Verify that a cluster configuration is created in the domain.

• Verify that a Metadata Access Service is created in the domain.

• To import a local complex file, on the Developer tool machine, verify that the Hadoop Distribution
Directory property in the developerCore.ini file is set based on the Hadoop distribution that you use.
The developerCore.ini file is located in the following directory:

<Informatica installation directory>\clients\DeveloperClient\
Add the following property:

-DINFA_HADOOP_DIST_DIR=hadoop\<distribution>_<version>
Note: The change takes effect when you restart the Developer tool. By default, the Hadoop Distribution
Directory property value is set to a Cloudera distribution.

9

• To successfully preview data from a local complex file or run a mapping in the native environment with a
local complex file, you must configure the INFA_PARSER_HOME property for the Data Integration Service
in Informatica Administrator. Perform the following steps to configure the INFA_PARSER_HOME property:

- Log in to Informatica Administrator.

- Click the Data Integration Service and then click the Processes tab on the right pane.

- Click Edit in the Environment Variables section.

- Click New to add an environment variable.

- Enter the name of the environment variable as INFA_PARSER_HOME.

- Set the value of the environment variable to the absolute path of the Hadoop distribution directory on the
machine that runs the Data Integration Service. Verify that the version of the Hadoop distribution
directory that you define in the INFA_PARSER_HOME property is the same as the version you defined in
the cluster configuration.

10 Chapter 2: PowerExchange for HDFS Configuration

C h a p t e r 3

HDFS Connections
This chapter includes the following topics:

• HDFS Connections Overview, 11

• HDFS Connection Properties, 11

• Creating an HDFS Connection, 12

HDFS Connections Overview
Create an HDFS connection to read data from or write data to HDFS.

HDFS Connection Properties
Use a Hadoop File System (HDFS) connection to access data in the Hadoop cluster. The HDFS connection is
a file system type connection. You can create and manage an HDFS connection in the Administrator tool,
Analyst tool, or the Developer tool. HDFS connection properties are case sensitive unless otherwise noted.

Note: The order of the connection properties might vary depending on the tool where you view them.

The following table describes HDFS connection properties:

Property Description

Name Name of the connection. The name is not case sensitive and must be unique within the domain. The
name cannot exceed 128 characters, contain spaces, or contain the following special characters:
~ ` ! $ % ^ & * () - + = { [}] | \ : ; " ' < , > . ? /

ID String that the Data Integration Service uses to identify the connection. The ID is not case sensitive.
It must be 255 characters or less and must be unique in the domain. You cannot change this
property after you create the connection. Default value is the connection name.

Description The description of the connection. The description cannot exceed 765 characters.

Location The domain where you want to create the connection. Not valid for the Analyst tool.

Type The connection type. Default is Hadoop File System.

11

Property Description

User Name User name to access HDFS.

NameNode URI The URI to access the storage system.
You can find the value for fs.defaultFS in the core-site.xml configuration set of the cluster
configuration.
Note: If you create connections when you import the cluster configuration, the NameNode URI
property is populated by default, and it is updated each time you refresh the cluster configuration. If
you manually set this property or override the value, the refresh operation does not update this
property.

Accessing Multiple Storage Types

Use the NameNode URI property in the connection parameters to connect to various storage types. The
following table lists the storage type and the NameNode URI format for the storage type:

Storage NameNode URI Format

HDFS hdfs://<namenode>:<port>
where:
- <namenode> is the host name or IP address of the NameNode.
- <port> is the port that the NameNode listens for remote procedure calls (RPC).
hdfs://<nameservice> in case of NameNode high availability.

MapR-FS maprfs:///

WASB in
HDInsight

wasb://<container_name>@<account_name>.blob.core.windows.net/<path>
where:
- <container_name> identifies a specific Azure Storage Blob container.

Note: <container_name> is optional.
- <account_name> identifies the Azure Storage Blob object.
Example:

wasb://infabdmoffering1storage.blob.core.windows.net/
infabdmoffering1cluster/mr-history

ADLS in
HDInsight

adl://home

When you create a cluster configuration from an Azure HDInsight cluster, the cluster configuration uses
either ADLS or WASB as the primary storage. You cannot create a cluster configuration with ADLS or WASB
as the secondary storage. You can edit the NameNode URI property in the HDFS connection to connect to a
local HDFS location.

Creating an HDFS Connection
Create an HDFS connection before you import physical data objects.

1. Click Window > Preferences.

2. Select Informatica > Connections.

12 Chapter 3: HDFS Connections

3. Expand the domain.

4. Select the connection type File Systems > Hadoop File System, and click Add.

5. Enter a connection name.

6. Optionally, enter a connection description.

7. Click Next.

8. Enter the user name to access HDFS.

9. Enter the NameNode URI to access HDFS based on the Hadoop distribution that you use.

10. Select the cluster configuration associated with the Hadoop environment.

11. Click Test Connection. If a default Metadata Access Service is not set, a message appears to configure
the Metadata Access Service. Click OK and set one Metadata Access Service as default. After you set a
default Metadata Access Service, the connection to HDFS is tested. If the Metadata Access Service does
not exist, contact the Informatica administrator to create a new Metadata Access Service in the domain.

12. Click Finish.

Related Topics:
• “HDFS Connection Properties” on page 11

Creating an HDFS Connection 13

C h a p t e r 4

HDFS Data Objects
This chapter includes the following topics:

• HDFS Data Objects Overview, 14

• Generate the Source File Name for HDFS Data Objects, 14

• FileName Port Overview, 15

• Flat File Data Objects, 17

• Complex File Data Objects, 19

• Custom Formats, 25

HDFS Data Objects Overview
After you configure an HDFS connection, create a physical data object to read data from or write data to
HDFS.

Depending on the file format, you can configure the following types of physical data objects:

• Flat file data object. Create or import a flat file data object and configure an HDFS connection for the data
object. Use the flat file data object to read or write fixed-width or delimited text files.

• Complex file data object. Import a complex file data object with an HDFS connection. Use the complex file
data object to read or write structured, semi-structured, unstructured data. For example, Avro, Parquet,
Orc, XML, and JSON files have structured or semi-structured data. Binary files, such as PDF and Microsoft
Word have unstructured data. Complex file data objects can also read intelligent structure sources.

Generate the Source File Name for HDFS Data
Objects

You can add a file name column to the flat file data object. The file name column helps you to identify the
source file that contains a particular record of data. You can configure the mapping with the file name
column for both flat file and complex file data objects. When you read data from HDFS, you can extract the
fully qualified path of the source file.

You can configure the mapping to write the source file name to each source row when you add a File Name
Column port in the Overview view. The File Name Column port contains the name and the fully qualified path
for each source file. The File Name Column port is a string port with a default precision of 256 characters.

14

If the file or directory is in HDFS, enter the path without the node URI. For example,/user/lib/testdir
specifies the location of a directory in HDFS. The path must not contain more than 512 characters.

When you use a file name column in a Read transformation, the file name column returns the value in the
following format for HDFS:

hdfs://<host name>:<port>/<file name path>

For example, the file name column returns hdfs://irldv:5008/hive/warehouse/ff.txt, where the host
name is irldv and the port is 5008.

FileName Port Overview
A FileName port is a string port with a default precision of 1024 characters that contains the source path of a
file.

You cannot configure the FileName port. You can delete the FileName port if you do not want to read or write
the data in the FileName. You cannot create a folder name which contains more than 255 characters.

When you create a data object read or write operation for all the complex files, the FileName port is displayed
by default.

FileName port appears when you run a mapping in the native environment or on the Spark engine to read or
write an Avro, ORC, JSON, Parquet, or binary(native) file.

Working with FileName Port
You can use the FileName port in a complex file target to dynamically redirect the rows based on the value
received by FileName port.

When you run a mapping in the native environment to read or write a flat file using the FileName port, the
Data Integration Service creates separate directories for each value in the FileName port in the following
format:

<CFW FileName>/<CFW FileName>=<valueFromMappingFlow>

When you run a mapping in the native environment or on the Spark engine to read or write an Avro, JSON,
ORC, Parquet or Binary(Native) file using the FileName port, the Data Integration Service creates separate
directories for each value in the FileName port and adds the files within the directories.

Rules and Guidelines for Using FileName Port
Use the following rules and guidelines when you use the FileName data in the FileName port:

• Do not use a colon (:) and forward slash (/) character in the file name data of the FileName port of the
source or target object to run a mapping.

• If you connect the FileName port to the target empty zero KB files are created in the target folder.

• When you use wildcard character * to read data from a complex file source, the Data Integration Service
reads data only from folders or files matching the selection criteria.
For example, if the file path is /export/home/qamercury/avro/test/cust* and Allow Wildcard
Characters option is selected:

FileName Port Overview 15

The Data Integration Service ignores all the other folders and only reads customer.avro and the files
present inside the customer folder.

• Do not connect FileName port to a FileName port because the FileName port in the source might contain
colon (:) and forward slash (/) characters.

• In the Native environment use the Sorter transformation to sort the source port that you want to map to
the FileName port of the Target transformation. After you sort the source port, map the port of the Sorter
transformation to the FileName port of the Target transformation. The Data Integration Service creates
only one file for each value with the same name. If you do not use the Sorter transformation, the Data
Integration Service creates multiple files for each value with the same name.

For example, Create a mapping in the Native environment or on the Spark engine to read or write an Avro
file using the FileName port.

The following image shows the sorter transformation mapping:

If you want to Map the following source port name to the FileName port of the Target transformation and
write the data to an Avro target file target1:

Name ID SSN

Anna 1 1

John 4 4

Smith 4 4

John 5 5

Anna 2 2

Add a Sorter transformation to sort the source port and map the source port to the port of the Sorter
transformation. Then, map the port of the Sorter transformation to the FileName port of the Target

16 Chapter 4: HDFS Data Objects

transformation. The Data Integration Service creates the following directories and single file per thread
within the directories:

target1.avro=Anna
In this directory, the Data Integration Service creates a file with the following values: 1,1,1,2,2,2.

target1.avro=John
In this directory, the Data Integration Service creates a file with the following values: 4,4,4,5,5,5.

target1.avro=Smith
In this directory, the Data Integration Service creates a file with the following values: 4,4,4.

If you do not add a Sorter transformation, the Data Integration Service creates the following directories
and multiple files within the directories:

target1.avro=Anna
In this directory, the Data Integration Service creates two part files with the following values: 1,1,1 and
2,2,2.

target1.avro=John
In this directory, the Data Integration Service creates two files with the following values: 4,4,4 and 5,5,5.

target1.avro=Smith
In this directory, the Data Integration Service creates one file with the following values: 4,4,4.

Flat File Data Objects
You can read data from and write data to HDFS through a fixed-width or delimited flat file data object that
does not contain binary data.

You can create or import a flat file data object. The data object properties that you specify in the Developer
tool must match the properties of the source file.

After you create a flat file data object, you can edit the following file properties:

• HDFS connection properties

• Compression formats

To read large volumes of data, you can connect a flat file source to read data from a directory of flat files.

You can use the flat file data objects as a source, target, or lookup transformation in mappings and mapplets.
You can select the mapping environment and run the mappings in a native or Hadoop run-time environment.
You can create and run profiles against flat file data objects.

When you configure a mapping that contains flat file data objects to run in the native environment, you can
enable the mapping for partitioning. The Data Integration Service can use multiple partitions to read data
from flat file sources with an HDFS connection. The Data Integration Service can also use multiple partitions
to write data to flat file targets with an HDFS connection. When the Data Integration Service adds partitions, it
increases the number of processing threads, which can increase mapping performance.

Compression and Decompression for Flat File Sources and
Targets

File compression can increase data transfer rates and reduce space for data storage.

Flat File Data Objects 17

You can read and write compressed flat files, specify compression formats, and decompress files. You can
compress and decompress files in compression formats such as Bzip2 and Lzo, or specify a custom
compression format.

You can specify a file or a directory of files. When the Data Integration Service reads from a directory, it reads
the files of the specified format only and ignores files of other formats.

For information about how Hadoop processes compressed and uncompressed files, see the Hadoop
documentation.

The following table describes the compression options:

Compression
Options

Description

None The file is not compressed.

Auto The Data Integration Service detects the compression format of the file based on the file
extension.

Gzip The GNU zip compression format that uses the DEFLATE algorithm.

Bzip2 The Bzip2 compression format that uses the Burrows–Wheeler algorithm.

Lzo The Lzo compression format that uses the Lempel-Ziv-Oberhumer algorithm.
Note: The JAR files for LZO compression are not available with the default Hadoop installation.
You must place the JAR files for the LZO compression format in the lib folder of the
distribution directory and verify the distribution directory properties.

Custom Custom compression format. If you select this option, you must specify the fully qualified class
name implementing the Hadoop CompressionCodec interface in the Compression Codec field.

Related Topics:
• “Custom Formats Configuration” on page 25

Rules and Guidelines for Flat File Data Objects
Use the following rules and guidelines when you use flat file sources with an HDFS connection:

• You cannot use a command to generate or transform flat file data and send the output to the flat file
source at run time.

• You cannot use an indirect source type.

Use the following rules and guidelines when you use flat file targets with an HDFS connection:

• You cannot append output data to target files and reject files. The Data Integration Service truncates the
target files and reject files before writing the data.

• You cannot use the command output type.

• When the flat file target is in a partitioned mapping, you cannot write to a merge file that contains the
target output for all partitions. The Data Integration Service concurrently writes the target output to a
separate file for each partition.

18 Chapter 4: HDFS Data Objects

Configuring a Flat File Data Object with an HDFS Connection
Configure a flat file data object with an HDFS connection to read data from or write data to HDFS.

If you create an empty flat file, the file properties must match that of the file in HDFS. If you import a flat file
data object, the file must reside in your local file system.

1. Click the Advanced tab of the flat file data object.

2. Navigate to the runtime properties for the flat file source in the Runtime: Read properties or the flat file
target in the Runtime: Write properties.

3. Configure the HDFS connection properties.

4. Optionally, you can configure the compression properties.

Related Topics:
• “Flat File Data Object Read Properties” on page 26

• “Flat File Data Object Write Properties” on page 33

Naming Convention for Flat File Targets
When you run a mapping on the Blaze engine to write data to a flat file target, the Data Integration Service
creates multiple target files with the following naming convention:

<FileName>-P1, <FileName>-P2,....<FileName>-P100....<FileName>-PN

The naming convention helps you to delete multiple split files generated from the previous mapping runs and
to avoid the deletion of target files generated from another mapping with similar file names.

Complex File Data Objects
A complex file data object is a representation of a file in the Hadoop file system. Create a complex file data
object to read or write structured, semi-structured, and unstructured data to HDFS.

You can read files from the local system or HDFS. Similarly, you can write files to the local system or HDFS.
To read large volumes of data, you can connect a complex file source to read data from a directory of files
that have the same format and properties. You can read and write compressed binary files.

When you read or write the industry-standard file formats, you may or may not use the Data Processor
transformation based on the structure of the file and the engine you select to run the mapping.

You can use a complex file data object with an intelligent structure model to read and parse semi-structured
or structured data from text, CSV, XML, or JSON files, as well as PDF forms, Microsoft Word tables, or
Microsoft Excel. The output of the complex file data object is primitive and complex elements. You do not
need to use a Data Processor transformation with a complex file data object that uses an intelligent structure
model. The Data Integration Service can directly read intelligent structure model resources to HDFS or the
local file system.

When you use a binary complex file data object as a source, you can use a Data Processor transformation to
parse the file. The output of the binary complex file data object is a binary stream. Similarly, when you write
binary data to a complex file, you must use a Data Processor transformation to convert the source data into a
binary format. You can then use the binary stream to write data to the binary complex file.

When you create a complex file data object, a read and write operation is created. You can use the complex
file data object read operation as a source in mappings and mapplets. You can use the complex file data

Complex File Data Objects 19

object write operation as a target in mappings and mapplets. You can select the mapping environment and
run the mappings in a native or Hadoop run-time environment.

Complex File Data Object Overview Properties
The Data Integration Service uses overview properties when it reads data from or writes data to a complex
file.

Overview properties include general properties that apply to the complex file data object. They also include
object properties that apply to the resources in the complex file data object. The Developer tool displays
overview properties for complex files in the Overview view.

General Properties

The following table describes the general properties that you configure for complex files:

Property Description

Name The name of the complex file data object.

Description The description of the complex file data object.

Access Method The access method for the resource.
- Connection. Select Connection to specify an HDFS connection.
- File. Select File to browse for a file on your local system.

Connection The name of the HDFS connection.

Objects Properties

The following table describes the objects properties that you configure for complex files:

Property Description

Name The name of the resource.

Type The native data type of the resource.

Description The description of the resource.

Access Type Indicates that you can perform read and write operations on the complex file data
object. You cannot edit this property.

Compression and Decompression for Complex File Sources and
Targets

You can read and write compressed complex files, specify compression formats, and decompress files. You
can use compression formats such as Bzip2 and Lzo, or specify a custom compression format. The
compressed files must be of the binary format.

You can compress sequence files at a record level or at a block level.

For information about how Hadoop processes compressed and uncompressed files, see the Hadoop
documentation.

20 Chapter 4: HDFS Data Objects

The following table describes the complex file compression formats for binary files:

Compression Options Description

None The file is not compressed.

Auto The Data Integration Service detects the compression format of the
file based on the file extension.

DEFLATE The DEFLATE compression format that uses a combination of the
LZ77 algorithm and Huffman coding.

Gzip The GNU zip compression format that uses the DEFLATE algorithm.

Bzip2 The Bzip2 compression format that uses the Burrows–Wheeler
algorithm.

Lzo The Lzo compression format that uses the Lempel-Ziv-Oberhumer
algorithm.

Snappy The LZ77-type compression format with a fixed, byte-oriented
encoding.
Note: Default compression format is Snappy on the Spark engine.

Custom Custom compression format. If you select this option, you must
specify the fully qualified class name implementing the
CompressionCodec interface in the Custom Compression Codec
field.

Related Topics:
• “Custom Formats Configuration” on page 25

Parameterization of Complex File Data Objects
You can parameterize the complex file connection and the complex file data object operation properties.

You can parameterize the following data object read operation properties for complex data objects:

• Connection in the run-time properties

• File Format, Input Format, Compression Format, and Custom Compression Codec in the advanced
properties.

• Schema Format and Schema in schema properties.

You can parameterize the following data object write operation properties for complex file data objects:

• Connection in the run-time properties.

• File Format, File Name, Output Format, Output Key Class, Output Value Class, Compression Format,
Custom Compression Codec, and Sequence File Compression Type in the advanced properties.

• Schema Format and Schema in schema properties.

Note: When you parameterize the schema, ensure that the source file format and the data types are
supported in the engine where you run the mapping.

Complex File Data Objects 21

The following attributes support full and partial parameterization for complex file data objects:

• File Path in the advanced properties of the data object read operation.
For example, to parameterize a part of the attribute value where the file path in the advanced property is /
user/adpqa/dynschema.txt, create a parameter as $str="/user/adpqa", and then edit the file path as
$str/dynschema.txt. You can also parameterize the value of the entire file path.

• File Directory in the advanced properties of the data object write operation.
For example, to parameterize a part of the attribute value where the file directory in the advanced property
is /export/home/qamercury/source, create a parameter as $param="/export/home", and then edit the file
directory as $param/qamercury/source. You can also parameterize the value of the entire directory.

Complex File Data Object Output Parsing
You can use an Avro or Parquet format complex file data object as a source or target without using a Data
Processor transformation. The Data Integration Service can directly read and write Avro and Parquet
resources that contain flat structure to HDFS or local file system.

You can use a complex file data object with an intelligent structure model resource as a source in a mapping
that runs over Spark. When you associate a complex file data object with an intelligent structure model, you
can use any file input that the intelligent structure model applies to without using a Data Processor
transformation.

When you use a binary complex file data object as a source, you can use a Data Processor transformation to
parse the binary output of the complex file.

Configure the Data Processor transformation as follows:

• Set an input port to buffer input and binary data type. Specify the port size. The port size that you specify
in the complex file properties and the Data Processor transformation must be the same.

• Set an output port to buffer output or set it for relational output. If you set the ports for relational output,
specify the ports based on the number of relational groups of ports you want in the output. Specify the
port size for the ports. You can use an XML schema reference that describes the XML hierarchy.

• Set a Streamer object as a startup component.

If you configure a binary complex file data object with an intelligent structure model, you do not need to use a
Data Processor transformation to parse the output of the complex file.

When you use a complex file data object as a target, you must use a Data Processor transformation to
convert the source data into a binary format. Set the Data Processor transformation port to binary. You can
then use the binary stream as an input to the complex file data object.

Creating a Complex File Data Object
Create a complex file data object to read data from or write data to HDFS.

1. Select a project or folder in the Object Explorer view.

2. Click File > New > Data Object.

3. Select Complex File Data Object and click Next.

The New Complex File Data Object dialog box appears.

4. Optionally, enter a name for the data object.

5. Click Browse next to the Location option and select the target project or folder.

6. In the Resource Format list, select any of the following formats:

22 Chapter 4: HDFS Data Objects

• Intelligent Structure Model: to read any format that an intelligent structure parses.

• Binary: to read any resource format.

• Avro: to read an Avro resource.

• Parquet: to read a Parquet resource.

• JSON: to read a JSON resource.

• Orc: to read an Orc resource.

• XML: to read an XML resource.

Note: Intelligent structure model is supported only in Spark mode.

7. In the Access Type list, select Connection or File.

• Select Connection to access a file on HDFS. Click Browse next to the Connection option and select
an HDFS connection. Click Add next to the Selected Resource option to add a resource to the data
object. If a default Metadata Access Service is not set, a message appears to configure the Metadata
Access Service. Click OK and set one Metadata Access Service as default. After you set a default
Metadata Access Service, the Add Resource dialog box appears. If the Metadata Access Service
does not exist, contact the Informatica administrator to create a new Metadata Access Service in the
domain. Navigate or search for the resources to add to the data object and click OK.

• Select File to access a file on your local system. Click Browse next to the Resource Location option
and select the file that you want to add. Click Fetch. The selected file is added to the Selected
Resources list.

Note: To use an intelligent structure model, for the Selected Resource option, browse to and select the
appropriate .amodel file.

8. From the Available OS Profiles list, select an operating system profile. You can use the Available OS
Profiles to increase security and to isolate the design-time user environment when you import and
preview metadata from a Hadoop cluster.

Note: The Developer tool displays the Available OS Profiles list only if the Metadata Access Service is
enabled to use operating system profiles. The Metadata Access Service imports the metadata with the
default operating system profile assigned to the user. You can change the operating system profile from
the list of available operating system profiles.

9. Click Finish.

The data object appears under the Physical Data Objects category in the project or folder in the Object
Explorer view. A read and write operation is created for the data object. Depending on whether you want
to use the complex file data object as a source or target, you can edit the read or write operation
properties. You can also create multiple read and write operations for a complex file data object. For a
data object with an intelligent structure model, create a read operation. You cannot use a write
transformation for a data object with an intelligent structure model in a mapping.

Note: The complex file data object write operation goes through and the mapping runs successfully even
if you have unconnected ports for required fields in the Parquet resource type. The NULL values are
inserted in the target object when such a mapping runs. The complex file data object read operation
results in an error while reading NULL values from the Parquet resource as Parquet Example Object
Model does not support NULL read.

10. For a read operation with an intelligent structure model, specify the path to the input file. In the Data
Object Operations panel, select the Advanced tab. In the File path field, specify the path to the input file.

Complex File Data Objects 23

Creating a Complex File Object Read or Write Operation
You can add an complex file data object read or write operation to a mapping or mapplet as a source.

Before you create an complex file data object read or write operation, you must create at least one complex
file data object. You can create the data object read or write operation for one or more complex file data
objects.

Perform the following steps to create an complex file data object read or write operation:

1. Select the data object in the Object Explorer view.

2. Right-click and select New > Data Object Operation.

The Data Object Operation dialog box appears.

3. Enter a name for the data object read or write operation.

4. Select Read or Write as the type of data object operation.

5. Click Add.

The Select Resources dialog box appears.

6. Select the complex file object for which you want to create the data object read or write operation and
click OK.

7. Click Finish.

The Developer tool creates the data object read or write operation for the selected data object.

Rules and Guidelines for Creating a Complex File Data Object
Operation

Use the following rules and guidelines when you create an complex file data object operation:

• When you create a data object read or write operation, you can add new columns or modify the columns in
the Ports tab directly.

• To modify the columns of a complex file, you must reconfigure the column projection properties.

• When you create a mapping to read or write a JSON complex file, the Developer Tool uses the first record
in the JSON file as a sample for projection. If the value of an attribute in the sample is null, The Developer
Tool defaults its type to "string". You can modify the columns under Enable Column Projection for data
object operations.

• To modify the columns of an Avro, JSON, ORC, or Parquet file, change the complex file file format in the
Schema field of the schema properties.

• When you create a mapping to read or write an Avro, JSON, ORC, or Parquet file, you can copy the
columns of the Source transformations, Target transformations, or any other transformations from the
Ports tab. Then, you can paste the columns in the data object read or write operation directly.

• When you copy the columns from any transformation to the data object read or write operation, you can
change the data type of the columns. The Data Integration Service resets the precision value of the data
type to the default value.
However, the Data Integration Service does not change the precision value of the String data type to the
default value.

24 Chapter 4: HDFS Data Objects

Custom Formats
Custom formats provide flexibility with the input, output, and compression formats that you can use with
PowerExchange for HDFS.

Apart from the input, output, and compression formats that PowerExchange for HDFS supports, you can use
custom formats to read, write, and compress files. You can use the custom formats that Hadoop supports.

You can specify the following custom formats:

• Custom input format for complex file data objects

• Custom output format for complex file data objects

• Custom compression format for flat file and complex file data objects

Custom Formats Configuration
Before you use custom formats, you must complete configuration tasks in the Informatica environment.

To use custom formats in the native environment, copy the .jar files that implement the custom formats to
the following directory:

<Informatica installation directory>/services/shared/hadoop/<hadoop distribution name>/
infaLib

To use custom formats in the Hadoop environment, see the Hadoop documentation for information about the
prerequisite tasks.

If the custom compression includes native libraries, depending on the run-time environment, add the path of
the native libraries to the environment variable $LD_LIBRARY_PATH or to the Hadoop connection. If you use
the native environment, add the path of the native libraries to the environment variable $LD_LIBRARY_PATH.
If you use the Hadoop environment, add the path of the native libraries to the Hadoop connection.

Perform the following steps to add the path of the native libraries to the Hadoop connection:

1. Click the Common Attributes tab in the Hadoop connection.

2. Under the Common Properties section, click Edit next to the Advanced Properties field.

3. Add the infapdo.java.opts property and set its value to the path of the native libraries.
For example, the following property specifies a native library path for a Cloudera distribution:

infapdo.java.opts=-Djava.library.path=$HADOOP_NODE_INFA_HOME/services/shared/bin:
$HADOOP_NODE_INFA_HOME/services/shared/hadoop/CDH_5.13/lib/native
Note: If you use Hortonworks or MapR distributions, change the native library path based on the
distribution.

Custom Formats 25

C h a p t e r 5

HDFS Data Extraction
This chapter includes the following topics:

• HDFS Data Extraction Overview, 26

• Flat File Data Object Read Properties, 26

• Complex Files Partitioning, 27

• Complex File Data Object Read Properties, 27

HDFS Data Extraction Overview
You can use a flat file data object or a complex file data object to read data from HDFS.

Complete the following tasks to read data from HDFS by using PowerExchange for HDFS:

1. Create an HDFS connection.

2. Create a flat file data object or a complex file data object. Specify the data object properties such as the
file location, compression format, and input format.

3. Create a mapping and use the flat file data object or the complex file data object read operation as a
source.

4. If needed, configure a Data Processor transformation to parse the complex file.

5. Configure the validation and run-time environment type.

6. Run the mapping to read data from HDFS.

Flat File Data Object Read Properties
The Data Integration Service uses read properties when it reads data from a flat file. You can edit the format
and runtime read properties on the Advanced tab.

26

The following table describes the HDFS connection and compression run-time properties that you configure
for flat file sources:

Property Description

Connection Type The type of connection. Select from the following options:
- None. The source file does not require a connection.
- Hadoop File System. The source file resides in HDFS.
Default is None.

Connection Name The name of the connection. Select an HDFS connection or assign a mapping parameter that
defines the connection details.

Compression Format Optional. Specifies the compression format. Select from the following options:
- None
- Auto
- Gzip
- Bzip2
- Lzo
- Custom

Compression Codec Required for custom compression. Specify the fully qualified class name implementing the
Hadoop CompressionCodec interface.

Complex Files Partitioning
When you run a mapping in a Hadoop environment to read data from sequence files and custom input format
files that are splittable, the Data Integration Service uses multiple partitions to read data from the source.
The Data Integration Service creates multiple Map jobs to read data in parallel, thereby resulting in high
performance.

To read text files in parallel, specify the following input format in the complex file read properties:

com.informatica.adapter.hdfs.hadoop.io.InfaTextInputFormat

You can also specify the following input format to read text files in batches:

com.informatica.adapter.hdfs.hadoop.io.InfaBatchTextInputFormat

Typically, when you read complex files, the Data Processor transformation has a Streamer component and a
Parser component. By default, the Data Integration Service calls the Data Transformation Engine for every
record. You can modify this behavior by using the count property in the Streamer component. Set the count
property to define the number of records that the Data Integration Service must treat as a batch. When you
set the count property, the Data Integration Service calls the Data Transformation Engine for each batch of
records instead of calling the Data Transformation Engine for every record. Since the Data Integration Service
processes the text files in batches, the performance increases.

Complex File Data Object Read Properties
The Data Integration Service uses read properties when it reads data from a complex file. Select the Output
transformation to edit the general, ports, sources, and run-time properties.

Complex Files Partitioning 27

Note: The FileName port is displayed by default when you create a data object read operation. You can
remove the FileName port if you do not want to read the FileName data.

Wildcard Characters for Reading Data from Complex Files
When you run a mapping in the native environment or on the Spark engine to read data from complex files,
you can use wildcard characters to specify the source directory name or the source file name. You can use
wildcard characters to specify the absolute path or relative path.

To use wildcard characters for the source directory name or the source file name, select the Allow Wildcard
Characters option in the advanced read properties of the complex file data object. You can then use wildcard
characters in the File path field.

You can use the following wildcard characters:

? (Question mark)

The question mark character (?) allows one occurrence of any character. For example, if you enter the
source file name as a?b.txt, the Data Integration Service reads data from files with the following
names:

• a1b.txt
• a2b.txt
• aab.txt
• acb.txt

* (Asterisk)

The asterisk mark character (*) allows zero or more than one occurrence of any character. If you enter
the source file name as a*b.txt, the Data Integration Service reads data from files with the following
names:

• aab.txt
• a1b.txt
• ab.txt
• abc11b.txt

Combination of * (Asterisk) and ? (Question mark)

The combination of asterisk mark character (*) and question mark character (?) allows zero or more than
one occurrence of any character.

General Properties
The Developer tool displays general properties for complex file sources in the Read view.

The following table describes the general properties that you configure for complex file sources:

Property Description

Name The name of the complex file.
This property is read-only. You can edit the name in the Overview view. When you use
the complex file as a source in a mapping, you can edit the name in the mapping.

Description The description of the complex file.

28 Chapter 5: HDFS Data Extraction

Ports Properties
Ports properties for a physical data object include port names and port attributes such as data type and
precision.

Note: The port size specified in the source transformation and Output transformation must be the same.

The following table describes the ports properties that you configure for complex file sources:

Property Description

Name The name of the resource.

Type The native data type of the resource.

Precision The maximum number of significant digits for numeric data types, or the maximum
number of characters for string data types.

Description The description of the resource.

Schema Properties
The Developer tool displays the schema properties for intelligent structure model, Avro, JSON, ORC and
Parquet complex file sources in the Properties view of the Read operation.

The following table describes the Schema properties that you configure for the complex file sources:

Property Description

Column Name Displays the name of the column.

Column Type Displays the format of the column.

Enable Column Projection Displays the column details of the complex files sources.

Schema Format Displays the schema format that you selected while creating the complex file data
object. You can change the schema format and provide respective schema.
You can select one of the following options:
- Avro
- Json
- Orc
- Parquet
- Xml
- Intelligent Structure Model
- Assign Parameter
You can change the complex file format without losing the column metadata even after
you configure the column projection properties for another complex file format.
You can parameterize the schema format using the Assign Parameter option.
Note: You can switch from one schema format to another only once. If you change the
schema format more than once, you might lose the original datatypes.

Complex File Data Object Read Properties 29

Property Description

Schema Displays the schema associated with the complex file. You can select a different
schema.
You can select one of the following options:
- Browse
- Assign Parameter
- Assign Path as Parameter
For the Assign Path as Parameter option, the path can be obtained from the server.
When you use Refresh Schema for the source or target in a mapping and also,
parameterize the schema, the parameterized schema takes precedence over the refresh
schema.
Note:
- If you disable the column projection, the schema associated with the complex file is

removed. If you want to associate schema again with the complex file, enable the
column projection and click Select Schema.

- When you parameterize the schema in a Parquet complex file, the schema should not
contain a String data type, use UTF8 data type instead.

Column Mapping Displays the mapping between input and output ports.
Note: If you disable the column projection, the mapping between input and output ports
is removed. If you want to map the input and output ports, enable the column projection
and click Select Schema to associate a schema to the complex file.

Note: In the native environment, Data Preview and a mapping may fail in the following scenarios:

• When you import an Avro file as a source object and switch the schema format to Parquet and select a
Parquet file as the source object.

• When you import a JSON file as a source object and switch the schema format to Avro and select an Avro
file as the source object.

You must edit the schema as per the selected schema format or enable the refresh schema at runtime option
in the mapping if you want to change the schema format.

Sources Properties
The Developer tool displays the sources properties for complex file sources in the Output transformation in
the Read view.

The sources properties list the resources of the complex file data object. You can add or remove resources in
the data object.

30 Chapter 5: HDFS Data Extraction

Advanced Properties
The Developer tool displays the advanced properties for complex file sources in the Output transformation in
the Read view.

The following table describes the advanced properties that you configure for complex file sources:

Property Description

Allow Wildcard Characters Indicates whether you want to use wildcard characters for the source directory name or
the source file name.
If you select this option, you can use wildcard characters ? and * for the source
directory name or the source file name in the File path field.
The question mark character (?) allows one occurrence of any character. The asterisk
character (*) allows zero or more than one occurrence of any character.
This option is applicable when you run a mapping in the native environment or on the
Spark engine.

File Format The file format. Select one of the following file formats:
- Binary. Select Binary to read any file format.
- Sequence. Select Sequence File Format for source files of a Hadoop-specific binary

format that contain key and value pairs.
- Custom Input. Select Input File Format to specify a custom input format. You must

specify the class name implementing the InputFormat interface in the Input Format
field.

- Assign Parameter. Select Assign Parameter to parameterize the file format.
Default is Binary.

Input Format The class name for files of the input file format. If you select Input File Format in the
File Format field, you must specify the fully qualified class name implementing the
InputFormat interface.
To read files that use the Avro format, use the following input format:
com.informatica.avro.AvroToXML
To read files that use the Parquet format, use the following input format:
com.informatica.parquet.ParquetToXML
You can use any class derived from
org.apache.hadoop.mapreduce.InputFormat.

Input Format Parameters Parameters for the input format class. Enter name-value pairs separated with a
semicolon. Enclose the parameter name and value within double quotes.
For example, use the following syntax:
"param1"="value1";"param2"="value2"

Compression Format Optional. The compression format for binary files. Select one of the following options:
- None
- Auto
- DEFLATE
- gzip
- bzip2
- Lzo
- Snappy
- Custom

Complex File Data Object Read Properties 31

Property Description

Custom Compression
Codec

Required for custom compression. Specify the fully qualified class name implementing
the CompressionCodec interface.

File path The location of the file or directory. If the path is a directory, all the files in the directory
must have the same file format.
If the file or directory is in HDFS, enter the path without the node URI. For example, /
user/lib/testdir specifies the location of a directory in HDFS. The path must not
contain more than 512 characters.
If the file or directory is in the local system, enter the fully qualified path. For
example, /user/testdir specifies the location of a directory in the local system.
Note: The Data Integration Service ignores any subdirectories and their contents.
If you select the Allow Wildcard Characters option, you can use wildcard characters ?
and * for the source directory name or the source file name.

32 Chapter 5: HDFS Data Extraction

C h a p t e r 6

HDFS Data Load
This chapter includes the following topics:

• HDFS Data Load Overview, 33

• Flat File Data Object Write Properties, 33

• Complex File Streaming, 34

• Complex Files Output Collection Mode, 35

• Complex File Data Object Write Properties, 36

HDFS Data Load Overview
You can use a flat file data object or a complex file data object to write data to HDFS.

Complete the following tasks to write data to HDFS by using PowerExchange for HDFS:

1. Create an HDFS connection.

2. Create a flat file data object or a complex file data object. Specify the data object properties such as the
file location and compression format.

3. Create a mapping and use the flat file data object or the complex file data object write operation as a
target.

4. Configure the validation and run-time environment type.

5. Run the mapping to write data to HDFS.

Flat File Data Object Write Properties
The Data Integration Service uses write properties when it writes data to a flat file. You can edit the format
and runtime write properties on the Advanced tab.

33

The following table describes the HDFS connection and compression properties that you configure for flat
file targets:

Property Description

Connection Type The type of connection. Select from the following options:
- None. The target file does not require a connection. The target file location is specified by

the output file directory.
- Hadoop File System. The target file is in HDFS.
Default is None.

Connection Name The name of the connection. Select an HDFS connection or assign a mapping parameter that
defines the connection details.

Compression
Format

Optional. Specifies the compression format. Select from the following options:
- None
- Gzip
- Bzip2
- Lzo
- Custom

Compression Codec Required for custom compression. Specify the fully qualified class name implementing the
Hadoop CompressionCodec interface.

Complex File Streaming
To write data to a complex file, include a Data Processor transformation in the mapping to convert the source
data into a binary format. You can use the binary stream to write data to the complex file.

The Data Processor transformation continually streams and sends input to the complex file target. It sends
end of file information after it fully streams a file. It sends end of streaming information when it streams the
entire input fully.

When the Data Processor transformation sends portions of the input to the complex file target,
PowerExchange for HDFS appends unique identifier information to the file name. The Data Integration
Service uses the unique identifiers to recognize that the streaming is in progress and not complete.
Therefore, the file name that you specify in the complex file write properties is not the same as the output file
in HDFS. The output file name in HDFS contains the unique identifier information as well.

The unique identifier format depends on whether the file is not compressed or not. The following table
describes the unique identifier format based on whether the file is compressed or not:

Run-time Environment Type File Type Unique Identifier Format

Native Uncompressed File <filename>_<unique
identifier>_<seq>.<ext>

Native Compressed File <filename>_<unique
identifier>_<seq>.<compressio
n format extension>

If you do not include the compression format extension as part of the file name in the complex file write
properties, PowerExchange for HDFS appends extensions based on the compression format.

34 Chapter 6: HDFS Data Load

The following table describes the extensions that PowerExchange for HDFS appends based on the
compression format that you use:

Compression Format File Name Extension that PowerExchange for HDFS Appends

DEFLATE .deflate

Gzip .gz

Bzip2 .bz2

Lzo .lzo

Snappy .snz

Complex Files Output Collection Mode
When you write data to complex files, you can choose to collect the input rows and write the output to a
single file, or create an output row for each input row.

You can specify the output collection mode in the Data Processor transformation based on the complex file
type.

To specify the output collection mode in the Data Processor transformation, open the Data Processor
transformation and click the Settings view. In the Binary output collection mode section, specify the output
collection mode.

The following table describes the options that you can select for the output collection mode:

Property Name Property Description

Collect input rows to a single
output

Select this option if you want to collect all input rows and write the output to a
single file.

Split output when size exceeds When you write the output to a single file, you can choose to split the output file
when it exceeds a particular size.
Enter the size in MB exceeding which the file must be split.
Default is 100 MB.

Output row for each input row
(do not collect)

Select this option if you want to write an output row for each input row.

Output Collection Mode for Binary Files

When you write to binary files in a native or Hadoop environment, you can specify the output collection mode
in the Data Processor transformation.

Output Collection Mode for Sequence Files and Custom Output Format Files

When you write to sequence files or custom output format files in a native environment, PowerExchange for
HDFS writes all the key-value pairs into one output file. The number of key-value pairs that PowerExchange
for HDFS writes depends on the output collection mode that you specified in the Data Processor
transformation.

Complex Files Output Collection Mode 35

Complex File Data Object Write Properties
The Data Integration Service uses write properties when it writes data to a complex file. Select the Input
transformation to edit the general, ports, sources, and advanced properties.
Note: Though the FileName port is displayed by default when you create a data object write operation, the
FileName port is not supported for the data object write operation.

Overwriting Complex File Targets
When you run a mapping in the native environment or on the Spark engine to write data to a complex file
target, you can choose to overwrite the target data. You can select the Overwrite Target option in the
advanced write properties of the complex file data object.

If you select the Overwrite Target option, the Data Integration Service deletes the target data before writing
data. If you do not select this option, the Data Integration Service creates a new file in the target and writes
the data to the file.

If you select the Overwrite Target option, the Data Integration Service deletes all the files and folders in the
target directory that are prefixed with the target file name.

For example, the following image shows target data with Overwrite Fileport connected:

If you select the Overwrite Target option, the Data Integration Service deletes all the folders and files in the
target directory that are prefixed with the target file name.

The following image shows the file structure after using the Overwrite Target option:

If you do not use the Overwrite Target option, the Data Integration Service adds the data to the existing files
and folders in the target directory.

The following image shows the file structure when you append data:

To avoid unnecessary deletion of files and folders, you must verify that the target directory does not contain
any folder or file with the same name as the target file name.

36 Chapter 6: HDFS Data Load

General Properties
The Developer tool displays general properties for complex file targets in the Write view.

The following table describes the general properties that you configure for complex file targets:

Property Description

Name The name of the complex file.
This property is read-only. You can edit the name in the Overview view. When you use
the complex file as a target in a mapping, you can edit the name in the mapping.

Description The description of the complex file.

Port Properties
Port properties for a physical data object include port names and port attributes such as data type and
precision.

Note: The port size specified in the target transformation and Input transformation must be the same.

The following table describes the ports properties that you configure for complex file targets:

Property Description

Name The name of the resource.

Type The native data type of the resource.

Precision The maximum number of significant digits for numeric data types, or the maximum
number of characters for string data types.

Description The description of the resource.

Schema Properties
The Developer tool displays the schema properties for Avro, JSON, ORC and Parquet complex file targets in
the Properties view of the Write operation.

The following table describes the schema properties that you configure for Avro, JSON, and Parquet complex
file targets:

Property Description

Column Name Displays the name of the column.

Column Type Displays the format of the column.

Enable Column Projection Displays the column details of the complex file targets.

Complex File Data Object Write Properties 37

Property Description

Schema Format Displays the schema format that you selected while creating the complex file data
object. You can change the schema format and provide respective schema.
You can select one of the following options:
- Avro
- Json
- Parquet
- Orc
- Xml
- Assign Parameter
You can change the complex file format without losing the column metadata even after
you configure the column projection properties for another complex file format.
Note: You can switch from one schema format to another only once. If you change the
schema format more than once, you might lose the original datatypes.

Schema Displays the schema associated with the complex file. You can select a different
schema.
You can select one of the following options:
- Browse
- Assign Parameter
- Assign Path as Parameter
When you use Refresh Schema for the source or target in a mapping and also,
parameterize the schema, the parameterized schema takes precedence over the refresh
schema.
Note:
- If you disable the column projection, the schema associated with the complex file is

removed. If you want to associate schema again with the complex file, enable the
column projection and click Select Schema.

- When you parameterize the schema in a Parquet complex file, the schema should not
contain a String data type, use UTF8 data type instead.

Column Mapping Displays the mapping between input and output ports.
Note: If you disable the column projection, the mapping between input and output ports
is removed. If you want to map the input and output ports, enable the column projection
and click Select Schema to associate a schema to the complex file.

Target Properties
The Developer tool displays the Target properties for complex file targets in the output transformation in the
Write view.

The target properties list the resources of the complex file data object. You can add or remove resources in
the data object.

38 Chapter 6: HDFS Data Load

Advanced Properties
The Developer tool displays the advanced properties for complex file targets in the Input transformation in
the Write view.

The following table describes the advanced properties that you configure for complex file targets:

Property Description

File Directory The directory location of the complex file target.
If the directory is in HDFS, enter the path without the node URI. For example, /
user/lib/testdir specifies the location of a directory in HDFS. The path must not
contain more than 512 characters.
If the directory is in the local system, enter the fully qualified path. For example, /
user/testdir specifies the location of a directory in the local system.
Note: The Data Integration Service ignores any subdirectories and their contents.

File Name The name of the output file. PowerExchange for HDFS appends the file name with a
unique identifier before it writes the file to HDFS.
In spark mode PowerExchange for HDFS appends the file name with .avro extension.

Overwrite Target Indicates whether the Data Integration Service must first delete the target data before
writing data.
If you select the Overwrite Target option, the Data Integration Service deletes the target
data before writing data. If you do not select this option, the Data Integration Service
creates a new file in the target and writes the data to the file.
This option is applicable when you run a mapping in the native environment or on the
Spark engine to write data to complex files.

File Format The file format. Select one of the following file formats:
- Binary. Select Binary to write any file format.
- Sequence. Select Sequence File Format for target files of a Hadoop-specific binary

format that contain key and value pairs.
- Custom Output. Select Output Format to specify a custom output format. You must

specify the class name implementing the OutputFormat interface in the Output
Format field.

- Assign Parameter. Select Assign Parameter to parameterize the file format.
Default is Binary.

Output Format The class name for files of the output format. If you select Output Format in the File
Format field, you must specify the fully qualified class name implementing the
OutputFormat interface.

Output Key Class The class name for the output key. If you select Output Format in the File Format field,
you must specify the fully qualified class name for the output key.
You can specify one of the following output key classes:
- BytesWritable
- Text
- LongWritable
- IntWritable
Note: PowerExchange for HDFS generates the key in ascending order.

Output Value Class The class name for the output value. If you select Output Format in the File Format
field, you must specify the fully qualified class name for the output value.
You can use any custom writable class that Hadoop supports. Determine the output
value class based on the type of data that you want to write.
Note: When you use custom output formats, the value part of the data that is streamed
to the complex file data object write operation must be in a serialized form.

Complex File Data Object Write Properties 39

Property Description

Compression Format Optional. The compression format for binary files. Select one of the following options:
- None
- Auto
- DEFLATE
- gzip
- bzip2
- LZO
- Snappy
- Custom
- Assign Parameter...

Custom Compression
Codec

Required for custom compression. Specify the fully qualified class name implementing
the CompressionCodec interface.

Sequence File Compression
Type

Optional. The compression format for sequence files. Select one of the following
options:
- None
- Record
- Block
- Assign Parameter...

40 Chapter 6: HDFS Data Load

C h a p t e r 7

HDFS Mappings
This chapter includes the following topics:

• HDFS Mappings Overview, 41

• Complex Files Target Creation, 42

• Creating a Complex File Target from an Existing Transformation , 42

• Mapping Validation and Run-time Environments, 43

• Rules and Guidelines for Complex File Sources and Targets in a Mapping, 43

• HDFS Data Extraction Mapping Example, 43

• HDFS Data Load Mapping Example, 45

• HDFS Avro Read Mapping Example, 46

HDFS Mappings Overview
After you create a flat file or a complex file data object operation, you can create an HDFS mapping.

You can define the following objects in an HDFS mapping:

• A flat file data object or a complex file data object read operation as the input to read data from HDFS

• Transformations

• A flat file data object or a complex file data object write operation as the output to write data to HDFS

If you use a complex file data object as a source, you must use a Data Processor transformation to parse the
file. Similarly, when you use a complex file data object as a target, you must use a Data Processor
transformation to convert the source data into a binary format. You can then use the binary stream to write
data to the complex file.

You can use complex file sources and targets as dynamic sources and targets in a mapping. For information
about dynamic mappings, see the Informatica Developer Mapping Guide.

Validate and run the mapping. You can deploy the mapping and run it or add the mapping to a Mapping task
in a workflow and run the workflow. You can also run the mapping in a Hadoop run-time environment.

41

Complex Files Target Creation
You can create a complex file target from an existing transformation in the mapping. The Developer tool can
create an Avro, Parquet, ORC, or JSON complex file target.

You cannot use the Create Target option to create a complex file target from an existing transformation in
the following scenarios:

• The existing transformation contains a port named FileName.

• The existing transformation points to a Hive table that contains a complex data type with hierarchical
data.

• The existing transformation points to an Avro complex file that contains field names with special
characters.

Creating a Complex File Target from an Existing
Transformation

If one of the ports in the existing transformation contains a complex port, you must create a complex file
target and link ports by name or link ports at run time based on the link policy.

1. Open a complex file mapping in the editor.

2. Right-click a transformation in the mapping editor and select Create Target.

The Create Target window opens.

3. Choose the complex file data object type.

4. Choose a link type.

You can choose from the following link types:
Link ports by name

Ports in the Write transformation correspond to those in the source and have the same names.

Link dynamic port based on the mapping flow

The Write transformation contains dynamic ports based on upstream objects in the mapping flow.

Link ports at run time based on link policy

Ports are created in the target at run time based on the link policy that you configure on the Run
Time Linking tab of the Write transformation.

For more information about dynamic ports and run-time link configuration, see the Informatica Developer
Mapping Guide.

5. Name the new complex file data object.

6. Optionally, click Browse to select a location for the data object.

7. Select the complex file format as Avro, Parquet, Orc, or Json in the Resource Format list.

8. Click Finish.

The Developer tool performs the following tasks:

• Adds a complex file Write transformation to the mapping.

• Links ports.

42 Chapter 7: HDFS Mappings

• Creates a physical data object.
You can configure the physical data object properties. For example, you must specify an HDFS connection
for the complex file data object.

Mapping Validation and Run-time Environments
You can use flat file and complex file data objects in a Hadoop run-time environment.

You can configure the mappings to run in native or Hadoop run-time environments. When you run a mapping
in the native environment, the Data Integration Service processes the mapping. When you run a mapping in a
Hadoop environment, the Data Integration Service can push mappings to a Hadoop cluster. You can run an
HBase mapping on the Blaze or Spark engine.

For more information about the native and Hadoop environments, see the Informatica Data Engineering
Integration User Guide.

Rules and Guidelines for Complex File Sources and
Targets in a Mapping

Consider the following rules and guidelines for complex file sources and targets in a mapping:

• You cannot use the Create Target option to create a complex file target from an existing transformation in
the following scenarios:

- The existing transformation contains a port named FileName.

- The existing transformation points to a Hive table that contains a complex data type with hierarchical
data.

- The existing transformation points to an Avro complex file that contains field names with special
characters.

• If you select the Overwrite Target option, the Data Integration Service deletes all the files and folders in
the target directory that are prefixed with the target file name.

To avoid unnecessary deletion of files and folders, you must verify that the target directory does not
contain any folder or file with the same name as the target file name.

• You cannot delete a port from a physical data object in a complex file mapping running on the Spark
engine as the mapping results can be unpredictable. You can disconnect the port instead.

HDFS Data Extraction Mapping Example
Your organization needs to analyze purchase order details such as customer ID, item codes, and item
quantity. The purchase order details are stored in a semi-structured compressed XML file in HDFS. The
hierarchical data includes a purchase order parent hierarchy level and a customer contact details child
hierarchy level. Create a mapping that reads all the purchase records from the file in HDFS. The mapping
must convert the hierarchical data to relational data and write it to a relational target.

Mapping Validation and Run-time Environments 43

You can use the extracted data for business analytics.

The following figure shows the example mapping:

You can use the following objects in the HDFS mapping:
HDFS Input

The input object, Read_Complex_File, is a Read transformation that represents a compressed XML file
stored in HDFS.

Data Processor Transformation

The Data Processor transformation, Data_Processor_XML_to_Relational, parses the XML file and
provides a relational output.

Relational Output

The output object, Write_Relational_Data_Object, is a Write transformation that represents a table in an
Oracle database.

When you run the mapping, the Data Integration Service reads the file in a binary stream and passes it to the
Data Processor transformation. The Data Processor transformation parses the specified file and provides a
relational output. The output is written to the relational target.

You can configure the mapping to run in a native or Hadoop run-time environment.

Complete the following tasks to configure the mapping:

1. Create an HDFS connection to read files from the Hadoop cluster.

2. Create a complex file data object read operation. Specify the following parameters:

• The file as the resource in the data object.

• The file compression format.

• The HDFS file location.

3. Optionally, you can specify the input format that the Mapper uses to read the file.

4. Drag and drop the complex file data object read operation into a mapping.

5. Create a Data Processor transformation. Configure the following properties in the Data Processor
transformation:

• An input port set to buffer input and binary data type.

• Relational output ports depending on the number of columns you want in the relational output.
Specify the port size for the ports. Use an XML schema reference that describes the XML hierarchy.
Specify the normalized output that you want. For example, you can specify
PurchaseOrderNumber_Key as a generated key that relates the Purchase Orders output group to a
Customer Details group.

• Create a Streamer object and specify Streamer as a startup component.

6. Create a relational connection to an Oracle database.

7. Import a relational data object.

8. Create a write transformation for the relational data object and add it to the mapping.

44 Chapter 7: HDFS Mappings

HDFS Data Load Mapping Example
Your organization needs to denormalize employee ID, name, and address details. The employee ID, name, and
address details are stored in flat files in HDFS. Create a mapping that reads all the employee ID, name, and
address details from the flat files in HDFS. The mapping must convert the denormalized data to hierarchical
data and write it to a complex file target in HDFS.

You can use the target data for business analytics.

The following figure shows the example mapping:

You can use the following objects in the HDFS mapping:
HDFS Inputs

The inputs, Read_Address_Flat_File and Read_Name_Flat_File, are flat files stored in HDFS.

Data Processor Transformation

The Data Processor transformation, JSON_R2H_Denormalize_NameAndAddress, reads the flat files,
denormalizes the data, and provides a binary, hierarchical output.

HDFS Output

The output, Write_Complex_File, is a complex file stored in HDFS.

When you run the mapping, the Data Integration Service reads the input flat files and passes the employee ID,
name, and address data to the Data Processor transformation. The Data Processor transformation
denormalizes the employee ID, name, and address data, and provides a hierarchical output in a binary stream.
The binary and hierarchical output is written to the HDFS complex file target.

You can configure the mapping to run in a native or Hadoop run-time environment.

Complete the following tasks to configure the mapping:

1. Create an HDFS connection to read flat files from the Hadoop cluster.

2. Specify the read properties for the flat files.

3. Drag and drop the flat files into a mapping.

4. Create a Data Processor transformation. Set the Data Processor transformation port to binary.

5. Create an HDFS connection to write data to the complex file target.

HDFS Data Load Mapping Example 45

6. Create a complex file data object write operation. Specify the following parameters:

• The file as the resource in the data object.

• The HDFS file location.

7. Drag and drop the complex file data object write operation into the mapping.

HDFS Avro Read Mapping Example
Your organization needs to denormalize customer key, name, address, and other details. The customer
details are stored in Avro files in HDFS. Import the Avro file object as a source. Create a mapping that reads
all the customer details from the avro files in HDFS, and writes the customers details to an Oracle target.

You can use the target data for business analytics.

You can use the following objects in the HDFS mapping:
HDFS Inputs

The Customer_Details_Avro file is an Avro files stored in HDFS.

HDFS Output

The Customer_Oracle_Target file is an Oracle object.

Create a Complex File Data Object

46 Chapter 7: HDFS Mappings

Create a complex file data object to read data from an Avro file. Verify that you select Avro as Resource
Format. The following image shows the sample selection:

HDFS Avro Read Mapping Example 47

When you create the complex file data object, the read and write operations are created by default. You can
view the columns present in the Avro file. The following image shows the sample data object read operation:

The Enable Column Projection is selected by default. You can view or update the associated schema and
column mapping.

48 Chapter 7: HDFS Mappings

The following image shows the sample mapping:

When you run the mapping, the Data Integration Service reads the input Avro files and writes the hierarchical
output directly to the Oracle target.

You can configure the mapping to run in a native or Hadoop run-time environment.

Perform the following tasks to configure the mapping:

1. Create an HDFS connection to read Avro file from the Hadoop cluster.

2. Create a complex file data object to import the Avro file. You must select Avro as Resource Format.
Configure the read operation properties.

3. Create an Oracle database connection to write data to the Oracle target.

4. Create an Oracle data object and configure the write operation properties.

5. Drag the complex file data object read operation and Oracle data object write operation into the
mapping.

6. Map ports and run the mapping.

HDFS Avro Read Mapping Example 49

A p p e n d i x A

Data Type Reference
This appendix includes the following topics:

• Data Type Reference Overview, 50

• Flat File and Transformation Data Types, 51

• Complex File and Transformation Data Types, 52

• Avro Data Types and Transformation Data Types, 52

• JSON Data Types and Transformation Data Types, 54

• ORC Data Types and Transformation Data Types, 54

• Parquet Data Types and Transformation Data Types, 56

• Rules and Guidelines for Data Types, 57

Data Type Reference Overview
Informatica Developer uses the following data types for HDFS data objects:

• Flat file data types. Flat file data types appear in the physical data object column properties.

• Complex file data types. Complex file data types appear in the physical data object column properties.

• Transformation data types. Set of data types that appear in the transformations. They are internal data
types based on ANSI SQL-92 generic data types, which the Data Integration Service uses to move data
across platforms. Transformation data types appear in all transformations in a mapping.

When the Data Integration Service reads source data, it converts the native data types to the comparable
transformation data types before transforming the data. When the Data Integration Service writes to a target,
it converts the transformation data types to the comparable native data types.

50

Flat File and Transformation Data Types
Flat file data types map to transformation data types that the Data Integration Service uses to move data
across platforms.

The following table compares flat file data types to transformation data types:

Flat File Data type Transformation
Data type

Range

Bigint Bigint Precision of 19 digits, scale of 0

Datetime Date/Time Jan 1, 0001 A.D. to Dec 31, 9999 A.D. (precision to the nanosecond)

Double Double Precision of 15 digits

Int Integer -2,147,483,648 to 2,147,483,647

Nstring String 1 to 104,857,600 characters

Number Decimal For transformations that support precision up to 38 digits, the
precision is 1 to 38 digits, and the scale is 0 to 38.
For transformations that support precision up to 28 digits, the
precision is 1 to 28 digits, and the scale is 0 to 28.
If you specify the precision greater than the maximum number of
digits, the Data Integration Service converts decimal values to
double in high precision mode.
If the precision is greater than 15, the Data Integration Service
converts decimal values to double in low-precision mode.

String String 1 to 104,857,600 characters

TimestampWithTZ timestampWithTZ Aug. 1, 1947 A.D to Dec. 31, 2040 A.D.
-12:00 to +14:00
Precision of 36 and scale of 9.
(precision to the nanosecond)
Timestamp with Time Zone data type does not support the following
time zone regions:
- AFRICA_CAIRO
- AFRICA_MONROVIA
- EGYPT
- AMERICA_MONTREAL
Note: TimestampWithTZ is applicable only to the native environment.

When the Data Integration Service reads non-numeric data in a numeric column from a flat file, it drops the
row and writes a message in the log. Also, when the Data Integration Service reads non-datetime data in a
datetime column from a flat file, it drops the row and writes a message in the log.

Flat File and Transformation Data Types 51

Complex File and Transformation Data Types
Complex file data types map to transformation data types that the Data Integration Service uses to move
data across platforms.

The following table lists the complex file data types that the Data Integration Service supports and the
corresponding transformation data types:

Complex File
Data Type

Transformation Data
Type

Range and Description

Binary Binary 1 to 104,857,600 bytes. You can read and write data of Binary data type
in a Hadoop environment. You can use the user-defined functions to
transform the binary data.

Avro Data Types and Transformation Data Types
Avro data types map to transformation data types that the Data Integration Service uses to move data across
platforms.

The following table compares the Avro data types that the Data Integration Service supports and the
corresponding transformation data types:

Avro Data
Type

Transformation Data
Type

Range

Array Array Unlimited number of characters.

Boolean Integer TRUE (1) or FALSE (0).

Bytes Binary Precision 4000.

Date Date/Time January 1, 0001 to December 31, 9999.

Decimal Decimal Decimal value with declared precision and scale. Scale must be less
than or equal to precision.
For transformations that support precision up to 38 digits, the
precision is 1 to 38 digits, and the scale is 0 to 38.
For transformations that support precision up to 28 digits, the
precision is 1 to 28 digits, and the scale is 0 to 28.
If you specify the precision greater than the maximum number of digits,
the Data Integration Service converts decimal values to double in high
precision mode.

Double Double Precision 15.

Fixed Binary 1 to 104,857,600 bytes.

Float Double Precision 15.

Int Integer -2,147,483,648 to 2,147,483,647 Precision 10 and scale 0.

52 Appendix A: Data Type Reference

Avro Data
Type

Transformation Data
Type

Range

Long Bigint -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.
Precision 19 and scale 0.

Map Map Unlimited number of characters.

Record Struct Unlimited number of characters.

String String 1 to 104,857,600 characters.

Time Date/Time Time of the day. Precision to microsecond.

Timestamp Date/Time January 1, 0001 00:00:00 to December 31, 9999 23:59:59.997.
Precision to microsecond.

Union Corresponding data type
in a union of
["primitive_type|
complex_type", "null"] or
["null", "primitive_type|
complex_type"].

Dependent on primitive or complex data type.

Avro Union Data Type

A union indicates that a field might have more than one data type. For example, a union might indicate that a
field can be a string or a null. A union is represented as a JSON array containing the data types.
The Developer tool only interprets a union of ["primitive_type|complex_type", "null"] or ["null", "primitive_type|
complex_type"]. The Avro data type converts to the corresponding transformation data type.

Avro Timestamp Data Type Support

The following table lists the Timestamp data type support for Avro file formats:

Timestamp Data type Native Spark

Timestamp_micros Yes Yes

Timestamp_millis Yes No

Time_millis Yes No

Time_micros Yes No

Unsupported Avro Data Types

The Developer tool does not support the following Avro data types:

• Enum

• Null

• Timestamp_tz

Avro Data Types and Transformation Data Types 53

JSON Data Types and Transformation Data Types
JSON data types map to transformation data types that the Data Integration Service uses to move data
across platforms.

The following table compares the JSON data types that the Data Integration Service supports and the
corresponding transformation data types:

JSON Transformation Range

Array Array Unlimited number of characters.

Double Double Precision of 15 digits.

Integer Integer -2,147,483,648 to 2,147,483,647.
Precision of 10, scale of 0.

Object Struct Unlimited number of characters.

String String 1 to 104,857,600 characters.

Note: You can use JSON data types to read and write complex file objects in mappings that run on the Spark
engine only.

Unsupported JSON Data Types

The Developer tool does not support the following JSON data types:

• Date

• Decimal

• Timestamp

• Enum

• Union

ORC Data Types and Transformation Data Types
ORC file data types map to transformation data types that the Data Integration Service uses to move data
across platforms.

The following table lists the ORC file data types that the Data Integration Service supports and the
corresponding transformation data types:

ORC File Data Type Transformation Data Type Range and Description

BigInt BigInt -9223372036854775808 to
9,223,372,036,854,775,807.

Boolean Integer TRUE (1) or FALSE (0).

54 Appendix A: Data Type Reference

ORC File Data Type Transformation Data Type Range and Description

Char String 1 to 104,857,600 characters.

Date Date/Time January 1, 0001 to December
31, 9999.

Double Double Precision of 15 digits.

Float Double Precision of 15 digits.

Integer Integer -2,147,483,648 to
2,147,483,647.

SmallInt Integer -32,768 to 32,767.

String String 1 to 104,857,600 characters.

Timestamp Date/Time January 1, 0001 00:00:00 to
December 31, 9999
23:59:59.997.
Precision to microsecond.

TinyInt Integer -128 to 127.

Varchar String 1 to 104,857,600 characters.

When you run a mapping on the Spark or Databricks Spark engine to write an ORC file to a target, the Data
Integration Service writes the data of the Char and Varchar data types as String.

Note: You can use ORC data types to read and write complex file objects in mappings that run on the Spark
engine only.

Unsupported ORC Data Types

The Developer tool does not support the following JSON data types:

• Map

• List

• Struct

• Union

ORC Data Types and Transformation Data Types 55

Parquet Data Types and Transformation Data Types
Parquet data types map to transformation data types that the Data Integration Service uses to move data
across platforms.

The following table compares the Parquet data types that the Data Integration Service supports and the
corresponding transformation data types:

Parquet Transformation Range

Binary Binary 1 to 104,857,600 bytes

Binary (UTF8) String 1 to 104,857,600 characters

Boolean Integer -2,147,483,648 to 2,147,483,647
Precision of 10, scale of 0

Date Date/Time January 1, 0001 to December 31, 9999.

Decimal Decimal Decimal value with declared precision and
scale. Scale must be less than or equal to
precision.
For transformations that support precision
up to 38 digits, the precision is 1 to 38
digits, and the scale is 0 to 38.
For transformations that support precision
up to 28 digits, the precision is 1 to 28
digits, and the scale is 0 to 28.
If you specify the precision greater than the
maximum number of digits, the Data
Integration Service converts decimal
values to double in high precision mode.

Double Double Precision of 15 digits.

Float Double Precision of 15 digits.

Int32 Integer -2,147,483,648 to 2,147,483,647
Precision of 10, scale of 0

Int64 Bigint -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807
Precision of 19, scale of 0

Map Map Unlimited number of characters.

Struct Struct Unlimited number of characters.

Time Date/Time Time of the day. Precision to microsecond.

56 Appendix A: Data Type Reference

Parquet Transformation Range

Timestamp Date/Time January 1, 0001 00:00:00 to December 31,
9999 23:59:59.997.
Precision to microsecond.

group (LIST) Array Unlimited number of characters.

The Parquet schema that you specify to read or write a Parquet file must be in smaller case. Parquet does
not support case-sensitive schema.

Parquet Timestamp Data Type Support

The following table lists the Timestamp data type support for Parquet file formats:

Timestamp Data type Native Spark

Timestamp_micros Yes Yes

Timestamp_millis Yes No

Time_millis Yes No

Time_micros Yes No

int96 Yes Yes

Unsupported Parquet Data Types

The Developer tool does not support the following Parquet data types:

• Timestamp_nanos

• Time_nanos

• Timestamp_tz

Rules and Guidelines for Data Types
Consider the following rules and guidelines for data types:

• Avro data types support:

- Date, Decimal, and Timestamp data types are applicable when you run a mapping in the native
environment or on the Spark engine in Cloudera CDH 6.1 distribution only.

- Time data type is applicable when you run a mapping in the native environment in Cloudera CDH 6.1
distribution only.

• Parquet data types support:

- Date, Time, and Timestamp data types till micros are applicable when you run a mapping in the native
environment and Blaze engine in the CDH 6.1, HDP 3.1, and HDI 4.0 distributions.

Rules and Guidelines for Data Types 57

- Date and Timestamp data types till micros are applicable when you run a mapping on the Spark engine
in the CDH 6.1, HDP 3.1, and HDI 4.0 distributions.

- Date,Time_Millis and Timestamp_Millis data typesare applicable when you run a mapping in the native
environment or Blaze engine in the EMR 5.23, MapR6.1, and HDP 2.6 distributions.

- Date and Timestamp_Millis data types are applicable when you run a mapping on the Spark engine in the
EMR 5.23, MapR6.1, and HDP 2.6 distributions.

- Decimal data types are applicable when you run a mapping in the native environment and Blaze engine in
Cloudera CDH 6.1, CDH 6.3, HDP 2.6, HDP 3.1, EMR 5.20, EMR 5.23, MapR 6.1, Dataproc 1.4 and HDI 4.0
distributions.

- Date, Time, Timestamp, and Decimal data types are applicable when you run a mapping on the
Databricks Spark engine.

• When you run a mapping in the native environment and use Time data type in the source, the Data
Integration Service writes incorrect date value to the target.
For example, Time data type used in the source:

1980-01-09 06:56:01.365235000
Incorrect Date value is generated in the target:

1899-12-31 06:56:01.365235000
• When you run a mapping in the native environment and use Date data type in the source, the Data

Integration Service writes incorrect time value to the target.
For example, Date data type used in the source:

1980-01-09 00:00:00
Incorrect Time value generated in the target:

1980-01-09 05:30:00
• To run a mapping that reads and writes Date, Time, Timestamp, and Decimal data types, update the -

DINFA_HADOOP_DIST_DIR option to the developerCore.ini file. The developerCore.ini file is located in
the following directory:
<Client installation directory>\clients\DeveloperClient\
Add the following path to the developerCore.ini file:

-DINFA_HADOOP_DIST_DIR=hadoop\CDH_6.1
Update developerCore.ini for all file-based PowerExchange adapters except PowerExchange for HDFS.

• To use precision up to 38 digits for Decimal data type in the native environment, set the
EnableSDKDecimal38 custom property to true for the Data Integration Service. The EnableSDKDecimal38
custom property is applicable to all file-based PowerExchange adapters except PowerExchange for HDFS.

58 Appendix A: Data Type Reference

I n d e x

A
Avro data types

transformation data types 52

C
complex file data object read operation

creation 24
complex file data objects

creating 22
general properties 20
objects properties 20
overview 20

complex file output
parsing 22

complex file read properties
advanced properties 31
general properties 28
overview 27
ports properties 29
schema properties 29
sources properties 30

complex file write properties
advanced properties 39
general properties 37
overview 36
ports properties 37
schema properties 37
target properties 38

complex files
compression 20
decompression 20
input formats for text files 27
output collection mode 35
partitioning 27
streaming 34

custom formats
configuration 25
overview 25

D
Data Processor transformation

configuration 22
data type reference

complex files 52
flat files 51

data Type reference
overview 50

F
File Naming Convention 19
FileName port 15
flat file data objects

compression 17
configuring an HDFS connection 19
decompression 17
partitioning 17
read properties 26
rules and guidelines for using 18
write properties 33

H
HDFS connections

creating 12
overview 11
properties 11

HDFS data objects
complex file data objects 19
flat file data objects 17
overview 14

HDFS mappings
avro data read example 46
data extraction example 43
data load example 45
overview 41

J
JSON data types

transformation data types 54

M
mapping run-time environment

Hadoop 43

O
ORC file data types

transformation data types 54

P
Parquet data types

transformation data types 56
PowerExchange for HDFS

data extraction 26
data load 33

59

PowerExchange for HDFS (continued)
overview 8

PowerExchange for HDFS configuration
overview 9
prerequisites 9

R
rules and guidelines

complex file data object operation 24

rules and guidelines (continued)
FileName port 15

W
working with FileName port 15

60 Index

	Table of Contents
	Preface
	Informatica Resources
	Informatica Network
	Informatica Knowledge Base
	Informatica Documentation
	Informatica Product Availability Matrices
	Informatica Velocity
	Informatica Marketplace
	Informatica Global Customer Support

	Chapter 1: Introduction to PowerExchange for HDFS
	PowerExchange for HDFS Overview

	Chapter 2: PowerExchange for HDFS Configuration
	PowerExchange for HDFS Configuration Overview
	Prerequisites

	Chapter 3: HDFS Connections
	HDFS Connections Overview
	HDFS Connection Properties
	Creating an HDFS Connection

	Chapter 4: HDFS Data Objects
	HDFS Data Objects Overview
	Generate the Source File Name for HDFS Data Objects
	FileName Port Overview
	Working with FileName Port
	Rules and Guidelines for Using FileName Port

	Flat File Data Objects
	Compression and Decompression for Flat File Sources and Targets
	Rules and Guidelines for Flat File Data Objects
	Configuring a Flat File Data Object with an HDFS Connection
	Naming Convention for Flat File Targets

	Complex File Data Objects
	Complex File Data Object Overview Properties
	Compression and Decompression for Complex File Sources and Targets
	Parameterization of Complex File Data Objects
	Complex File Data Object Output Parsing
	Creating a Complex File Data Object
	Creating a Complex File Object Read or Write Operation
	Rules and Guidelines for Creating a Complex File Data Object Operation

	Custom Formats
	Custom Formats Configuration

	Chapter 5: HDFS Data Extraction
	HDFS Data Extraction Overview
	Flat File Data Object Read Properties
	Complex Files Partitioning
	Complex File Data Object Read Properties
	Wildcard Characters for Reading Data from Complex Files
	General Properties
	Ports Properties
	Schema Properties
	Sources Properties
	Advanced Properties

	Chapter 6: HDFS Data Load
	HDFS Data Load Overview
	Flat File Data Object Write Properties
	Complex File Streaming
	Complex Files Output Collection Mode
	Complex File Data Object Write Properties
	Overwriting Complex File Targets
	General Properties
	Port Properties
	Schema Properties
	Target Properties
	Advanced Properties

	Chapter 7: HDFS Mappings
	HDFS Mappings Overview
	Complex Files Target Creation
	Creating a Complex File Target from an Existing Transformation
	Mapping Validation and Run-time Environments
	Rules and Guidelines for Complex File Sources and Targets in a Mapping
	HDFS Data Extraction Mapping Example
	HDFS Data Load Mapping Example
	HDFS Avro Read Mapping Example

	Appendix A: Data Type Reference
	Data Type Reference Overview
	Flat File and Transformation Data Types
	Complex File and Transformation Data Types
	Avro Data Types and Transformation Data Types
	JSON Data Types and Transformation Data Types
	ORC Data Types and Transformation Data Types
	Parquet Data Types and Transformation Data Types
	Rules and Guidelines for Data Types

	Index

